xref: /openbmc/linux/arch/x86/kvm/vmx/nested.c (revision fcf20dc293205bd32de5c39e99026750df386496)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6 
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9 
10 #include "cpuid.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "posted_intr.h"
16 #include "sgx.h"
17 #include "trace.h"
18 #include "vmx.h"
19 #include "x86.h"
20 #include "smm.h"
21 
22 static bool __read_mostly enable_shadow_vmcs = 1;
23 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
24 
25 static bool __read_mostly nested_early_check = 0;
26 module_param(nested_early_check, bool, S_IRUGO);
27 
28 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
29 
30 /*
31  * Hyper-V requires all of these, so mark them as supported even though
32  * they are just treated the same as all-context.
33  */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
35 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
36 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
37 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
38 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39 
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41 
42 enum {
43 	VMX_VMREAD_BITMAP,
44 	VMX_VMWRITE_BITMAP,
45 	VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48 
49 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
51 
52 struct shadow_vmcs_field {
53 	u16	encoding;
54 	u16	offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61 	ARRAY_SIZE(shadow_read_only_fields);
62 
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68 	ARRAY_SIZE(shadow_read_write_fields);
69 
70 static void init_vmcs_shadow_fields(void)
71 {
72 	int i, j;
73 
74 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76 
77 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79 		u16 field = entry.encoding;
80 
81 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82 		    (i + 1 == max_shadow_read_only_fields ||
83 		     shadow_read_only_fields[i + 1].encoding != field + 1))
84 			pr_err("Missing field from shadow_read_only_field %x\n",
85 			       field + 1);
86 
87 		clear_bit(field, vmx_vmread_bitmap);
88 		if (field & 1)
89 #ifdef CONFIG_X86_64
90 			continue;
91 #else
92 			entry.offset += sizeof(u32);
93 #endif
94 		shadow_read_only_fields[j++] = entry;
95 	}
96 	max_shadow_read_only_fields = j;
97 
98 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100 		u16 field = entry.encoding;
101 
102 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103 		    (i + 1 == max_shadow_read_write_fields ||
104 		     shadow_read_write_fields[i + 1].encoding != field + 1))
105 			pr_err("Missing field from shadow_read_write_field %x\n",
106 			       field + 1);
107 
108 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109 			  field <= GUEST_TR_AR_BYTES,
110 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111 
112 		/*
113 		 * PML and the preemption timer can be emulated, but the
114 		 * processor cannot vmwrite to fields that don't exist
115 		 * on bare metal.
116 		 */
117 		switch (field) {
118 		case GUEST_PML_INDEX:
119 			if (!cpu_has_vmx_pml())
120 				continue;
121 			break;
122 		case VMX_PREEMPTION_TIMER_VALUE:
123 			if (!cpu_has_vmx_preemption_timer())
124 				continue;
125 			break;
126 		case GUEST_INTR_STATUS:
127 			if (!cpu_has_vmx_apicv())
128 				continue;
129 			break;
130 		default:
131 			break;
132 		}
133 
134 		clear_bit(field, vmx_vmwrite_bitmap);
135 		clear_bit(field, vmx_vmread_bitmap);
136 		if (field & 1)
137 #ifdef CONFIG_X86_64
138 			continue;
139 #else
140 			entry.offset += sizeof(u32);
141 #endif
142 		shadow_read_write_fields[j++] = entry;
143 	}
144 	max_shadow_read_write_fields = j;
145 }
146 
147 /*
148  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149  * set the success or error code of an emulated VMX instruction (as specified
150  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151  * instruction.
152  */
153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158 	return kvm_skip_emulated_instruction(vcpu);
159 }
160 
161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
166 			| X86_EFLAGS_CF);
167 	return kvm_skip_emulated_instruction(vcpu);
168 }
169 
170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171 				u32 vm_instruction_error)
172 {
173 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
174 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
175 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
176 			| X86_EFLAGS_ZF);
177 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
178 	/*
179 	 * We don't need to force sync to shadow VMCS because
180 	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
181 	 * fields and thus must be synced.
182 	 */
183 	if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
184 		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
185 
186 	return kvm_skip_emulated_instruction(vcpu);
187 }
188 
189 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
190 {
191 	struct vcpu_vmx *vmx = to_vmx(vcpu);
192 
193 	/*
194 	 * failValid writes the error number to the current VMCS, which
195 	 * can't be done if there isn't a current VMCS.
196 	 */
197 	if (vmx->nested.current_vmptr == INVALID_GPA &&
198 	    !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
199 		return nested_vmx_failInvalid(vcpu);
200 
201 	return nested_vmx_failValid(vcpu, vm_instruction_error);
202 }
203 
204 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
205 {
206 	/* TODO: not to reset guest simply here. */
207 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
208 	pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
209 }
210 
211 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
212 {
213 	return fixed_bits_valid(control, low, high);
214 }
215 
216 static inline u64 vmx_control_msr(u32 low, u32 high)
217 {
218 	return low | ((u64)high << 32);
219 }
220 
221 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
222 {
223 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
224 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
225 	vmx->nested.need_vmcs12_to_shadow_sync = false;
226 }
227 
228 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
229 {
230 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
231 	struct vcpu_vmx *vmx = to_vmx(vcpu);
232 
233 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
234 		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
235 		vmx->nested.hv_evmcs = NULL;
236 	}
237 
238 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
239 
240 	if (hv_vcpu) {
241 		hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
242 		hv_vcpu->nested.vm_id = 0;
243 		hv_vcpu->nested.vp_id = 0;
244 	}
245 }
246 
247 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
248 				     struct loaded_vmcs *prev)
249 {
250 	struct vmcs_host_state *dest, *src;
251 
252 	if (unlikely(!vmx->guest_state_loaded))
253 		return;
254 
255 	src = &prev->host_state;
256 	dest = &vmx->loaded_vmcs->host_state;
257 
258 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
259 	dest->ldt_sel = src->ldt_sel;
260 #ifdef CONFIG_X86_64
261 	dest->ds_sel = src->ds_sel;
262 	dest->es_sel = src->es_sel;
263 #endif
264 }
265 
266 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
267 {
268 	struct vcpu_vmx *vmx = to_vmx(vcpu);
269 	struct loaded_vmcs *prev;
270 	int cpu;
271 
272 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
273 		return;
274 
275 	cpu = get_cpu();
276 	prev = vmx->loaded_vmcs;
277 	vmx->loaded_vmcs = vmcs;
278 	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
279 	vmx_sync_vmcs_host_state(vmx, prev);
280 	put_cpu();
281 
282 	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
283 
284 	/*
285 	 * All lazily updated registers will be reloaded from VMCS12 on both
286 	 * vmentry and vmexit.
287 	 */
288 	vcpu->arch.regs_dirty = 0;
289 }
290 
291 /*
292  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
293  * just stops using VMX.
294  */
295 static void free_nested(struct kvm_vcpu *vcpu)
296 {
297 	struct vcpu_vmx *vmx = to_vmx(vcpu);
298 
299 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
300 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
301 
302 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
303 		return;
304 
305 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
306 
307 	vmx->nested.vmxon = false;
308 	vmx->nested.smm.vmxon = false;
309 	vmx->nested.vmxon_ptr = INVALID_GPA;
310 	free_vpid(vmx->nested.vpid02);
311 	vmx->nested.posted_intr_nv = -1;
312 	vmx->nested.current_vmptr = INVALID_GPA;
313 	if (enable_shadow_vmcs) {
314 		vmx_disable_shadow_vmcs(vmx);
315 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
316 		free_vmcs(vmx->vmcs01.shadow_vmcs);
317 		vmx->vmcs01.shadow_vmcs = NULL;
318 	}
319 	kfree(vmx->nested.cached_vmcs12);
320 	vmx->nested.cached_vmcs12 = NULL;
321 	kfree(vmx->nested.cached_shadow_vmcs12);
322 	vmx->nested.cached_shadow_vmcs12 = NULL;
323 	/*
324 	 * Unpin physical memory we referred to in the vmcs02.  The APIC access
325 	 * page's backing page (yeah, confusing) shouldn't actually be accessed,
326 	 * and if it is written, the contents are irrelevant.
327 	 */
328 	kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
329 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
330 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
331 	vmx->nested.pi_desc = NULL;
332 
333 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
334 
335 	nested_release_evmcs(vcpu);
336 
337 	free_loaded_vmcs(&vmx->nested.vmcs02);
338 }
339 
340 /*
341  * Ensure that the current vmcs of the logical processor is the
342  * vmcs01 of the vcpu before calling free_nested().
343  */
344 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
345 {
346 	vcpu_load(vcpu);
347 	vmx_leave_nested(vcpu);
348 	vcpu_put(vcpu);
349 }
350 
351 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
352 
353 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
354 {
355 	return VALID_PAGE(root_hpa) &&
356 	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
357 }
358 
359 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
360 				       gpa_t addr)
361 {
362 	unsigned long roots = 0;
363 	uint i;
364 	struct kvm_mmu_root_info *cached_root;
365 
366 	WARN_ON_ONCE(!mmu_is_nested(vcpu));
367 
368 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
369 		cached_root = &vcpu->arch.mmu->prev_roots[i];
370 
371 		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
372 					    eptp))
373 			roots |= KVM_MMU_ROOT_PREVIOUS(i);
374 	}
375 	if (roots)
376 		kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
377 }
378 
379 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
380 		struct x86_exception *fault)
381 {
382 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
383 	struct vcpu_vmx *vmx = to_vmx(vcpu);
384 	u32 vm_exit_reason;
385 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
386 
387 	if (vmx->nested.pml_full) {
388 		vm_exit_reason = EXIT_REASON_PML_FULL;
389 		vmx->nested.pml_full = false;
390 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
391 	} else {
392 		if (fault->error_code & PFERR_RSVD_MASK)
393 			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
394 		else
395 			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
396 
397 		/*
398 		 * Although the caller (kvm_inject_emulated_page_fault) would
399 		 * have already synced the faulting address in the shadow EPT
400 		 * tables for the current EPTP12, we also need to sync it for
401 		 * any other cached EPTP02s based on the same EP4TA, since the
402 		 * TLB associates mappings to the EP4TA rather than the full EPTP.
403 		 */
404 		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
405 					   fault->address);
406 	}
407 
408 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
409 	vmcs12->guest_physical_address = fault->address;
410 }
411 
412 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
413 {
414 	struct vcpu_vmx *vmx = to_vmx(vcpu);
415 	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
416 	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
417 
418 	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
419 				nested_ept_ad_enabled(vcpu),
420 				nested_ept_get_eptp(vcpu));
421 }
422 
423 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
424 {
425 	WARN_ON(mmu_is_nested(vcpu));
426 
427 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
428 	nested_ept_new_eptp(vcpu);
429 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
430 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
431 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
432 
433 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
434 }
435 
436 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
437 {
438 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
439 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
440 }
441 
442 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
443 					    u16 error_code)
444 {
445 	bool inequality, bit;
446 
447 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
448 	inequality =
449 		(error_code & vmcs12->page_fault_error_code_mask) !=
450 		 vmcs12->page_fault_error_code_match;
451 	return inequality ^ bit;
452 }
453 
454 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
455 					   u32 error_code)
456 {
457 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
458 
459 	/*
460 	 * Drop bits 31:16 of the error code when performing the #PF mask+match
461 	 * check.  All VMCS fields involved are 32 bits, but Intel CPUs never
462 	 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
463 	 * error code.  Including the to-be-dropped bits in the check might
464 	 * result in an "impossible" or missed exit from L1's perspective.
465 	 */
466 	if (vector == PF_VECTOR)
467 		return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
468 
469 	return (vmcs12->exception_bitmap & (1u << vector));
470 }
471 
472 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
473 					       struct vmcs12 *vmcs12)
474 {
475 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
476 		return 0;
477 
478 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
479 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
480 		return -EINVAL;
481 
482 	return 0;
483 }
484 
485 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
486 						struct vmcs12 *vmcs12)
487 {
488 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
489 		return 0;
490 
491 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
492 		return -EINVAL;
493 
494 	return 0;
495 }
496 
497 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
498 						struct vmcs12 *vmcs12)
499 {
500 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
501 		return 0;
502 
503 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
504 		return -EINVAL;
505 
506 	return 0;
507 }
508 
509 /*
510  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
511  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
512  * only the "disable intercept" case needs to be handled.
513  */
514 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
515 							unsigned long *msr_bitmap_l0,
516 							u32 msr, int type)
517 {
518 	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
519 		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
520 
521 	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
522 		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
523 }
524 
525 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
526 {
527 	int msr;
528 
529 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
530 		unsigned word = msr / BITS_PER_LONG;
531 
532 		msr_bitmap[word] = ~0;
533 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
534 	}
535 }
536 
537 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
538 static inline									\
539 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
540 					 unsigned long *msr_bitmap_l1,		\
541 					 unsigned long *msr_bitmap_l0, u32 msr)	\
542 {										\
543 	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
544 	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
545 		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
546 	else									\
547 		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
548 }
549 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
550 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
551 
552 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
553 						    unsigned long *msr_bitmap_l1,
554 						    unsigned long *msr_bitmap_l0,
555 						    u32 msr, int types)
556 {
557 	if (types & MSR_TYPE_R)
558 		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
559 						  msr_bitmap_l0, msr);
560 	if (types & MSR_TYPE_W)
561 		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
562 						   msr_bitmap_l0, msr);
563 }
564 
565 /*
566  * Merge L0's and L1's MSR bitmap, return false to indicate that
567  * we do not use the hardware.
568  */
569 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
570 						 struct vmcs12 *vmcs12)
571 {
572 	struct vcpu_vmx *vmx = to_vmx(vcpu);
573 	int msr;
574 	unsigned long *msr_bitmap_l1;
575 	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
576 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
577 	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
578 
579 	/* Nothing to do if the MSR bitmap is not in use.  */
580 	if (!cpu_has_vmx_msr_bitmap() ||
581 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
582 		return false;
583 
584 	/*
585 	 * MSR bitmap update can be skipped when:
586 	 * - MSR bitmap for L1 hasn't changed.
587 	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
588 	 *   before.
589 	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
590 	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
591 	 */
592 	if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
593 	    evmcs->hv_enlightenments_control.msr_bitmap &&
594 	    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
595 		return true;
596 
597 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
598 		return false;
599 
600 	msr_bitmap_l1 = (unsigned long *)map->hva;
601 
602 	/*
603 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
604 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
605 	 * the x2APIC MSR range and selectively toggle those relevant to L2.
606 	 */
607 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
608 
609 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
610 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
611 			/*
612 			 * L0 need not intercept reads for MSRs between 0x800
613 			 * and 0x8ff, it just lets the processor take the value
614 			 * from the virtual-APIC page; take those 256 bits
615 			 * directly from the L1 bitmap.
616 			 */
617 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
618 				unsigned word = msr / BITS_PER_LONG;
619 
620 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
621 			}
622 		}
623 
624 		nested_vmx_disable_intercept_for_x2apic_msr(
625 			msr_bitmap_l1, msr_bitmap_l0,
626 			X2APIC_MSR(APIC_TASKPRI),
627 			MSR_TYPE_R | MSR_TYPE_W);
628 
629 		if (nested_cpu_has_vid(vmcs12)) {
630 			nested_vmx_disable_intercept_for_x2apic_msr(
631 				msr_bitmap_l1, msr_bitmap_l0,
632 				X2APIC_MSR(APIC_EOI),
633 				MSR_TYPE_W);
634 			nested_vmx_disable_intercept_for_x2apic_msr(
635 				msr_bitmap_l1, msr_bitmap_l0,
636 				X2APIC_MSR(APIC_SELF_IPI),
637 				MSR_TYPE_W);
638 		}
639 	}
640 
641 	/*
642 	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
643 	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
644 	 */
645 #ifdef CONFIG_X86_64
646 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
647 					 MSR_FS_BASE, MSR_TYPE_RW);
648 
649 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
650 					 MSR_GS_BASE, MSR_TYPE_RW);
651 
652 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
653 					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
654 #endif
655 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
656 					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
657 
658 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
659 					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
660 
661 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
662 					 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
663 
664 	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
665 
666 	vmx->nested.force_msr_bitmap_recalc = false;
667 
668 	return true;
669 }
670 
671 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
672 				       struct vmcs12 *vmcs12)
673 {
674 	struct vcpu_vmx *vmx = to_vmx(vcpu);
675 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
676 
677 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
678 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
679 		return;
680 
681 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
682 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
683 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
684 		return;
685 
686 	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
687 			      VMCS12_SIZE);
688 }
689 
690 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
691 					      struct vmcs12 *vmcs12)
692 {
693 	struct vcpu_vmx *vmx = to_vmx(vcpu);
694 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
695 
696 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
697 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
698 		return;
699 
700 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
701 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
702 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
703 		return;
704 
705 	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
706 			       VMCS12_SIZE);
707 }
708 
709 /*
710  * In nested virtualization, check if L1 has set
711  * VM_EXIT_ACK_INTR_ON_EXIT
712  */
713 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
714 {
715 	return get_vmcs12(vcpu)->vm_exit_controls &
716 		VM_EXIT_ACK_INTR_ON_EXIT;
717 }
718 
719 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
720 					  struct vmcs12 *vmcs12)
721 {
722 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
723 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
724 		return -EINVAL;
725 	else
726 		return 0;
727 }
728 
729 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
730 					   struct vmcs12 *vmcs12)
731 {
732 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
733 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
734 	    !nested_cpu_has_vid(vmcs12) &&
735 	    !nested_cpu_has_posted_intr(vmcs12))
736 		return 0;
737 
738 	/*
739 	 * If virtualize x2apic mode is enabled,
740 	 * virtualize apic access must be disabled.
741 	 */
742 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
743 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
744 		return -EINVAL;
745 
746 	/*
747 	 * If virtual interrupt delivery is enabled,
748 	 * we must exit on external interrupts.
749 	 */
750 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
751 		return -EINVAL;
752 
753 	/*
754 	 * bits 15:8 should be zero in posted_intr_nv,
755 	 * the descriptor address has been already checked
756 	 * in nested_get_vmcs12_pages.
757 	 *
758 	 * bits 5:0 of posted_intr_desc_addr should be zero.
759 	 */
760 	if (nested_cpu_has_posted_intr(vmcs12) &&
761 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
762 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
763 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
764 	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
765 		return -EINVAL;
766 
767 	/* tpr shadow is needed by all apicv features. */
768 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
769 		return -EINVAL;
770 
771 	return 0;
772 }
773 
774 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
775 				       u32 count, u64 addr)
776 {
777 	if (count == 0)
778 		return 0;
779 
780 	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
781 	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
782 		return -EINVAL;
783 
784 	return 0;
785 }
786 
787 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
788 						     struct vmcs12 *vmcs12)
789 {
790 	if (CC(nested_vmx_check_msr_switch(vcpu,
791 					   vmcs12->vm_exit_msr_load_count,
792 					   vmcs12->vm_exit_msr_load_addr)) ||
793 	    CC(nested_vmx_check_msr_switch(vcpu,
794 					   vmcs12->vm_exit_msr_store_count,
795 					   vmcs12->vm_exit_msr_store_addr)))
796 		return -EINVAL;
797 
798 	return 0;
799 }
800 
801 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
802                                                       struct vmcs12 *vmcs12)
803 {
804 	if (CC(nested_vmx_check_msr_switch(vcpu,
805 					   vmcs12->vm_entry_msr_load_count,
806 					   vmcs12->vm_entry_msr_load_addr)))
807                 return -EINVAL;
808 
809 	return 0;
810 }
811 
812 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
813 					 struct vmcs12 *vmcs12)
814 {
815 	if (!nested_cpu_has_pml(vmcs12))
816 		return 0;
817 
818 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
819 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
820 		return -EINVAL;
821 
822 	return 0;
823 }
824 
825 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
826 							struct vmcs12 *vmcs12)
827 {
828 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
829 	       !nested_cpu_has_ept(vmcs12)))
830 		return -EINVAL;
831 	return 0;
832 }
833 
834 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
835 							 struct vmcs12 *vmcs12)
836 {
837 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
838 	       !nested_cpu_has_ept(vmcs12)))
839 		return -EINVAL;
840 	return 0;
841 }
842 
843 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
844 						 struct vmcs12 *vmcs12)
845 {
846 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
847 		return 0;
848 
849 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
850 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
851 		return -EINVAL;
852 
853 	return 0;
854 }
855 
856 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
857 				       struct vmx_msr_entry *e)
858 {
859 	/* x2APIC MSR accesses are not allowed */
860 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
861 		return -EINVAL;
862 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
863 	    CC(e->index == MSR_IA32_UCODE_REV))
864 		return -EINVAL;
865 	if (CC(e->reserved != 0))
866 		return -EINVAL;
867 	return 0;
868 }
869 
870 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
871 				     struct vmx_msr_entry *e)
872 {
873 	if (CC(e->index == MSR_FS_BASE) ||
874 	    CC(e->index == MSR_GS_BASE) ||
875 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
876 	    nested_vmx_msr_check_common(vcpu, e))
877 		return -EINVAL;
878 	return 0;
879 }
880 
881 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
882 				      struct vmx_msr_entry *e)
883 {
884 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
885 	    nested_vmx_msr_check_common(vcpu, e))
886 		return -EINVAL;
887 	return 0;
888 }
889 
890 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
891 {
892 	struct vcpu_vmx *vmx = to_vmx(vcpu);
893 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
894 				       vmx->nested.msrs.misc_high);
895 
896 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
897 }
898 
899 /*
900  * Load guest's/host's msr at nested entry/exit.
901  * return 0 for success, entry index for failure.
902  *
903  * One of the failure modes for MSR load/store is when a list exceeds the
904  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
905  * as possible, process all valid entries before failing rather than precheck
906  * for a capacity violation.
907  */
908 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
909 {
910 	u32 i;
911 	struct vmx_msr_entry e;
912 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
913 
914 	for (i = 0; i < count; i++) {
915 		if (unlikely(i >= max_msr_list_size))
916 			goto fail;
917 
918 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
919 					&e, sizeof(e))) {
920 			pr_debug_ratelimited(
921 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
922 				__func__, i, gpa + i * sizeof(e));
923 			goto fail;
924 		}
925 		if (nested_vmx_load_msr_check(vcpu, &e)) {
926 			pr_debug_ratelimited(
927 				"%s check failed (%u, 0x%x, 0x%x)\n",
928 				__func__, i, e.index, e.reserved);
929 			goto fail;
930 		}
931 		if (kvm_set_msr(vcpu, e.index, e.value)) {
932 			pr_debug_ratelimited(
933 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
934 				__func__, i, e.index, e.value);
935 			goto fail;
936 		}
937 	}
938 	return 0;
939 fail:
940 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
941 	return i + 1;
942 }
943 
944 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
945 					    u32 msr_index,
946 					    u64 *data)
947 {
948 	struct vcpu_vmx *vmx = to_vmx(vcpu);
949 
950 	/*
951 	 * If the L0 hypervisor stored a more accurate value for the TSC that
952 	 * does not include the time taken for emulation of the L2->L1
953 	 * VM-exit in L0, use the more accurate value.
