xref: /openbmc/linux/arch/x86/kvm/vmx/nested.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5 
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8 
9 #include "cpuid.h"
10 #include "evmcs.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "sgx.h"
16 #include "trace.h"
17 #include "vmx.h"
18 #include "x86.h"
19 
20 static bool __read_mostly enable_shadow_vmcs = 1;
21 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
22 
23 static bool __read_mostly nested_early_check = 0;
24 module_param(nested_early_check, bool, S_IRUGO);
25 
26 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
27 
28 /*
29  * Hyper-V requires all of these, so mark them as supported even though
30  * they are just treated the same as all-context.
31  */
32 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
33 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
34 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
35 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
36 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
37 
38 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
39 
40 enum {
41 	VMX_VMREAD_BITMAP,
42 	VMX_VMWRITE_BITMAP,
43 	VMX_BITMAP_NR
44 };
45 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
46 
47 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
48 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
49 
50 struct shadow_vmcs_field {
51 	u16	encoding;
52 	u16	offset;
53 };
54 static struct shadow_vmcs_field shadow_read_only_fields[] = {
55 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
56 #include "vmcs_shadow_fields.h"
57 };
58 static int max_shadow_read_only_fields =
59 	ARRAY_SIZE(shadow_read_only_fields);
60 
61 static struct shadow_vmcs_field shadow_read_write_fields[] = {
62 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
63 #include "vmcs_shadow_fields.h"
64 };
65 static int max_shadow_read_write_fields =
66 	ARRAY_SIZE(shadow_read_write_fields);
67 
68 static void init_vmcs_shadow_fields(void)
69 {
70 	int i, j;
71 
72 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
73 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
74 
75 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
76 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
77 		u16 field = entry.encoding;
78 
79 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
80 		    (i + 1 == max_shadow_read_only_fields ||
81 		     shadow_read_only_fields[i + 1].encoding != field + 1))
82 			pr_err("Missing field from shadow_read_only_field %x\n",
83 			       field + 1);
84 
85 		clear_bit(field, vmx_vmread_bitmap);
86 		if (field & 1)
87 #ifdef CONFIG_X86_64
88 			continue;
89 #else
90 			entry.offset += sizeof(u32);
91 #endif
92 		shadow_read_only_fields[j++] = entry;
93 	}
94 	max_shadow_read_only_fields = j;
95 
96 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
97 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
98 		u16 field = entry.encoding;
99 
100 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
101 		    (i + 1 == max_shadow_read_write_fields ||
102 		     shadow_read_write_fields[i + 1].encoding != field + 1))
103 			pr_err("Missing field from shadow_read_write_field %x\n",
104 			       field + 1);
105 
106 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
107 			  field <= GUEST_TR_AR_BYTES,
108 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
109 
110 		/*
111 		 * PML and the preemption timer can be emulated, but the
112 		 * processor cannot vmwrite to fields that don't exist
113 		 * on bare metal.
114 		 */
115 		switch (field) {
116 		case GUEST_PML_INDEX:
117 			if (!cpu_has_vmx_pml())
118 				continue;
119 			break;
120 		case VMX_PREEMPTION_TIMER_VALUE:
121 			if (!cpu_has_vmx_preemption_timer())
122 				continue;
123 			break;
124 		case GUEST_INTR_STATUS:
125 			if (!cpu_has_vmx_apicv())
126 				continue;
127 			break;
128 		default:
129 			break;
130 		}
131 
132 		clear_bit(field, vmx_vmwrite_bitmap);
133 		clear_bit(field, vmx_vmread_bitmap);
134 		if (field & 1)
135 #ifdef CONFIG_X86_64
136 			continue;
137 #else
138 			entry.offset += sizeof(u32);
139 #endif
140 		shadow_read_write_fields[j++] = entry;
141 	}
142 	max_shadow_read_write_fields = j;
143 }
144 
145 /*
146  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
147  * set the success or error code of an emulated VMX instruction (as specified
148  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
149  * instruction.
150  */
151 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
152 {
153 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
154 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
155 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
156 	return kvm_skip_emulated_instruction(vcpu);
157 }
158 
159 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
160 {
161 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
162 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
163 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
164 			| X86_EFLAGS_CF);
165 	return kvm_skip_emulated_instruction(vcpu);
166 }
167 
168 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
169 				u32 vm_instruction_error)
170 {
171 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
172 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
173 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
174 			| X86_EFLAGS_ZF);
175 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
176 	/*
177 	 * We don't need to force sync to shadow VMCS because
178 	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
179 	 * fields and thus must be synced.
180 	 */
181 	if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
182 		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
183 
184 	return kvm_skip_emulated_instruction(vcpu);
185 }
186 
187 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
188 {
189 	struct vcpu_vmx *vmx = to_vmx(vcpu);
190 
191 	/*
192 	 * failValid writes the error number to the current VMCS, which
193 	 * can't be done if there isn't a current VMCS.
194 	 */
195 	if (vmx->nested.current_vmptr == INVALID_GPA &&
196 	    !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
197 		return nested_vmx_failInvalid(vcpu);
198 
199 	return nested_vmx_failValid(vcpu, vm_instruction_error);
200 }
201 
202 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
203 {
204 	/* TODO: not to reset guest simply here. */
205 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
206 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
207 }
208 
209 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
210 {
211 	return fixed_bits_valid(control, low, high);
212 }
213 
214 static inline u64 vmx_control_msr(u32 low, u32 high)
215 {
216 	return low | ((u64)high << 32);
217 }
218 
219 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
220 {
221 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
222 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
223 	vmx->nested.need_vmcs12_to_shadow_sync = false;
224 }
225 
226 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
227 {
228 	struct vcpu_vmx *vmx = to_vmx(vcpu);
229 
230 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
231 		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
232 		vmx->nested.hv_evmcs = NULL;
233 	}
234 
235 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
236 }
237 
238 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
239 				     struct loaded_vmcs *prev)
240 {
241 	struct vmcs_host_state *dest, *src;
242 
243 	if (unlikely(!vmx->guest_state_loaded))
244 		return;
245 
246 	src = &prev->host_state;
247 	dest = &vmx->loaded_vmcs->host_state;
248 
249 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
250 	dest->ldt_sel = src->ldt_sel;
251 #ifdef CONFIG_X86_64
252 	dest->ds_sel = src->ds_sel;
253 	dest->es_sel = src->es_sel;
254 #endif
255 }
256 
257 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
258 {
259 	struct vcpu_vmx *vmx = to_vmx(vcpu);
260 	struct loaded_vmcs *prev;
261 	int cpu;
262 
263 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
264 		return;
265 
266 	cpu = get_cpu();
267 	prev = vmx->loaded_vmcs;
268 	vmx->loaded_vmcs = vmcs;
269 	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
270 	vmx_sync_vmcs_host_state(vmx, prev);
271 	put_cpu();
272 
273 	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
274 
275 	/*
276 	 * All lazily updated registers will be reloaded from VMCS12 on both
277 	 * vmentry and vmexit.
278 	 */
279 	vcpu->arch.regs_dirty = 0;
280 }
281 
282 /*
283  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
284  * just stops using VMX.
285  */
286 static void free_nested(struct kvm_vcpu *vcpu)
287 {
288 	struct vcpu_vmx *vmx = to_vmx(vcpu);
289 
290 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
291 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
292 
293 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
294 		return;
295 
296 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
297 
298 	vmx->nested.vmxon = false;
299 	vmx->nested.smm.vmxon = false;
300 	vmx->nested.vmxon_ptr = INVALID_GPA;
301 	free_vpid(vmx->nested.vpid02);
302 	vmx->nested.posted_intr_nv = -1;
303 	vmx->nested.current_vmptr = INVALID_GPA;
304 	if (enable_shadow_vmcs) {
305 		vmx_disable_shadow_vmcs(vmx);
306 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
307 		free_vmcs(vmx->vmcs01.shadow_vmcs);
308 		vmx->vmcs01.shadow_vmcs = NULL;
309 	}
310 	kfree(vmx->nested.cached_vmcs12);
311 	vmx->nested.cached_vmcs12 = NULL;
312 	kfree(vmx->nested.cached_shadow_vmcs12);
313 	vmx->nested.cached_shadow_vmcs12 = NULL;
314 	/* Unpin physical memory we referred to in the vmcs02 */
315 	if (vmx->nested.apic_access_page) {
316 		kvm_release_page_clean(vmx->nested.apic_access_page);
317 		vmx->nested.apic_access_page = NULL;
318 	}
319 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
320 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
321 	vmx->nested.pi_desc = NULL;
322 
323 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
324 
325 	nested_release_evmcs(vcpu);
326 
327 	free_loaded_vmcs(&vmx->nested.vmcs02);
328 }
329 
330 /*
331  * Ensure that the current vmcs of the logical processor is the
332  * vmcs01 of the vcpu before calling free_nested().
333  */
334 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
335 {
336 	vcpu_load(vcpu);
337 	vmx_leave_nested(vcpu);
338 	vcpu_put(vcpu);
339 }
340 
341 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
342 
343 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
344 {
345 	return VALID_PAGE(root_hpa) &&
346 	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
347 }
348 
349 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
350 				       gpa_t addr)
351 {
352 	uint i;
353 	struct kvm_mmu_root_info *cached_root;
354 
355 	WARN_ON_ONCE(!mmu_is_nested(vcpu));
356 
357 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
358 		cached_root = &vcpu->arch.mmu->prev_roots[i];
359 
360 		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
361 					    eptp))
362 			vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
363 	}
364 }
365 
366 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
367 		struct x86_exception *fault)
368 {
369 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
370 	struct vcpu_vmx *vmx = to_vmx(vcpu);
371 	u32 vm_exit_reason;
372 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
373 
374 	if (vmx->nested.pml_full) {
375 		vm_exit_reason = EXIT_REASON_PML_FULL;
376 		vmx->nested.pml_full = false;
377 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
378 	} else {
379 		if (fault->error_code & PFERR_RSVD_MASK)
380 			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
381 		else
382 			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
383 
384 		/*
385 		 * Although the caller (kvm_inject_emulated_page_fault) would
386 		 * have already synced the faulting address in the shadow EPT
387 		 * tables for the current EPTP12, we also need to sync it for
388 		 * any other cached EPTP02s based on the same EP4TA, since the
389 		 * TLB associates mappings to the EP4TA rather than the full EPTP.
390 		 */
391 		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
392 					   fault->address);
393 	}
394 
395 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
396 	vmcs12->guest_physical_address = fault->address;
397 }
398 
399 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
400 {
401 	struct vcpu_vmx *vmx = to_vmx(vcpu);
402 	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
403 	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
404 
405 	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
406 				nested_ept_ad_enabled(vcpu),
407 				nested_ept_get_eptp(vcpu));
408 }
409 
410 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
411 {
412 	WARN_ON(mmu_is_nested(vcpu));
413 
414 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
415 	nested_ept_new_eptp(vcpu);
416 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
417 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
418 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
419 
420 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
421 }
422 
423 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
424 {
425 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
426 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
427 }
428 
429 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
430 					    u16 error_code)
431 {
432 	bool inequality, bit;
433 
434 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
435 	inequality =
436 		(error_code & vmcs12->page_fault_error_code_mask) !=
437 		 vmcs12->page_fault_error_code_match;
438 	return inequality ^ bit;
439 }
440 
441 
442 /*
443  * KVM wants to inject page-faults which it got to the guest. This function
444  * checks whether in a nested guest, we need to inject them to L1 or L2.
445  */
446 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
447 {
448 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
449 	unsigned int nr = vcpu->arch.exception.nr;
450 	bool has_payload = vcpu->arch.exception.has_payload;
451 	unsigned long payload = vcpu->arch.exception.payload;
452 
453 	if (nr == PF_VECTOR) {
454 		if (vcpu->arch.exception.nested_apf) {
455 			*exit_qual = vcpu->arch.apf.nested_apf_token;
456 			return 1;
457 		}
458 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
459 						    vcpu->arch.exception.error_code)) {
460 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
461 			return 1;
462 		}
463 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
464 		if (nr == DB_VECTOR) {
465 			if (!has_payload) {
466 				payload = vcpu->arch.dr6;
467 				payload &= ~DR6_BT;
468 				payload ^= DR6_ACTIVE_LOW;
469 			}
470 			*exit_qual = payload;
471 		} else
472 			*exit_qual = 0;
473 		return 1;
474 	}
475 
476 	return 0;
477 }
478 
479 static bool nested_vmx_handle_page_fault_workaround(struct kvm_vcpu *vcpu,
480 						    struct x86_exception *fault)
481 {
482 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
483 
484 	WARN_ON(!is_guest_mode(vcpu));
485 
486 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
487 	    !WARN_ON_ONCE(to_vmx(vcpu)->nested.nested_run_pending)) {
488 		vmcs12->vm_exit_intr_error_code = fault->error_code;
489 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
490 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
491 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
492 				  fault->address);
493 		return true;
494 	}
495 	return false;
496 }
497 
498 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
499 					       struct vmcs12 *vmcs12)
500 {
501 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
502 		return 0;
503 
504 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
505 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
506 		return -EINVAL;
507 
508 	return 0;
509 }
510 
511 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
512 						struct vmcs12 *vmcs12)
513 {
514 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
515 		return 0;
516 
517 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
518 		return -EINVAL;
519 
520 	return 0;
521 }
522 
523 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
524 						struct vmcs12 *vmcs12)
525 {
526 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
527 		return 0;
528 
529 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
530 		return -EINVAL;
531 
532 	return 0;
533 }
534 
535 /*
536  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
537  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
538  * only the "disable intercept" case needs to be handled.
539  */
540 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
541 							unsigned long *msr_bitmap_l0,
542 							u32 msr, int type)
543 {
544 	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
545 		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
546 
547 	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
548 		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
549 }
550 
551 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
552 {
553 	int msr;
554 
555 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
556 		unsigned word = msr / BITS_PER_LONG;
557 
558 		msr_bitmap[word] = ~0;
559 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
560 	}
561 }
562 
563 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
564 static inline									\
565 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
566 					 unsigned long *msr_bitmap_l1,		\
567 					 unsigned long *msr_bitmap_l0, u32 msr)	\
568 {										\
569 	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
570 	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
571 		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
572 	else									\
573 		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
574 }
575 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
576 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
577 
578 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
579 						    unsigned long *msr_bitmap_l1,
580 						    unsigned long *msr_bitmap_l0,
581 						    u32 msr, int types)
582 {
583 	if (types & MSR_TYPE_R)
584 		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
585 						  msr_bitmap_l0, msr);
586 	if (types & MSR_TYPE_W)
587 		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
588 						   msr_bitmap_l0, msr);
589 }
590 
591 /*
592  * Merge L0's and L1's MSR bitmap, return false to indicate that
593  * we do not use the hardware.
594  */
595 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
596 						 struct vmcs12 *vmcs12)
597 {
598 	struct vcpu_vmx *vmx = to_vmx(vcpu);
599 	int msr;
600 	unsigned long *msr_bitmap_l1;
601 	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
602 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
603 	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
604 
605 	/* Nothing to do if the MSR bitmap is not in use.  */
606 	if (!cpu_has_vmx_msr_bitmap() ||
607 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
608 		return false;
609 
610 	/*
611 	 * MSR bitmap update can be skipped when:
612 	 * - MSR bitmap for L1 hasn't changed.
613 	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
614 	 *   before.
615 	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
616 	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
617 	 */
618 	if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
619 	    evmcs->hv_enlightenments_control.msr_bitmap &&
620 	    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
621 		return true;
622 
623 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
624 		return false;
625 
626 	msr_bitmap_l1 = (unsigned long *)map->hva;
627 
628 	/*
629 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
630 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
631 	 * the x2APIC MSR range and selectively toggle those relevant to L2.
632 	 */
633 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
634 
635 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
636 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
637 			/*
638 			 * L0 need not intercept reads for MSRs between 0x800
639 			 * and 0x8ff, it just lets the processor take the value
640 			 * from the virtual-APIC page; take those 256 bits
641 			 * directly from the L1 bitmap.
642 			 */
643 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
644 				unsigned word = msr / BITS_PER_LONG;
645 
646 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
647 			}
648 		}
649 
650 		nested_vmx_disable_intercept_for_x2apic_msr(
651 			msr_bitmap_l1, msr_bitmap_l0,
652 			X2APIC_MSR(APIC_TASKPRI),
653 			MSR_TYPE_R | MSR_TYPE_W);
654 
655 		if (nested_cpu_has_vid(vmcs12)) {
656 			nested_vmx_disable_intercept_for_x2apic_msr(
657 				msr_bitmap_l1, msr_bitmap_l0,
658 				X2APIC_MSR(APIC_EOI),
659 				MSR_TYPE_W);
660 			nested_vmx_disable_intercept_for_x2apic_msr(
661 				msr_bitmap_l1, msr_bitmap_l0,
662 				X2APIC_MSR(APIC_SELF_IPI),
663 				MSR_TYPE_W);
664 		}
665 	}
666 
667 	/*
668 	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
669 	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
670 	 */
671 #ifdef CONFIG_X86_64
672 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
673 					 MSR_FS_BASE, MSR_TYPE_RW);
674 
675 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
676 					 MSR_GS_BASE, MSR_TYPE_RW);
677 
678 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
679 					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
680 #endif
681 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
682 					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
683 
684 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
685 					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
686 
687 	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
688 
689 	vmx->nested.force_msr_bitmap_recalc = false;
690 
691 	return true;
692 }
693 
694 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
695 				       struct vmcs12 *vmcs12)
696 {
697 	struct vcpu_vmx *vmx = to_vmx(vcpu);
698 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
699 
700 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
701 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
702 		return;
703 
704 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
705 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
706 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
707 		return;
708 
709 	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
710 			      VMCS12_SIZE);
711 }
712 
713 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
714 					      struct vmcs12 *vmcs12)
715 {
716 	struct vcpu_vmx *vmx = to_vmx(vcpu);
717 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
718 
719 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
720 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
721 		return;
722 
723 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
724 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
725 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
726 		return;
727 
728 	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
729 			       VMCS12_SIZE);
730 }
731 
732 /*
733  * In nested virtualization, check if L1 has set
734  * VM_EXIT_ACK_INTR_ON_EXIT
735  */
736 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
737 {
738 	return get_vmcs12(vcpu)->vm_exit_controls &
739 		VM_EXIT_ACK_INTR_ON_EXIT;
740 }
741 
742 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
743 					  struct vmcs12 *vmcs12)
744 {
745 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
746 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
747 		return -EINVAL;
748 	else
749 		return 0;
750 }
751 
752 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
753 					   struct vmcs12 *vmcs12)
754 {
755 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
756 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
757 	    !nested_cpu_has_vid(vmcs12) &&
758 	    !nested_cpu_has_posted_intr(vmcs12))
759 		return 0;
760 
761 	/*
762 	 * If virtualize x2apic mode is enabled,
763 	 * virtualize apic access must be disabled.
764 	 */
765 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
766 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
767 		return -EINVAL;
768 
769 	/*
770 	 * If virtual interrupt delivery is enabled,
771 	 * we must exit on external interrupts.
772 	 */
773 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
774 		return -EINVAL;
775 
776 	/*
777 	 * bits 15:8 should be zero in posted_intr_nv,
778 	 * the descriptor address has been already checked
779 	 * in nested_get_vmcs12_pages.
780 	 *
781 	 * bits 5:0 of posted_intr_desc_addr should be zero.
782 	 */
783 	if (nested_cpu_has_posted_intr(vmcs12) &&
784 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
785 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
786 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
787 	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
788 		return -EINVAL;
789 
790 	/* tpr shadow is needed by all apicv features. */
791 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
792 		return -EINVAL;
793 
794 	return 0;
795 }
796 
797 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
798 				       u32 count, u64 addr)
799 {
800 	if (count == 0)
801 		return 0;
802 
803 	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
804 	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
805 		return -EINVAL;
806 
807 	return 0;
808 }
809 
810 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
811 						     struct vmcs12 *vmcs12)
812 {
813 	if (CC(nested_vmx_check_msr_switch(vcpu,
814 					   vmcs12->vm_exit_msr_load_count,
815 					   vmcs12->vm_exit_msr_load_addr)) ||
816 	    CC(nested_vmx_check_msr_switch(vcpu,
817 					   vmcs12->vm_exit_msr_store_count,
818 					   vmcs12->vm_exit_msr_store_addr)))
819 		return -EINVAL;
820 
821 	return 0;
822 }
823 
824 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
825                                                       struct vmcs12 *vmcs12)
826 {
827 	if (CC(nested_vmx_check_msr_switch(vcpu,
828 					   vmcs12->vm_entry_msr_load_count,
829 					   vmcs12->vm_entry_msr_load_addr)))
830                 return -EINVAL;
831 
832 	return 0;
833 }
834 
835 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
836 					 struct vmcs12 *vmcs12)
837 {
838 	if (!nested_cpu_has_pml(vmcs12))
839 		return 0;
840 
841 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
842 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
843 		return -EINVAL;
844 
845 	return 0;
846 }
847 
848 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
849 							struct vmcs12 *vmcs12)
850 {
851 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
852 	       !nested_cpu_has_ept(vmcs12)))
853 		return -EINVAL;
854 	return 0;
855 }
856 
857 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
858 							 struct vmcs12 *vmcs12)
859 {
860 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
861 	       !nested_cpu_has_ept(vmcs12)))
862 		return -EINVAL;
863 	return 0;
864 }
865 
866 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
867 						 struct vmcs12 *vmcs12)
868 {
869 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
870 		return 0;
871 
872 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
873 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
874 		return -EINVAL;
875 
876 	return 0;
877 }
878 
879 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
880 				       struct vmx_msr_entry *e)
881 {
882 	/* x2APIC MSR accesses are not allowed */
883 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
884 		return -EINVAL;
885 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
886 	    CC(e->index == MSR_IA32_UCODE_REV))
887 		return -EINVAL;
888 	if (CC(e->reserved != 0))
889 		return -EINVAL;
890 	return 0;
891 }
892 
893 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
894 				     struct vmx_msr_entry *e)
895 {
896 	if (CC(e->index == MSR_FS_BASE) ||
897 	    CC(e->index == MSR_GS_BASE) ||
898 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
899 	    nested_vmx_msr_check_common(vcpu, e))
900 		return -EINVAL;
901 	return 0;
902 }
903 
904 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
905 				      struct vmx_msr_entry *e)
906 {
907 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
908 	    nested_vmx_msr_check_common(vcpu, e))
909 		return -EINVAL;
910 	return 0;
911 }
912 
913 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
914 {
915 	struct vcpu_vmx *vmx = to_vmx(vcpu);
916 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
917 				       vmx->nested.msrs.misc_high);
918 
919 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
920 }
921 
922 /*
923  * Load guest's/host's msr at nested entry/exit.
924  * return 0 for success, entry index for failure.
925  *
926  * One of the failure modes for MSR load/store is when a list exceeds the
927  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
928  * as possible, process all valid entries before failing rather than precheck
929  * for a capacity violation.
