xref: /openbmc/linux/arch/x86/kvm/vmx/nested.c (revision e6e6479c27aa22d11ff7109125dd5ec9ef276de8)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5 
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8 
9 #include "cpuid.h"
10 #include "evmcs.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "sgx.h"
16 #include "trace.h"
17 #include "vmx.h"
18 #include "x86.h"
19 
20 static bool __read_mostly enable_shadow_vmcs = 1;
21 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
22 
23 static bool __read_mostly nested_early_check = 0;
24 module_param(nested_early_check, bool, S_IRUGO);
25 
26 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
27 
28 /*
29  * Hyper-V requires all of these, so mark them as supported even though
30  * they are just treated the same as all-context.
31  */
32 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
33 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
34 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
35 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
36 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
37 
38 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
39 
40 enum {
41 	VMX_VMREAD_BITMAP,
42 	VMX_VMWRITE_BITMAP,
43 	VMX_BITMAP_NR
44 };
45 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
46 
47 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
48 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
49 
50 struct shadow_vmcs_field {
51 	u16	encoding;
52 	u16	offset;
53 };
54 static struct shadow_vmcs_field shadow_read_only_fields[] = {
55 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
56 #include "vmcs_shadow_fields.h"
57 };
58 static int max_shadow_read_only_fields =
59 	ARRAY_SIZE(shadow_read_only_fields);
60 
61 static struct shadow_vmcs_field shadow_read_write_fields[] = {
62 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
63 #include "vmcs_shadow_fields.h"
64 };
65 static int max_shadow_read_write_fields =
66 	ARRAY_SIZE(shadow_read_write_fields);
67 
68 static void init_vmcs_shadow_fields(void)
69 {
70 	int i, j;
71 
72 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
73 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
74 
75 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
76 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
77 		u16 field = entry.encoding;
78 
79 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
80 		    (i + 1 == max_shadow_read_only_fields ||
81 		     shadow_read_only_fields[i + 1].encoding != field + 1))
82 			pr_err("Missing field from shadow_read_only_field %x\n",
83 			       field + 1);
84 
85 		clear_bit(field, vmx_vmread_bitmap);
86 		if (field & 1)
87 #ifdef CONFIG_X86_64
88 			continue;
89 #else
90 			entry.offset += sizeof(u32);
91 #endif
92 		shadow_read_only_fields[j++] = entry;
93 	}
94 	max_shadow_read_only_fields = j;
95 
96 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
97 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
98 		u16 field = entry.encoding;
99 
100 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
101 		    (i + 1 == max_shadow_read_write_fields ||
102 		     shadow_read_write_fields[i + 1].encoding != field + 1))
103 			pr_err("Missing field from shadow_read_write_field %x\n",
104 			       field + 1);
105 
106 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
107 			  field <= GUEST_TR_AR_BYTES,
108 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
109 
110 		/*
111 		 * PML and the preemption timer can be emulated, but the
112 		 * processor cannot vmwrite to fields that don't exist
113 		 * on bare metal.
114 		 */
115 		switch (field) {
116 		case GUEST_PML_INDEX:
117 			if (!cpu_has_vmx_pml())
118 				continue;
119 			break;
120 		case VMX_PREEMPTION_TIMER_VALUE:
121 			if (!cpu_has_vmx_preemption_timer())
122 				continue;
123 			break;
124 		case GUEST_INTR_STATUS:
125 			if (!cpu_has_vmx_apicv())
126 				continue;
127 			break;
128 		default:
129 			break;
130 		}
131 
132 		clear_bit(field, vmx_vmwrite_bitmap);
133 		clear_bit(field, vmx_vmread_bitmap);
134 		if (field & 1)
135 #ifdef CONFIG_X86_64
136 			continue;
137 #else
138 			entry.offset += sizeof(u32);
139 #endif
140 		shadow_read_write_fields[j++] = entry;
141 	}
142 	max_shadow_read_write_fields = j;
143 }
144 
145 /*
146  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
147  * set the success or error code of an emulated VMX instruction (as specified
148  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
149  * instruction.
150  */
151 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
152 {
153 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
154 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
155 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
156 	return kvm_skip_emulated_instruction(vcpu);
157 }
158 
159 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
160 {
161 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
162 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
163 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
164 			| X86_EFLAGS_CF);
165 	return kvm_skip_emulated_instruction(vcpu);
166 }
167 
168 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
169 				u32 vm_instruction_error)
170 {
171 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
172 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
173 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
174 			| X86_EFLAGS_ZF);
175 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
176 	/*
177 	 * We don't need to force sync to shadow VMCS because
178 	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
179 	 * fields and thus must be synced.
180 	 */
181 	if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
182 		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
183 
184 	return kvm_skip_emulated_instruction(vcpu);
185 }
186 
187 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
188 {
189 	struct vcpu_vmx *vmx = to_vmx(vcpu);
190 
191 	/*
192 	 * failValid writes the error number to the current VMCS, which
193 	 * can't be done if there isn't a current VMCS.
194 	 */
195 	if (vmx->nested.current_vmptr == INVALID_GPA &&
196 	    !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
197 		return nested_vmx_failInvalid(vcpu);
198 
199 	return nested_vmx_failValid(vcpu, vm_instruction_error);
200 }
201 
202 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
203 {
204 	/* TODO: not to reset guest simply here. */
205 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
206 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
207 }
208 
209 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
210 {
211 	return fixed_bits_valid(control, low, high);
212 }
213 
214 static inline u64 vmx_control_msr(u32 low, u32 high)
215 {
216 	return low | ((u64)high << 32);
217 }
218 
219 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
220 {
221 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
222 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
223 	vmx->nested.need_vmcs12_to_shadow_sync = false;
224 }
225 
226 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
227 {
228 	struct vcpu_vmx *vmx = to_vmx(vcpu);
229 
230 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
231 		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
232 		vmx->nested.hv_evmcs = NULL;
233 	}
234 
235 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
236 }
237 
238 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
239 				     struct loaded_vmcs *prev)
240 {
241 	struct vmcs_host_state *dest, *src;
242 
243 	if (unlikely(!vmx->guest_state_loaded))
244 		return;
245 
246 	src = &prev->host_state;
247 	dest = &vmx->loaded_vmcs->host_state;
248 
249 	vmx_set_vmcs_host_state(dest, src->cr3, src->fs_sel, src->gs_sel,
250 				src->fs_base, src->gs_base);
251 	dest->ldt_sel = src->ldt_sel;
252 #ifdef CONFIG_X86_64
253 	dest->ds_sel = src->ds_sel;
254 	dest->es_sel = src->es_sel;
255 #endif
256 }
257 
258 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
259 {
260 	struct vcpu_vmx *vmx = to_vmx(vcpu);
261 	struct loaded_vmcs *prev;
262 	int cpu;
263 
264 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
265 		return;
266 
267 	cpu = get_cpu();
268 	prev = vmx->loaded_vmcs;
269 	vmx->loaded_vmcs = vmcs;
270 	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
271 	vmx_sync_vmcs_host_state(vmx, prev);
272 	put_cpu();
273 
274 	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
275 
276 	/*
277 	 * All lazily updated registers will be reloaded from VMCS12 on both
278 	 * vmentry and vmexit.
279 	 */
280 	vcpu->arch.regs_dirty = 0;
281 }
282 
283 /*
284  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
285  * just stops using VMX.
286  */
287 static void free_nested(struct kvm_vcpu *vcpu)
288 {
289 	struct vcpu_vmx *vmx = to_vmx(vcpu);
290 
291 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
292 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
293 
294 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
295 		return;
296 
297 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
298 
299 	vmx->nested.vmxon = false;
300 	vmx->nested.smm.vmxon = false;
301 	vmx->nested.vmxon_ptr = INVALID_GPA;
302 	free_vpid(vmx->nested.vpid02);
303 	vmx->nested.posted_intr_nv = -1;
304 	vmx->nested.current_vmptr = INVALID_GPA;
305 	if (enable_shadow_vmcs) {
306 		vmx_disable_shadow_vmcs(vmx);
307 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
308 		free_vmcs(vmx->vmcs01.shadow_vmcs);
309 		vmx->vmcs01.shadow_vmcs = NULL;
310 	}
311 	kfree(vmx->nested.cached_vmcs12);
312 	vmx->nested.cached_vmcs12 = NULL;
313 	kfree(vmx->nested.cached_shadow_vmcs12);
314 	vmx->nested.cached_shadow_vmcs12 = NULL;
315 	/* Unpin physical memory we referred to in the vmcs02 */
316 	if (vmx->nested.apic_access_page) {
317 		kvm_release_page_clean(vmx->nested.apic_access_page);
318 		vmx->nested.apic_access_page = NULL;
319 	}
320 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
321 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
322 	vmx->nested.pi_desc = NULL;
323 
324 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
325 
326 	nested_release_evmcs(vcpu);
327 
328 	free_loaded_vmcs(&vmx->nested.vmcs02);
329 }
330 
331 /*
332  * Ensure that the current vmcs of the logical processor is the
333  * vmcs01 of the vcpu before calling free_nested().
334  */
335 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
336 {
337 	vcpu_load(vcpu);
338 	vmx_leave_nested(vcpu);
339 	vcpu_put(vcpu);
340 }
341 
342 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
343 
344 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
345 {
346 	return VALID_PAGE(root_hpa) &&
347 	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
348 }
349 
350 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
351 				       gpa_t addr)
352 {
353 	uint i;
354 	struct kvm_mmu_root_info *cached_root;
355 
356 	WARN_ON_ONCE(!mmu_is_nested(vcpu));
357 
358 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
359 		cached_root = &vcpu->arch.mmu->prev_roots[i];
360 
361 		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
362 					    eptp))
363 			vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
364 	}
365 }
366 
367 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
368 		struct x86_exception *fault)
369 {
370 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
371 	struct vcpu_vmx *vmx = to_vmx(vcpu);
372 	u32 vm_exit_reason;
373 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
374 
375 	if (vmx->nested.pml_full) {
376 		vm_exit_reason = EXIT_REASON_PML_FULL;
377 		vmx->nested.pml_full = false;
378 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
379 	} else {
380 		if (fault->error_code & PFERR_RSVD_MASK)
381 			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
382 		else
383 			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
384 
385 		/*
386 		 * Although the caller (kvm_inject_emulated_page_fault) would
387 		 * have already synced the faulting address in the shadow EPT
388 		 * tables for the current EPTP12, we also need to sync it for
389 		 * any other cached EPTP02s based on the same EP4TA, since the
390 		 * TLB associates mappings to the EP4TA rather than the full EPTP.
391 		 */
392 		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
393 					   fault->address);
394 	}
395 
396 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
397 	vmcs12->guest_physical_address = fault->address;
398 }
399 
400 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
401 {
402 	struct vcpu_vmx *vmx = to_vmx(vcpu);
403 	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
404 	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
405 
406 	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
407 				nested_ept_ad_enabled(vcpu),
408 				nested_ept_get_eptp(vcpu));
409 }
410 
411 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
412 {
413 	WARN_ON(mmu_is_nested(vcpu));
414 
415 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
416 	nested_ept_new_eptp(vcpu);
417 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
418 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
419 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
420 
421 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
422 }
423 
424 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
425 {
426 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
427 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
428 }
429 
430 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
431 					    u16 error_code)
432 {
433 	bool inequality, bit;
434 
435 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
436 	inequality =
437 		(error_code & vmcs12->page_fault_error_code_mask) !=
438 		 vmcs12->page_fault_error_code_match;
439 	return inequality ^ bit;
440 }
441 
442 
443 /*
444  * KVM wants to inject page-faults which it got to the guest. This function
445  * checks whether in a nested guest, we need to inject them to L1 or L2.
446  */
447 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
448 {
449 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
450 	unsigned int nr = vcpu->arch.exception.nr;
451 	bool has_payload = vcpu->arch.exception.has_payload;
452 	unsigned long payload = vcpu->arch.exception.payload;
453 
454 	if (nr == PF_VECTOR) {
455 		if (vcpu->arch.exception.nested_apf) {
456 			*exit_qual = vcpu->arch.apf.nested_apf_token;
457 			return 1;
458 		}
459 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
460 						    vcpu->arch.exception.error_code)) {
461 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
462 			return 1;
463 		}
464 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
465 		if (nr == DB_VECTOR) {
466 			if (!has_payload) {
467 				payload = vcpu->arch.dr6;
468 				payload &= ~DR6_BT;
469 				payload ^= DR6_ACTIVE_LOW;
470 			}
471 			*exit_qual = payload;
472 		} else
473 			*exit_qual = 0;
474 		return 1;
475 	}
476 
477 	return 0;
478 }
479 
480 
481 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
482 		struct x86_exception *fault)
483 {
484 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
485 
486 	WARN_ON(!is_guest_mode(vcpu));
487 
488 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
489 		!to_vmx(vcpu)->nested.nested_run_pending) {
490 		vmcs12->vm_exit_intr_error_code = fault->error_code;
491 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
492 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
493 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
494 				  fault->address);
495 	} else {
496 		kvm_inject_page_fault(vcpu, fault);
497 	}
498 }
499 
500 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
501 					       struct vmcs12 *vmcs12)
502 {
503 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
504 		return 0;
505 
506 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
507 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
508 		return -EINVAL;
509 
510 	return 0;
511 }
512 
513 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
514 						struct vmcs12 *vmcs12)
515 {
516 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
517 		return 0;
518 
519 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
520 		return -EINVAL;
521 
522 	return 0;
523 }
524 
525 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
526 						struct vmcs12 *vmcs12)
527 {
528 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
529 		return 0;
530 
531 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
532 		return -EINVAL;
533 
534 	return 0;
535 }
536 
537 /*
538  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
539  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
540  * only the "disable intercept" case needs to be handled.
541  */
542 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
543 							unsigned long *msr_bitmap_l0,
544 							u32 msr, int type)
545 {
546 	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
547 		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
548 
549 	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
550 		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
551 }
552 
553 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
554 {
555 	int msr;
556 
557 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
558 		unsigned word = msr / BITS_PER_LONG;
559 
560 		msr_bitmap[word] = ~0;
561 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
562 	}
563 }
564 
565 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
566 static inline									\
567 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
568 					 unsigned long *msr_bitmap_l1,		\
569 					 unsigned long *msr_bitmap_l0, u32 msr)	\
570 {										\
571 	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
572 	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
573 		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
574 	else									\
575 		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
576 }
577 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
578 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
579 
580 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
581 						    unsigned long *msr_bitmap_l1,
582 						    unsigned long *msr_bitmap_l0,
583 						    u32 msr, int types)
584 {
585 	if (types & MSR_TYPE_R)
586 		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
587 						  msr_bitmap_l0, msr);
588 	if (types & MSR_TYPE_W)
589 		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
590 						   msr_bitmap_l0, msr);
591 }
592 
593 /*
594  * Merge L0's and L1's MSR bitmap, return false to indicate that
595  * we do not use the hardware.
596  */
597 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
598 						 struct vmcs12 *vmcs12)
599 {
600 	struct vcpu_vmx *vmx = to_vmx(vcpu);
601 	int msr;
602 	unsigned long *msr_bitmap_l1;
603 	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
604 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
605 	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
606 
607 	/* Nothing to do if the MSR bitmap is not in use.  */
608 	if (!cpu_has_vmx_msr_bitmap() ||
609 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
610 		return false;
611 
612 	/*
613 	 * MSR bitmap update can be skipped when:
614 	 * - MSR bitmap for L1 hasn't changed.
615 	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
616 	 *   before.
617 	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
618 	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
619 	 */
620 	if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
621 	    evmcs->hv_enlightenments_control.msr_bitmap &&
622 	    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
623 		return true;
624 
625 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
626 		return false;
627 
628 	msr_bitmap_l1 = (unsigned long *)map->hva;
629 
630 	/*
631 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
632 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
633 	 * the x2APIC MSR range and selectively toggle those relevant to L2.
634 	 */
635 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
636 
637 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
638 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
639 			/*
640 			 * L0 need not intercept reads for MSRs between 0x800
641 			 * and 0x8ff, it just lets the processor take the value
642 			 * from the virtual-APIC page; take those 256 bits
643 			 * directly from the L1 bitmap.
644 			 */
645 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
646 				unsigned word = msr / BITS_PER_LONG;
647 
648 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
649 			}
650 		}
651 
652 		nested_vmx_disable_intercept_for_x2apic_msr(
653 			msr_bitmap_l1, msr_bitmap_l0,
654 			X2APIC_MSR(APIC_TASKPRI),
655 			MSR_TYPE_R | MSR_TYPE_W);
656 
657 		if (nested_cpu_has_vid(vmcs12)) {
658 			nested_vmx_disable_intercept_for_x2apic_msr(
659 				msr_bitmap_l1, msr_bitmap_l0,
660 				X2APIC_MSR(APIC_EOI),
661 				MSR_TYPE_W);
662 			nested_vmx_disable_intercept_for_x2apic_msr(
663 				msr_bitmap_l1, msr_bitmap_l0,
664 				X2APIC_MSR(APIC_SELF_IPI),
665 				MSR_TYPE_W);
666 		}
667 	}
668 
669 	/*
670 	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
671 	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
672 	 */
673 #ifdef CONFIG_X86_64
674 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
675 					 MSR_FS_BASE, MSR_TYPE_RW);
676 
677 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
678 					 MSR_GS_BASE, MSR_TYPE_RW);
679 
680 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
681 					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
682 #endif
683 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
684 					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
685 
686 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
687 					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
688 
689 	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
690 
691 	vmx->nested.force_msr_bitmap_recalc = false;
692 
693 	return true;
694 }
695 
696 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
697 				       struct vmcs12 *vmcs12)
698 {
699 	struct vcpu_vmx *vmx = to_vmx(vcpu);
700 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
701 
702 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
703 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
704 		return;
705 
706 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
707 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
708 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
709 		return;
710 
711 	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
712 			      VMCS12_SIZE);
713 }
714 
715 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
716 					      struct vmcs12 *vmcs12)
717 {
718 	struct vcpu_vmx *vmx = to_vmx(vcpu);
719 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
720 
721 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
722 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
723 		return;
724 
725 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
726 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
727 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
728 		return;
729 
730 	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
731 			       VMCS12_SIZE);
732 }
733 
734 /*
735  * In nested virtualization, check if L1 has set
736  * VM_EXIT_ACK_INTR_ON_EXIT
737  */
738 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
739 {
740 	return get_vmcs12(vcpu)->vm_exit_controls &
741 		VM_EXIT_ACK_INTR_ON_EXIT;
742 }
743 
744 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
745 					  struct vmcs12 *vmcs12)
746 {
747 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
748 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
749 		return -EINVAL;
750 	else
751 		return 0;
752 }
753 
754 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
755 					   struct vmcs12 *vmcs12)
756 {
757 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
758 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
759 	    !nested_cpu_has_vid(vmcs12) &&
760 	    !nested_cpu_has_posted_intr(vmcs12))
761 		return 0;
762 
763 	/*
764 	 * If virtualize x2apic mode is enabled,
765 	 * virtualize apic access must be disabled.
766 	 */
767 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
768 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
769 		return -EINVAL;
770 
771 	/*
772 	 * If virtual interrupt delivery is enabled,
773 	 * we must exit on external interrupts.
774 	 */
775 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
776 		return -EINVAL;
777 
778 	/*
779 	 * bits 15:8 should be zero in posted_intr_nv,
780 	 * the descriptor address has been already checked
781 	 * in nested_get_vmcs12_pages.
782 	 *
783 	 * bits 5:0 of posted_intr_desc_addr should be zero.
784 	 */
785 	if (nested_cpu_has_posted_intr(vmcs12) &&
786 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
787 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
788 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
789 	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
790 		return -EINVAL;
791 
792 	/* tpr shadow is needed by all apicv features. */
793 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
794 		return -EINVAL;
795 
796 	return 0;
797 }
798 
799 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
800 				       u32 count, u64 addr)
801 {
802 	if (count == 0)
803 		return 0;
804 
805 	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
806 	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
807 		return -EINVAL;
808 
809 	return 0;
810 }
811 
812 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
813 						     struct vmcs12 *vmcs12)
814 {
815 	if (CC(nested_vmx_check_msr_switch(vcpu,
816 					   vmcs12->vm_exit_msr_load_count,
817 					   vmcs12->vm_exit_msr_load_addr)) ||
818 	    CC(nested_vmx_check_msr_switch(vcpu,
819 					   vmcs12->vm_exit_msr_store_count,
820 					   vmcs12->vm_exit_msr_store_addr)))
821 		return -EINVAL;
822 
823 	return 0;
824 }
825 
826 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
827                                                       struct vmcs12 *vmcs12)
828 {
829 	if (CC(nested_vmx_check_msr_switch(vcpu,
830 					   vmcs12->vm_entry_msr_load_count,
831 					   vmcs12->vm_entry_msr_load_addr)))
832                 return -EINVAL;
833 
834 	return 0;
835 }
836 
837 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
838 					 struct vmcs12 *vmcs12)
839 {
840 	if (!nested_cpu_has_pml(vmcs12))
841 		return 0;
842 
843 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
844 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
845 		return -EINVAL;
846 
847 	return 0;
848 }
849 
850 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
851 							struct vmcs12 *vmcs12)
852 {
853 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
854 	       !nested_cpu_has_ept(vmcs12)))
855 		return -EINVAL;
856 	return 0;
857 }
858 
859 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
860 							 struct vmcs12 *vmcs12)
861 {
862 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
863 	       !nested_cpu_has_ept(vmcs12)))
864 		return -EINVAL;
865 	return 0;
866 }
867 
868 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
869 						 struct vmcs12 *vmcs12)
870 {
871 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
872 		return 0;
873 
874 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
875 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
876 		return -EINVAL;
877 
878 	return 0;
879 }
880 
881 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
882 				       struct vmx_msr_entry *e)
883 {
884 	/* x2APIC MSR accesses are not allowed */
885 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
886 		return -EINVAL;
887 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
888 	    CC(e->index == MSR_IA32_UCODE_REV))
889 		return -EINVAL;
890 	if (CC(e->reserved != 0))
891 		return -EINVAL;
892 	return 0;
893 }
894 
895 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
896 				     struct vmx_msr_entry *e)
897 {
898 	if (CC(e->index == MSR_FS_BASE) ||
899 	    CC(e->index == MSR_GS_BASE) ||
900 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
901 	    nested_vmx_msr_check_common(vcpu, e))
902 		return -EINVAL;
903 	return 0;
904 }
905 
906 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
907 				      struct vmx_msr_entry *e)
908 {
909 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
910 	    nested_vmx_msr_check_common(vcpu, e))
911 		return -EINVAL;
912 	return 0;
913 }
914 
915 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
916 {
917 	struct vcpu_vmx *vmx = to_vmx(vcpu);
918 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
919 				       vmx->nested.msrs.misc_high);
920 
921 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
922 }
923 
924 /*
925  * Load guest's/host's msr at nested entry/exit.