954 	 */
955 	if (msr_index == MSR_IA32_TSC) {
956 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
957 						    MSR_IA32_TSC);
958 
959 		if (i >= 0) {
960 			u64 val = vmx->msr_autostore.guest.val[i].value;
961 
962 			*data = kvm_read_l1_tsc(vcpu, val);
963 			return true;
964 		}
965 	}
966 
967 	if (kvm_get_msr(vcpu, msr_index, data)) {
968 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
969 			msr_index);
970 		return false;
971 	}
972 	return true;
973 }
974 
975 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
976 				     struct vmx_msr_entry *e)
977 {
978 	if (kvm_vcpu_read_guest(vcpu,
979 				gpa + i * sizeof(*e),
980 				e, 2 * sizeof(u32))) {
981 		pr_debug_ratelimited(
982 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
983 			__func__, i, gpa + i * sizeof(*e));
984 		return false;
985 	}
986 	if (nested_vmx_store_msr_check(vcpu, e)) {
987 		pr_debug_ratelimited(
988 			"%s check failed (%u, 0x%x, 0x%x)\n",
989 			__func__, i, e->index, e->reserved);
990 		return false;
991 	}
992 	return true;
993 }
994 
995 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
996 {
997 	u64 data;
998 	u32 i;
999 	struct vmx_msr_entry e;
1000 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1001 
1002 	for (i = 0; i < count; i++) {
1003 		if (unlikely(i >= max_msr_list_size))
1004 			return -EINVAL;
1005 
1006 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1007 			return -EINVAL;
1008 
1009 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1010 			return -EINVAL;
1011 
1012 		if (kvm_vcpu_write_guest(vcpu,
1013 					 gpa + i * sizeof(e) +
1014 					     offsetof(struct vmx_msr_entry, value),
1015 					 &data, sizeof(data))) {
1016 			pr_debug_ratelimited(
1017 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1018 				__func__, i, e.index, data);
1019 			return -EINVAL;
1020 		}
1021 	}
1022 	return 0;
1023 }
1024 
1025 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1026 {
1027 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1028 	u32 count = vmcs12->vm_exit_msr_store_count;
1029 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1030 	struct vmx_msr_entry e;
1031 	u32 i;
1032 
1033 	for (i = 0; i < count; i++) {
1034 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1035 			return false;
1036 
1037 		if (e.index == msr_index)
1038 			return true;
1039 	}
1040 	return false;
1041 }
1042 
1043 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1044 					   u32 msr_index)
1045 {
1046 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1047 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1048 	bool in_vmcs12_store_list;
1049 	int msr_autostore_slot;
1050 	bool in_autostore_list;
1051 	int last;
1052 
1053 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1054 	in_autostore_list = msr_autostore_slot >= 0;
1055 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1056 
1057 	if (in_vmcs12_store_list && !in_autostore_list) {
1058 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1059 			/*
1060 			 * Emulated VMEntry does not fail here.  Instead a less
1061 			 * accurate value will be returned by
1062 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1063 			 * instead of reading the value from the vmcs02 VMExit
1064 			 * MSR-store area.
1065 			 */
1066 			pr_warn_ratelimited(
1067 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1068 				msr_index);
1069 			return;
1070 		}
1071 		last = autostore->nr++;
1072 		autostore->val[last].index = msr_index;
1073 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1074 		last = --autostore->nr;
1075 		autostore->val[msr_autostore_slot] = autostore->val[last];
1076 	}
1077 }
1078 
1079 /*
1080  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1081  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1082  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1083  * @entry_failure_code.
1084  */
1085 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1086 			       bool nested_ept, bool reload_pdptrs,
1087 			       enum vm_entry_failure_code *entry_failure_code)
1088 {
1089 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1090 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1091 		return -EINVAL;
1092 	}
1093 
1094 	/*
1095 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1096 	 * must not be dereferenced.
1097 	 */
1098 	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1099 	    CC(!load_pdptrs(vcpu, cr3))) {
1100 		*entry_failure_code = ENTRY_FAIL_PDPTE;
1101 		return -EINVAL;
1102 	}
1103 
1104 	vcpu->arch.cr3 = cr3;
1105 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1106 
1107 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1108 	kvm_init_mmu(vcpu);
1109 
1110 	if (!nested_ept)
1111 		kvm_mmu_new_pgd(vcpu, cr3);
1112 
1113 	return 0;
1114 }
1115 
1116 /*
1117  * Returns if KVM is able to config CPU to tag TLB entries
1118  * populated by L2 differently than TLB entries populated
1119  * by L1.
1120  *
1121  * If L0 uses EPT, L1 and L2 run with different EPTP because
1122  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1123  * are tagged with different EPTP.
1124  *
1125  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1126  * with different VPID (L1 entries are tagged with vmx->vpid
1127  * while L2 entries are tagged with vmx->nested.vpid02).
1128  */
1129 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1130 {
1131 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1132 
1133 	return enable_ept ||
1134 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1135 }
1136 
1137 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1138 					    struct vmcs12 *vmcs12,
1139 					    bool is_vmenter)
1140 {
1141 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1142 
1143 	/*
1144 	 * KVM_REQ_HV_TLB_FLUSH flushes entries from either L1's VP_ID or
1145 	 * L2's VP_ID upon request from the guest. Make sure we check for
1146 	 * pending entries in the right FIFO upon L1/L2 transition as these
1147 	 * requests are put by other vCPUs asynchronously.
1148 	 */
1149 	if (to_hv_vcpu(vcpu) && enable_ept)
1150 		kvm_make_request(KVM_REQ_HV_TLB_FLUSH, vcpu);
1151 
1152 	/*
1153 	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1154 	 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1155 	 * full TLB flush from the guest's perspective.  This is required even
1156 	 * if VPID is disabled in the host as KVM may need to synchronize the
1157 	 * MMU in response to the guest TLB flush.
1158 	 *
1159 	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1160 	 * EPT is a special snowflake, as guest-physical mappings aren't
1161 	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1162 	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1163 	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1164 	 * those mappings.
1165 	 */
1166 	if (!nested_cpu_has_vpid(vmcs12)) {
1167 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1168 		return;
1169 	}
1170 
1171 	/* L2 should never have a VPID if VPID is disabled. */
1172 	WARN_ON(!enable_vpid);
1173 
1174 	/*
1175 	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1176 	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1177 	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1178 	 * that the new vpid12 has never been used and thus represents a new
1179 	 * guest ASID that cannot have entries in the TLB.
1180 	 */
1181 	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1182 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1183 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1184 		return;
1185 	}
1186 
1187 	/*
1188 	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1189 	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1190 	 * KVM was unable to allocate a VPID for L2, flush the current context
1191 	 * as the effective ASID is common to both L1 and L2.
1192 	 */
1193 	if (!nested_has_guest_tlb_tag(vcpu))
1194 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1195 }
1196 
1197 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1198 {
1199 	superset &= mask;
1200 	subset &= mask;
1201 
1202 	return (superset | subset) == superset;
1203 }
1204 
1205 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1206 {
1207 	const u64 feature_and_reserved =
1208 		/* feature (except bit 48; see below) */
1209 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1210 		/* reserved */
1211 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1212 	u64 vmx_basic = vmcs_config.nested.basic;
1213 
1214 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1215 		return -EINVAL;
1216 
1217 	/*
1218 	 * KVM does not emulate a version of VMX that constrains physical
1219 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1220 	 */
1221 	if (data & BIT_ULL(48))
1222 		return -EINVAL;
1223 
1224 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1225 	    vmx_basic_vmcs_revision_id(data))
1226 		return -EINVAL;
1227 
1228 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1229 		return -EINVAL;
1230 
1231 	vmx->nested.msrs.basic = data;
1232 	return 0;
1233 }
1234 
1235 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1236 				u32 **low, u32 **high)
1237 {
1238 	switch (msr_index) {
1239 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1240 		*low = &msrs->pinbased_ctls_low;
1241 		*high = &msrs->pinbased_ctls_high;
1242 		break;
1243 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1244 		*low = &msrs->procbased_ctls_low;
1245 		*high = &msrs->procbased_ctls_high;
1246 		break;
1247 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1248 		*low = &msrs->exit_ctls_low;
1249 		*high = &msrs->exit_ctls_high;
1250 		break;
1251 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1252 		*low = &msrs->entry_ctls_low;
1253 		*high = &msrs->entry_ctls_high;
1254 		break;
1255 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1256 		*low = &msrs->secondary_ctls_low;
1257 		*high = &msrs->secondary_ctls_high;
1258 		break;
1259 	default:
1260 		BUG();
1261 	}
1262 }
1263 
1264 static int
1265 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1266 {
1267 	u32 *lowp, *highp;
1268 	u64 supported;
1269 
1270 	vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1271 
1272 	supported = vmx_control_msr(*lowp, *highp);
1273 
1274 	/* Check must-be-1 bits are still 1. */
1275 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1276 		return -EINVAL;
1277 
1278 	/* Check must-be-0 bits are still 0. */
1279 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1280 		return -EINVAL;
1281 
1282 	vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1283 	*lowp = data;
1284 	*highp = data >> 32;
1285 	return 0;
1286 }
1287 
1288 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1289 {
1290 	const u64 feature_and_reserved_bits =
1291 		/* feature */
1292 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1293 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1294 		/* reserved */
1295 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1296 	u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1297 				       vmcs_config.nested.misc_high);
1298 
1299 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1300 		return -EINVAL;
1301 
1302 	if ((vmx->nested.msrs.pinbased_ctls_high &
1303 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1304 	    vmx_misc_preemption_timer_rate(data) !=
1305 	    vmx_misc_preemption_timer_rate(vmx_misc))
1306 		return -EINVAL;
1307 
1308 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1309 		return -EINVAL;
1310 
1311 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1312 		return -EINVAL;
1313 
1314 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1315 		return -EINVAL;
1316 
1317 	vmx->nested.msrs.misc_low = data;
1318 	vmx->nested.msrs.misc_high = data >> 32;
1319 
1320 	return 0;
1321 }
1322 
1323 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1324 {
1325 	u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1326 					       vmcs_config.nested.vpid_caps);
1327 
1328 	/* Every bit is either reserved or a feature bit. */
1329 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1330 		return -EINVAL;
1331 
1332 	vmx->nested.msrs.ept_caps = data;
1333 	vmx->nested.msrs.vpid_caps = data >> 32;
1334 	return 0;
1335 }
1336 
1337 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1338 {
1339 	switch (msr_index) {
1340 	case MSR_IA32_VMX_CR0_FIXED0:
1341 		return &msrs->cr0_fixed0;
1342 	case MSR_IA32_VMX_CR4_FIXED0:
1343 		return &msrs->cr4_fixed0;
1344 	default:
1345 		BUG();
1346 	}
1347 }
1348 
1349 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1350 {
1351 	const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1352 
1353 	/*
1354 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1355 	 * must be 1 in the restored value.
1356 	 */
1357 	if (!is_bitwise_subset(data, *msr, -1ULL))
1358 		return -EINVAL;
1359 
1360 	*vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1361 	return 0;
1362 }
1363 
1364 /*
1365  * Called when userspace is restoring VMX MSRs.
1366  *
1367  * Returns 0 on success, non-0 otherwise.
1368  */
1369 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1370 {
1371 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1372 
1373 	/*
1374 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1375 	 * is in VMX operation.
1376 	 */
1377 	if (vmx->nested.vmxon)
1378 		return -EBUSY;
1379 
1380 	switch (msr_index) {
1381 	case MSR_IA32_VMX_BASIC:
1382 		return vmx_restore_vmx_basic(vmx, data);
1383 	case MSR_IA32_VMX_PINBASED_CTLS:
1384 	case MSR_IA32_VMX_PROCBASED_CTLS:
1385 	case MSR_IA32_VMX_EXIT_CTLS:
1386 	case MSR_IA32_VMX_ENTRY_CTLS:
1387 		/*
1388 		 * The "non-true" VMX capability MSRs are generated from the
1389 		 * "true" MSRs, so we do not support restoring them directly.
1390 		 *
1391 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1392 		 * should restore the "true" MSRs with the must-be-1 bits
1393 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1394 		 * DEFAULT SETTINGS".
1395 		 */
1396 		return -EINVAL;
1397 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1398 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1399 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1400 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1401 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1402 		return vmx_restore_control_msr(vmx, msr_index, data);
1403 	case MSR_IA32_VMX_MISC:
1404 		return vmx_restore_vmx_misc(vmx, data);
1405 	case MSR_IA32_VMX_CR0_FIXED0:
1406 	case MSR_IA32_VMX_CR4_FIXED0:
1407 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1408 	case MSR_IA32_VMX_CR0_FIXED1:
1409 	case MSR_IA32_VMX_CR4_FIXED1:
1410 		/*
1411 		 * These MSRs are generated based on the vCPU's CPUID, so we
1412 		 * do not support restoring them directly.
1413 		 */
1414 		return -EINVAL;
1415 	case MSR_IA32_VMX_EPT_VPID_CAP:
1416 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1417 	case MSR_IA32_VMX_VMCS_ENUM:
1418 		vmx->nested.msrs.vmcs_enum = data;
1419 		return 0;
1420 	case MSR_IA32_VMX_VMFUNC:
1421 		if (data & ~vmcs_config.nested.vmfunc_controls)
1422 			return -EINVAL;
1423 		vmx->nested.msrs.vmfunc_controls = data;
1424 		return 0;
1425 	default:
1426 		/*
1427 		 * The rest of the VMX capability MSRs do not support restore.
1428 		 */
1429 		return -EINVAL;
1430 	}
1431 }
1432 
1433 /* Returns 0 on success, non-0 otherwise. */
1434 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1435 {
1436 	switch (msr_index) {
1437 	case MSR_IA32_VMX_BASIC:
1438 		*pdata = msrs->basic;
1439 		break;
1440 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1441 	case MSR_IA32_VMX_PINBASED_CTLS:
1442 		*pdata = vmx_control_msr(
1443 			msrs->pinbased_ctls_low,
1444 			msrs->pinbased_ctls_high);
1445 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1446 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1447 		break;
1448 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1449 	case MSR_IA32_VMX_PROCBASED_CTLS:
1450 		*pdata = vmx_control_msr(
1451 			msrs->procbased_ctls_low,
1452 			msrs->procbased_ctls_high);
1453 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1454 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1455 		break;
1456 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1457 	case MSR_IA32_VMX_EXIT_CTLS:
1458 		*pdata = vmx_control_msr(
1459 			msrs->exit_ctls_low,
1460 			msrs->exit_ctls_high);
1461 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1462 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1463 		break;
1464 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1465 	case MSR_IA32_VMX_ENTRY_CTLS:
1466 		*pdata = vmx_control_msr(
1467 			msrs->entry_ctls_low,
1468 			msrs->entry_ctls_high);
1469 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1470 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1471 		break;
1472 	case MSR_IA32_VMX_MISC:
1473 		*pdata = vmx_control_msr(
1474 			msrs->misc_low,
1475 			msrs->misc_high);
1476 		break;
1477 	case MSR_IA32_VMX_CR0_FIXED0:
1478 		*pdata = msrs->cr0_fixed0;
1479 		break;
1480 	case MSR_IA32_VMX_CR0_FIXED1:
1481 		*pdata = msrs->cr0_fixed1;
1482 		break;
1483 	case MSR_IA32_VMX_CR4_FIXED0:
1484 		*pdata = msrs->cr4_fixed0;
1485 		break;
1486 	case MSR_IA32_VMX_CR4_FIXED1:
1487 		*pdata = msrs->cr4_fixed1;
1488 		break;
1489 	case MSR_IA32_VMX_VMCS_ENUM:
1490 		*pdata = msrs->vmcs_enum;
1491 		break;
1492 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1493 		*pdata = vmx_control_msr(
1494 			msrs->secondary_ctls_low,
1495 			msrs->secondary_ctls_high);
1496 		break;
1497 	case MSR_IA32_VMX_EPT_VPID_CAP:
1498 		*pdata = msrs->ept_caps |
1499 			((u64)msrs->vpid_caps << 32);
1500 		break;
1501 	case MSR_IA32_VMX_VMFUNC:
1502 		*pdata = msrs->vmfunc_controls;
1503 		break;
1504 	default:
1505 		return 1;
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 /*
1512  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1513  * been modified by the L1 guest.  Note, "writable" in this context means
1514  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1515  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1516  * VM-exit information fields (which are actually writable if the vCPU is
1517  * configured to support "VMWRITE to any supported field in the VMCS").
1518  */
1519 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1520 {
1521 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1522 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1523 	struct shadow_vmcs_field field;
1524 	unsigned long val;
1525 	int i;
1526 
1527 	if (WARN_ON(!shadow_vmcs))
1528 		return;
1529 
1530 	preempt_disable();
1531 
1532 	vmcs_load(shadow_vmcs);
1533 
1534 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1535 		field = shadow_read_write_fields[i];
1536 		val = __vmcs_readl(field.encoding);
1537 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1538 	}
1539 
1540 	vmcs_clear(shadow_vmcs);
1541 	vmcs_load(vmx->loaded_vmcs->vmcs);
1542 
1543 	preempt_enable();
1544 }
1545 
1546 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1547 {
1548 	const struct shadow_vmcs_field *fields[] = {
1549 		shadow_read_write_fields,
1550 		shadow_read_only_fields
1551 	};
1552 	const int max_fields[] = {
1553 		max_shadow_read_write_fields,
1554 		max_shadow_read_only_fields
1555 	};
1556 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1557 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1558 	struct shadow_vmcs_field field;
1559 	unsigned long val;
1560 	int i, q;
1561 
1562 	if (WARN_ON(!shadow_vmcs))
1563 		return;
1564 
1565 	vmcs_load(shadow_vmcs);
1566 
1567 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1568 		for (i = 0; i < max_fields[q]; i++) {
1569 			field = fields[q][i];
1570 			val = vmcs12_read_any(vmcs12, field.encoding,
1571 					      field.offset);
1572 			__vmcs_writel(field.encoding, val);
1573 		}
1574 	}
1575 
1576 	vmcs_clear(shadow_vmcs);
1577 	vmcs_load(vmx->loaded_vmcs->vmcs);
1578 }
1579 
1580 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1581 {
1582 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1583 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1584 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1585 
1586 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1587 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1588 	vmcs12->guest_rip = evmcs->guest_rip;
1589 
1590 	if (unlikely(!(hv_clean_fields &
1591 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1592 		hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1593 		hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1594 		hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1595 	}
1596 
1597 	if (unlikely(!(hv_clean_fields &
1598 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1599 		vmcs12->guest_rsp = evmcs->guest_rsp;
1600 		vmcs12->guest_rflags = evmcs->guest_rflags;
1601 		vmcs12->guest_interruptibility_info =
1602 			evmcs->guest_interruptibility_info;
1603 		/*
1604 		 * Not present in struct vmcs12:
1605 		 * vmcs12->guest_ssp = evmcs->guest_ssp;
1606 		 */
1607 	}
1608 
1609 	if (unlikely(!(hv_clean_fields &
1610 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1611 		vmcs12->cpu_based_vm_exec_control =
1612 			evmcs->cpu_based_vm_exec_control;
1613 	}
1614 
1615 	if (unlikely(!(hv_clean_fields &
1616 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1617 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1618 	}
1619 
1620 	if (unlikely(!(hv_clean_fields &
1621 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1622 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1623 	}
1624 
1625 	if (unlikely(!(hv_clean_fields &
1626 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1627 		vmcs12->vm_entry_intr_info_field =
1628 			evmcs->vm_entry_intr_info_field;
1629 		vmcs12->vm_entry_exception_error_code =
1630 			evmcs->vm_entry_exception_error_code;
1631 		vmcs12->vm_entry_instruction_len =
1632 			evmcs->vm_entry_instruction_len;
1633 	}
1634 
1635 	if (unlikely(!(hv_clean_fields &
1636 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1637 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1638 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1639 		vmcs12->host_cr0 = evmcs->host_cr0;
1640 		vmcs12->host_cr3 = evmcs->host_cr3;
1641 		vmcs12->host_cr4 = evmcs->host_cr4;
1642 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1643 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1644 		vmcs12->host_rip = evmcs->host_rip;
1645 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1646 		vmcs12->host_es_selector = evmcs->host_es_selector;
1647 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1648 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1649 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1650 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1651 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1652 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1653 		vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1654 		/*
1655 		 * Not present in struct vmcs12:
1656 		 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1657 		 * vmcs12->host_ssp = evmcs->host_ssp;
1658 		 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1659 		 */
1660 	}
1661 
1662 	if (unlikely(!(hv_clean_fields &
1663 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1664 		vmcs12->pin_based_vm_exec_control =
1665 			evmcs->pin_based_vm_exec_control;
1666 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1667 		vmcs12->secondary_vm_exec_control =
1668 			evmcs->secondary_vm_exec_control;
1669 	}
1670 
1671 	if (unlikely(!(hv_clean_fields &
1672 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1673 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1674 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1675 	}
1676 
1677 	if (unlikely(!(hv_clean_fields &
1678 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1679 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1680 	}
1681 
1682 	if (unlikely(!(hv_clean_fields &
1683 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1684 		vmcs12->guest_es_base = evmcs->guest_es_base;
1685 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1686 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1687 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1688 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1689 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1690 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1691 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1692 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1693 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1694 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1695 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1696 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1697 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1698 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1699 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1700 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1701 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1702 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1703 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1704 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1705 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1706 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1707 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1708 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1709 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1710 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1711 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1712 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1713 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1714 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1715 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1716 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1717 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1718 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1719 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1720 	}
1721 
1722 	if (unlikely(!(hv_clean_fields &
1723 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1724 		vmcs12->tsc_offset = evmcs->tsc_offset;
1725 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1726 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1727 		vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1728 		vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1729 	}
1730 
1731 	if (unlikely(!(hv_clean_fields &
1732 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1733 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1734 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1735 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1736 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1737 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1738 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1739 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1740 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1741 	}
1742 
1743 	if (unlikely(!(hv_clean_fields &
1744 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1745 		vmcs12->host_fs_base = evmcs->host_fs_base;
1746 		vmcs12->host_gs_base = evmcs->host_gs_base;
1747 		vmcs12->host_tr_base = evmcs->host_tr_base;
1748 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1749 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1750 		vmcs12->host_rsp = evmcs->host_rsp;
1751 	}
1752 
1753 	if (unlikely(!(hv_clean_fields &
1754 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1755 		vmcs12->ept_pointer = evmcs->ept_pointer;
1756 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1757 	}
1758 
1759 	if (unlikely(!(hv_clean_fields &
1760 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1761 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1762 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1763 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1764 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1765 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1766 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1767 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1768 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1769 		vmcs12->guest_pending_dbg_exceptions =
1770 			evmcs->guest_pending_dbg_exceptions;
1771 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1772 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1773 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1774 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1775 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1776 		vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1777 		/*
1778 		 * Not present in struct vmcs12:
1779 		 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1780 		 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1781 		 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1782 		 */
1783 	}
1784 
1785 	/*
1786 	 * Not used?
1787 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1788 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1789 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1790 	 * vmcs12->page_fault_error_code_mask =
1791 	 *		evmcs->page_fault_error_code_mask;
1792 	 * vmcs12->page_fault_error_code_match =
1793 	 *		evmcs->page_fault_error_code_match;
1794 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1795 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1796 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1797 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1798 	 */
1799 
1800 	/*
1801 	 * Read only fields:
1802 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1803 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1804 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1805 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1806 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1807 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1808 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1809 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1810 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1811 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1812 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1813 	 *
1814 	 * Not present in struct vmcs12:
1815 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1816 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1817 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1818 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1819 	 */
1820 
1821 	return;
1822 }
1823 
1824 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1825 {
1826 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1827 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1828 
1829 	/*
1830 	 * Should not be changed by KVM:
1831 	 *
1832 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1833 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1834 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1835 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1836 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1837 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1838 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1839 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1840 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1841 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1842 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1843 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1844 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1845 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1846 	 * evmcs->host_rip = vmcs12->host_rip;
1847 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1848 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1849 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1850 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1851 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1852 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1853 	 * evmcs->host_rsp = vmcs12->host_rsp;
1854 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1855 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1856 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1857 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1858 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1859 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1860 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1861 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1862 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1863 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1864 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1865 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1866 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1867 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1868 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1869 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1870 	 * evmcs->page_fault_error_code_mask =
1871 	 *		vmcs12->page_fault_error_code_mask;
1872 	 * evmcs->page_fault_error_code_match =
1873 	 *		vmcs12->page_fault_error_code_match;
1874 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1875 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1876 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1877 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1878 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1879 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1880 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1881 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1882 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1883 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1884 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1885 	 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1886 	 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1887 	 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1888 	 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1889 	 *
1890 	 * Not present in struct vmcs12:
1891 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1892 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1893 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1894 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1895 	 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1896 	 * evmcs->host_ssp = vmcs12->host_ssp;
1897 	 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1898 	 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1899 	 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1900 	 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1901 	 * evmcs->guest_ssp = vmcs12->guest_ssp;
1902 	 */
1903 
1904 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1905 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1906 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1907 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1908 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1909 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1910 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1911 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1912 
1913 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1914 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1915 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1916 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1917 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1918 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1919 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1920 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1921 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1922 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1923 
1924 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1925 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1926 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1927 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1928 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1929 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1930 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1931 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1932 
1933 	evmcs->guest_es_base = vmcs12->guest_es_base;
1934 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1935 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1936 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1937 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1938 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1939 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1940 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1941 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1942 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1943 
1944 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1945 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1946 
1947 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1948 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1949 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1950 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1951 
1952 	evmcs->guest_pending_dbg_exceptions =
1953 		vmcs12->guest_pending_dbg_exceptions;
1954 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1955 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1956 
1957 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1958 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1959 
1960 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1961 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1962 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1963 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1964 
1965 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1966 
1967 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1968 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1969 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1970 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1971 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1972 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1973 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1974 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1975 
1976 	evmcs->exit_qualification = vmcs12->exit_qualification;
1977 
1978 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1979 	evmcs->guest_rsp = vmcs12->guest_rsp;
1980 	evmcs->guest_rflags = vmcs12->guest_rflags;
1981 
1982 	evmcs->guest_interruptibility_info =
1983 		vmcs12->guest_interruptibility_info;
1984 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1985 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1986 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1987 	evmcs->vm_entry_exception_error_code =
1988 		vmcs12->vm_entry_exception_error_code;
1989 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1990 
1991 	evmcs->guest_rip = vmcs12->guest_rip;
1992 
1993 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1994 
1995 	return;
1996 }
1997 
1998 /*
1999  * This is an equivalent of the nested hypervisor executing the vmptrld
2000  * instruction.
