1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * KVM PMU support for Intel CPUs 4 * 5 * Copyright 2011 Red Hat, Inc. and/or its affiliates. 6 * 7 * Authors: 8 * Avi Kivity <avi@redhat.com> 9 * Gleb Natapov <gleb@redhat.com> 10 */ 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/types.h> 14 #include <linux/kvm_host.h> 15 #include <linux/perf_event.h> 16 #include <asm/perf_event.h> 17 #include "x86.h" 18 #include "cpuid.h" 19 #include "lapic.h" 20 #include "nested.h" 21 #include "pmu.h" 22 23 #define MSR_PMC_FULL_WIDTH_BIT (MSR_IA32_PMC0 - MSR_IA32_PERFCTR0) 24 25 enum intel_pmu_architectural_events { 26 /* 27 * The order of the architectural events matters as support for each 28 * event is enumerated via CPUID using the index of the event. 29 */ 30 INTEL_ARCH_CPU_CYCLES, 31 INTEL_ARCH_INSTRUCTIONS_RETIRED, 32 INTEL_ARCH_REFERENCE_CYCLES, 33 INTEL_ARCH_LLC_REFERENCES, 34 INTEL_ARCH_LLC_MISSES, 35 INTEL_ARCH_BRANCHES_RETIRED, 36 INTEL_ARCH_BRANCHES_MISPREDICTED, 37 38 NR_REAL_INTEL_ARCH_EVENTS, 39 40 /* 41 * Pseudo-architectural event used to implement IA32_FIXED_CTR2, a.k.a. 42 * TSC reference cycles. The architectural reference cycles event may 43 * or may not actually use the TSC as the reference, e.g. might use the 44 * core crystal clock or the bus clock (yeah, "architectural"). 45 */ 46 PSEUDO_ARCH_REFERENCE_CYCLES = NR_REAL_INTEL_ARCH_EVENTS, 47 NR_INTEL_ARCH_EVENTS, 48 }; 49 50 static struct { 51 u8 eventsel; 52 u8 unit_mask; 53 } const intel_arch_events[] = { 54 [INTEL_ARCH_CPU_CYCLES] = { 0x3c, 0x00 }, 55 [INTEL_ARCH_INSTRUCTIONS_RETIRED] = { 0xc0, 0x00 }, 56 [INTEL_ARCH_REFERENCE_CYCLES] = { 0x3c, 0x01 }, 57 [INTEL_ARCH_LLC_REFERENCES] = { 0x2e, 0x4f }, 58 [INTEL_ARCH_LLC_MISSES] = { 0x2e, 0x41 }, 59 [INTEL_ARCH_BRANCHES_RETIRED] = { 0xc4, 0x00 }, 60 [INTEL_ARCH_BRANCHES_MISPREDICTED] = { 0xc5, 0x00 }, 61 [PSEUDO_ARCH_REFERENCE_CYCLES] = { 0x00, 0x03 }, 62 }; 63 64 /* mapping between fixed pmc index and intel_arch_events array */ 65 static int fixed_pmc_events[] = { 66 [0] = INTEL_ARCH_INSTRUCTIONS_RETIRED, 67 [1] = INTEL_ARCH_CPU_CYCLES, 68 [2] = PSEUDO_ARCH_REFERENCE_CYCLES, 69 }; 70 71 static void reprogram_fixed_counters(struct kvm_pmu *pmu, u64 data) 72 { 73 struct kvm_pmc *pmc; 74 u8 old_fixed_ctr_ctrl = pmu->fixed_ctr_ctrl; 75 int i; 76 77 pmu->fixed_ctr_ctrl = data; 78 for (i = 0; i < pmu->nr_arch_fixed_counters; i++) { 79 u8 new_ctrl = fixed_ctrl_field(data, i); 80 u8 old_ctrl = fixed_ctrl_field(old_fixed_ctr_ctrl, i); 81 82 if (old_ctrl == new_ctrl) 83 continue; 84 85 pmc = get_fixed_pmc(pmu, MSR_CORE_PERF_FIXED_CTR0 + i); 86 87 __set_bit(INTEL_PMC_IDX_FIXED + i, pmu->pmc_in_use); 88 kvm_pmu_request_counter_reprogram(pmc); 89 } 90 } 91 92 static struct kvm_pmc *intel_pmc_idx_to_pmc(struct kvm_pmu *pmu, int pmc_idx) 93 { 94 if (pmc_idx < INTEL_PMC_IDX_FIXED) { 95 return get_gp_pmc(pmu, MSR_P6_EVNTSEL0 + pmc_idx, 96 MSR_P6_EVNTSEL0); 97 } else { 98 u32 idx = pmc_idx - INTEL_PMC_IDX_FIXED; 99 100 return get_fixed_pmc(pmu, idx + MSR_CORE_PERF_FIXED_CTR0); 101 } 102 } 103 104 static bool intel_hw_event_available(struct kvm_pmc *pmc) 105 { 106 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 107 u8 event_select = pmc->eventsel & ARCH_PERFMON_EVENTSEL_EVENT; 108 u8 unit_mask = (pmc->eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; 109 int i; 110 111 BUILD_BUG_ON(ARRAY_SIZE(intel_arch_events) != NR_INTEL_ARCH_EVENTS); 112 113 /* 114 * Disallow events reported as unavailable in guest CPUID. Note, this 115 * doesn't apply to pseudo-architectural events. 