926  * return 0 for success, entry index for failure.
927  *
928  * One of the failure modes for MSR load/store is when a list exceeds the
929  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
930  * as possible, process all valid entries before failing rather than precheck
931  * for a capacity violation.
932  */
933 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
934 {
935 	u32 i;
936 	struct vmx_msr_entry e;
937 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
938 
939 	for (i = 0; i < count; i++) {
940 		if (unlikely(i >= max_msr_list_size))
941 			goto fail;
942 
943 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
944 					&e, sizeof(e))) {
945 			pr_debug_ratelimited(
946 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
947 				__func__, i, gpa + i * sizeof(e));
948 			goto fail;
949 		}
950 		if (nested_vmx_load_msr_check(vcpu, &e)) {
951 			pr_debug_ratelimited(
952 				"%s check failed (%u, 0x%x, 0x%x)\n",
953 				__func__, i, e.index, e.reserved);
954 			goto fail;
955 		}
956 		if (kvm_set_msr(vcpu, e.index, e.value)) {
957 			pr_debug_ratelimited(
958 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
959 				__func__, i, e.index, e.value);
960 			goto fail;
961 		}
962 	}
963 	return 0;
964 fail:
965 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
966 	return i + 1;
967 }
968 
969 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
970 					    u32 msr_index,
971 					    u64 *data)
972 {
973 	struct vcpu_vmx *vmx = to_vmx(vcpu);
974 
975 	/*
976 	 * If the L0 hypervisor stored a more accurate value for the TSC that
977 	 * does not include the time taken for emulation of the L2->L1
978 	 * VM-exit in L0, use the more accurate value.
979 	 */
980 	if (msr_index == MSR_IA32_TSC) {
981 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
982 						    MSR_IA32_TSC);
983 
984 		if (i >= 0) {
985 			u64 val = vmx->msr_autostore.guest.val[i].value;
986 
987 			*data = kvm_read_l1_tsc(vcpu, val);
988 			return true;
989 		}
990 	}
991 
992 	if (kvm_get_msr(vcpu, msr_index, data)) {
993 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
994 			msr_index);
995 		return false;
996 	}
997 	return true;
998 }
999 
1000 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1001 				     struct vmx_msr_entry *e)
1002 {
1003 	if (kvm_vcpu_read_guest(vcpu,
1004 				gpa + i * sizeof(*e),
1005 				e, 2 * sizeof(u32))) {
1006 		pr_debug_ratelimited(
1007 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
1008 			__func__, i, gpa + i * sizeof(*e));
1009 		return false;
1010 	}
1011 	if (nested_vmx_store_msr_check(vcpu, e)) {
1012 		pr_debug_ratelimited(
1013 			"%s check failed (%u, 0x%x, 0x%x)\n",
1014 			__func__, i, e->index, e->reserved);
1015 		return false;
1016 	}
1017 	return true;
1018 }
1019 
1020 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1021 {
1022 	u64 data;
1023 	u32 i;
1024 	struct vmx_msr_entry e;
1025 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1026 
1027 	for (i = 0; i < count; i++) {
1028 		if (unlikely(i >= max_msr_list_size))
1029 			return -EINVAL;
1030 
1031 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1032 			return -EINVAL;
1033 
1034 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1035 			return -EINVAL;
1036 
1037 		if (kvm_vcpu_write_guest(vcpu,
1038 					 gpa + i * sizeof(e) +
1039 					     offsetof(struct vmx_msr_entry, value),
1040 					 &data, sizeof(data))) {
1041 			pr_debug_ratelimited(
1042 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1043 				__func__, i, e.index, data);
1044 			return -EINVAL;
1045 		}
1046 	}
1047 	return 0;
1048 }
1049 
1050 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1051 {
1052 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1053 	u32 count = vmcs12->vm_exit_msr_store_count;
1054 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1055 	struct vmx_msr_entry e;
1056 	u32 i;
1057 
1058 	for (i = 0; i < count; i++) {
1059 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1060 			return false;
1061 
1062 		if (e.index == msr_index)
1063 			return true;
1064 	}
1065 	return false;
1066 }
1067 
1068 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1069 					   u32 msr_index)
1070 {
1071 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1072 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1073 	bool in_vmcs12_store_list;
1074 	int msr_autostore_slot;
1075 	bool in_autostore_list;
1076 	int last;
1077 
1078 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1079 	in_autostore_list = msr_autostore_slot >= 0;
1080 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1081 
1082 	if (in_vmcs12_store_list && !in_autostore_list) {
1083 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1084 			/*
1085 			 * Emulated VMEntry does not fail here.  Instead a less
1086 			 * accurate value will be returned by
1087 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1088 			 * instead of reading the value from the vmcs02 VMExit
1089 			 * MSR-store area.
1090 			 */
1091 			pr_warn_ratelimited(
1092 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1093 				msr_index);
1094 			return;
1095 		}
1096 		last = autostore->nr++;
1097 		autostore->val[last].index = msr_index;
1098 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1099 		last = --autostore->nr;
1100 		autostore->val[msr_autostore_slot] = autostore->val[last];
1101 	}
1102 }
1103 
1104 /*
1105  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1106  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1107  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1108  * @entry_failure_code.
1109  */
1110 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1111 			       bool nested_ept, bool reload_pdptrs,
1112 			       enum vm_entry_failure_code *entry_failure_code)
1113 {
1114 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1115 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1116 		return -EINVAL;
1117 	}
1118 
1119 	/*
1120 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1121 	 * must not be dereferenced.
1122 	 */
1123 	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1124 	    CC(!load_pdptrs(vcpu, cr3))) {
1125 		*entry_failure_code = ENTRY_FAIL_PDPTE;
1126 		return -EINVAL;
1127 	}
1128 
1129 	if (!nested_ept)
1130 		kvm_mmu_new_pgd(vcpu, cr3);
1131 
1132 	vcpu->arch.cr3 = cr3;
1133 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1134 
1135 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1136 	kvm_init_mmu(vcpu);
1137 
1138 	return 0;
1139 }
1140 
1141 /*
1142  * Returns if KVM is able to config CPU to tag TLB entries
1143  * populated by L2 differently than TLB entries populated
1144  * by L1.
1145  *
1146  * If L0 uses EPT, L1 and L2 run with different EPTP because
1147  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1148  * are tagged with different EPTP.
1149  *
1150  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1151  * with different VPID (L1 entries are tagged with vmx->vpid
1152  * while L2 entries are tagged with vmx->nested.vpid02).
1153  */
1154 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1155 {
1156 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1157 
1158 	return enable_ept ||
1159 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1160 }
1161 
1162 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1163 					    struct vmcs12 *vmcs12,
1164 					    bool is_vmenter)
1165 {
1166 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1167 
1168 	/*
1169 	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1170 	 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1171 	 * full TLB flush from the guest's perspective.  This is required even
1172 	 * if VPID is disabled in the host as KVM may need to synchronize the
1173 	 * MMU in response to the guest TLB flush.
1174 	 *
1175 	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1176 	 * EPT is a special snowflake, as guest-physical mappings aren't
1177 	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1178 	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1179 	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1180 	 * those mappings.
1181 	 */
1182 	if (!nested_cpu_has_vpid(vmcs12)) {
1183 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1184 		return;
1185 	}
1186 
1187 	/* L2 should never have a VPID if VPID is disabled. */
1188 	WARN_ON(!enable_vpid);
1189 
1190 	/*
1191 	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1192 	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1193 	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1194 	 * that the new vpid12 has never been used and thus represents a new
1195 	 * guest ASID that cannot have entries in the TLB.
1196 	 */
1197 	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1198 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1199 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1200 		return;
1201 	}
1202 
1203 	/*
1204 	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1205 	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1206 	 * KVM was unable to allocate a VPID for L2, flush the current context
1207 	 * as the effective ASID is common to both L1 and L2.
1208 	 */
1209 	if (!nested_has_guest_tlb_tag(vcpu))
1210 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1211 }
1212 
1213 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1214 {
1215 	superset &= mask;
1216 	subset &= mask;
1217 
1218 	return (superset | subset) == superset;
1219 }
1220 
1221 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1222 {
1223 	const u64 feature_and_reserved =
1224 		/* feature (except bit 48; see below) */
1225 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1226 		/* reserved */
1227 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1228 	u64 vmx_basic = vmx->nested.msrs.basic;
1229 
1230 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1231 		return -EINVAL;
1232 
1233 	/*
1234 	 * KVM does not emulate a version of VMX that constrains physical
1235 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1236 	 */
1237 	if (data & BIT_ULL(48))
1238 		return -EINVAL;
1239 
1240 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1241 	    vmx_basic_vmcs_revision_id(data))
1242 		return -EINVAL;
1243 
1244 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1245 		return -EINVAL;
1246 
1247 	vmx->nested.msrs.basic = data;
1248 	return 0;
1249 }
1250 
1251 static int
1252 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1253 {
1254 	u64 supported;
1255 	u32 *lowp, *highp;
1256 
1257 	switch (msr_index) {
1258 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1259 		lowp = &vmx->nested.msrs.pinbased_ctls_low;
1260 		highp = &vmx->nested.msrs.pinbased_ctls_high;
1261 		break;
1262 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1263 		lowp = &vmx->nested.msrs.procbased_ctls_low;
1264 		highp = &vmx->nested.msrs.procbased_ctls_high;
1265 		break;
1266 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1267 		lowp = &vmx->nested.msrs.exit_ctls_low;
1268 		highp = &vmx->nested.msrs.exit_ctls_high;
1269 		break;
1270 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1271 		lowp = &vmx->nested.msrs.entry_ctls_low;
1272 		highp = &vmx->nested.msrs.entry_ctls_high;
1273 		break;
1274 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1275 		lowp = &vmx->nested.msrs.secondary_ctls_low;
1276 		highp = &vmx->nested.msrs.secondary_ctls_high;
1277 		break;
1278 	default:
1279 		BUG();
1280 	}
1281 
1282 	supported = vmx_control_msr(*lowp, *highp);
1283 
1284 	/* Check must-be-1 bits are still 1. */
1285 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1286 		return -EINVAL;
1287 
1288 	/* Check must-be-0 bits are still 0. */
1289 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1290 		return -EINVAL;
1291 
1292 	*lowp = data;
1293 	*highp = data >> 32;
1294 	return 0;
1295 }
1296 
1297 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1298 {
1299 	const u64 feature_and_reserved_bits =
1300 		/* feature */
1301 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1302 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1303 		/* reserved */
1304 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1305 	u64 vmx_misc;
1306 
1307 	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1308 				   vmx->nested.msrs.misc_high);
1309 
1310 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1311 		return -EINVAL;
1312 
1313 	if ((vmx->nested.msrs.pinbased_ctls_high &
1314 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1315 	    vmx_misc_preemption_timer_rate(data) !=
1316 	    vmx_misc_preemption_timer_rate(vmx_misc))
1317 		return -EINVAL;
1318 
1319 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1320 		return -EINVAL;
1321 
1322 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1323 		return -EINVAL;
1324 
1325 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1326 		return -EINVAL;
1327 
1328 	vmx->nested.msrs.misc_low = data;
1329 	vmx->nested.msrs.misc_high = data >> 32;
1330 
1331 	return 0;
1332 }
1333 
1334 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1335 {
1336 	u64 vmx_ept_vpid_cap;
1337 
1338 	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1339 					   vmx->nested.msrs.vpid_caps);
1340 
1341 	/* Every bit is either reserved or a feature bit. */
1342 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1343 		return -EINVAL;
1344 
1345 	vmx->nested.msrs.ept_caps = data;
1346 	vmx->nested.msrs.vpid_caps = data >> 32;
1347 	return 0;
1348 }
1349 
1350 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1351 {
1352 	u64 *msr;
1353 
1354 	switch (msr_index) {
1355 	case MSR_IA32_VMX_CR0_FIXED0:
1356 		msr = &vmx->nested.msrs.cr0_fixed0;
1357 		break;
1358 	case MSR_IA32_VMX_CR4_FIXED0:
1359 		msr = &vmx->nested.msrs.cr4_fixed0;
1360 		break;
1361 	default:
1362 		BUG();
1363 	}
1364 
1365 	/*
1366 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1367 	 * must be 1 in the restored value.
1368 	 */
1369 	if (!is_bitwise_subset(data, *msr, -1ULL))
1370 		return -EINVAL;
1371 
1372 	*msr = data;
1373 	return 0;
1374 }
1375 
1376 /*
1377  * Called when userspace is restoring VMX MSRs.
1378  *
1379  * Returns 0 on success, non-0 otherwise.
1380  */
1381 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1382 {
1383 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1384 
1385 	/*
1386 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1387 	 * is in VMX operation.
1388 	 */
1389 	if (vmx->nested.vmxon)
1390 		return -EBUSY;
1391 
1392 	switch (msr_index) {
1393 	case MSR_IA32_VMX_BASIC:
1394 		return vmx_restore_vmx_basic(vmx, data);
1395 	case MSR_IA32_VMX_PINBASED_CTLS:
1396 	case MSR_IA32_VMX_PROCBASED_CTLS:
1397 	case MSR_IA32_VMX_EXIT_CTLS:
1398 	case MSR_IA32_VMX_ENTRY_CTLS:
1399 		/*
1400 		 * The "non-true" VMX capability MSRs are generated from the
1401 		 * "true" MSRs, so we do not support restoring them directly.
1402 		 *
1403 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1404 		 * should restore the "true" MSRs with the must-be-1 bits
1405 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1406 		 * DEFAULT SETTINGS".
1407 		 */
1408 		return -EINVAL;
1409 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1410 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1411 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1412 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1413 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1414 		return vmx_restore_control_msr(vmx, msr_index, data);
1415 	case MSR_IA32_VMX_MISC:
1416 		return vmx_restore_vmx_misc(vmx, data);
1417 	case MSR_IA32_VMX_CR0_FIXED0:
1418 	case MSR_IA32_VMX_CR4_FIXED0:
1419 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1420 	case MSR_IA32_VMX_CR0_FIXED1:
1421 	case MSR_IA32_VMX_CR4_FIXED1:
1422 		/*
1423 		 * These MSRs are generated based on the vCPU's CPUID, so we
1424 		 * do not support restoring them directly.
1425 		 */
1426 		return -EINVAL;
1427 	case MSR_IA32_VMX_EPT_VPID_CAP:
1428 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1429 	case MSR_IA32_VMX_VMCS_ENUM:
1430 		vmx->nested.msrs.vmcs_enum = data;
1431 		return 0;
1432 	case MSR_IA32_VMX_VMFUNC:
1433 		if (data & ~vmx->nested.msrs.vmfunc_controls)
1434 			return -EINVAL;
1435 		vmx->nested.msrs.vmfunc_controls = data;
1436 		return 0;
1437 	default:
1438 		/*
1439 		 * The rest of the VMX capability MSRs do not support restore.
1440 		 */
1441 		return -EINVAL;
1442 	}
1443 }
1444 
1445 /* Returns 0 on success, non-0 otherwise. */
1446 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1447 {
1448 	switch (msr_index) {
1449 	case MSR_IA32_VMX_BASIC:
1450 		*pdata = msrs->basic;
1451 		break;
1452 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1453 	case MSR_IA32_VMX_PINBASED_CTLS:
1454 		*pdata = vmx_control_msr(
1455 			msrs->pinbased_ctls_low,
1456 			msrs->pinbased_ctls_high);
1457 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1458 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1459 		break;
1460 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1461 	case MSR_IA32_VMX_PROCBASED_CTLS:
1462 		*pdata = vmx_control_msr(
1463 			msrs->procbased_ctls_low,
1464 			msrs->procbased_ctls_high);
1465 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1466 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1467 		break;
1468 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1469 	case MSR_IA32_VMX_EXIT_CTLS:
1470 		*pdata = vmx_control_msr(
1471 			msrs->exit_ctls_low,
1472 			msrs->exit_ctls_high);
1473 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1474 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1475 		break;
1476 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1477 	case MSR_IA32_VMX_ENTRY_CTLS:
1478 		*pdata = vmx_control_msr(
1479 			msrs->entry_ctls_low,
1480 			msrs->entry_ctls_high);
1481 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1482 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1483 		break;
1484 	case MSR_IA32_VMX_MISC:
1485 		*pdata = vmx_control_msr(
1486 			msrs->misc_low,
1487 			msrs->misc_high);
1488 		break;
1489 	case MSR_IA32_VMX_CR0_FIXED0:
1490 		*pdata = msrs->cr0_fixed0;
1491 		break;
1492 	case MSR_IA32_VMX_CR0_FIXED1:
1493 		*pdata = msrs->cr0_fixed1;
1494 		break;
1495 	case MSR_IA32_VMX_CR4_FIXED0:
1496 		*pdata = msrs->cr4_fixed0;
1497 		break;
1498 	case MSR_IA32_VMX_CR4_FIXED1:
1499 		*pdata = msrs->cr4_fixed1;
1500 		break;
1501 	case MSR_IA32_VMX_VMCS_ENUM:
1502 		*pdata = msrs->vmcs_enum;
1503 		break;
1504 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1505 		*pdata = vmx_control_msr(
1506 			msrs->secondary_ctls_low,
1507 			msrs->secondary_ctls_high);
1508 		break;
1509 	case MSR_IA32_VMX_EPT_VPID_CAP:
1510 		*pdata = msrs->ept_caps |
1511 			((u64)msrs->vpid_caps << 32);
1512 		break;
1513 	case MSR_IA32_VMX_VMFUNC:
1514 		*pdata = msrs->vmfunc_controls;
1515 		break;
1516 	default:
1517 		return 1;
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 /*
1524  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1525  * been modified by the L1 guest.  Note, "writable" in this context means
1526  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1527  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1528  * VM-exit information fields (which are actually writable if the vCPU is
1529  * configured to support "VMWRITE to any supported field in the VMCS").
1530  */
1531 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1532 {
1533 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1534 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1535 	struct shadow_vmcs_field field;
1536 	unsigned long val;
1537 	int i;
1538 
1539 	if (WARN_ON(!shadow_vmcs))
1540 		return;
1541 
1542 	preempt_disable();
1543 
1544 	vmcs_load(shadow_vmcs);
1545 
1546 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1547 		field = shadow_read_write_fields[i];
1548 		val = __vmcs_readl(field.encoding);
1549 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1550 	}
1551 
1552 	vmcs_clear(shadow_vmcs);
1553 	vmcs_load(vmx->loaded_vmcs->vmcs);
1554 
1555 	preempt_enable();
1556 }
1557 
1558 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1559 {
1560 	const struct shadow_vmcs_field *fields[] = {
1561 		shadow_read_write_fields,
1562 		shadow_read_only_fields
1563 	};
1564 	const int max_fields[] = {
1565 		max_shadow_read_write_fields,
1566 		max_shadow_read_only_fields
1567 	};
1568 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1569 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1570 	struct shadow_vmcs_field field;
1571 	unsigned long val;
1572 	int i, q;
1573 
1574 	if (WARN_ON(!shadow_vmcs))
1575 		return;
1576 
1577 	vmcs_load(shadow_vmcs);
1578 
1579 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1580 		for (i = 0; i < max_fields[q]; i++) {
1581 			field = fields[q][i];
1582 			val = vmcs12_read_any(vmcs12, field.encoding,
1583 					      field.offset);
1584 			__vmcs_writel(field.encoding, val);
1585 		}
1586 	}
1587 
1588 	vmcs_clear(shadow_vmcs);
1589 	vmcs_load(vmx->loaded_vmcs->vmcs);
1590 }
1591 
1592 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1593 {
1594 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1595 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1596 
1597 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1598 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1599 	vmcs12->guest_rip = evmcs->guest_rip;
1600 
1601 	if (unlikely(!(hv_clean_fields &
1602 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1603 		vmcs12->guest_rsp = evmcs->guest_rsp;
1604 		vmcs12->guest_rflags = evmcs->guest_rflags;
1605 		vmcs12->guest_interruptibility_info =
1606 			evmcs->guest_interruptibility_info;
1607 	}
1608 
1609 	if (unlikely(!(hv_clean_fields &
1610 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1611 		vmcs12->cpu_based_vm_exec_control =
1612 			evmcs->cpu_based_vm_exec_control;
1613 	}
1614 
1615 	if (unlikely(!(hv_clean_fields &
1616 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1617 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1618 	}
1619 
1620 	if (unlikely(!(hv_clean_fields &
1621 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1622 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1623 	}
1624 
1625 	if (unlikely(!(hv_clean_fields &
1626 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1627 		vmcs12->vm_entry_intr_info_field =
1628 			evmcs->vm_entry_intr_info_field;
1629 		vmcs12->vm_entry_exception_error_code =
1630 			evmcs->vm_entry_exception_error_code;
1631 		vmcs12->vm_entry_instruction_len =
1632 			evmcs->vm_entry_instruction_len;
1633 	}
1634 
1635 	if (unlikely(!(hv_clean_fields &
1636 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1637 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1638 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1639 		vmcs12->host_cr0 = evmcs->host_cr0;
1640 		vmcs12->host_cr3 = evmcs->host_cr3;
1641 		vmcs12->host_cr4 = evmcs->host_cr4;
1642 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1643 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1644 		vmcs12->host_rip = evmcs->host_rip;
1645 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1646 		vmcs12->host_es_selector = evmcs->host_es_selector;
1647 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1648 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1649 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1650 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1651 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1652 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1653 	}
1654 
1655 	if (unlikely(!(hv_clean_fields &
1656 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1657 		vmcs12->pin_based_vm_exec_control =
1658 			evmcs->pin_based_vm_exec_control;
1659 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1660 		vmcs12->secondary_vm_exec_control =
1661 			evmcs->secondary_vm_exec_control;
1662 	}
1663 
1664 	if (unlikely(!(hv_clean_fields &
1665 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1666 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1667 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1668 	}
1669 
1670 	if (unlikely(!(hv_clean_fields &
1671 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1672 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1673 	}
1674 
1675 	if (unlikely(!(hv_clean_fields &
1676 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1677 		vmcs12->guest_es_base = evmcs->guest_es_base;
1678 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1679 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1680 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1681 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1682 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1683 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1684 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1685 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1686 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1687 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1688 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1689 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1690 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1691 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1692 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1693 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1694 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1695 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1696 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1697 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1698 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1699 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1700 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1701 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1702 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1703 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1704 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1705 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1706 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1707 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1708 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1709 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1710 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1711 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1712 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1713 	}
1714 
1715 	if (unlikely(!(hv_clean_fields &
1716 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1717 		vmcs12->tsc_offset = evmcs->tsc_offset;
1718 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1719 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1720 	}
1721 
1722 	if (unlikely(!(hv_clean_fields &
1723 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1724 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1725 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1726 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1727 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1728 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1729 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1730 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1731 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1732 	}
1733 
1734 	if (unlikely(!(hv_clean_fields &
1735 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1736 		vmcs12->host_fs_base = evmcs->host_fs_base;
1737 		vmcs12->host_gs_base = evmcs->host_gs_base;
1738 		vmcs12->host_tr_base = evmcs->host_tr_base;
1739 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1740 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1741 		vmcs12->host_rsp = evmcs->host_rsp;
1742 	}
1743 
1744 	if (unlikely(!(hv_clean_fields &
1745 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1746 		vmcs12->ept_pointer = evmcs->ept_pointer;
1747 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1748 	}
1749 
1750 	if (unlikely(!(hv_clean_fields &
1751 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1752 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1753 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1754 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1755 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1756 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1757 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1758 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1759 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1760 		vmcs12->guest_pending_dbg_exceptions =
1761 			evmcs->guest_pending_dbg_exceptions;
1762 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1763 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1764 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1765 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1766 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1767 	}
1768 
1769 	/*
1770 	 * Not used?