2001  */
2002 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2003 	struct kvm_vcpu *vcpu, bool from_launch)
2004 {
2005 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2006 	bool evmcs_gpa_changed = false;
2007 	u64 evmcs_gpa;
2008 
2009 	if (likely(!guest_cpuid_has_evmcs(vcpu)))
2010 		return EVMPTRLD_DISABLED;
2011 
2012 	evmcs_gpa = nested_get_evmptr(vcpu);
2013 	if (!evmptr_is_valid(evmcs_gpa)) {
2014 		nested_release_evmcs(vcpu);
2015 		return EVMPTRLD_DISABLED;
2016 	}
2017 
2018 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2019 		vmx->nested.current_vmptr = INVALID_GPA;
2020 
2021 		nested_release_evmcs(vcpu);
2022 
2023 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2024 				 &vmx->nested.hv_evmcs_map))
2025 			return EVMPTRLD_ERROR;
2026 
2027 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2028 
2029 		/*
2030 		 * Currently, KVM only supports eVMCS version 1
2031 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2032 		 * value to first u32 field of eVMCS which should specify eVMCS
2033 		 * VersionNumber.
2034 		 *
2035 		 * Guest should be aware of supported eVMCS versions by host by
2036 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2037 		 * expected to set this CPUID leaf according to the value
2038 		 * returned in vmcs_version from nested_enable_evmcs().
2039 		 *
2040 		 * However, it turns out that Microsoft Hyper-V fails to comply
2041 		 * to their own invented interface: When Hyper-V use eVMCS, it
2042 		 * just sets first u32 field of eVMCS to revision_id specified
2043 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2044 		 * which is one of the supported versions specified in
2045 		 * CPUID.0x4000000A.EAX[0:15].
2046 		 *
2047 		 * To overcome Hyper-V bug, we accept here either a supported
2048 		 * eVMCS version or VMCS12 revision_id as valid values for first
2049 		 * u32 field of eVMCS.
2050 		 */
2051 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2052 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2053 			nested_release_evmcs(vcpu);
2054 			return EVMPTRLD_VMFAIL;
2055 		}
2056 
2057 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2058 
2059 		evmcs_gpa_changed = true;
2060 		/*
2061 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2062 		 * reloaded from guest's memory (read only fields, fields not
2063 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2064 		 * are no leftovers.
2065 		 */
2066 		if (from_launch) {
2067 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2068 			memset(vmcs12, 0, sizeof(*vmcs12));
2069 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2070 		}
2071 
2072 	}
2073 
2074 	/*
2075 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2076 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2077 	 */
2078 	if (from_launch || evmcs_gpa_changed) {
2079 		vmx->nested.hv_evmcs->hv_clean_fields &=
2080 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2081 
2082 		vmx->nested.force_msr_bitmap_recalc = true;
2083 	}
2084 
2085 	return EVMPTRLD_SUCCEEDED;
2086 }
2087 
2088 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2089 {
2090 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2091 
2092 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2093 		copy_vmcs12_to_enlightened(vmx);
2094 	else
2095 		copy_vmcs12_to_shadow(vmx);
2096 
2097 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2098 }
2099 
2100 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2101 {
2102 	struct vcpu_vmx *vmx =
2103 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2104 
2105 	vmx->nested.preemption_timer_expired = true;
2106 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2107 	kvm_vcpu_kick(&vmx->vcpu);
2108 
2109 	return HRTIMER_NORESTART;
2110 }
2111 
2112 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2113 {
2114 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2115 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2116 
2117 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2118 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2119 
2120 	if (!vmx->nested.has_preemption_timer_deadline) {
2121 		vmx->nested.preemption_timer_deadline =
2122 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2123 		vmx->nested.has_preemption_timer_deadline = true;
2124 	}
2125 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2126 }
2127 
2128 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2129 					u64 preemption_timeout)
2130 {
2131 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2132 
2133 	/*
2134 	 * A timer value of zero is architecturally guaranteed to cause
2135 	 * a VMExit prior to executing any instructions in the guest.
2136 	 */
2137 	if (preemption_timeout == 0) {
2138 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2139 		return;
2140 	}
2141 
2142 	if (vcpu->arch.virtual_tsc_khz == 0)
2143 		return;
2144 
2145 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2146 	preemption_timeout *= 1000000;
2147 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2148 	hrtimer_start(&vmx->nested.preemption_timer,
2149 		      ktime_add_ns(ktime_get(), preemption_timeout),
2150 		      HRTIMER_MODE_ABS_PINNED);
2151 }
2152 
2153 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2154 {
2155 	if (vmx->nested.nested_run_pending &&
2156 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2157 		return vmcs12->guest_ia32_efer;
2158 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2159 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2160 	else
2161 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2162 }
2163 
2164 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2165 {
2166 	struct kvm *kvm = vmx->vcpu.kvm;
2167 
2168 	/*
2169 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2170 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2171 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2172 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2173 	 */
2174 	if (vmx->nested.vmcs02_initialized)
2175 		return;
2176 	vmx->nested.vmcs02_initialized = true;
2177 
2178 	/*
2179 	 * We don't care what the EPTP value is we just need to guarantee
2180 	 * it's valid so we don't get a false positive when doing early
2181 	 * consistency checks.
2182 	 */
2183 	if (enable_ept && nested_early_check)
2184 		vmcs_write64(EPT_POINTER,
2185 			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2186 
2187 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2188 	if (cpu_has_vmx_vmfunc())
2189 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2190 
2191 	if (cpu_has_vmx_posted_intr())
2192 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2193 
2194 	if (cpu_has_vmx_msr_bitmap())
2195 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2196 
2197 	/*
2198 	 * PML is emulated for L2, but never enabled in hardware as the MMU
2199 	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2200 	 * deal with filtering out L2 GPAs from the buffer.
2201 	 */
2202 	if (enable_pml) {
2203 		vmcs_write64(PML_ADDRESS, 0);
2204 		vmcs_write16(GUEST_PML_INDEX, -1);
2205 	}
2206 
2207 	if (cpu_has_vmx_encls_vmexit())
2208 		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2209 
2210 	if (kvm_notify_vmexit_enabled(kvm))
2211 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2212 
2213 	/*
2214 	 * Set the MSR load/store lists to match L0's settings.  Only the
2215 	 * addresses are constant (for vmcs02), the counts can change based
2216 	 * on L2's behavior, e.g. switching to/from long mode.
2217 	 */
2218 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2219 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2220 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2221 
2222 	vmx_set_constant_host_state(vmx);
2223 }
2224 
2225 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2226 				      struct vmcs12 *vmcs12)
2227 {
2228 	prepare_vmcs02_constant_state(vmx);
2229 
2230 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2231 
2232 	if (enable_vpid) {
2233 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2234 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2235 		else
2236 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2237 	}
2238 }
2239 
2240 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2241 				 struct vmcs12 *vmcs12)
2242 {
2243 	u32 exec_control;
2244 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2245 
2246 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2247 		prepare_vmcs02_early_rare(vmx, vmcs12);
2248 
2249 	/*
2250 	 * PIN CONTROLS
2251 	 */
2252 	exec_control = __pin_controls_get(vmcs01);
2253 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2254 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2255 
2256 	/* Posted interrupts setting is only taken from vmcs12.  */
2257 	vmx->nested.pi_pending = false;
2258 	if (nested_cpu_has_posted_intr(vmcs12))
2259 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2260 	else
2261 		exec_control &= ~PIN_BASED_POSTED_INTR;
2262 	pin_controls_set(vmx, exec_control);
2263 
2264 	/*
2265 	 * EXEC CONTROLS
2266 	 */
2267 	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2268 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2269 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2270 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2271 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2272 
2273 	vmx->nested.l1_tpr_threshold = -1;
2274 	if (exec_control & CPU_BASED_TPR_SHADOW)
2275 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2276 #ifdef CONFIG_X86_64
2277 	else
2278 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2279 				CPU_BASED_CR8_STORE_EXITING;
2280 #endif
2281 
2282 	/*
2283 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2284 	 * for I/O port accesses.
2285 	 */
2286 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2287 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2288 
2289 	/*
2290 	 * This bit will be computed in nested_get_vmcs12_pages, because
2291 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2292 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2293 	 * only set/clear this bit.
2294 	 */
2295 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2296 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2297 
2298 	exec_controls_set(vmx, exec_control);
2299 
2300 	/*
2301 	 * SECONDARY EXEC CONTROLS
2302 	 */
2303 	if (cpu_has_secondary_exec_ctrls()) {
2304 		exec_control = __secondary_exec_controls_get(vmcs01);
2305 
2306 		/* Take the following fields only from vmcs12 */
2307 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2308 				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2309 				  SECONDARY_EXEC_ENABLE_INVPCID |
2310 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2311 				  SECONDARY_EXEC_ENABLE_XSAVES |
2312 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2313 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2314 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2315 				  SECONDARY_EXEC_ENABLE_VMFUNC |
2316 				  SECONDARY_EXEC_DESC);
2317 
2318 		if (nested_cpu_has(vmcs12,
2319 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2320 			exec_control |= vmcs12->secondary_vm_exec_control;
2321 
2322 		/* PML is emulated and never enabled in hardware for L2. */
2323 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2324 
2325 		/* VMCS shadowing for L2 is emulated for now */
2326 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2327 
2328 		/*
2329 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2330 		 * will not have to rewrite the controls just for this bit.
2331 		 */
2332 		if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2333 			exec_control |= SECONDARY_EXEC_DESC;
2334 
2335 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2336 			vmcs_write16(GUEST_INTR_STATUS,
2337 				vmcs12->guest_intr_status);
2338 
2339 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2340 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2341 
2342 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2343 			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2344 
2345 		secondary_exec_controls_set(vmx, exec_control);
2346 	}
2347 
2348 	/*
2349 	 * ENTRY CONTROLS
2350 	 *
2351 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2352 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2353 	 * on the related bits (if supported by the CPU) in the hope that
2354 	 * we can avoid VMWrites during vmx_set_efer().
2355 	 *
2356 	 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2357 	 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2358 	 * do the same for L2.
2359 	 */
2360 	exec_control = __vm_entry_controls_get(vmcs01);
2361 	exec_control |= (vmcs12->vm_entry_controls &
2362 			 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2363 	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2364 	if (cpu_has_load_ia32_efer()) {
2365 		if (guest_efer & EFER_LMA)
2366 			exec_control |= VM_ENTRY_IA32E_MODE;
2367 		if (guest_efer != host_efer)
2368 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2369 	}
2370 	vm_entry_controls_set(vmx, exec_control);
2371 
2372 	/*
2373 	 * EXIT CONTROLS
2374 	 *
2375 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2376 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2377 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2378 	 */
2379 	exec_control = __vm_exit_controls_get(vmcs01);
2380 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2381 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2382 	else
2383 		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2384 	vm_exit_controls_set(vmx, exec_control);
2385 
2386 	/*
2387 	 * Interrupt/Exception Fields
2388 	 */
2389 	if (vmx->nested.nested_run_pending) {
2390 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2391 			     vmcs12->vm_entry_intr_info_field);
2392 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2393 			     vmcs12->vm_entry_exception_error_code);
2394 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2395 			     vmcs12->vm_entry_instruction_len);
2396 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2397 			     vmcs12->guest_interruptibility_info);
2398 		vmx->loaded_vmcs->nmi_known_unmasked =
2399 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2400 	} else {
2401 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2402 	}
2403 }
2404 
2405 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2406 {
2407 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2408 
2409 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2410 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2411 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2412 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2413 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2414 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2415 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2416 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2417 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2418 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2419 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2420 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2421 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2422 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2423 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2424 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2425 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2426 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2427 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2428 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2429 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2430 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2431 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2432 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2433 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2434 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2435 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2436 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2437 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2438 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2439 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2440 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2441 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2442 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2443 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2444 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2445 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2446 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2447 
2448 		vmx->segment_cache.bitmask = 0;
2449 	}
2450 
2451 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2452 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2453 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2454 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2455 			    vmcs12->guest_pending_dbg_exceptions);
2456 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2457 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2458 
2459 		/*
2460 		 * L1 may access the L2's PDPTR, so save them to construct
2461 		 * vmcs12
2462 		 */
2463 		if (enable_ept) {
2464 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2465 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2466 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2467 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2468 		}
2469 
2470 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2471 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2472 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2473 	}
2474 
2475 	if (nested_cpu_has_xsaves(vmcs12))
2476 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2477 
2478 	/*
2479 	 * Whether page-faults are trapped is determined by a combination of
2480 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2481 	 * doesn't care about page faults then we should set all of these to
2482 	 * L1's desires. However, if L0 does care about (some) page faults, it
2483 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2484 	 * simply ask to exit on each and every L2 page fault. This is done by
2485 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2486 	 * Note that below we don't need special code to set EB.PF beyond the
2487 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2488 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2489 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2490 	 */
2491 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2492 		/*
2493 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2494 		 * go ahead and use it?
2495 		 */
2496 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2497 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2498 	} else {
2499 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2500 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2501 	}
2502 
2503 	if (cpu_has_vmx_apicv()) {
2504 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2505 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2506 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2507 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2508 	}
2509 
2510 	/*
2511 	 * Make sure the msr_autostore list is up to date before we set the
2512 	 * count in the vmcs02.
2513 	 */
2514 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2515 
2516 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2517 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2518 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2519 
2520 	set_cr4_guest_host_mask(vmx);
2521 }
2522 
2523 /*
2524  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2525  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2526  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2527  * guest in a way that will both be appropriate to L1's requests, and our
2528  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2529  * function also has additional necessary side-effects, like setting various
2530  * vcpu->arch fields.
2531  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2532  * is assigned to entry_failure_code on failure.
2533  */
2534 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2535 			  bool from_vmentry,
2536 			  enum vm_entry_failure_code *entry_failure_code)
2537 {
2538 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2539 	bool load_guest_pdptrs_vmcs12 = false;
2540 
2541 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2542 		prepare_vmcs02_rare(vmx, vmcs12);
2543 		vmx->nested.dirty_vmcs12 = false;
2544 
2545 		load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2546 			!(vmx->nested.hv_evmcs->hv_clean_fields &
2547 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2548 	}
2549 
2550 	if (vmx->nested.nested_run_pending &&
2551 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2552 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2553 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2554 	} else {
2555 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2556 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2557 	}
2558 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2559 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2560 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2561 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2562 
2563 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2564 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2565 	 * trap. Note that CR0.TS also needs updating - we do this later.
2566 	 */
2567 	vmx_update_exception_bitmap(vcpu);
2568 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2569 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2570 
2571 	if (vmx->nested.nested_run_pending &&
2572 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2573 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2574 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2575 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2576 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2577 	}
2578 
2579 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2580 			vcpu->arch.l1_tsc_offset,
2581 			vmx_get_l2_tsc_offset(vcpu),
2582 			vmx_get_l2_tsc_multiplier(vcpu));
2583 
2584 	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2585 			vcpu->arch.l1_tsc_scaling_ratio,
2586 			vmx_get_l2_tsc_multiplier(vcpu));
2587 
2588 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2589 	if (kvm_caps.has_tsc_control)
2590 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2591 
2592 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2593 
2594 	if (nested_cpu_has_ept(vmcs12))
2595 		nested_ept_init_mmu_context(vcpu);
2596 
2597 	/*
2598 	 * Override the CR0/CR4 read shadows after setting the effective guest
2599 	 * CR0/CR4.  The common helpers also set the shadows, but they don't
2600 	 * account for vmcs12's cr0/4_guest_host_mask.
2601 	 */
2602 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2603 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2604 
2605 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2606 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2607 
2608 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2609 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2610 	vmx_set_efer(vcpu, vcpu->arch.efer);
2611 
2612 	/*
2613 	 * Guest state is invalid and unrestricted guest is disabled,
2614 	 * which means L1 attempted VMEntry to L2 with invalid state.
2615 	 * Fail the VMEntry.
2616 	 *
2617 	 * However when force loading the guest state (SMM exit or
2618 	 * loading nested state after migration, it is possible to
2619 	 * have invalid guest state now, which will be later fixed by
2620 	 * restoring L2 register state
2621 	 */
2622 	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2623 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2624 		return -EINVAL;
2625 	}
2626 
2627 	/* Shadow page tables on either EPT or shadow page tables. */
2628 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2629 				from_vmentry, entry_failure_code))
2630 		return -EINVAL;
2631 
2632 	/*
2633 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2634 	 * on nested VM-Exit, which can occur without actually running L2 and
2635 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2636 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2637 	 * transition to HLT instead of running L2.
2638 	 */
2639 	if (enable_ept)
2640 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2641 
2642 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2643 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2644 	    is_pae_paging(vcpu)) {
2645 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2646 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2647 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2648 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2649 	}
2650 
2651 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2652 	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2653 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2654 				     vmcs12->guest_ia32_perf_global_ctrl))) {
2655 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2656 		return -EINVAL;
2657 	}
2658 
2659 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2660 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2661 
2662 	/*
2663 	 * It was observed that genuine Hyper-V running in L1 doesn't reset
2664 	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2665 	 * bits when it changes a field in eVMCS. Mark all fields as clean
2666 	 * here.
2667 	 */
2668 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2669 		vmx->nested.hv_evmcs->hv_clean_fields |=
2670 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2671 
2672 	return 0;
2673 }
2674 
2675 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2676 {
2677 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2678 	       nested_cpu_has_virtual_nmis(vmcs12)))
2679 		return -EINVAL;
2680 
2681 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2682 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2683 		return -EINVAL;
2684 
2685 	return 0;
2686 }
2687 
2688 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2689 {
2690 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2691 
2692 	/* Check for memory type validity */
2693 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2694 	case VMX_EPTP_MT_UC:
2695 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2696 			return false;
2697 		break;
2698 	case VMX_EPTP_MT_WB:
2699 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2700 			return false;
2701 		break;
2702 	default:
2703 		return false;
2704 	}
2705 
2706 	/* Page-walk levels validity. */
2707 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2708 	case VMX_EPTP_PWL_5:
2709 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2710 			return false;
2711 		break;
2712 	case VMX_EPTP_PWL_4:
2713 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2714 			return false;
2715 		break;
2716 	default:
2717 		return false;
2718 	}
2719 
2720 	/* Reserved bits should not be set */
2721 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2722 		return false;
2723 
2724 	/* AD, if set, should be supported */
2725 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2726 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2727 			return false;
2728 	}
2729 
2730 	return true;
2731 }
2732 
2733 /*
2734  * Checks related to VM-Execution Control Fields
2735  */
2736 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2737                                               struct vmcs12 *vmcs12)
2738 {
2739 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2740 
2741 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2742 				   vmx->nested.msrs.pinbased_ctls_low,
2743 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2744 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2745 				   vmx->nested.msrs.procbased_ctls_low,
2746 				   vmx->nested.msrs.procbased_ctls_high)))
2747 		return -EINVAL;
2748 
2749 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2750 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2751 				   vmx->nested.msrs.secondary_ctls_low,
2752 				   vmx->nested.msrs.secondary_ctls_high)))
2753 		return -EINVAL;
2754 
2755 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2756 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2757 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2758 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2759 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2760 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2761 	    nested_vmx_check_nmi_controls(vmcs12) ||
2762 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2763 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2764 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2765 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2766 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2767 		return -EINVAL;
2768 
2769 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2770 	    nested_cpu_has_save_preemption_timer(vmcs12))
2771 		return -EINVAL;
2772 
2773 	if (nested_cpu_has_ept(vmcs12) &&
2774 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2775 		return -EINVAL;
2776 
2777 	if (nested_cpu_has_vmfunc(vmcs12)) {
2778 		if (CC(vmcs12->vm_function_control &
2779 		       ~vmx->nested.msrs.vmfunc_controls))
2780 			return -EINVAL;
2781 
2782 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2783 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2784 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2785 				return -EINVAL;
2786 		}
2787 	}
2788 
2789 	return 0;
2790 }
2791 
2792 /*
2793  * Checks related to VM-Exit Control Fields
2794  */
2795 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2796                                          struct vmcs12 *vmcs12)
2797 {
2798 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2799 
2800 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2801 				    vmx->nested.msrs.exit_ctls_low,
2802 				    vmx->nested.msrs.exit_ctls_high)) ||
2803 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2804 		return -EINVAL;
2805 
2806 	return 0;
2807 }
2808 
2809 /*
2810  * Checks related to VM-Entry Control Fields
2811  */
2812 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2813 					  struct vmcs12 *vmcs12)
2814 {
2815 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2816 
2817 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2818 				    vmx->nested.msrs.entry_ctls_low,
2819 				    vmx->nested.msrs.entry_ctls_high)))
2820 		return -EINVAL;
2821 
2822 	/*
2823 	 * From the Intel SDM, volume 3:
2824 	 * Fields relevant to VM-entry event injection must be set properly.
2825 	 * These fields are the VM-entry interruption-information field, the
2826 	 * VM-entry exception error code, and the VM-entry instruction length.
2827 	 */
2828 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2829 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2830 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2831 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2832 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2833 		bool should_have_error_code;
2834 		bool urg = nested_cpu_has2(vmcs12,
2835 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2836 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2837 
2838 		/* VM-entry interruption-info field: interruption type */
2839 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2840 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2841 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2842 			return -EINVAL;
2843 
2844 		/* VM-entry interruption-info field: vector */
2845 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2846 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2847 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2848 			return -EINVAL;
2849 
2850 		/* VM-entry interruption-info field: deliver error code */
2851 		should_have_error_code =
2852 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2853 			x86_exception_has_error_code(vector);
2854 		if (CC(has_error_code != should_have_error_code))
2855 			return -EINVAL;
2856 
2857 		/* VM-entry exception error code */
2858 		if (CC(has_error_code &&
2859 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2860 			return -EINVAL;
2861 
2862 		/* VM-entry interruption-info field: reserved bits */
2863 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2864 			return -EINVAL;
2865 
2866 		/* VM-entry instruction length */
2867 		switch (intr_type) {
2868 		case INTR_TYPE_SOFT_EXCEPTION:
2869 		case INTR_TYPE_SOFT_INTR:
2870 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2871 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2872 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2873 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2874 				return -EINVAL;
2875 		}
2876 	}
2877 
2878 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2879 		return -EINVAL;
2880 
2881 	return 0;
2882 }
2883 
2884 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2885 				     struct vmcs12 *vmcs12)
2886 {
2887 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2888 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2889 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2890 		return -EINVAL;
2891 
2892 	if (guest_cpuid_has_evmcs(vcpu))
2893 		return nested_evmcs_check_controls(vmcs12);
2894 
2895 	return 0;
2896 }
2897 
2898 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2899 				       struct vmcs12 *vmcs12)
2900 {
2901 #ifdef CONFIG_X86_64
2902 	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2903 		!!(vcpu->arch.efer & EFER_LMA)))
2904 		return -EINVAL;
2905 #endif
2906 	return 0;
2907 }
2908 
2909 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2910 				       struct vmcs12 *vmcs12)
2911 {
2912 	bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2913 
2914 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2915 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2916 	    CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2917 		return -EINVAL;
2918 
2919 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2920 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2921 		return -EINVAL;
2922 
2923 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2924 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2925 		return -EINVAL;
2926 
2927 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2928 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2929 					   vmcs12->host_ia32_perf_global_ctrl)))
2930 		return -EINVAL;
2931 
2932 	if (ia32e) {
2933 		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2934 			return -EINVAL;
2935 	} else {
2936 		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2937 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2938 		    CC((vmcs12->host_rip) >> 32))
2939 			return -EINVAL;
2940 	}
2941 
2942 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2943 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2944 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2945 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2946 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2947 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2948 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2949 	    CC(vmcs12->host_cs_selector == 0) ||
2950 	    CC(vmcs12->host_tr_selector == 0) ||
2951 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2952 		return -EINVAL;
2953 
2954 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2955 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2956 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2957 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2958 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2959 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2960 		return -EINVAL;
2961 
2962 	/*
2963 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2964 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2965 	 * the values of the LMA and LME bits in the field must each be that of
2966 	 * the host address-space size VM-exit control.