116 */ 117 for (i = 0; i < NR_REAL_INTEL_ARCH_EVENTS; i++) { 118 if (intel_arch_events[i].eventsel != event_select || 119 intel_arch_events[i].unit_mask != unit_mask) 120 continue; 121 122 return pmu->available_event_types & BIT(i); 123 } 124 125 return true; 126 } 127 128 static bool intel_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx) 129 { 130 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 131 bool fixed = idx & (1u << 30); 132 133 idx &= ~(3u << 30); 134 135 return fixed ? idx < pmu->nr_arch_fixed_counters 136 : idx < pmu->nr_arch_gp_counters; 137 } 138 139 static struct kvm_pmc *intel_rdpmc_ecx_to_pmc(struct kvm_vcpu *vcpu, 140 unsigned int idx, u64 *mask) 141 { 142 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 143 bool fixed = idx & (1u << 30); 144 struct kvm_pmc *counters; 145 unsigned int num_counters; 146 147 idx &= ~(3u << 30); 148 if (fixed) { 149 counters = pmu->fixed_counters; 150 num_counters = pmu->nr_arch_fixed_counters; 151 } else { 152 counters = pmu->gp_counters; 153 num_counters = pmu->nr_arch_gp_counters; 154 } 155 if (idx >= num_counters) 156 return NULL; 157 *mask &= pmu->counter_bitmask[fixed ? KVM_PMC_FIXED : KVM_PMC_GP]; 158 return &counters[array_index_nospec(idx, num_counters)]; 159 } 160 161 static inline u64 vcpu_get_perf_capabilities(struct kvm_vcpu *vcpu) 162 { 163 if (!guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 164 return 0; 165 166 return vcpu->arch.perf_capabilities; 167 } 168 169 static inline bool fw_writes_is_enabled(struct kvm_vcpu *vcpu) 170 { 171 return (vcpu_get_perf_capabilities(vcpu) & PMU_CAP_FW_WRITES) != 0; 172 } 173 174 static inline struct kvm_pmc *get_fw_gp_pmc(struct kvm_pmu *pmu, u32 msr) 175 { 176 if (!fw_writes_is_enabled(pmu_to_vcpu(pmu))) 177 return NULL; 178 179 return get_gp_pmc(pmu, msr, MSR_IA32_PMC0); 180 } 181 182 static bool intel_pmu_is_valid_lbr_msr(struct kvm_vcpu *vcpu, u32 index) 183 { 184 struct x86_pmu_lbr *records = vcpu_to_lbr_records(vcpu); 185 bool ret = false; 186 187 if (!intel_pmu_lbr_is_enabled(vcpu)) 188 return ret; 189 190 ret = (index == MSR_LBR_SELECT) || (index == MSR_LBR_TOS) || 191 (index >= records->from && index < records->from + records->nr) || 192 (index >= records->to && index < records->to + records->nr); 193 194 if (!ret && records->info) 195 ret = (index >= records->info && index < records->info + records->nr); 196 197 return ret; 198 } 199 200 static bool intel_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) 201 { 202 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 203 u64 perf_capabilities; 204 int ret; 205 206 switch (msr) { 207 case MSR_CORE_PERF_FIXED_CTR_CTRL: 208 