1771 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1772 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1773 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1774 	 * vmcs12->page_fault_error_code_mask =
1775 	 *		evmcs->page_fault_error_code_mask;
1776 	 * vmcs12->page_fault_error_code_match =
1777 	 *		evmcs->page_fault_error_code_match;
1778 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1779 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1780 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1781 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1782 	 */
1783 
1784 	/*
1785 	 * Read only fields:
1786 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1787 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1788 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1789 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1790 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1791 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1792 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1793 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1794 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1795 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1796 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1797 	 *
1798 	 * Not present in struct vmcs12:
1799 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1800 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1801 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1802 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1803 	 */
1804 
1805 	return;
1806 }
1807 
1808 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1809 {
1810 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1811 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1812 
1813 	/*
1814 	 * Should not be changed by KVM:
1815 	 *
1816 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1817 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1818 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1819 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1820 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1821 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1822 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1823 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1824 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1825 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1826 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1827 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1828 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1829 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1830 	 * evmcs->host_rip = vmcs12->host_rip;
1831 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1832 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1833 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1834 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1835 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1836 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1837 	 * evmcs->host_rsp = vmcs12->host_rsp;
1838 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1839 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1840 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1841 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1842 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1843 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1844 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1845 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1846 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1847 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1848 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1849 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1850 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1851 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1852 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1853 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1854 	 * evmcs->page_fault_error_code_mask =
1855 	 *		vmcs12->page_fault_error_code_mask;
1856 	 * evmcs->page_fault_error_code_match =
1857 	 *		vmcs12->page_fault_error_code_match;
1858 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1859 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1860 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1861 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1862 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1863 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1864 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1865 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1866 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1867 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1868 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1869 	 *
1870 	 * Not present in struct vmcs12:
1871 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1872 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1873 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1874 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1875 	 */
1876 
1877 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1878 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1879 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1880 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1881 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1882 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1883 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1884 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1885 
1886 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1887 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1888 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1889 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1890 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1891 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1892 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1893 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1894 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1895 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1896 
1897 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1898 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1899 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1900 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1901 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1902 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1903 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1904 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1905 
1906 	evmcs->guest_es_base = vmcs12->guest_es_base;
1907 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1908 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1909 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1910 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1911 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1912 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1913 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1914 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1915 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1916 
1917 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1918 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1919 
1920 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1921 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1922 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1923 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1924 
1925 	evmcs->guest_pending_dbg_exceptions =
1926 		vmcs12->guest_pending_dbg_exceptions;
1927 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1928 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1929 
1930 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1931 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1932 
1933 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1934 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1935 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1936 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1937 
1938 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1939 
1940 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1941 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1942 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1943 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1944 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1945 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1946 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1947 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1948 
1949 	evmcs->exit_qualification = vmcs12->exit_qualification;
1950 
1951 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1952 	evmcs->guest_rsp = vmcs12->guest_rsp;
1953 	evmcs->guest_rflags = vmcs12->guest_rflags;
1954 
1955 	evmcs->guest_interruptibility_info =
1956 		vmcs12->guest_interruptibility_info;
1957 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1958 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1959 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1960 	evmcs->vm_entry_exception_error_code =
1961 		vmcs12->vm_entry_exception_error_code;
1962 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1963 
1964 	evmcs->guest_rip = vmcs12->guest_rip;
1965 
1966 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1967 
1968 	return;
1969 }
1970 
1971 /*
1972  * This is an equivalent of the nested hypervisor executing the vmptrld
1973  * instruction.
1974  */
1975 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1976 	struct kvm_vcpu *vcpu, bool from_launch)
1977 {
1978 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1979 	bool evmcs_gpa_changed = false;
1980 	u64 evmcs_gpa;
1981 
1982 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1983 		return EVMPTRLD_DISABLED;
1984 
1985 	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1986 		nested_release_evmcs(vcpu);
1987 		return EVMPTRLD_DISABLED;
1988 	}
1989 
1990 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1991 		vmx->nested.current_vmptr = INVALID_GPA;
1992 
1993 		nested_release_evmcs(vcpu);
1994 
1995 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1996 				 &vmx->nested.hv_evmcs_map))
1997 			return EVMPTRLD_ERROR;
1998 
1999 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2000 
2001 		/*
2002 		 * Currently, KVM only supports eVMCS version 1
2003 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2004 		 * value to first u32 field of eVMCS which should specify eVMCS
2005 		 * VersionNumber.
2006 		 *
2007 		 * Guest should be aware of supported eVMCS versions by host by
2008 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2009 		 * expected to set this CPUID leaf according to the value
2010 		 * returned in vmcs_version from nested_enable_evmcs().
2011 		 *
2012 		 * However, it turns out that Microsoft Hyper-V fails to comply
2013 		 * to their own invented interface: When Hyper-V use eVMCS, it
2014 		 * just sets first u32 field of eVMCS to revision_id specified
2015 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2016 		 * which is one of the supported versions specified in
2017 		 * CPUID.0x4000000A.EAX[0:15].
2018 		 *
2019 		 * To overcome Hyper-V bug, we accept here either a supported
2020 		 * eVMCS version or VMCS12 revision_id as valid values for first
2021 		 * u32 field of eVMCS.
2022 		 */
2023 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2024 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2025 			nested_release_evmcs(vcpu);
2026 			return EVMPTRLD_VMFAIL;
2027 		}
2028 
2029 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2030 
2031 		evmcs_gpa_changed = true;
2032 		/*
2033 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2034 		 * reloaded from guest's memory (read only fields, fields not
2035 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2036 		 * are no leftovers.
2037 		 */
2038 		if (from_launch) {
2039 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2040 			memset(vmcs12, 0, sizeof(*vmcs12));
2041 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2042 		}
2043 
2044 	}
2045 
2046 	/*
2047 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2048 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2049 	 */
2050 	if (from_launch || evmcs_gpa_changed) {
2051 		vmx->nested.hv_evmcs->hv_clean_fields &=
2052 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2053 
2054 		vmx->nested.force_msr_bitmap_recalc = true;
2055 	}
2056 
2057 	return EVMPTRLD_SUCCEEDED;
2058 }
2059 
2060 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2061 {
2062 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2063 
2064 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2065 		copy_vmcs12_to_enlightened(vmx);
2066 	else
2067 		copy_vmcs12_to_shadow(vmx);
2068 
2069 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2070 }
2071 
2072 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2073 {
2074 	struct vcpu_vmx *vmx =
2075 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2076 
2077 	vmx->nested.preemption_timer_expired = true;
2078 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2079 	kvm_vcpu_kick(&vmx->vcpu);
2080 
2081 	return HRTIMER_NORESTART;
2082 }
2083 
2084 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2085 {
2086 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2087 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2088 
2089 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2090 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2091 
2092 	if (!vmx->nested.has_preemption_timer_deadline) {
2093 		vmx->nested.preemption_timer_deadline =
2094 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2095 		vmx->nested.has_preemption_timer_deadline = true;
2096 	}
2097 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2098 }
2099 
2100 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2101 					u64 preemption_timeout)
2102 {
2103 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2104 
2105 	/*
2106 	 * A timer value of zero is architecturally guaranteed to cause
2107 	 * a VMExit prior to executing any instructions in the guest.
2108 	 */
2109 	if (preemption_timeout == 0) {
2110 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2111 		return;
2112 	}
2113 
2114 	if (vcpu->arch.virtual_tsc_khz == 0)
2115 		return;
2116 
2117 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2118 	preemption_timeout *= 1000000;
2119 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2120 	hrtimer_start(&vmx->nested.preemption_timer,
2121 		      ktime_add_ns(ktime_get(), preemption_timeout),
2122 		      HRTIMER_MODE_ABS_PINNED);
2123 }
2124 
2125 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2126 {
2127 	if (vmx->nested.nested_run_pending &&
2128 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2129 		return vmcs12->guest_ia32_efer;
2130 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2131 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2132 	else
2133 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2134 }
2135 
2136 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2137 {
2138 	/*
2139 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2140 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2141 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2142 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2143 	 */
2144 	if (vmx->nested.vmcs02_initialized)
2145 		return;
2146 	vmx->nested.vmcs02_initialized = true;
2147 
2148 	/*
2149 	 * We don't care what the EPTP value is we just need to guarantee
2150 	 * it's valid so we don't get a false positive when doing early
2151 	 * consistency checks.
2152 	 */
2153 	if (enable_ept && nested_early_check)
2154 		vmcs_write64(EPT_POINTER,
2155 			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2156 
2157 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2158 	if (cpu_has_vmx_vmfunc())
2159 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2160 
2161 	if (cpu_has_vmx_posted_intr())
2162 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2163 
2164 	if (cpu_has_vmx_msr_bitmap())
2165 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2166 
2167 	/*
2168 	 * PML is emulated for L2, but never enabled in hardware as the MMU
2169 	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2170 	 * deal with filtering out L2 GPAs from the buffer.
2171 	 */
2172 	if (enable_pml) {
2173 		vmcs_write64(PML_ADDRESS, 0);
2174 		vmcs_write16(GUEST_PML_INDEX, -1);
2175 	}
2176 
2177 	if (cpu_has_vmx_encls_vmexit())
2178 		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2179 
2180 	/*
2181 	 * Set the MSR load/store lists to match L0's settings.  Only the
2182 	 * addresses are constant (for vmcs02), the counts can change based
2183 	 * on L2's behavior, e.g. switching to/from long mode.
2184 	 */
2185 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2186 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2187 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2188 
2189 	vmx_set_constant_host_state(vmx);
2190 }
2191 
2192 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2193 				      struct vmcs12 *vmcs12)
2194 {
2195 	prepare_vmcs02_constant_state(vmx);
2196 
2197 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2198 
2199 	if (enable_vpid) {
2200 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2201 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2202 		else
2203 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2204 	}
2205 }
2206 
2207 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2208 				 struct vmcs12 *vmcs12)
2209 {
2210 	u32 exec_control;
2211 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2212 
2213 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2214 		prepare_vmcs02_early_rare(vmx, vmcs12);
2215 
2216 	/*
2217 	 * PIN CONTROLS
2218 	 */
2219 	exec_control = __pin_controls_get(vmcs01);
2220 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2221 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2222 
2223 	/* Posted interrupts setting is only taken from vmcs12.  */
2224 	vmx->nested.pi_pending = false;
2225 	if (nested_cpu_has_posted_intr(vmcs12))
2226 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2227 	else
2228 		exec_control &= ~PIN_BASED_POSTED_INTR;
2229 	pin_controls_set(vmx, exec_control);
2230 
2231 	/*
2232 	 * EXEC CONTROLS
2233 	 */
2234 	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2235 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2236 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2237 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2238 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2239 
2240 	vmx->nested.l1_tpr_threshold = -1;
2241 	if (exec_control & CPU_BASED_TPR_SHADOW)
2242 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2243 #ifdef CONFIG_X86_64
2244 	else
2245 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2246 				CPU_BASED_CR8_STORE_EXITING;
2247 #endif
2248 
2249 	/*
2250 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2251 	 * for I/O port accesses.
2252 	 */
2253 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2254 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2255 
2256 	/*
2257 	 * This bit will be computed in nested_get_vmcs12_pages, because
2258 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2259 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2260 	 * only set/clear this bit.
2261 	 */
2262 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2263 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2264 
2265 	exec_controls_set(vmx, exec_control);
2266 
2267 	/*
2268 	 * SECONDARY EXEC CONTROLS
2269 	 */
2270 	if (cpu_has_secondary_exec_ctrls()) {
2271 		exec_control = __secondary_exec_controls_get(vmcs01);
2272 
2273 		/* Take the following fields only from vmcs12 */
2274 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2275 				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2276 				  SECONDARY_EXEC_ENABLE_INVPCID |
2277 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2278 				  SECONDARY_EXEC_XSAVES |
2279 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2280 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2281 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2282 				  SECONDARY_EXEC_ENABLE_VMFUNC |
2283 				  SECONDARY_EXEC_TSC_SCALING |
2284 				  SECONDARY_EXEC_DESC);
2285 
2286 		if (nested_cpu_has(vmcs12,
2287 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2288 			exec_control |= vmcs12->secondary_vm_exec_control;
2289 
2290 		/* PML is emulated and never enabled in hardware for L2. */
2291 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2292 
2293 		/* VMCS shadowing for L2 is emulated for now */
2294 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2295 
2296 		/*
2297 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2298 		 * will not have to rewrite the controls just for this bit.
2299 		 */
2300 		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2301 		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2302 			exec_control |= SECONDARY_EXEC_DESC;
2303 
2304 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2305 			vmcs_write16(GUEST_INTR_STATUS,
2306 				vmcs12->guest_intr_status);
2307 
2308 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2309 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2310 
2311 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2312 			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2313 
2314 		secondary_exec_controls_set(vmx, exec_control);
2315 	}
2316 
2317 	/*
2318 	 * ENTRY CONTROLS
2319 	 *
2320 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2321 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2322 	 * on the related bits (if supported by the CPU) in the hope that
2323 	 * we can avoid VMWrites during vmx_set_efer().
2324 	 */
2325 	exec_control = __vm_entry_controls_get(vmcs01);
2326 	exec_control |= vmcs12->vm_entry_controls;
2327 	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2328 	if (cpu_has_load_ia32_efer()) {
2329 		if (guest_efer & EFER_LMA)
2330 			exec_control |= VM_ENTRY_IA32E_MODE;
2331 		if (guest_efer != host_efer)
2332 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2333 	}
2334 	vm_entry_controls_set(vmx, exec_control);
2335 
2336 	/*
2337 	 * EXIT CONTROLS
2338 	 *
2339 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2340 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2341 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2342 	 */
2343 	exec_control = __vm_exit_controls_get(vmcs01);
2344 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2345 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2346 	else
2347 		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2348 	vm_exit_controls_set(vmx, exec_control);
2349 
2350 	/*
2351 	 * Interrupt/Exception Fields
2352 	 */
2353 	if (vmx->nested.nested_run_pending) {
2354 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2355 			     vmcs12->vm_entry_intr_info_field);
2356 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2357 			     vmcs12->vm_entry_exception_error_code);
2358 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2359 			     vmcs12->vm_entry_instruction_len);
2360 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2361 			     vmcs12->guest_interruptibility_info);
2362 		vmx->loaded_vmcs->nmi_known_unmasked =
2363 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2364 	} else {
2365 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2366 	}
2367 }
2368 
2369 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2370 {
2371 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2372 
2373 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2374 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2375 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2376 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2377 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2378 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2379 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2380 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2381 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2382 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2383 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2384 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2385 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2386 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2387 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2388 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2389 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2390 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2391 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2392 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2393 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2394 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2395 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2396 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2397 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2398 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2399 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2400 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2401 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2402 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2403 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2404 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2405 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2406 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2407 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2408 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2409 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2410 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2411 
2412 		vmx->segment_cache.bitmask = 0;
2413 	}
2414 
2415 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2416 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2417 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2418 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2419 			    vmcs12->guest_pending_dbg_exceptions);
2420 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2421 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2422 
2423 		/*
2424 		 * L1 may access the L2's PDPTR, so save them to construct
2425 		 * vmcs12
2426 		 */
2427 		if (enable_ept) {
2428 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2429 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2430 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2431 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2432 		}
2433 
2434 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2435 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2436 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2437 	}
2438 
2439 	if (nested_cpu_has_xsaves(vmcs12))
2440 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2441 
2442 	/*
2443 	 * Whether page-faults are trapped is determined by a combination of
2444 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2445 	 * doesn't care about page faults then we should set all of these to
2446 	 * L1's desires. However, if L0 does care about (some) page faults, it
2447 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2448 	 * simply ask to exit on each and every L2 page fault. This is done by
2449 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2450 	 * Note that below we don't need special code to set EB.PF beyond the
2451 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2452 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2453 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2454 	 */
2455 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2456 		/*
2457 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2458 		 * go ahead and use it?
2459 		 */
2460 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2461 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2462 	} else {
2463 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2464 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2465 	}
2466 
2467 	if (cpu_has_vmx_apicv()) {
2468 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2469 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2470 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2471 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2472 	}
2473 
2474 	/*
2475 	 * Make sure the msr_autostore list is up to date before we set the
2476 	 * count in the vmcs02.
2477 	 */
2478 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2479 
2480 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2481 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2482 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2483 
2484 	set_cr4_guest_host_mask(vmx);
2485 }
2486 
2487 /*
2488  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2489  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2490  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2491  * guest in a way that will both be appropriate to L1's requests, and our
2492  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2493  * function also has additional necessary side-effects, like setting various
2494  * vcpu->arch fields.
2495  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2496  * is assigned to entry_failure_code on failure.
2497  */
2498 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2499 			  bool from_vmentry,
2500 			  enum vm_entry_failure_code *entry_failure_code)
2501 {
2502 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2503 	bool load_guest_pdptrs_vmcs12 = false;
2504 
2505 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2506 		prepare_vmcs02_rare(vmx, vmcs12);
2507 		vmx->nested.dirty_vmcs12 = false;
2508 
2509 		load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2510 			!(vmx->nested.hv_evmcs->hv_clean_fields &
2511 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2512 	}
2513 
2514 	if (vmx->nested.nested_run_pending &&
2515 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2516 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2517 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2518 	} else {
2519 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2520 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2521 	}
2522 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2523 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2524 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2525 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2526 
2527 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2528 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2529 	 * trap. Note that CR0.TS also needs updating - we do this later.
2530 	 */
2531 	vmx_update_exception_bitmap(vcpu);
2532 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2533 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2534 
2535 	if (vmx->nested.nested_run_pending &&
2536 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2537 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2538 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2539 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2540 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2541 	}
2542 
2543 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2544 			vcpu->arch.l1_tsc_offset,
2545 			vmx_get_l2_tsc_offset(vcpu),
2546 			vmx_get_l2_tsc_multiplier(vcpu));
2547 
2548 	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2549 			vcpu->arch.l1_tsc_scaling_ratio,
2550 			vmx_get_l2_tsc_multiplier(vcpu));
2551 
2552 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2553 	if (kvm_has_tsc_control)
2554 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2555 
2556 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2557 
2558 	if (nested_cpu_has_ept(vmcs12))
2559 		nested_ept_init_mmu_context(vcpu);
2560 
2561 	/*
2562 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2563 	 * bits which we consider mandatory enabled.
2564 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
2565 	 * the specifications by L1; It's not enough to take
2566 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2567 	 * have more bits than L1 expected.
2568 	 */
2569 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2570 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2571 
2572 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2573 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2574 
2575 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2576 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2577 	vmx_set_efer(vcpu, vcpu->arch.efer);
2578 
2579 	/*
2580 	 * Guest state is invalid and unrestricted guest is disabled,
2581 	 * which means L1 attempted VMEntry to L2 with invalid state.
2582 	 * Fail the VMEntry.
2583 	 *
2584 	 * However when force loading the guest state (SMM exit or
2585 	 * loading nested state after migration, it is possible to
2586 	 * have invalid guest state now, which will be later fixed by
2587 	 * restoring L2 register state
2588 	 */
2589 	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2590 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2591 		return -EINVAL;
2592 	}
2593 
2594 	/* Shadow page tables on either EPT or shadow page tables. */
2595 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2596 				from_vmentry, entry_failure_code))
2597 		return -EINVAL;
2598 
2599 	/*
2600 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2601 	 * on nested VM-Exit, which can occur without actually running L2 and
2602 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2603 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2604 	 * transition to HLT instead of running L2.
2605 	 */
2606 	if (enable_ept)
2607 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2608 
2609 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2610 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2611 	    is_pae_paging(vcpu)) {
2612 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2613 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2614 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2615 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2616 	}
2617 
2618 	if (!enable_ept)
2619 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2620 
2621 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2622 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2623 				     vmcs12->guest_ia32_perf_global_ctrl))) {
2624 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2625 		return -EINVAL;
2626 	}
2627 
2628 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2629 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2630 
2631 	/*
2632 	 * It was observed that genuine Hyper-V running in L1 doesn't reset
2633 	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2634 	 * bits when it changes a field in eVMCS. Mark all fields as clean
2635 	 * here.