2967 	 */
2968 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2969 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2970 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2971 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2972 			return -EINVAL;
2973 	}
2974 
2975 	return 0;
2976 }
2977 
2978 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2979 					  struct vmcs12 *vmcs12)
2980 {
2981 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2982 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2983 	struct vmcs_hdr hdr;
2984 
2985 	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2986 		return 0;
2987 
2988 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2989 		return -EINVAL;
2990 
2991 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
2992 	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
2993 					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
2994                 return -EINVAL;
2995 
2996 	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
2997 					    offsetof(struct vmcs12, hdr),
2998 					    sizeof(hdr))))
2999 		return -EINVAL;
3000 
3001 	if (CC(hdr.revision_id != VMCS12_REVISION) ||
3002 	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3003 		return -EINVAL;
3004 
3005 	return 0;
3006 }
3007 
3008 /*
3009  * Checks related to Guest Non-register State
3010  */
3011 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3012 {
3013 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3014 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3015 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3016 		return -EINVAL;
3017 
3018 	return 0;
3019 }
3020 
3021 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3022 					struct vmcs12 *vmcs12,
3023 					enum vm_entry_failure_code *entry_failure_code)
3024 {
3025 	bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3026 
3027 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
3028 
3029 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3030 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3031 		return -EINVAL;
3032 
3033 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3034 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3035 		return -EINVAL;
3036 
3037 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3038 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3039 		return -EINVAL;
3040 
3041 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3042 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3043 		return -EINVAL;
3044 	}
3045 
3046 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3047 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3048 					   vmcs12->guest_ia32_perf_global_ctrl)))
3049 		return -EINVAL;
3050 
3051 	if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3052 		return -EINVAL;
3053 
3054 	if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3055 	    CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3056 		return -EINVAL;
3057 
3058 	/*
3059 	 * If the load IA32_EFER VM-entry control is 1, the following checks
3060 	 * are performed on the field for the IA32_EFER MSR:
3061 	 * - Bits reserved in the IA32_EFER MSR must be 0.
3062 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3063 	 *   the IA-32e mode guest VM-exit control. It must also be identical
3064 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3065 	 *   CR0.PG) is 1.
3066 	 */
3067 	if (to_vmx(vcpu)->nested.nested_run_pending &&
3068 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3069 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3070 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3071 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3072 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3073 			return -EINVAL;
3074 	}
3075 
3076 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3077 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3078 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3079 		return -EINVAL;
3080 
3081 	if (nested_check_guest_non_reg_state(vmcs12))
3082 		return -EINVAL;
3083 
3084 	return 0;
3085 }
3086 
3087 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3088 {
3089 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3090 	unsigned long cr3, cr4;
3091 	bool vm_fail;
3092 
3093 	if (!nested_early_check)
3094 		return 0;
3095 
3096 	if (vmx->msr_autoload.host.nr)
3097 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3098 	if (vmx->msr_autoload.guest.nr)
3099 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3100 
3101 	preempt_disable();
3102 
3103 	vmx_prepare_switch_to_guest(vcpu);
3104 
3105 	/*
3106 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3107 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3108 	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3109 	 * there is no need to preserve other bits or save/restore the field.
3110 	 */
3111 	vmcs_writel(GUEST_RFLAGS, 0);
3112 
3113 	cr3 = __get_current_cr3_fast();
3114 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3115 		vmcs_writel(HOST_CR3, cr3);
3116 		vmx->loaded_vmcs->host_state.cr3 = cr3;
3117 	}
3118 
3119 	cr4 = cr4_read_shadow();
3120 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3121 		vmcs_writel(HOST_CR4, cr4);
3122 		vmx->loaded_vmcs->host_state.cr4 = cr4;
3123 	}
3124 
3125 	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3126 				 __vmx_vcpu_run_flags(vmx));
3127 
3128 	if (vmx->msr_autoload.host.nr)
3129 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3130 	if (vmx->msr_autoload.guest.nr)
3131 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3132 
3133 	if (vm_fail) {
3134 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3135 
3136 		preempt_enable();
3137 
3138 		trace_kvm_nested_vmenter_failed(
3139 			"early hardware check VM-instruction error: ", error);
3140 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3141 		return 1;
3142 	}
3143 
3144 	/*
3145 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3146 	 */
3147 	if (hw_breakpoint_active())
3148 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3149 	local_irq_enable();
3150 	preempt_enable();
3151 
3152 	/*
3153 	 * A non-failing VMEntry means we somehow entered guest mode with
3154 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3155 	 * is no telling what memory has been modified or what state has
3156 	 * been exposed to unknown code.  Hitting this all but guarantees
3157 	 * a (very critical) hardware issue.
3158 	 */
3159 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3160 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3161 
3162 	return 0;
3163 }
3164 
3165 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3166 {
3167 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3168 
3169 	/*
3170 	 * hv_evmcs may end up being not mapped after migration (when
3171 	 * L2 was running), map it here to make sure vmcs12 changes are
3172 	 * properly reflected.
3173 	 */
3174 	if (guest_cpuid_has_evmcs(vcpu) &&
3175 	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3176 		enum nested_evmptrld_status evmptrld_status =
3177 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3178 
3179 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3180 		    evmptrld_status == EVMPTRLD_ERROR)
3181 			return false;
3182 
3183 		/*
3184 		 * Post migration VMCS12 always provides the most actual
3185 		 * information, copy it to eVMCS upon entry.
3186 		 */
3187 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3188 	}
3189 
3190 	return true;
3191 }
3192 
3193 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3194 {
3195 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3196 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3197 	struct kvm_host_map *map;
3198 
3199 	if (!vcpu->arch.pdptrs_from_userspace &&
3200 	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3201 		/*
3202 		 * Reload the guest's PDPTRs since after a migration
3203 		 * the guest CR3 might be restored prior to setting the nested
3204 		 * state which can lead to a load of wrong PDPTRs.
3205 		 */
3206 		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3207 			return false;
3208 	}
3209 
3210 
3211 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3212 		map = &vmx->nested.apic_access_page_map;
3213 
3214 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3215 			vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3216 		} else {
3217 			pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3218 					     __func__);
3219 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3220 			vcpu->run->internal.suberror =
3221 				KVM_INTERNAL_ERROR_EMULATION;
3222 			vcpu->run->internal.ndata = 0;
3223 			return false;
3224 		}
3225 	}
3226 
3227 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3228 		map = &vmx->nested.virtual_apic_map;
3229 
3230 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3231 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3232 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3233 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3234 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3235 			/*
3236 			 * The processor will never use the TPR shadow, simply
3237 			 * clear the bit from the execution control.  Such a
3238 			 * configuration is useless, but it happens in tests.
3239 			 * For any other configuration, failing the vm entry is
3240 			 * _not_ what the processor does but it's basically the
3241 			 * only possibility we have.
3242 			 */
3243 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3244 		} else {
3245 			/*
3246 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3247 			 * force VM-Entry to fail.
3248 			 */
3249 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3250 		}
3251 	}
3252 
3253 	if (nested_cpu_has_posted_intr(vmcs12)) {
3254 		map = &vmx->nested.pi_desc_map;
3255 
3256 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3257 			vmx->nested.pi_desc =
3258 				(struct pi_desc *)(((void *)map->hva) +
3259 				offset_in_page(vmcs12->posted_intr_desc_addr));
3260 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3261 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3262 		} else {
3263 			/*
3264 			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3265 			 * access the contents of the VMCS12 posted interrupt
3266 			 * descriptor. (Note that KVM may do this when it
3267 			 * should not, per the architectural specification.)
3268 			 */
3269 			vmx->nested.pi_desc = NULL;
3270 			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3271 		}
3272 	}
3273 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3274 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3275 	else
3276 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3277 
3278 	return true;
3279 }
3280 
3281 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3282 {
3283 	/*
3284 	 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3285 	 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3286 	 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3287 	 * migration.
3288 	 */
3289 	if (!nested_get_evmcs_page(vcpu)) {
3290 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3291 				     __func__);
3292 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3293 		vcpu->run->internal.suberror =
3294 			KVM_INTERNAL_ERROR_EMULATION;
3295 		vcpu->run->internal.ndata = 0;
3296 
3297 		return false;
3298 	}
3299 
3300 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3301 		return false;
3302 
3303 	return true;
3304 }
3305 
3306 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3307 {
3308 	struct vmcs12 *vmcs12;
3309 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3310 	gpa_t dst;
3311 
3312 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3313 		return 0;
3314 
3315 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3316 		return 1;
3317 
3318 	/*
3319 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3320 	 * set is already checked as part of A/D emulation.
3321 	 */
3322 	vmcs12 = get_vmcs12(vcpu);
3323 	if (!nested_cpu_has_pml(vmcs12))
3324 		return 0;
3325 
3326 	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3327 		vmx->nested.pml_full = true;
3328 		return 1;
3329 	}
3330 
3331 	gpa &= ~0xFFFull;
3332 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3333 
3334 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3335 				 offset_in_page(dst), sizeof(gpa)))
3336 		return 0;
3337 
3338 	vmcs12->guest_pml_index--;
3339 
3340 	return 0;
3341 }
3342 
3343 /*
3344  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3345  * for running VMX instructions (except VMXON, whose prerequisites are
3346  * slightly different). It also specifies what exception to inject otherwise.
3347  * Note that many of these exceptions have priority over VM exits, so they
3348  * don't have to be checked again here.
3349  */
3350 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3351 {
3352 	if (!to_vmx(vcpu)->nested.vmxon) {
3353 		kvm_queue_exception(vcpu, UD_VECTOR);
3354 		return 0;
3355 	}
3356 
3357 	if (vmx_get_cpl(vcpu)) {
3358 		kvm_inject_gp(vcpu, 0);
3359 		return 0;
3360 	}
3361 
3362 	return 1;
3363 }
3364 
3365 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3366 {
3367 	u8 rvi = vmx_get_rvi();
3368 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3369 
3370 	return ((rvi & 0xf0) > (vppr & 0xf0));
3371 }
3372 
3373 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3374 				   struct vmcs12 *vmcs12);
3375 
3376 /*
3377  * If from_vmentry is false, this is being called from state restore (either RSM
3378  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3379  *
3380  * Returns:
3381  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3382  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3383  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3384  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3385  */
3386 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3387 							bool from_vmentry)
3388 {
3389 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3390 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3391 	enum vm_entry_failure_code entry_failure_code;
3392 	bool evaluate_pending_interrupts;
3393 	union vmx_exit_reason exit_reason = {
3394 		.basic = EXIT_REASON_INVALID_STATE,
3395 		.failed_vmentry = 1,
3396 	};
3397 	u32 failed_index;
3398 
3399 	trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3400 				 vmx->nested.current_vmptr,
3401 				 vmcs12->guest_rip,
3402 				 vmcs12->guest_intr_status,
3403 				 vmcs12->vm_entry_intr_info_field,
3404 				 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3405 				 vmcs12->ept_pointer,
3406 				 vmcs12->guest_cr3,
3407 				 KVM_ISA_VMX);
3408 
3409 	kvm_service_local_tlb_flush_requests(vcpu);
3410 
3411 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3412 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3413 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3414 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3415 	if (!evaluate_pending_interrupts)
3416 		evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3417 
3418 	if (!vmx->nested.nested_run_pending ||
3419 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3420 		vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3421 	if (kvm_mpx_supported() &&
3422 	    (!vmx->nested.nested_run_pending ||
3423 	     !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3424 		vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3425 
3426 	/*
3427 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3428 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3429 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3430 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3431 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3432 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3433 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3434 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3435 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3436 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3437 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3438 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3439 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3440 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3441 	 */
3442 	if (!enable_ept && !nested_early_check)
3443 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3444 
3445 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3446 
3447 	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3448 
3449 	if (from_vmentry) {
3450 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3451 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3452 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3453 		}
3454 
3455 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3456 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3457 			return NVMX_VMENTRY_VMFAIL;
3458 		}
3459 
3460 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3461 						 &entry_failure_code)) {
3462 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3463 			vmcs12->exit_qualification = entry_failure_code;
3464 			goto vmentry_fail_vmexit;
3465 		}
3466 	}
3467 
3468 	enter_guest_mode(vcpu);
3469 
3470 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3471 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3472 		vmcs12->exit_qualification = entry_failure_code;
3473 		goto vmentry_fail_vmexit_guest_mode;
3474 	}
3475 
3476 	if (from_vmentry) {
3477 		failed_index = nested_vmx_load_msr(vcpu,
3478 						   vmcs12->vm_entry_msr_load_addr,
3479 						   vmcs12->vm_entry_msr_load_count);
3480 		if (failed_index) {
3481 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3482 			vmcs12->exit_qualification = failed_index;
3483 			goto vmentry_fail_vmexit_guest_mode;
3484 		}
3485 	} else {
3486 		/*
3487 		 * The MMU is not initialized to point at the right entities yet and
3488 		 * "get pages" would need to read data from the guest (i.e. we will
3489 		 * need to perform gpa to hpa translation). Request a call
3490 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3491 		 * have already been set at vmentry time and should not be reset.
3492 		 */
3493 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3494 	}
3495 
3496 	/*
3497 	 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3498 	 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3499 	 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3500 	 * unconditionally.
3501 	 */
3502 	if (unlikely(evaluate_pending_interrupts))
3503 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3504 
3505 	/*
3506 	 * Do not start the preemption timer hrtimer until after we know
3507 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3508 	 * the timer.
3509 	 */
3510 	vmx->nested.preemption_timer_expired = false;
3511 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3512 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3513 		vmx_start_preemption_timer(vcpu, timer_value);
3514 	}
3515 
3516 	/*
3517 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3518 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3519 	 * returned as far as L1 is concerned. It will only return (and set
3520 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3521 	 */
3522 	return NVMX_VMENTRY_SUCCESS;
3523 
3524 	/*
3525 	 * A failed consistency check that leads to a VMExit during L1's
3526 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3527 	 * 26.7 "VM-entry failures during or after loading guest state".
3528 	 */
3529 vmentry_fail_vmexit_guest_mode:
3530 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3531 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3532 	leave_guest_mode(vcpu);
3533 
3534 vmentry_fail_vmexit:
3535 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3536 
3537 	if (!from_vmentry)
3538 		return NVMX_VMENTRY_VMEXIT;
3539 
3540 	load_vmcs12_host_state(vcpu, vmcs12);
3541 	vmcs12->vm_exit_reason = exit_reason.full;
3542 	if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3543 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3544 	return NVMX_VMENTRY_VMEXIT;
3545 }
3546 
3547 /*
3548  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3549  * for running an L2 nested guest.
3550  */
3551 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3552 {
3553 	struct vmcs12 *vmcs12;
3554 	enum nvmx_vmentry_status status;
3555 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3556 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3557 	enum nested_evmptrld_status evmptrld_status;
3558 
3559 	if (!nested_vmx_check_permission(vcpu))
3560 		return 1;
3561 
3562 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3563 	if (evmptrld_status == EVMPTRLD_ERROR) {
3564 		kvm_queue_exception(vcpu, UD_VECTOR);
3565 		return 1;
3566 	}
3567 
3568 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3569 
3570 	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3571 		return nested_vmx_failInvalid(vcpu);
3572 
3573 	if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3574 	       vmx->nested.current_vmptr == INVALID_GPA))
3575 		return nested_vmx_failInvalid(vcpu);
3576 
3577 	vmcs12 = get_vmcs12(vcpu);
3578 
3579 	/*
3580 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3581 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3582 	 * rather than RFLAGS.ZF, and no error number is stored to the
3583 	 * VM-instruction error field.
3584 	 */
3585 	if (CC(vmcs12->hdr.shadow_vmcs))
3586 		return nested_vmx_failInvalid(vcpu);
3587 
3588 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3589 		copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3590 		/* Enlightened VMCS doesn't have launch state */
3591 		vmcs12->launch_state = !launch;
3592 	} else if (enable_shadow_vmcs) {
3593 		copy_shadow_to_vmcs12(vmx);
3594 	}
3595 
3596 	/*
3597 	 * The nested entry process starts with enforcing various prerequisites
3598 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3599 	 * they fail: As the SDM explains, some conditions should cause the
3600 	 * instruction to fail, while others will cause the instruction to seem
3601 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3602 	 * To speed up the normal (success) code path, we should avoid checking
3603 	 * for misconfigurations which will anyway be caught by the processor
3604 	 * when using the merged vmcs02.
3605 	 */
3606 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3607 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3608 
3609 	if (CC(vmcs12->launch_state == launch))
3610 		return nested_vmx_fail(vcpu,
3611 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3612 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3613 
3614 	if (nested_vmx_check_controls(vcpu, vmcs12))
3615 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3616 
3617 	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3618 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3619 
3620 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3621 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3622 
3623 	/*
3624 	 * We're finally done with prerequisite checking, and can start with
3625 	 * the nested entry.
3626 	 */
3627 	vmx->nested.nested_run_pending = 1;
3628 	vmx->nested.has_preemption_timer_deadline = false;
3629 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3630 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3631 		goto vmentry_failed;
3632 
3633 	/* Emulate processing of posted interrupts on VM-Enter. */
3634 	if (nested_cpu_has_posted_intr(vmcs12) &&
3635 	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3636 		vmx->nested.pi_pending = true;
3637 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3638 		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3639 	}
3640 
3641 	/* Hide L1D cache contents from the nested guest.  */
3642 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3643 
3644 	/*
3645 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3646 	 * also be used as part of restoring nVMX state for
3647 	 * snapshot restore (migration).
3648 	 *
3649 	 * In this flow, it is assumed that vmcs12 cache was
3650 	 * transferred as part of captured nVMX state and should
3651 	 * therefore not be read from guest memory (which may not
3652 	 * exist on destination host yet).
3653 	 */
3654 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3655 
3656 	switch (vmcs12->guest_activity_state) {
3657 	case GUEST_ACTIVITY_HLT:
3658 		/*
3659 		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3660 		 * awakened by event injection or by an NMI-window VM-exit or
3661 		 * by an interrupt-window VM-exit, halt the vcpu.
3662 		 */
3663 		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3664 		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3665 		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3666 		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3667 			vmx->nested.nested_run_pending = 0;
3668 			return kvm_emulate_halt_noskip(vcpu);
3669 		}
3670 		break;
3671 	case GUEST_ACTIVITY_WAIT_SIPI:
3672 		vmx->nested.nested_run_pending = 0;
3673 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3674 		break;
3675 	default:
3676 		break;
3677 	}
3678 
3679 	return 1;
3680 
3681 vmentry_failed:
3682 	vmx->nested.nested_run_pending = 0;
3683 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3684 		return 0;
3685 	if (status == NVMX_VMENTRY_VMEXIT)
3686 		return 1;
3687 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3688 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3689 }
3690 
3691 /*
3692  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3693  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3694  * This function returns the new value we should put in vmcs12.guest_cr0.
3695  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3696  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3697  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3698  *     didn't trap the bit, because if L1 did, so would L0).
3699  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3700  *     been modified by L2, and L1 knows it. So just leave the old value of
3701  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3702  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3703  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3704  *     changed these bits, and therefore they need to be updated, but L0
3705  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3706  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3707  */
3708 static inline unsigned long
3709 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3710 {
3711 	return
3712 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3713 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3714 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3715 			vcpu->arch.cr0_guest_owned_bits));
3716 }
3717 
3718 static inline unsigned long
3719 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3720 {
3721 	return
3722 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3723 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3724 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3725 			vcpu->arch.cr4_guest_owned_bits));
3726 }
3727 
3728 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3729 				      struct vmcs12 *vmcs12,
3730 				      u32 vm_exit_reason, u32 exit_intr_info)
3731 {
3732 	u32 idt_vectoring;
3733 	unsigned int nr;
3734 
3735 	/*
3736 	 * Per the SDM, VM-Exits due to double and triple faults are never
3737 	 * considered to occur during event delivery, even if the double/triple
3738 	 * fault is the result of an escalating vectoring issue.
3739 	 *
3740 	 * Note, the SDM qualifies the double fault behavior with "The original
3741 	 * event results in a double-fault exception".  It's unclear why the
3742 	 * qualification exists since exits due to double fault can occur only
3743 	 * while vectoring a different exception (injected events are never
3744 	 * subject to interception), i.e. there's _always_ an original event.
3745 	 *
3746 	 * The SDM also uses NMI as a confusing example for the "original event
3747 	 * causes the VM exit directly" clause.  NMI isn't special in any way,
3748 	 * the same rule applies to all events that cause an exit directly.
3749 	 * NMI is an odd choice for the example because NMIs can only occur on
3750 	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3751 	 */
3752 	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3753 	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3754 	     is_double_fault(exit_intr_info))) {
3755 		vmcs12->idt_vectoring_info_field = 0;
3756 	} else if (vcpu->arch.exception.injected) {
3757 		nr = vcpu->arch.exception.vector;
3758 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3759 
3760 		if (kvm_exception_is_soft(nr)) {
3761 			vmcs12->vm_exit_instruction_len =
3762 				vcpu->arch.event_exit_inst_len;
3763 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3764 		} else
3765 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3766 
3767 		if (vcpu->arch.exception.has_error_code) {
3768 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3769 			vmcs12->idt_vectoring_error_code =
3770 				vcpu->arch.exception.error_code;
3771 		}
3772 
3773 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3774 	} else if (vcpu->arch.nmi_injected) {
3775 		vmcs12->idt_vectoring_info_field =
3776 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3777 	} else if (vcpu->arch.interrupt.injected) {
3778 		nr = vcpu->arch.interrupt.nr;
3779 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3780 
3781 		if (vcpu->arch.interrupt.soft) {
3782 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3783 			vmcs12->vm_entry_instruction_len =
3784 				vcpu->arch.event_exit_inst_len;
3785 		} else
3786 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3787 
3788 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3789 	} else {
3790 		vmcs12->idt_vectoring_info_field = 0;
3791 	}
3792 }
3793 
3794 
3795 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3796 {
3797 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3798 	gfn_t gfn;
3799 
3800 	/*
3801 	 * Don't need to mark the APIC access page dirty; it is never
3802 	 * written to by the CPU during APIC virtualization.
