xref: /openbmc/linux/arch/x86/kvm/vmx/posted_intr.c (revision 282a4b71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kvm_host.h>
3 
4 #include <asm/irq_remapping.h>
5 #include <asm/cpu.h>
6 
7 #include "lapic.h"
8 #include "irq.h"
9 #include "posted_intr.h"
10 #include "trace.h"
11 #include "vmx.h"
12 
13 /*
14  * Maintain a per-CPU list of vCPUs that need to be awakened by wakeup_handler()
15  * when a WAKEUP_VECTOR interrupted is posted.  vCPUs are added to the list when
16  * the vCPU is scheduled out and is blocking (e.g. in HLT) with IRQs enabled.
17  * The vCPUs posted interrupt descriptor is updated at the same time to set its
18  * notification vector to WAKEUP_VECTOR, so that posted interrupt from devices
19  * wake the target vCPUs.  vCPUs are removed from the list and the notification
20  * vector is reset when the vCPU is scheduled in.
21  */
22 static DEFINE_PER_CPU(struct list_head, wakeup_vcpus_on_cpu);
23 /*
24  * Protect the per-CPU list with a per-CPU spinlock to handle task migration.
25  * When a blocking vCPU is awakened _and_ migrated to a different pCPU, the
26  * ->sched_in() path will need to take the vCPU off the list of the _previous_
27  * CPU.  IRQs must be disabled when taking this lock, otherwise deadlock will
28  * occur if a wakeup IRQ arrives and attempts to acquire the lock.
29  */
30 static DEFINE_PER_CPU(raw_spinlock_t, wakeup_vcpus_on_cpu_lock);
31 
32 static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
33 {
34 	return &(to_vmx(vcpu)->pi_desc);
35 }
36 
37 static int pi_try_set_control(struct pi_desc *pi_desc, u64 *pold, u64 new)
38 {
39 	/*
40 	 * PID.ON can be set at any time by a different vCPU or by hardware,
41 	 * e.g. a device.  PID.control must be written atomically, and the
42 	 * update must be retried with a fresh snapshot an ON change causes
43 	 * the cmpxchg to fail.
44 	 */
45 	if (!try_cmpxchg64(&pi_desc->control, pold, new))
46 		return -EBUSY;
47 
48 	return 0;
49 }
50 
51 void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
52 {
53 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
54 	struct vcpu_vmx *vmx = to_vmx(vcpu);
55 	struct pi_desc old, new;
56 	unsigned long flags;
57 	unsigned int dest;
58 
59 	/*
60 	 * To simplify hot-plug and dynamic toggling of APICv, keep PI.NDST and
61 	 * PI.SN up-to-date even if there is no assigned device or if APICv is
62 	 * deactivated due to a dynamic inhibit bit, e.g. for Hyper-V's SyncIC.
63 	 */
64 	if (!enable_apicv || !lapic_in_kernel(vcpu))
65 		return;
66 
67 	/*
68 	 * If the vCPU wasn't on the wakeup list and wasn't migrated, then the
69 	 * full update can be skipped as neither the vector nor the destination
70 	 * needs to be changed.
71 	 */
72 	if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR && vcpu->cpu == cpu) {
73 		/*
74 		 * Clear SN if it was set due to being preempted.  Again, do
75 		 * this even if there is no assigned device for simplicity.
76 		 */
77 		if (pi_test_and_clear_sn(pi_desc))
78 			goto after_clear_sn;
79 		return;
80 	}
81 
82 	local_irq_save(flags);
83 
84 	/*
85 	 * If the vCPU was waiting for wakeup, remove the vCPU from the wakeup
86 	 * list of the _previous_ pCPU, which will not be the same as the
87 	 * current pCPU if the task was migrated.
88 	 */
89 	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR) {
90 		raw_spin_lock(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu));
91 		list_del(&vmx->pi_wakeup_list);
92 		raw_spin_unlock(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu));
93 	}
94 
95 	dest = cpu_physical_id(cpu);
96 	if (!x2apic_mode)
97 		dest = (dest << 8) & 0xFF00;
98 
99 	old.control = READ_ONCE(pi_desc->control);
100 	do {
101 		new.control = old.control;
102 
103 		/*
104 		 * Clear SN (as above) and refresh the destination APIC ID to
105 		 * handle task migration (@cpu != vcpu->cpu).
106 		 */
107 		new.ndst = dest;
108 		new.sn = 0;
109 
110 		/*
111 		 * Restore the notification vector; in the blocking case, the
112 		 * descriptor was modified on "put" to use the wakeup vector.