2636 	 */
2637 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2638 		vmx->nested.hv_evmcs->hv_clean_fields |=
2639 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2640 
2641 	return 0;
2642 }
2643 
2644 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2645 {
2646 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2647 	       nested_cpu_has_virtual_nmis(vmcs12)))
2648 		return -EINVAL;
2649 
2650 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2651 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2652 		return -EINVAL;
2653 
2654 	return 0;
2655 }
2656 
2657 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2658 {
2659 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2660 
2661 	/* Check for memory type validity */
2662 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2663 	case VMX_EPTP_MT_UC:
2664 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2665 			return false;
2666 		break;
2667 	case VMX_EPTP_MT_WB:
2668 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2669 			return false;
2670 		break;
2671 	default:
2672 		return false;
2673 	}
2674 
2675 	/* Page-walk levels validity. */
2676 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2677 	case VMX_EPTP_PWL_5:
2678 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2679 			return false;
2680 		break;
2681 	case VMX_EPTP_PWL_4:
2682 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2683 			return false;
2684 		break;
2685 	default:
2686 		return false;
2687 	}
2688 
2689 	/* Reserved bits should not be set */
2690 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2691 		return false;
2692 
2693 	/* AD, if set, should be supported */
2694 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2695 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2696 			return false;
2697 	}
2698 
2699 	return true;
2700 }
2701 
2702 /*
2703  * Checks related to VM-Execution Control Fields
2704  */
2705 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2706                                               struct vmcs12 *vmcs12)
2707 {
2708 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2709 
2710 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2711 				   vmx->nested.msrs.pinbased_ctls_low,
2712 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2713 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2714 				   vmx->nested.msrs.procbased_ctls_low,
2715 				   vmx->nested.msrs.procbased_ctls_high)))
2716 		return -EINVAL;
2717 
2718 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2719 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2720 				   vmx->nested.msrs.secondary_ctls_low,
2721 				   vmx->nested.msrs.secondary_ctls_high)))
2722 		return -EINVAL;
2723 
2724 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2725 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2726 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2727 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2728 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2729 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2730 	    nested_vmx_check_nmi_controls(vmcs12) ||
2731 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2732 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2733 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2734 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2735 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2736 		return -EINVAL;
2737 
2738 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2739 	    nested_cpu_has_save_preemption_timer(vmcs12))
2740 		return -EINVAL;
2741 
2742 	if (nested_cpu_has_ept(vmcs12) &&
2743 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2744 		return -EINVAL;
2745 
2746 	if (nested_cpu_has_vmfunc(vmcs12)) {
2747 		if (CC(vmcs12->vm_function_control &
2748 		       ~vmx->nested.msrs.vmfunc_controls))
2749 			return -EINVAL;
2750 
2751 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2752 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2753 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2754 				return -EINVAL;
2755 		}
2756 	}
2757 
2758 	return 0;
2759 }
2760 
2761 /*
2762  * Checks related to VM-Exit Control Fields
2763  */
2764 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2765                                          struct vmcs12 *vmcs12)
2766 {
2767 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2768 
2769 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2770 				    vmx->nested.msrs.exit_ctls_low,
2771 				    vmx->nested.msrs.exit_ctls_high)) ||
2772 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2773 		return -EINVAL;
2774 
2775 	return 0;
2776 }
2777 
2778 /*
2779  * Checks related to VM-Entry Control Fields
2780  */
2781 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2782 					  struct vmcs12 *vmcs12)
2783 {
2784 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2785 
2786 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2787 				    vmx->nested.msrs.entry_ctls_low,
2788 				    vmx->nested.msrs.entry_ctls_high)))
2789 		return -EINVAL;
2790 
2791 	/*
2792 	 * From the Intel SDM, volume 3:
2793 	 * Fields relevant to VM-entry event injection must be set properly.
2794 	 * These fields are the VM-entry interruption-information field, the
2795 	 * VM-entry exception error code, and the VM-entry instruction length.
2796 	 */
2797 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2798 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2799 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2800 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2801 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2802 		bool should_have_error_code;
2803 		bool urg = nested_cpu_has2(vmcs12,
2804 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2805 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2806 
2807 		/* VM-entry interruption-info field: interruption type */
2808 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2809 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2810 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2811 			return -EINVAL;
2812 
2813 		/* VM-entry interruption-info field: vector */
2814 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2815 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2816 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2817 			return -EINVAL;
2818 
2819 		/* VM-entry interruption-info field: deliver error code */
2820 		should_have_error_code =
2821 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2822 			x86_exception_has_error_code(vector);
2823 		if (CC(has_error_code != should_have_error_code))
2824 			return -EINVAL;
2825 
2826 		/* VM-entry exception error code */
2827 		if (CC(has_error_code &&
2828 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2829 			return -EINVAL;
2830 
2831 		/* VM-entry interruption-info field: reserved bits */
2832 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2833 			return -EINVAL;
2834 
2835 		/* VM-entry instruction length */
2836 		switch (intr_type) {
2837 		case INTR_TYPE_SOFT_EXCEPTION:
2838 		case INTR_TYPE_SOFT_INTR:
2839 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2840 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2841 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2842 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2843 				return -EINVAL;
2844 		}
2845 	}
2846 
2847 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2848 		return -EINVAL;
2849 
2850 	return 0;
2851 }
2852 
2853 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2854 				     struct vmcs12 *vmcs12)
2855 {
2856 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2857 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2858 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2859 		return -EINVAL;
2860 
2861 	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2862 		return nested_evmcs_check_controls(vmcs12);
2863 
2864 	return 0;
2865 }
2866 
2867 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2868 				       struct vmcs12 *vmcs12)
2869 {
2870 #ifdef CONFIG_X86_64
2871 	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2872 		!!(vcpu->arch.efer & EFER_LMA)))
2873 		return -EINVAL;
2874 #endif
2875 	return 0;
2876 }
2877 
2878 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2879 				       struct vmcs12 *vmcs12)
2880 {
2881 	bool ia32e;
2882 
2883 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2884 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2885 	    CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2886 		return -EINVAL;
2887 
2888 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2889 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2890 		return -EINVAL;
2891 
2892 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2893 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2894 		return -EINVAL;
2895 
2896 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2897 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2898 					   vmcs12->host_ia32_perf_global_ctrl)))
2899 		return -EINVAL;
2900 
2901 #ifdef CONFIG_X86_64
2902 	ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2903 #else
2904 	ia32e = false;
2905 #endif
2906 
2907 	if (ia32e) {
2908 		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2909 			return -EINVAL;
2910 	} else {
2911 		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2912 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2913 		    CC((vmcs12->host_rip) >> 32))
2914 			return -EINVAL;
2915 	}
2916 
2917 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2918 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2919 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2920 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2921 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2922 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2923 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2924 	    CC(vmcs12->host_cs_selector == 0) ||
2925 	    CC(vmcs12->host_tr_selector == 0) ||
2926 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2927 		return -EINVAL;
2928 
2929 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2930 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2931 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2932 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2933 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2934 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2935 		return -EINVAL;
2936 
2937 	/*
2938 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2939 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2940 	 * the values of the LMA and LME bits in the field must each be that of
2941 	 * the host address-space size VM-exit control.
2942 	 */
2943 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2944 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2945 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2946 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2947 			return -EINVAL;
2948 	}
2949 
2950 	return 0;
2951 }
2952 
2953 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2954 					  struct vmcs12 *vmcs12)
2955 {
2956 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2957 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2958 	struct vmcs_hdr hdr;
2959 
2960 	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2961 		return 0;
2962 
2963 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2964 		return -EINVAL;
2965 
2966 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
2967 	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
2968 					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
2969                 return -EINVAL;
2970 
2971 	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
2972 					    offsetof(struct vmcs12, hdr),
2973 					    sizeof(hdr))))
2974 		return -EINVAL;
2975 
2976 	if (CC(hdr.revision_id != VMCS12_REVISION) ||
2977 	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2978 		return -EINVAL;
2979 
2980 	return 0;
2981 }
2982 
2983 /*
2984  * Checks related to Guest Non-register State
2985  */
2986 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2987 {
2988 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2989 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2990 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2991 		return -EINVAL;
2992 
2993 	return 0;
2994 }
2995 
2996 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2997 					struct vmcs12 *vmcs12,
2998 					enum vm_entry_failure_code *entry_failure_code)
2999 {
3000 	bool ia32e;
3001 
3002 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
3003 
3004 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3005 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3006 		return -EINVAL;
3007 
3008 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3009 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3010 		return -EINVAL;
3011 
3012 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3013 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3014 		return -EINVAL;
3015 
3016 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3017 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3018 		return -EINVAL;
3019 	}
3020 
3021 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3022 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3023 					   vmcs12->guest_ia32_perf_global_ctrl)))
3024 		return -EINVAL;
3025 
3026 	/*
3027 	 * If the load IA32_EFER VM-entry control is 1, the following checks
3028 	 * are performed on the field for the IA32_EFER MSR:
3029 	 * - Bits reserved in the IA32_EFER MSR must be 0.
3030 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3031 	 *   the IA-32e mode guest VM-exit control. It must also be identical
3032 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3033 	 *   CR0.PG) is 1.
3034 	 */
3035 	if (to_vmx(vcpu)->nested.nested_run_pending &&
3036 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3037 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3038 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3039 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3040 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3041 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3042 			return -EINVAL;
3043 	}
3044 
3045 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3046 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3047 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3048 		return -EINVAL;
3049 
3050 	if (nested_check_guest_non_reg_state(vmcs12))
3051 		return -EINVAL;
3052 
3053 	return 0;
3054 }
3055 
3056 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3057 {
3058 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3059 	unsigned long cr4;
3060 	bool vm_fail;
3061 
3062 	if (!nested_early_check)
3063 		return 0;
3064 
3065 	if (vmx->msr_autoload.host.nr)
3066 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3067 	if (vmx->msr_autoload.guest.nr)
3068 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3069 
3070 	preempt_disable();
3071 
3072 	vmx_prepare_switch_to_guest(vcpu);
3073 
3074 	/*
3075 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3076 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3077 	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3078 	 * there is no need to preserve other bits or save/restore the field.
3079 	 */
3080 	vmcs_writel(GUEST_RFLAGS, 0);
3081 
3082 	cr4 = cr4_read_shadow();
3083 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3084 		vmcs_writel(HOST_CR4, cr4);
3085 		vmx->loaded_vmcs->host_state.cr4 = cr4;
3086 	}
3087 
3088 	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3089 				 vmx->loaded_vmcs->launched);
3090 
3091 	if (vmx->msr_autoload.host.nr)
3092 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3093 	if (vmx->msr_autoload.guest.nr)
3094 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3095 
3096 	if (vm_fail) {
3097 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3098 
3099 		preempt_enable();
3100 
3101 		trace_kvm_nested_vmenter_failed(
3102 			"early hardware check VM-instruction error: ", error);
3103 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3104 		return 1;
3105 	}
3106 
3107 	/*
3108 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3109 	 */
3110 	if (hw_breakpoint_active())
3111 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3112 	local_irq_enable();
3113 	preempt_enable();
3114 
3115 	/*
3116 	 * A non-failing VMEntry means we somehow entered guest mode with
3117 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3118 	 * is no telling what memory has been modified or what state has
3119 	 * been exposed to unknown code.  Hitting this all but guarantees
3120 	 * a (very critical) hardware issue.
3121 	 */
3122 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3123 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3124 
3125 	return 0;
3126 }
3127 
3128 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3129 {
3130 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3131 
3132 	/*
3133 	 * hv_evmcs may end up being not mapped after migration (when
3134 	 * L2 was running), map it here to make sure vmcs12 changes are
3135 	 * properly reflected.
3136 	 */
3137 	if (vmx->nested.enlightened_vmcs_enabled &&
3138 	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3139 		enum nested_evmptrld_status evmptrld_status =
3140 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3141 
3142 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3143 		    evmptrld_status == EVMPTRLD_ERROR)
3144 			return false;
3145 
3146 		/*
3147 		 * Post migration VMCS12 always provides the most actual
3148 		 * information, copy it to eVMCS upon entry.
3149 		 */
3150 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3151 	}
3152 
3153 	return true;
3154 }
3155 
3156 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3157 {
3158 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3159 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3160 	struct kvm_host_map *map;
3161 	struct page *page;
3162 	u64 hpa;
3163 
3164 	if (!vcpu->arch.pdptrs_from_userspace &&
3165 	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3166 		/*
3167 		 * Reload the guest's PDPTRs since after a migration
3168 		 * the guest CR3 might be restored prior to setting the nested
3169 		 * state which can lead to a load of wrong PDPTRs.
3170 		 */
3171 		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3172 			return false;
3173 	}
3174 
3175 
3176 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3177 		/*
3178 		 * Translate L1 physical address to host physical
3179 		 * address for vmcs02. Keep the page pinned, so this
3180 		 * physical address remains valid. We keep a reference
3181 		 * to it so we can release it later.
3182 		 */
3183 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
3184 			kvm_release_page_clean(vmx->nested.apic_access_page);
3185 			vmx->nested.apic_access_page = NULL;
3186 		}
3187 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3188 		if (!is_error_page(page)) {
3189 			vmx->nested.apic_access_page = page;
3190 			hpa = page_to_phys(vmx->nested.apic_access_page);
3191 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
3192 		} else {
3193 			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3194 					     __func__);
3195 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3196 			vcpu->run->internal.suberror =
3197 				KVM_INTERNAL_ERROR_EMULATION;
3198 			vcpu->run->internal.ndata = 0;
3199 			return false;
3200 		}
3201 	}
3202 
3203 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3204 		map = &vmx->nested.virtual_apic_map;
3205 
3206 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3207 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3208 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3209 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3210 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3211 			/*
3212 			 * The processor will never use the TPR shadow, simply
3213 			 * clear the bit from the execution control.  Such a
3214 			 * configuration is useless, but it happens in tests.
3215 			 * For any other configuration, failing the vm entry is
3216 			 * _not_ what the processor does but it's basically the
3217 			 * only possibility we have.
3218 			 */
3219 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3220 		} else {
3221 			/*
3222 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3223 			 * force VM-Entry to fail.
3224 			 */
3225 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3226 		}
3227 	}
3228 
3229 	if (nested_cpu_has_posted_intr(vmcs12)) {
3230 		map = &vmx->nested.pi_desc_map;
3231 
3232 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3233 			vmx->nested.pi_desc =
3234 				(struct pi_desc *)(((void *)map->hva) +
3235 				offset_in_page(vmcs12->posted_intr_desc_addr));
3236 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3237 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3238 		} else {
3239 			/*
3240 			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3241 			 * access the contents of the VMCS12 posted interrupt
3242 			 * descriptor. (Note that KVM may do this when it
3243 			 * should not, per the architectural specification.)
3244 			 */
3245 			vmx->nested.pi_desc = NULL;
3246 			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3247 		}
3248 	}
3249 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3250 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3251 	else
3252 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3253 
3254 	return true;
3255 }
3256 
3257 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3258 {
3259 	if (!nested_get_evmcs_page(vcpu)) {
3260 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3261 				     __func__);
3262 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3263 		vcpu->run->internal.suberror =
3264 			KVM_INTERNAL_ERROR_EMULATION;
3265 		vcpu->run->internal.ndata = 0;
3266 
3267 		return false;
3268 	}
3269 
3270 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3271 		return false;
3272 
3273 	return true;
3274 }
3275 
3276 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3277 {
3278 	struct vmcs12 *vmcs12;
3279 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3280 	gpa_t dst;
3281 
3282 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3283 		return 0;
3284 
3285 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3286 		return 1;
3287 
3288 	/*
3289 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3290 	 * set is already checked as part of A/D emulation.
3291 	 */
3292 	vmcs12 = get_vmcs12(vcpu);
3293 	if (!nested_cpu_has_pml(vmcs12))
3294 		return 0;
3295 
3296 	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3297 		vmx->nested.pml_full = true;
3298 		return 1;
3299 	}
3300 
3301 	gpa &= ~0xFFFull;
3302 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3303 
3304 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3305 				 offset_in_page(dst), sizeof(gpa)))
3306 		return 0;
3307 
3308 	vmcs12->guest_pml_index--;
3309 
3310 	return 0;
3311 }
3312 
3313 /*
3314  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3315  * for running VMX instructions (except VMXON, whose prerequisites are
3316  * slightly different). It also specifies what exception to inject otherwise.
3317  * Note that many of these exceptions have priority over VM exits, so they
3318  * don't have to be checked again here.
3319  */
3320 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3321 {
3322 	if (!to_vmx(vcpu)->nested.vmxon) {
3323 		kvm_queue_exception(vcpu, UD_VECTOR);
3324 		return 0;
3325 	}
3326 
3327 	if (vmx_get_cpl(vcpu)) {
3328 		kvm_inject_gp(vcpu, 0);
3329 		return 0;
3330 	}
3331 
3332 	return 1;
3333 }
3334 
3335 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3336 {
3337 	u8 rvi = vmx_get_rvi();
3338 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3339 
3340 	return ((rvi & 0xf0) > (vppr & 0xf0));
3341 }
3342 
3343 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3344 				   struct vmcs12 *vmcs12);
3345 
3346 /*
3347  * If from_vmentry is false, this is being called from state restore (either RSM
3348  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3349  *
3350  * Returns:
3351  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3352  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3353  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3354  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3355  */
3356 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3357 							bool from_vmentry)
3358 {
3359 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3360 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3361 	enum vm_entry_failure_code entry_failure_code;
3362 	bool evaluate_pending_interrupts;
3363 	union vmx_exit_reason exit_reason = {
3364 		.basic = EXIT_REASON_INVALID_STATE,
3365 		.failed_vmentry = 1,
3366 	};
3367 	u32 failed_index;
3368 
3369 	kvm_service_local_tlb_flush_requests(vcpu);
3370 
3371 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3372 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3373 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3374 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3375 
3376 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3377 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3378 	if (kvm_mpx_supported() &&
3379 		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3380 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3381 
3382 	/*
3383 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3384 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3385 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3386 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3387 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3388 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3389 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3390 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3391 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3392 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3393 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3394 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3395 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3396 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3397 	 */
3398 	if (!enable_ept && !nested_early_check)
3399 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3400 
3401 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3402 
3403 	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3404 
3405 	if (from_vmentry) {
3406 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3407 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3408 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3409 		}
3410 
3411 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3412 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3413 			return NVMX_VMENTRY_VMFAIL;
3414 		}
3415 
3416 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3417 						 &entry_failure_code)) {
3418 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3419 			vmcs12->exit_qualification = entry_failure_code;
3420 			goto vmentry_fail_vmexit;
3421 		}
3422 	}
3423 
3424 	enter_guest_mode(vcpu);
3425 
3426 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3427 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3428 		vmcs12->exit_qualification = entry_failure_code;
3429 		goto vmentry_fail_vmexit_guest_mode;
3430 	}
3431 
3432 	if (from_vmentry) {
3433 		failed_index = nested_vmx_load_msr(vcpu,
3434 						   vmcs12->vm_entry_msr_load_addr,
3435 						   vmcs12->vm_entry_msr_load_count);
3436 		if (failed_index) {
3437 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3438 			vmcs12->exit_qualification = failed_index;
3439 			goto vmentry_fail_vmexit_guest_mode;
3440 		}
3441 	} else {
3442 		/*
3443 		 * The MMU is not initialized to point at the right entities yet and
3444 		 * "get pages" would need to read data from the guest (i.e. we will
3445 		 * need to perform gpa to hpa translation). Request a call
3446 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3447 		 * have already been set at vmentry time and should not be reset.
3448 		 */
3449 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3450 	}
3451 
3452 	/*
3453 	 * If L1 had a pending IRQ/NMI until it executed
3454 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3455 	 * disallowed (e.g. interrupts disabled), L0 needs to
3456 	 * evaluate if this pending event should cause an exit from L2
3457 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3458 	 * intercept EXTERNAL_INTERRUPT).
3459 	 *
3460 	 * Usually this would be handled by the processor noticing an
3461 	 * IRQ/NMI window request, or checking RVI during evaluation of
3462 	 * pending virtual interrupts.  However, this setting was done
3463 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3464 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3465 	 */
3466 	if (unlikely(evaluate_pending_interrupts))
3467 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3468 
3469 	/*
3470 	 * Do not start the preemption timer hrtimer until after we know
3471 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3472 	 * the timer.
3473 	 */
3474 	vmx->nested.preemption_timer_expired = false;
3475 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3476 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3477 		vmx_start_preemption_timer(vcpu, timer_value);
3478 	}
3479 
3480 	/*
3481 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3482 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3483 	 * returned as far as L1 is concerned. It will only return (and set
3484 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3485 	 */
3486 	return NVMX_VMENTRY_SUCCESS;
3487 
3488 	/*
3489 	 * A failed consistency check that leads to a VMExit during L1's
3490 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3491 	 * 26.7 "VM-entry failures during or after loading guest state".
3492 	 */
3493 vmentry_fail_vmexit_guest_mode:
3494 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3495 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3496 	leave_guest_mode(vcpu);
3497 
3498 vmentry_fail_vmexit:
3499 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3500 
3501 	if (!from_vmentry)
3502 		return NVMX_VMENTRY_VMEXIT;
3503 
3504 	load_vmcs12_host_state(vcpu, vmcs12);
3505 	vmcs12->vm_exit_reason = exit_reason.full;
3506 	if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3507 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3508 	return NVMX_VMENTRY_VMEXIT;
3509 }
3510 
3511 /*
3512  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3513  * for running an L2 nested guest.
3514  */
3515 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3516 {
3517 	struct vmcs12 *vmcs12;
3518 	enum nvmx_vmentry_status status;
3519 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3520 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3521 	enum nested_evmptrld_status evmptrld_status;
3522 
3523 	if (!nested_vmx_check_permission(vcpu))
3524 		return 1;
3525 
3526 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3527 	if (evmptrld_status == EVMPTRLD_ERROR) {
3528 		kvm_queue_exception(vcpu, UD_VECTOR);
3529 		return 1;
3530 	}
3531 
3532 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3533 
3534 	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3535 		return nested_vmx_failInvalid(vcpu);
3536 
3537 	if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3538 	       vmx->nested.current_vmptr == INVALID_GPA))
3539 		return nested_vmx_failInvalid(vcpu);
3540 
3541 	vmcs12 = get_vmcs12(vcpu);
3542 
3543 	/*
3544 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3545 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3546 	 * rather than RFLAGS.ZF, and no error number is stored to the
3547 	 * VM-instruction error field.
3548 	 */
3549 	if (CC(vmcs12->hdr.shadow_vmcs))
3550 		return nested_vmx_failInvalid(vcpu);
3551 
3552 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3553 		copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3554 		/* Enlightened VMCS doesn't have launch state */
3555 		vmcs12->launch_state = !launch;
3556 	} else if (enable_shadow_vmcs) {
3557 		copy_shadow_to_vmcs12(vmx);
3558 	}
3559 
3560 	/*
3561 	 * The nested entry process starts with enforcing various prerequisites
3562 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3563 	 * they fail: As the SDM explains, some conditions should cause the
3564 	 * instruction to fail, while others will cause the instruction to seem
3565 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3566 	 * To speed up the normal (success) code path, we should avoid checking
3567 	 * for misconfigurations which will anyway be caught by the processor
3568 	 * when using the merged vmcs02.
3569 	 */
3570 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3571 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3572 
3573 	if (CC(vmcs12->launch_state == launch))
3574 		return nested_vmx_fail(vcpu,
3575 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3576 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3577 
3578 	if (nested_vmx_check_controls(vcpu, vmcs12))
3579 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3580 
3581 	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3582 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3583 
3584 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3585 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3586 
3587 	/*
3588 	 * We're finally done with prerequisite checking, and can start with
3589 	 * the nested entry.