3803 	 */
3804 
3805 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3806 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3807 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3808 	}
3809 
3810 	if (nested_cpu_has_posted_intr(vmcs12)) {
3811 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3812 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3813 	}
3814 }
3815 
3816 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3817 {
3818 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3819 	int max_irr;
3820 	void *vapic_page;
3821 	u16 status;
3822 
3823 	if (!vmx->nested.pi_pending)
3824 		return 0;
3825 
3826 	if (!vmx->nested.pi_desc)
3827 		goto mmio_needed;
3828 
3829 	vmx->nested.pi_pending = false;
3830 
3831 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3832 		return 0;
3833 
3834 	max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3835 	if (max_irr > 0) {
3836 		vapic_page = vmx->nested.virtual_apic_map.hva;
3837 		if (!vapic_page)
3838 			goto mmio_needed;
3839 
3840 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3841 			vapic_page, &max_irr);
3842 		status = vmcs_read16(GUEST_INTR_STATUS);
3843 		if ((u8)max_irr > ((u8)status & 0xff)) {
3844 			status &= ~0xff;
3845 			status |= (u8)max_irr;
3846 			vmcs_write16(GUEST_INTR_STATUS, status);
3847 		}
3848 	}
3849 
3850 	nested_mark_vmcs12_pages_dirty(vcpu);
3851 	return 0;
3852 
3853 mmio_needed:
3854 	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3855 	return -ENXIO;
3856 }
3857 
3858 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3859 {
3860 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3861 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3862 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3863 	unsigned long exit_qual;
3864 
3865 	if (ex->has_payload) {
3866 		exit_qual = ex->payload;
3867 	} else if (ex->vector == PF_VECTOR) {
3868 		exit_qual = vcpu->arch.cr2;
3869 	} else if (ex->vector == DB_VECTOR) {
3870 		exit_qual = vcpu->arch.dr6;
3871 		exit_qual &= ~DR6_BT;
3872 		exit_qual ^= DR6_ACTIVE_LOW;
3873 	} else {
3874 		exit_qual = 0;
3875 	}
3876 
3877 	/*
3878 	 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3879 	 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3880 	 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3881 	 */
3882 	if (ex->has_error_code && is_protmode(vcpu)) {
3883 		/*
3884 		 * Intel CPUs do not generate error codes with bits 31:16 set,
3885 		 * and more importantly VMX disallows setting bits 31:16 in the
3886 		 * injected error code for VM-Entry.  Drop the bits to mimic
3887 		 * hardware and avoid inducing failure on nested VM-Entry if L1
3888 		 * chooses to inject the exception back to L2.  AMD CPUs _do_
3889 		 * generate "full" 32-bit error codes, so KVM allows userspace
3890 		 * to inject exception error codes with bits 31:16 set.
3891 		 */
3892 		vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3893 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3894 	}
3895 
3896 	if (kvm_exception_is_soft(ex->vector))
3897 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3898 	else
3899 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3900 
3901 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3902 	    vmx_get_nmi_mask(vcpu))
3903 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3904 
3905 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3906 }
3907 
3908 /*
3909  * Returns true if a debug trap is (likely) pending delivery.  Infer the class
3910  * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
3911  * Using the payload is flawed because code breakpoints (fault-like) and data
3912  * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
3913  * this will return false positives if a to-be-injected code breakpoint #DB is
3914  * pending (from KVM's perspective, but not "pending" across an instruction
3915  * boundary).  ICEBP, a.k.a. INT1, is also not reflected here even though it
3916  * too is trap-like.
3917  *
3918  * KVM "works" despite these flaws as ICEBP isn't currently supported by the
3919  * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
3920  * #DB has already happened), and MTF isn't marked pending on code breakpoints
3921  * from the emulator (because such #DBs are fault-like and thus don't trigger
3922  * actions that fire on instruction retire).
3923  */
3924 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
3925 {
3926 	if (!ex->pending || ex->vector != DB_VECTOR)
3927 		return 0;
3928 
3929 	/* General Detect #DBs are always fault-like. */
3930 	return ex->payload & ~DR6_BD;
3931 }
3932 
3933 /*
3934  * Returns true if there's a pending #DB exception that is lower priority than
3935  * a pending Monitor Trap Flag VM-Exit.  TSS T-flag #DBs are not emulated by
3936  * KVM, but could theoretically be injected by userspace.  Note, this code is
3937  * imperfect, see above.
3938  */
3939 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
3940 {
3941 	return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
3942 }
3943 
3944 /*
3945  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3946  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3947  * represents these debug traps with a payload that is said to be compatible
3948  * with the 'pending debug exceptions' field, write the payload to the VMCS
3949  * field if a VM-exit is delivered before the debug trap.
3950  */
3951 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3952 {
3953 	unsigned long pending_dbg;
3954 
3955 	pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
3956 	if (pending_dbg)
3957 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
3958 }
3959 
3960 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3961 {
3962 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3963 	       to_vmx(vcpu)->nested.preemption_timer_expired;
3964 }
3965 
3966 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
3967 {
3968 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3969 	void *vapic = vmx->nested.virtual_apic_map.hva;
3970 	int max_irr, vppr;
3971 
3972 	if (nested_vmx_preemption_timer_pending(vcpu) ||
3973 	    vmx->nested.mtf_pending)
3974 		return true;
3975 
3976 	/*
3977 	 * Virtual Interrupt Delivery doesn't require manual injection.  Either
3978 	 * the interrupt is already in GUEST_RVI and will be recognized by CPU
3979 	 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
3980 	 * the interrupt from the PIR to RVI prior to entering the guest.
3981 	 */
3982 	if (for_injection)
3983 		return false;
3984 
3985 	if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3986 	    __vmx_interrupt_blocked(vcpu))
3987 		return false;
3988 
3989 	if (!vapic)
3990 		return false;
3991 
3992 	vppr = *((u32 *)(vapic + APIC_PROCPRI));
3993 
3994 	if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
3995 	    pi_test_on(vmx->nested.pi_desc)) {
3996 		max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3997 		if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
3998 			return true;
3999 	}
4000 
4001 	return false;
4002 }
4003 
4004 /*
4005  * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4006  * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4007  * and less minor edits to splice in the priority of VMX Non-Root specific
4008  * events, e.g. MTF and NMI/INTR-window exiting.
4009  *
4010  * 1 Hardware Reset and Machine Checks
4011  *	- RESET
4012  *	- Machine Check
4013  *
4014  * 2 Trap on Task Switch
4015  *	- T flag in TSS is set (on task switch)
4016  *
4017  * 3 External Hardware Interventions
4018  *	- FLUSH
4019  *	- STOPCLK
4020  *	- SMI
4021  *	- INIT
4022  *
4023  * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4024  *
4025  * 4 Traps on Previous Instruction
4026  *	- Breakpoints
4027  *	- Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4028  *	  breakpoint, or #DB due to a split-lock access)
4029  *
4030  * 4.3	VMX-preemption timer expired VM-exit
4031  *
4032  * 4.6	NMI-window exiting VM-exit[2]
4033  *
4034  * 5 Nonmaskable Interrupts (NMI)
4035  *
4036  * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4037  *
4038  * 6 Maskable Hardware Interrupts
4039  *
4040  * 7 Code Breakpoint Fault
4041  *
4042  * 8 Faults from Fetching Next Instruction
4043  *	- Code-Segment Limit Violation
4044  *	- Code Page Fault
4045  *	- Control protection exception (missing ENDBRANCH at target of indirect
4046  *					call or jump)
4047  *
4048  * 9 Faults from Decoding Next Instruction
4049  *	- Instruction length > 15 bytes
4050  *	- Invalid Opcode
4051  *	- Coprocessor Not Available
4052  *
4053  *10 Faults on Executing Instruction
4054  *	- Overflow
4055  *	- Bound error
4056  *	- Invalid TSS
4057  *	- Segment Not Present
4058  *	- Stack fault
4059  *	- General Protection
4060  *	- Data Page Fault
4061  *	- Alignment Check
4062  *	- x86 FPU Floating-point exception
4063  *	- SIMD floating-point exception
4064  *	- Virtualization exception
4065  *	- Control protection exception
4066  *
4067  * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4068  *     INIT signals, and higher priority events take priority over MTF VM exits.
4069  *     MTF VM exits take priority over debug-trap exceptions and lower priority
4070  *     events.
4071  *
4072  * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4073  *     caused by the VMX-preemption timer.  VM exits caused by the VMX-preemption
4074  *     timer take priority over VM exits caused by the "NMI-window exiting"
4075  *     VM-execution control and lower priority events.
4076  *
4077  * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4078  *     caused by "NMI-window exiting".  VM exits caused by this control take
4079  *     priority over non-maskable interrupts (NMIs) and lower priority events.
4080  *
4081  * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4082  *     the 1-setting of the "interrupt-window exiting" VM-execution control.  Thus,
4083  *     non-maskable interrupts (NMIs) and higher priority events take priority over
4084  *     delivery of a virtual interrupt; delivery of a virtual interrupt takes
4085  *     priority over external interrupts and lower priority events.
4086  */
4087 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4088 {
4089 	struct kvm_lapic *apic = vcpu->arch.apic;
4090 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4091 	/*
4092 	 * Only a pending nested run blocks a pending exception.  If there is a
4093 	 * previously injected event, the pending exception occurred while said
4094 	 * event was being delivered and thus needs to be handled.
4095 	 */
4096 	bool block_nested_exceptions = vmx->nested.nested_run_pending;
4097 	/*
4098 	 * New events (not exceptions) are only recognized at instruction
4099 	 * boundaries.  If an event needs reinjection, then KVM is handling a
4100 	 * VM-Exit that occurred _during_ instruction execution; new events are
4101 	 * blocked until the instruction completes.
4102 	 */
4103 	bool block_nested_events = block_nested_exceptions ||
4104 				   kvm_event_needs_reinjection(vcpu);
4105 
4106 	if (lapic_in_kernel(vcpu) &&
4107 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4108 		if (block_nested_events)
4109 			return -EBUSY;
4110 		nested_vmx_update_pending_dbg(vcpu);
4111 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
4112 		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4113 			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4114 
4115 		/* MTF is discarded if the vCPU is in WFS. */
4116 		vmx->nested.mtf_pending = false;
4117 		return 0;
4118 	}
4119 
4120 	if (lapic_in_kernel(vcpu) &&
4121 	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4122 		if (block_nested_events)
4123 			return -EBUSY;
4124 
4125 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4126 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4127 			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4128 						apic->sipi_vector & 0xFFUL);
4129 			return 0;
4130 		}
4131 		/* Fallthrough, the SIPI is completely ignored. */
4132 	}
4133 
4134 	/*
4135 	 * Process exceptions that are higher priority than Monitor Trap Flag:
4136 	 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4137 	 * could theoretically come in from userspace), and ICEBP (INT1).
4138 	 *
4139 	 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4140 	 * for TSS T flag #DBs).  KVM also doesn't save/restore pending MTF
4141 	 * across SMI/RSM as it should; that needs to be addressed in order to
4142 	 * prioritize SMI over MTF and trap-like #DBs.
4143 	 */
4144 	if (vcpu->arch.exception_vmexit.pending &&
4145 	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4146 		if (block_nested_exceptions)
4147 			return -EBUSY;
4148 
4149 		nested_vmx_inject_exception_vmexit(vcpu);
4150 		return 0;
4151 	}
4152 
4153 	if (vcpu->arch.exception.pending &&
4154 	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4155 		if (block_nested_exceptions)
4156 			return -EBUSY;
4157 		goto no_vmexit;
4158 	}
4159 
4160 	if (vmx->nested.mtf_pending) {
4161 		if (block_nested_events)
4162 			return -EBUSY;
4163 		nested_vmx_update_pending_dbg(vcpu);
4164 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4165 		return 0;
4166 	}
4167 
4168 	if (vcpu->arch.exception_vmexit.pending) {
4169 		if (block_nested_exceptions)
4170 			return -EBUSY;
4171 
4172 		nested_vmx_inject_exception_vmexit(vcpu);
4173 		return 0;
4174 	}
4175 
4176 	if (vcpu->arch.exception.pending) {
4177 		if (block_nested_exceptions)
4178 			return -EBUSY;
4179 		goto no_vmexit;
4180 	}
4181 
4182 	if (nested_vmx_preemption_timer_pending(vcpu)) {
4183 		if (block_nested_events)
4184 			return -EBUSY;
4185 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4186 		return 0;
4187 	}
4188 
4189 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4190 		if (block_nested_events)
4191 			return -EBUSY;
4192 		goto no_vmexit;
4193 	}
4194 
4195 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4196 		if (block_nested_events)
4197 			return -EBUSY;
4198 		if (!nested_exit_on_nmi(vcpu))
4199 			goto no_vmexit;
4200 
4201 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4202 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
4203 				  INTR_INFO_VALID_MASK, 0);
4204 		/*
4205 		 * The NMI-triggered VM exit counts as injection:
4206 		 * clear this one and block further NMIs.
4207 		 */
4208 		vcpu->arch.nmi_pending = 0;
4209 		vmx_set_nmi_mask(vcpu, true);
4210 		return 0;
4211 	}
4212 
4213 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4214 		if (block_nested_events)
4215 			return -EBUSY;
4216 		if (!nested_exit_on_intr(vcpu))
4217 			goto no_vmexit;
4218 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4219 		return 0;
4220 	}
4221 
4222 no_vmexit:
4223 	return vmx_complete_nested_posted_interrupt(vcpu);
4224 }
4225 
4226 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4227 {
4228 	ktime_t remaining =
4229 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4230 	u64 value;
4231 
4232 	if (ktime_to_ns(remaining) <= 0)
4233 		return 0;
4234 
4235 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4236 	do_div(value, 1000000);
4237 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4238 }
4239 
4240 static bool is_vmcs12_ext_field(unsigned long field)
4241 {
4242 	switch (field) {
4243 	case GUEST_ES_SELECTOR:
4244 	case GUEST_CS_SELECTOR:
4245 	case GUEST_SS_SELECTOR:
4246 	case GUEST_DS_SELECTOR:
4247 	case GUEST_FS_SELECTOR:
4248 	case GUEST_GS_SELECTOR:
4249 	case GUEST_LDTR_SELECTOR:
4250 	case GUEST_TR_SELECTOR:
4251 	case GUEST_ES_LIMIT:
4252 	case GUEST_CS_LIMIT:
4253 	case GUEST_SS_LIMIT:
4254 	case GUEST_DS_LIMIT:
4255 	case GUEST_FS_LIMIT:
4256 	case GUEST_GS_LIMIT:
4257 	case GUEST_LDTR_LIMIT:
4258 	case GUEST_TR_LIMIT:
4259 	case GUEST_GDTR_LIMIT:
4260 	case GUEST_IDTR_LIMIT:
4261 	case GUEST_ES_AR_BYTES:
4262 	case GUEST_DS_AR_BYTES:
4263 	case GUEST_FS_AR_BYTES:
4264 	case GUEST_GS_AR_BYTES:
4265 	case GUEST_LDTR_AR_BYTES:
4266 	case GUEST_TR_AR_BYTES:
4267 	case GUEST_ES_BASE:
4268 	case GUEST_CS_BASE:
4269 	case GUEST_SS_BASE:
4270 	case GUEST_DS_BASE:
4271 	case GUEST_FS_BASE:
4272 	case GUEST_GS_BASE:
4273 	case GUEST_LDTR_BASE:
4274 	case GUEST_TR_BASE:
4275 	case GUEST_GDTR_BASE:
4276 	case GUEST_IDTR_BASE:
4277 	case GUEST_PENDING_DBG_EXCEPTIONS:
4278 	case GUEST_BNDCFGS:
4279 		return true;
4280 	default:
4281 		break;
4282 	}
4283 
4284 	return false;
4285 }
4286 
4287 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4288 				       struct vmcs12 *vmcs12)
4289 {
4290 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4291 
4292 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4293 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4294 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4295 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4296 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4297 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4298 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4299 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4300 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4301 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4302 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4303 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4304 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4305 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4306 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4307 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4308 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4309 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4310 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4311 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4312 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4313 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4314 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4315 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4316 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4317 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4318 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4319 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4320 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4321 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4322 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4323 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4324 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4325 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4326 	vmcs12->guest_pending_dbg_exceptions =
4327 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4328 
4329 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4330 }
4331 
4332 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4333 				       struct vmcs12 *vmcs12)
4334 {
4335 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4336 	int cpu;
4337 
4338 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4339 		return;
4340 
4341 
4342 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4343 
4344 	cpu = get_cpu();
4345 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4346 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4347 
4348 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4349 
4350 	vmx->loaded_vmcs = &vmx->vmcs01;
4351 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4352 	put_cpu();
4353 }
4354 
4355 /*
4356  * Update the guest state fields of vmcs12 to reflect changes that
4357  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4358  * VM-entry controls is also updated, since this is really a guest
4359  * state bit.)
4360  */
4361 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4362 {
4363 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4364 
4365 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4366 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4367 
4368 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4369 		!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4370 
4371 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4372 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4373 
4374 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4375 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4376 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4377 
4378 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4379 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4380 
4381 	vmcs12->guest_interruptibility_info =
4382 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4383 
4384 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4385 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4386 	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4387 		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4388 	else
4389 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4390 
4391 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4392 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4393 	    !vmx->nested.nested_run_pending)
4394 		vmcs12->vmx_preemption_timer_value =
4395 			vmx_get_preemption_timer_value(vcpu);
4396 
4397 	/*
4398 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4399 	 * own CR3 without exiting. If it has changed it, we must keep it.
4400 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4401 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4402 	 *
4403 	 * Additionally, restore L2's PDPTR to vmcs12.
4404 	 */
4405 	if (enable_ept) {
4406 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4407 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4408 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4409 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4410 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4411 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4412 		}
4413 	}
4414 
4415 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4416 
4417 	if (nested_cpu_has_vid(vmcs12))
4418 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4419 
4420 	vmcs12->vm_entry_controls =
4421 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4422 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4423 
4424 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4425 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4426 
4427 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4428 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4429 }
4430 
4431 /*
4432  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4433  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4434  * and this function updates it to reflect the changes to the guest state while
4435  * L2 was running (and perhaps made some exits which were handled directly by L0
4436  * without going back to L1), and to reflect the exit reason.
4437  * Note that we do not have to copy here all VMCS fields, just those that
4438  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4439  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4440  * which already writes to vmcs12 directly.
4441  */
4442 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4443 			   u32 vm_exit_reason, u32 exit_intr_info,
4444 			   unsigned long exit_qualification)
4445 {
4446 	/* update exit information fields: */
4447 	vmcs12->vm_exit_reason = vm_exit_reason;
4448 	if (to_vmx(vcpu)->exit_reason.enclave_mode)
4449 		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4450 	vmcs12->exit_qualification = exit_qualification;
4451 
4452 	/*
4453 	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4454 	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4455 	 * exit info fields are unmodified.
4456 	 */
4457 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4458 		vmcs12->launch_state = 1;
4459 
4460 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4461 		 * instead of reading the real value. */
4462 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4463 
4464 		/*
4465 		 * Transfer the event that L0 or L1 may wanted to inject into
4466 		 * L2 to IDT_VECTORING_INFO_FIELD.
4467 		 */
4468 		vmcs12_save_pending_event(vcpu, vmcs12,
4469 					  vm_exit_reason, exit_intr_info);
4470 
4471 		vmcs12->vm_exit_intr_info = exit_intr_info;
4472 		vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4473 		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4474 
4475 		/*
4476 		 * According to spec, there's no need to store the guest's
4477 		 * MSRs if the exit is due to a VM-entry failure that occurs
4478 		 * during or after loading the guest state. Since this exit
4479 		 * does not fall in that category, we need to save the MSRs.
4480 		 */
4481 		if (nested_vmx_store_msr(vcpu,
4482 					 vmcs12->vm_exit_msr_store_addr,
4483 					 vmcs12->vm_exit_msr_store_count))
4484 			nested_vmx_abort(vcpu,
4485 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4486 	}
4487 }
4488 
4489 /*
4490  * A part of what we need to when the nested L2 guest exits and we want to
4491  * run its L1 parent, is to reset L1's guest state to the host state specified
4492  * in vmcs12.
4493  * This function is to be called not only on normal nested exit, but also on
4494  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4495  * Failures During or After Loading Guest State").
4496  * This function should be called when the active VMCS is L1's (vmcs01).
4497  */
4498 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4499 				   struct vmcs12 *vmcs12)
4500 {
4501 	enum vm_entry_failure_code ignored;
4502 	struct kvm_segment seg;
4503 
4504 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4505 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4506 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4507 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4508 	else
4509 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4510 	vmx_set_efer(vcpu, vcpu->arch.efer);
4511 
4512 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4513 	kvm_rip_write(vcpu, vmcs12->host_rip);
4514 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4515 	vmx_set_interrupt_shadow(vcpu, 0);
4516 
4517 	/*
4518 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4519 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4520 	 *
4521 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4522 	 * (KVM doesn't change it);
4523 	 */
4524 	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4525 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4526 
4527 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4528 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4529 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4530 
4531 	nested_ept_uninit_mmu_context(vcpu);
4532 
4533 	/*
4534 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4535 	 * couldn't have changed.
4536 	 */
4537 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4538 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4539 
4540 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4541 
4542 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4543 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4544 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4545 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4546 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4547 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4548 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4549 
4550 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4551 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4552 		vmcs_write64(GUEST_BNDCFGS, 0);
4553 
4554 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4555 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4556 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4557 	}
4558 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4559 	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4560 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4561 					 vmcs12->host_ia32_perf_global_ctrl));
4562 
4563 	/* Set L1 segment info according to Intel SDM
4564 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4565 	seg = (struct kvm_segment) {
4566 		.base = 0,
4567 		.limit = 0xFFFFFFFF,
4568 		.selector = vmcs12->host_cs_selector,
4569 		.type = 11,
4570 		.present = 1,
4571 		.s = 1,
4572 		.g = 1
4573 	};
4574 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4575 		seg.l = 1;
4576 	else
4577 		seg.db = 1;
4578 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4579 	seg = (struct kvm_segment) {
4580 		.base = 0,
4581 		.limit = 0xFFFFFFFF,
4582 		.type = 3,
4583 		.present = 1,
4584 		.s = 1,
4585 		.db = 1,
4586 		.g = 1
4587 	};
4588 	seg.selector = vmcs12->host_ds_selector;
4589 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4590 	seg.selector = vmcs12->host_es_selector;
4591 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4592 	seg.selector = vmcs12->host_ss_selector;
4593 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4594 	seg.selector = vmcs12->host_fs_selector;
4595 	seg.base = vmcs12->host_fs_base;
4596 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4597 	seg.selector = vmcs12->host_gs_selector;
4598 	seg.base = vmcs12->host_gs_base;
4599 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4600 	seg = (struct kvm_segment) {
4601 		.base = vmcs12->host_tr_base,
4602 		.limit = 0x67,
4603 		.selector = vmcs12->host_tr_selector,
4604 		.type = 11,
4605 		.present = 1
4606 	};
4607 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4608 
4609 	memset(&seg, 0, sizeof(seg));
4610 	seg.unusable = 1;
4611 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4612 
4613 	kvm_set_dr(vcpu, 7, 0x400);
4614 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4615 
4616 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4617 				vmcs12->vm_exit_msr_load_count))
4618 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4619 
4620 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4621 }
4622 
4623 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4624 {
4625 	struct vmx_uret_msr *efer_msr;
4626 	unsigned int i;
4627 
4628 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4629 		return vmcs_read64(GUEST_IA32_EFER);
4630 
4631 	if (cpu_has_load_ia32_efer())
4632 		return host_efer;
4633 
4634 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4635 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4636 			return vmx->msr_autoload.guest.val[i].value;
4637 	}
4638 
4639 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4640 	if (efer_msr)
4641 		return efer_msr->data;
4642 
4643 	return host_efer;
4644 }
4645 
4646 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4647 {
4648 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4649 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4650 	struct vmx_msr_entry g, h;
4651 	gpa_t gpa;
4652 	u32 i, j;
4653 
4654 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4655 
4656 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4657 		/*
4658 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4659 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4660 		 * and vcpu->arch.dr7 is not squirreled away before the
4661 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4662 		 */
4663 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4664 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4665 		else
4666 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4667 	}
4668 
4669 	/*
4670 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4671 	 * handle a variety of side effects to KVM's software model.
4672 	 */
4673 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4674 
4675 	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4676 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4677 
4678 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4679 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4680 
4681 	nested_ept_uninit_mmu_context(vcpu);
4682 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4683 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4684 
4685 	/*
4686 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4687 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4688 	 * VMFail, like everything else we just need to ensure our
4689 	 * software model is up-to-date.