930  */
931 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
932 {
933 	u32 i;
934 	struct vmx_msr_entry e;
935 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
936 
937 	for (i = 0; i < count; i++) {
938 		if (unlikely(i >= max_msr_list_size))
939 			goto fail;
940 
941 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
942 					&e, sizeof(e))) {
943 			pr_debug_ratelimited(
944 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
945 				__func__, i, gpa + i * sizeof(e));
946 			goto fail;
947 		}
948 		if (nested_vmx_load_msr_check(vcpu, &e)) {
949 			pr_debug_ratelimited(
950 				"%s check failed (%u, 0x%x, 0x%x)\n",
951 				__func__, i, e.index, e.reserved);
952 			goto fail;
953 		}
954 		if (kvm_set_msr(vcpu, e.index, e.value)) {
955 			pr_debug_ratelimited(
956 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
957 				__func__, i, e.index, e.value);
958 			goto fail;
959 		}
960 	}
961 	return 0;
962 fail:
963 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
964 	return i + 1;
965 }
966 
967 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
968 					    u32 msr_index,
969 					    u64 *data)
970 {
971 	struct vcpu_vmx *vmx = to_vmx(vcpu);
972 
973 	/*
974 	 * If the L0 hypervisor stored a more accurate value for the TSC that
975 	 * does not include the time taken for emulation of the L2->L1
976 	 * VM-exit in L0, use the more accurate value.
977 	 */
978 	if (msr_index == MSR_IA32_TSC) {
979 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
980 						    MSR_IA32_TSC);
981 
982 		if (i >= 0) {
983 			u64 val = vmx->msr_autostore.guest.val[i].value;
984 
985 			*data = kvm_read_l1_tsc(vcpu, val);
986 			return true;
987 		}
988 	}
989 
990 	if (kvm_get_msr(vcpu, msr_index, data)) {
991 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
992 			msr_index);
993 		return false;
994 	}
995 	return true;
996 }
997 
998 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
999 				     struct vmx_msr_entry *e)
1000 {
1001 	if (kvm_vcpu_read_guest(vcpu,
1002 				gpa + i * sizeof(*e),
1003 				e, 2 * sizeof(u32))) {
1004 		pr_debug_ratelimited(
1005 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
1006 			__func__, i, gpa + i * sizeof(*e));
1007 		return false;
1008 	}
1009 	if (nested_vmx_store_msr_check(vcpu, e)) {
1010 		pr_debug_ratelimited(
1011 			"%s check failed (%u, 0x%x, 0x%x)\n",
1012 			__func__, i, e->index, e->reserved);
1013 		return false;
1014 	}
1015 	return true;
1016 }
1017 
1018 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1019 {
1020 	u64 data;
1021 	u32 i;
1022 	struct vmx_msr_entry e;
1023 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1024 
1025 	for (i = 0; i < count; i++) {
1026 		if (unlikely(i >= max_msr_list_size))
1027 			return -EINVAL;
1028 
1029 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1030 			return -EINVAL;
1031 
1032 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1033 			return -EINVAL;
1034 
1035 		if (kvm_vcpu_write_guest(vcpu,
1036 					 gpa + i * sizeof(e) +
1037 					     offsetof(struct vmx_msr_entry, value),
1038 					 &data, sizeof(data))) {
1039 			pr_debug_ratelimited(
1040 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1041 				__func__, i, e.index, data);
1042 			return -EINVAL;
1043 		}
1044 	}
1045 	return 0;
1046 }
1047 
1048 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1049 {
1050 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1051 	u32 count = vmcs12->vm_exit_msr_store_count;
1052 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1053 	struct vmx_msr_entry e;
1054 	u32 i;
1055 
1056 	for (i = 0; i < count; i++) {
1057 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1058 			return false;
1059 
1060 		if (e.index == msr_index)
1061 			return true;
1062 	}
1063 	return false;
1064 }
1065 
1066 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1067 					   u32 msr_index)
1068 {
1069 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1070 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1071 	bool in_vmcs12_store_list;
1072 	int msr_autostore_slot;
1073 	bool in_autostore_list;
1074 	int last;
1075 
1076 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1077 	in_autostore_list = msr_autostore_slot >= 0;
1078 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1079 
1080 	if (in_vmcs12_store_list && !in_autostore_list) {
1081 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1082 			/*
1083 			 * Emulated VMEntry does not fail here.  Instead a less
1084 			 * accurate value will be returned by
1085 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1086 			 * instead of reading the value from the vmcs02 VMExit
1087 			 * MSR-store area.
1088 			 */
1089 			pr_warn_ratelimited(
1090 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1091 				msr_index);
1092 			return;
1093 		}
1094 		last = autostore->nr++;
1095 		autostore->val[last].index = msr_index;
1096 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1097 		last = --autostore->nr;
1098 		autostore->val[msr_autostore_slot] = autostore->val[last];
1099 	}
1100 }
1101 
1102 /*
1103  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1104  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1105  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1106  * @entry_failure_code.
1107  */
1108 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1109 			       bool nested_ept, bool reload_pdptrs,
1110 			       enum vm_entry_failure_code *entry_failure_code)
1111 {
1112 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1113 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1114 		return -EINVAL;
1115 	}
1116 
1117 	/*
1118 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1119 	 * must not be dereferenced.
1120 	 */
1121 	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1122 	    CC(!load_pdptrs(vcpu, cr3))) {
1123 		*entry_failure_code = ENTRY_FAIL_PDPTE;
1124 		return -EINVAL;
1125 	}
1126 
1127 	vcpu->arch.cr3 = cr3;
1128 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1129 
1130 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1131 	kvm_init_mmu(vcpu);
1132 
1133 	if (!nested_ept)
1134 		kvm_mmu_new_pgd(vcpu, cr3);
1135 
1136 	return 0;
1137 }
1138 
1139 /*
1140  * Returns if KVM is able to config CPU to tag TLB entries
1141  * populated by L2 differently than TLB entries populated
1142  * by L1.
1143  *
1144  * If L0 uses EPT, L1 and L2 run with different EPTP because
1145  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1146  * are tagged with different EPTP.
1147  *
1148  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1149  * with different VPID (L1 entries are tagged with vmx->vpid
1150  * while L2 entries are tagged with vmx->nested.vpid02).
1151  */
1152 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1153 {
1154 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1155 
1156 	return enable_ept ||
1157 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1158 }
1159 
1160 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1161 					    struct vmcs12 *vmcs12,
1162 					    bool is_vmenter)
1163 {
1164 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1165 
1166 	/*
1167 	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1168 	 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1169 	 * full TLB flush from the guest's perspective.  This is required even
1170 	 * if VPID is disabled in the host as KVM may need to synchronize the
1171 	 * MMU in response to the guest TLB flush.
1172 	 *
1173 	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1174 	 * EPT is a special snowflake, as guest-physical mappings aren't
1175 	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1176 	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1177 	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1178 	 * those mappings.
1179 	 */
1180 	if (!nested_cpu_has_vpid(vmcs12)) {
1181 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1182 		return;
1183 	}
1184 
1185 	/* L2 should never have a VPID if VPID is disabled. */
1186 	WARN_ON(!enable_vpid);
1187 
1188 	/*
1189 	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1190 	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1191 	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1192 	 * that the new vpid12 has never been used and thus represents a new
1193 	 * guest ASID that cannot have entries in the TLB.
1194 	 */
1195 	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1196 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1197 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1198 		return;
1199 	}
1200 
1201 	/*
1202 	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1203 	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1204 	 * KVM was unable to allocate a VPID for L2, flush the current context
1205 	 * as the effective ASID is common to both L1 and L2.
1206 	 */
1207 	if (!nested_has_guest_tlb_tag(vcpu))
1208 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1209 }
1210 
1211 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1212 {
1213 	superset &= mask;
1214 	subset &= mask;
1215 
1216 	return (superset | subset) == superset;
1217 }
1218 
1219 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1220 {
1221 	const u64 feature_and_reserved =
1222 		/* feature (except bit 48; see below) */
1223 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1224 		/* reserved */
1225 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1226 	u64 vmx_basic = vmx->nested.msrs.basic;
1227 
1228 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1229 		return -EINVAL;
1230 
1231 	/*
1232 	 * KVM does not emulate a version of VMX that constrains physical
1233 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1234 	 */
1235 	if (data & BIT_ULL(48))
1236 		return -EINVAL;
1237 
1238 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1239 	    vmx_basic_vmcs_revision_id(data))
1240 		return -EINVAL;
1241 
1242 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1243 		return -EINVAL;
1244 
1245 	vmx->nested.msrs.basic = data;
1246 	return 0;
1247 }
1248 
1249 static int
1250 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1251 {
1252 	u64 supported;
1253 	u32 *lowp, *highp;
1254 
1255 	switch (msr_index) {
1256 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1257 		lowp = &vmx->nested.msrs.pinbased_ctls_low;
1258 		highp = &vmx->nested.msrs.pinbased_ctls_high;
1259 		break;
1260 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1261 		lowp = &vmx->nested.msrs.procbased_ctls_low;
1262 		highp = &vmx->nested.msrs.procbased_ctls_high;
1263 		break;
1264 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1265 		lowp = &vmx->nested.msrs.exit_ctls_low;
1266 		highp = &vmx->nested.msrs.exit_ctls_high;
1267 		break;
1268 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1269 		lowp = &vmx->nested.msrs.entry_ctls_low;
1270 		highp = &vmx->nested.msrs.entry_ctls_high;
1271 		break;
1272 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1273 		lowp = &vmx->nested.msrs.secondary_ctls_low;
1274 		highp = &vmx->nested.msrs.secondary_ctls_high;
1275 		break;
1276 	default:
1277 		BUG();
1278 	}
1279 
1280 	supported = vmx_control_msr(*lowp, *highp);
1281 
1282 	/* Check must-be-1 bits are still 1. */
1283 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1284 		return -EINVAL;
1285 
1286 	/* Check must-be-0 bits are still 0. */
1287 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1288 		return -EINVAL;
1289 
1290 	*lowp = data;
1291 	*highp = data >> 32;
1292 	return 0;
1293 }
1294 
1295 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1296 {
1297 	const u64 feature_and_reserved_bits =
1298 		/* feature */
1299 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1300 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1301 		/* reserved */
1302 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1303 	u64 vmx_misc;
1304 
1305 	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1306 				   vmx->nested.msrs.misc_high);
1307 
1308 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1309 		return -EINVAL;
1310 
1311 	if ((vmx->nested.msrs.pinbased_ctls_high &
1312 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1313 	    vmx_misc_preemption_timer_rate(data) !=
1314 	    vmx_misc_preemption_timer_rate(vmx_misc))
1315 		return -EINVAL;
1316 
1317 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1318 		return -EINVAL;
1319 
1320 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1321 		return -EINVAL;
1322 
1323 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1324 		return -EINVAL;
1325 
1326 	vmx->nested.msrs.misc_low = data;
1327 	vmx->nested.msrs.misc_high = data >> 32;
1328 
1329 	return 0;
1330 }
1331 
1332 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1333 {
1334 	u64 vmx_ept_vpid_cap;
1335 
1336 	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1337 					   vmx->nested.msrs.vpid_caps);
1338 
1339 	/* Every bit is either reserved or a feature bit. */
1340 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1341 		return -EINVAL;
1342 
1343 	vmx->nested.msrs.ept_caps = data;
1344 	vmx->nested.msrs.vpid_caps = data >> 32;
1345 	return 0;
1346 }
1347 
1348 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1349 {
1350 	u64 *msr;
1351 
1352 	switch (msr_index) {
1353 	case MSR_IA32_VMX_CR0_FIXED0:
1354 		msr = &vmx->nested.msrs.cr0_fixed0;
1355 		break;
1356 	case MSR_IA32_VMX_CR4_FIXED0:
1357 		msr = &vmx->nested.msrs.cr4_fixed0;
1358 		break;
1359 	default:
1360 		BUG();
1361 	}
1362 
1363 	/*
1364 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1365 	 * must be 1 in the restored value.
1366 	 */
1367 	if (!is_bitwise_subset(data, *msr, -1ULL))
1368 		return -EINVAL;
1369 
1370 	*msr = data;
1371 	return 0;
1372 }
1373 
1374 /*
1375  * Called when userspace is restoring VMX MSRs.
1376  *
1377  * Returns 0 on success, non-0 otherwise.
1378  */
1379 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1380 {
1381 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1382 
1383 	/*
1384 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1385 	 * is in VMX operation.
1386 	 */
1387 	if (vmx->nested.vmxon)
1388 		return -EBUSY;
1389 
1390 	switch (msr_index) {
1391 	case MSR_IA32_VMX_BASIC:
1392 		return vmx_restore_vmx_basic(vmx, data);
1393 	case MSR_IA32_VMX_PINBASED_CTLS:
1394 	case MSR_IA32_VMX_PROCBASED_CTLS:
1395 	case MSR_IA32_VMX_EXIT_CTLS:
1396 	case MSR_IA32_VMX_ENTRY_CTLS:
1397 		/*
1398 		 * The "non-true" VMX capability MSRs are generated from the
1399 		 * "true" MSRs, so we do not support restoring them directly.
1400 		 *
1401 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1402 		 * should restore the "true" MSRs with the must-be-1 bits
1403 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1404 		 * DEFAULT SETTINGS".
1405 		 */
1406 		return -EINVAL;
1407 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1408 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1409 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1410 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1411 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1412 		return vmx_restore_control_msr(vmx, msr_index, data);
1413 	case MSR_IA32_VMX_MISC:
1414 		return vmx_restore_vmx_misc(vmx, data);
1415 	case MSR_IA32_VMX_CR0_FIXED0:
1416 	case MSR_IA32_VMX_CR4_FIXED0:
1417 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1418 	case MSR_IA32_VMX_CR0_FIXED1:
1419 	case MSR_IA32_VMX_CR4_FIXED1:
1420 		/*
1421 		 * These MSRs are generated based on the vCPU's CPUID, so we
1422 		 * do not support restoring them directly.
1423 		 */
1424 		return -EINVAL;
1425 	case MSR_IA32_VMX_EPT_VPID_CAP:
1426 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1427 	case MSR_IA32_VMX_VMCS_ENUM:
1428 		vmx->nested.msrs.vmcs_enum = data;
1429 		return 0;
1430 	case MSR_IA32_VMX_VMFUNC:
1431 		if (data & ~vmx->nested.msrs.vmfunc_controls)
1432 			return -EINVAL;
1433 		vmx->nested.msrs.vmfunc_controls = data;
1434 		return 0;
1435 	default:
1436 		/*
1437 		 * The rest of the VMX capability MSRs do not support restore.
1438 		 */
1439 		return -EINVAL;
1440 	}
1441 }
1442 
1443 /* Returns 0 on success, non-0 otherwise. */
1444 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1445 {
1446 	switch (msr_index) {
1447 	case MSR_IA32_VMX_BASIC:
1448 		*pdata = msrs->basic;
1449 		break;
1450 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1451 	case MSR_IA32_VMX_PINBASED_CTLS:
1452 		*pdata = vmx_control_msr(
1453 			msrs->pinbased_ctls_low,
1454 			msrs->pinbased_ctls_high);
1455 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1456 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1457 		break;
1458 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1459 	case MSR_IA32_VMX_PROCBASED_CTLS:
1460 		*pdata = vmx_control_msr(
1461 			msrs->procbased_ctls_low,
1462 			msrs->procbased_ctls_high);
1463 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1464 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1465 		break;
1466 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1467 	case MSR_IA32_VMX_EXIT_CTLS:
1468 		*pdata = vmx_control_msr(
1469 			msrs->exit_ctls_low,
1470 			msrs->exit_ctls_high);
1471 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1472 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1473 		break;
1474 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1475 	case MSR_IA32_VMX_ENTRY_CTLS:
1476 		*pdata = vmx_control_msr(
1477 			msrs->entry_ctls_low,
1478 			msrs->entry_ctls_high);
1479 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1480 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1481 		break;
1482 	case MSR_IA32_VMX_MISC:
1483 		*pdata = vmx_control_msr(
1484 			msrs->misc_low,
1485 			msrs->misc_high);
1486 		break;
1487 	case MSR_IA32_VMX_CR0_FIXED0:
1488 		*pdata = msrs->cr0_fixed0;
1489 		break;
1490 	case MSR_IA32_VMX_CR0_FIXED1:
1491 		*pdata = msrs->cr0_fixed1;
1492 		break;
1493 	case MSR_IA32_VMX_CR4_FIXED0:
1494 		*pdata = msrs->cr4_fixed0;
1495 		break;
1496 	case MSR_IA32_VMX_CR4_FIXED1:
1497 		*pdata = msrs->cr4_fixed1;
1498 		break;
1499 	case MSR_IA32_VMX_VMCS_ENUM:
1500 		*pdata = msrs->vmcs_enum;
1501 		break;
1502 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1503 		*pdata = vmx_control_msr(
1504 			msrs->secondary_ctls_low,
1505 			msrs->secondary_ctls_high);
1506 		break;
1507 	case MSR_IA32_VMX_EPT_VPID_CAP:
1508 		*pdata = msrs->ept_caps |
1509 			((u64)msrs->vpid_caps << 32);
1510 		break;
1511 	case MSR_IA32_VMX_VMFUNC:
1512 		*pdata = msrs->vmfunc_controls;
1513 		break;
1514 	default:
1515 		return 1;
1516 	}
1517 
1518 	return 0;
1519 }
1520 
1521 /*
1522  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1523  * been modified by the L1 guest.  Note, "writable" in this context means
1524  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1525  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1526  * VM-exit information fields (which are actually writable if the vCPU is
1527  * configured to support "VMWRITE to any supported field in the VMCS").
1528  */
1529 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1530 {
1531 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1532 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1533 	struct shadow_vmcs_field field;
1534 	unsigned long val;
1535 	int i;
1536 
1537 	if (WARN_ON(!shadow_vmcs))
1538 		return;
1539 
1540 	preempt_disable();
1541 
1542 	vmcs_load(shadow_vmcs);
1543 
1544 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1545 		field = shadow_read_write_fields[i];
1546 		val = __vmcs_readl(field.encoding);
1547 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1548 	}
1549 
1550 	vmcs_clear(shadow_vmcs);
1551 	vmcs_load(vmx->loaded_vmcs->vmcs);
1552 
1553 	preempt_enable();
1554 }
1555 
1556 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1557 {
1558 	const struct shadow_vmcs_field *fields[] = {
1559 		shadow_read_write_fields,
1560 		shadow_read_only_fields
1561 	};
1562 	const int max_fields[] = {
1563 		max_shadow_read_write_fields,
1564 		max_shadow_read_only_fields
1565 	};
1566 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1567 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1568 	struct shadow_vmcs_field field;
1569 	unsigned long val;
1570 	int i, q;
1571 
1572 	if (WARN_ON(!shadow_vmcs))
1573 		return;
1574 
1575 	vmcs_load(shadow_vmcs);
1576 
1577 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1578 		for (i = 0; i < max_fields[q]; i++) {
1579 			field = fields[q][i];
1580 			val = vmcs12_read_any(vmcs12, field.encoding,
1581 					      field.offset);
1582 			__vmcs_writel(field.encoding, val);
1583 		}
1584 	}
1585 
1586 	vmcs_clear(shadow_vmcs);
1587 	vmcs_load(vmx->loaded_vmcs->vmcs);
1588 }
1589 
1590 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1591 {
1592 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1593 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1594 
1595 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1596 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1597 	vmcs12->guest_rip = evmcs->guest_rip;
1598 
1599 	if (unlikely(!(hv_clean_fields &
1600 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1601 		vmcs12->guest_rsp = evmcs->guest_rsp;
1602 		vmcs12->guest_rflags = evmcs->guest_rflags;
1603 		vmcs12->guest_interruptibility_info =
1604 			evmcs->guest_interruptibility_info;
1605 	}
1606 
1607 	if (unlikely(!(hv_clean_fields &
1608 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1609 		vmcs12->cpu_based_vm_exec_control =
1610 			evmcs->cpu_based_vm_exec_control;
1611 	}
1612 
1613 	if (unlikely(!(hv_clean_fields &
1614 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1615 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1616 	}
1617 
1618 	if (unlikely(!(hv_clean_fields &
1619 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1620 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1621 	}
1622 
1623 	if (unlikely(!(hv_clean_fields &
1624 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1625 		vmcs12->vm_entry_intr_info_field =
1626 			evmcs->vm_entry_intr_info_field;
1627 		vmcs12->vm_entry_exception_error_code =
1628 			evmcs->vm_entry_exception_error_code;
1629 		vmcs12->vm_entry_instruction_len =
1630 			evmcs->vm_entry_instruction_len;
1631 	}
1632 
1633 	if (unlikely(!(hv_clean_fields &
1634 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1635 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1636 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1637 		vmcs12->host_cr0 = evmcs->host_cr0;
1638 		vmcs12->host_cr3 = evmcs->host_cr3;
1639 		vmcs12->host_cr4 = evmcs->host_cr4;
1640 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1641 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1642 		vmcs12->host_rip = evmcs->host_rip;
1643 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1644 		vmcs12->host_es_selector = evmcs->host_es_selector;
1645 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1646 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1647 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1648 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1649 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1650 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1651 	}
1652 
1653 	if (unlikely(!(hv_clean_fields &
1654 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1655 		vmcs12->pin_based_vm_exec_control =
1656 			evmcs->pin_based_vm_exec_control;
1657 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1658 		vmcs12->secondary_vm_exec_control =
1659 			evmcs->secondary_vm_exec_control;
1660 	}
1661 
1662 	if (unlikely(!(hv_clean_fields &
1663 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1664 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1665 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1666 	}
1667 
1668 	if (unlikely(!(hv_clean_fields &
1669 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1670 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1671 	}
1672 
1673 	if (unlikely(!(hv_clean_fields &
1674 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1675 		vmcs12->guest_es_base = evmcs->guest_es_base;
1676 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1677 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1678 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1679 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1680 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1681 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1682 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1683 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1684 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1685 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1686 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1687 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1688 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1689 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1690 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1691 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1692 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1693 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1694 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1695 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1696 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1697 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1698 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1699 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1700 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1701 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1702 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1703 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1704 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1705 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1706 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1707 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1708 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1709 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1710 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1711 	}
1712 
1713 	if (unlikely(!(hv_clean_fields &
1714 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1715 		vmcs12->tsc_offset = evmcs->tsc_offset;
1716 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1717 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1718 	}
1719 
1720 	if (unlikely(!(hv_clean_fields &
1721 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1722 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1723 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1724 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1725 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1726 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1727 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1728 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1729 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1730 	}
1731 
1732 	if (unlikely(!(hv_clean_fields &
1733 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1734 		vmcs12->host_fs_base = evmcs->host_fs_base;
1735 		vmcs12->host_gs_base = evmcs->host_gs_base;
1736 		vmcs12->host_tr_base = evmcs->host_tr_base;
1737 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1738 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1739 		vmcs12->host_rsp = evmcs->host_rsp;
1740 	}
1741 
1742 	if (unlikely(!(hv_clean_fields &
1743 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1744 		vmcs12->ept_pointer = evmcs->ept_pointer;
1745 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1746 	}
1747 
1748 	if (unlikely(!(hv_clean_fields &
1749 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1750 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1751 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1752 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1753 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1754 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1755 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1756 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1757 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1758 		vmcs12->guest_pending_dbg_exceptions =
1759 			evmcs->guest_pending_dbg_exceptions;
1760 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1761 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1762 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1763 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1764 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1765 	}
1766 
1767 	/*
1768 	 * Not used?