113 		 */
114 		new.nv = POSTED_INTR_VECTOR;
115 	} while (pi_try_set_control(pi_desc, &old.control, new.control));
116 
117 	local_irq_restore(flags);
118 
119 after_clear_sn:
120 
121 	/*
122 	 * Clear SN before reading the bitmap.  The VT-d firmware
123 	 * writes the bitmap and reads SN atomically (5.2.3 in the
124 	 * spec), so it doesn't really have a memory barrier that
125 	 * pairs with this, but we cannot do that and we need one.
126 	 */
127 	smp_mb__after_atomic();
128 
129 	if (!pi_is_pir_empty(pi_desc))
130 		pi_set_on(pi_desc);
131 }
132 
133 static bool vmx_can_use_vtd_pi(struct kvm *kvm)
134 {
135 	return irqchip_in_kernel(kvm) && enable_apicv &&
136 		kvm_arch_has_assigned_device(kvm) &&
137 		irq_remapping_cap(IRQ_POSTING_CAP);
138 }
139 
140 /*
141  * Put the vCPU on this pCPU's list of vCPUs that needs to be awakened and set
142  * WAKEUP as the notification vector in the PI descriptor.
143  */
144 static void pi_enable_wakeup_handler(struct kvm_vcpu *vcpu)
145 {
146 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
147 	struct vcpu_vmx *vmx = to_vmx(vcpu);
148 	struct pi_desc old, new;
149 	unsigned long flags;
150 
151 	local_irq_save(flags);
152 
153 	raw_spin_lock(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu));
154 	list_add_tail(&vmx->pi_wakeup_list,
155 		      &per_cpu(wakeup_vcpus_on_cpu, vcpu->cpu));
156 	raw_spin_unlock(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu));
157 
158 	WARN(pi_desc->sn, "PI descriptor SN field set before blocking");
159 
160 	old.control = READ_ONCE(pi_desc->control);
161 	do {
162 		/* set 'NV' to 'wakeup vector' */
163 		new.control = old.control;
164 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
165 	} while (pi_try_set_control(pi_desc, &old.control, new.control));
166 
167 	/*
168 	 * Send a wakeup IPI to this CPU if an interrupt may have been posted
169 	 * before the notification vector was updated, in which case the IRQ
170 	 * will arrive on the non-wakeup vector.  An IPI is needed as calling
171 	 * try_to_wake_up() from ->sched_out() isn't allowed (IRQs are not
172 	 * enabled until it is safe to call try_to_wake_up() on the task being
173 	 * scheduled out).
174 	 */
175 	if (pi_test_on(&new))
176 		apic->send_IPI_self(POSTED_INTR_WAKEUP_VECTOR);
177 
178 	local_irq_restore(flags);
179 }
180 
181 static bool vmx_needs_pi_wakeup(struct kvm_vcpu *vcpu)
182 {
183 	/*
184 	 * The default posted interrupt vector does nothing when
185 	 * invoked outside guest mode.   Return whether a blocked vCPU
186 	 * can be the target of posted interrupts, as is the case when
187 	 * using either IPI virtualization or VT-d PI, so that the
188 	 * notification vector is switched to the one that calls
189 	 * back to the pi_wakeup_handler() function.
190 	 */
191 	return vmx_can_use_ipiv(vcpu) || vmx_can_use_vtd_pi(vcpu->kvm);
192 }
193 
194 void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
195 {
196 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
197 
198 	if (!vmx_needs_pi_wakeup(vcpu))
199 		return;
200 
201 	if (kvm_vcpu_is_blocking(vcpu) && !vmx_interrupt_blocked(vcpu))
202 		pi_enable_wakeup_handler(vcpu);
203 
204 	/*
205 	 * Set SN when the vCPU is preempted.  Note, the vCPU can both be seen
206 	 * as blocking and preempted, e.g. if it's preempted between setting
207 	 * its wait state and manually scheduling out.