return kvm_pmu_has_perf_global_ctrl(pmu); 209 case MSR_IA32_PEBS_ENABLE: 210 ret = vcpu_get_perf_capabilities(vcpu) & PERF_CAP_PEBS_FORMAT; 211 break; 212 case MSR_IA32_DS_AREA: 213 ret = guest_cpuid_has(vcpu, X86_FEATURE_DS); 214 break; 215 case MSR_PEBS_DATA_CFG: 216 perf_capabilities = vcpu_get_perf_capabilities(vcpu); 217 ret = (perf_capabilities & PERF_CAP_PEBS_BASELINE) && 218 ((perf_capabilities & PERF_CAP_PEBS_FORMAT) > 3); 219 break; 220 default: 221 ret = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0) || 222 get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0) || 223 get_fixed_pmc(pmu, msr) || get_fw_gp_pmc(pmu, msr) || 224 intel_pmu_is_valid_lbr_msr(vcpu, msr); 225 break; 226 } 227 228 return ret; 229 } 230 231 static struct kvm_pmc *intel_msr_idx_to_pmc(struct kvm_vcpu *vcpu, u32 msr) 232 { 233 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 234 struct kvm_pmc *pmc; 235 236 pmc = get_fixed_pmc(pmu, msr); 237 pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0); 238 pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0); 239 240 return pmc; 241 } 242 243 static inline void intel_pmu_release_guest_lbr_event(struct kvm_vcpu *vcpu) 244 { 245 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 246 247 if (lbr_desc->event) { 248 perf_event_release_kernel(lbr_desc->event); 249 lbr_desc->event = NULL; 250 vcpu_to_pmu(vcpu)->event_count--; 251 } 252 } 253 254 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu) 255 { 256 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 257 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 258 struct perf_event *event; 259 260 /* 261 * The perf_event_attr is constructed in the minimum efficient way: 262 * - set 'pinned = true' to make it task pinned so that if another 263 * cpu pinned event reclaims LBR, the event->oncpu will be set to -1; 264 * - set '.exclude_host = true' to record guest branches behavior; 265 * 266 * - set '.config = INTEL_FIXED_VLBR_EVENT' to indicates host perf 267 * schedule the event without a real HW counter but a fake one; 268 * check is_guest_lbr_event() and __intel_get_event_constraints(); 269 * 270 * - set 'sample_type = PERF_SAMPLE_BRANCH_STACK' and 271 * 'branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK | 272 * PERF_SAMPLE_BRANCH_USER' to configure it as a LBR callstack 273 * event, which helps KVM to save/restore guest LBR records 274 * during host context switches and reduces quite a lot overhead, 275 * check branch_user_callstack() and intel_pmu_lbr_sched_task(); 276 */ 277 struct perf_event_attr attr = { 278 .type = PERF_TYPE_RAW, 279 .size = sizeof(attr), 280 .config = INTEL_FIXED_VLBR_EVENT, 281 .sample_type = PERF_SAMPLE_BRANCH_STACK, 282 .pinned = true, 283 .exclude_host = true, 284 .branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK | 285 PERF_SAMPLE_BRANCH_USER, 286 }; 287 288 if (unlikely(lbr_desc->event)) { 289 __set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use); 290 return 0; 291 } 292 293 event = perf_event_create_kernel_counter(&attr, -1, 294 current, NULL, NULL); 295 if (IS_ERR(event)) { 296 