1769 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1770 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1771 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1772 	 * vmcs12->page_fault_error_code_mask =
1773 	 *		evmcs->page_fault_error_code_mask;
1774 	 * vmcs12->page_fault_error_code_match =
1775 	 *		evmcs->page_fault_error_code_match;
1776 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1777 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1778 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1779 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1780 	 */
1781 
1782 	/*
1783 	 * Read only fields:
1784 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1785 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1786 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1787 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1788 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1789 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1790 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1791 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1792 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1793 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1794 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1795 	 *
1796 	 * Not present in struct vmcs12:
1797 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1798 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1799 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1800 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1801 	 */
1802 
1803 	return;
1804 }
1805 
1806 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1807 {
1808 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1809 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1810 
1811 	/*
1812 	 * Should not be changed by KVM:
1813 	 *
1814 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1815 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1816 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1817 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1818 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1819 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1820 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1821 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1822 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1823 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1824 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1825 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1826 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1827 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1828 	 * evmcs->host_rip = vmcs12->host_rip;
1829 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1830 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1831 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1832 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1833 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1834 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1835 	 * evmcs->host_rsp = vmcs12->host_rsp;
1836 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1837 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1838 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1839 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1840 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1841 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1842 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1843 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1844 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1845 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1846 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1847 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1848 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1849 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1850 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1851 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1852 	 * evmcs->page_fault_error_code_mask =
1853 	 *		vmcs12->page_fault_error_code_mask;
1854 	 * evmcs->page_fault_error_code_match =
1855 	 *		vmcs12->page_fault_error_code_match;
1856 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1857 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1858 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1859 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1860 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1861 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1862 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1863 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1864 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1865 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1866 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1867 	 *
1868 	 * Not present in struct vmcs12:
1869 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1870 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1871 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1872 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1873 	 */
1874 
1875 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1876 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1877 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1878 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1879 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1880 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1881 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1882 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1883 
1884 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1885 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1886 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1887 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1888 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1889 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1890 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1891 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1892 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1893 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1894 
1895 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1896 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1897 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1898 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1899 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1900 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1901 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1902 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1903 
1904 	evmcs->guest_es_base = vmcs12->guest_es_base;
1905 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1906 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1907 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1908 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1909 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1910 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1911 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1912 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1913 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1914 
1915 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1916 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1917 
1918 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1919 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1920 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1921 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1922 
1923 	evmcs->guest_pending_dbg_exceptions =
1924 		vmcs12->guest_pending_dbg_exceptions;
1925 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1926 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1927 
1928 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1929 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1930 
1931 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1932 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1933 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1934 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1935 
1936 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1937 
1938 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1939 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1940 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1941 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1942 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1943 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1944 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1945 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1946 
1947 	evmcs->exit_qualification = vmcs12->exit_qualification;
1948 
1949 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1950 	evmcs->guest_rsp = vmcs12->guest_rsp;
1951 	evmcs->guest_rflags = vmcs12->guest_rflags;
1952 
1953 	evmcs->guest_interruptibility_info =
1954 		vmcs12->guest_interruptibility_info;
1955 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1956 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1957 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1958 	evmcs->vm_entry_exception_error_code =
1959 		vmcs12->vm_entry_exception_error_code;
1960 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1961 
1962 	evmcs->guest_rip = vmcs12->guest_rip;
1963 
1964 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1965 
1966 	return;
1967 }
1968 
1969 /*
1970  * This is an equivalent of the nested hypervisor executing the vmptrld
1971  * instruction.
1972  */
1973 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1974 	struct kvm_vcpu *vcpu, bool from_launch)
1975 {
1976 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1977 	bool evmcs_gpa_changed = false;
1978 	u64 evmcs_gpa;
1979 
1980 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1981 		return EVMPTRLD_DISABLED;
1982 
1983 	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1984 		nested_release_evmcs(vcpu);
1985 		return EVMPTRLD_DISABLED;
1986 	}
1987 
1988 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1989 		vmx->nested.current_vmptr = INVALID_GPA;
1990 
1991 		nested_release_evmcs(vcpu);
1992 
1993 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1994 				 &vmx->nested.hv_evmcs_map))
1995 			return EVMPTRLD_ERROR;
1996 
1997 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1998 
1999 		/*
2000 		 * Currently, KVM only supports eVMCS version 1
2001 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2002 		 * value to first u32 field of eVMCS which should specify eVMCS
2003 		 * VersionNumber.
2004 		 *
2005 		 * Guest should be aware of supported eVMCS versions by host by
2006 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2007 		 * expected to set this CPUID leaf according to the value
2008 		 * returned in vmcs_version from nested_enable_evmcs().
2009 		 *
2010 		 * However, it turns out that Microsoft Hyper-V fails to comply
2011 		 * to their own invented interface: When Hyper-V use eVMCS, it
2012 		 * just sets first u32 field of eVMCS to revision_id specified
2013 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2014 		 * which is one of the supported versions specified in
2015 		 * CPUID.0x4000000A.EAX[0:15].
2016 		 *
2017 		 * To overcome Hyper-V bug, we accept here either a supported
2018 		 * eVMCS version or VMCS12 revision_id as valid values for first
2019 		 * u32 field of eVMCS.
2020 		 */
2021 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2022 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2023 			nested_release_evmcs(vcpu);
2024 			return EVMPTRLD_VMFAIL;
2025 		}
2026 
2027 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2028 
2029 		evmcs_gpa_changed = true;
2030 		/*
2031 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2032 		 * reloaded from guest's memory (read only fields, fields not
2033 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2034 		 * are no leftovers.
2035 		 */
2036 		if (from_launch) {
2037 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2038 			memset(vmcs12, 0, sizeof(*vmcs12));
2039 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2040 		}
2041 
2042 	}
2043 
2044 	/*
2045 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2046 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2047 	 */
2048 	if (from_launch || evmcs_gpa_changed) {
2049 		vmx->nested.hv_evmcs->hv_clean_fields &=
2050 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2051 
2052 		vmx->nested.force_msr_bitmap_recalc = true;
2053 	}
2054 
2055 	return EVMPTRLD_SUCCEEDED;
2056 }
2057 
2058 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2059 {
2060 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2061 
2062 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2063 		copy_vmcs12_to_enlightened(vmx);
2064 	else
2065 		copy_vmcs12_to_shadow(vmx);
2066 
2067 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2068 }
2069 
2070 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2071 {
2072 	struct vcpu_vmx *vmx =
2073 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2074 
2075 	vmx->nested.preemption_timer_expired = true;
2076 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2077 	kvm_vcpu_kick(&vmx->vcpu);
2078 
2079 	return HRTIMER_NORESTART;
2080 }
2081 
2082 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2083 {
2084 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2085 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2086 
2087 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2088 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2089 
2090 	if (!vmx->nested.has_preemption_timer_deadline) {
2091 		vmx->nested.preemption_timer_deadline =
2092 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2093 		vmx->nested.has_preemption_timer_deadline = true;
2094 	}
2095 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2096 }
2097 
2098 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2099 					u64 preemption_timeout)
2100 {
2101 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2102 
2103 	/*
2104 	 * A timer value of zero is architecturally guaranteed to cause
2105 	 * a VMExit prior to executing any instructions in the guest.
2106 	 */
2107 	if (preemption_timeout == 0) {
2108 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2109 		return;
2110 	}
2111 
2112 	if (vcpu->arch.virtual_tsc_khz == 0)
2113 		return;
2114 
2115 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2116 	preemption_timeout *= 1000000;
2117 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2118 	hrtimer_start(&vmx->nested.preemption_timer,
2119 		      ktime_add_ns(ktime_get(), preemption_timeout),
2120 		      HRTIMER_MODE_ABS_PINNED);
2121 }
2122 
2123 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2124 {
2125 	if (vmx->nested.nested_run_pending &&
2126 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2127 		return vmcs12->guest_ia32_efer;
2128 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2129 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2130 	else
2131 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2132 }
2133 
2134 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2135 {
2136 	/*
2137 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2138 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2139 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2140 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2141 	 */
2142 	if (vmx->nested.vmcs02_initialized)
2143 		return;
2144 	vmx->nested.vmcs02_initialized = true;
2145 
2146 	/*
2147 	 * We don't care what the EPTP value is we just need to guarantee
2148 	 * it's valid so we don't get a false positive when doing early
2149 	 * consistency checks.
2150 	 */
2151 	if (enable_ept && nested_early_check)
2152 		vmcs_write64(EPT_POINTER,
2153 			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2154 
2155 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2156 	if (cpu_has_vmx_vmfunc())
2157 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2158 
2159 	if (cpu_has_vmx_posted_intr())
2160 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2161 
2162 	if (cpu_has_vmx_msr_bitmap())
2163 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2164 
2165 	/*
2166 	 * PML is emulated for L2, but never enabled in hardware as the MMU
2167 	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2168 	 * deal with filtering out L2 GPAs from the buffer.
2169 	 */
2170 	if (enable_pml) {
2171 		vmcs_write64(PML_ADDRESS, 0);
2172 		vmcs_write16(GUEST_PML_INDEX, -1);
2173 	}
2174 
2175 	if (cpu_has_vmx_encls_vmexit())
2176 		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2177 
2178 	/*
2179 	 * Set the MSR load/store lists to match L0's settings.  Only the
2180 	 * addresses are constant (for vmcs02), the counts can change based
2181 	 * on L2's behavior, e.g. switching to/from long mode.
2182 	 */
2183 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2184 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2185 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2186 
2187 	vmx_set_constant_host_state(vmx);
2188 }
2189 
2190 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2191 				      struct vmcs12 *vmcs12)
2192 {
2193 	prepare_vmcs02_constant_state(vmx);
2194 
2195 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2196 
2197 	if (enable_vpid) {
2198 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2199 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2200 		else
2201 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2202 	}
2203 }
2204 
2205 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2206 				 struct vmcs12 *vmcs12)
2207 {
2208 	u32 exec_control;
2209 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2210 
2211 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2212 		prepare_vmcs02_early_rare(vmx, vmcs12);
2213 
2214 	/*
2215 	 * PIN CONTROLS
2216 	 */
2217 	exec_control = __pin_controls_get(vmcs01);
2218 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2219 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2220 
2221 	/* Posted interrupts setting is only taken from vmcs12.  */
2222 	vmx->nested.pi_pending = false;
2223 	if (nested_cpu_has_posted_intr(vmcs12))
2224 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2225 	else
2226 		exec_control &= ~PIN_BASED_POSTED_INTR;
2227 	pin_controls_set(vmx, exec_control);
2228 
2229 	/*
2230 	 * EXEC CONTROLS
2231 	 */
2232 	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2233 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2234 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2235 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2236 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2237 
2238 	vmx->nested.l1_tpr_threshold = -1;
2239 	if (exec_control & CPU_BASED_TPR_SHADOW)
2240 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2241 #ifdef CONFIG_X86_64
2242 	else
2243 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2244 				CPU_BASED_CR8_STORE_EXITING;
2245 #endif
2246 
2247 	/*
2248 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2249 	 * for I/O port accesses.
2250 	 */
2251 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2252 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2253 
2254 	/*
2255 	 * This bit will be computed in nested_get_vmcs12_pages, because
2256 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2257 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2258 	 * only set/clear this bit.
2259 	 */
2260 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2261 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2262 
2263 	exec_controls_set(vmx, exec_control);
2264 
2265 	/*
2266 	 * SECONDARY EXEC CONTROLS
2267 	 */
2268 	if (cpu_has_secondary_exec_ctrls()) {
2269 		exec_control = __secondary_exec_controls_get(vmcs01);
2270 
2271 		/* Take the following fields only from vmcs12 */
2272 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2273 				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2274 				  SECONDARY_EXEC_ENABLE_INVPCID |
2275 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2276 				  SECONDARY_EXEC_XSAVES |
2277 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2278 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2279 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2280 				  SECONDARY_EXEC_ENABLE_VMFUNC |
2281 				  SECONDARY_EXEC_DESC);
2282 
2283 		if (nested_cpu_has(vmcs12,
2284 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2285 			exec_control |= vmcs12->secondary_vm_exec_control;
2286 
2287 		/* PML is emulated and never enabled in hardware for L2. */
2288 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2289 
2290 		/* VMCS shadowing for L2 is emulated for now */
2291 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2292 
2293 		/*
2294 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2295 		 * will not have to rewrite the controls just for this bit.
2296 		 */
2297 		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2298 		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2299 			exec_control |= SECONDARY_EXEC_DESC;
2300 
2301 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2302 			vmcs_write16(GUEST_INTR_STATUS,
2303 				vmcs12->guest_intr_status);
2304 
2305 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2306 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2307 
2308 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2309 			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2310 
2311 		secondary_exec_controls_set(vmx, exec_control);
2312 	}
2313 
2314 	/*
2315 	 * ENTRY CONTROLS
2316 	 *
2317 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2318 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2319 	 * on the related bits (if supported by the CPU) in the hope that
2320 	 * we can avoid VMWrites during vmx_set_efer().
2321 	 */
2322 	exec_control = __vm_entry_controls_get(vmcs01);
2323 	exec_control |= vmcs12->vm_entry_controls;
2324 	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2325 	if (cpu_has_load_ia32_efer()) {
2326 		if (guest_efer & EFER_LMA)
2327 			exec_control |= VM_ENTRY_IA32E_MODE;
2328 		if (guest_efer != host_efer)
2329 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2330 	}
2331 	vm_entry_controls_set(vmx, exec_control);
2332 
2333 	/*
2334 	 * EXIT CONTROLS
2335 	 *
2336 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2337 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2338 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2339 	 */
2340 	exec_control = __vm_exit_controls_get(vmcs01);
2341 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2342 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2343 	else
2344 		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2345 	vm_exit_controls_set(vmx, exec_control);
2346 
2347 	/*
2348 	 * Interrupt/Exception Fields
2349 	 */
2350 	if (vmx->nested.nested_run_pending) {
2351 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2352 			     vmcs12->vm_entry_intr_info_field);
2353 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2354 			     vmcs12->vm_entry_exception_error_code);
2355 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2356 			     vmcs12->vm_entry_instruction_len);
2357 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2358 			     vmcs12->guest_interruptibility_info);
2359 		vmx->loaded_vmcs->nmi_known_unmasked =
2360 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2361 	} else {
2362 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2363 	}
2364 }
2365 
2366 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2367 {
2368 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2369 
2370 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2371 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2372 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2373 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2374 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2375 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2376 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2377 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2378 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2379 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2380 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2381 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2382 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2383 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2384 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2385 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2386 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2387 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2388 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2389 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2390 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2391 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2392 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2393 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2394 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2395 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2396 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2397 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2398 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2399 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2400 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2401 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2402 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2403 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2404 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2405 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2406 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2407 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2408 
2409 		vmx->segment_cache.bitmask = 0;
2410 	}
2411 
2412 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2413 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2414 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2415 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2416 			    vmcs12->guest_pending_dbg_exceptions);
2417 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2418 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2419 
2420 		/*
2421 		 * L1 may access the L2's PDPTR, so save them to construct
2422 		 * vmcs12
2423 		 */
2424 		if (enable_ept) {
2425 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2426 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2427 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2428 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2429 		}
2430 
2431 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2432 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2433 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2434 	}
2435 
2436 	if (nested_cpu_has_xsaves(vmcs12))
2437 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2438 
2439 	/*
2440 	 * Whether page-faults are trapped is determined by a combination of
2441 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2442 	 * doesn't care about page faults then we should set all of these to
2443 	 * L1's desires. However, if L0 does care about (some) page faults, it
2444 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2445 	 * simply ask to exit on each and every L2 page fault. This is done by
2446 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2447 	 * Note that below we don't need special code to set EB.PF beyond the
2448 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2449 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2450 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2451 	 */
2452 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2453 		/*
2454 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2455 		 * go ahead and use it?
2456 		 */
2457 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2458 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2459 	} else {
2460 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2461 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2462 	}
2463 
2464 	if (cpu_has_vmx_apicv()) {
2465 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2466 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2467 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2468 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2469 	}
2470 
2471 	/*
2472 	 * Make sure the msr_autostore list is up to date before we set the
2473 	 * count in the vmcs02.
2474 	 */
2475 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2476 
2477 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2478 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2479 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2480 
2481 	set_cr4_guest_host_mask(vmx);
2482 }
2483 
2484 /*
2485  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2486  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2487  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2488  * guest in a way that will both be appropriate to L1's requests, and our
2489  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2490  * function also has additional necessary side-effects, like setting various
2491  * vcpu->arch fields.
2492  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2493  * is assigned to entry_failure_code on failure.
2494  */
2495 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2496 			  bool from_vmentry,
2497 			  enum vm_entry_failure_code *entry_failure_code)
2498 {
2499 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2500 	bool load_guest_pdptrs_vmcs12 = false;
2501 
2502 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2503 		prepare_vmcs02_rare(vmx, vmcs12);
2504 		vmx->nested.dirty_vmcs12 = false;
2505 
2506 		load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2507 			!(vmx->nested.hv_evmcs->hv_clean_fields &
2508 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2509 	}
2510 
2511 	if (vmx->nested.nested_run_pending &&
2512 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2513 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2514 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2515 	} else {
2516 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2517 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2518 	}
2519 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2520 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2521 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2522 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2523 
2524 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2525 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2526 	 * trap. Note that CR0.TS also needs updating - we do this later.
2527 	 */
2528 	vmx_update_exception_bitmap(vcpu);
2529 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2530 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2531 
2532 	if (vmx->nested.nested_run_pending &&
2533 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2534 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2535 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2536 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2537 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2538 	}
2539 
2540 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2541 			vcpu->arch.l1_tsc_offset,
2542 			vmx_get_l2_tsc_offset(vcpu),
2543 			vmx_get_l2_tsc_multiplier(vcpu));
2544 
2545 	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2546 			vcpu->arch.l1_tsc_scaling_ratio,
2547 			vmx_get_l2_tsc_multiplier(vcpu));
2548 
2549 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2550 	if (kvm_has_tsc_control)
2551 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2552 
2553 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2554 
2555 	if (nested_cpu_has_ept(vmcs12))
2556 		nested_ept_init_mmu_context(vcpu);
2557 
2558 	/*
2559 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2560 	 * bits which we consider mandatory enabled.
2561 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
2562 	 * the specifications by L1; It's not enough to take
2563 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2564 	 * have more bits than L1 expected.
2565 	 */
2566 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2567 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2568 
2569 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2570 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2571 
2572 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2573 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2574 	vmx_set_efer(vcpu, vcpu->arch.efer);
2575 
2576 	/*
2577 	 * Guest state is invalid and unrestricted guest is disabled,
2578 	 * which means L1 attempted VMEntry to L2 with invalid state.
2579 	 * Fail the VMEntry.
2580 	 *
2581 	 * However when force loading the guest state (SMM exit or
2582 	 * loading nested state after migration, it is possible to
2583 	 * have invalid guest state now, which will be later fixed by
2584 	 * restoring L2 register state
2585 	 */
2586 	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2587 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2588 		return -EINVAL;
2589 	}
2590 
2591 	/* Shadow page tables on either EPT or shadow page tables. */
2592 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2593 				from_vmentry, entry_failure_code))
2594 		return -EINVAL;
2595 
2596 	/*
2597 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2598 	 * on nested VM-Exit, which can occur without actually running L2 and
2599 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2600 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2601 	 * transition to HLT instead of running L2.
2602 	 */
2603 	if (enable_ept)
2604 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2605 
2606 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2607 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2608 	    is_pae_paging(vcpu)) {
2609 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2610 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2611 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2612 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2613 	}
2614 
2615 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2616 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2617 				     vmcs12->guest_ia32_perf_global_ctrl))) {
2618 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2619 		return -EINVAL;
2620 	}
2621 
2622 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2623 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2624 
2625 	/*
2626 	 * It was observed that genuine Hyper-V running in L1 doesn't reset
2627 	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2628 	 * bits when it changes a field in eVMCS. Mark all fields as clean
2629 	 * here.
2630 	 */
2631 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2632 		vmx->nested.hv_evmcs->hv_clean_fields |=
2633 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2634 
2635 	return 0;
2636 }
2637 
2638 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2639 {
2640 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2641 	       nested_cpu_has_virtual_nmis(vmcs12)))
2642 		return -EINVAL;
2643 
2644 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2645 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2646 		return -EINVAL;
2647 
2648 	return 0;
2649 }
2650 
2651 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2652 {
2653 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2654 
2655 	/* Check for memory type validity */
2656 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2657 	case VMX_EPTP_MT_UC:
2658 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2659 			return false;
2660 		break;
2661 	case VMX_EPTP_MT_WB:
2662 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2663 			return false;
2664 		break;
2665 	default:
2666 		return false;
2667 	}
2668 
2669 	/* Page-walk levels validity. */
2670 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2671 	case VMX_EPTP_PWL_5:
2672 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2673 			return false;
2674 		break;
2675 	case VMX_EPTP_PWL_4:
2676 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2677 			return false;
2678 		break;
2679 	default:
2680 		return false;
2681 	}
2682 
2683 	/* Reserved bits should not be set */
2684 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2685 		return false;
2686 
2687 	/* AD, if set, should be supported */
2688 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2689 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2690 			return false;
2691 	}
2692 
2693 	return true;
2694 }
2695 
2696 /*
2697  * Checks related to VM-Execution Control Fields
2698  */
2699 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2700                                               struct vmcs12 *vmcs12)
2701 {
2702 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2703 
2704 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2705 				   vmx->nested.msrs.pinbased_ctls_low,
2706 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2707 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2708 				   vmx->nested.msrs.procbased_ctls_low,
2709 				   vmx->nested.msrs.procbased_ctls_high)))
2710 		return -EINVAL;
2711 
2712 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2713 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2714 				   vmx->nested.msrs.secondary_ctls_low,
2715 				   vmx->nested.msrs.secondary_ctls_high)))
2716 		return -EINVAL;
2717 
2718 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2719 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2720 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2721 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2722 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2723 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2724 	    nested_vmx_check_nmi_controls(vmcs12) ||
2725 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2726 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2727 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2728 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2729 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2730 		return -EINVAL;
2731 
2732 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2733 	    nested_cpu_has_save_preemption_timer(vmcs12))
2734 		return -EINVAL;
2735 
2736 	if (nested_cpu_has_ept(vmcs12) &&
2737 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2738 		return -EINVAL;
2739 
2740 	if (nested_cpu_has_vmfunc(vmcs12)) {
2741 		if (CC(vmcs12->vm_function_control &
2742 		       ~vmx->nested.msrs.vmfunc_controls))
2743 			return -EINVAL;
2744 
2745 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2746 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2747 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2748 				return -EINVAL;
2749 		}
2750 	}
2751 
2752 	return 0;
2753 }
2754 
2755 /*
2756  * Checks related to VM-Exit Control Fields
2757  */
2758 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2759                                          struct vmcs12 *vmcs12)
2760 {
2761 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2762 
2763 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2764 				    vmx->nested.msrs.exit_ctls_low,
2765 				    vmx->nested.msrs.exit_ctls_high)) ||
2766 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2767 		return -EINVAL;
2768 
2769 	return 0;
2770 }
2771 
2772 /*
2773  * Checks related to VM-Entry Control Fields
2774  */
2775 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2776 					  struct vmcs12 *vmcs12)
2777 {
2778 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2779 
2780 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2781 				    vmx->nested.msrs.entry_ctls_low,
2782 				    vmx->nested.msrs.entry_ctls_high)))
2783 		return -EINVAL;
2784 
2785 	/*
2786 	 * From the Intel SDM, volume 3:
2787 	 * Fields relevant to VM-entry event injection must be set properly.