208 	 */
209 	if (vcpu->preempted)
210 		pi_set_sn(pi_desc);
211 }
212 
213 /*
214  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
215  */
216 void pi_wakeup_handler(void)
217 {
218 	int cpu = smp_processor_id();
219 	struct list_head *wakeup_list = &per_cpu(wakeup_vcpus_on_cpu, cpu);
220 	raw_spinlock_t *spinlock = &per_cpu(wakeup_vcpus_on_cpu_lock, cpu);
221 	struct vcpu_vmx *vmx;
222 
223 	raw_spin_lock(spinlock);
224 	list_for_each_entry(vmx, wakeup_list, pi_wakeup_list) {
225 
226 		if (pi_test_on(&vmx->pi_desc))
227 			kvm_vcpu_wake_up(&vmx->vcpu);
228 	}
229 	raw_spin_unlock(spinlock);
230 }
231 
232 void __init pi_init_cpu(int cpu)
233 {
234 	INIT_LIST_HEAD(&per_cpu(wakeup_vcpus_on_cpu, cpu));
235 	raw_spin_lock_init(&per_cpu(wakeup_vcpus_on_cpu_lock, cpu));
236 }
237 
238 bool pi_has_pending_interrupt(struct kvm_vcpu *vcpu)
239 {
240 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
241 
242 	return pi_test_on(pi_desc) ||
243 		(pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
244 }
245 
246 
247 /*
248  * Bail out of the block loop if the VM has an assigned
249  * device, but the blocking vCPU didn't reconfigure the
250  * PI.NV to the wakeup vector, i.e. the assigned device
251  * came along after the initial check in vmx_vcpu_pi_put().
252  */
253 void vmx_pi_start_assignment(struct kvm *kvm)
254 {
255 	if (!irq_remapping_cap(IRQ_POSTING_CAP))
256 		return;
257 
258 	kvm_make_all_cpus_request(kvm, KVM_REQ_UNBLOCK);
259 }
260 
261 /*
262  * vmx_pi_update_irte - set IRTE for Posted-Interrupts
263  *
264  * @kvm: kvm
265  * @host_irq: host irq of the interrupt
266  * @guest_irq: gsi of the interrupt
267  * @set: set or unset PI
268  * returns 0 on success, < 0 on failure
269  */
270 int vmx_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
271 		       uint32_t guest_irq, bool set)
272 {
273 	struct kvm_kernel_irq_routing_entry *e;
274 	struct kvm_irq_routing_table *irq_rt;
275 	struct kvm_lapic_irq irq;
276 	struct kvm_vcpu *vcpu;
277 	struct vcpu_data vcpu_info;
278 	int idx, ret = 0;
279 
280 	if (!vmx_can_use_vtd_pi(kvm))
281 		return 0;
282 
283 	idx = srcu_read_lock(&kvm->irq_srcu);
284 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
285 	if (guest_irq >= irq_rt->nr_rt_entries ||
286 	    hlist_empty(&irq_rt->map[guest_irq])) {
287 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
288 			     guest_irq, irq_rt->nr_rt_entries);
289 		goto out;
290 	}
291 
292 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
293 		if (e->type != KVM_IRQ_ROUTING_MSI)
294 			continue;
295 		/*
296 		 * VT-d PI cannot support posting multicast/broadcast
297 		 * interrupts to a vCPU, we still use interrupt remapping
298 		 * for these kind of interrupts.
299 		 *
300 		 * For lowest-priority interrupts, we only support
301 		 * those with single CPU as the destination, e.g. user
302 		 * configures the interrupts via /proc/irq or uses
303 		 * irqbalance to make the interrupts single-CPU.
304 		 *
305 		 * We will support full lowest-priority interrupt later.
306 		 *
307 		 * In addition, we can only inject generic interrupts using
308 		 * the PI mechanism, refuse to route others through it.
309 		 */
310 
311 		kvm_set_msi_irq(kvm, e, &irq);
312 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
313 		    !kvm_irq_is_postable(&irq)) {
314 			/*
315 			 * Make sure the IRTE is in remapped mode if
316 			 * we don't handle it in posted mode.
317 			 */
318 			ret = irq_set_vcpu_affinity(host_irq, NULL);
319 			if (ret < 0) {
320 				printk(KERN_INFO
321 				   "failed to back to remapped mode, irq: %u\n",
322 				   host_irq);
323 				goto out;
324 			}
325 
326 			continue;
327 		}
328 
329 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
330 		vcpu_info.vector = irq.vector;
331 
332 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
333 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
334 
335 		if (set)
336 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
337 		else
338 			ret = irq_set_vcpu_affinity(host_irq, NULL);
339 
340 		if (ret < 0) {
341 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
342 					__func__);
343 			goto out;
344 		}
345 	}
346 
347 	ret = 0;
348 out:
349 	srcu_read_unlock(&kvm->irq_srcu, idx);
350 	return ret;
351 }
352