pr_debug_ratelimited("%s: failed %ld\n", 297 __func__, PTR_ERR(event)); 298 return PTR_ERR(event); 299 } 300 lbr_desc->event = event; 301 pmu->event_count++; 302 __set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use); 303 return 0; 304 } 305 306 /* 307 * It's safe to access LBR msrs from guest when they have not 308 * been passthrough since the host would help restore or reset 309 * the LBR msrs records when the guest LBR event is scheduled in. 310 */ 311 static bool intel_pmu_handle_lbr_msrs_access(struct kvm_vcpu *vcpu, 312 struct msr_data *msr_info, bool read) 313 { 314 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 315 u32 index = msr_info->index; 316 317 if (!intel_pmu_is_valid_lbr_msr(vcpu, index)) 318 return false; 319 320 if (!lbr_desc->event && intel_pmu_create_guest_lbr_event(vcpu) < 0) 321 goto dummy; 322 323 /* 324 * Disable irq to ensure the LBR feature doesn't get reclaimed by the 325 * host at the time the value is read from the msr, and this avoids the 326 * host LBR value to be leaked to the guest. If LBR has been reclaimed, 327 * return 0 on guest reads. 328 */ 329 local_irq_disable(); 330 if (lbr_desc->event->state == PERF_EVENT_STATE_ACTIVE) { 331 if (read) 332 rdmsrl(index, msr_info->data); 333 else 334 wrmsrl(index, msr_info->data); 335 __set_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use); 336 local_irq_enable(); 337 return true; 338 } 339 clear_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use); 340 local_irq_enable(); 341 342 dummy: 343 if (read) 344 msr_info->data = 0; 345 return true; 346 } 347 348 static int intel_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 349 { 350 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 351 struct kvm_pmc *pmc; 352 u32 msr = msr_info->index; 353 354 switch (msr) { 355 case MSR_CORE_PERF_FIXED_CTR_CTRL: 356 msr_info->data = pmu->fixed_ctr_ctrl; 357 break; 358 case MSR_IA32_PEBS_ENABLE: 359 msr_info->data = pmu->pebs_enable; 360 break; 361 case MSR_IA32_DS_AREA: 362 msr_info->data = pmu->ds_area; 363 break; 364 case MSR_PEBS_DATA_CFG: 365 msr_info->data = pmu->pebs_data_cfg; 366 break; 367 default: 368 if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) || 369 (pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) { 370 u64 val = pmc_read_counter(pmc); 371 msr_info->data = 372 val & pmu->counter_bitmask[KVM_PMC_GP]; 373 break; 374 } else if ((pmc = get_fixed_pmc(pmu, msr))) { 375 u64 val = pmc_read_counter(pmc); 376 msr_info->data = 377 val & pmu->counter_bitmask[KVM_PMC_FIXED]; 378 break; 379 } else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) { 380 msr_info->data = pmc->eventsel; 381 break; 382 } else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, true)) { 383 break; 384 } 385 return 1; 386 } 387 388 return 0; 389 } 390 391 static int intel_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 392 { 393 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 394 struct kvm_pmc *pmc; 395 u32 msr = msr_info->index; 396 u64 data = msr_info->data; 397 u64 reserved_bits, diff; 398 399 switch (msr) { 400 case MSR_CORE_PERF_FIXED_CTR_CTRL: 