2788 	 * These fields are the VM-entry interruption-information field, the
2789 	 * VM-entry exception error code, and the VM-entry instruction length.
2790 	 */
2791 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2792 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2793 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2794 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2795 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2796 		bool should_have_error_code;
2797 		bool urg = nested_cpu_has2(vmcs12,
2798 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2799 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2800 
2801 		/* VM-entry interruption-info field: interruption type */
2802 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2803 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2804 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2805 			return -EINVAL;
2806 
2807 		/* VM-entry interruption-info field: vector */
2808 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2809 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2810 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2811 			return -EINVAL;
2812 
2813 		/* VM-entry interruption-info field: deliver error code */
2814 		should_have_error_code =
2815 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2816 			x86_exception_has_error_code(vector);
2817 		if (CC(has_error_code != should_have_error_code))
2818 			return -EINVAL;
2819 
2820 		/* VM-entry exception error code */
2821 		if (CC(has_error_code &&
2822 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2823 			return -EINVAL;
2824 
2825 		/* VM-entry interruption-info field: reserved bits */
2826 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2827 			return -EINVAL;
2828 
2829 		/* VM-entry instruction length */
2830 		switch (intr_type) {
2831 		case INTR_TYPE_SOFT_EXCEPTION:
2832 		case INTR_TYPE_SOFT_INTR:
2833 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2834 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2835 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2836 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2837 				return -EINVAL;
2838 		}
2839 	}
2840 
2841 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2842 		return -EINVAL;
2843 
2844 	return 0;
2845 }
2846 
2847 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2848 				     struct vmcs12 *vmcs12)
2849 {
2850 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2851 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2852 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2853 		return -EINVAL;
2854 
2855 	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2856 		return nested_evmcs_check_controls(vmcs12);
2857 
2858 	return 0;
2859 }
2860 
2861 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2862 				       struct vmcs12 *vmcs12)
2863 {
2864 #ifdef CONFIG_X86_64
2865 	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2866 		!!(vcpu->arch.efer & EFER_LMA)))
2867 		return -EINVAL;
2868 #endif
2869 	return 0;
2870 }
2871 
2872 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2873 				       struct vmcs12 *vmcs12)
2874 {
2875 	bool ia32e;
2876 
2877 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2878 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2879 	    CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2880 		return -EINVAL;
2881 
2882 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2883 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2884 		return -EINVAL;
2885 
2886 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2887 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2888 		return -EINVAL;
2889 
2890 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2891 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2892 					   vmcs12->host_ia32_perf_global_ctrl)))
2893 		return -EINVAL;
2894 
2895 #ifdef CONFIG_X86_64
2896 	ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2897 #else
2898 	ia32e = false;
2899 #endif
2900 
2901 	if (ia32e) {
2902 		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2903 			return -EINVAL;
2904 	} else {
2905 		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2906 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2907 		    CC((vmcs12->host_rip) >> 32))
2908 			return -EINVAL;
2909 	}
2910 
2911 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2912 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2913 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2914 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2915 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2916 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2917 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2918 	    CC(vmcs12->host_cs_selector == 0) ||
2919 	    CC(vmcs12->host_tr_selector == 0) ||
2920 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2921 		return -EINVAL;
2922 
2923 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2924 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2925 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2926 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2927 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2928 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2929 		return -EINVAL;
2930 
2931 	/*
2932 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2933 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2934 	 * the values of the LMA and LME bits in the field must each be that of
2935 	 * the host address-space size VM-exit control.
2936 	 */
2937 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2938 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2939 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2940 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2941 			return -EINVAL;
2942 	}
2943 
2944 	return 0;
2945 }
2946 
2947 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2948 					  struct vmcs12 *vmcs12)
2949 {
2950 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2951 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2952 	struct vmcs_hdr hdr;
2953 
2954 	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2955 		return 0;
2956 
2957 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2958 		return -EINVAL;
2959 
2960 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
2961 	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
2962 					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
2963                 return -EINVAL;
2964 
2965 	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
2966 					    offsetof(struct vmcs12, hdr),
2967 					    sizeof(hdr))))
2968 		return -EINVAL;
2969 
2970 	if (CC(hdr.revision_id != VMCS12_REVISION) ||
2971 	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2972 		return -EINVAL;
2973 
2974 	return 0;
2975 }
2976 
2977 /*
2978  * Checks related to Guest Non-register State
2979  */
2980 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2981 {
2982 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2983 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2984 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2985 		return -EINVAL;
2986 
2987 	return 0;
2988 }
2989 
2990 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2991 					struct vmcs12 *vmcs12,
2992 					enum vm_entry_failure_code *entry_failure_code)
2993 {
2994 	bool ia32e;
2995 
2996 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
2997 
2998 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2999 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3000 		return -EINVAL;
3001 
3002 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3003 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3004 		return -EINVAL;
3005 
3006 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3007 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3008 		return -EINVAL;
3009 
3010 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3011 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3012 		return -EINVAL;
3013 	}
3014 
3015 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3016 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3017 					   vmcs12->guest_ia32_perf_global_ctrl)))
3018 		return -EINVAL;
3019 
3020 	/*
3021 	 * If the load IA32_EFER VM-entry control is 1, the following checks
3022 	 * are performed on the field for the IA32_EFER MSR:
3023 	 * - Bits reserved in the IA32_EFER MSR must be 0.
3024 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3025 	 *   the IA-32e mode guest VM-exit control. It must also be identical
3026 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3027 	 *   CR0.PG) is 1.
3028 	 */
3029 	if (to_vmx(vcpu)->nested.nested_run_pending &&
3030 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3031 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3032 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3033 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3034 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3035 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3036 			return -EINVAL;
3037 	}
3038 
3039 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3040 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3041 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3042 		return -EINVAL;
3043 
3044 	if (nested_check_guest_non_reg_state(vmcs12))
3045 		return -EINVAL;
3046 
3047 	return 0;
3048 }
3049 
3050 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3051 {
3052 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3053 	unsigned long cr3, cr4;
3054 	bool vm_fail;
3055 
3056 	if (!nested_early_check)
3057 		return 0;
3058 
3059 	if (vmx->msr_autoload.host.nr)
3060 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3061 	if (vmx->msr_autoload.guest.nr)
3062 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3063 
3064 	preempt_disable();
3065 
3066 	vmx_prepare_switch_to_guest(vcpu);
3067 
3068 	/*
3069 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3070 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3071 	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3072 	 * there is no need to preserve other bits or save/restore the field.
3073 	 */
3074 	vmcs_writel(GUEST_RFLAGS, 0);
3075 
3076 	cr3 = __get_current_cr3_fast();
3077 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3078 		vmcs_writel(HOST_CR3, cr3);
3079 		vmx->loaded_vmcs->host_state.cr3 = cr3;
3080 	}
3081 
3082 	cr4 = cr4_read_shadow();
3083 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3084 		vmcs_writel(HOST_CR4, cr4);
3085 		vmx->loaded_vmcs->host_state.cr4 = cr4;
3086 	}
3087 
3088 	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3089 				 __vmx_vcpu_run_flags(vmx));
3090 
3091 	if (vmx->msr_autoload.host.nr)
3092 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3093 	if (vmx->msr_autoload.guest.nr)
3094 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3095 
3096 	if (vm_fail) {
3097 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3098 
3099 		preempt_enable();
3100 
3101 		trace_kvm_nested_vmenter_failed(
3102 			"early hardware check VM-instruction error: ", error);
3103 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3104 		return 1;
3105 	}
3106 
3107 	/*
3108 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3109 	 */
3110 	if (hw_breakpoint_active())
3111 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3112 	local_irq_enable();
3113 	preempt_enable();
3114 
3115 	/*
3116 	 * A non-failing VMEntry means we somehow entered guest mode with
3117 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3118 	 * is no telling what memory has been modified or what state has
3119 	 * been exposed to unknown code.  Hitting this all but guarantees
3120 	 * a (very critical) hardware issue.
3121 	 */
3122 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3123 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3124 
3125 	return 0;
3126 }
3127 
3128 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3129 {
3130 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3131 
3132 	/*
3133 	 * hv_evmcs may end up being not mapped after migration (when
3134 	 * L2 was running), map it here to make sure vmcs12 changes are
3135 	 * properly reflected.
3136 	 */
3137 	if (vmx->nested.enlightened_vmcs_enabled &&
3138 	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3139 		enum nested_evmptrld_status evmptrld_status =
3140 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3141 
3142 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3143 		    evmptrld_status == EVMPTRLD_ERROR)
3144 			return false;
3145 
3146 		/*
3147 		 * Post migration VMCS12 always provides the most actual
3148 		 * information, copy it to eVMCS upon entry.
3149 		 */
3150 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3151 	}
3152 
3153 	return true;
3154 }
3155 
3156 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3157 {
3158 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3159 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3160 	struct kvm_host_map *map;
3161 	struct page *page;
3162 	u64 hpa;
3163 
3164 	if (!vcpu->arch.pdptrs_from_userspace &&
3165 	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3166 		/*
3167 		 * Reload the guest's PDPTRs since after a migration
3168 		 * the guest CR3 might be restored prior to setting the nested
3169 		 * state which can lead to a load of wrong PDPTRs.
3170 		 */
3171 		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3172 			return false;
3173 	}
3174 
3175 
3176 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3177 		/*
3178 		 * Translate L1 physical address to host physical
3179 		 * address for vmcs02. Keep the page pinned, so this
3180 		 * physical address remains valid. We keep a reference
3181 		 * to it so we can release it later.
3182 		 */
3183 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
3184 			kvm_release_page_clean(vmx->nested.apic_access_page);
3185 			vmx->nested.apic_access_page = NULL;
3186 		}
3187 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3188 		if (!is_error_page(page)) {
3189 			vmx->nested.apic_access_page = page;
3190 			hpa = page_to_phys(vmx->nested.apic_access_page);
3191 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
3192 		} else {
3193 			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3194 					     __func__);
3195 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3196 			vcpu->run->internal.suberror =
3197 				KVM_INTERNAL_ERROR_EMULATION;
3198 			vcpu->run->internal.ndata = 0;
3199 			return false;
3200 		}
3201 	}
3202 
3203 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3204 		map = &vmx->nested.virtual_apic_map;
3205 
3206 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3207 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3208 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3209 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3210 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3211 			/*
3212 			 * The processor will never use the TPR shadow, simply
3213 			 * clear the bit from the execution control.  Such a
3214 			 * configuration is useless, but it happens in tests.
3215 			 * For any other configuration, failing the vm entry is
3216 			 * _not_ what the processor does but it's basically the
3217 			 * only possibility we have.
3218 			 */
3219 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3220 		} else {
3221 			/*
3222 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3223 			 * force VM-Entry to fail.
3224 			 */
3225 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3226 		}
3227 	}
3228 
3229 	if (nested_cpu_has_posted_intr(vmcs12)) {
3230 		map = &vmx->nested.pi_desc_map;
3231 
3232 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3233 			vmx->nested.pi_desc =
3234 				(struct pi_desc *)(((void *)map->hva) +
3235 				offset_in_page(vmcs12->posted_intr_desc_addr));
3236 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3237 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3238 		} else {
3239 			/*
3240 			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3241 			 * access the contents of the VMCS12 posted interrupt
3242 			 * descriptor. (Note that KVM may do this when it
3243 			 * should not, per the architectural specification.)
3244 			 */
3245 			vmx->nested.pi_desc = NULL;
3246 			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3247 		}
3248 	}
3249 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3250 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3251 	else
3252 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3253 
3254 	return true;
3255 }
3256 
3257 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3258 {
3259 	if (!nested_get_evmcs_page(vcpu)) {
3260 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3261 				     __func__);
3262 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3263 		vcpu->run->internal.suberror =
3264 			KVM_INTERNAL_ERROR_EMULATION;
3265 		vcpu->run->internal.ndata = 0;
3266 
3267 		return false;
3268 	}
3269 
3270 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3271 		return false;
3272 
3273 	return true;
3274 }
3275 
3276 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3277 {
3278 	struct vmcs12 *vmcs12;
3279 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3280 	gpa_t dst;
3281 
3282 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3283 		return 0;
3284 
3285 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3286 		return 1;
3287 
3288 	/*
3289 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3290 	 * set is already checked as part of A/D emulation.
3291 	 */
3292 	vmcs12 = get_vmcs12(vcpu);
3293 	if (!nested_cpu_has_pml(vmcs12))
3294 		return 0;
3295 
3296 	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3297 		vmx->nested.pml_full = true;
3298 		return 1;
3299 	}
3300 
3301 	gpa &= ~0xFFFull;
3302 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3303 
3304 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3305 				 offset_in_page(dst), sizeof(gpa)))
3306 		return 0;
3307 
3308 	vmcs12->guest_pml_index--;
3309 
3310 	return 0;
3311 }
3312 
3313 /*
3314  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3315  * for running VMX instructions (except VMXON, whose prerequisites are
3316  * slightly different). It also specifies what exception to inject otherwise.
3317  * Note that many of these exceptions have priority over VM exits, so they
3318  * don't have to be checked again here.
3319  */
3320 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3321 {
3322 	if (!to_vmx(vcpu)->nested.vmxon) {
3323 		kvm_queue_exception(vcpu, UD_VECTOR);
3324 		return 0;
3325 	}
3326 
3327 	if (vmx_get_cpl(vcpu)) {
3328 		kvm_inject_gp(vcpu, 0);
3329 		return 0;
3330 	}
3331 
3332 	return 1;
3333 }
3334 
3335 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3336 {
3337 	u8 rvi = vmx_get_rvi();
3338 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3339 
3340 	return ((rvi & 0xf0) > (vppr & 0xf0));
3341 }
3342 
3343 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3344 				   struct vmcs12 *vmcs12);
3345 
3346 /*
3347  * If from_vmentry is false, this is being called from state restore (either RSM
3348  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3349  *
3350  * Returns:
3351  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3352  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3353  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3354  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3355  */
3356 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3357 							bool from_vmentry)
3358 {
3359 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3360 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3361 	enum vm_entry_failure_code entry_failure_code;
3362 	bool evaluate_pending_interrupts;
3363 	union vmx_exit_reason exit_reason = {
3364 		.basic = EXIT_REASON_INVALID_STATE,
3365 		.failed_vmentry = 1,
3366 	};
3367 	u32 failed_index;
3368 
3369 	kvm_service_local_tlb_flush_requests(vcpu);
3370 
3371 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3372 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3373 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3374 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3375 
3376 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3377 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3378 	if (kvm_mpx_supported() &&
3379 		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3380 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3381 
3382 	/*
3383 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3384 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3385 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3386 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3387 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3388 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3389 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3390 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3391 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3392 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3393 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3394 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3395 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3396 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3397 	 */
3398 	if (!enable_ept && !nested_early_check)
3399 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3400 
3401 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3402 
3403 	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3404 
3405 	if (from_vmentry) {
3406 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3407 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3408 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3409 		}
3410 
3411 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3412 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3413 			return NVMX_VMENTRY_VMFAIL;
3414 		}
3415 
3416 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3417 						 &entry_failure_code)) {
3418 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3419 			vmcs12->exit_qualification = entry_failure_code;
3420 			goto vmentry_fail_vmexit;
3421 		}
3422 	}
3423 
3424 	enter_guest_mode(vcpu);
3425 
3426 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3427 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3428 		vmcs12->exit_qualification = entry_failure_code;
3429 		goto vmentry_fail_vmexit_guest_mode;
3430 	}
3431 
3432 	if (from_vmentry) {
3433 		failed_index = nested_vmx_load_msr(vcpu,
3434 						   vmcs12->vm_entry_msr_load_addr,
3435 						   vmcs12->vm_entry_msr_load_count);
3436 		if (failed_index) {
3437 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3438 			vmcs12->exit_qualification = failed_index;
3439 			goto vmentry_fail_vmexit_guest_mode;
3440 		}
3441 	} else {
3442 		/*
3443 		 * The MMU is not initialized to point at the right entities yet and
3444 		 * "get pages" would need to read data from the guest (i.e. we will
3445 		 * need to perform gpa to hpa translation). Request a call
3446 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3447 		 * have already been set at vmentry time and should not be reset.
3448 		 */
3449 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3450 	}
3451 
3452 	/*
3453 	 * If L1 had a pending IRQ/NMI until it executed
3454 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3455 	 * disallowed (e.g. interrupts disabled), L0 needs to
3456 	 * evaluate if this pending event should cause an exit from L2
3457 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3458 	 * intercept EXTERNAL_INTERRUPT).
3459 	 *
3460 	 * Usually this would be handled by the processor noticing an
3461 	 * IRQ/NMI window request, or checking RVI during evaluation of
3462 	 * pending virtual interrupts.  However, this setting was done
3463 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3464 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3465 	 */
3466 	if (unlikely(evaluate_pending_interrupts))
3467 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3468 
3469 	/*
3470 	 * Do not start the preemption timer hrtimer until after we know
3471 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3472 	 * the timer.
3473 	 */
3474 	vmx->nested.preemption_timer_expired = false;
3475 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3476 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3477 		vmx_start_preemption_timer(vcpu, timer_value);
3478 	}
3479 
3480 	/*
3481 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3482 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3483 	 * returned as far as L1 is concerned. It will only return (and set
3484 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3485 	 */
3486 	return NVMX_VMENTRY_SUCCESS;
3487 
3488 	/*
3489 	 * A failed consistency check that leads to a VMExit during L1's
3490 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3491 	 * 26.7 "VM-entry failures during or after loading guest state".
3492 	 */
3493 vmentry_fail_vmexit_guest_mode:
3494 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3495 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3496 	leave_guest_mode(vcpu);
3497 
3498 vmentry_fail_vmexit:
3499 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3500 
3501 	if (!from_vmentry)
3502 		return NVMX_VMENTRY_VMEXIT;
3503 
3504 	load_vmcs12_host_state(vcpu, vmcs12);
3505 	vmcs12->vm_exit_reason = exit_reason.full;
3506 	if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3507 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3508 	return NVMX_VMENTRY_VMEXIT;
3509 }
3510 
3511 /*
3512  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3513  * for running an L2 nested guest.
3514  */
3515 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3516 {
3517 	struct vmcs12 *vmcs12;
3518 	enum nvmx_vmentry_status status;
3519 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3520 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3521 	enum nested_evmptrld_status evmptrld_status;
3522 
3523 	if (!nested_vmx_check_permission(vcpu))
3524 		return 1;
3525 
3526 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3527 	if (evmptrld_status == EVMPTRLD_ERROR) {
3528 		kvm_queue_exception(vcpu, UD_VECTOR);
3529 		return 1;
3530 	}
3531 
3532 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3533 
3534 	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3535 		return nested_vmx_failInvalid(vcpu);
3536 
3537 	if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3538 	       vmx->nested.current_vmptr == INVALID_GPA))
3539 		return nested_vmx_failInvalid(vcpu);
3540 
3541 	vmcs12 = get_vmcs12(vcpu);
3542 
3543 	/*
3544 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3545 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3546 	 * rather than RFLAGS.ZF, and no error number is stored to the
3547 	 * VM-instruction error field.
3548 	 */
3549 	if (CC(vmcs12->hdr.shadow_vmcs))
3550 		return nested_vmx_failInvalid(vcpu);
3551 
3552 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3553 		copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3554 		/* Enlightened VMCS doesn't have launch state */
3555 		vmcs12->launch_state = !launch;
3556 	} else if (enable_shadow_vmcs) {
3557 		copy_shadow_to_vmcs12(vmx);
3558 	}
3559 
3560 	/*
3561 	 * The nested entry process starts with enforcing various prerequisites
3562 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3563 	 * they fail: As the SDM explains, some conditions should cause the
3564 	 * instruction to fail, while others will cause the instruction to seem
3565 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3566 	 * To speed up the normal (success) code path, we should avoid checking
3567 	 * for misconfigurations which will anyway be caught by the processor
3568 	 * when using the merged vmcs02.
3569 	 */
3570 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3571 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3572 
3573 	if (CC(vmcs12->launch_state == launch))
3574 		return nested_vmx_fail(vcpu,
3575 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3576 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3577 
3578 	if (nested_vmx_check_controls(vcpu, vmcs12))
3579 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3580 
3581 	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3582 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3583 
3584 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3585 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3586 
3587 	/*
3588 	 * We're finally done with prerequisite checking, and can start with
3589 	 * the nested entry.
3590 	 */
3591 	vmx->nested.nested_run_pending = 1;
3592 	vmx->nested.has_preemption_timer_deadline = false;
3593 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3594 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3595 		goto vmentry_failed;
3596 
3597 	/* Emulate processing of posted interrupts on VM-Enter. */
3598 	if (nested_cpu_has_posted_intr(vmcs12) &&
3599 	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3600 		vmx->nested.pi_pending = true;
3601 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3602 		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3603 	}
3604 
3605 	/* Hide L1D cache contents from the nested guest.  */
3606 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3607 
3608 	/*
3609 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3610 	 * also be used as part of restoring nVMX state for
3611 	 * snapshot restore (migration).
3612 	 *
3613 	 * In this flow, it is assumed that vmcs12 cache was
3614 	 * transferred as part of captured nVMX state and should
3615 	 * therefore not be read from guest memory (which may not
3616 	 * exist on destination host yet).
3617 	 */
3618 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3619 
3620 	switch (vmcs12->guest_activity_state) {
3621 	case GUEST_ACTIVITY_HLT:
3622 		/*
3623 		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3624 		 * awakened by event injection or by an NMI-window VM-exit or
3625 		 * by an interrupt-window VM-exit, halt the vcpu.