4690 	 */
4691 	if (enable_ept && is_pae_paging(vcpu))
4692 		ept_save_pdptrs(vcpu);
4693 
4694 	kvm_mmu_reset_context(vcpu);
4695 
4696 	/*
4697 	 * This nasty bit of open coding is a compromise between blindly
4698 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4699 	 * of VMFail), leaving the nested VM's MSRs in the software model
4700 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4701 	 * expensive since the lists are unbound by hardware).  For each
4702 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4703 	 * list, reload it from the exit load list if it exists and differs
4704 	 * from the guest value.  The intent is to stuff host state as
4705 	 * silently as possible, not to fully process the exit load list.
4706 	 */
4707 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4708 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4709 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4710 			pr_debug_ratelimited(
4711 				"%s read MSR index failed (%u, 0x%08llx)\n",
4712 				__func__, i, gpa);
4713 			goto vmabort;
4714 		}
4715 
4716 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4717 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4718 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4719 				pr_debug_ratelimited(
4720 					"%s read MSR failed (%u, 0x%08llx)\n",
4721 					__func__, j, gpa);
4722 				goto vmabort;
4723 			}
4724 			if (h.index != g.index)
4725 				continue;
4726 			if (h.value == g.value)
4727 				break;
4728 
4729 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4730 				pr_debug_ratelimited(
4731 					"%s check failed (%u, 0x%x, 0x%x)\n",
4732 					__func__, j, h.index, h.reserved);
4733 				goto vmabort;
4734 			}
4735 
4736 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4737 				pr_debug_ratelimited(
4738 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4739 					__func__, j, h.index, h.value);
4740 				goto vmabort;
4741 			}
4742 		}
4743 	}
4744 
4745 	return;
4746 
4747 vmabort:
4748 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4749 }
4750 
4751 /*
4752  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4753  * and modify vmcs12 to make it see what it would expect to see there if
4754  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4755  */
4756 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4757 		       u32 exit_intr_info, unsigned long exit_qualification)
4758 {
4759 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4760 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4761 
4762 	/* Pending MTF traps are discarded on VM-Exit. */
4763 	vmx->nested.mtf_pending = false;
4764 
4765 	/* trying to cancel vmlaunch/vmresume is a bug */
4766 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4767 
4768 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4769 		/*
4770 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4771 		 * Enlightened VMCS after migration and we still need to
4772 		 * do that when something is forcing L2->L1 exit prior to
4773 		 * the first L2 run.
4774 		 */
4775 		(void)nested_get_evmcs_page(vcpu);
4776 	}
4777 
4778 	/* Service pending TLB flush requests for L2 before switching to L1. */
4779 	kvm_service_local_tlb_flush_requests(vcpu);
4780 
4781 	/*
4782 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4783 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4784 	 * up-to-date before switching to L1.
4785 	 */
4786 	if (enable_ept && is_pae_paging(vcpu))
4787 		vmx_ept_load_pdptrs(vcpu);
4788 
4789 	leave_guest_mode(vcpu);
4790 
4791 	if (nested_cpu_has_preemption_timer(vmcs12))
4792 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4793 
4794 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4795 		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4796 		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4797 			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4798 	}
4799 
4800 	if (likely(!vmx->fail)) {
4801 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4802 
4803 		if (vm_exit_reason != -1)
4804 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4805 				       exit_intr_info, exit_qualification);
4806 
4807 		/*
4808 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4809 		 * also be used to capture vmcs12 cache as part of
4810 		 * capturing nVMX state for snapshot (migration).
4811 		 *
4812 		 * Otherwise, this flush will dirty guest memory at a
4813 		 * point it is already assumed by user-space to be
4814 		 * immutable.
4815 		 */
4816 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4817 	} else {
4818 		/*
4819 		 * The only expected VM-instruction error is "VM entry with
4820 		 * invalid control field(s)." Anything else indicates a
4821 		 * problem with L0.  And we should never get here with a
4822 		 * VMFail of any type if early consistency checks are enabled.
4823 		 */
4824 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4825 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4826 		WARN_ON_ONCE(nested_early_check);
4827 	}
4828 
4829 	/*
4830 	 * Drop events/exceptions that were queued for re-injection to L2
4831 	 * (picked up via vmx_complete_interrupts()), as well as exceptions
4832 	 * that were pending for L2.  Note, this must NOT be hoisted above
4833 	 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4834 	 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4835 	 */
4836 	vcpu->arch.nmi_injected = false;
4837 	kvm_clear_exception_queue(vcpu);
4838 	kvm_clear_interrupt_queue(vcpu);
4839 
4840 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4841 
4842 	/*
4843 	 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4844 	 * branch predictors when transitioning from L2 to L1, as L1 expects
4845 	 * hardware (KVM in this case) to provide separate predictor modes.
4846 	 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4847 	 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4848 	 * separate modes for L2 vs L1.
4849 	 */
4850 	if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4851 		indirect_branch_prediction_barrier();
4852 
4853 	/* Update any VMCS fields that might have changed while L2 ran */
4854 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4855 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4856 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4857 	if (kvm_caps.has_tsc_control)
4858 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4859 
4860 	if (vmx->nested.l1_tpr_threshold != -1)
4861 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4862 
4863 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4864 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4865 		vmx_set_virtual_apic_mode(vcpu);
4866 	}
4867 
4868 	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4869 		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4870 		vmx_update_cpu_dirty_logging(vcpu);
4871 	}
4872 
4873 	/* Unpin physical memory we referred to in vmcs02 */
4874 	kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
4875 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4876 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4877 	vmx->nested.pi_desc = NULL;
4878 
4879 	if (vmx->nested.reload_vmcs01_apic_access_page) {
4880 		vmx->nested.reload_vmcs01_apic_access_page = false;
4881 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4882 	}
4883 
4884 	if (vmx->nested.update_vmcs01_apicv_status) {
4885 		vmx->nested.update_vmcs01_apicv_status = false;
4886 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4887 	}
4888 
4889 	if ((vm_exit_reason != -1) &&
4890 	    (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4891 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4892 
4893 	/* in case we halted in L2 */
4894 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4895 
4896 	if (likely(!vmx->fail)) {
4897 		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4898 		    nested_exit_intr_ack_set(vcpu)) {
4899 			int irq = kvm_cpu_get_interrupt(vcpu);
4900 			WARN_ON(irq < 0);
4901 			vmcs12->vm_exit_intr_info = irq |
4902 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4903 		}
4904 
4905 		if (vm_exit_reason != -1)
4906 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4907 						       vmcs12->exit_qualification,
4908 						       vmcs12->idt_vectoring_info_field,
4909 						       vmcs12->vm_exit_intr_info,
4910 						       vmcs12->vm_exit_intr_error_code,
4911 						       KVM_ISA_VMX);
4912 
4913 		load_vmcs12_host_state(vcpu, vmcs12);
4914 
4915 		return;
4916 	}
4917 
4918 	/*
4919 	 * After an early L2 VM-entry failure, we're now back
4920 	 * in L1 which thinks it just finished a VMLAUNCH or
4921 	 * VMRESUME instruction, so we need to set the failure
4922 	 * flag and the VM-instruction error field of the VMCS
4923 	 * accordingly, and skip the emulated instruction.
4924 	 */
4925 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4926 
4927 	/*
4928 	 * Restore L1's host state to KVM's software model.  We're here
4929 	 * because a consistency check was caught by hardware, which
4930 	 * means some amount of guest state has been propagated to KVM's
4931 	 * model and needs to be unwound to the host's state.
4932 	 */
4933 	nested_vmx_restore_host_state(vcpu);
4934 
4935 	vmx->fail = 0;
4936 }
4937 
4938 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4939 {
4940 	kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4941 	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4942 }
4943 
4944 /*
4945  * Decode the memory-address operand of a vmx instruction, as recorded on an
4946  * exit caused by such an instruction (run by a guest hypervisor).
4947  * On success, returns 0. When the operand is invalid, returns 1 and throws
4948  * #UD, #GP, or #SS.
4949  */
4950 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4951 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4952 {
4953 	gva_t off;
4954 	bool exn;
4955 	struct kvm_segment s;
4956 
4957 	/*
4958 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4959 	 * Execution", on an exit, vmx_instruction_info holds most of the
4960 	 * addressing components of the operand. Only the displacement part
4961 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4962 	 * For how an actual address is calculated from all these components,
4963 	 * refer to Vol. 1, "Operand Addressing".
4964 	 */
4965 	int  scaling = vmx_instruction_info & 3;
4966 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4967 	bool is_reg = vmx_instruction_info & (1u << 10);
4968 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4969 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4970 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4971 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4972 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4973 
4974 	if (is_reg) {
4975 		kvm_queue_exception(vcpu, UD_VECTOR);
4976 		return 1;
4977 	}
4978 
4979 	/* Addr = segment_base + offset */
4980 	/* offset = base + [index * scale] + displacement */
4981 	off = exit_qualification; /* holds the displacement */
4982 	if (addr_size == 1)
4983 		off = (gva_t)sign_extend64(off, 31);
4984 	else if (addr_size == 0)
4985 		off = (gva_t)sign_extend64(off, 15);
4986 	if (base_is_valid)
4987 		off += kvm_register_read(vcpu, base_reg);
4988 	if (index_is_valid)
4989 		off += kvm_register_read(vcpu, index_reg) << scaling;
4990 	vmx_get_segment(vcpu, &s, seg_reg);
4991 
4992 	/*
4993 	 * The effective address, i.e. @off, of a memory operand is truncated
4994 	 * based on the address size of the instruction.  Note that this is
4995 	 * the *effective address*, i.e. the address prior to accounting for
4996 	 * the segment's base.
4997 	 */
4998 	if (addr_size == 1) /* 32 bit */
4999 		off &= 0xffffffff;
5000 	else if (addr_size == 0) /* 16 bit */
5001 		off &= 0xffff;
5002 
5003 	/* Checks for #GP/#SS exceptions. */
5004 	exn = false;
5005 	if (is_long_mode(vcpu)) {
5006 		/*
5007 		 * The virtual/linear address is never truncated in 64-bit
5008 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5009 		 * address when using FS/GS with a non-zero base.
5010 		 */
5011 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5012 			*ret = s.base + off;
5013 		else
5014 			*ret = off;
5015 
5016 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
5017 		 * non-canonical form. This is the only check on the memory
5018 		 * destination for long mode!
5019 		 */
5020 		exn = is_noncanonical_address(*ret, vcpu);
5021 	} else {
5022 		/*
5023 		 * When not in long mode, the virtual/linear address is
5024 		 * unconditionally truncated to 32 bits regardless of the
5025 		 * address size.
5026 		 */
5027 		*ret = (s.base + off) & 0xffffffff;
5028 
5029 		/* Protected mode: apply checks for segment validity in the
5030 		 * following order:
5031 		 * - segment type check (#GP(0) may be thrown)
5032 		 * - usability check (#GP(0)/#SS(0))
5033 		 * - limit check (#GP(0)/#SS(0))
5034 		 */
5035 		if (wr)
5036 			/* #GP(0) if the destination operand is located in a
5037 			 * read-only data segment or any code segment.
5038 			 */
5039 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
5040 		else
5041 			/* #GP(0) if the source operand is located in an
5042 			 * execute-only code segment
5043 			 */
5044 			exn = ((s.type & 0xa) == 8);
5045 		if (exn) {
5046 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5047 			return 1;
5048 		}
5049 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5050 		 */
5051 		exn = (s.unusable != 0);
5052 
5053 		/*
5054 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5055 		 * outside the segment limit.  All CPUs that support VMX ignore
5056 		 * limit checks for flat segments, i.e. segments with base==0,
5057 		 * limit==0xffffffff and of type expand-up data or code.
5058 		 */
5059 		if (!(s.base == 0 && s.limit == 0xffffffff &&
5060 		     ((s.type & 8) || !(s.type & 4))))
5061 			exn = exn || ((u64)off + len - 1 > s.limit);
5062 	}
5063 	if (exn) {
5064 		kvm_queue_exception_e(vcpu,
5065 				      seg_reg == VCPU_SREG_SS ?
5066 						SS_VECTOR : GP_VECTOR,
5067 				      0);
5068 		return 1;
5069 	}
5070 
5071 	return 0;
5072 }
5073 
5074 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5075 				int *ret)
5076 {
5077 	gva_t gva;
5078 	struct x86_exception e;
5079 	int r;
5080 
5081 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5082 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
5083 				sizeof(*vmpointer), &gva)) {
5084 		*ret = 1;
5085 		return -EINVAL;
5086 	}
5087 
5088 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5089 	if (r != X86EMUL_CONTINUE) {
5090 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
5091 		return -EINVAL;
5092 	}
5093 
5094 	return 0;
5095 }
5096 
5097 /*
5098  * Allocate a shadow VMCS and associate it with the currently loaded
5099  * VMCS, unless such a shadow VMCS already exists. The newly allocated
5100  * VMCS is also VMCLEARed, so that it is ready for use.
5101  */
5102 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5103 {
5104 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5105 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5106 
5107 	/*
5108 	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5109 	 * when L1 executes VMXOFF or the vCPU is forced out of nested
5110 	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
5111 	 * should be impossible to already have an allocated shadow VMCS.  KVM
5112 	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5113 	 * always be the loaded VMCS.
5114 	 */
5115 	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5116 		return loaded_vmcs->shadow_vmcs;
5117 
5118 	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5119 	if (loaded_vmcs->shadow_vmcs)
5120 		vmcs_clear(loaded_vmcs->shadow_vmcs);
5121 
5122 	return loaded_vmcs->shadow_vmcs;
5123 }
5124 
5125 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5126 {
5127 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5128 	int r;
5129 
5130 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5131 	if (r < 0)
5132 		goto out_vmcs02;
5133 
5134 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5135 	if (!vmx->nested.cached_vmcs12)
5136 		goto out_cached_vmcs12;
5137 
5138 	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5139 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5140 	if (!vmx->nested.cached_shadow_vmcs12)
5141 		goto out_cached_shadow_vmcs12;
5142 
5143 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5144 		goto out_shadow_vmcs;
5145 
5146 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5147 		     HRTIMER_MODE_ABS_PINNED);
5148 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5149 
5150 	vmx->nested.vpid02 = allocate_vpid();
5151 
5152 	vmx->nested.vmcs02_initialized = false;
5153 	vmx->nested.vmxon = true;
5154 
5155 	if (vmx_pt_mode_is_host_guest()) {
5156 		vmx->pt_desc.guest.ctl = 0;
5157 		pt_update_intercept_for_msr(vcpu);
5158 	}
5159 
5160 	return 0;
5161 
5162 out_shadow_vmcs:
5163 	kfree(vmx->nested.cached_shadow_vmcs12);
5164 
5165 out_cached_shadow_vmcs12:
5166 	kfree(vmx->nested.cached_vmcs12);
5167 
5168 out_cached_vmcs12:
5169 	free_loaded_vmcs(&vmx->nested.vmcs02);
5170 
5171 out_vmcs02:
5172 	return -ENOMEM;
5173 }
5174 
5175 /* Emulate the VMXON instruction. */
5176 static int handle_vmxon(struct kvm_vcpu *vcpu)
5177 {
5178 	int ret;
5179 	gpa_t vmptr;
5180 	uint32_t revision;
5181 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5182 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5183 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5184 
5185 	/*
5186 	 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5187 	 * the guest and so cannot rely on hardware to perform the check,
5188 	 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5189 	 * for VMXON).
5190 	 *
5191 	 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5192 	 * and !COMPATIBILITY modes.  For an unrestricted guest, KVM doesn't
5193 	 * force any of the relevant guest state.  For a restricted guest, KVM
5194 	 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5195 	 * Real Mode, and so there's no need to check CR0.PE manually.
5196 	 */
5197 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5198 		kvm_queue_exception(vcpu, UD_VECTOR);
5199 		return 1;
5200 	}
5201 
5202 	/*
5203 	 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5204 	 * and has higher priority than the VM-Fail due to being post-VMXON,
5205 	 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0.  In VMX non-root,
5206 	 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5207 	 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5208 	 * VMX non-root.
5209 	 *
5210 	 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5211 	 * #UD checks (see above), is functionally ok because KVM doesn't allow
5212 	 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5213 	 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5214 	 * missed by hardware due to shadowing CR0 and/or CR4.
5215 	 */
5216 	if (vmx_get_cpl(vcpu)) {
5217 		kvm_inject_gp(vcpu, 0);
5218 		return 1;
5219 	}
5220 
5221 	if (vmx->nested.vmxon)
5222 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5223 
5224 	/*
5225 	 * Invalid CR0/CR4 generates #GP.  These checks are performed if and
5226 	 * only if the vCPU isn't already in VMX operation, i.e. effectively
5227 	 * have lower priority than the VM-Fail above.
5228 	 */
5229 	if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5230 	    !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5231 		kvm_inject_gp(vcpu, 0);
5232 		return 1;
5233 	}
5234 
5235 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5236 			!= VMXON_NEEDED_FEATURES) {
5237 		kvm_inject_gp(vcpu, 0);
5238 		return 1;
5239 	}
5240 
5241 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5242 		return ret;
5243 
5244 	/*
5245 	 * SDM 3: 24.11.5
5246 	 * The first 4 bytes of VMXON region contain the supported
5247 	 * VMCS revision identifier
5248 	 *
5249 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5250 	 * which replaces physical address width with 32
5251 	 */
5252 	if (!page_address_valid(vcpu, vmptr))
5253 		return nested_vmx_failInvalid(vcpu);
5254 
5255 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5256 	    revision != VMCS12_REVISION)
5257 		return nested_vmx_failInvalid(vcpu);
5258 
5259 	vmx->nested.vmxon_ptr = vmptr;
5260 	ret = enter_vmx_operation(vcpu);
5261 	if (ret)
5262 		return ret;
5263 
5264 	return nested_vmx_succeed(vcpu);
5265 }
5266 
5267 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5268 {
5269 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5270 
5271 	if (vmx->nested.current_vmptr == INVALID_GPA)
5272 		return;
5273 
5274 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5275 
5276 	if (enable_shadow_vmcs) {
5277 		/* copy to memory all shadowed fields in case
5278 		   they were modified */
5279 		copy_shadow_to_vmcs12(vmx);
5280 		vmx_disable_shadow_vmcs(vmx);
5281 	}
5282 	vmx->nested.posted_intr_nv = -1;
5283 
5284 	/* Flush VMCS12 to guest memory */
5285 	kvm_vcpu_write_guest_page(vcpu,
5286 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
5287 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5288 
5289 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5290 
5291 	vmx->nested.current_vmptr = INVALID_GPA;
5292 }
5293 
5294 /* Emulate the VMXOFF instruction */
5295 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5296 {
5297 	if (!nested_vmx_check_permission(vcpu))
5298 		return 1;
5299 
5300 	free_nested(vcpu);
5301 
5302 	if (kvm_apic_has_pending_init_or_sipi(vcpu))
5303 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5304 
5305 	return nested_vmx_succeed(vcpu);
5306 }
5307 
5308 /* Emulate the VMCLEAR instruction */
5309 static int handle_vmclear(struct kvm_vcpu *vcpu)
5310 {
5311 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5312 	u32 zero = 0;
5313 	gpa_t vmptr;
5314 	int r;
5315 
5316 	if (!nested_vmx_check_permission(vcpu))
5317 		return 1;
5318 
5319 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5320 		return r;
5321 
5322 	if (!page_address_valid(vcpu, vmptr))
5323 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5324 
5325 	if (vmptr == vmx->nested.vmxon_ptr)
5326 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5327 
5328 	/*
5329 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
5330 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5331 	 * way to distinguish it from VMCS12) and we must not corrupt it by
5332 	 * writing to the non-existent 'launch_state' field. The area doesn't
5333 	 * have to be the currently active EVMCS on the calling CPU and there's
5334 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
5335 	 * state. It is possible that the area will stay mapped as
5336 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5337 	 */
5338 	if (likely(!guest_cpuid_has_evmcs(vcpu) ||
5339 		   !evmptr_is_valid(nested_get_evmptr(vcpu)))) {
5340 		if (vmptr == vmx->nested.current_vmptr)
5341 			nested_release_vmcs12(vcpu);
5342 
5343 		/*
5344 		 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5345 		 * for VMCLEAR includes a "ensure that data for VMCS referenced
5346 		 * by the operand is in memory" clause that guards writes to
5347 		 * memory, i.e. doing nothing for I/O is architecturally valid.
5348 		 *
5349 		 * FIXME: Suppress failures if and only if no memslot is found,
5350 		 * i.e. exit to userspace if __copy_to_user() fails.
5351 		 */
5352 		(void)kvm_vcpu_write_guest(vcpu,
5353 					   vmptr + offsetof(struct vmcs12,
5354 							    launch_state),
5355 					   &zero, sizeof(zero));
5356 	} else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5357 		nested_release_evmcs(vcpu);
5358 	}
5359 
5360 	return nested_vmx_succeed(vcpu);
5361 }
5362 
5363 /* Emulate the VMLAUNCH instruction */
5364 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5365 {
5366 	return nested_vmx_run(vcpu, true);
5367 }
5368 
5369 /* Emulate the VMRESUME instruction */
5370 static int handle_vmresume(struct kvm_vcpu *vcpu)
5371 {
5372 
5373 	return nested_vmx_run(vcpu, false);
5374 }
5375 
5376 static int handle_vmread(struct kvm_vcpu *vcpu)
5377 {
5378 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5379 						    : get_vmcs12(vcpu);
5380 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5381 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5382 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5383 	struct x86_exception e;
5384 	unsigned long field;
5385 	u64 value;
5386 	gva_t gva = 0;
5387 	short offset;
5388 	int len, r;
5389 
5390 	if (!nested_vmx_check_permission(vcpu))
5391 		return 1;
5392 
5393 	/* Decode instruction info and find the field to read */
5394 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5395 
5396 	if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5397 		/*
5398 		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5399 		 * any VMREAD sets the ALU flags for VMfailInvalid.
5400 		 */
5401 		if (vmx->nested.current_vmptr == INVALID_GPA ||
5402 		    (is_guest_mode(vcpu) &&
5403 		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5404 			return nested_vmx_failInvalid(vcpu);
5405 
5406 		offset = get_vmcs12_field_offset(field);
5407 		if (offset < 0)
5408 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5409 
5410 		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5411 			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5412 
5413 		/* Read the field, zero-extended to a u64 value */
5414 		value = vmcs12_read_any(vmcs12, field, offset);
5415 	} else {
5416 		/*
5417 		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5418 		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5419 		 * unsupported. Unfortunately, certain versions of Windows 11
5420 		 * don't comply with this requirement which is not enforced in
5421 		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5422 		 * workaround, as misbehaving guests will panic on VM-Fail.
5423 		 * Note, enlightened VMCS is incompatible with shadow VMCS so
5424 		 * all VMREADs from L2 should go to L1.
5425 		 */
5426 		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5427 			return nested_vmx_failInvalid(vcpu);
5428 
5429 		offset = evmcs_field_offset(field, NULL);
5430 		if (offset < 0)
5431 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5432 
5433 		/* Read the field, zero-extended to a u64 value */
5434 		value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5435 	}
5436 
5437 	/*
5438 	 * Now copy part of this value to register or memory, as requested.
5439 	 * Note that the number of bits actually copied is 32 or 64 depending
5440 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5441 	 */
5442 	if (instr_info & BIT(10)) {
5443 		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5444 	} else {
5445 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5446 		if (get_vmx_mem_address(vcpu, exit_qualification,
5447 					instr_info, true, len, &gva))
5448 			return 1;
5449 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5450 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5451 		if (r != X86EMUL_CONTINUE)
5452 			return kvm_handle_memory_failure(vcpu, r, &e);
5453 	}
5454 
5455 	return nested_vmx_succeed(vcpu);
5456 }
5457 
5458 static bool is_shadow_field_rw(unsigned long field)
5459 {
5460 	switch (field) {
5461 #define SHADOW_FIELD_RW(x, y) case x:
5462 #include "vmcs_shadow_fields.h"
5463 		return true;
5464 	default:
5465 		break;
5466 	}
5467 	return false;
5468 }
5469 
5470 static bool is_shadow_field_ro(unsigned long field)
5471 {
5472 	switch (field) {
5473 #define SHADOW_FIELD_RO(x, y) case x:
5474 #include "vmcs_shadow_fields.h"
5475 		return true;
5476 	default:
5477 		break;
5478 	}
5479 	return false;
5480 }
5481 
5482 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5483 {
5484 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5485 						    : get_vmcs12(vcpu);
5486 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5487 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5488 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5489 	struct x86_exception e;
5490 	unsigned long field;
5491 	short offset;
5492 	gva_t gva;
5493 	int len, r;
5494 
5495 	/*
5496 	 * The value to write might be 32 or 64 bits, depending on L1's long
5497 	 * mode, and eventually we need to write that into a field of several
5498 	 * possible lengths. The code below first zero-extends the value to 64
5499 	 * bit (value), and then copies only the appropriate number of
5500 	 * bits into the vmcs12 field.