401 if (data & pmu->fixed_ctr_ctrl_mask) 402 return 1; 403 404 if (pmu->fixed_ctr_ctrl != data) 405 reprogram_fixed_counters(pmu, data); 406 break; 407 case MSR_IA32_PEBS_ENABLE: 408 if (data & pmu->pebs_enable_mask) 409 return 1; 410 411 if (pmu->pebs_enable != data) { 412 diff = pmu->pebs_enable ^ data; 413 pmu->pebs_enable = data; 414 reprogram_counters(pmu, diff); 415 } 416 break; 417 case MSR_IA32_DS_AREA: 418 if (is_noncanonical_address(data, vcpu)) 419 return 1; 420 421 pmu->ds_area = data; 422 break; 423 case MSR_PEBS_DATA_CFG: 424 if (data & pmu->pebs_data_cfg_mask) 425 return 1; 426 427 pmu->pebs_data_cfg = data; 428 break; 429 default: 430 if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) || 431 (pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) { 432 if ((msr & MSR_PMC_FULL_WIDTH_BIT) && 433 (data & ~pmu->counter_bitmask[KVM_PMC_GP])) 434 return 1; 435 436 if (!msr_info->host_initiated && 437 !(msr & MSR_PMC_FULL_WIDTH_BIT)) 438 data = (s64)(s32)data; 439 pmc_write_counter(pmc, data); 440 pmc_update_sample_period(pmc); 441 break; 442 } else if ((pmc = get_fixed_pmc(pmu, msr))) { 443 pmc_write_counter(pmc, data); 444 pmc_update_sample_period(pmc); 445 break; 446 } else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) { 447 reserved_bits = pmu->reserved_bits; 448 if ((pmc->idx == 2) && 449 (pmu->raw_event_mask & HSW_IN_TX_CHECKPOINTED)) 450 reserved_bits ^= HSW_IN_TX_CHECKPOINTED; 451 if (data & reserved_bits) 452 return 1; 453 454 if (data != pmc->eventsel) { 455 pmc->eventsel = data; 456 kvm_pmu_request_counter_reprogram(pmc); 457 } 458 break; 459 } else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, false)) { 460 break; 461 } 462 /* Not a known PMU MSR. */ 463 return 1; 464 } 465 466 return 0; 467 } 468 469 static void setup_fixed_pmc_eventsel(struct kvm_pmu *pmu) 470 { 471 int i; 472 473 BUILD_BUG_ON(ARRAY_SIZE(fixed_pmc_events) != KVM_PMC_MAX_FIXED); 474 475 for (i = 0; i < pmu->nr_arch_fixed_counters; i++) { 476 int index = array_index_nospec(i, KVM_PMC_MAX_FIXED); 477 struct kvm_pmc *pmc = &pmu->fixed_counters[index]; 478 u32 event = fixed_pmc_events[index]; 479 480 pmc->eventsel = (intel_arch_events[event].unit_mask << 8) | 481 intel_arch_events[event].eventsel; 482 } 483 } 484 485 static void intel_pmu_refresh(struct kvm_vcpu *vcpu) 486 { 487 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 488 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 489 struct kvm_cpuid_entry2 *entry; 490 union cpuid10_eax eax; 491 union cpuid10_edx edx; 492 u64 perf_capabilities; 493 u64 counter_mask; 494 int i; 495 496 pmu->nr_arch_gp_counters = 0; 497 pmu->nr_arch_fixed_counters = 0; 498 pmu->counter_bitmask[KVM_PMC_GP] = 0; 499 pmu->counter_bitmask[KVM_PMC_FIXED] = 0; 500 pmu->version = 0; 501 pmu->reserved_bits = 0xffffffff00200000ull; 502 pmu->raw_event_mask = X86_RAW_EVENT_MASK; 503 pmu->global_ctrl_mask = ~0ull; 504 pmu->global_status_mask = ~0ull; 505 pmu->fixed_ctr_ctrl_mask = ~0ull; 506 pmu->pebs_enable_mask = ~0ull; 507 pmu->pebs_data_cfg_mask = ~0ull; 508 509 memset(&lbr_desc->records, 0, sizeof(lbr_desc->records)); 