3626 		 */
3627 		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3628 		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3629 		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3630 		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3631 			vmx->nested.nested_run_pending = 0;
3632 			return kvm_emulate_halt_noskip(vcpu);
3633 		}
3634 		break;
3635 	case GUEST_ACTIVITY_WAIT_SIPI:
3636 		vmx->nested.nested_run_pending = 0;
3637 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3638 		break;
3639 	default:
3640 		break;
3641 	}
3642 
3643 	return 1;
3644 
3645 vmentry_failed:
3646 	vmx->nested.nested_run_pending = 0;
3647 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3648 		return 0;
3649 	if (status == NVMX_VMENTRY_VMEXIT)
3650 		return 1;
3651 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3652 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3653 }
3654 
3655 /*
3656  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3657  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3658  * This function returns the new value we should put in vmcs12.guest_cr0.
3659  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3660  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3661  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3662  *     didn't trap the bit, because if L1 did, so would L0).
3663  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3664  *     been modified by L2, and L1 knows it. So just leave the old value of
3665  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3666  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3667  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3668  *     changed these bits, and therefore they need to be updated, but L0
3669  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3670  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3671  */
3672 static inline unsigned long
3673 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3674 {
3675 	return
3676 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3677 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3678 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3679 			vcpu->arch.cr0_guest_owned_bits));
3680 }
3681 
3682 static inline unsigned long
3683 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3684 {
3685 	return
3686 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3687 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3688 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3689 			vcpu->arch.cr4_guest_owned_bits));
3690 }
3691 
3692 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3693 				      struct vmcs12 *vmcs12,
3694 				      u32 vm_exit_reason, u32 exit_intr_info)
3695 {
3696 	u32 idt_vectoring;
3697 	unsigned int nr;
3698 
3699 	/*
3700 	 * Per the SDM, VM-Exits due to double and triple faults are never
3701 	 * considered to occur during event delivery, even if the double/triple
3702 	 * fault is the result of an escalating vectoring issue.
3703 	 *
3704 	 * Note, the SDM qualifies the double fault behavior with "The original
3705 	 * event results in a double-fault exception".  It's unclear why the
3706 	 * qualification exists since exits due to double fault can occur only
3707 	 * while vectoring a different exception (injected events are never
3708 	 * subject to interception), i.e. there's _always_ an original event.
3709 	 *
3710 	 * The SDM also uses NMI as a confusing example for the "original event
3711 	 * causes the VM exit directly" clause.  NMI isn't special in any way,
3712 	 * the same rule applies to all events that cause an exit directly.
3713 	 * NMI is an odd choice for the example because NMIs can only occur on
3714 	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3715 	 */
3716 	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3717 	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3718 	     is_double_fault(exit_intr_info))) {
3719 		vmcs12->idt_vectoring_info_field = 0;
3720 	} else if (vcpu->arch.exception.injected) {
3721 		nr = vcpu->arch.exception.nr;
3722 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3723 
3724 		if (kvm_exception_is_soft(nr)) {
3725 			vmcs12->vm_exit_instruction_len =
3726 				vcpu->arch.event_exit_inst_len;
3727 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3728 		} else
3729 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3730 
3731 		if (vcpu->arch.exception.has_error_code) {
3732 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3733 			vmcs12->idt_vectoring_error_code =
3734 				vcpu->arch.exception.error_code;
3735 		}
3736 
3737 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3738 	} else if (vcpu->arch.nmi_injected) {
3739 		vmcs12->idt_vectoring_info_field =
3740 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3741 	} else if (vcpu->arch.interrupt.injected) {
3742 		nr = vcpu->arch.interrupt.nr;
3743 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3744 
3745 		if (vcpu->arch.interrupt.soft) {
3746 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3747 			vmcs12->vm_entry_instruction_len =
3748 				vcpu->arch.event_exit_inst_len;
3749 		} else
3750 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3751 
3752 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3753 	} else {
3754 		vmcs12->idt_vectoring_info_field = 0;
3755 	}
3756 }
3757 
3758 
3759 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3760 {
3761 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3762 	gfn_t gfn;
3763 
3764 	/*
3765 	 * Don't need to mark the APIC access page dirty; it is never
3766 	 * written to by the CPU during APIC virtualization.
3767 	 */
3768 
3769 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3770 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3771 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3772 	}
3773 
3774 	if (nested_cpu_has_posted_intr(vmcs12)) {
3775 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3776 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3777 	}
3778 }
3779 
3780 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3781 {
3782 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3783 	int max_irr;
3784 	void *vapic_page;
3785 	u16 status;
3786 
3787 	if (!vmx->nested.pi_pending)
3788 		return 0;
3789 
3790 	if (!vmx->nested.pi_desc)
3791 		goto mmio_needed;
3792 
3793 	vmx->nested.pi_pending = false;
3794 
3795 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3796 		return 0;
3797 
3798 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3799 	if (max_irr != 256) {
3800 		vapic_page = vmx->nested.virtual_apic_map.hva;
3801 		if (!vapic_page)
3802 			goto mmio_needed;
3803 
3804 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3805 			vapic_page, &max_irr);
3806 		status = vmcs_read16(GUEST_INTR_STATUS);
3807 		if ((u8)max_irr > ((u8)status & 0xff)) {
3808 			status &= ~0xff;
3809 			status |= (u8)max_irr;
3810 			vmcs_write16(GUEST_INTR_STATUS, status);
3811 		}
3812 	}
3813 
3814 	nested_mark_vmcs12_pages_dirty(vcpu);
3815 	return 0;
3816 
3817 mmio_needed:
3818 	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3819 	return -ENXIO;
3820 }
3821 
3822 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3823 					       unsigned long exit_qual)
3824 {
3825 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3826 	unsigned int nr = vcpu->arch.exception.nr;
3827 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3828 
3829 	if (vcpu->arch.exception.has_error_code) {
3830 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3831 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3832 	}
3833 
3834 	if (kvm_exception_is_soft(nr))
3835 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3836 	else
3837 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3838 
3839 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3840 	    vmx_get_nmi_mask(vcpu))
3841 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3842 
3843 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3844 }
3845 
3846 /*
3847  * Returns true if a debug trap is pending delivery.
3848  *
3849  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3850  * exception may be inferred from the presence of an exception payload.
3851  */
3852 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3853 {
3854 	return vcpu->arch.exception.pending &&
3855 			vcpu->arch.exception.nr == DB_VECTOR &&
3856 			vcpu->arch.exception.payload;
3857 }
3858 
3859 /*
3860  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3861  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3862  * represents these debug traps with a payload that is said to be compatible
3863  * with the 'pending debug exceptions' field, write the payload to the VMCS
3864  * field if a VM-exit is delivered before the debug trap.
3865  */
3866 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3867 {
3868 	if (vmx_pending_dbg_trap(vcpu))
3869 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3870 			    vcpu->arch.exception.payload);
3871 }
3872 
3873 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3874 {
3875 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3876 	       to_vmx(vcpu)->nested.preemption_timer_expired;
3877 }
3878 
3879 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3880 {
3881 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3882 	unsigned long exit_qual;
3883 	bool block_nested_events =
3884 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3885 	bool mtf_pending = vmx->nested.mtf_pending;
3886 	struct kvm_lapic *apic = vcpu->arch.apic;
3887 
3888 	/*
3889 	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3890 	 * this state is discarded.
3891 	 */
3892 	if (!block_nested_events)
3893 		vmx->nested.mtf_pending = false;
3894 
3895 	if (lapic_in_kernel(vcpu) &&
3896 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3897 		if (block_nested_events)
3898 			return -EBUSY;
3899 		nested_vmx_update_pending_dbg(vcpu);
3900 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
3901 		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3902 			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3903 		return 0;
3904 	}
3905 
3906 	if (lapic_in_kernel(vcpu) &&
3907 	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3908 		if (block_nested_events)
3909 			return -EBUSY;
3910 
3911 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3912 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3913 			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3914 						apic->sipi_vector & 0xFFUL);
3915 		return 0;
3916 	}
3917 
3918 	/*
3919 	 * Process any exceptions that are not debug traps before MTF.
3920 	 *
3921 	 * Note that only a pending nested run can block a pending exception.
3922 	 * Otherwise an injected NMI/interrupt should either be
3923 	 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3924 	 * while delivering the pending exception.
3925 	 */
3926 
3927 	if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3928 		if (vmx->nested.nested_run_pending)
3929 			return -EBUSY;
3930 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3931 			goto no_vmexit;
3932 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3933 		return 0;
3934 	}
3935 
3936 	if (mtf_pending) {
3937 		if (block_nested_events)
3938 			return -EBUSY;
3939 		nested_vmx_update_pending_dbg(vcpu);
3940 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3941 		return 0;
3942 	}
3943 
3944 	if (vcpu->arch.exception.pending) {
3945 		if (vmx->nested.nested_run_pending)
3946 			return -EBUSY;
3947 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3948 			goto no_vmexit;
3949 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3950 		return 0;
3951 	}
3952 
3953 	if (nested_vmx_preemption_timer_pending(vcpu)) {
3954 		if (block_nested_events)
3955 			return -EBUSY;
3956 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3957 		return 0;
3958 	}
3959 
3960 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3961 		if (block_nested_events)
3962 			return -EBUSY;
3963 		goto no_vmexit;
3964 	}
3965 
3966 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3967 		if (block_nested_events)
3968 			return -EBUSY;
3969 		if (!nested_exit_on_nmi(vcpu))
3970 			goto no_vmexit;
3971 
3972 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3973 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3974 				  INTR_INFO_VALID_MASK, 0);
3975 		/*
3976 		 * The NMI-triggered VM exit counts as injection:
3977 		 * clear this one and block further NMIs.
3978 		 */
3979 		vcpu->arch.nmi_pending = 0;
3980 		vmx_set_nmi_mask(vcpu, true);
3981 		return 0;
3982 	}
3983 
3984 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3985 		if (block_nested_events)
3986 			return -EBUSY;
3987 		if (!nested_exit_on_intr(vcpu))
3988 			goto no_vmexit;
3989 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3990 		return 0;
3991 	}
3992 
3993 no_vmexit:
3994 	return vmx_complete_nested_posted_interrupt(vcpu);
3995 }
3996 
3997 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3998 {
3999 	ktime_t remaining =
4000 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4001 	u64 value;
4002 
4003 	if (ktime_to_ns(remaining) <= 0)
4004 		return 0;
4005 
4006 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4007 	do_div(value, 1000000);
4008 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4009 }
4010 
4011 static bool is_vmcs12_ext_field(unsigned long field)
4012 {
4013 	switch (field) {
4014 	case GUEST_ES_SELECTOR:
4015 	case GUEST_CS_SELECTOR:
4016 	case GUEST_SS_SELECTOR:
4017 	case GUEST_DS_SELECTOR:
4018 	case GUEST_FS_SELECTOR:
4019 	case GUEST_GS_SELECTOR:
4020 	case GUEST_LDTR_SELECTOR:
4021 	case GUEST_TR_SELECTOR:
4022 	case GUEST_ES_LIMIT:
4023 	case GUEST_CS_LIMIT:
4024 	case GUEST_SS_LIMIT:
4025 	case GUEST_DS_LIMIT:
4026 	case GUEST_FS_LIMIT:
4027 	case GUEST_GS_LIMIT:
4028 	case GUEST_LDTR_LIMIT:
4029 	case GUEST_TR_LIMIT:
4030 	case GUEST_GDTR_LIMIT:
4031 	case GUEST_IDTR_LIMIT:
4032 	case GUEST_ES_AR_BYTES:
4033 	case GUEST_DS_AR_BYTES:
4034 	case GUEST_FS_AR_BYTES:
4035 	case GUEST_GS_AR_BYTES:
4036 	case GUEST_LDTR_AR_BYTES:
4037 	case GUEST_TR_AR_BYTES:
4038 	case GUEST_ES_BASE:
4039 	case GUEST_CS_BASE:
4040 	case GUEST_SS_BASE:
4041 	case GUEST_DS_BASE:
4042 	case GUEST_FS_BASE:
4043 	case GUEST_GS_BASE:
4044 	case GUEST_LDTR_BASE:
4045 	case GUEST_TR_BASE:
4046 	case GUEST_GDTR_BASE:
4047 	case GUEST_IDTR_BASE:
4048 	case GUEST_PENDING_DBG_EXCEPTIONS:
4049 	case GUEST_BNDCFGS:
4050 		return true;
4051 	default:
4052 		break;
4053 	}
4054 
4055 	return false;
4056 }
4057 
4058 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4059 				       struct vmcs12 *vmcs12)
4060 {
4061 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4062 
4063 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4064 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4065 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4066 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4067 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4068 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4069 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4070 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4071 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4072 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4073 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4074 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4075 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4076 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4077 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4078 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4079 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4080 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4081 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4082 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4083 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4084 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4085 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4086 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4087 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4088 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4089 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4090 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4091 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4092 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4093 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4094 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4095 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4096 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4097 	vmcs12->guest_pending_dbg_exceptions =
4098 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4099 	if (kvm_mpx_supported())
4100 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4101 
4102 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4103 }
4104 
4105 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4106 				       struct vmcs12 *vmcs12)
4107 {
4108 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4109 	int cpu;
4110 
4111 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4112 		return;
4113 
4114 
4115 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4116 
4117 	cpu = get_cpu();
4118 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4119 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4120 
4121 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4122 
4123 	vmx->loaded_vmcs = &vmx->vmcs01;
4124 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4125 	put_cpu();
4126 }
4127 
4128 /*
4129  * Update the guest state fields of vmcs12 to reflect changes that
4130  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4131  * VM-entry controls is also updated, since this is really a guest
4132  * state bit.)
4133  */
4134 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4135 {
4136 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4137 
4138 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4139 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4140 
4141 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4142 		!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4143 
4144 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4145 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4146 
4147 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4148 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4149 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4150 
4151 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4152 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4153 
4154 	vmcs12->guest_interruptibility_info =
4155 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4156 
4157 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4158 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4159 	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4160 		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4161 	else
4162 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4163 
4164 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4165 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4166 	    !vmx->nested.nested_run_pending)
4167 		vmcs12->vmx_preemption_timer_value =
4168 			vmx_get_preemption_timer_value(vcpu);
4169 
4170 	/*
4171 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4172 	 * own CR3 without exiting. If it has changed it, we must keep it.
4173 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4174 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4175 	 *
4176 	 * Additionally, restore L2's PDPTR to vmcs12.
4177 	 */
4178 	if (enable_ept) {
4179 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4180 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4181 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4182 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4183 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4184 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4185 		}
4186 	}
4187 
4188 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4189 
4190 	if (nested_cpu_has_vid(vmcs12))
4191 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4192 
4193 	vmcs12->vm_entry_controls =
4194 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4195 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4196 
4197 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4198 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4199 
4200 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4201 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4202 }
4203 
4204 /*
4205  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4206  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4207  * and this function updates it to reflect the changes to the guest state while
4208  * L2 was running (and perhaps made some exits which were handled directly by L0
4209  * without going back to L1), and to reflect the exit reason.
4210  * Note that we do not have to copy here all VMCS fields, just those that
4211  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4212  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4213  * which already writes to vmcs12 directly.
4214  */
4215 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4216 			   u32 vm_exit_reason, u32 exit_intr_info,
4217 			   unsigned long exit_qualification)
4218 {
4219 	/* update exit information fields: */
4220 	vmcs12->vm_exit_reason = vm_exit_reason;
4221 	if (to_vmx(vcpu)->exit_reason.enclave_mode)
4222 		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4223 	vmcs12->exit_qualification = exit_qualification;
4224 
4225 	/*
4226 	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4227 	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4228 	 * exit info fields are unmodified.
4229 	 */
4230 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4231 		vmcs12->launch_state = 1;
4232 
4233 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4234 		 * instead of reading the real value. */
4235 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4236 
4237 		/*
4238 		 * Transfer the event that L0 or L1 may wanted to inject into
4239 		 * L2 to IDT_VECTORING_INFO_FIELD.
4240 		 */
4241 		vmcs12_save_pending_event(vcpu, vmcs12,
4242 					  vm_exit_reason, exit_intr_info);
4243 
4244 		vmcs12->vm_exit_intr_info = exit_intr_info;
4245 		vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4246 		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4247 
4248 		/*
4249 		 * According to spec, there's no need to store the guest's
4250 		 * MSRs if the exit is due to a VM-entry failure that occurs
4251 		 * during or after loading the guest state. Since this exit
4252 		 * does not fall in that category, we need to save the MSRs.
4253 		 */
4254 		if (nested_vmx_store_msr(vcpu,
4255 					 vmcs12->vm_exit_msr_store_addr,
4256 					 vmcs12->vm_exit_msr_store_count))
4257 			nested_vmx_abort(vcpu,
4258 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4259 	}
4260 
4261 	/*
4262 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4263 	 * preserved above and would only end up incorrectly in L1.
4264 	 */
4265 	vcpu->arch.nmi_injected = false;
4266 	kvm_clear_exception_queue(vcpu);
4267 	kvm_clear_interrupt_queue(vcpu);
4268 }
4269 
4270 /*
4271  * A part of what we need to when the nested L2 guest exits and we want to
4272  * run its L1 parent, is to reset L1's guest state to the host state specified
4273  * in vmcs12.
4274  * This function is to be called not only on normal nested exit, but also on
4275  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4276  * Failures During or After Loading Guest State").
4277  * This function should be called when the active VMCS is L1's (vmcs01).
4278  */
4279 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4280 				   struct vmcs12 *vmcs12)
4281 {
4282 	enum vm_entry_failure_code ignored;
4283 	struct kvm_segment seg;
4284 
4285 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4286 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4287 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4288 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4289 	else
4290 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4291 	vmx_set_efer(vcpu, vcpu->arch.efer);
4292 
4293 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4294 	kvm_rip_write(vcpu, vmcs12->host_rip);
4295 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4296 	vmx_set_interrupt_shadow(vcpu, 0);
4297 
4298 	/*
4299 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4300 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4301 	 *
4302 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4303 	 * (KVM doesn't change it);
4304 	 */
4305 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4306 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4307 
4308 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4309 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4310 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4311 
4312 	nested_ept_uninit_mmu_context(vcpu);
4313 
4314 	/*
4315 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4316 	 * couldn't have changed.
4317 	 */
4318 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4319 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4320 
4321 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4322 
4323 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4324 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4325 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4326 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4327 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4328 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4329 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4330 
4331 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4332 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4333 		vmcs_write64(GUEST_BNDCFGS, 0);
4334 
4335 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4336 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4337 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4338 	}
4339 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4340 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4341 					 vmcs12->host_ia32_perf_global_ctrl));
4342 
4343 	/* Set L1 segment info according to Intel SDM
4344 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4345 	seg = (struct kvm_segment) {
4346 		.base = 0,
4347 		.limit = 0xFFFFFFFF,
4348 		.selector = vmcs12->host_cs_selector,
4349 		.type = 11,
4350 		.present = 1,
4351 		.s = 1,
4352 		.g = 1
4353 	};
4354 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4355 		seg.l = 1;
4356 	else
4357 		seg.db = 1;
4358 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4359 	seg = (struct kvm_segment) {
4360 		.base = 0,
4361 		.limit = 0xFFFFFFFF,
4362 		.type = 3,
4363 		.present = 1,
4364 		.s = 1,
4365 		.db = 1,
4366 		.g = 1
4367 	};
4368 	seg.selector = vmcs12->host_ds_selector;
4369 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4370 	seg.selector = vmcs12->host_es_selector;
4371 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4372 	seg.selector = vmcs12->host_ss_selector;
4373 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4374 	seg.selector = vmcs12->host_fs_selector;
4375 	seg.base = vmcs12->host_fs_base;
4376 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4377 	seg.selector = vmcs12->host_gs_selector;
4378 	seg.base = vmcs12->host_gs_base;
4379 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4380 	seg = (struct kvm_segment) {
4381 		.base = vmcs12->host_tr_base,
4382 		.limit = 0x67,
4383 		.selector = vmcs12->host_tr_selector,
4384 		.type = 11,
4385 		.present = 1
4386 	};
4387 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4388 
4389 	memset(&seg, 0, sizeof(seg));
4390 	seg.unusable = 1;
4391 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4392 
4393 	kvm_set_dr(vcpu, 7, 0x400);
4394 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4395 
4396 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4397 				vmcs12->vm_exit_msr_load_count))
4398 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4399 
4400 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4401 }
4402 
4403 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4404 {
4405 	struct vmx_uret_msr *efer_msr;
4406 	unsigned int i;
4407 
4408 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4409 		return vmcs_read64(GUEST_IA32_EFER);
4410 
4411 	if (cpu_has_load_ia32_efer())
4412 		return host_efer;
4413 
4414 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4415 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4416 			return vmx->msr_autoload.guest.val[i].value;
4417 	}
4418 
4419 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4420 	if (efer_msr)
4421 		return efer_msr->data;
4422 
4423 	return host_efer;
4424 }
4425 
4426 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4427 {
4428 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4429 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4430 	struct vmx_msr_entry g, h;
4431 	gpa_t gpa;
4432 	u32 i, j;
4433 
4434 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4435 
4436 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4437 		/*
4438 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4439 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4440 		 * and vcpu->arch.dr7 is not squirreled away before the
4441 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4442 		 */
4443 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4444 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4445 		else
4446 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4447 	}
4448 
4449 	/*
4450 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4451 	 * handle a variety of side effects to KVM's software model.
4452 	 */
4453 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4454 
4455 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4456 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4457 
4458 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4459 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4460 
4461 	nested_ept_uninit_mmu_context(vcpu);
4462 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4463 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4464 
4465 	/*
4466 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4467 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4468 	 * VMFail, like everything else we just need to ensure our
4469 	 * software model is up-to-date.
4470 	 */
4471 	if (enable_ept && is_pae_paging(vcpu))
4472 		ept_save_pdptrs(vcpu);
4473 
4474 	kvm_mmu_reset_context(vcpu);
4475 
4476 	/*
4477 	 * This nasty bit of open coding is a compromise between blindly
4478 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4479 	 * of VMFail), leaving the nested VM's MSRs in the software model
4480 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4481 	 * expensive since the lists are unbound by hardware).  For each
4482 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4483 	 * list, reload it from the exit load list if it exists and differs
4484 	 * from the guest value.  The intent is to stuff host state as
4485 	 * silently as possible, not to fully process the exit load list.