3590 	 */
3591 	vmx->nested.nested_run_pending = 1;
3592 	vmx->nested.has_preemption_timer_deadline = false;
3593 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3594 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3595 		goto vmentry_failed;
3596 
3597 	/* Emulate processing of posted interrupts on VM-Enter. */
3598 	if (nested_cpu_has_posted_intr(vmcs12) &&
3599 	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3600 		vmx->nested.pi_pending = true;
3601 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3602 		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3603 	}
3604 
3605 	/* Hide L1D cache contents from the nested guest.  */
3606 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3607 
3608 	/*
3609 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3610 	 * also be used as part of restoring nVMX state for
3611 	 * snapshot restore (migration).
3612 	 *
3613 	 * In this flow, it is assumed that vmcs12 cache was
3614 	 * transferred as part of captured nVMX state and should
3615 	 * therefore not be read from guest memory (which may not
3616 	 * exist on destination host yet).
3617 	 */
3618 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3619 
3620 	switch (vmcs12->guest_activity_state) {
3621 	case GUEST_ACTIVITY_HLT:
3622 		/*
3623 		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3624 		 * awakened by event injection or by an NMI-window VM-exit or
3625 		 * by an interrupt-window VM-exit, halt the vcpu.
3626 		 */
3627 		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3628 		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3629 		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3630 		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3631 			vmx->nested.nested_run_pending = 0;
3632 			return kvm_emulate_halt_noskip(vcpu);
3633 		}
3634 		break;
3635 	case GUEST_ACTIVITY_WAIT_SIPI:
3636 		vmx->nested.nested_run_pending = 0;
3637 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3638 		break;
3639 	default:
3640 		break;
3641 	}
3642 
3643 	return 1;
3644 
3645 vmentry_failed:
3646 	vmx->nested.nested_run_pending = 0;
3647 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3648 		return 0;
3649 	if (status == NVMX_VMENTRY_VMEXIT)
3650 		return 1;
3651 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3652 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3653 }
3654 
3655 /*
3656  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3657  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3658  * This function returns the new value we should put in vmcs12.guest_cr0.
3659  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3660  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3661  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3662  *     didn't trap the bit, because if L1 did, so would L0).
3663  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3664  *     been modified by L2, and L1 knows it. So just leave the old value of
3665  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3666  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3667  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3668  *     changed these bits, and therefore they need to be updated, but L0
3669  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3670  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3671  */
3672 static inline unsigned long
3673 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3674 {
3675 	return
3676 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3677 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3678 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3679 			vcpu->arch.cr0_guest_owned_bits));
3680 }
3681 
3682 static inline unsigned long
3683 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3684 {
3685 	return
3686 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3687 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3688 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3689 			vcpu->arch.cr4_guest_owned_bits));
3690 }
3691 
3692 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3693 				      struct vmcs12 *vmcs12)
3694 {
3695 	u32 idt_vectoring;
3696 	unsigned int nr;
3697 
3698 	if (vcpu->arch.exception.injected) {
3699 		nr = vcpu->arch.exception.nr;
3700 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3701 
3702 		if (kvm_exception_is_soft(nr)) {
3703 			vmcs12->vm_exit_instruction_len =
3704 				vcpu->arch.event_exit_inst_len;
3705 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3706 		} else
3707 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3708 
3709 		if (vcpu->arch.exception.has_error_code) {
3710 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3711 			vmcs12->idt_vectoring_error_code =
3712 				vcpu->arch.exception.error_code;
3713 		}
3714 
3715 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3716 	} else if (vcpu->arch.nmi_injected) {
3717 		vmcs12->idt_vectoring_info_field =
3718 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3719 	} else if (vcpu->arch.interrupt.injected) {
3720 		nr = vcpu->arch.interrupt.nr;
3721 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3722 
3723 		if (vcpu->arch.interrupt.soft) {
3724 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3725 			vmcs12->vm_entry_instruction_len =
3726 				vcpu->arch.event_exit_inst_len;
3727 		} else
3728 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3729 
3730 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3731 	}
3732 }
3733 
3734 
3735 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3736 {
3737 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3738 	gfn_t gfn;
3739 
3740 	/*
3741 	 * Don't need to mark the APIC access page dirty; it is never
3742 	 * written to by the CPU during APIC virtualization.
3743 	 */
3744 
3745 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3746 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3747 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3748 	}
3749 
3750 	if (nested_cpu_has_posted_intr(vmcs12)) {
3751 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3752 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3753 	}
3754 }
3755 
3756 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3757 {
3758 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3759 	int max_irr;
3760 	void *vapic_page;
3761 	u16 status;
3762 
3763 	if (!vmx->nested.pi_pending)
3764 		return 0;
3765 
3766 	if (!vmx->nested.pi_desc)
3767 		goto mmio_needed;
3768 
3769 	vmx->nested.pi_pending = false;
3770 
3771 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3772 		return 0;
3773 
3774 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3775 	if (max_irr != 256) {
3776 		vapic_page = vmx->nested.virtual_apic_map.hva;
3777 		if (!vapic_page)
3778 			goto mmio_needed;
3779 
3780 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3781 			vapic_page, &max_irr);
3782 		status = vmcs_read16(GUEST_INTR_STATUS);
3783 		if ((u8)max_irr > ((u8)status & 0xff)) {
3784 			status &= ~0xff;
3785 			status |= (u8)max_irr;
3786 			vmcs_write16(GUEST_INTR_STATUS, status);
3787 		}
3788 	}
3789 
3790 	nested_mark_vmcs12_pages_dirty(vcpu);
3791 	return 0;
3792 
3793 mmio_needed:
3794 	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3795 	return -ENXIO;
3796 }
3797 
3798 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3799 					       unsigned long exit_qual)
3800 {
3801 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3802 	unsigned int nr = vcpu->arch.exception.nr;
3803 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3804 
3805 	if (vcpu->arch.exception.has_error_code) {
3806 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3807 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3808 	}
3809 
3810 	if (kvm_exception_is_soft(nr))
3811 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3812 	else
3813 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3814 
3815 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3816 	    vmx_get_nmi_mask(vcpu))
3817 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3818 
3819 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3820 }
3821 
3822 /*
3823  * Returns true if a debug trap is pending delivery.
3824  *
3825  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3826  * exception may be inferred from the presence of an exception payload.
3827  */
3828 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3829 {
3830 	return vcpu->arch.exception.pending &&
3831 			vcpu->arch.exception.nr == DB_VECTOR &&
3832 			vcpu->arch.exception.payload;
3833 }
3834 
3835 /*
3836  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3837  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3838  * represents these debug traps with a payload that is said to be compatible
3839  * with the 'pending debug exceptions' field, write the payload to the VMCS
3840  * field if a VM-exit is delivered before the debug trap.
3841  */
3842 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3843 {
3844 	if (vmx_pending_dbg_trap(vcpu))
3845 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3846 			    vcpu->arch.exception.payload);
3847 }
3848 
3849 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3850 {
3851 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3852 	       to_vmx(vcpu)->nested.preemption_timer_expired;
3853 }
3854 
3855 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3856 {
3857 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3858 	unsigned long exit_qual;
3859 	bool block_nested_events =
3860 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3861 	bool mtf_pending = vmx->nested.mtf_pending;
3862 	struct kvm_lapic *apic = vcpu->arch.apic;
3863 
3864 	/*
3865 	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3866 	 * this state is discarded.
3867 	 */
3868 	if (!block_nested_events)
3869 		vmx->nested.mtf_pending = false;
3870 
3871 	if (lapic_in_kernel(vcpu) &&
3872 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3873 		if (block_nested_events)
3874 			return -EBUSY;
3875 		nested_vmx_update_pending_dbg(vcpu);
3876 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
3877 		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3878 			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3879 		return 0;
3880 	}
3881 
3882 	if (lapic_in_kernel(vcpu) &&
3883 	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3884 		if (block_nested_events)
3885 			return -EBUSY;
3886 
3887 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3888 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3889 			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3890 						apic->sipi_vector & 0xFFUL);
3891 		return 0;
3892 	}
3893 
3894 	/*
3895 	 * Process any exceptions that are not debug traps before MTF.
3896 	 *
3897 	 * Note that only a pending nested run can block a pending exception.
3898 	 * Otherwise an injected NMI/interrupt should either be
3899 	 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3900 	 * while delivering the pending exception.
3901 	 */
3902 
3903 	if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3904 		if (vmx->nested.nested_run_pending)
3905 			return -EBUSY;
3906 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3907 			goto no_vmexit;
3908 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3909 		return 0;
3910 	}
3911 
3912 	if (mtf_pending) {
3913 		if (block_nested_events)
3914 			return -EBUSY;
3915 		nested_vmx_update_pending_dbg(vcpu);
3916 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3917 		return 0;
3918 	}
3919 
3920 	if (vcpu->arch.exception.pending) {
3921 		if (vmx->nested.nested_run_pending)
3922 			return -EBUSY;
3923 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3924 			goto no_vmexit;
3925 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3926 		return 0;
3927 	}
3928 
3929 	if (nested_vmx_preemption_timer_pending(vcpu)) {
3930 		if (block_nested_events)
3931 			return -EBUSY;
3932 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3933 		return 0;
3934 	}
3935 
3936 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3937 		if (block_nested_events)
3938 			return -EBUSY;
3939 		goto no_vmexit;
3940 	}
3941 
3942 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3943 		if (block_nested_events)
3944 			return -EBUSY;
3945 		if (!nested_exit_on_nmi(vcpu))
3946 			goto no_vmexit;
3947 
3948 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3949 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3950 				  INTR_INFO_VALID_MASK, 0);
3951 		/*
3952 		 * The NMI-triggered VM exit counts as injection:
3953 		 * clear this one and block further NMIs.
3954 		 */
3955 		vcpu->arch.nmi_pending = 0;
3956 		vmx_set_nmi_mask(vcpu, true);
3957 		return 0;
3958 	}
3959 
3960 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3961 		if (block_nested_events)
3962 			return -EBUSY;
3963 		if (!nested_exit_on_intr(vcpu))
3964 			goto no_vmexit;
3965 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3966 		return 0;
3967 	}
3968 
3969 no_vmexit:
3970 	return vmx_complete_nested_posted_interrupt(vcpu);
3971 }
3972 
3973 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3974 {
3975 	ktime_t remaining =
3976 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3977 	u64 value;
3978 
3979 	if (ktime_to_ns(remaining) <= 0)
3980 		return 0;
3981 
3982 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3983 	do_div(value, 1000000);
3984 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3985 }
3986 
3987 static bool is_vmcs12_ext_field(unsigned long field)
3988 {
3989 	switch (field) {
3990 	case GUEST_ES_SELECTOR:
3991 	case GUEST_CS_SELECTOR:
3992 	case GUEST_SS_SELECTOR:
3993 	case GUEST_DS_SELECTOR:
3994 	case GUEST_FS_SELECTOR:
3995 	case GUEST_GS_SELECTOR:
3996 	case GUEST_LDTR_SELECTOR:
3997 	case GUEST_TR_SELECTOR:
3998 	case GUEST_ES_LIMIT:
3999 	case GUEST_CS_LIMIT:
4000 	case GUEST_SS_LIMIT:
4001 	case GUEST_DS_LIMIT:
4002 	case GUEST_FS_LIMIT:
4003 	case GUEST_GS_LIMIT:
4004 	case GUEST_LDTR_LIMIT:
4005 	case GUEST_TR_LIMIT:
4006 	case GUEST_GDTR_LIMIT:
4007 	case GUEST_IDTR_LIMIT:
4008 	case GUEST_ES_AR_BYTES:
4009 	case GUEST_DS_AR_BYTES:
4010 	case GUEST_FS_AR_BYTES:
4011 	case GUEST_GS_AR_BYTES:
4012 	case GUEST_LDTR_AR_BYTES:
4013 	case GUEST_TR_AR_BYTES:
4014 	case GUEST_ES_BASE:
4015 	case GUEST_CS_BASE:
4016 	case GUEST_SS_BASE:
4017 	case GUEST_DS_BASE:
4018 	case GUEST_FS_BASE:
4019 	case GUEST_GS_BASE:
4020 	case GUEST_LDTR_BASE:
4021 	case GUEST_TR_BASE:
4022 	case GUEST_GDTR_BASE:
4023 	case GUEST_IDTR_BASE:
4024 	case GUEST_PENDING_DBG_EXCEPTIONS:
4025 	case GUEST_BNDCFGS:
4026 		return true;
4027 	default:
4028 		break;
4029 	}
4030 
4031 	return false;
4032 }
4033 
4034 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4035 				       struct vmcs12 *vmcs12)
4036 {
4037 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4038 
4039 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4040 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4041 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4042 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4043 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4044 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4045 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4046 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4047 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4048 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4049 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4050 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4051 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4052 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4053 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4054 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4055 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4056 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4057 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4058 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4059 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4060 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4061 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4062 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4063 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4064 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4065 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4066 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4067 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4068 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4069 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4070 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4071 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4072 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4073 	vmcs12->guest_pending_dbg_exceptions =
4074 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4075 	if (kvm_mpx_supported())
4076 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4077 
4078 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4079 }
4080 
4081 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4082 				       struct vmcs12 *vmcs12)
4083 {
4084 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4085 	int cpu;
4086 
4087 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4088 		return;
4089 
4090 
4091 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4092 
4093 	cpu = get_cpu();
4094 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4095 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4096 
4097 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4098 
4099 	vmx->loaded_vmcs = &vmx->vmcs01;
4100 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4101 	put_cpu();
4102 }
4103 
4104 /*
4105  * Update the guest state fields of vmcs12 to reflect changes that
4106  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4107  * VM-entry controls is also updated, since this is really a guest
4108  * state bit.)
4109  */
4110 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4111 {
4112 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4113 
4114 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4115 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4116 
4117 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4118 		!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4119 
4120 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4121 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4122 
4123 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4124 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4125 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4126 
4127 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4128 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4129 
4130 	vmcs12->guest_interruptibility_info =
4131 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4132 
4133 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4134 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4135 	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4136 		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4137 	else
4138 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4139 
4140 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4141 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4142 	    !vmx->nested.nested_run_pending)
4143 		vmcs12->vmx_preemption_timer_value =
4144 			vmx_get_preemption_timer_value(vcpu);
4145 
4146 	/*
4147 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4148 	 * own CR3 without exiting. If it has changed it, we must keep it.
4149 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4150 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4151 	 *
4152 	 * Additionally, restore L2's PDPTR to vmcs12.
4153 	 */
4154 	if (enable_ept) {
4155 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4156 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4157 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4158 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4159 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4160 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4161 		}
4162 	}
4163 
4164 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4165 
4166 	if (nested_cpu_has_vid(vmcs12))
4167 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4168 
4169 	vmcs12->vm_entry_controls =
4170 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4171 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4172 
4173 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4174 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4175 
4176 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4177 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4178 }
4179 
4180 /*
4181  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4182  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4183  * and this function updates it to reflect the changes to the guest state while
4184  * L2 was running (and perhaps made some exits which were handled directly by L0
4185  * without going back to L1), and to reflect the exit reason.
4186  * Note that we do not have to copy here all VMCS fields, just those that
4187  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4188  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4189  * which already writes to vmcs12 directly.
4190  */
4191 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4192 			   u32 vm_exit_reason, u32 exit_intr_info,
4193 			   unsigned long exit_qualification)
4194 {
4195 	/* update exit information fields: */
4196 	vmcs12->vm_exit_reason = vm_exit_reason;
4197 	if (to_vmx(vcpu)->exit_reason.enclave_mode)
4198 		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4199 	vmcs12->exit_qualification = exit_qualification;
4200 	vmcs12->vm_exit_intr_info = exit_intr_info;
4201 
4202 	vmcs12->idt_vectoring_info_field = 0;
4203 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4204 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4205 
4206 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4207 		vmcs12->launch_state = 1;
4208 
4209 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4210 		 * instead of reading the real value. */
4211 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4212 
4213 		/*
4214 		 * Transfer the event that L0 or L1 may wanted to inject into
4215 		 * L2 to IDT_VECTORING_INFO_FIELD.
4216 		 */
4217 		vmcs12_save_pending_event(vcpu, vmcs12);
4218 
4219 		/*
4220 		 * According to spec, there's no need to store the guest's
4221 		 * MSRs if the exit is due to a VM-entry failure that occurs
4222 		 * during or after loading the guest state. Since this exit
4223 		 * does not fall in that category, we need to save the MSRs.
4224 		 */
4225 		if (nested_vmx_store_msr(vcpu,
4226 					 vmcs12->vm_exit_msr_store_addr,
4227 					 vmcs12->vm_exit_msr_store_count))
4228 			nested_vmx_abort(vcpu,
4229 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4230 	}
4231 
4232 	/*
4233 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4234 	 * preserved above and would only end up incorrectly in L1.
4235 	 */
4236 	vcpu->arch.nmi_injected = false;
4237 	kvm_clear_exception_queue(vcpu);
4238 	kvm_clear_interrupt_queue(vcpu);
4239 }
4240 
4241 /*
4242  * A part of what we need to when the nested L2 guest exits and we want to
4243  * run its L1 parent, is to reset L1's guest state to the host state specified
4244  * in vmcs12.
4245  * This function is to be called not only on normal nested exit, but also on
4246  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4247  * Failures During or After Loading Guest State").
4248  * This function should be called when the active VMCS is L1's (vmcs01).
4249  */
4250 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4251 				   struct vmcs12 *vmcs12)
4252 {
4253 	enum vm_entry_failure_code ignored;
4254 	struct kvm_segment seg;
4255 
4256 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4257 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4258 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4259 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4260 	else
4261 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4262 	vmx_set_efer(vcpu, vcpu->arch.efer);
4263 
4264 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4265 	kvm_rip_write(vcpu, vmcs12->host_rip);
4266 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4267 	vmx_set_interrupt_shadow(vcpu, 0);
4268 
4269 	/*
4270 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4271 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4272 	 *
4273 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4274 	 * (KVM doesn't change it);
4275 	 */
4276 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4277 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4278 
4279 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4280 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4281 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4282 
4283 	nested_ept_uninit_mmu_context(vcpu);
4284 
4285 	/*
4286 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4287 	 * couldn't have changed.
4288 	 */
4289 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4290 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4291 
4292 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4293 
4294 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4295 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4296 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4297 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4298 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4299 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4300 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4301 
4302 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4303 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4304 		vmcs_write64(GUEST_BNDCFGS, 0);
4305 
4306 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4307 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4308 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4309 	}
4310 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4311 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4312 					 vmcs12->host_ia32_perf_global_ctrl));
4313 
4314 	/* Set L1 segment info according to Intel SDM
4315 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4316 	seg = (struct kvm_segment) {
4317 		.base = 0,
4318 		.limit = 0xFFFFFFFF,
4319 		.selector = vmcs12->host_cs_selector,
4320 		.type = 11,
4321 		.present = 1,
4322 		.s = 1,
4323 		.g = 1
4324 	};
4325 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4326 		seg.l = 1;
4327 	else
4328 		seg.db = 1;
4329 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4330 	seg = (struct kvm_segment) {
4331 		.base = 0,
4332 		.limit = 0xFFFFFFFF,
4333 		.type = 3,
4334 		.present = 1,
4335 		.s = 1,
4336 		.db = 1,
4337 		.g = 1
4338 	};
4339 	seg.selector = vmcs12->host_ds_selector;
4340 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4341 	seg.selector = vmcs12->host_es_selector;
4342 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4343 	seg.selector = vmcs12->host_ss_selector;
4344 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4345 	seg.selector = vmcs12->host_fs_selector;
4346 	seg.base = vmcs12->host_fs_base;
4347 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4348 	seg.selector = vmcs12->host_gs_selector;
4349 	seg.base = vmcs12->host_gs_base;
4350 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4351 	seg = (struct kvm_segment) {
4352 		.base = vmcs12->host_tr_base,
4353 		.limit = 0x67,
4354 		.selector = vmcs12->host_tr_selector,
4355 		.type = 11,
4356 		.present = 1
4357 	};
4358 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4359 
4360 	memset(&seg, 0, sizeof(seg));
4361 	seg.unusable = 1;
4362 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4363 
4364 	kvm_set_dr(vcpu, 7, 0x400);
4365 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4366 
4367 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4368 				vmcs12->vm_exit_msr_load_count))
4369 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4370 
4371 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4372 }
4373 
4374 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4375 {
4376 	struct vmx_uret_msr *efer_msr;
4377 	unsigned int i;
4378 
4379 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4380 		return vmcs_read64(GUEST_IA32_EFER);
4381 
4382 	if (cpu_has_load_ia32_efer())
4383 		return host_efer;
4384 
4385 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4386 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4387 			return vmx->msr_autoload.guest.val[i].value;
4388 	}
4389 
4390 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4391 	if (efer_msr)
4392 		return efer_msr->data;
4393 
4394 	return host_efer;
4395 }
4396 
4397 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4398 {
4399 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4400 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4401 	struct vmx_msr_entry g, h;
4402 	gpa_t gpa;
4403 	u32 i, j;
4404 
4405 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4406 
4407 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4408 		/*
4409 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4410 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4411 		 * and vcpu->arch.dr7 is not squirreled away before the
4412 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4413 		 */
4414 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4415 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4416 		else
4417 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4418 	}
4419 
4420 	/*
4421 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4422 	 * handle a variety of side effects to KVM's software model.
4423 	 */
4424 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4425 
4426 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4427 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4428 
4429 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4430 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4431 
4432 	nested_ept_uninit_mmu_context(vcpu);
4433 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4434 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4435 
4436 	/*
4437 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4438 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4439 	 * VMFail, like everything else we just need to ensure our
4440 	 * software model is up-to-date.
4441 	 */
4442 	if (enable_ept && is_pae_paging(vcpu))
4443 		ept_save_pdptrs(vcpu);
4444 
4445 	kvm_mmu_reset_context(vcpu);
4446 
4447 	/*
4448 	 * This nasty bit of open coding is a compromise between blindly
4449 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4450 	 * of VMFail), leaving the nested VM's MSRs in the software model
4451 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4452 	 * expensive since the lists are unbound by hardware).  For each
4453 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4454 	 * list, reload it from the exit load list if it exists and differs
4455 	 * from the guest value.  The intent is to stuff host state as
4456 	 * silently as possible, not to fully process the exit load list.