510 511 /* 512 * Setting passthrough of LBR MSRs is done only in the VM-Entry loop, 513 * and PMU refresh is disallowed after the vCPU has run, i.e. this code 514 * should never be reached while KVM is passing through MSRs. 515 */ 516 if (KVM_BUG_ON(lbr_desc->msr_passthrough, vcpu->kvm)) 517 return; 518 519 entry = kvm_find_cpuid_entry(vcpu, 0xa); 520 if (!entry || !vcpu->kvm->arch.enable_pmu) 521 return; 522 eax.full = entry->eax; 523 edx.full = entry->edx; 524 525 pmu->version = eax.split.version_id; 526 if (!pmu->version) 527 return; 528 529 pmu->nr_arch_gp_counters = min_t(int, eax.split.num_counters, 530 kvm_pmu_cap.num_counters_gp); 531 eax.split.bit_width = min_t(int, eax.split.bit_width, 532 kvm_pmu_cap.bit_width_gp); 533 pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << eax.split.bit_width) - 1; 534 eax.split.mask_length = min_t(int, eax.split.mask_length, 535 kvm_pmu_cap.events_mask_len); 536 pmu->available_event_types = ~entry->ebx & 537 ((1ull << eax.split.mask_length) - 1); 538 539 if (pmu->version == 1) { 540 pmu->nr_arch_fixed_counters = 0; 541 } else { 542 pmu->nr_arch_fixed_counters = min_t(int, edx.split.num_counters_fixed, 543 kvm_pmu_cap.num_counters_fixed); 544 edx.split.bit_width_fixed = min_t(int, edx.split.bit_width_fixed, 545 kvm_pmu_cap.bit_width_fixed); 546 pmu->counter_bitmask[KVM_PMC_FIXED] = 547 ((u64)1 << edx.split.bit_width_fixed) - 1; 548 setup_fixed_pmc_eventsel(pmu); 549 } 550 551 for (i = 0; i < pmu->nr_arch_fixed_counters; i++) 552 pmu->fixed_ctr_ctrl_mask &= ~(0xbull << (i * 4)); 553 counter_mask = ~(((1ull << pmu->nr_arch_gp_counters) - 1) | 554 (((1ull << pmu->nr_arch_fixed_counters) - 1) << INTEL_PMC_IDX_FIXED)); 555 pmu->global_ctrl_mask = counter_mask; 556 557 /* 558 * GLOBAL_STATUS and GLOBAL_OVF_CONTROL (a.k.a. GLOBAL_STATUS_RESET) 559 * share reserved bit definitions. The kernel just happens to use 560 * OVF_CTRL for the names. 561 */ 562 pmu->global_status_mask = pmu->global_ctrl_mask 563 & ~(MSR_CORE_PERF_GLOBAL_OVF_CTRL_OVF_BUF | 564 MSR_CORE_PERF_GLOBAL_OVF_CTRL_COND_CHGD); 565 if (vmx_pt_mode_is_host_guest()) 566 pmu->global_status_mask &= 567 ~MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI; 568 569 entry = kvm_find_cpuid_entry_index(vcpu, 7, 0); 570 if (entry && 571 (boot_cpu_has(X86_FEATURE_HLE) || boot_cpu_has(X86_FEATURE_RTM)) && 572 (entry->ebx & (X86_FEATURE_HLE|X86_FEATURE_RTM))) { 573 pmu->reserved_bits ^= HSW_IN_TX; 574 pmu->raw_event_mask |= (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); 575 } 576 577 bitmap_set(pmu->all_valid_pmc_idx, 578 0, pmu->nr_arch_gp_counters); 579 bitmap_set(pmu->all_valid_pmc_idx, 580 INTEL_PMC_MAX_GENERIC, pmu->nr_arch_fixed_counters); 581 582 perf_capabilities = vcpu_get_perf_capabilities(vcpu); 583 if (cpuid_model_is_consistent(vcpu) && 584 (perf_capabilities & PMU_CAP_LBR_FMT)) 585 x86_perf_get_lbr(&lbr_desc->records); 586 else 587 lbr_desc->records.nr = 0; 588 589 if (lbr_desc->records.nr) 590 bitmap_set(pmu->all_valid_pmc_idx, INTEL_PMC_IDX_FIXED_VLBR, 1); 591 592 if (perf_capabilities & PERF_CAP_PEBS_FORMAT) { 593 if (perf_capabilities & PERF_CAP_PEBS_BASELINE) { 594 pmu->pebs_enable_mask = counter_mask; 595 pmu->reserved_bits &= ~ICL_EVENTSEL_ADAPTIVE; 596 for (i = 0; i < pmu->nr_arch_fixed_counters; i++) { 597 pmu->fixed_ctr_ctrl_mask &= 598 ~(1ULL << (INTEL_PMC_IDX_FIXED + i * 4)); 599 } 600 pmu->pebs_data_cfg_mask = ~0xff00000full; 601 } else { 602 pmu->pebs_enable_mask = 603 ~((1ull << pmu->nr_arch_gp_counters) - 1); 604 } 605 } 606 } 607 608 static void intel_pmu_init(struct kvm_vcpu *vcpu) 609 { 610 int i; 611 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 612 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 613 614 for (i = 0; i < KVM_INTEL_PMC_MAX_GENERIC; i++) { 615 pmu->gp_counters[i].type = KVM_PMC_GP; 616 pmu->gp_counters[i].vcpu = vcpu; 617 pmu->gp_counters[i].idx = i; 618 pmu->gp_counters[i].current_config = 0; 619 } 620 621 for (i = 0; i < KVM_PMC_MAX_FIXED; i++) { 622 pmu->fixed_counters[i].type = KVM_PMC_FIXED; 623 pmu->fixed_counters[i].vcpu = vcpu; 624 pmu->fixed_counters[i].idx = i + INTEL_PMC_IDX_FIXED; 625 pmu->fixed_counters[i].current_config = 0; 626 } 627 628 lbr_desc->records.nr = 0; 629 lbr_desc->event = NULL; 630 lbr_desc->msr_passthrough = false; 631 } 632 633 static void intel_pmu_reset(struct kvm_vcpu *vcpu) 634 { 635 intel_pmu_release_guest_lbr_event(vcpu); 636 } 637 638 /* 639 * Emulate LBR_On_PMI behavior for 1 < pmu.version < 4. 640 * 641 * If Freeze_LBR_On_PMI = 1, the LBR is frozen on PMI and 642 * the KVM emulates to clear the LBR bit (bit 0) in IA32_DEBUGCTL. 643 * 644 * Guest needs to re-enable LBR to resume branches recording. 645 */ 646 static void intel_pmu_legacy_freezing_lbrs_on_pmi(struct kvm_vcpu *vcpu) 647 { 648 u64 data = vmcs_read64(GUEST_IA32_DEBUGCTL); 649 650 if (data & DEBUGCTLMSR_FREEZE_LBRS_ON_PMI) { 651 data &= ~DEBUGCTLMSR_LBR; 652 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 653 } 654 } 655 656 static void intel_pmu_deliver_pmi(struct kvm_vcpu *vcpu) 657 { 658 u8 version = vcpu_to_pmu(vcpu)->version; 659 660 if (!intel_pmu_lbr_is_enabled(vcpu)) 661 return; 662 663 if (version > 1 && version < 4) 664 intel_pmu_legacy_freezing_lbrs_on_pmi(vcpu); 665 } 666 667 static void vmx_update_intercept_for_lbr_msrs(struct kvm_vcpu *vcpu, bool set) 668 { 669 struct x86_pmu_lbr *lbr = vcpu_to_lbr_records(vcpu); 670 int i; 671 672 for (i = 0; i < lbr->nr; i++) { 673 vmx_set_intercept_for_msr(vcpu, lbr->from + i, MSR_TYPE_RW, set); 674 vmx_set_intercept_for_msr(vcpu, lbr->to + i, MSR_TYPE_RW, set); 675 if (lbr->info) 676 vmx_set_intercept_for_msr(vcpu, lbr->info + i, MSR_TYPE_RW, set); 677 } 678 679 vmx_set_intercept_for_msr(vcpu, MSR_LBR_SELECT, MSR_TYPE_RW, set); 680 vmx_set_intercept_for_msr(vcpu, MSR_LBR_TOS, MSR_TYPE_RW, set); 681 } 682 683 static inline void vmx_disable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu) 684 { 685 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 686 687 if (!lbr_desc->msr_passthrough) 688 return; 689 690 vmx_update_intercept_for_lbr_msrs(vcpu, true); 691 lbr_desc->msr_passthrough = false; 692 } 693 694 static inline void