5501 	 */
5502 	u64 value = 0;
5503 
5504 	if (!nested_vmx_check_permission(vcpu))
5505 		return 1;
5506 
5507 	/*
5508 	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5509 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5510 	 */
5511 	if (vmx->nested.current_vmptr == INVALID_GPA ||
5512 	    (is_guest_mode(vcpu) &&
5513 	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5514 		return nested_vmx_failInvalid(vcpu);
5515 
5516 	if (instr_info & BIT(10))
5517 		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5518 	else {
5519 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5520 		if (get_vmx_mem_address(vcpu, exit_qualification,
5521 					instr_info, false, len, &gva))
5522 			return 1;
5523 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5524 		if (r != X86EMUL_CONTINUE)
5525 			return kvm_handle_memory_failure(vcpu, r, &e);
5526 	}
5527 
5528 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5529 
5530 	offset = get_vmcs12_field_offset(field);
5531 	if (offset < 0)
5532 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5533 
5534 	/*
5535 	 * If the vCPU supports "VMWRITE to any supported field in the
5536 	 * VMCS," then the "read-only" fields are actually read/write.
5537 	 */
5538 	if (vmcs_field_readonly(field) &&
5539 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5540 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5541 
5542 	/*
5543 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5544 	 * vmcs12, else we may crush a field or consume a stale value.
5545 	 */
5546 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5547 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5548 
5549 	/*
5550 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5551 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5552 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5553 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5554 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5555 	 * the stripped down value, L2 sees the full value as stored by KVM).
5556 	 */
5557 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5558 		value &= 0x1f0ff;
5559 
5560 	vmcs12_write_any(vmcs12, field, offset, value);
5561 
5562 	/*
5563 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5564 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5565 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5566 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5567 	 */
5568 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5569 		/*
5570 		 * L1 can read these fields without exiting, ensure the
5571 		 * shadow VMCS is up-to-date.
5572 		 */
5573 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5574 			preempt_disable();
5575 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5576 
5577 			__vmcs_writel(field, value);
5578 
5579 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5580 			vmcs_load(vmx->loaded_vmcs->vmcs);
5581 			preempt_enable();
5582 		}
5583 		vmx->nested.dirty_vmcs12 = true;
5584 	}
5585 
5586 	return nested_vmx_succeed(vcpu);
5587 }
5588 
5589 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5590 {
5591 	vmx->nested.current_vmptr = vmptr;
5592 	if (enable_shadow_vmcs) {
5593 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5594 		vmcs_write64(VMCS_LINK_POINTER,
5595 			     __pa(vmx->vmcs01.shadow_vmcs));
5596 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5597 	}
5598 	vmx->nested.dirty_vmcs12 = true;
5599 	vmx->nested.force_msr_bitmap_recalc = true;
5600 }
5601 
5602 /* Emulate the VMPTRLD instruction */
5603 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5604 {
5605 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5606 	gpa_t vmptr;
5607 	int r;
5608 
5609 	if (!nested_vmx_check_permission(vcpu))
5610 		return 1;
5611 
5612 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5613 		return r;
5614 
5615 	if (!page_address_valid(vcpu, vmptr))
5616 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5617 
5618 	if (vmptr == vmx->nested.vmxon_ptr)
5619 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5620 
5621 	/* Forbid normal VMPTRLD if Enlightened version was used */
5622 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5623 		return 1;
5624 
5625 	if (vmx->nested.current_vmptr != vmptr) {
5626 		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5627 		struct vmcs_hdr hdr;
5628 
5629 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5630 			/*
5631 			 * Reads from an unbacked page return all 1s,
5632 			 * which means that the 32 bits located at the
5633 			 * given physical address won't match the required
5634 			 * VMCS12_REVISION identifier.
5635 			 */
5636 			return nested_vmx_fail(vcpu,
5637 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5638 		}
5639 
5640 		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5641 						 offsetof(struct vmcs12, hdr),
5642 						 sizeof(hdr))) {
5643 			return nested_vmx_fail(vcpu,
5644 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5645 		}
5646 
5647 		if (hdr.revision_id != VMCS12_REVISION ||
5648 		    (hdr.shadow_vmcs &&
5649 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5650 			return nested_vmx_fail(vcpu,
5651 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5652 		}
5653 
5654 		nested_release_vmcs12(vcpu);
5655 
5656 		/*
5657 		 * Load VMCS12 from guest memory since it is not already
5658 		 * cached.
5659 		 */
5660 		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5661 					  VMCS12_SIZE)) {
5662 			return nested_vmx_fail(vcpu,
5663 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5664 		}
5665 
5666 		set_current_vmptr(vmx, vmptr);
5667 	}
5668 
5669 	return nested_vmx_succeed(vcpu);
5670 }
5671 
5672 /* Emulate the VMPTRST instruction */
5673 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5674 {
5675 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5676 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5677 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5678 	struct x86_exception e;
5679 	gva_t gva;
5680 	int r;
5681 
5682 	if (!nested_vmx_check_permission(vcpu))
5683 		return 1;
5684 
5685 	if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5686 		return 1;
5687 
5688 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5689 				true, sizeof(gpa_t), &gva))
5690 		return 1;
5691 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5692 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5693 					sizeof(gpa_t), &e);
5694 	if (r != X86EMUL_CONTINUE)
5695 		return kvm_handle_memory_failure(vcpu, r, &e);
5696 
5697 	return nested_vmx_succeed(vcpu);
5698 }
5699 
5700 /* Emulate the INVEPT instruction */
5701 static int handle_invept(struct kvm_vcpu *vcpu)
5702 {
5703 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5704 	u32 vmx_instruction_info, types;
5705 	unsigned long type, roots_to_free;
5706 	struct kvm_mmu *mmu;
5707 	gva_t gva;
5708 	struct x86_exception e;
5709 	struct {
5710 		u64 eptp, gpa;
5711 	} operand;
5712 	int i, r, gpr_index;
5713 
5714 	if (!(vmx->nested.msrs.secondary_ctls_high &
5715 	      SECONDARY_EXEC_ENABLE_EPT) ||
5716 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5717 		kvm_queue_exception(vcpu, UD_VECTOR);
5718 		return 1;
5719 	}
5720 
5721 	if (!nested_vmx_check_permission(vcpu))
5722 		return 1;
5723 
5724 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5725 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5726 	type = kvm_register_read(vcpu, gpr_index);
5727 
5728 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5729 
5730 	if (type >= 32 || !(types & (1 << type)))
5731 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5732 
5733 	/* According to the Intel VMX instruction reference, the memory
5734 	 * operand is read even if it isn't needed (e.g., for type==global)
5735 	 */
5736 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5737 			vmx_instruction_info, false, sizeof(operand), &gva))
5738 		return 1;
5739 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5740 	if (r != X86EMUL_CONTINUE)
5741 		return kvm_handle_memory_failure(vcpu, r, &e);
5742 
5743 	/*
5744 	 * Nested EPT roots are always held through guest_mmu,
5745 	 * not root_mmu.
5746 	 */
5747 	mmu = &vcpu->arch.guest_mmu;
5748 
5749 	switch (type) {
5750 	case VMX_EPT_EXTENT_CONTEXT:
5751 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5752 			return nested_vmx_fail(vcpu,
5753 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5754 
5755 		roots_to_free = 0;
5756 		if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5757 					    operand.eptp))
5758 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5759 
5760 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5761 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5762 						    mmu->prev_roots[i].pgd,
5763 						    operand.eptp))
5764 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5765 		}
5766 		break;
5767 	case VMX_EPT_EXTENT_GLOBAL:
5768 		roots_to_free = KVM_MMU_ROOTS_ALL;
5769 		break;
5770 	default:
5771 		BUG();
5772 		break;
5773 	}
5774 
5775 	if (roots_to_free)
5776 		kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5777 
5778 	return nested_vmx_succeed(vcpu);
5779 }
5780 
5781 static int handle_invvpid(struct kvm_vcpu *vcpu)
5782 {
5783 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5784 	u32 vmx_instruction_info;
5785 	unsigned long type, types;
5786 	gva_t gva;
5787 	struct x86_exception e;
5788 	struct {
5789 		u64 vpid;
5790 		u64 gla;
5791 	} operand;
5792 	u16 vpid02;
5793 	int r, gpr_index;
5794 
5795 	if (!(vmx->nested.msrs.secondary_ctls_high &
5796 	      SECONDARY_EXEC_ENABLE_VPID) ||
5797 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5798 		kvm_queue_exception(vcpu, UD_VECTOR);
5799 		return 1;
5800 	}
5801 
5802 	if (!nested_vmx_check_permission(vcpu))
5803 		return 1;
5804 
5805 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5806 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5807 	type = kvm_register_read(vcpu, gpr_index);
5808 
5809 	types = (vmx->nested.msrs.vpid_caps &
5810 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5811 
5812 	if (type >= 32 || !(types & (1 << type)))
5813 		return nested_vmx_fail(vcpu,
5814 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5815 
5816 	/* according to the intel vmx instruction reference, the memory
5817 	 * operand is read even if it isn't needed (e.g., for type==global)
5818 	 */
5819 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5820 			vmx_instruction_info, false, sizeof(operand), &gva))
5821 		return 1;
5822 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5823 	if (r != X86EMUL_CONTINUE)
5824 		return kvm_handle_memory_failure(vcpu, r, &e);
5825 
5826 	if (operand.vpid >> 16)
5827 		return nested_vmx_fail(vcpu,
5828 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5829 
5830 	vpid02 = nested_get_vpid02(vcpu);
5831 	switch (type) {
5832 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5833 		if (!operand.vpid ||
5834 		    is_noncanonical_address(operand.gla, vcpu))
5835 			return nested_vmx_fail(vcpu,
5836 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5837 		vpid_sync_vcpu_addr(vpid02, operand.gla);
5838 		break;
5839 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5840 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5841 		if (!operand.vpid)
5842 			return nested_vmx_fail(vcpu,
5843 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5844 		vpid_sync_context(vpid02);
5845 		break;
5846 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5847 		vpid_sync_context(vpid02);
5848 		break;
5849 	default:
5850 		WARN_ON_ONCE(1);
5851 		return kvm_skip_emulated_instruction(vcpu);
5852 	}
5853 
5854 	/*
5855 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5856 	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5857 	 * roots as VPIDs are not tracked in the MMU role.
5858 	 *
5859 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5860 	 * an MMU when EPT is disabled.
5861 	 *
5862 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5863 	 */
5864 	if (!enable_ept)
5865 		kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5866 
5867 	return nested_vmx_succeed(vcpu);
5868 }
5869 
5870 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5871 				     struct vmcs12 *vmcs12)
5872 {
5873 	u32 index = kvm_rcx_read(vcpu);
5874 	u64 new_eptp;
5875 
5876 	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5877 		return 1;
5878 	if (index >= VMFUNC_EPTP_ENTRIES)
5879 		return 1;
5880 
5881 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5882 				     &new_eptp, index * 8, 8))
5883 		return 1;
5884 
5885 	/*
5886 	 * If the (L2) guest does a vmfunc to the currently
5887 	 * active ept pointer, we don't have to do anything else
5888 	 */
5889 	if (vmcs12->ept_pointer != new_eptp) {
5890 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5891 			return 1;
5892 
5893 		vmcs12->ept_pointer = new_eptp;
5894 		nested_ept_new_eptp(vcpu);
5895 
5896 		if (!nested_cpu_has_vpid(vmcs12))
5897 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5898 	}
5899 
5900 	return 0;
5901 }
5902 
5903 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5904 {
5905 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5906 	struct vmcs12 *vmcs12;
5907 	u32 function = kvm_rax_read(vcpu);
5908 
5909 	/*
5910 	 * VMFUNC should never execute cleanly while L1 is active; KVM supports
5911 	 * VMFUNC for nested VMs, but not for L1.
5912 	 */
5913 	if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
5914 		kvm_queue_exception(vcpu, UD_VECTOR);
5915 		return 1;
5916 	}
5917 
5918 	vmcs12 = get_vmcs12(vcpu);
5919 
5920 	/*
5921 	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5922 	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5923 	 */
5924 	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5925 		kvm_queue_exception(vcpu, UD_VECTOR);
5926 		return 1;
5927 	}
5928 
5929 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5930 		goto fail;
5931 
5932 	switch (function) {
5933 	case 0:
5934 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5935 			goto fail;
5936 		break;
5937 	default:
5938 		goto fail;
5939 	}
5940 	return kvm_skip_emulated_instruction(vcpu);
5941 
5942 fail:
5943 	/*
5944 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5945 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5946 	 * EXIT_REASON_VMFUNC as the exit reason.
5947 	 */
5948 	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5949 			  vmx_get_intr_info(vcpu),
5950 			  vmx_get_exit_qual(vcpu));
5951 	return 1;
5952 }
5953 
5954 /*
5955  * Return true if an IO instruction with the specified port and size should cause
5956  * a VM-exit into L1.
5957  */
5958 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5959 				 int size)
5960 {
5961 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5962 	gpa_t bitmap, last_bitmap;
5963 	u8 b;
5964 
5965 	last_bitmap = INVALID_GPA;
5966 	b = -1;
5967 
5968 	while (size > 0) {
5969 		if (port < 0x8000)
5970 			bitmap = vmcs12->io_bitmap_a;
5971 		else if (port < 0x10000)
5972 			bitmap = vmcs12->io_bitmap_b;
5973 		else
5974 			return true;
5975 		bitmap += (port & 0x7fff) / 8;
5976 
5977 		if (last_bitmap != bitmap)
5978 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5979 				return true;
5980 		if (b & (1 << (port & 7)))
5981 			return true;
5982 
5983 		port++;
5984 		size--;
5985 		last_bitmap = bitmap;
5986 	}
5987 
5988 	return false;
5989 }
5990 
5991 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5992 				       struct vmcs12 *vmcs12)
5993 {
5994 	unsigned long exit_qualification;
5995 	unsigned short port;
5996 	int size;
5997 
5998 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5999 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6000 
6001 	exit_qualification = vmx_get_exit_qual(vcpu);
6002 
6003 	port = exit_qualification >> 16;
6004 	size = (exit_qualification & 7) + 1;
6005 
6006 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
6007 }
6008 
6009 /*
6010  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6011  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6012  * disinterest in the current event (read or write a specific MSR) by using an
6013  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6014  */
6015 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6016 					struct vmcs12 *vmcs12,
6017 					union vmx_exit_reason exit_reason)
6018 {
6019 	u32 msr_index = kvm_rcx_read(vcpu);
6020 	gpa_t bitmap;
6021 
6022 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6023 		return true;
6024 
6025 	/*
6026 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6027 	 * for the four combinations of read/write and low/high MSR numbers.
6028 	 * First we need to figure out which of the four to use:
6029 	 */
6030 	bitmap = vmcs12->msr_bitmap;
6031 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6032 		bitmap += 2048;
6033 	if (msr_index >= 0xc0000000) {
6034 		msr_index -= 0xc0000000;
6035 		bitmap += 1024;
6036 	}
6037 
6038 	/* Then read the msr_index'th bit from this bitmap: */
6039 	if (msr_index < 1024*8) {
6040 		unsigned char b;
6041 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6042 			return true;
6043 		return 1 & (b >> (msr_index & 7));
6044 	} else
6045 		return true; /* let L1 handle the wrong parameter */
6046 }
6047 
6048 /*
6049  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6050  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6051  * intercept (via guest_host_mask etc.) the current event.
6052  */
6053 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6054 	struct vmcs12 *vmcs12)
6055 {
6056 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6057 	int cr = exit_qualification & 15;
6058 	int reg;
6059 	unsigned long val;
6060 
6061 	switch ((exit_qualification >> 4) & 3) {
6062 	case 0: /* mov to cr */
6063 		reg = (exit_qualification >> 8) & 15;
6064 		val = kvm_register_read(vcpu, reg);
6065 		switch (cr) {
6066 		case 0:
6067 			if (vmcs12->cr0_guest_host_mask &
6068 			    (val ^ vmcs12->cr0_read_shadow))
6069 				return true;
6070 			break;
6071 		case 3:
6072 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6073 				return true;
6074 			break;
6075 		case 4:
6076 			if (vmcs12->cr4_guest_host_mask &
6077 			    (vmcs12->cr4_read_shadow ^ val))
6078 				return true;
6079 			break;
6080 		case 8:
6081 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6082 				return true;
6083 			break;
6084 		}
6085 		break;
6086 	case 2: /* clts */
6087 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6088 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
6089 			return true;
6090 		break;
6091 	case 1: /* mov from cr */
6092 		switch (cr) {
6093 		case 3:
6094 			if (vmcs12->cpu_based_vm_exec_control &
6095 			    CPU_BASED_CR3_STORE_EXITING)
6096 				return true;
6097 			break;
6098 		case 8:
6099 			if (vmcs12->cpu_based_vm_exec_control &
6100 			    CPU_BASED_CR8_STORE_EXITING)
6101 				return true;
6102 			break;
6103 		}
6104 		break;
6105 	case 3: /* lmsw */
6106 		/*
6107 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6108 		 * cr0. Other attempted changes are ignored, with no exit.
6109 		 */
6110 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6111 		if (vmcs12->cr0_guest_host_mask & 0xe &
6112 		    (val ^ vmcs12->cr0_read_shadow))
6113 			return true;
6114 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6115 		    !(vmcs12->cr0_read_shadow & 0x1) &&
6116 		    (val & 0x1))
6117 			return true;
6118 		break;
6119 	}
6120 	return false;
6121 }
6122 
6123 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6124 					  struct vmcs12 *vmcs12)
6125 {
6126 	u32 encls_leaf;
6127 
6128 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6129 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6130 		return false;
6131 
6132 	encls_leaf = kvm_rax_read(vcpu);
6133 	if (encls_leaf > 62)
6134 		encls_leaf = 63;
6135 	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6136 }
6137 
6138 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6139 	struct vmcs12 *vmcs12, gpa_t bitmap)
6140 {
6141 	u32 vmx_instruction_info;
6142 	unsigned long field;
6143 	u8 b;
6144 
6145 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
6146 		return true;
6147 
6148 	/* Decode instruction info and find the field to access */
6149 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6150 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6151 
6152 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
6153 	if (field >> 15)
6154 		return true;
6155 
6156 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6157 		return true;
6158 
6159 	return 1 & (b >> (field & 7));
6160 }
6161 
6162 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6163 {
6164 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6165 
6166 	if (nested_cpu_has_mtf(vmcs12))
6167 		return true;
6168 
6169 	/*
6170 	 * An MTF VM-exit may be injected into the guest by setting the
6171 	 * interruption-type to 7 (other event) and the vector field to 0. Such
6172 	 * is the case regardless of the 'monitor trap flag' VM-execution
6173 	 * control.
6174 	 */
6175 	return entry_intr_info == (INTR_INFO_VALID_MASK
6176 				   | INTR_TYPE_OTHER_EVENT);
6177 }
6178 
6179 /*
6180  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6181  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
6182  */
6183 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6184 				     union vmx_exit_reason exit_reason)
6185 {
6186 	u32 intr_info;
6187 
6188 	switch ((u16)exit_reason.basic) {
6189 	case EXIT_REASON_EXCEPTION_NMI:
6190 		intr_info = vmx_get_intr_info(vcpu);
6191 		if (is_nmi(intr_info))
6192 			return true;
6193 		else if (is_page_fault(intr_info))
6194 			return vcpu->arch.apf.host_apf_flags ||
6195 			       vmx_need_pf_intercept(vcpu);
6196 		else if (is_debug(intr_info) &&
6197 			 vcpu->guest_debug &
6198 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6199 			return true;
6200 		else if (is_breakpoint(intr_info) &&
6201 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6202 			return true;
6203 		else if (is_alignment_check(intr_info) &&
6204 			 !vmx_guest_inject_ac(vcpu))
6205 			return true;
6206 		return false;
6207 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6208 		return true;
6209 	case EXIT_REASON_MCE_DURING_VMENTRY:
6210 		return true;
6211 	case EXIT_REASON_EPT_VIOLATION:
6212 		/*
6213 		 * L0 always deals with the EPT violation. If nested EPT is
6214 		 * used, and the nested mmu code discovers that the address is
6215 		 * missing in the guest EPT table (EPT12), the EPT violation
6216 		 * will be injected with nested_ept_inject_page_fault()
6217 		 */
6218 		return true;
6219 	case EXIT_REASON_EPT_MISCONFIG:
6220 		/*
6221 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
6222 		 * table (shadow on EPT) or a merged EPT table that L0 built
6223 		 * (EPT on EPT). So any problems with the structure of the
6224 		 * table is L0's fault.
6225 		 */
6226 		return true;
6227 	case EXIT_REASON_PREEMPTION_TIMER:
6228 		return true;
6229 	case EXIT_REASON_PML_FULL:
6230 		/*
6231 		 * PML is emulated for an L1 VMM and should never be enabled in
6232 		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6233 		 */
6234 		return true;
6235 	case EXIT_REASON_VMFUNC:
6236 		/* VM functions are emulated through L2->L0 vmexits. */
6237 		return true;
6238 	case EXIT_REASON_BUS_LOCK:
6239 		/*
6240 		 * At present, bus lock VM exit is never exposed to L1.
6241 		 * Handle L2's bus locks in L0 directly.
6242 		 */
6243 		return true;
6244 	case EXIT_REASON_VMCALL:
6245 		/* Hyper-V L2 TLB flush hypercall is handled by L0 */
6246 		return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6247 			nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6248 			kvm_hv_is_tlb_flush_hcall(vcpu);
6249 	default:
6250 		break;
6251 	}
6252 	return false;
6253 }
6254 
6255 /*
6256  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
6257  * is_guest_mode (L2).
6258  */
6259 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6260 				     union vmx_exit_reason exit_reason)
6261 {
6262 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6263 	u32 intr_info;
6264 
6265 	switch ((u16)exit_reason.basic) {
6266 	case EXIT_REASON_EXCEPTION_NMI:
6267 		intr_info = vmx_get_intr_info(vcpu);
6268 		if (is_nmi(intr_info))
6269 			return true;
6270 		else if (is_page_fault(intr_info))
6271 			return true;
6272 		return vmcs12->exception_bitmap &
6273 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
6274 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6275 		return nested_exit_on_intr(vcpu);
6276 	case EXIT_REASON_TRIPLE_FAULT:
6277 		return true;
6278 	case EXIT_REASON_INTERRUPT_WINDOW:
6279 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6280 	case EXIT_REASON_NMI_WINDOW:
6281 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6282 	case EXIT_REASON_TASK_SWITCH:
6283 		return true;
6284 	case EXIT_REASON_CPUID:
6285 		return true;
6286 	case EXIT_REASON_HLT:
6287 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6288 	case EXIT_REASON_INVD:
6289 		return true;
6290 	case EXIT_REASON_INVLPG:
6291 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6292 	case EXIT_REASON_RDPMC:
6293 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6294 	case EXIT_REASON_RDRAND:
6295 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6296 	case EXIT_REASON_RDSEED:
6297 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6298 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6299 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6300 	case EXIT_REASON_VMREAD:
6301 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6302 			vmcs12->vmread_bitmap);
6303 	case EXIT_REASON_VMWRITE:
6304 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6305 			vmcs12->vmwrite_bitmap);
6306 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6307 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6308 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6309 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6310 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6311 		/*
6312 		 * VMX instructions trap unconditionally. This allows L1 to
6313 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6314 		 */
6315 		return true;
6316 	case EXIT_REASON_CR_ACCESS:
6317 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6318 	case EXIT_REASON_DR_ACCESS:
6319 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6320 	case EXIT_REASON_IO_INSTRUCTION:
6321 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
6322 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6323 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6324 	case EXIT_REASON_MSR_READ:
6325 	case EXIT_REASON_MSR_WRITE:
6326 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6327 	case EXIT_REASON_INVALID_STATE:
6328 		return true;
6329 	case EXIT_REASON_MWAIT_INSTRUCTION:
6330 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6331 	case EXIT_REASON_MONITOR_TRAP_FLAG:
6332 		return nested_vmx_exit_handled_mtf(vmcs12);
6333 	case EXIT_REASON_MONITOR_INSTRUCTION:
6334 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6335 	case EXIT_REASON_PAUSE_INSTRUCTION:
6336 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6337 			nested_cpu_has2(vmcs12,
6338 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6339 	case EXIT_REASON_MCE_DURING_VMENTRY:
6340 		return true;
6341 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
6342 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6343 	case EXIT_REASON_APIC_ACCESS:
6344 	case EXIT_REASON_APIC_WRITE:
6345 	case EXIT_REASON_EOI_INDUCED:
6346 		/*
6347 		 * The controls for "virtualize APIC accesses," "APIC-
6348 		 * register virtualization," and "virtual-interrupt
6349 		 * delivery" only come from vmcs12.