4457 	 */
4458 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4459 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4460 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4461 			pr_debug_ratelimited(
4462 				"%s read MSR index failed (%u, 0x%08llx)\n",
4463 				__func__, i, gpa);
4464 			goto vmabort;
4465 		}
4466 
4467 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4468 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4469 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4470 				pr_debug_ratelimited(
4471 					"%s read MSR failed (%u, 0x%08llx)\n",
4472 					__func__, j, gpa);
4473 				goto vmabort;
4474 			}
4475 			if (h.index != g.index)
4476 				continue;
4477 			if (h.value == g.value)
4478 				break;
4479 
4480 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4481 				pr_debug_ratelimited(
4482 					"%s check failed (%u, 0x%x, 0x%x)\n",
4483 					__func__, j, h.index, h.reserved);
4484 				goto vmabort;
4485 			}
4486 
4487 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4488 				pr_debug_ratelimited(
4489 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4490 					__func__, j, h.index, h.value);
4491 				goto vmabort;
4492 			}
4493 		}
4494 	}
4495 
4496 	return;
4497 
4498 vmabort:
4499 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4500 }
4501 
4502 /*
4503  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4504  * and modify vmcs12 to make it see what it would expect to see there if
4505  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4506  */
4507 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4508 		       u32 exit_intr_info, unsigned long exit_qualification)
4509 {
4510 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4511 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4512 
4513 	/* trying to cancel vmlaunch/vmresume is a bug */
4514 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4515 
4516 	/* Similarly, triple faults in L2 should never escape. */
4517 	WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4518 
4519 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4520 		/*
4521 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4522 		 * Enlightened VMCS after migration and we still need to
4523 		 * do that when something is forcing L2->L1 exit prior to
4524 		 * the first L2 run.
4525 		 */
4526 		(void)nested_get_evmcs_page(vcpu);
4527 	}
4528 
4529 	/* Service pending TLB flush requests for L2 before switching to L1. */
4530 	kvm_service_local_tlb_flush_requests(vcpu);
4531 
4532 	/*
4533 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4534 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4535 	 * up-to-date before switching to L1.
4536 	 */
4537 	if (enable_ept && is_pae_paging(vcpu))
4538 		vmx_ept_load_pdptrs(vcpu);
4539 
4540 	leave_guest_mode(vcpu);
4541 
4542 	if (nested_cpu_has_preemption_timer(vmcs12))
4543 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4544 
4545 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4546 		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4547 		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4548 			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4549 	}
4550 
4551 	if (likely(!vmx->fail)) {
4552 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4553 
4554 		if (vm_exit_reason != -1)
4555 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4556 				       exit_intr_info, exit_qualification);
4557 
4558 		/*
4559 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4560 		 * also be used to capture vmcs12 cache as part of
4561 		 * capturing nVMX state for snapshot (migration).
4562 		 *
4563 		 * Otherwise, this flush will dirty guest memory at a
4564 		 * point it is already assumed by user-space to be
4565 		 * immutable.
4566 		 */
4567 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4568 	} else {
4569 		/*
4570 		 * The only expected VM-instruction error is "VM entry with
4571 		 * invalid control field(s)." Anything else indicates a
4572 		 * problem with L0.  And we should never get here with a
4573 		 * VMFail of any type if early consistency checks are enabled.
4574 		 */
4575 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4576 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4577 		WARN_ON_ONCE(nested_early_check);
4578 	}
4579 
4580 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4581 
4582 	/* Update any VMCS fields that might have changed while L2 ran */
4583 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4584 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4585 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4586 	if (kvm_has_tsc_control)
4587 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4588 
4589 	if (vmx->nested.l1_tpr_threshold != -1)
4590 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4591 
4592 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4593 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4594 		vmx_set_virtual_apic_mode(vcpu);
4595 	}
4596 
4597 	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4598 		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4599 		vmx_update_cpu_dirty_logging(vcpu);
4600 	}
4601 
4602 	/* Unpin physical memory we referred to in vmcs02 */
4603 	if (vmx->nested.apic_access_page) {
4604 		kvm_release_page_clean(vmx->nested.apic_access_page);
4605 		vmx->nested.apic_access_page = NULL;
4606 	}
4607 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4608 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4609 	vmx->nested.pi_desc = NULL;
4610 
4611 	if (vmx->nested.reload_vmcs01_apic_access_page) {
4612 		vmx->nested.reload_vmcs01_apic_access_page = false;
4613 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4614 	}
4615 
4616 	if ((vm_exit_reason != -1) &&
4617 	    (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4618 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4619 
4620 	/* in case we halted in L2 */
4621 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4622 
4623 	if (likely(!vmx->fail)) {
4624 		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4625 		    nested_exit_intr_ack_set(vcpu)) {
4626 			int irq = kvm_cpu_get_interrupt(vcpu);
4627 			WARN_ON(irq < 0);
4628 			vmcs12->vm_exit_intr_info = irq |
4629 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4630 		}
4631 
4632 		if (vm_exit_reason != -1)
4633 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4634 						       vmcs12->exit_qualification,
4635 						       vmcs12->idt_vectoring_info_field,
4636 						       vmcs12->vm_exit_intr_info,
4637 						       vmcs12->vm_exit_intr_error_code,
4638 						       KVM_ISA_VMX);
4639 
4640 		load_vmcs12_host_state(vcpu, vmcs12);
4641 
4642 		return;
4643 	}
4644 
4645 	/*
4646 	 * After an early L2 VM-entry failure, we're now back
4647 	 * in L1 which thinks it just finished a VMLAUNCH or
4648 	 * VMRESUME instruction, so we need to set the failure
4649 	 * flag and the VM-instruction error field of the VMCS
4650 	 * accordingly, and skip the emulated instruction.
4651 	 */
4652 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4653 
4654 	/*
4655 	 * Restore L1's host state to KVM's software model.  We're here
4656 	 * because a consistency check was caught by hardware, which
4657 	 * means some amount of guest state has been propagated to KVM's
4658 	 * model and needs to be unwound to the host's state.
4659 	 */
4660 	nested_vmx_restore_host_state(vcpu);
4661 
4662 	vmx->fail = 0;
4663 }
4664 
4665 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4666 {
4667 	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4668 }
4669 
4670 /*
4671  * Decode the memory-address operand of a vmx instruction, as recorded on an
4672  * exit caused by such an instruction (run by a guest hypervisor).
4673  * On success, returns 0. When the operand is invalid, returns 1 and throws
4674  * #UD, #GP, or #SS.
4675  */
4676 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4677 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4678 {
4679 	gva_t off;
4680 	bool exn;
4681 	struct kvm_segment s;
4682 
4683 	/*
4684 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4685 	 * Execution", on an exit, vmx_instruction_info holds most of the
4686 	 * addressing components of the operand. Only the displacement part
4687 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4688 	 * For how an actual address is calculated from all these components,
4689 	 * refer to Vol. 1, "Operand Addressing".
4690 	 */
4691 	int  scaling = vmx_instruction_info & 3;
4692 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4693 	bool is_reg = vmx_instruction_info & (1u << 10);
4694 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4695 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4696 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4697 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4698 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4699 
4700 	if (is_reg) {
4701 		kvm_queue_exception(vcpu, UD_VECTOR);
4702 		return 1;
4703 	}
4704 
4705 	/* Addr = segment_base + offset */
4706 	/* offset = base + [index * scale] + displacement */
4707 	off = exit_qualification; /* holds the displacement */
4708 	if (addr_size == 1)
4709 		off = (gva_t)sign_extend64(off, 31);
4710 	else if (addr_size == 0)
4711 		off = (gva_t)sign_extend64(off, 15);
4712 	if (base_is_valid)
4713 		off += kvm_register_read(vcpu, base_reg);
4714 	if (index_is_valid)
4715 		off += kvm_register_read(vcpu, index_reg) << scaling;
4716 	vmx_get_segment(vcpu, &s, seg_reg);
4717 
4718 	/*
4719 	 * The effective address, i.e. @off, of a memory operand is truncated
4720 	 * based on the address size of the instruction.  Note that this is
4721 	 * the *effective address*, i.e. the address prior to accounting for
4722 	 * the segment's base.
4723 	 */
4724 	if (addr_size == 1) /* 32 bit */
4725 		off &= 0xffffffff;
4726 	else if (addr_size == 0) /* 16 bit */
4727 		off &= 0xffff;
4728 
4729 	/* Checks for #GP/#SS exceptions. */
4730 	exn = false;
4731 	if (is_long_mode(vcpu)) {
4732 		/*
4733 		 * The virtual/linear address is never truncated in 64-bit
4734 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4735 		 * address when using FS/GS with a non-zero base.
4736 		 */
4737 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4738 			*ret = s.base + off;
4739 		else
4740 			*ret = off;
4741 
4742 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
4743 		 * non-canonical form. This is the only check on the memory
4744 		 * destination for long mode!
4745 		 */
4746 		exn = is_noncanonical_address(*ret, vcpu);
4747 	} else {
4748 		/*
4749 		 * When not in long mode, the virtual/linear address is
4750 		 * unconditionally truncated to 32 bits regardless of the
4751 		 * address size.
4752 		 */
4753 		*ret = (s.base + off) & 0xffffffff;
4754 
4755 		/* Protected mode: apply checks for segment validity in the
4756 		 * following order:
4757 		 * - segment type check (#GP(0) may be thrown)
4758 		 * - usability check (#GP(0)/#SS(0))
4759 		 * - limit check (#GP(0)/#SS(0))
4760 		 */
4761 		if (wr)
4762 			/* #GP(0) if the destination operand is located in a
4763 			 * read-only data segment or any code segment.
4764 			 */
4765 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
4766 		else
4767 			/* #GP(0) if the source operand is located in an
4768 			 * execute-only code segment
4769 			 */
4770 			exn = ((s.type & 0xa) == 8);
4771 		if (exn) {
4772 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4773 			return 1;
4774 		}
4775 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4776 		 */
4777 		exn = (s.unusable != 0);
4778 
4779 		/*
4780 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4781 		 * outside the segment limit.  All CPUs that support VMX ignore
4782 		 * limit checks for flat segments, i.e. segments with base==0,
4783 		 * limit==0xffffffff and of type expand-up data or code.
4784 		 */
4785 		if (!(s.base == 0 && s.limit == 0xffffffff &&
4786 		     ((s.type & 8) || !(s.type & 4))))
4787 			exn = exn || ((u64)off + len - 1 > s.limit);
4788 	}
4789 	if (exn) {
4790 		kvm_queue_exception_e(vcpu,
4791 				      seg_reg == VCPU_SREG_SS ?
4792 						SS_VECTOR : GP_VECTOR,
4793 				      0);
4794 		return 1;
4795 	}
4796 
4797 	return 0;
4798 }
4799 
4800 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4801 {
4802 	struct vcpu_vmx *vmx;
4803 
4804 	if (!nested_vmx_allowed(vcpu))
4805 		return;
4806 
4807 	vmx = to_vmx(vcpu);
4808 	if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4809 		vmx->nested.msrs.entry_ctls_high |=
4810 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4811 		vmx->nested.msrs.exit_ctls_high |=
4812 				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4813 	} else {
4814 		vmx->nested.msrs.entry_ctls_high &=
4815 				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4816 		vmx->nested.msrs.exit_ctls_high &=
4817 				~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4818 	}
4819 }
4820 
4821 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4822 				int *ret)
4823 {
4824 	gva_t gva;
4825 	struct x86_exception e;
4826 	int r;
4827 
4828 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4829 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4830 				sizeof(*vmpointer), &gva)) {
4831 		*ret = 1;
4832 		return -EINVAL;
4833 	}
4834 
4835 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4836 	if (r != X86EMUL_CONTINUE) {
4837 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
4838 		return -EINVAL;
4839 	}
4840 
4841 	return 0;
4842 }
4843 
4844 /*
4845  * Allocate a shadow VMCS and associate it with the currently loaded
4846  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4847  * VMCS is also VMCLEARed, so that it is ready for use.
4848  */
4849 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4850 {
4851 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4852 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4853 
4854 	/*
4855 	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
4856 	 * when L1 executes VMXOFF or the vCPU is forced out of nested
4857 	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
4858 	 * should be impossible to already have an allocated shadow VMCS.  KVM
4859 	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
4860 	 * always be the loaded VMCS.
4861 	 */
4862 	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
4863 		return loaded_vmcs->shadow_vmcs;
4864 
4865 	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4866 	if (loaded_vmcs->shadow_vmcs)
4867 		vmcs_clear(loaded_vmcs->shadow_vmcs);
4868 
4869 	return loaded_vmcs->shadow_vmcs;
4870 }
4871 
4872 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4873 {
4874 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4875 	int r;
4876 
4877 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4878 	if (r < 0)
4879 		goto out_vmcs02;
4880 
4881 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4882 	if (!vmx->nested.cached_vmcs12)
4883 		goto out_cached_vmcs12;
4884 
4885 	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
4886 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4887 	if (!vmx->nested.cached_shadow_vmcs12)
4888 		goto out_cached_shadow_vmcs12;
4889 
4890 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4891 		goto out_shadow_vmcs;
4892 
4893 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4894 		     HRTIMER_MODE_ABS_PINNED);
4895 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4896 
4897 	vmx->nested.vpid02 = allocate_vpid();
4898 
4899 	vmx->nested.vmcs02_initialized = false;
4900 	vmx->nested.vmxon = true;
4901 
4902 	if (vmx_pt_mode_is_host_guest()) {
4903 		vmx->pt_desc.guest.ctl = 0;
4904 		pt_update_intercept_for_msr(vcpu);
4905 	}
4906 
4907 	return 0;
4908 
4909 out_shadow_vmcs:
4910 	kfree(vmx->nested.cached_shadow_vmcs12);
4911 
4912 out_cached_shadow_vmcs12:
4913 	kfree(vmx->nested.cached_vmcs12);
4914 
4915 out_cached_vmcs12:
4916 	free_loaded_vmcs(&vmx->nested.vmcs02);
4917 
4918 out_vmcs02:
4919 	return -ENOMEM;
4920 }
4921 
4922 /* Emulate the VMXON instruction. */
4923 static int handle_vmon(struct kvm_vcpu *vcpu)
4924 {
4925 	int ret;
4926 	gpa_t vmptr;
4927 	uint32_t revision;
4928 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4929 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4930 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4931 
4932 	/*
4933 	 * The Intel VMX Instruction Reference lists a bunch of bits that are
4934 	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4935 	 * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4936 	 * Otherwise, we should fail with #UD.  But most faulting conditions
4937 	 * have already been checked by hardware, prior to the VM-exit for
4938 	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4939 	 * that bit set to 1 in non-root mode.
4940 	 */
4941 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4942 		kvm_queue_exception(vcpu, UD_VECTOR);
4943 		return 1;
4944 	}
4945 
4946 	/* CPL=0 must be checked manually. */
4947 	if (vmx_get_cpl(vcpu)) {
4948 		kvm_inject_gp(vcpu, 0);
4949 		return 1;
4950 	}
4951 
4952 	if (vmx->nested.vmxon)
4953 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4954 
4955 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4956 			!= VMXON_NEEDED_FEATURES) {
4957 		kvm_inject_gp(vcpu, 0);
4958 		return 1;
4959 	}
4960 
4961 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4962 		return ret;
4963 
4964 	/*
4965 	 * SDM 3: 24.11.5
4966 	 * The first 4 bytes of VMXON region contain the supported
4967 	 * VMCS revision identifier
4968 	 *
4969 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4970 	 * which replaces physical address width with 32
4971 	 */
4972 	if (!page_address_valid(vcpu, vmptr))
4973 		return nested_vmx_failInvalid(vcpu);
4974 
4975 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4976 	    revision != VMCS12_REVISION)
4977 		return nested_vmx_failInvalid(vcpu);
4978 
4979 	vmx->nested.vmxon_ptr = vmptr;
4980 	ret = enter_vmx_operation(vcpu);
4981 	if (ret)
4982 		return ret;
4983 
4984 	return nested_vmx_succeed(vcpu);
4985 }
4986 
4987 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4988 {
4989 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4990 
4991 	if (vmx->nested.current_vmptr == INVALID_GPA)
4992 		return;
4993 
4994 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4995 
4996 	if (enable_shadow_vmcs) {
4997 		/* copy to memory all shadowed fields in case
4998 		   they were modified */
4999 		copy_shadow_to_vmcs12(vmx);
5000 		vmx_disable_shadow_vmcs(vmx);
5001 	}
5002 	vmx->nested.posted_intr_nv = -1;
5003 
5004 	/* Flush VMCS12 to guest memory */
5005 	kvm_vcpu_write_guest_page(vcpu,
5006 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
5007 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5008 
5009 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5010 
5011 	vmx->nested.current_vmptr = INVALID_GPA;
5012 }
5013 
5014 /* Emulate the VMXOFF instruction */
5015 static int handle_vmoff(struct kvm_vcpu *vcpu)
5016 {
5017 	if (!nested_vmx_check_permission(vcpu))
5018 		return 1;
5019 
5020 	free_nested(vcpu);
5021 
5022 	/* Process a latched INIT during time CPU was in VMX operation */
5023 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5024 
5025 	return nested_vmx_succeed(vcpu);
5026 }
5027 
5028 /* Emulate the VMCLEAR instruction */
5029 static int handle_vmclear(struct kvm_vcpu *vcpu)
5030 {
5031 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5032 	u32 zero = 0;
5033 	gpa_t vmptr;
5034 	u64 evmcs_gpa;
5035 	int r;
5036 
5037 	if (!nested_vmx_check_permission(vcpu))
5038 		return 1;
5039 
5040 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5041 		return r;
5042 
5043 	if (!page_address_valid(vcpu, vmptr))
5044 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5045 
5046 	if (vmptr == vmx->nested.vmxon_ptr)
5047 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5048 
5049 	/*
5050 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
5051 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5052 	 * way to distinguish it from VMCS12) and we must not corrupt it by
5053 	 * writing to the non-existent 'launch_state' field. The area doesn't
5054 	 * have to be the currently active EVMCS on the calling CPU and there's
5055 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
5056 	 * state. It is possible that the area will stay mapped as
5057 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5058 	 */
5059 	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5060 		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5061 		if (vmptr == vmx->nested.current_vmptr)
5062 			nested_release_vmcs12(vcpu);
5063 
5064 		kvm_vcpu_write_guest(vcpu,
5065 				     vmptr + offsetof(struct vmcs12,
5066 						      launch_state),
5067 				     &zero, sizeof(zero));
5068 	} else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5069 		nested_release_evmcs(vcpu);
5070 	}
5071 
5072 	return nested_vmx_succeed(vcpu);
5073 }
5074 
5075 /* Emulate the VMLAUNCH instruction */
5076 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5077 {
5078 	return nested_vmx_run(vcpu, true);
5079 }
5080 
5081 /* Emulate the VMRESUME instruction */
5082 static int handle_vmresume(struct kvm_vcpu *vcpu)
5083 {
5084 
5085 	return nested_vmx_run(vcpu, false);
5086 }
5087 
5088 static int handle_vmread(struct kvm_vcpu *vcpu)
5089 {
5090 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5091 						    : get_vmcs12(vcpu);
5092 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5093 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5094 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5095 	struct x86_exception e;
5096 	unsigned long field;
5097 	u64 value;
5098 	gva_t gva = 0;
5099 	short offset;
5100 	int len, r;
5101 
5102 	if (!nested_vmx_check_permission(vcpu))
5103 		return 1;
5104 
5105 	/* Decode instruction info and find the field to read */
5106 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5107 
5108 	if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5109 		/*
5110 		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5111 		 * any VMREAD sets the ALU flags for VMfailInvalid.
5112 		 */
5113 		if (vmx->nested.current_vmptr == INVALID_GPA ||
5114 		    (is_guest_mode(vcpu) &&
5115 		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5116 			return nested_vmx_failInvalid(vcpu);
5117 
5118 		offset = get_vmcs12_field_offset(field);
5119 		if (offset < 0)
5120 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5121 
5122 		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5123 			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5124 
5125 		/* Read the field, zero-extended to a u64 value */
5126 		value = vmcs12_read_any(vmcs12, field, offset);
5127 	} else {
5128 		/*
5129 		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5130 		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5131 		 * unsupported. Unfortunately, certain versions of Windows 11
5132 		 * don't comply with this requirement which is not enforced in
5133 		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5134 		 * workaround, as misbehaving guests will panic on VM-Fail.
5135 		 * Note, enlightened VMCS is incompatible with shadow VMCS so
5136 		 * all VMREADs from L2 should go to L1.
5137 		 */
5138 		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5139 			return nested_vmx_failInvalid(vcpu);
5140 
5141 		offset = evmcs_field_offset(field, NULL);
5142 		if (offset < 0)
5143 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5144 
5145 		/* Read the field, zero-extended to a u64 value */
5146 		value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5147 	}
5148 
5149 	/*
5150 	 * Now copy part of this value to register or memory, as requested.
5151 	 * Note that the number of bits actually copied is 32 or 64 depending
5152 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5153 	 */
5154 	if (instr_info & BIT(10)) {
5155 		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5156 	} else {
5157 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5158 		if (get_vmx_mem_address(vcpu, exit_qualification,
5159 					instr_info, true, len, &gva))
5160 			return 1;
5161 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5162 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5163 		if (r != X86EMUL_CONTINUE)
5164 			return kvm_handle_memory_failure(vcpu, r, &e);
5165 	}
5166 
5167 	return nested_vmx_succeed(vcpu);
5168 }
5169 
5170 static bool is_shadow_field_rw(unsigned long field)
5171 {
5172 	switch (field) {
5173 #define SHADOW_FIELD_RW(x, y) case x:
5174 #include "vmcs_shadow_fields.h"
5175 		return true;
5176 	default:
5177 		break;
5178 	}
5179 	return false;
5180 }
5181 
5182 static bool is_shadow_field_ro(unsigned long field)
5183 {
5184 	switch (field) {
5185 #define SHADOW_FIELD_RO(x, y) case x:
5186 #include "vmcs_shadow_fields.h"
5187 		return true;
5188 	default:
5189 		break;
5190 	}
5191 	return false;
5192 }
5193 
5194 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5195 {
5196 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5197 						    : get_vmcs12(vcpu);
5198 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5199 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5200 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5201 	struct x86_exception e;
5202 	unsigned long field;
5203 	short offset;
5204 	gva_t gva;
5205 	int len, r;
5206 
5207 	/*
5208 	 * The value to write might be 32 or 64 bits, depending on L1's long
5209 	 * mode, and eventually we need to write that into a field of several
5210 	 * possible lengths. The code below first zero-extends the value to 64
5211 	 * bit (value), and then copies only the appropriate number of
5212 	 * bits into the vmcs12 field.