vmx_enable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu) 695 { 696 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 697 698 if (lbr_desc->msr_passthrough) 699 return; 700 701 vmx_update_intercept_for_lbr_msrs(vcpu, false); 702 lbr_desc->msr_passthrough = true; 703 } 704 705 /* 706 * Higher priority host perf events (e.g. cpu pinned) could reclaim the 707 * pmu resources (e.g. LBR) that were assigned to the guest. This is 708 * usually done via ipi calls (more details in perf_install_in_context). 709 * 710 * Before entering the non-root mode (with irq disabled here), double 711 * confirm that the pmu features enabled to the guest are not reclaimed 712 * by higher priority host events. Otherwise, disallow vcpu's access to 713 * the reclaimed features. 714 */ 715 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu) 716 { 717 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 718 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 719 720 if (!lbr_desc->event) { 721 vmx_disable_lbr_msrs_passthrough(vcpu); 722 if (vmcs_read64(GUEST_IA32_DEBUGCTL) & DEBUGCTLMSR_LBR) 723 goto warn; 724 if (test_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use)) 725 goto warn; 726 return; 727 } 728 729 if (lbr_desc->event->state < PERF_EVENT_STATE_ACTIVE) { 730 vmx_disable_lbr_msrs_passthrough(vcpu); 731 __clear_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use); 732 goto warn; 733 } else 734 vmx_enable_lbr_msrs_passthrough(vcpu); 735 736 return; 737 738 warn: 739 pr_warn_ratelimited("vcpu-%d: fail to passthrough LBR.\n", vcpu->vcpu_id); 740 } 741 742 static void intel_pmu_cleanup(struct kvm_vcpu *vcpu) 743 { 744 if (!(vmcs_read64(GUEST_IA32_DEBUGCTL) & DEBUGCTLMSR_LBR)) 745 intel_pmu_release_guest_lbr_event(vcpu); 746 } 747 748 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu) 749 { 750 struct kvm_pmc *pmc = NULL; 751 int bit, hw_idx; 752 753 for_each_set_bit(bit, (unsigned long *)&pmu->global_ctrl, 754 X86_PMC_IDX_MAX) { 755 pmc = intel_pmc_idx_to_pmc(pmu, bit); 756 757 if (!pmc || !pmc_speculative_in_use(pmc) || 758 !pmc_is_globally_enabled(pmc) || !pmc->perf_event) 759 continue; 760 761 /* 762 * A negative index indicates the event isn't mapped to a 763 * physical counter in the host, e.g. due to contention. 764 */ 765 hw_idx = pmc->perf_event->hw.idx; 766 if (hw_idx != pmc->idx && hw_idx > -1) 767 pmu->host_cross_mapped_mask |= BIT_ULL(hw_idx); 768 } 769 } 770 771 struct kvm_pmu_ops intel_pmu_ops __initdata = { 772 .hw_event_available = intel_hw_event_available, 773 .pmc_idx_to_pmc = intel_pmc_idx_to_pmc, 774 .rdpmc_ecx_to_pmc = intel_rdpmc_ecx_to_pmc, 775 .msr_idx_to_pmc = intel_msr_idx_to_pmc, 776 .is_valid_rdpmc_ecx = intel_is_valid_rdpmc_ecx, 777 .is_valid_msr = intel_is_valid_msr, 778 .get_msr = intel_pmu_get_msr, 779 .set_msr = intel_pmu_set_msr, 780 .refresh = intel_pmu_refresh, 781 .init = intel_pmu_init, 782 .reset = intel_pmu_reset, 783 .deliver_pmi = intel_pmu_deliver_pmi, 784 .cleanup = intel_pmu_cleanup, 785 .EVENTSEL_EVENT = ARCH_PERFMON_EVENTSEL_EVENT, 786 .MAX_NR_GP_COUNTERS = KVM_INTEL_PMC_MAX_GENERIC, 787 .MIN_NR_GP_COUNTERS = 1, 788 }; 789