4486 	 */
4487 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4488 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4489 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4490 			pr_debug_ratelimited(
4491 				"%s read MSR index failed (%u, 0x%08llx)\n",
4492 				__func__, i, gpa);
4493 			goto vmabort;
4494 		}
4495 
4496 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4497 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4498 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4499 				pr_debug_ratelimited(
4500 					"%s read MSR failed (%u, 0x%08llx)\n",
4501 					__func__, j, gpa);
4502 				goto vmabort;
4503 			}
4504 			if (h.index != g.index)
4505 				continue;
4506 			if (h.value == g.value)
4507 				break;
4508 
4509 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4510 				pr_debug_ratelimited(
4511 					"%s check failed (%u, 0x%x, 0x%x)\n",
4512 					__func__, j, h.index, h.reserved);
4513 				goto vmabort;
4514 			}
4515 
4516 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4517 				pr_debug_ratelimited(
4518 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4519 					__func__, j, h.index, h.value);
4520 				goto vmabort;
4521 			}
4522 		}
4523 	}
4524 
4525 	return;
4526 
4527 vmabort:
4528 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4529 }
4530 
4531 /*
4532  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4533  * and modify vmcs12 to make it see what it would expect to see there if
4534  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4535  */
4536 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4537 		       u32 exit_intr_info, unsigned long exit_qualification)
4538 {
4539 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4540 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4541 
4542 	/* trying to cancel vmlaunch/vmresume is a bug */
4543 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4544 
4545 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4546 		/*
4547 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4548 		 * Enlightened VMCS after migration and we still need to
4549 		 * do that when something is forcing L2->L1 exit prior to
4550 		 * the first L2 run.
4551 		 */
4552 		(void)nested_get_evmcs_page(vcpu);
4553 	}
4554 
4555 	/* Service pending TLB flush requests for L2 before switching to L1. */
4556 	kvm_service_local_tlb_flush_requests(vcpu);
4557 
4558 	/*
4559 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4560 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4561 	 * up-to-date before switching to L1.
4562 	 */
4563 	if (enable_ept && is_pae_paging(vcpu))
4564 		vmx_ept_load_pdptrs(vcpu);
4565 
4566 	leave_guest_mode(vcpu);
4567 
4568 	if (nested_cpu_has_preemption_timer(vmcs12))
4569 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4570 
4571 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4572 		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4573 		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4574 			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4575 	}
4576 
4577 	if (likely(!vmx->fail)) {
4578 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4579 
4580 		if (vm_exit_reason != -1)
4581 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4582 				       exit_intr_info, exit_qualification);
4583 
4584 		/*
4585 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4586 		 * also be used to capture vmcs12 cache as part of
4587 		 * capturing nVMX state for snapshot (migration).
4588 		 *
4589 		 * Otherwise, this flush will dirty guest memory at a
4590 		 * point it is already assumed by user-space to be
4591 		 * immutable.
4592 		 */
4593 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4594 	} else {
4595 		/*
4596 		 * The only expected VM-instruction error is "VM entry with
4597 		 * invalid control field(s)." Anything else indicates a
4598 		 * problem with L0.  And we should never get here with a
4599 		 * VMFail of any type if early consistency checks are enabled.
4600 		 */
4601 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4602 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4603 		WARN_ON_ONCE(nested_early_check);
4604 	}
4605 
4606 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4607 
4608 	/* Update any VMCS fields that might have changed while L2 ran */
4609 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4610 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4611 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4612 	if (kvm_has_tsc_control)
4613 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4614 
4615 	if (vmx->nested.l1_tpr_threshold != -1)
4616 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4617 
4618 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4619 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4620 		vmx_set_virtual_apic_mode(vcpu);
4621 	}
4622 
4623 	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4624 		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4625 		vmx_update_cpu_dirty_logging(vcpu);
4626 	}
4627 
4628 	/* Unpin physical memory we referred to in vmcs02 */
4629 	if (vmx->nested.apic_access_page) {
4630 		kvm_release_page_clean(vmx->nested.apic_access_page);
4631 		vmx->nested.apic_access_page = NULL;
4632 	}
4633 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4634 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4635 	vmx->nested.pi_desc = NULL;
4636 
4637 	if (vmx->nested.reload_vmcs01_apic_access_page) {
4638 		vmx->nested.reload_vmcs01_apic_access_page = false;
4639 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4640 	}
4641 
4642 	if (vmx->nested.update_vmcs01_apicv_status) {
4643 		vmx->nested.update_vmcs01_apicv_status = false;
4644 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4645 	}
4646 
4647 	if ((vm_exit_reason != -1) &&
4648 	    (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4649 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4650 
4651 	/* in case we halted in L2 */
4652 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4653 
4654 	if (likely(!vmx->fail)) {
4655 		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4656 		    nested_exit_intr_ack_set(vcpu)) {
4657 			int irq = kvm_cpu_get_interrupt(vcpu);
4658 			WARN_ON(irq < 0);
4659 			vmcs12->vm_exit_intr_info = irq |
4660 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4661 		}
4662 
4663 		if (vm_exit_reason != -1)
4664 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4665 						       vmcs12->exit_qualification,
4666 						       vmcs12->idt_vectoring_info_field,
4667 						       vmcs12->vm_exit_intr_info,
4668 						       vmcs12->vm_exit_intr_error_code,
4669 						       KVM_ISA_VMX);
4670 
4671 		load_vmcs12_host_state(vcpu, vmcs12);
4672 
4673 		return;
4674 	}
4675 
4676 	/*
4677 	 * After an early L2 VM-entry failure, we're now back
4678 	 * in L1 which thinks it just finished a VMLAUNCH or
4679 	 * VMRESUME instruction, so we need to set the failure
4680 	 * flag and the VM-instruction error field of the VMCS
4681 	 * accordingly, and skip the emulated instruction.
4682 	 */
4683 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4684 
4685 	/*
4686 	 * Restore L1's host state to KVM's software model.  We're here
4687 	 * because a consistency check was caught by hardware, which
4688 	 * means some amount of guest state has been propagated to KVM's
4689 	 * model and needs to be unwound to the host's state.
4690 	 */
4691 	nested_vmx_restore_host_state(vcpu);
4692 
4693 	vmx->fail = 0;
4694 }
4695 
4696 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4697 {
4698 	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4699 }
4700 
4701 /*
4702  * Decode the memory-address operand of a vmx instruction, as recorded on an
4703  * exit caused by such an instruction (run by a guest hypervisor).
4704  * On success, returns 0. When the operand is invalid, returns 1 and throws
4705  * #UD, #GP, or #SS.
4706  */
4707 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4708 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4709 {
4710 	gva_t off;
4711 	bool exn;
4712 	struct kvm_segment s;
4713 
4714 	/*
4715 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4716 	 * Execution", on an exit, vmx_instruction_info holds most of the
4717 	 * addressing components of the operand. Only the displacement part
4718 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4719 	 * For how an actual address is calculated from all these components,
4720 	 * refer to Vol. 1, "Operand Addressing".
4721 	 */
4722 	int  scaling = vmx_instruction_info & 3;
4723 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4724 	bool is_reg = vmx_instruction_info & (1u << 10);
4725 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4726 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4727 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4728 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4729 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4730 
4731 	if (is_reg) {
4732 		kvm_queue_exception(vcpu, UD_VECTOR);
4733 		return 1;
4734 	}
4735 
4736 	/* Addr = segment_base + offset */
4737 	/* offset = base + [index * scale] + displacement */
4738 	off = exit_qualification; /* holds the displacement */
4739 	if (addr_size == 1)
4740 		off = (gva_t)sign_extend64(off, 31);
4741 	else if (addr_size == 0)
4742 		off = (gva_t)sign_extend64(off, 15);
4743 	if (base_is_valid)
4744 		off += kvm_register_read(vcpu, base_reg);
4745 	if (index_is_valid)
4746 		off += kvm_register_read(vcpu, index_reg) << scaling;
4747 	vmx_get_segment(vcpu, &s, seg_reg);
4748 
4749 	/*
4750 	 * The effective address, i.e. @off, of a memory operand is truncated
4751 	 * based on the address size of the instruction.  Note that this is
4752 	 * the *effective address*, i.e. the address prior to accounting for
4753 	 * the segment's base.
4754 	 */
4755 	if (addr_size == 1) /* 32 bit */
4756 		off &= 0xffffffff;
4757 	else if (addr_size == 0) /* 16 bit */
4758 		off &= 0xffff;
4759 
4760 	/* Checks for #GP/#SS exceptions. */
4761 	exn = false;
4762 	if (is_long_mode(vcpu)) {
4763 		/*
4764 		 * The virtual/linear address is never truncated in 64-bit
4765 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4766 		 * address when using FS/GS with a non-zero base.
4767 		 */
4768 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4769 			*ret = s.base + off;
4770 		else
4771 			*ret = off;
4772 
4773 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
4774 		 * non-canonical form. This is the only check on the memory
4775 		 * destination for long mode!
4776 		 */
4777 		exn = is_noncanonical_address(*ret, vcpu);
4778 	} else {
4779 		/*
4780 		 * When not in long mode, the virtual/linear address is
4781 		 * unconditionally truncated to 32 bits regardless of the
4782 		 * address size.
4783 		 */
4784 		*ret = (s.base + off) & 0xffffffff;
4785 
4786 		/* Protected mode: apply checks for segment validity in the
4787 		 * following order:
4788 		 * - segment type check (#GP(0) may be thrown)
4789 		 * - usability check (#GP(0)/#SS(0))
4790 		 * - limit check (#GP(0)/#SS(0))
4791 		 */
4792 		if (wr)
4793 			/* #GP(0) if the destination operand is located in a
4794 			 * read-only data segment or any code segment.
4795 			 */
4796 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
4797 		else
4798 			/* #GP(0) if the source operand is located in an
4799 			 * execute-only code segment
4800 			 */
4801 			exn = ((s.type & 0xa) == 8);
4802 		if (exn) {
4803 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4804 			return 1;
4805 		}
4806 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4807 		 */
4808 		exn = (s.unusable != 0);
4809 
4810 		/*
4811 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4812 		 * outside the segment limit.  All CPUs that support VMX ignore
4813 		 * limit checks for flat segments, i.e. segments with base==0,
4814 		 * limit==0xffffffff and of type expand-up data or code.
4815 		 */
4816 		if (!(s.base == 0 && s.limit == 0xffffffff &&
4817 		     ((s.type & 8) || !(s.type & 4))))
4818 			exn = exn || ((u64)off + len - 1 > s.limit);
4819 	}
4820 	if (exn) {
4821 		kvm_queue_exception_e(vcpu,
4822 				      seg_reg == VCPU_SREG_SS ?
4823 						SS_VECTOR : GP_VECTOR,
4824 				      0);
4825 		return 1;
4826 	}
4827 
4828 	return 0;
4829 }
4830 
4831 void nested_vmx_pmu_refresh(struct kvm_vcpu *vcpu,
4832 			    bool vcpu_has_perf_global_ctrl)
4833 {
4834 	struct vcpu_vmx *vmx;
4835 
4836 	if (!nested_vmx_allowed(vcpu))
4837 		return;
4838 
4839 	vmx = to_vmx(vcpu);
4840 	if (vcpu_has_perf_global_ctrl) {
4841 		vmx->nested.msrs.entry_ctls_high |=
4842 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4843 		vmx->nested.msrs.exit_ctls_high |=
4844 				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4845 	} else {
4846 		vmx->nested.msrs.entry_ctls_high &=
4847 				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4848 		vmx->nested.msrs.exit_ctls_high &=
4849 				~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4850 	}
4851 }
4852 
4853 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4854 				int *ret)
4855 {
4856 	gva_t gva;
4857 	struct x86_exception e;
4858 	int r;
4859 
4860 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4861 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4862 				sizeof(*vmpointer), &gva)) {
4863 		*ret = 1;
4864 		return -EINVAL;
4865 	}
4866 
4867 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4868 	if (r != X86EMUL_CONTINUE) {
4869 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
4870 		return -EINVAL;
4871 	}
4872 
4873 	return 0;
4874 }
4875 
4876 /*
4877  * Allocate a shadow VMCS and associate it with the currently loaded
4878  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4879  * VMCS is also VMCLEARed, so that it is ready for use.
4880  */
4881 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4882 {
4883 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4884 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4885 
4886 	/*
4887 	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
4888 	 * when L1 executes VMXOFF or the vCPU is forced out of nested
4889 	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
4890 	 * should be impossible to already have an allocated shadow VMCS.  KVM
4891 	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
4892 	 * always be the loaded VMCS.
4893 	 */
4894 	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
4895 		return loaded_vmcs->shadow_vmcs;
4896 
4897 	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4898 	if (loaded_vmcs->shadow_vmcs)
4899 		vmcs_clear(loaded_vmcs->shadow_vmcs);
4900 
4901 	return loaded_vmcs->shadow_vmcs;
4902 }
4903 
4904 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4905 {
4906 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4907 	int r;
4908 
4909 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4910 	if (r < 0)
4911 		goto out_vmcs02;
4912 
4913 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4914 	if (!vmx->nested.cached_vmcs12)
4915 		goto out_cached_vmcs12;
4916 
4917 	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
4918 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4919 	if (!vmx->nested.cached_shadow_vmcs12)
4920 		goto out_cached_shadow_vmcs12;
4921 
4922 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4923 		goto out_shadow_vmcs;
4924 
4925 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4926 		     HRTIMER_MODE_ABS_PINNED);
4927 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4928 
4929 	vmx->nested.vpid02 = allocate_vpid();
4930 
4931 	vmx->nested.vmcs02_initialized = false;
4932 	vmx->nested.vmxon = true;
4933 
4934 	if (vmx_pt_mode_is_host_guest()) {
4935 		vmx->pt_desc.guest.ctl = 0;
4936 		pt_update_intercept_for_msr(vcpu);
4937 	}
4938 
4939 	return 0;
4940 
4941 out_shadow_vmcs:
4942 	kfree(vmx->nested.cached_shadow_vmcs12);
4943 
4944 out_cached_shadow_vmcs12:
4945 	kfree(vmx->nested.cached_vmcs12);
4946 
4947 out_cached_vmcs12:
4948 	free_loaded_vmcs(&vmx->nested.vmcs02);
4949 
4950 out_vmcs02:
4951 	return -ENOMEM;
4952 }
4953 
4954 /* Emulate the VMXON instruction. */
4955 static int handle_vmon(struct kvm_vcpu *vcpu)
4956 {
4957 	int ret;
4958 	gpa_t vmptr;
4959 	uint32_t revision;
4960 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4961 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4962 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4963 
4964 	/*
4965 	 * The Intel VMX Instruction Reference lists a bunch of bits that are
4966 	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4967 	 * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4968 	 * Otherwise, we should fail with #UD.  But most faulting conditions
4969 	 * have already been checked by hardware, prior to the VM-exit for
4970 	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4971 	 * that bit set to 1 in non-root mode.
4972 	 */
4973 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4974 		kvm_queue_exception(vcpu, UD_VECTOR);
4975 		return 1;
4976 	}
4977 
4978 	/* CPL=0 must be checked manually. */
4979 	if (vmx_get_cpl(vcpu)) {
4980 		kvm_inject_gp(vcpu, 0);
4981 		return 1;
4982 	}
4983 
4984 	if (vmx->nested.vmxon)
4985 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4986 
4987 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4988 			!= VMXON_NEEDED_FEATURES) {
4989 		kvm_inject_gp(vcpu, 0);
4990 		return 1;
4991 	}
4992 
4993 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4994 		return ret;
4995 
4996 	/*
4997 	 * SDM 3: 24.11.5
4998 	 * The first 4 bytes of VMXON region contain the supported
4999 	 * VMCS revision identifier
5000 	 *
5001 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5002 	 * which replaces physical address width with 32
5003 	 */
5004 	if (!page_address_valid(vcpu, vmptr))
5005 		return nested_vmx_failInvalid(vcpu);
5006 
5007 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5008 	    revision != VMCS12_REVISION)
5009 		return nested_vmx_failInvalid(vcpu);
5010 
5011 	vmx->nested.vmxon_ptr = vmptr;
5012 	ret = enter_vmx_operation(vcpu);
5013 	if (ret)
5014 		return ret;
5015 
5016 	return nested_vmx_succeed(vcpu);
5017 }
5018 
5019 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5020 {
5021 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5022 
5023 	if (vmx->nested.current_vmptr == INVALID_GPA)
5024 		return;
5025 
5026 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5027 
5028 	if (enable_shadow_vmcs) {
5029 		/* copy to memory all shadowed fields in case
5030 		   they were modified */
5031 		copy_shadow_to_vmcs12(vmx);
5032 		vmx_disable_shadow_vmcs(vmx);
5033 	}
5034 	vmx->nested.posted_intr_nv = -1;
5035 
5036 	/* Flush VMCS12 to guest memory */
5037 	kvm_vcpu_write_guest_page(vcpu,
5038 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
5039 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5040 
5041 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5042 
5043 	vmx->nested.current_vmptr = INVALID_GPA;
5044 }
5045 
5046 /* Emulate the VMXOFF instruction */
5047 static int handle_vmoff(struct kvm_vcpu *vcpu)
5048 {
5049 	if (!nested_vmx_check_permission(vcpu))
5050 		return 1;
5051 
5052 	free_nested(vcpu);
5053 
5054 	/* Process a latched INIT during time CPU was in VMX operation */
5055 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5056 
5057 	return nested_vmx_succeed(vcpu);
5058 }
5059 
5060 /* Emulate the VMCLEAR instruction */
5061 static int handle_vmclear(struct kvm_vcpu *vcpu)
5062 {
5063 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5064 	u32 zero = 0;
5065 	gpa_t vmptr;
5066 	u64 evmcs_gpa;
5067 	int r;
5068 
5069 	if (!nested_vmx_check_permission(vcpu))
5070 		return 1;
5071 
5072 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5073 		return r;
5074 
5075 	if (!page_address_valid(vcpu, vmptr))
5076 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5077 
5078 	if (vmptr == vmx->nested.vmxon_ptr)
5079 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5080 
5081 	/*
5082 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
5083 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5084 	 * way to distinguish it from VMCS12) and we must not corrupt it by
5085 	 * writing to the non-existent 'launch_state' field. The area doesn't
5086 	 * have to be the currently active EVMCS on the calling CPU and there's
5087 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
5088 	 * state. It is possible that the area will stay mapped as
5089 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5090 	 */
5091 	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5092 		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5093 		if (vmptr == vmx->nested.current_vmptr)
5094 			nested_release_vmcs12(vcpu);
5095 
5096 		kvm_vcpu_write_guest(vcpu,
5097 				     vmptr + offsetof(struct vmcs12,
5098 						      launch_state),
5099 				     &zero, sizeof(zero));
5100 	} else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5101 		nested_release_evmcs(vcpu);
5102 	}
5103 
5104 	return nested_vmx_succeed(vcpu);
5105 }
5106 
5107 /* Emulate the VMLAUNCH instruction */
5108 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5109 {
5110 	return nested_vmx_run(vcpu, true);
5111 }
5112 
5113 /* Emulate the VMRESUME instruction */
5114 static int handle_vmresume(struct kvm_vcpu *vcpu)
5115 {
5116 
5117 	return nested_vmx_run(vcpu, false);
5118 }
5119 
5120 static int handle_vmread(struct kvm_vcpu *vcpu)
5121 {
5122 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5123 						    : get_vmcs12(vcpu);
5124 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5125 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5126 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5127 	struct x86_exception e;
5128 	unsigned long field;
5129 	u64 value;
5130 	gva_t gva = 0;
5131 	short offset;
5132 	int len, r;
5133 
5134 	if (!nested_vmx_check_permission(vcpu))
5135 		return 1;
5136 
5137 	/* Decode instruction info and find the field to read */
5138 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5139 
5140 	if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5141 		/*
5142 		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5143 		 * any VMREAD sets the ALU flags for VMfailInvalid.
5144 		 */
5145 		if (vmx->nested.current_vmptr == INVALID_GPA ||
5146 		    (is_guest_mode(vcpu) &&
5147 		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5148 			return nested_vmx_failInvalid(vcpu);
5149 
5150 		offset = get_vmcs12_field_offset(field);
5151 		if (offset < 0)
5152 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5153 
5154 		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5155 			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5156 
5157 		/* Read the field, zero-extended to a u64 value */
5158 		value = vmcs12_read_any(vmcs12, field, offset);
5159 	} else {
5160 		/*
5161 		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5162 		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5163 		 * unsupported. Unfortunately, certain versions of Windows 11
5164 		 * don't comply with this requirement which is not enforced in
5165 		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5166 		 * workaround, as misbehaving guests will panic on VM-Fail.
5167 		 * Note, enlightened VMCS is incompatible with shadow VMCS so
5168 		 * all VMREADs from L2 should go to L1.
5169 		 */
5170 		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5171 			return nested_vmx_failInvalid(vcpu);
5172 
5173 		offset = evmcs_field_offset(field, NULL);
5174 		if (offset < 0)
5175 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5176 
5177 		/* Read the field, zero-extended to a u64 value */
5178 		value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5179 	}
5180 
5181 	/*
5182 	 * Now copy part of this value to register or memory, as requested.
5183 	 * Note that the number of bits actually copied is 32 or 64 depending
5184 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5185 	 */
5186 	if (instr_info & BIT(10)) {
5187 		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5188 	} else {
5189 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5190 		if (get_vmx_mem_address(vcpu, exit_qualification,
5191 					instr_info, true, len, &gva))
5192 			return 1;
5193 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5194 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5195 		if (r != X86EMUL_CONTINUE)
5196 			return kvm_handle_memory_failure(vcpu, r, &e);
5197 	}
5198 
5199 	return nested_vmx_succeed(vcpu);
5200 }
5201 
5202 static bool is_shadow_field_rw(unsigned long field)
5203 {
5204 	switch (field) {
5205 #define SHADOW_FIELD_RW(x, y) case x:
5206 #include "vmcs_shadow_fields.h"
5207 		return true;
5208 	default:
5209 		break;
5210 	}
5211 	return false;
5212 }
5213 
5214 static bool is_shadow_field_ro(unsigned long field)
5215 {
5216 	switch (field) {
5217 #define SHADOW_FIELD_RO(x, y) case x:
5218 #include "vmcs_shadow_fields.h"
5219 		return true;
5220 	default:
5221 		break;
5222 	}
5223 	return false;
5224 }
5225 
5226 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5227 {
5228 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5229 						    : get_vmcs12(vcpu);
5230 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5231 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5232 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5233 	struct x86_exception e;
5234 	unsigned long field;
5235 	short offset;
5236 	gva_t gva;
5237 	int len, r;
5238 
5239 	/*
5240 	 * The value to write might be 32 or 64 bits, depending on L1's long
5241 	 * mode, and eventually we need to write that into a field of several
5242 	 * possible lengths. The code below first zero-extends the value to 64
5243 	 * bit (value), and then copies only the appropriate number of
5244 	 * bits into the vmcs12 field.
5245 	 */
5246 	u64 value = 0;
5247 
5248 	if (!nested_vmx_check_permission(vcpu))
5249 		return 1;
5250 
5251 	/*
5252 	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5253 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5254 	 */
5255 	if (vmx->nested.current_vmptr == INVALID_GPA ||
5256 	    (is_guest_mode(vcpu) &&
5257 	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5258 		return nested_vmx_failInvalid(vcpu);
5259 
5260 	if (instr_info & BIT(10))
5261 		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5262 	else {
5263 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5264 		if (get_vmx_mem_address(vcpu, exit_qualification,
5265 					instr_info, false, len, &gva))
5266 			return 1;
5267 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5268 		if (r != X86EMUL_CONTINUE)
5269 			return kvm_handle_memory_failure(vcpu, r, &e);
5270 	}
5271 
5272 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5273 
5274 	offset = get_vmcs12_field_offset(field);
5275 	if (offset < 0)
5276 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5277 
5278 	/*
5279 	 * If the vCPU supports "VMWRITE to any supported field in the
5280 	 * VMCS," then the "read-only" fields are actually read/write.