5213 	 */
5214 	u64 value = 0;
5215 
5216 	if (!nested_vmx_check_permission(vcpu))
5217 		return 1;
5218 
5219 	/*
5220 	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5221 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5222 	 */
5223 	if (vmx->nested.current_vmptr == INVALID_GPA ||
5224 	    (is_guest_mode(vcpu) &&
5225 	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5226 		return nested_vmx_failInvalid(vcpu);
5227 
5228 	if (instr_info & BIT(10))
5229 		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5230 	else {
5231 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5232 		if (get_vmx_mem_address(vcpu, exit_qualification,
5233 					instr_info, false, len, &gva))
5234 			return 1;
5235 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5236 		if (r != X86EMUL_CONTINUE)
5237 			return kvm_handle_memory_failure(vcpu, r, &e);
5238 	}
5239 
5240 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5241 
5242 	offset = get_vmcs12_field_offset(field);
5243 	if (offset < 0)
5244 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5245 
5246 	/*
5247 	 * If the vCPU supports "VMWRITE to any supported field in the
5248 	 * VMCS," then the "read-only" fields are actually read/write.
5249 	 */
5250 	if (vmcs_field_readonly(field) &&
5251 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5252 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5253 
5254 	/*
5255 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5256 	 * vmcs12, else we may crush a field or consume a stale value.
5257 	 */
5258 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5259 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5260 
5261 	/*
5262 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5263 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5264 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5265 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5266 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5267 	 * the stripped down value, L2 sees the full value as stored by KVM).
5268 	 */
5269 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5270 		value &= 0x1f0ff;
5271 
5272 	vmcs12_write_any(vmcs12, field, offset, value);
5273 
5274 	/*
5275 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5276 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5277 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5278 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5279 	 */
5280 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5281 		/*
5282 		 * L1 can read these fields without exiting, ensure the
5283 		 * shadow VMCS is up-to-date.
5284 		 */
5285 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5286 			preempt_disable();
5287 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5288 
5289 			__vmcs_writel(field, value);
5290 
5291 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5292 			vmcs_load(vmx->loaded_vmcs->vmcs);
5293 			preempt_enable();
5294 		}
5295 		vmx->nested.dirty_vmcs12 = true;
5296 	}
5297 
5298 	return nested_vmx_succeed(vcpu);
5299 }
5300 
5301 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5302 {
5303 	vmx->nested.current_vmptr = vmptr;
5304 	if (enable_shadow_vmcs) {
5305 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5306 		vmcs_write64(VMCS_LINK_POINTER,
5307 			     __pa(vmx->vmcs01.shadow_vmcs));
5308 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5309 	}
5310 	vmx->nested.dirty_vmcs12 = true;
5311 	vmx->nested.force_msr_bitmap_recalc = true;
5312 }
5313 
5314 /* Emulate the VMPTRLD instruction */
5315 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5316 {
5317 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5318 	gpa_t vmptr;
5319 	int r;
5320 
5321 	if (!nested_vmx_check_permission(vcpu))
5322 		return 1;
5323 
5324 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5325 		return r;
5326 
5327 	if (!page_address_valid(vcpu, vmptr))
5328 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5329 
5330 	if (vmptr == vmx->nested.vmxon_ptr)
5331 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5332 
5333 	/* Forbid normal VMPTRLD if Enlightened version was used */
5334 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5335 		return 1;
5336 
5337 	if (vmx->nested.current_vmptr != vmptr) {
5338 		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5339 		struct vmcs_hdr hdr;
5340 
5341 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5342 			/*
5343 			 * Reads from an unbacked page return all 1s,
5344 			 * which means that the 32 bits located at the
5345 			 * given physical address won't match the required
5346 			 * VMCS12_REVISION identifier.
5347 			 */
5348 			return nested_vmx_fail(vcpu,
5349 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5350 		}
5351 
5352 		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5353 						 offsetof(struct vmcs12, hdr),
5354 						 sizeof(hdr))) {
5355 			return nested_vmx_fail(vcpu,
5356 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5357 		}
5358 
5359 		if (hdr.revision_id != VMCS12_REVISION ||
5360 		    (hdr.shadow_vmcs &&
5361 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5362 			return nested_vmx_fail(vcpu,
5363 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5364 		}
5365 
5366 		nested_release_vmcs12(vcpu);
5367 
5368 		/*
5369 		 * Load VMCS12 from guest memory since it is not already
5370 		 * cached.
5371 		 */
5372 		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5373 					  VMCS12_SIZE)) {
5374 			return nested_vmx_fail(vcpu,
5375 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5376 		}
5377 
5378 		set_current_vmptr(vmx, vmptr);
5379 	}
5380 
5381 	return nested_vmx_succeed(vcpu);
5382 }
5383 
5384 /* Emulate the VMPTRST instruction */
5385 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5386 {
5387 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5388 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5389 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5390 	struct x86_exception e;
5391 	gva_t gva;
5392 	int r;
5393 
5394 	if (!nested_vmx_check_permission(vcpu))
5395 		return 1;
5396 
5397 	if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5398 		return 1;
5399 
5400 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5401 				true, sizeof(gpa_t), &gva))
5402 		return 1;
5403 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5404 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5405 					sizeof(gpa_t), &e);
5406 	if (r != X86EMUL_CONTINUE)
5407 		return kvm_handle_memory_failure(vcpu, r, &e);
5408 
5409 	return nested_vmx_succeed(vcpu);
5410 }
5411 
5412 /* Emulate the INVEPT instruction */
5413 static int handle_invept(struct kvm_vcpu *vcpu)
5414 {
5415 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5416 	u32 vmx_instruction_info, types;
5417 	unsigned long type, roots_to_free;
5418 	struct kvm_mmu *mmu;
5419 	gva_t gva;
5420 	struct x86_exception e;
5421 	struct {
5422 		u64 eptp, gpa;
5423 	} operand;
5424 	int i, r, gpr_index;
5425 
5426 	if (!(vmx->nested.msrs.secondary_ctls_high &
5427 	      SECONDARY_EXEC_ENABLE_EPT) ||
5428 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5429 		kvm_queue_exception(vcpu, UD_VECTOR);
5430 		return 1;
5431 	}
5432 
5433 	if (!nested_vmx_check_permission(vcpu))
5434 		return 1;
5435 
5436 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5437 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5438 	type = kvm_register_read(vcpu, gpr_index);
5439 
5440 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5441 
5442 	if (type >= 32 || !(types & (1 << type)))
5443 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5444 
5445 	/* According to the Intel VMX instruction reference, the memory
5446 	 * operand is read even if it isn't needed (e.g., for type==global)
5447 	 */
5448 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5449 			vmx_instruction_info, false, sizeof(operand), &gva))
5450 		return 1;
5451 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5452 	if (r != X86EMUL_CONTINUE)
5453 		return kvm_handle_memory_failure(vcpu, r, &e);
5454 
5455 	/*
5456 	 * Nested EPT roots are always held through guest_mmu,
5457 	 * not root_mmu.
5458 	 */
5459 	mmu = &vcpu->arch.guest_mmu;
5460 
5461 	switch (type) {
5462 	case VMX_EPT_EXTENT_CONTEXT:
5463 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5464 			return nested_vmx_fail(vcpu,
5465 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5466 
5467 		roots_to_free = 0;
5468 		if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5469 					    operand.eptp))
5470 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5471 
5472 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5473 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5474 						    mmu->prev_roots[i].pgd,
5475 						    operand.eptp))
5476 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5477 		}
5478 		break;
5479 	case VMX_EPT_EXTENT_GLOBAL:
5480 		roots_to_free = KVM_MMU_ROOTS_ALL;
5481 		break;
5482 	default:
5483 		BUG();
5484 		break;
5485 	}
5486 
5487 	if (roots_to_free)
5488 		kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5489 
5490 	return nested_vmx_succeed(vcpu);
5491 }
5492 
5493 static int handle_invvpid(struct kvm_vcpu *vcpu)
5494 {
5495 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5496 	u32 vmx_instruction_info;
5497 	unsigned long type, types;
5498 	gva_t gva;
5499 	struct x86_exception e;
5500 	struct {
5501 		u64 vpid;
5502 		u64 gla;
5503 	} operand;
5504 	u16 vpid02;
5505 	int r, gpr_index;
5506 
5507 	if (!(vmx->nested.msrs.secondary_ctls_high &
5508 	      SECONDARY_EXEC_ENABLE_VPID) ||
5509 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5510 		kvm_queue_exception(vcpu, UD_VECTOR);
5511 		return 1;
5512 	}
5513 
5514 	if (!nested_vmx_check_permission(vcpu))
5515 		return 1;
5516 
5517 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5518 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5519 	type = kvm_register_read(vcpu, gpr_index);
5520 
5521 	types = (vmx->nested.msrs.vpid_caps &
5522 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5523 
5524 	if (type >= 32 || !(types & (1 << type)))
5525 		return nested_vmx_fail(vcpu,
5526 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5527 
5528 	/* according to the intel vmx instruction reference, the memory
5529 	 * operand is read even if it isn't needed (e.g., for type==global)
5530 	 */
5531 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5532 			vmx_instruction_info, false, sizeof(operand), &gva))
5533 		return 1;
5534 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5535 	if (r != X86EMUL_CONTINUE)
5536 		return kvm_handle_memory_failure(vcpu, r, &e);
5537 
5538 	if (operand.vpid >> 16)
5539 		return nested_vmx_fail(vcpu,
5540 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5541 
5542 	vpid02 = nested_get_vpid02(vcpu);
5543 	switch (type) {
5544 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5545 		if (!operand.vpid ||
5546 		    is_noncanonical_address(operand.gla, vcpu))
5547 			return nested_vmx_fail(vcpu,
5548 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5549 		vpid_sync_vcpu_addr(vpid02, operand.gla);
5550 		break;
5551 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5552 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5553 		if (!operand.vpid)
5554 			return nested_vmx_fail(vcpu,
5555 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5556 		vpid_sync_context(vpid02);
5557 		break;
5558 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5559 		vpid_sync_context(vpid02);
5560 		break;
5561 	default:
5562 		WARN_ON_ONCE(1);
5563 		return kvm_skip_emulated_instruction(vcpu);
5564 	}
5565 
5566 	/*
5567 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5568 	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5569 	 * roots as VPIDs are not tracked in the MMU role.
5570 	 *
5571 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5572 	 * an MMU when EPT is disabled.
5573 	 *
5574 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5575 	 */
5576 	if (!enable_ept)
5577 		kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5578 
5579 	return nested_vmx_succeed(vcpu);
5580 }
5581 
5582 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5583 				     struct vmcs12 *vmcs12)
5584 {
5585 	u32 index = kvm_rcx_read(vcpu);
5586 	u64 new_eptp;
5587 
5588 	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5589 		return 1;
5590 	if (index >= VMFUNC_EPTP_ENTRIES)
5591 		return 1;
5592 
5593 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5594 				     &new_eptp, index * 8, 8))
5595 		return 1;
5596 
5597 	/*
5598 	 * If the (L2) guest does a vmfunc to the currently
5599 	 * active ept pointer, we don't have to do anything else
5600 	 */
5601 	if (vmcs12->ept_pointer != new_eptp) {
5602 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5603 			return 1;
5604 
5605 		vmcs12->ept_pointer = new_eptp;
5606 		nested_ept_new_eptp(vcpu);
5607 
5608 		if (!nested_cpu_has_vpid(vmcs12))
5609 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5610 	}
5611 
5612 	return 0;
5613 }
5614 
5615 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5616 {
5617 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5618 	struct vmcs12 *vmcs12;
5619 	u32 function = kvm_rax_read(vcpu);
5620 
5621 	/*
5622 	 * VMFUNC is only supported for nested guests, but we always enable the
5623 	 * secondary control for simplicity; for non-nested mode, fake that we
5624 	 * didn't by injecting #UD.
5625 	 */
5626 	if (!is_guest_mode(vcpu)) {
5627 		kvm_queue_exception(vcpu, UD_VECTOR);
5628 		return 1;
5629 	}
5630 
5631 	vmcs12 = get_vmcs12(vcpu);
5632 
5633 	/*
5634 	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5635 	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5636 	 */
5637 	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5638 		kvm_queue_exception(vcpu, UD_VECTOR);
5639 		return 1;
5640 	}
5641 
5642 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5643 		goto fail;
5644 
5645 	switch (function) {
5646 	case 0:
5647 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5648 			goto fail;
5649 		break;
5650 	default:
5651 		goto fail;
5652 	}
5653 	return kvm_skip_emulated_instruction(vcpu);
5654 
5655 fail:
5656 	/*
5657 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5658 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5659 	 * EXIT_REASON_VMFUNC as the exit reason.
5660 	 */
5661 	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5662 			  vmx_get_intr_info(vcpu),
5663 			  vmx_get_exit_qual(vcpu));
5664 	return 1;
5665 }
5666 
5667 /*
5668  * Return true if an IO instruction with the specified port and size should cause
5669  * a VM-exit into L1.
5670  */
5671 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5672 				 int size)
5673 {
5674 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5675 	gpa_t bitmap, last_bitmap;
5676 	u8 b;
5677 
5678 	last_bitmap = INVALID_GPA;
5679 	b = -1;
5680 
5681 	while (size > 0) {
5682 		if (port < 0x8000)
5683 			bitmap = vmcs12->io_bitmap_a;
5684 		else if (port < 0x10000)
5685 			bitmap = vmcs12->io_bitmap_b;
5686 		else
5687 			return true;
5688 		bitmap += (port & 0x7fff) / 8;
5689 
5690 		if (last_bitmap != bitmap)
5691 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5692 				return true;
5693 		if (b & (1 << (port & 7)))
5694 			return true;
5695 
5696 		port++;
5697 		size--;
5698 		last_bitmap = bitmap;
5699 	}
5700 
5701 	return false;
5702 }
5703 
5704 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5705 				       struct vmcs12 *vmcs12)
5706 {
5707 	unsigned long exit_qualification;
5708 	unsigned short port;
5709 	int size;
5710 
5711 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5712 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5713 
5714 	exit_qualification = vmx_get_exit_qual(vcpu);
5715 
5716 	port = exit_qualification >> 16;
5717 	size = (exit_qualification & 7) + 1;
5718 
5719 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
5720 }
5721 
5722 /*
5723  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5724  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5725  * disinterest in the current event (read or write a specific MSR) by using an
5726  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5727  */
5728 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5729 					struct vmcs12 *vmcs12,
5730 					union vmx_exit_reason exit_reason)
5731 {
5732 	u32 msr_index = kvm_rcx_read(vcpu);
5733 	gpa_t bitmap;
5734 
5735 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5736 		return true;
5737 
5738 	/*
5739 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5740 	 * for the four combinations of read/write and low/high MSR numbers.
5741 	 * First we need to figure out which of the four to use:
5742 	 */
5743 	bitmap = vmcs12->msr_bitmap;
5744 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5745 		bitmap += 2048;
5746 	if (msr_index >= 0xc0000000) {
5747 		msr_index -= 0xc0000000;
5748 		bitmap += 1024;
5749 	}
5750 
5751 	/* Then read the msr_index'th bit from this bitmap: */
5752 	if (msr_index < 1024*8) {
5753 		unsigned char b;
5754 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5755 			return true;
5756 		return 1 & (b >> (msr_index & 7));
5757 	} else
5758 		return true; /* let L1 handle the wrong parameter */
5759 }
5760 
5761 /*
5762  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5763  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5764  * intercept (via guest_host_mask etc.) the current event.
5765  */
5766 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5767 	struct vmcs12 *vmcs12)
5768 {
5769 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5770 	int cr = exit_qualification & 15;
5771 	int reg;
5772 	unsigned long val;
5773 
5774 	switch ((exit_qualification >> 4) & 3) {
5775 	case 0: /* mov to cr */
5776 		reg = (exit_qualification >> 8) & 15;
5777 		val = kvm_register_read(vcpu, reg);
5778 		switch (cr) {
5779 		case 0:
5780 			if (vmcs12->cr0_guest_host_mask &
5781 			    (val ^ vmcs12->cr0_read_shadow))
5782 				return true;
5783 			break;
5784 		case 3:
5785 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5786 				return true;
5787 			break;
5788 		case 4:
5789 			if (vmcs12->cr4_guest_host_mask &
5790 			    (vmcs12->cr4_read_shadow ^ val))
5791 				return true;
5792 			break;
5793 		case 8:
5794 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5795 				return true;
5796 			break;
5797 		}
5798 		break;
5799 	case 2: /* clts */
5800 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5801 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5802 			return true;
5803 		break;
5804 	case 1: /* mov from cr */
5805 		switch (cr) {
5806 		case 3:
5807 			if (vmcs12->cpu_based_vm_exec_control &
5808 			    CPU_BASED_CR3_STORE_EXITING)
5809 				return true;
5810 			break;
5811 		case 8:
5812 			if (vmcs12->cpu_based_vm_exec_control &
5813 			    CPU_BASED_CR8_STORE_EXITING)
5814 				return true;
5815 			break;
5816 		}
5817 		break;
5818 	case 3: /* lmsw */
5819 		/*
5820 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5821 		 * cr0. Other attempted changes are ignored, with no exit.
5822 		 */
5823 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5824 		if (vmcs12->cr0_guest_host_mask & 0xe &
5825 		    (val ^ vmcs12->cr0_read_shadow))
5826 			return true;
5827 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5828 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5829 		    (val & 0x1))
5830 			return true;
5831 		break;
5832 	}
5833 	return false;
5834 }
5835 
5836 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5837 					  struct vmcs12 *vmcs12)
5838 {
5839 	u32 encls_leaf;
5840 
5841 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5842 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5843 		return false;
5844 
5845 	encls_leaf = kvm_rax_read(vcpu);
5846 	if (encls_leaf > 62)
5847 		encls_leaf = 63;
5848 	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5849 }
5850 
5851 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5852 	struct vmcs12 *vmcs12, gpa_t bitmap)
5853 {
5854 	u32 vmx_instruction_info;
5855 	unsigned long field;
5856 	u8 b;
5857 
5858 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
5859 		return true;
5860 
5861 	/* Decode instruction info and find the field to access */
5862 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5863 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5864 
5865 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
5866 	if (field >> 15)
5867 		return true;
5868 
5869 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5870 		return true;
5871 
5872 	return 1 & (b >> (field & 7));
5873 }
5874 
5875 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5876 {
5877 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5878 
5879 	if (nested_cpu_has_mtf(vmcs12))
5880 		return true;
5881 
5882 	/*
5883 	 * An MTF VM-exit may be injected into the guest by setting the
5884 	 * interruption-type to 7 (other event) and the vector field to 0. Such
5885 	 * is the case regardless of the 'monitor trap flag' VM-execution
5886 	 * control.
5887 	 */
5888 	return entry_intr_info == (INTR_INFO_VALID_MASK
5889 				   | INTR_TYPE_OTHER_EVENT);
5890 }
5891 
5892 /*
5893  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5894  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5895  */
5896 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5897 				     union vmx_exit_reason exit_reason)
5898 {
5899 	u32 intr_info;
5900 
5901 	switch ((u16)exit_reason.basic) {
5902 	case EXIT_REASON_EXCEPTION_NMI:
5903 		intr_info = vmx_get_intr_info(vcpu);
5904 		if (is_nmi(intr_info))
5905 			return true;
5906 		else if (is_page_fault(intr_info))
5907 			return vcpu->arch.apf.host_apf_flags ||
5908 			       vmx_need_pf_intercept(vcpu);
5909 		else if (is_debug(intr_info) &&
5910 			 vcpu->guest_debug &
5911 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5912 			return true;
5913 		else if (is_breakpoint(intr_info) &&
5914 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5915 			return true;
5916 		else if (is_alignment_check(intr_info) &&
5917 			 !vmx_guest_inject_ac(vcpu))
5918 			return true;
5919 		return false;
5920 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5921 		return true;
5922 	case EXIT_REASON_MCE_DURING_VMENTRY:
5923 		return true;
5924 	case EXIT_REASON_EPT_VIOLATION:
5925 		/*
5926 		 * L0 always deals with the EPT violation. If nested EPT is
5927 		 * used, and the nested mmu code discovers that the address is
5928 		 * missing in the guest EPT table (EPT12), the EPT violation
5929 		 * will be injected with nested_ept_inject_page_fault()
5930 		 */
5931 		return true;
5932 	case EXIT_REASON_EPT_MISCONFIG:
5933 		/*
5934 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
5935 		 * table (shadow on EPT) or a merged EPT table that L0 built
5936 		 * (EPT on EPT). So any problems with the structure of the
5937 		 * table is L0's fault.
5938 		 */
5939 		return true;
5940 	case EXIT_REASON_PREEMPTION_TIMER:
5941 		return true;
5942 	case EXIT_REASON_PML_FULL:
5943 		/*
5944 		 * PML is emulated for an L1 VMM and should never be enabled in
5945 		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
5946 		 */
5947 		return true;
5948 	case EXIT_REASON_VMFUNC:
5949 		/* VM functions are emulated through L2->L0 vmexits. */
5950 		return true;
5951 	case EXIT_REASON_BUS_LOCK:
5952 		/*
5953 		 * At present, bus lock VM exit is never exposed to L1.
5954 		 * Handle L2's bus locks in L0 directly.
5955 		 */
5956 		return true;
5957 	default:
5958 		break;
5959 	}
5960 	return false;
5961 }
5962 
5963 /*
5964  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5965  * is_guest_mode (L2).
5966  */
5967 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5968 				     union vmx_exit_reason exit_reason)
5969 {
5970 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5971 	u32 intr_info;
5972 
5973 	switch ((u16)exit_reason.basic) {
5974 	case EXIT_REASON_EXCEPTION_NMI:
5975 		intr_info = vmx_get_intr_info(vcpu);
5976 		if (is_nmi(intr_info))
5977 			return true;
5978 		else if (is_page_fault(intr_info))
5979 			return true;
5980 		return vmcs12->exception_bitmap &
5981 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
5982 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5983 		return nested_exit_on_intr(vcpu);
5984 	case EXIT_REASON_TRIPLE_FAULT:
5985 		return true;
5986 	case EXIT_REASON_INTERRUPT_WINDOW:
5987 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5988 	case EXIT_REASON_NMI_WINDOW:
5989 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5990 	case EXIT_REASON_TASK_SWITCH:
5991 		return true;
5992 	case EXIT_REASON_CPUID:
5993 		return true;
5994 	case EXIT_REASON_HLT:
5995 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5996 	case EXIT_REASON_INVD:
5997 		return true;
5998 	case EXIT_REASON_INVLPG:
5999 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6000 	case EXIT_REASON_RDPMC:
6001 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6002 	case EXIT_REASON_RDRAND:
6003 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6004 	case EXIT_REASON_RDSEED:
6005 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6006 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6007 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6008 	case EXIT_REASON_VMREAD:
6009 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6010 			vmcs12->vmread_bitmap);
6011 	case EXIT_REASON_VMWRITE:
6012 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6013 			vmcs12->vmwrite_bitmap);
6014 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6015 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6016 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6017 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6018 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6019 		/*
6020 		 * VMX instructions trap unconditionally. This allows L1 to
6021 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6022 		 */
6023 		return true;
6024 	case EXIT_REASON_CR_ACCESS:
6025 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6026 	case EXIT_REASON_DR_ACCESS:
6027 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6028 	case EXIT_REASON_IO_INSTRUCTION:
6029 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
6030 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6031 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6032 	case EXIT_REASON_MSR_READ:
6033 	case EXIT_REASON_MSR_WRITE:
6034 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6035 	case EXIT_REASON_INVALID_STATE:
6036 		return true;
6037 	case EXIT_REASON_MWAIT_INSTRUCTION:
6038 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6039 	case EXIT_REASON_MONITOR_TRAP_FLAG:
6040 		return nested_vmx_exit_handled_mtf(vmcs12);
6041 	case EXIT_REASON_MONITOR_INSTRUCTION:
6042 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6043 	case EXIT_REASON_PAUSE_INSTRUCTION:
6044 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6045 			nested_cpu_has2(vmcs12,
6046 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6047 	case EXIT_REASON_MCE_DURING_VMENTRY:
6048 		return true;
6049 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
6050 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6051 	case EXIT_REASON_APIC_ACCESS:
6052 	case EXIT_REASON_APIC_WRITE:
6053 	case EXIT_REASON_EOI_INDUCED:
6054 		/*
6055 		 * The controls for "virtualize APIC accesses," "APIC-
6056 		 * register virtualization," and "virtual-interrupt
6057 		 * delivery" only come from vmcs12.