6350 		 */
6351 		return true;
6352 	case EXIT_REASON_INVPCID:
6353 		return
6354 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6355 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6356 	case EXIT_REASON_WBINVD:
6357 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6358 	case EXIT_REASON_XSETBV:
6359 		return true;
6360 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6361 		/*
6362 		 * This should never happen, since it is not possible to
6363 		 * set XSS to a non-zero value---neither in L1 nor in L2.
6364 		 * If if it were, XSS would have to be checked against
6365 		 * the XSS exit bitmap in vmcs12.
6366 		 */
6367 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6368 	case EXIT_REASON_UMWAIT:
6369 	case EXIT_REASON_TPAUSE:
6370 		return nested_cpu_has2(vmcs12,
6371 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6372 	case EXIT_REASON_ENCLS:
6373 		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6374 	case EXIT_REASON_NOTIFY:
6375 		/* Notify VM exit is not exposed to L1 */
6376 		return false;
6377 	default:
6378 		return true;
6379 	}
6380 }
6381 
6382 /*
6383  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6384  * reflected into L1.
6385  */
6386 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6387 {
6388 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6389 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6390 	unsigned long exit_qual;
6391 	u32 exit_intr_info;
6392 
6393 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6394 
6395 	/*
6396 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6397 	 * has already loaded L2's state.
6398 	 */
6399 	if (unlikely(vmx->fail)) {
6400 		trace_kvm_nested_vmenter_failed(
6401 			"hardware VM-instruction error: ",
6402 			vmcs_read32(VM_INSTRUCTION_ERROR));
6403 		exit_intr_info = 0;
6404 		exit_qual = 0;
6405 		goto reflect_vmexit;
6406 	}
6407 
6408 	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6409 
6410 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6411 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6412 		return false;
6413 
6414 	/* If L1 doesn't want the exit, handle it in L0. */
6415 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6416 		return false;
6417 
6418 	/*
6419 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6420 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6421 	 * need to be synthesized by querying the in-kernel LAPIC, but external
6422 	 * interrupts are never reflected to L1 so it's a non-issue.
6423 	 */
6424 	exit_intr_info = vmx_get_intr_info(vcpu);
6425 	if (is_exception_with_error_code(exit_intr_info)) {
6426 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6427 
6428 		vmcs12->vm_exit_intr_error_code =
6429 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6430 	}
6431 	exit_qual = vmx_get_exit_qual(vcpu);
6432 
6433 reflect_vmexit:
6434 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6435 	return true;
6436 }
6437 
6438 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6439 				struct kvm_nested_state __user *user_kvm_nested_state,
6440 				u32 user_data_size)
6441 {
6442 	struct vcpu_vmx *vmx;
6443 	struct vmcs12 *vmcs12;
6444 	struct kvm_nested_state kvm_state = {
6445 		.flags = 0,
6446 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6447 		.size = sizeof(kvm_state),
6448 		.hdr.vmx.flags = 0,
6449 		.hdr.vmx.vmxon_pa = INVALID_GPA,
6450 		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6451 		.hdr.vmx.preemption_timer_deadline = 0,
6452 	};
6453 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6454 		&user_kvm_nested_state->data.vmx[0];
6455 
6456 	if (!vcpu)
6457 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6458 
6459 	vmx = to_vmx(vcpu);
6460 	vmcs12 = get_vmcs12(vcpu);
6461 
6462 	if (guest_can_use(vcpu, X86_FEATURE_VMX) &&
6463 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6464 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6465 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6466 
6467 		if (vmx_has_valid_vmcs12(vcpu)) {
6468 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6469 
6470 			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6471 			if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6472 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6473 
6474 			if (is_guest_mode(vcpu) &&
6475 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6476 			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6477 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6478 		}
6479 
6480 		if (vmx->nested.smm.vmxon)
6481 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6482 
6483 		if (vmx->nested.smm.guest_mode)
6484 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6485 
6486 		if (is_guest_mode(vcpu)) {
6487 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6488 
6489 			if (vmx->nested.nested_run_pending)
6490 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6491 
6492 			if (vmx->nested.mtf_pending)
6493 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6494 
6495 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6496 			    vmx->nested.has_preemption_timer_deadline) {
6497 				kvm_state.hdr.vmx.flags |=
6498 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6499 				kvm_state.hdr.vmx.preemption_timer_deadline =
6500 					vmx->nested.preemption_timer_deadline;
6501 			}
6502 		}
6503 	}
6504 
6505 	if (user_data_size < kvm_state.size)
6506 		goto out;
6507 
6508 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6509 		return -EFAULT;
6510 
6511 	if (!vmx_has_valid_vmcs12(vcpu))
6512 		goto out;
6513 
6514 	/*
6515 	 * When running L2, the authoritative vmcs12 state is in the
6516 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6517 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6518 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6519 	 * vmcs12 state is in the vmcs12 already.
6520 	 */
6521 	if (is_guest_mode(vcpu)) {
6522 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6523 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6524 	} else  {
6525 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6526 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6527 			if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6528 				/*
6529 				 * L1 hypervisor is not obliged to keep eVMCS
6530 				 * clean fields data always up-to-date while
6531 				 * not in guest mode, 'hv_clean_fields' is only
6532 				 * supposed to be actual upon vmentry so we need
6533 				 * to ignore it here and do full copy.
6534 				 */
6535 				copy_enlightened_to_vmcs12(vmx, 0);
6536 			else if (enable_shadow_vmcs)
6537 				copy_shadow_to_vmcs12(vmx);
6538 		}
6539 	}
6540 
6541 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6542 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6543 
6544 	/*
6545 	 * Copy over the full allocated size of vmcs12 rather than just the size
6546 	 * of the struct.
6547 	 */
6548 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6549 		return -EFAULT;
6550 
6551 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6552 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6553 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6554 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6555 			return -EFAULT;
6556 	}
6557 out:
6558 	return kvm_state.size;
6559 }
6560 
6561 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6562 {
6563 	if (is_guest_mode(vcpu)) {
6564 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6565 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6566 	}
6567 	free_nested(vcpu);
6568 }
6569 
6570 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6571 				struct kvm_nested_state __user *user_kvm_nested_state,
6572 				struct kvm_nested_state *kvm_state)
6573 {
6574 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6575 	struct vmcs12 *vmcs12;
6576 	enum vm_entry_failure_code ignored;
6577 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6578 		&user_kvm_nested_state->data.vmx[0];
6579 	int ret;
6580 
6581 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6582 		return -EINVAL;
6583 
6584 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6585 		if (kvm_state->hdr.vmx.smm.flags)
6586 			return -EINVAL;
6587 
6588 		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6589 			return -EINVAL;
6590 
6591 		/*
6592 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6593 		 * enable eVMCS capability on vCPU. However, since then
6594 		 * code was changed such that flag signals vmcs12 should
6595 		 * be copied into eVMCS in guest memory.
6596 		 *
6597 		 * To preserve backwards compatability, allow user
6598 		 * to set this flag even when there is no VMXON region.
6599 		 */
6600 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6601 			return -EINVAL;
6602 	} else {
6603 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
6604 			return -EINVAL;
6605 
6606 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6607 			return -EINVAL;
6608 	}
6609 
6610 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6611 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6612 		return -EINVAL;
6613 
6614 	if (kvm_state->hdr.vmx.smm.flags &
6615 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6616 		return -EINVAL;
6617 
6618 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6619 		return -EINVAL;
6620 
6621 	/*
6622 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6623 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6624 	 * must be zero.
6625 	 */
6626 	if (is_smm(vcpu) ?
6627 		(kvm_state->flags &
6628 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6629 		: kvm_state->hdr.vmx.smm.flags)
6630 		return -EINVAL;
6631 
6632 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6633 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6634 		return -EINVAL;
6635 
6636 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6637 	    (!guest_can_use(vcpu, X86_FEATURE_VMX) ||
6638 	     !vmx->nested.enlightened_vmcs_enabled))
6639 			return -EINVAL;
6640 
6641 	vmx_leave_nested(vcpu);
6642 
6643 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6644 		return 0;
6645 
6646 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6647 	ret = enter_vmx_operation(vcpu);
6648 	if (ret)
6649 		return ret;
6650 
6651 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6652 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6653 		/* See vmx_has_valid_vmcs12.  */
6654 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6655 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6656 		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6657 			return -EINVAL;
6658 		else
6659 			return 0;
6660 	}
6661 
6662 	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6663 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6664 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6665 			return -EINVAL;
6666 
6667 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6668 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6669 		/*
6670 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6671 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6672 		 * restored yet. EVMCS will be mapped from
6673 		 * nested_get_vmcs12_pages().
6674 		 */
6675 		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6676 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6677 	} else {
6678 		return -EINVAL;
6679 	}
6680 
6681 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6682 		vmx->nested.smm.vmxon = true;
6683 		vmx->nested.vmxon = false;
6684 
6685 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6686 			vmx->nested.smm.guest_mode = true;
6687 	}
6688 
6689 	vmcs12 = get_vmcs12(vcpu);
6690 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6691 		return -EFAULT;
6692 
6693 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6694 		return -EINVAL;
6695 
6696 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6697 		return 0;
6698 
6699 	vmx->nested.nested_run_pending =
6700 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6701 
6702 	vmx->nested.mtf_pending =
6703 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6704 
6705 	ret = -EINVAL;
6706 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6707 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6708 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6709 
6710 		if (kvm_state->size <
6711 		    sizeof(*kvm_state) +
6712 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6713 			goto error_guest_mode;
6714 
6715 		if (copy_from_user(shadow_vmcs12,
6716 				   user_vmx_nested_state->shadow_vmcs12,
6717 				   sizeof(*shadow_vmcs12))) {
6718 			ret = -EFAULT;
6719 			goto error_guest_mode;
6720 		}
6721 
6722 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6723 		    !shadow_vmcs12->hdr.shadow_vmcs)
6724 			goto error_guest_mode;
6725 	}
6726 
6727 	vmx->nested.has_preemption_timer_deadline = false;
6728 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6729 		vmx->nested.has_preemption_timer_deadline = true;
6730 		vmx->nested.preemption_timer_deadline =
6731 			kvm_state->hdr.vmx.preemption_timer_deadline;
6732 	}
6733 
6734 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6735 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6736 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6737 		goto error_guest_mode;
6738 
6739 	vmx->nested.dirty_vmcs12 = true;
6740 	vmx->nested.force_msr_bitmap_recalc = true;
6741 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6742 	if (ret)
6743 		goto error_guest_mode;
6744 
6745 	if (vmx->nested.mtf_pending)
6746 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6747 
6748 	return 0;
6749 
6750 error_guest_mode:
6751 	vmx->nested.nested_run_pending = 0;
6752 	return ret;
6753 }
6754 
6755 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6756 {
6757 	if (enable_shadow_vmcs) {
6758 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6759 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6760 	}
6761 }
6762 
6763 /*
6764  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6765  * that madness to get the encoding for comparison.
6766  */
6767 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6768 
6769 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6770 {
6771 	/*
6772 	 * Note these are the so called "index" of the VMCS field encoding, not
6773 	 * the index into vmcs12.
6774 	 */
6775 	unsigned int max_idx, idx;
6776 	int i;
6777 
6778 	/*
6779 	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6780 	 * vmcs12, regardless of whether or not the associated feature is
6781 	 * exposed to L1.  Simply find the field with the highest index.
6782 	 */
6783 	max_idx = 0;
6784 	for (i = 0; i < nr_vmcs12_fields; i++) {
6785 		/* The vmcs12 table is very, very sparsely populated. */
6786 		if (!vmcs12_field_offsets[i])
6787 			continue;
6788 
6789 		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6790 		if (idx > max_idx)
6791 			max_idx = idx;
6792 	}
6793 
6794 	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6795 }
6796 
6797 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6798 					   struct nested_vmx_msrs *msrs)
6799 {
6800 	msrs->pinbased_ctls_low =
6801 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6802 
6803 	msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6804 	msrs->pinbased_ctls_high &=
6805 		PIN_BASED_EXT_INTR_MASK |
6806 		PIN_BASED_NMI_EXITING |
6807 		PIN_BASED_VIRTUAL_NMIS |
6808 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6809 	msrs->pinbased_ctls_high |=
6810 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6811 		PIN_BASED_VMX_PREEMPTION_TIMER;
6812 }
6813 
6814 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
6815 				       struct nested_vmx_msrs *msrs)
6816 {
6817 	msrs->exit_ctls_low =
6818 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6819 
6820 	msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6821 	msrs->exit_ctls_high &=
6822 #ifdef CONFIG_X86_64
6823 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6824 #endif
6825 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6826 		VM_EXIT_CLEAR_BNDCFGS;
6827 	msrs->exit_ctls_high |=
6828 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6829 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6830 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6831 		VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6832 
6833 	/* We support free control of debug control saving. */
6834 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6835 }
6836 
6837 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
6838 					struct nested_vmx_msrs *msrs)
6839 {
6840 	msrs->entry_ctls_low =
6841 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6842 
6843 	msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6844 	msrs->entry_ctls_high &=
6845 #ifdef CONFIG_X86_64
6846 		VM_ENTRY_IA32E_MODE |
6847 #endif
6848 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6849 	msrs->entry_ctls_high |=
6850 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6851 		 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6852 
6853 	/* We support free control of debug control loading. */
6854 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6855 }
6856 
6857 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
6858 					   struct nested_vmx_msrs *msrs)
6859 {
6860 	msrs->procbased_ctls_low =
6861 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6862 
6863 	msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6864 	msrs->procbased_ctls_high &=
6865 		CPU_BASED_INTR_WINDOW_EXITING |
6866 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6867 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6868 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6869 		CPU_BASED_CR3_STORE_EXITING |
6870 #ifdef CONFIG_X86_64
6871 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6872 #endif
6873 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6874 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6875 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6876 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6877 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6878 	/*
6879 	 * We can allow some features even when not supported by the
6880 	 * hardware. For example, L1 can specify an MSR bitmap - and we
6881 	 * can use it to avoid exits to L1 - even when L0 runs L2
6882 	 * without MSR bitmaps.
6883 	 */
6884 	msrs->procbased_ctls_high |=
6885 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6886 		CPU_BASED_USE_MSR_BITMAPS;
6887 
6888 	/* We support free control of CR3 access interception. */
6889 	msrs->procbased_ctls_low &=
6890 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6891 }
6892 
6893 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
6894 					    struct vmcs_config *vmcs_conf,
6895 					    struct nested_vmx_msrs *msrs)
6896 {
6897 	msrs->secondary_ctls_low = 0;
6898 
6899 	msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
6900 	msrs->secondary_ctls_high &=
6901 		SECONDARY_EXEC_DESC |
6902 		SECONDARY_EXEC_ENABLE_RDTSCP |
6903 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6904 		SECONDARY_EXEC_WBINVD_EXITING |
6905 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6906 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6907 		SECONDARY_EXEC_RDRAND_EXITING |
6908 		SECONDARY_EXEC_ENABLE_INVPCID |
6909 		SECONDARY_EXEC_ENABLE_VMFUNC |
6910 		SECONDARY_EXEC_RDSEED_EXITING |
6911 		SECONDARY_EXEC_ENABLE_XSAVES |
6912 		SECONDARY_EXEC_TSC_SCALING |
6913 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
6914 
6915 	/*
6916 	 * We can emulate "VMCS shadowing," even if the hardware
6917 	 * doesn't support it.
6918 	 */
6919 	msrs->secondary_ctls_high |=
6920 		SECONDARY_EXEC_SHADOW_VMCS;
6921 
6922 	if (enable_ept) {
6923 		/* nested EPT: emulate EPT also to L1 */
6924 		msrs->secondary_ctls_high |=
6925 			SECONDARY_EXEC_ENABLE_EPT;
6926 		msrs->ept_caps =
6927 			VMX_EPT_PAGE_WALK_4_BIT |
6928 			VMX_EPT_PAGE_WALK_5_BIT |
6929 			VMX_EPTP_WB_BIT |
6930 			VMX_EPT_INVEPT_BIT |
6931 			VMX_EPT_EXECUTE_ONLY_BIT;
6932 
6933 		msrs->ept_caps &= ept_caps;
6934 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6935 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6936 			VMX_EPT_1GB_PAGE_BIT;
6937 		if (enable_ept_ad_bits) {
6938 			msrs->secondary_ctls_high |=
6939 				SECONDARY_EXEC_ENABLE_PML;
6940 			msrs->ept_caps |= VMX_EPT_AD_BIT;
6941 		}
6942 
6943 		/*
6944 		 * Advertise EPTP switching irrespective of hardware support,
6945 		 * KVM emulates it in software so long as VMFUNC is supported.
6946 		 */
6947 		if (cpu_has_vmx_vmfunc())
6948 			msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
6949 	}
6950 
6951 	/*
6952 	 * Old versions of KVM use the single-context version without
6953 	 * checking for support, so declare that it is supported even
6954 	 * though it is treated as global context.  The alternative is
6955 	 * not failing the single-context invvpid, and it is worse.
6956 	 */
6957 	if (enable_vpid) {
6958 		msrs->secondary_ctls_high |=
6959 			SECONDARY_EXEC_ENABLE_VPID;
6960 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6961 			VMX_VPID_EXTENT_SUPPORTED_MASK;
6962 	}
6963 
6964 	if (enable_unrestricted_guest)
6965 		msrs->secondary_ctls_high |=
6966 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
6967 
6968 	if (flexpriority_enabled)
6969 		msrs->secondary_ctls_high |=
6970 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6971 
6972 	if (enable_sgx)
6973 		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6974 }
6975 
6976 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
6977 				       struct nested_vmx_msrs *msrs)
6978 {
6979 	msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
6980 	msrs->misc_low |=
6981 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6982 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6983 		VMX_MISC_ACTIVITY_HLT |
6984 		VMX_MISC_ACTIVITY_WAIT_SIPI;
6985 	msrs->misc_high = 0;
6986 }
6987 
6988 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
6989 {
6990 	/*
6991 	 * This MSR reports some information about VMX support. We
6992 	 * should return information about the VMX we emulate for the
6993 	 * guest, and the VMCS structure we give it - not about the
6994 	 * VMX support of the underlying hardware.
6995 	 */
6996 	msrs->basic =
6997 		VMCS12_REVISION |
6998 		VMX_BASIC_TRUE_CTLS |
6999 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
7000 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
7001 
7002 	if (cpu_has_vmx_basic_inout())
7003 		msrs->basic |= VMX_BASIC_INOUT;
7004 }
7005 
7006 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7007 {
7008 	/*
7009 	 * These MSRs specify bits which the guest must keep fixed on
7010 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7011 	 * We picked the standard core2 setting.
7012 	 */
7013 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7014 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
7015 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7016 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7017 
7018 	/* These MSRs specify bits which the guest must keep fixed off. */
7019 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7020 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7021 
7022 	if (vmx_umip_emulated())
7023 		msrs->cr4_fixed1 |= X86_CR4_UMIP;
7024 }
7025 
7026 /*
7027  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7028  * returned for the various VMX controls MSRs when nested VMX is enabled.
7029  * The same values should also be used to verify that vmcs12 control fields are
7030  * valid during nested entry from L1 to L2.
7031  * Each of these control msrs has a low and high 32-bit half: A low bit is on
7032  * if the corresponding bit in the (32-bit) control field *must* be on, and a
7033  * bit in the high half is on if the corresponding bit in the control field
7034  * may be on. See also vmx_control_verify().
7035  */
7036 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7037 {
7038 	struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7039 
7040 	/*
7041 	 * Note that as a general rule, the high half of the MSRs (bits in
7042 	 * the control fields which may be 1) should be initialized by the
7043 	 * intersection of the underlying hardware's MSR (i.e., features which
7044 	 * can be supported) and the list of features we want to expose -
7045 	 * because they are known to be properly supported in our code.
7046 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
7047 	 * be set to 0, meaning that L1 may turn off any of these bits. The
7048 	 * reason is that if one of these bits is necessary, it will appear
7049 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7050 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
7051 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7052 	 * These rules have exceptions below.
7053 	 */
7054 	nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7055 
7056 	nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7057 
7058 	nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7059 
7060 	nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7061 
7062 	nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7063 
7064 	nested_vmx_setup_misc_data(vmcs_conf, msrs);
7065 
7066 	nested_vmx_setup_basic(msrs);
7067 
7068 	nested_vmx_setup_cr_fixed(msrs);
7069 
7070 	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7071 }
7072 
7073 void nested_vmx_hardware_unsetup(void)
7074 {
7075 	int i;
7076 
7077 	if (enable_shadow_vmcs) {
7078 		for (i = 0; i < VMX_BITMAP_NR; i++)
7079 			free_page((unsigned long)vmx_bitmap[i]);
7080 	}
7081 }
7082 
7083 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7084 {
7085 	int i;
7086 
7087 	if (!cpu_has_vmx_shadow_vmcs())
7088 		enable_shadow_vmcs = 0;
7089 	if (enable_shadow_vmcs) {
7090 		for (i = 0; i < VMX_BITMAP_NR; i++) {
7091 			/*
7092 			 * The vmx_bitmap is not tied to a VM and so should
7093 			 * not be charged to a memcg.
7094 			 */
7095 			vmx_bitmap[i] = (unsigned long *)
7096 				__get_free_page(GFP_KERNEL);
7097 			if (!vmx_bitmap[i]) {
7098 				nested_vmx_hardware_unsetup();
7099 				return -ENOMEM;
7100 			}
7101 		}
7102 
7103 		init_vmcs_shadow_fields();
7104 	}
7105 
7106 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
7107 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
7108 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
7109 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
7110 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
7111 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
7112 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
7113 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmxoff;
7114 	exit_handlers[EXIT_REASON_VMON]		= handle_vmxon;
7115 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
7116 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
7117 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
7118 
7119 	return 0;
7120 }
7121 
7122 struct kvm_x86_nested_ops vmx_nested_ops = {
7123 	.leave_nested = vmx_leave_nested,
7124 	.is_exception_vmexit = nested_vmx_is_exception_vmexit,
7125 	.check_events = vmx_check_nested_events,
7126 	.has_events = vmx_has_nested_events,
7127 	.triple_fault = nested_vmx_triple_fault,
7128 	.get_state = vmx_get_nested_state,
7129 	.set_state = vmx_set_nested_state,
7130 	.get_nested_state_pages = vmx_get_nested_state_pages,
7131 	.write_log_dirty = nested_vmx_write_pml_buffer,
7132 	.enable_evmcs = nested_enable_evmcs,
7133 	.get_evmcs_version = nested_get_evmcs_version,
7134 	.hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7135 };
7136