5281 	 */
5282 	if (vmcs_field_readonly(field) &&
5283 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5284 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5285 
5286 	/*
5287 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5288 	 * vmcs12, else we may crush a field or consume a stale value.
5289 	 */
5290 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5291 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5292 
5293 	/*
5294 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5295 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5296 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5297 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5298 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5299 	 * the stripped down value, L2 sees the full value as stored by KVM).
5300 	 */
5301 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5302 		value &= 0x1f0ff;
5303 
5304 	vmcs12_write_any(vmcs12, field, offset, value);
5305 
5306 	/*
5307 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5308 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5309 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5310 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5311 	 */
5312 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5313 		/*
5314 		 * L1 can read these fields without exiting, ensure the
5315 		 * shadow VMCS is up-to-date.
5316 		 */
5317 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5318 			preempt_disable();
5319 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5320 
5321 			__vmcs_writel(field, value);
5322 
5323 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5324 			vmcs_load(vmx->loaded_vmcs->vmcs);
5325 			preempt_enable();
5326 		}
5327 		vmx->nested.dirty_vmcs12 = true;
5328 	}
5329 
5330 	return nested_vmx_succeed(vcpu);
5331 }
5332 
5333 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5334 {
5335 	vmx->nested.current_vmptr = vmptr;
5336 	if (enable_shadow_vmcs) {
5337 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5338 		vmcs_write64(VMCS_LINK_POINTER,
5339 			     __pa(vmx->vmcs01.shadow_vmcs));
5340 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5341 	}
5342 	vmx->nested.dirty_vmcs12 = true;
5343 	vmx->nested.force_msr_bitmap_recalc = true;
5344 }
5345 
5346 /* Emulate the VMPTRLD instruction */
5347 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5348 {
5349 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5350 	gpa_t vmptr;
5351 	int r;
5352 
5353 	if (!nested_vmx_check_permission(vcpu))
5354 		return 1;
5355 
5356 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5357 		return r;
5358 
5359 	if (!page_address_valid(vcpu, vmptr))
5360 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5361 
5362 	if (vmptr == vmx->nested.vmxon_ptr)
5363 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5364 
5365 	/* Forbid normal VMPTRLD if Enlightened version was used */
5366 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5367 		return 1;
5368 
5369 	if (vmx->nested.current_vmptr != vmptr) {
5370 		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5371 		struct vmcs_hdr hdr;
5372 
5373 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5374 			/*
5375 			 * Reads from an unbacked page return all 1s,
5376 			 * which means that the 32 bits located at the
5377 			 * given physical address won't match the required
5378 			 * VMCS12_REVISION identifier.
5379 			 */
5380 			return nested_vmx_fail(vcpu,
5381 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5382 		}
5383 
5384 		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5385 						 offsetof(struct vmcs12, hdr),
5386 						 sizeof(hdr))) {
5387 			return nested_vmx_fail(vcpu,
5388 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5389 		}
5390 
5391 		if (hdr.revision_id != VMCS12_REVISION ||
5392 		    (hdr.shadow_vmcs &&
5393 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5394 			return nested_vmx_fail(vcpu,
5395 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5396 		}
5397 
5398 		nested_release_vmcs12(vcpu);
5399 
5400 		/*
5401 		 * Load VMCS12 from guest memory since it is not already
5402 		 * cached.
5403 		 */
5404 		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5405 					  VMCS12_SIZE)) {
5406 			return nested_vmx_fail(vcpu,
5407 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5408 		}
5409 
5410 		set_current_vmptr(vmx, vmptr);
5411 	}
5412 
5413 	return nested_vmx_succeed(vcpu);
5414 }
5415 
5416 /* Emulate the VMPTRST instruction */
5417 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5418 {
5419 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5420 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5421 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5422 	struct x86_exception e;
5423 	gva_t gva;
5424 	int r;
5425 
5426 	if (!nested_vmx_check_permission(vcpu))
5427 		return 1;
5428 
5429 	if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5430 		return 1;
5431 
5432 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5433 				true, sizeof(gpa_t), &gva))
5434 		return 1;
5435 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5436 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5437 					sizeof(gpa_t), &e);
5438 	if (r != X86EMUL_CONTINUE)
5439 		return kvm_handle_memory_failure(vcpu, r, &e);
5440 
5441 	return nested_vmx_succeed(vcpu);
5442 }
5443 
5444 /* Emulate the INVEPT instruction */
5445 static int handle_invept(struct kvm_vcpu *vcpu)
5446 {
5447 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5448 	u32 vmx_instruction_info, types;
5449 	unsigned long type, roots_to_free;
5450 	struct kvm_mmu *mmu;
5451 	gva_t gva;
5452 	struct x86_exception e;
5453 	struct {
5454 		u64 eptp, gpa;
5455 	} operand;
5456 	int i, r, gpr_index;
5457 
5458 	if (!(vmx->nested.msrs.secondary_ctls_high &
5459 	      SECONDARY_EXEC_ENABLE_EPT) ||
5460 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5461 		kvm_queue_exception(vcpu, UD_VECTOR);
5462 		return 1;
5463 	}
5464 
5465 	if (!nested_vmx_check_permission(vcpu))
5466 		return 1;
5467 
5468 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5469 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5470 	type = kvm_register_read(vcpu, gpr_index);
5471 
5472 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5473 
5474 	if (type >= 32 || !(types & (1 << type)))
5475 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5476 
5477 	/* According to the Intel VMX instruction reference, the memory
5478 	 * operand is read even if it isn't needed (e.g., for type==global)
5479 	 */
5480 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5481 			vmx_instruction_info, false, sizeof(operand), &gva))
5482 		return 1;
5483 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5484 	if (r != X86EMUL_CONTINUE)
5485 		return kvm_handle_memory_failure(vcpu, r, &e);
5486 
5487 	/*
5488 	 * Nested EPT roots are always held through guest_mmu,
5489 	 * not root_mmu.
5490 	 */
5491 	mmu = &vcpu->arch.guest_mmu;
5492 
5493 	switch (type) {
5494 	case VMX_EPT_EXTENT_CONTEXT:
5495 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5496 			return nested_vmx_fail(vcpu,
5497 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5498 
5499 		roots_to_free = 0;
5500 		if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5501 					    operand.eptp))
5502 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5503 
5504 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5505 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5506 						    mmu->prev_roots[i].pgd,
5507 						    operand.eptp))
5508 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5509 		}
5510 		break;
5511 	case VMX_EPT_EXTENT_GLOBAL:
5512 		roots_to_free = KVM_MMU_ROOTS_ALL;
5513 		break;
5514 	default:
5515 		BUG();
5516 		break;
5517 	}
5518 
5519 	if (roots_to_free)
5520 		kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5521 
5522 	return nested_vmx_succeed(vcpu);
5523 }
5524 
5525 static int handle_invvpid(struct kvm_vcpu *vcpu)
5526 {
5527 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5528 	u32 vmx_instruction_info;
5529 	unsigned long type, types;
5530 	gva_t gva;
5531 	struct x86_exception e;
5532 	struct {
5533 		u64 vpid;
5534 		u64 gla;
5535 	} operand;
5536 	u16 vpid02;
5537 	int r, gpr_index;
5538 
5539 	if (!(vmx->nested.msrs.secondary_ctls_high &
5540 	      SECONDARY_EXEC_ENABLE_VPID) ||
5541 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5542 		kvm_queue_exception(vcpu, UD_VECTOR);
5543 		return 1;
5544 	}
5545 
5546 	if (!nested_vmx_check_permission(vcpu))
5547 		return 1;
5548 
5549 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5550 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5551 	type = kvm_register_read(vcpu, gpr_index);
5552 
5553 	types = (vmx->nested.msrs.vpid_caps &
5554 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5555 
5556 	if (type >= 32 || !(types & (1 << type)))
5557 		return nested_vmx_fail(vcpu,
5558 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5559 
5560 	/* according to the intel vmx instruction reference, the memory
5561 	 * operand is read even if it isn't needed (e.g., for type==global)
5562 	 */
5563 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5564 			vmx_instruction_info, false, sizeof(operand), &gva))
5565 		return 1;
5566 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5567 	if (r != X86EMUL_CONTINUE)
5568 		return kvm_handle_memory_failure(vcpu, r, &e);
5569 
5570 	if (operand.vpid >> 16)
5571 		return nested_vmx_fail(vcpu,
5572 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5573 
5574 	vpid02 = nested_get_vpid02(vcpu);
5575 	switch (type) {
5576 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5577 		if (!operand.vpid ||
5578 		    is_noncanonical_address(operand.gla, vcpu))
5579 			return nested_vmx_fail(vcpu,
5580 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5581 		vpid_sync_vcpu_addr(vpid02, operand.gla);
5582 		break;
5583 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5584 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5585 		if (!operand.vpid)
5586 			return nested_vmx_fail(vcpu,
5587 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5588 		vpid_sync_context(vpid02);
5589 		break;
5590 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5591 		vpid_sync_context(vpid02);
5592 		break;
5593 	default:
5594 		WARN_ON_ONCE(1);
5595 		return kvm_skip_emulated_instruction(vcpu);
5596 	}
5597 
5598 	/*
5599 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5600 	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5601 	 * roots as VPIDs are not tracked in the MMU role.
5602 	 *
5603 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5604 	 * an MMU when EPT is disabled.
5605 	 *
5606 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5607 	 */
5608 	if (!enable_ept)
5609 		kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5610 
5611 	return nested_vmx_succeed(vcpu);
5612 }
5613 
5614 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5615 				     struct vmcs12 *vmcs12)
5616 {
5617 	u32 index = kvm_rcx_read(vcpu);
5618 	u64 new_eptp;
5619 
5620 	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5621 		return 1;
5622 	if (index >= VMFUNC_EPTP_ENTRIES)
5623 		return 1;
5624 
5625 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5626 				     &new_eptp, index * 8, 8))
5627 		return 1;
5628 
5629 	/*
5630 	 * If the (L2) guest does a vmfunc to the currently
5631 	 * active ept pointer, we don't have to do anything else
5632 	 */
5633 	if (vmcs12->ept_pointer != new_eptp) {
5634 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5635 			return 1;
5636 
5637 		vmcs12->ept_pointer = new_eptp;
5638 		nested_ept_new_eptp(vcpu);
5639 
5640 		if (!nested_cpu_has_vpid(vmcs12))
5641 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5642 	}
5643 
5644 	return 0;
5645 }
5646 
5647 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5648 {
5649 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5650 	struct vmcs12 *vmcs12;
5651 	u32 function = kvm_rax_read(vcpu);
5652 
5653 	/*
5654 	 * VMFUNC is only supported for nested guests, but we always enable the
5655 	 * secondary control for simplicity; for non-nested mode, fake that we
5656 	 * didn't by injecting #UD.
5657 	 */
5658 	if (!is_guest_mode(vcpu)) {
5659 		kvm_queue_exception(vcpu, UD_VECTOR);
5660 		return 1;
5661 	}
5662 
5663 	vmcs12 = get_vmcs12(vcpu);
5664 
5665 	/*
5666 	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5667 	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5668 	 */
5669 	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5670 		kvm_queue_exception(vcpu, UD_VECTOR);
5671 		return 1;
5672 	}
5673 
5674 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5675 		goto fail;
5676 
5677 	switch (function) {
5678 	case 0:
5679 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5680 			goto fail;
5681 		break;
5682 	default:
5683 		goto fail;
5684 	}
5685 	return kvm_skip_emulated_instruction(vcpu);
5686 
5687 fail:
5688 	/*
5689 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5690 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5691 	 * EXIT_REASON_VMFUNC as the exit reason.
5692 	 */
5693 	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5694 			  vmx_get_intr_info(vcpu),
5695 			  vmx_get_exit_qual(vcpu));
5696 	return 1;
5697 }
5698 
5699 /*
5700  * Return true if an IO instruction with the specified port and size should cause
5701  * a VM-exit into L1.
5702  */
5703 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5704 				 int size)
5705 {
5706 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5707 	gpa_t bitmap, last_bitmap;
5708 	u8 b;
5709 
5710 	last_bitmap = INVALID_GPA;
5711 	b = -1;
5712 
5713 	while (size > 0) {
5714 		if (port < 0x8000)
5715 			bitmap = vmcs12->io_bitmap_a;
5716 		else if (port < 0x10000)
5717 			bitmap = vmcs12->io_bitmap_b;
5718 		else
5719 			return true;
5720 		bitmap += (port & 0x7fff) / 8;
5721 
5722 		if (last_bitmap != bitmap)
5723 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5724 				return true;
5725 		if (b & (1 << (port & 7)))
5726 			return true;
5727 
5728 		port++;
5729 		size--;
5730 		last_bitmap = bitmap;
5731 	}
5732 
5733 	return false;
5734 }
5735 
5736 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5737 				       struct vmcs12 *vmcs12)
5738 {
5739 	unsigned long exit_qualification;
5740 	unsigned short port;
5741 	int size;
5742 
5743 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5744 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5745 
5746 	exit_qualification = vmx_get_exit_qual(vcpu);
5747 
5748 	port = exit_qualification >> 16;
5749 	size = (exit_qualification & 7) + 1;
5750 
5751 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
5752 }
5753 
5754 /*
5755  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5756  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5757  * disinterest in the current event (read or write a specific MSR) by using an
5758  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5759  */
5760 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5761 					struct vmcs12 *vmcs12,
5762 					union vmx_exit_reason exit_reason)
5763 {
5764 	u32 msr_index = kvm_rcx_read(vcpu);
5765 	gpa_t bitmap;
5766 
5767 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5768 		return true;
5769 
5770 	/*
5771 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5772 	 * for the four combinations of read/write and low/high MSR numbers.
5773 	 * First we need to figure out which of the four to use:
5774 	 */
5775 	bitmap = vmcs12->msr_bitmap;
5776 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5777 		bitmap += 2048;
5778 	if (msr_index >= 0xc0000000) {
5779 		msr_index -= 0xc0000000;
5780 		bitmap += 1024;
5781 	}
5782 
5783 	/* Then read the msr_index'th bit from this bitmap: */
5784 	if (msr_index < 1024*8) {
5785 		unsigned char b;
5786 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5787 			return true;
5788 		return 1 & (b >> (msr_index & 7));
5789 	} else
5790 		return true; /* let L1 handle the wrong parameter */
5791 }
5792 
5793 /*
5794  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5795  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5796  * intercept (via guest_host_mask etc.) the current event.
5797  */
5798 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5799 	struct vmcs12 *vmcs12)
5800 {
5801 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5802 	int cr = exit_qualification & 15;
5803 	int reg;
5804 	unsigned long val;
5805 
5806 	switch ((exit_qualification >> 4) & 3) {
5807 	case 0: /* mov to cr */
5808 		reg = (exit_qualification >> 8) & 15;
5809 		val = kvm_register_read(vcpu, reg);
5810 		switch (cr) {
5811 		case 0:
5812 			if (vmcs12->cr0_guest_host_mask &
5813 			    (val ^ vmcs12->cr0_read_shadow))
5814 				return true;
5815 			break;
5816 		case 3:
5817 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5818 				return true;
5819 			break;
5820 		case 4:
5821 			if (vmcs12->cr4_guest_host_mask &
5822 			    (vmcs12->cr4_read_shadow ^ val))
5823 				return true;
5824 			break;
5825 		case 8:
5826 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5827 				return true;
5828 			break;
5829 		}
5830 		break;
5831 	case 2: /* clts */
5832 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5833 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5834 			return true;
5835 		break;
5836 	case 1: /* mov from cr */
5837 		switch (cr) {
5838 		case 3:
5839 			if (vmcs12->cpu_based_vm_exec_control &
5840 			    CPU_BASED_CR3_STORE_EXITING)
5841 				return true;
5842 			break;
5843 		case 8:
5844 			if (vmcs12->cpu_based_vm_exec_control &
5845 			    CPU_BASED_CR8_STORE_EXITING)
5846 				return true;
5847 			break;
5848 		}
5849 		break;
5850 	case 3: /* lmsw */
5851 		/*
5852 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5853 		 * cr0. Other attempted changes are ignored, with no exit.
5854 		 */
5855 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5856 		if (vmcs12->cr0_guest_host_mask & 0xe &
5857 		    (val ^ vmcs12->cr0_read_shadow))
5858 			return true;
5859 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5860 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5861 		    (val & 0x1))
5862 			return true;
5863 		break;
5864 	}
5865 	return false;
5866 }
5867 
5868 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5869 					  struct vmcs12 *vmcs12)
5870 {
5871 	u32 encls_leaf;
5872 
5873 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5874 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5875 		return false;
5876 
5877 	encls_leaf = kvm_rax_read(vcpu);
5878 	if (encls_leaf > 62)
5879 		encls_leaf = 63;
5880 	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5881 }
5882 
5883 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5884 	struct vmcs12 *vmcs12, gpa_t bitmap)
5885 {
5886 	u32 vmx_instruction_info;
5887 	unsigned long field;
5888 	u8 b;
5889 
5890 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
5891 		return true;
5892 
5893 	/* Decode instruction info and find the field to access */
5894 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5895 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5896 
5897 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
5898 	if (field >> 15)
5899 		return true;
5900 
5901 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5902 		return true;
5903 
5904 	return 1 & (b >> (field & 7));
5905 }
5906 
5907 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5908 {
5909 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5910 
5911 	if (nested_cpu_has_mtf(vmcs12))
5912 		return true;
5913 
5914 	/*
5915 	 * An MTF VM-exit may be injected into the guest by setting the
5916 	 * interruption-type to 7 (other event) and the vector field to 0. Such
5917 	 * is the case regardless of the 'monitor trap flag' VM-execution
5918 	 * control.
5919 	 */
5920 	return entry_intr_info == (INTR_INFO_VALID_MASK
5921 				   | INTR_TYPE_OTHER_EVENT);
5922 }
5923 
5924 /*
5925  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5926  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5927  */
5928 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5929 				     union vmx_exit_reason exit_reason)
5930 {
5931 	u32 intr_info;
5932 
5933 	switch ((u16)exit_reason.basic) {
5934 	case EXIT_REASON_EXCEPTION_NMI:
5935 		intr_info = vmx_get_intr_info(vcpu);
5936 		if (is_nmi(intr_info))
5937 			return true;
5938 		else if (is_page_fault(intr_info))
5939 			return vcpu->arch.apf.host_apf_flags ||
5940 			       vmx_need_pf_intercept(vcpu);
5941 		else if (is_debug(intr_info) &&
5942 			 vcpu->guest_debug &
5943 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5944 			return true;
5945 		else if (is_breakpoint(intr_info) &&
5946 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5947 			return true;
5948 		else if (is_alignment_check(intr_info) &&
5949 			 !vmx_guest_inject_ac(vcpu))
5950 			return true;
5951 		return false;
5952 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5953 		return true;
5954 	case EXIT_REASON_MCE_DURING_VMENTRY:
5955 		return true;
5956 	case EXIT_REASON_EPT_VIOLATION:
5957 		/*
5958 		 * L0 always deals with the EPT violation. If nested EPT is
5959 		 * used, and the nested mmu code discovers that the address is
5960 		 * missing in the guest EPT table (EPT12), the EPT violation
5961 		 * will be injected with nested_ept_inject_page_fault()
5962 		 */
5963 		return true;
5964 	case EXIT_REASON_EPT_MISCONFIG:
5965 		/*
5966 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
5967 		 * table (shadow on EPT) or a merged EPT table that L0 built
5968 		 * (EPT on EPT). So any problems with the structure of the
5969 		 * table is L0's fault.
5970 		 */
5971 		return true;
5972 	case EXIT_REASON_PREEMPTION_TIMER:
5973 		return true;
5974 	case EXIT_REASON_PML_FULL:
5975 		/*
5976 		 * PML is emulated for an L1 VMM and should never be enabled in
5977 		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
5978 		 */
5979 		return true;
5980 	case EXIT_REASON_VMFUNC:
5981 		/* VM functions are emulated through L2->L0 vmexits. */
5982 		return true;
5983 	case EXIT_REASON_BUS_LOCK:
5984 		/*
5985 		 * At present, bus lock VM exit is never exposed to L1.
5986 		 * Handle L2's bus locks in L0 directly.
5987 		 */
5988 		return true;
5989 	default:
5990 		break;
5991 	}
5992 	return false;
5993 }
5994 
5995 /*
5996  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5997  * is_guest_mode (L2).
5998  */
5999 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6000 				     union vmx_exit_reason exit_reason)
6001 {
6002 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6003 	u32 intr_info;
6004 
6005 	switch ((u16)exit_reason.basic) {
6006 	case EXIT_REASON_EXCEPTION_NMI:
6007 		intr_info = vmx_get_intr_info(vcpu);
6008 		if (is_nmi(intr_info))
6009 			return true;
6010 		else if (is_page_fault(intr_info))
6011 			return true;
6012 		return vmcs12->exception_bitmap &
6013 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
6014 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6015 		return nested_exit_on_intr(vcpu);
6016 	case EXIT_REASON_TRIPLE_FAULT:
6017 		return true;
6018 	case EXIT_REASON_INTERRUPT_WINDOW:
6019 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6020 	case EXIT_REASON_NMI_WINDOW:
6021 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6022 	case EXIT_REASON_TASK_SWITCH:
6023 		return true;
6024 	case EXIT_REASON_CPUID:
6025 		return true;
6026 	case EXIT_REASON_HLT:
6027 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6028 	case EXIT_REASON_INVD:
6029 		return true;
6030 	case EXIT_REASON_INVLPG:
6031 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6032 	case EXIT_REASON_RDPMC:
6033 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6034 	case EXIT_REASON_RDRAND:
6035 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6036 	case EXIT_REASON_RDSEED:
6037 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6038 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6039 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6040 	case EXIT_REASON_VMREAD:
6041 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6042 			vmcs12->vmread_bitmap);
6043 	case EXIT_REASON_VMWRITE:
6044 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6045 			vmcs12->vmwrite_bitmap);
6046 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6047 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6048 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6049 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6050 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6051 		/*
6052 		 * VMX instructions trap unconditionally. This allows L1 to
6053 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6054 		 */
6055 		return true;
6056 	case EXIT_REASON_CR_ACCESS:
6057 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6058 	case EXIT_REASON_DR_ACCESS:
6059 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6060 	case EXIT_REASON_IO_INSTRUCTION:
6061 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
6062 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6063 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6064 	case EXIT_REASON_MSR_READ:
6065 	case EXIT_REASON_MSR_WRITE:
6066 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6067 	case EXIT_REASON_INVALID_STATE:
6068 		return true;
6069 	case EXIT_REASON_MWAIT_INSTRUCTION:
6070 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6071 	case EXIT_REASON_MONITOR_TRAP_FLAG:
6072 		return nested_vmx_exit_handled_mtf(vmcs12);
6073 	case EXIT_REASON_MONITOR_INSTRUCTION:
6074 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6075 	case EXIT_REASON_PAUSE_INSTRUCTION:
6076 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6077 			nested_cpu_has2(vmcs12,
6078 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6079 	case EXIT_REASON_MCE_DURING_VMENTRY:
6080 		return true;
6081 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
6082 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6083 	case EXIT_REASON_APIC_ACCESS:
6084 	case EXIT_REASON_APIC_WRITE:
6085 	case EXIT_REASON_EOI_INDUCED:
6086 		/*
6087 		 * The controls for "virtualize APIC accesses," "APIC-
6088 		 * register virtualization," and "virtual-interrupt
6089 		 * delivery" only come from vmcs12.
6090 		 */
6091 		return true;
6092 	case EXIT_REASON_INVPCID:
6093 		return
6094 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6095 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6096 	case EXIT_REASON_WBINVD:
6097 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6098 	case EXIT_REASON_XSETBV:
6099 		return true;
6100 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6101 		/*
6102 		 * This should never happen, since it is not possible to
6103 		 * set XSS to a non-zero value---neither in L1 nor in L2.
6104 		 * If if it were, XSS would have to be checked against
6105 		 * the XSS exit bitmap in vmcs12.
6106 		 */
6107 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6108 	case EXIT_REASON_UMWAIT:
6109 	case EXIT_REASON_TPAUSE:
6110 		return nested_cpu_has2(vmcs12,
6111 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6112 	case EXIT_REASON_ENCLS:
6113 		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6114 	default:
6115 		return true;
6116 	}
6117 }
6118 
6119 /*
6120  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6121  * reflected into L1.
6122  */
6123 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6124 {
6125 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6126 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6127 	unsigned long exit_qual;
6128 	u32 exit_intr_info;
6129 
6130 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6131 
6132 	/*
6133 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6134 	 * has already loaded L2's state.
6135 	 */
6136 	if (unlikely(vmx->fail)) {
6137 		trace_kvm_nested_vmenter_failed(
6138 			"hardware VM-instruction error: ",
6139 			vmcs_read32(VM_INSTRUCTION_ERROR));
6140 		exit_intr_info = 0;
6141 		exit_qual = 0;
6142 		goto reflect_vmexit;
6143 	}
6144 
6145 	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6146 
6147 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6148 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6149 		return false;
6150 
6151 	/* If L1 doesn't want the exit, handle it in L0. */
6152 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6153 		return false;
6154 
6155 	/*
6156 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6157 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6158 	 * need to be synthesized by querying the in-kernel LAPIC, but external
6159 	 * interrupts are never reflected to L1 so it's a non-issue.
6160 	 */
6161 	exit_intr_info = vmx_get_intr_info(vcpu);
6162 	if (is_exception_with_error_code(exit_intr_info)) {
6163 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6164 
6165 		vmcs12->vm_exit_intr_error_code =
6166 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6167 	}
6168 	exit_qual = vmx_get_exit_qual(vcpu);
6169 
6170 reflect_vmexit:
6171 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6172 	return true;
6173 }
6174 
6175 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6176 				struct kvm_nested_state __user *user_kvm_nested_state,
6177 				u32 user_data_size)
6178 {
6179 	struct vcpu_vmx *vmx;
6180 	struct vmcs12 *vmcs12;
6181 	struct kvm_nested_state kvm_state = {
6182 		.flags = 0,
6183 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6184 		.size = sizeof(kvm_state),
6185 		.hdr.vmx.flags = 0,
6186 		.hdr.vmx.vmxon_pa = INVALID_GPA,
6187 		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6188 		.hdr.vmx.preemption_timer_deadline = 0,
6189 	};
6190 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6191 		&user_kvm_nested_state->data.vmx[0];
6192 
6193 	if (!vcpu)
6194 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6195 
6196 	vmx = to_vmx(vcpu);
6197 	vmcs12 = get_vmcs12(vcpu);
6198 
6199 	if (nested_vmx_allowed(vcpu) &&
6200 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6201 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6202 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6203 
6204 		if (vmx_has_valid_vmcs12(vcpu)) {
6205 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6206 
6207 			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6208 			if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6209 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6210 
6211 			if (is_guest_mode(vcpu) &&
6212 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6213 			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6214 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6215 		}
6216 
6217 		if (vmx->nested.smm.vmxon)
6218 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6219 
6220 		if (vmx->nested.smm.guest_mode)
6221 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6222 
6223 		if (is_guest_mode(vcpu)) {
6224 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6225 
6226 			if (vmx->nested.nested_run_pending)
6227 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6228 
6229 			if (vmx->nested.mtf_pending)
6230 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6231 
6232 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6233 			    vmx->nested.has_preemption_timer_deadline) {
6234 				kvm_state.hdr.vmx.flags |=
6235 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6236 				kvm_state.hdr.vmx.preemption_timer_deadline =
6237 					vmx->nested.preemption_timer_deadline;
6238 			}
6239 		}
6240 	}
6241 
6242 	if (user_data_size < kvm_state.size)
6243 		goto out;
6244 
6245 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6246 		return -EFAULT;
6247 
6248 	if (!vmx_has_valid_vmcs12(vcpu))
6249 		goto out;
6250 
6251 	/*
6252 	 * When running L2, the authoritative vmcs12 state is in the
6253 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6254 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6255 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6256 	 * vmcs12 state is in the vmcs12 already.
6257 	 */
6258 	if (is_guest_mode(vcpu)) {
6259 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6260 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6261 	} else  {
6262 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6263 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6264 			if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6265 				/*
6266 				 * L1 hypervisor is not obliged to keep eVMCS
6267 				 * clean fields data always up-to-date while
6268 				 * not in guest mode, 'hv_clean_fields' is only
6269 				 * supposed to be actual upon vmentry so we need
6270 				 * to ignore it here and do full copy.
6271 				 */
6272 				copy_enlightened_to_vmcs12(vmx, 0);
6273 			else if (enable_shadow_vmcs)
6274 				copy_shadow_to_vmcs12(vmx);
6275 		}
6276 	}
6277 
6278 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6279 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6280 
6281 	/*
6282 	 * Copy over the full allocated size of vmcs12 rather than just the size
6283 	 * of the struct.
6284 	 */
6285 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6286 		return -EFAULT;
6287 
6288 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6289 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6290 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6291 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6292 			return -EFAULT;
6293 	}
6294 out:
6295 	return kvm_state.size;
6296 }
6297 
6298 /*
6299  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6300  */
6301 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6302 {
6303 	if (is_guest_mode(vcpu)) {
6304 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6305 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6306 	}
6307 	free_nested(vcpu);
6308 }
6309 
6310 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6311 				struct kvm_nested_state __user *user_kvm_nested_state,
6312 				struct kvm_nested_state *kvm_state)
6313 {
6314 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6315 	struct vmcs12 *vmcs12;
6316 	enum vm_entry_failure_code ignored;
6317 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6318 		&user_kvm_nested_state->data.vmx[0];
6319 	int ret;
6320 
6321 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6322 		return -EINVAL;
6323 
6324 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6325 		if (kvm_state->hdr.vmx.smm.flags)
6326 			return -EINVAL;
6327 
6328 		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6329 			return -EINVAL;
6330 
6331 		/*
6332 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6333 		 * enable eVMCS capability on vCPU. However, since then
6334 		 * code was changed such that flag signals vmcs12 should
6335 		 * be copied into eVMCS in guest memory.
6336 		 *
6337 		 * To preserve backwards compatability, allow user
6338 		 * to set this flag even when there is no VMXON region.
6339 		 */
6340 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6341 			return -EINVAL;
6342 	} else {
6343 		if (!nested_vmx_allowed(vcpu))
6344 			return -EINVAL;
6345 
6346 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6347 			return -EINVAL;
6348 	}
6349 
6350 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6351 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6352 		return -EINVAL;
6353 
6354 	if (kvm_state->hdr.vmx.smm.flags &
6355 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6356 		return -EINVAL;
6357 
6358 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6359 		return -EINVAL;
6360 
6361 	/*
6362 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6363 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6364 	 * must be zero.
6365 	 */
6366 	if (is_smm(vcpu) ?
6367 		(kvm_state->flags &
6368 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6369 		: kvm_state->hdr.vmx.smm.flags)
6370 		return -EINVAL;
6371 
6372 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6373 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6374 		return -EINVAL;
6375 
6376 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6377 		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6378 			return -EINVAL;
6379 
6380 	vmx_leave_nested(vcpu);
6381 
6382 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6383 		return 0;
6384 
6385 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6386 	ret = enter_vmx_operation(vcpu);
6387 	if (ret)
6388 		return ret;
6389 
6390 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6391 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6392 		/* See vmx_has_valid_vmcs12.  */
6393 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6394 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6395 		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6396 			return -EINVAL;
6397 		else
6398 			return 0;
6399 	}
6400 
6401 	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6402 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6403 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6404 			return -EINVAL;
6405 
6406 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6407 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6408 		/*
6409 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6410 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6411 		 * restored yet. EVMCS will be mapped from
6412 		 * nested_get_vmcs12_pages().
6413 		 */
6414 		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6415 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6416 	} else {
6417 		return -EINVAL;
6418 	}
6419 
6420 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6421 		vmx->nested.smm.vmxon = true;
6422 		vmx->nested.vmxon = false;
6423 
6424 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6425 			vmx->nested.smm.guest_mode = true;
6426 	}
6427 
6428 	vmcs12 = get_vmcs12(vcpu);
6429 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6430 		return -EFAULT;
6431 
6432 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6433 		return -EINVAL;
6434 
6435 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6436 		return 0;
6437 
6438 	vmx->nested.nested_run_pending =
6439 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6440 
6441 	vmx->nested.mtf_pending =
6442 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6443 
6444 	ret = -EINVAL;
6445 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6446 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6447 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6448 
6449 		if (kvm_state->size <
6450 		    sizeof(*kvm_state) +
6451 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6452 			goto error_guest_mode;
6453 
6454 		if (copy_from_user(shadow_vmcs12,
6455 				   user_vmx_nested_state->shadow_vmcs12,
6456 				   sizeof(*shadow_vmcs12))) {
6457 			ret = -EFAULT;
6458 			goto error_guest_mode;
6459 		}
6460 
6461 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6462 		    !shadow_vmcs12->hdr.shadow_vmcs)
6463 			goto error_guest_mode;
6464 	}
6465 
6466 	vmx->nested.has_preemption_timer_deadline = false;
6467 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6468 		vmx->nested.has_preemption_timer_deadline = true;
6469 		vmx->nested.preemption_timer_deadline =
6470 			kvm_state->hdr.vmx.preemption_timer_deadline;
6471 	}
6472 
6473 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6474 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6475 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6476 		goto error_guest_mode;
6477 
6478 	vmx->nested.dirty_vmcs12 = true;
6479 	vmx->nested.force_msr_bitmap_recalc = true;
6480 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6481 	if (ret)
6482 		goto error_guest_mode;
6483 
6484 	return 0;
6485 
6486 error_guest_mode:
6487 	vmx->nested.nested_run_pending = 0;
6488 	return ret;
6489 }
6490 
6491 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6492 {
6493 	if (enable_shadow_vmcs) {
6494 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6495 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6496 	}
6497 }
6498 
6499 /*
6500  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6501  * that madness to get the encoding for comparison.
6502  */
6503 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6504 
6505 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6506 {
6507 	/*
6508 	 * Note these are the so called "index" of the VMCS field encoding, not
6509 	 * the index into vmcs12.
6510 	 */
6511 	unsigned int max_idx, idx;
6512 	int i;
6513 
6514 	/*
6515 	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6516 	 * vmcs12, regardless of whether or not the associated feature is
6517 	 * exposed to L1.  Simply find the field with the highest index.
6518 	 */
6519 	max_idx = 0;
6520 	for (i = 0; i < nr_vmcs12_fields; i++) {
6521 		/* The vmcs12 table is very, very sparsely populated. */
6522 		if (!vmcs12_field_offsets[i])
6523 			continue;
6524 
6525 		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6526 		if (idx > max_idx)
6527 			max_idx = idx;
6528 	}
6529 
6530 	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6531 }
6532 
6533 /*
6534  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6535  * returned for the various VMX controls MSRs when nested VMX is enabled.
6536  * The same values should also be used to verify that vmcs12 control fields are
6537  * valid during nested entry from L1 to L2.
6538  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6539  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6540  * bit in the high half is on if the corresponding bit in the control field
6541  * may be on. See also vmx_control_verify().
6542  */
6543 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6544 {
6545 	/*
6546 	 * Note that as a general rule, the high half of the MSRs (bits in
6547 	 * the control fields which may be 1) should be initialized by the
6548 	 * intersection of the underlying hardware's MSR (i.e., features which
6549 	 * can be supported) and the list of features we want to expose -
6550 	 * because they are known to be properly supported in our code.
6551 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
6552 	 * be set to 0, meaning that L1 may turn off any of these bits. The
6553 	 * reason is that if one of these bits is necessary, it will appear
6554 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6555 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
6556 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6557 	 * These rules have exceptions below.
6558 	 */
6559 
6560 	/* pin-based controls */
6561 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6562 		msrs->pinbased_ctls_low,
6563 		msrs->pinbased_ctls_high);
6564 	msrs->pinbased_ctls_low |=
6565 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6566 	msrs->pinbased_ctls_high &=
6567 		PIN_BASED_EXT_INTR_MASK |
6568 		PIN_BASED_NMI_EXITING |
6569 		PIN_BASED_VIRTUAL_NMIS |
6570 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6571 	msrs->pinbased_ctls_high |=
6572 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6573 		PIN_BASED_VMX_PREEMPTION_TIMER;
6574 
6575 	/* exit controls */
6576 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6577 		msrs->exit_ctls_low,
6578 		msrs->exit_ctls_high);
6579 	msrs->exit_ctls_low =
6580 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6581 
6582 	msrs->exit_ctls_high &=
6583 #ifdef CONFIG_X86_64
6584 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6585 #endif
6586 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6587 		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6588 	msrs->exit_ctls_high |=
6589 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6590 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6591 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6592 
6593 	/* We support free control of debug control saving. */
6594 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6595 
6596 	/* entry controls */
6597 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6598 		msrs->entry_ctls_low,
6599 		msrs->entry_ctls_high);
6600 	msrs->entry_ctls_low =
6601 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6602 	msrs->entry_ctls_high &=
6603 #ifdef CONFIG_X86_64
6604 		VM_ENTRY_IA32E_MODE |
6605 #endif
6606 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6607 		VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6608 	msrs->entry_ctls_high |=
6609 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6610 
6611 	/* We support free control of debug control loading. */
6612 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6613 
6614 	/* cpu-based controls */
6615 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6616 		msrs->procbased_ctls_low,
6617 		msrs->procbased_ctls_high);
6618 	msrs->procbased_ctls_low =
6619 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6620 	msrs->procbased_ctls_high &=
6621 		CPU_BASED_INTR_WINDOW_EXITING |
6622 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6623 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6624 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6625 		CPU_BASED_CR3_STORE_EXITING |
6626 #ifdef CONFIG_X86_64
6627 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6628 #endif
6629 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6630 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6631 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6632 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6633 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6634 	/*
6635 	 * We can allow some features even when not supported by the
6636 	 * hardware. For example, L1 can specify an MSR bitmap - and we
6637 	 * can use it to avoid exits to L1 - even when L0 runs L2
6638 	 * without MSR bitmaps.
6639 	 */
6640 	msrs->procbased_ctls_high |=
6641 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6642 		CPU_BASED_USE_MSR_BITMAPS;
6643 
6644 	/* We support free control of CR3 access interception. */
6645 	msrs->procbased_ctls_low &=
6646 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6647 
6648 	/*
6649 	 * secondary cpu-based controls.  Do not include those that
6650 	 * depend on CPUID bits, they are added later by
6651 	 * vmx_vcpu_after_set_cpuid.
6652 	 */
6653 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6654 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6655 		      msrs->secondary_ctls_low,
6656 		      msrs->secondary_ctls_high);
6657 
6658 	msrs->secondary_ctls_low = 0;
6659 	msrs->secondary_ctls_high &=
6660 		SECONDARY_EXEC_DESC |
6661 		SECONDARY_EXEC_ENABLE_RDTSCP |
6662 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6663 		SECONDARY_EXEC_WBINVD_EXITING |
6664 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6665 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6666 		SECONDARY_EXEC_RDRAND_EXITING |
6667 		SECONDARY_EXEC_ENABLE_INVPCID |
6668 		SECONDARY_EXEC_RDSEED_EXITING |
6669 		SECONDARY_EXEC_XSAVES |
6670 		SECONDARY_EXEC_TSC_SCALING;
6671 
6672 	/*
6673 	 * We can emulate "VMCS shadowing," even if the hardware
6674 	 * doesn't support it.
6675 	 */
6676 	msrs->secondary_ctls_high |=
6677 		SECONDARY_EXEC_SHADOW_VMCS;
6678 
6679 	if (enable_ept) {
6680 		/* nested EPT: emulate EPT also to L1 */
6681 		msrs->secondary_ctls_high |=
6682 			SECONDARY_EXEC_ENABLE_EPT;
6683 		msrs->ept_caps =
6684 			VMX_EPT_PAGE_WALK_4_BIT |
6685 			VMX_EPT_PAGE_WALK_5_BIT |
6686 			VMX_EPTP_WB_BIT |
6687 			VMX_EPT_INVEPT_BIT |
6688 			VMX_EPT_EXECUTE_ONLY_BIT;
6689 
6690 		msrs->ept_caps &= ept_caps;
6691 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6692 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6693 			VMX_EPT_1GB_PAGE_BIT;
6694 		if (enable_ept_ad_bits) {
6695 			msrs->secondary_ctls_high |=
6696 				SECONDARY_EXEC_ENABLE_PML;
6697 			msrs->ept_caps |= VMX_EPT_AD_BIT;
6698 		}
6699 	}
6700 
6701 	if (cpu_has_vmx_vmfunc()) {
6702 		msrs->secondary_ctls_high |=
6703 			SECONDARY_EXEC_ENABLE_VMFUNC;
6704 		/*
6705 		 * Advertise EPTP switching unconditionally
6706 		 * since we emulate it
6707 		 */
6708 		if (enable_ept)
6709 			msrs->vmfunc_controls =
6710 				VMX_VMFUNC_EPTP_SWITCHING;
6711 	}
6712 
6713 	/*
6714 	 * Old versions of KVM use the single-context version without
6715 	 * checking for support, so declare that it is supported even
6716 	 * though it is treated as global context.  The alternative is
6717 	 * not failing the single-context invvpid, and it is worse.
6718 	 */
6719 	if (enable_vpid) {
6720 		msrs->secondary_ctls_high |=
6721 			SECONDARY_EXEC_ENABLE_VPID;
6722 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6723 			VMX_VPID_EXTENT_SUPPORTED_MASK;
6724 	}
6725 
6726 	if (enable_unrestricted_guest)
6727 		msrs->secondary_ctls_high |=
6728 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
6729 
6730 	if (flexpriority_enabled)
6731 		msrs->secondary_ctls_high |=
6732 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6733 
6734 	if (enable_sgx)
6735 		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6736 
6737 	/* miscellaneous data */
6738 	rdmsr(MSR_IA32_VMX_MISC,
6739 		msrs->misc_low,
6740 		msrs->misc_high);
6741 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6742 	msrs->misc_low |=
6743 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6744 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6745 		VMX_MISC_ACTIVITY_HLT |
6746 		VMX_MISC_ACTIVITY_WAIT_SIPI;
6747 	msrs->misc_high = 0;
6748 
6749 	/*
6750 	 * This MSR reports some information about VMX support. We
6751 	 * should return information about the VMX we emulate for the
6752 	 * guest, and the VMCS structure we give it - not about the
6753 	 * VMX support of the underlying hardware.
6754 	 */
6755 	msrs->basic =
6756 		VMCS12_REVISION |
6757 		VMX_BASIC_TRUE_CTLS |
6758 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6759 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6760 
6761 	if (cpu_has_vmx_basic_inout())
6762 		msrs->basic |= VMX_BASIC_INOUT;
6763 
6764 	/*
6765 	 * These MSRs specify bits which the guest must keep fixed on
6766 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6767 	 * We picked the standard core2 setting.
6768 	 */
6769 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6770 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6771 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6772 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6773 
6774 	/* These MSRs specify bits which the guest must keep fixed off. */
6775 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6776 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6777 
6778 	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6779 }
6780 
6781 void nested_vmx_hardware_unsetup(void)
6782 {
6783 	int i;
6784 
6785 	if (enable_shadow_vmcs) {
6786 		for (i = 0; i < VMX_BITMAP_NR; i++)
6787 			free_page((unsigned long)vmx_bitmap[i]);
6788 	}
6789 }
6790 
6791 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6792 {
6793 	int i;
6794 
6795 	if (!cpu_has_vmx_shadow_vmcs())
6796 		enable_shadow_vmcs = 0;
6797 	if (enable_shadow_vmcs) {
6798 		for (i = 0; i < VMX_BITMAP_NR; i++) {
6799 			/*
6800 			 * The vmx_bitmap is not tied to a VM and so should
6801 			 * not be charged to a memcg.
6802 			 */
6803 			vmx_bitmap[i] = (unsigned long *)
6804 				__get_free_page(GFP_KERNEL);
6805 			if (!vmx_bitmap[i]) {
6806 				nested_vmx_hardware_unsetup();
6807 				return -ENOMEM;
6808 			}
6809 		}
6810 
6811 		init_vmcs_shadow_fields();
6812 	}
6813 
6814 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
6815 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
6816 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
6817 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
6818 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
6819 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
6820 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
6821 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
6822 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
6823 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
6824 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
6825 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
6826 
6827 	return 0;
6828 }
6829 
6830 struct kvm_x86_nested_ops vmx_nested_ops = {
6831 	.leave_nested = vmx_leave_nested,
6832 	.check_events = vmx_check_nested_events,
6833 	.handle_page_fault_workaround = nested_vmx_handle_page_fault_workaround,
6834 	.hv_timer_pending = nested_vmx_preemption_timer_pending,
6835 	.triple_fault = nested_vmx_triple_fault,
6836 	.get_state = vmx_get_nested_state,
6837 	.set_state = vmx_set_nested_state,
6838 	.get_nested_state_pages = vmx_get_nested_state_pages,
6839 	.write_log_dirty = nested_vmx_write_pml_buffer,
6840 	.enable_evmcs = nested_enable_evmcs,
6841 	.get_evmcs_version = nested_get_evmcs_version,
6842 };
6843