6058 		 */
6059 		return true;
6060 	case EXIT_REASON_INVPCID:
6061 		return
6062 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6063 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6064 	case EXIT_REASON_WBINVD:
6065 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6066 	case EXIT_REASON_XSETBV:
6067 		return true;
6068 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6069 		/*
6070 		 * This should never happen, since it is not possible to
6071 		 * set XSS to a non-zero value---neither in L1 nor in L2.
6072 		 * If if it were, XSS would have to be checked against
6073 		 * the XSS exit bitmap in vmcs12.
6074 		 */
6075 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6076 	case EXIT_REASON_UMWAIT:
6077 	case EXIT_REASON_TPAUSE:
6078 		return nested_cpu_has2(vmcs12,
6079 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6080 	case EXIT_REASON_ENCLS:
6081 		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6082 	default:
6083 		return true;
6084 	}
6085 }
6086 
6087 /*
6088  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6089  * reflected into L1.
6090  */
6091 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6092 {
6093 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6094 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6095 	unsigned long exit_qual;
6096 	u32 exit_intr_info;
6097 
6098 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6099 
6100 	/*
6101 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6102 	 * has already loaded L2's state.
6103 	 */
6104 	if (unlikely(vmx->fail)) {
6105 		trace_kvm_nested_vmenter_failed(
6106 			"hardware VM-instruction error: ",
6107 			vmcs_read32(VM_INSTRUCTION_ERROR));
6108 		exit_intr_info = 0;
6109 		exit_qual = 0;
6110 		goto reflect_vmexit;
6111 	}
6112 
6113 	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6114 
6115 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6116 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6117 		return false;
6118 
6119 	/* If L1 doesn't want the exit, handle it in L0. */
6120 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6121 		return false;
6122 
6123 	/*
6124 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6125 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6126 	 * need to be synthesized by querying the in-kernel LAPIC, but external
6127 	 * interrupts are never reflected to L1 so it's a non-issue.
6128 	 */
6129 	exit_intr_info = vmx_get_intr_info(vcpu);
6130 	if (is_exception_with_error_code(exit_intr_info)) {
6131 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6132 
6133 		vmcs12->vm_exit_intr_error_code =
6134 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6135 	}
6136 	exit_qual = vmx_get_exit_qual(vcpu);
6137 
6138 reflect_vmexit:
6139 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6140 	return true;
6141 }
6142 
6143 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6144 				struct kvm_nested_state __user *user_kvm_nested_state,
6145 				u32 user_data_size)
6146 {
6147 	struct vcpu_vmx *vmx;
6148 	struct vmcs12 *vmcs12;
6149 	struct kvm_nested_state kvm_state = {
6150 		.flags = 0,
6151 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6152 		.size = sizeof(kvm_state),
6153 		.hdr.vmx.flags = 0,
6154 		.hdr.vmx.vmxon_pa = INVALID_GPA,
6155 		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6156 		.hdr.vmx.preemption_timer_deadline = 0,
6157 	};
6158 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6159 		&user_kvm_nested_state->data.vmx[0];
6160 
6161 	if (!vcpu)
6162 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6163 
6164 	vmx = to_vmx(vcpu);
6165 	vmcs12 = get_vmcs12(vcpu);
6166 
6167 	if (nested_vmx_allowed(vcpu) &&
6168 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6169 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6170 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6171 
6172 		if (vmx_has_valid_vmcs12(vcpu)) {
6173 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6174 
6175 			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6176 			if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6177 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6178 
6179 			if (is_guest_mode(vcpu) &&
6180 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6181 			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6182 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6183 		}
6184 
6185 		if (vmx->nested.smm.vmxon)
6186 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6187 
6188 		if (vmx->nested.smm.guest_mode)
6189 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6190 
6191 		if (is_guest_mode(vcpu)) {
6192 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6193 
6194 			if (vmx->nested.nested_run_pending)
6195 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6196 
6197 			if (vmx->nested.mtf_pending)
6198 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6199 
6200 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6201 			    vmx->nested.has_preemption_timer_deadline) {
6202 				kvm_state.hdr.vmx.flags |=
6203 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6204 				kvm_state.hdr.vmx.preemption_timer_deadline =
6205 					vmx->nested.preemption_timer_deadline;
6206 			}
6207 		}
6208 	}
6209 
6210 	if (user_data_size < kvm_state.size)
6211 		goto out;
6212 
6213 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6214 		return -EFAULT;
6215 
6216 	if (!vmx_has_valid_vmcs12(vcpu))
6217 		goto out;
6218 
6219 	/*
6220 	 * When running L2, the authoritative vmcs12 state is in the
6221 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6222 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6223 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6224 	 * vmcs12 state is in the vmcs12 already.
6225 	 */
6226 	if (is_guest_mode(vcpu)) {
6227 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6228 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6229 	} else  {
6230 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6231 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6232 			if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6233 				/*
6234 				 * L1 hypervisor is not obliged to keep eVMCS
6235 				 * clean fields data always up-to-date while
6236 				 * not in guest mode, 'hv_clean_fields' is only
6237 				 * supposed to be actual upon vmentry so we need
6238 				 * to ignore it here and do full copy.
6239 				 */
6240 				copy_enlightened_to_vmcs12(vmx, 0);
6241 			else if (enable_shadow_vmcs)
6242 				copy_shadow_to_vmcs12(vmx);
6243 		}
6244 	}
6245 
6246 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6247 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6248 
6249 	/*
6250 	 * Copy over the full allocated size of vmcs12 rather than just the size
6251 	 * of the struct.
6252 	 */
6253 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6254 		return -EFAULT;
6255 
6256 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6257 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6258 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6259 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6260 			return -EFAULT;
6261 	}
6262 out:
6263 	return kvm_state.size;
6264 }
6265 
6266 /*
6267  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6268  */
6269 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6270 {
6271 	if (is_guest_mode(vcpu)) {
6272 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6273 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6274 	}
6275 	free_nested(vcpu);
6276 }
6277 
6278 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6279 				struct kvm_nested_state __user *user_kvm_nested_state,
6280 				struct kvm_nested_state *kvm_state)
6281 {
6282 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6283 	struct vmcs12 *vmcs12;
6284 	enum vm_entry_failure_code ignored;
6285 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6286 		&user_kvm_nested_state->data.vmx[0];
6287 	int ret;
6288 
6289 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6290 		return -EINVAL;
6291 
6292 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6293 		if (kvm_state->hdr.vmx.smm.flags)
6294 			return -EINVAL;
6295 
6296 		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6297 			return -EINVAL;
6298 
6299 		/*
6300 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6301 		 * enable eVMCS capability on vCPU. However, since then
6302 		 * code was changed such that flag signals vmcs12 should
6303 		 * be copied into eVMCS in guest memory.
6304 		 *
6305 		 * To preserve backwards compatability, allow user
6306 		 * to set this flag even when there is no VMXON region.
6307 		 */
6308 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6309 			return -EINVAL;
6310 	} else {
6311 		if (!nested_vmx_allowed(vcpu))
6312 			return -EINVAL;
6313 
6314 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6315 			return -EINVAL;
6316 	}
6317 
6318 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6319 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6320 		return -EINVAL;
6321 
6322 	if (kvm_state->hdr.vmx.smm.flags &
6323 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6324 		return -EINVAL;
6325 
6326 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6327 		return -EINVAL;
6328 
6329 	/*
6330 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6331 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6332 	 * must be zero.
6333 	 */
6334 	if (is_smm(vcpu) ?
6335 		(kvm_state->flags &
6336 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6337 		: kvm_state->hdr.vmx.smm.flags)
6338 		return -EINVAL;
6339 
6340 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6341 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6342 		return -EINVAL;
6343 
6344 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6345 		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6346 			return -EINVAL;
6347 
6348 	vmx_leave_nested(vcpu);
6349 
6350 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6351 		return 0;
6352 
6353 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6354 	ret = enter_vmx_operation(vcpu);
6355 	if (ret)
6356 		return ret;
6357 
6358 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6359 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6360 		/* See vmx_has_valid_vmcs12.  */
6361 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6362 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6363 		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6364 			return -EINVAL;
6365 		else
6366 			return 0;
6367 	}
6368 
6369 	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6370 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6371 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6372 			return -EINVAL;
6373 
6374 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6375 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6376 		/*
6377 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6378 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6379 		 * restored yet. EVMCS will be mapped from
6380 		 * nested_get_vmcs12_pages().
6381 		 */
6382 		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6383 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6384 	} else {
6385 		return -EINVAL;
6386 	}
6387 
6388 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6389 		vmx->nested.smm.vmxon = true;
6390 		vmx->nested.vmxon = false;
6391 
6392 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6393 			vmx->nested.smm.guest_mode = true;
6394 	}
6395 
6396 	vmcs12 = get_vmcs12(vcpu);
6397 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6398 		return -EFAULT;
6399 
6400 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6401 		return -EINVAL;
6402 
6403 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6404 		return 0;
6405 
6406 	vmx->nested.nested_run_pending =
6407 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6408 
6409 	vmx->nested.mtf_pending =
6410 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6411 
6412 	ret = -EINVAL;
6413 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6414 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6415 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6416 
6417 		if (kvm_state->size <
6418 		    sizeof(*kvm_state) +
6419 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6420 			goto error_guest_mode;
6421 
6422 		if (copy_from_user(shadow_vmcs12,
6423 				   user_vmx_nested_state->shadow_vmcs12,
6424 				   sizeof(*shadow_vmcs12))) {
6425 			ret = -EFAULT;
6426 			goto error_guest_mode;
6427 		}
6428 
6429 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6430 		    !shadow_vmcs12->hdr.shadow_vmcs)
6431 			goto error_guest_mode;
6432 	}
6433 
6434 	vmx->nested.has_preemption_timer_deadline = false;
6435 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6436 		vmx->nested.has_preemption_timer_deadline = true;
6437 		vmx->nested.preemption_timer_deadline =
6438 			kvm_state->hdr.vmx.preemption_timer_deadline;
6439 	}
6440 
6441 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6442 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6443 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6444 		goto error_guest_mode;
6445 
6446 	vmx->nested.dirty_vmcs12 = true;
6447 	vmx->nested.force_msr_bitmap_recalc = true;
6448 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6449 	if (ret)
6450 		goto error_guest_mode;
6451 
6452 	return 0;
6453 
6454 error_guest_mode:
6455 	vmx->nested.nested_run_pending = 0;
6456 	return ret;
6457 }
6458 
6459 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6460 {
6461 	if (enable_shadow_vmcs) {
6462 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6463 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6464 	}
6465 }
6466 
6467 /*
6468  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6469  * that madness to get the encoding for comparison.
6470  */
6471 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6472 
6473 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6474 {
6475 	/*
6476 	 * Note these are the so called "index" of the VMCS field encoding, not
6477 	 * the index into vmcs12.
6478 	 */
6479 	unsigned int max_idx, idx;
6480 	int i;
6481 
6482 	/*
6483 	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6484 	 * vmcs12, regardless of whether or not the associated feature is
6485 	 * exposed to L1.  Simply find the field with the highest index.
6486 	 */
6487 	max_idx = 0;
6488 	for (i = 0; i < nr_vmcs12_fields; i++) {
6489 		/* The vmcs12 table is very, very sparsely populated. */
6490 		if (!vmcs12_field_offsets[i])
6491 			continue;
6492 
6493 		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6494 		if (idx > max_idx)
6495 			max_idx = idx;
6496 	}
6497 
6498 	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6499 }
6500 
6501 /*
6502  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6503  * returned for the various VMX controls MSRs when nested VMX is enabled.
6504  * The same values should also be used to verify that vmcs12 control fields are
6505  * valid during nested entry from L1 to L2.
6506  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6507  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6508  * bit in the high half is on if the corresponding bit in the control field
6509  * may be on. See also vmx_control_verify().
6510  */
6511 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6512 {
6513 	/*
6514 	 * Note that as a general rule, the high half of the MSRs (bits in
6515 	 * the control fields which may be 1) should be initialized by the
6516 	 * intersection of the underlying hardware's MSR (i.e., features which
6517 	 * can be supported) and the list of features we want to expose -
6518 	 * because they are known to be properly supported in our code.
6519 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
6520 	 * be set to 0, meaning that L1 may turn off any of these bits. The
6521 	 * reason is that if one of these bits is necessary, it will appear
6522 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6523 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
6524 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6525 	 * These rules have exceptions below.
6526 	 */
6527 
6528 	/* pin-based controls */
6529 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6530 		msrs->pinbased_ctls_low,
6531 		msrs->pinbased_ctls_high);
6532 	msrs->pinbased_ctls_low |=
6533 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6534 	msrs->pinbased_ctls_high &=
6535 		PIN_BASED_EXT_INTR_MASK |
6536 		PIN_BASED_NMI_EXITING |
6537 		PIN_BASED_VIRTUAL_NMIS |
6538 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6539 	msrs->pinbased_ctls_high |=
6540 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6541 		PIN_BASED_VMX_PREEMPTION_TIMER;
6542 
6543 	/* exit controls */
6544 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6545 		msrs->exit_ctls_low,
6546 		msrs->exit_ctls_high);
6547 	msrs->exit_ctls_low =
6548 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6549 
6550 	msrs->exit_ctls_high &=
6551 #ifdef CONFIG_X86_64
6552 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6553 #endif
6554 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6555 		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6556 	msrs->exit_ctls_high |=
6557 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6558 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6559 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6560 
6561 	/* We support free control of debug control saving. */
6562 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6563 
6564 	/* entry controls */
6565 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6566 		msrs->entry_ctls_low,
6567 		msrs->entry_ctls_high);
6568 	msrs->entry_ctls_low =
6569 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6570 	msrs->entry_ctls_high &=
6571 #ifdef CONFIG_X86_64
6572 		VM_ENTRY_IA32E_MODE |
6573 #endif
6574 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6575 		VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6576 	msrs->entry_ctls_high |=
6577 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6578 
6579 	/* We support free control of debug control loading. */
6580 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6581 
6582 	/* cpu-based controls */
6583 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6584 		msrs->procbased_ctls_low,
6585 		msrs->procbased_ctls_high);
6586 	msrs->procbased_ctls_low =
6587 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6588 	msrs->procbased_ctls_high &=
6589 		CPU_BASED_INTR_WINDOW_EXITING |
6590 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6591 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6592 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6593 		CPU_BASED_CR3_STORE_EXITING |
6594 #ifdef CONFIG_X86_64
6595 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6596 #endif
6597 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6598 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6599 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6600 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6601 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6602 	/*
6603 	 * We can allow some features even when not supported by the
6604 	 * hardware. For example, L1 can specify an MSR bitmap - and we
6605 	 * can use it to avoid exits to L1 - even when L0 runs L2
6606 	 * without MSR bitmaps.
6607 	 */
6608 	msrs->procbased_ctls_high |=
6609 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6610 		CPU_BASED_USE_MSR_BITMAPS;
6611 
6612 	/* We support free control of CR3 access interception. */
6613 	msrs->procbased_ctls_low &=
6614 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6615 
6616 	/*
6617 	 * secondary cpu-based controls.  Do not include those that
6618 	 * depend on CPUID bits, they are added later by
6619 	 * vmx_vcpu_after_set_cpuid.
6620 	 */
6621 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6622 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6623 		      msrs->secondary_ctls_low,
6624 		      msrs->secondary_ctls_high);
6625 
6626 	msrs->secondary_ctls_low = 0;
6627 	msrs->secondary_ctls_high &=
6628 		SECONDARY_EXEC_DESC |
6629 		SECONDARY_EXEC_ENABLE_RDTSCP |
6630 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6631 		SECONDARY_EXEC_WBINVD_EXITING |
6632 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6633 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6634 		SECONDARY_EXEC_RDRAND_EXITING |
6635 		SECONDARY_EXEC_ENABLE_INVPCID |
6636 		SECONDARY_EXEC_RDSEED_EXITING |
6637 		SECONDARY_EXEC_XSAVES |
6638 		SECONDARY_EXEC_TSC_SCALING;
6639 
6640 	/*
6641 	 * We can emulate "VMCS shadowing," even if the hardware
6642 	 * doesn't support it.
6643 	 */
6644 	msrs->secondary_ctls_high |=
6645 		SECONDARY_EXEC_SHADOW_VMCS;
6646 
6647 	if (enable_ept) {
6648 		/* nested EPT: emulate EPT also to L1 */
6649 		msrs->secondary_ctls_high |=
6650 			SECONDARY_EXEC_ENABLE_EPT;
6651 		msrs->ept_caps =
6652 			VMX_EPT_PAGE_WALK_4_BIT |
6653 			VMX_EPT_PAGE_WALK_5_BIT |
6654 			VMX_EPTP_WB_BIT |
6655 			VMX_EPT_INVEPT_BIT |
6656 			VMX_EPT_EXECUTE_ONLY_BIT;
6657 
6658 		msrs->ept_caps &= ept_caps;
6659 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6660 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6661 			VMX_EPT_1GB_PAGE_BIT;
6662 		if (enable_ept_ad_bits) {
6663 			msrs->secondary_ctls_high |=
6664 				SECONDARY_EXEC_ENABLE_PML;
6665 			msrs->ept_caps |= VMX_EPT_AD_BIT;
6666 		}
6667 	}
6668 
6669 	if (cpu_has_vmx_vmfunc()) {
6670 		msrs->secondary_ctls_high |=
6671 			SECONDARY_EXEC_ENABLE_VMFUNC;
6672 		/*
6673 		 * Advertise EPTP switching unconditionally
6674 		 * since we emulate it
6675 		 */
6676 		if (enable_ept)
6677 			msrs->vmfunc_controls =
6678 				VMX_VMFUNC_EPTP_SWITCHING;
6679 	}
6680 
6681 	/*
6682 	 * Old versions of KVM use the single-context version without
6683 	 * checking for support, so declare that it is supported even
6684 	 * though it is treated as global context.  The alternative is
6685 	 * not failing the single-context invvpid, and it is worse.
6686 	 */
6687 	if (enable_vpid) {
6688 		msrs->secondary_ctls_high |=
6689 			SECONDARY_EXEC_ENABLE_VPID;
6690 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6691 			VMX_VPID_EXTENT_SUPPORTED_MASK;
6692 	}
6693 
6694 	if (enable_unrestricted_guest)
6695 		msrs->secondary_ctls_high |=
6696 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
6697 
6698 	if (flexpriority_enabled)
6699 		msrs->secondary_ctls_high |=
6700 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6701 
6702 	if (enable_sgx)
6703 		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6704 
6705 	/* miscellaneous data */
6706 	rdmsr(MSR_IA32_VMX_MISC,
6707 		msrs->misc_low,
6708 		msrs->misc_high);
6709 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6710 	msrs->misc_low |=
6711 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6712 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6713 		VMX_MISC_ACTIVITY_HLT |
6714 		VMX_MISC_ACTIVITY_WAIT_SIPI;
6715 	msrs->misc_high = 0;
6716 
6717 	/*
6718 	 * This MSR reports some information about VMX support. We
6719 	 * should return information about the VMX we emulate for the
6720 	 * guest, and the VMCS structure we give it - not about the
6721 	 * VMX support of the underlying hardware.
6722 	 */
6723 	msrs->basic =
6724 		VMCS12_REVISION |
6725 		VMX_BASIC_TRUE_CTLS |
6726 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6727 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6728 
6729 	if (cpu_has_vmx_basic_inout())
6730 		msrs->basic |= VMX_BASIC_INOUT;
6731 
6732 	/*
6733 	 * These MSRs specify bits which the guest must keep fixed on
6734 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6735 	 * We picked the standard core2 setting.
6736 	 */
6737 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6738 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6739 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6740 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6741 
6742 	/* These MSRs specify bits which the guest must keep fixed off. */
6743 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6744 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6745 
6746 	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6747 }
6748 
6749 void nested_vmx_hardware_unsetup(void)
6750 {
6751 	int i;
6752 
6753 	if (enable_shadow_vmcs) {
6754 		for (i = 0; i < VMX_BITMAP_NR; i++)
6755 			free_page((unsigned long)vmx_bitmap[i]);
6756 	}
6757 }
6758 
6759 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6760 {
6761 	int i;
6762 
6763 	if (!cpu_has_vmx_shadow_vmcs())
6764 		enable_shadow_vmcs = 0;
6765 	if (enable_shadow_vmcs) {
6766 		for (i = 0; i < VMX_BITMAP_NR; i++) {
6767 			/*
6768 			 * The vmx_bitmap is not tied to a VM and so should
6769 			 * not be charged to a memcg.
6770 			 */
6771 			vmx_bitmap[i] = (unsigned long *)
6772 				__get_free_page(GFP_KERNEL);
6773 			if (!vmx_bitmap[i]) {
6774 				nested_vmx_hardware_unsetup();
6775 				return -ENOMEM;
6776 			}
6777 		}
6778 
6779 		init_vmcs_shadow_fields();
6780 	}
6781 
6782 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
6783 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
6784 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
6785 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
6786 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
6787 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
6788 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
6789 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
6790 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
6791 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
6792 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
6793 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
6794 
6795 	return 0;
6796 }
6797 
6798 struct kvm_x86_nested_ops vmx_nested_ops = {
6799 	.leave_nested = vmx_leave_nested,
6800 	.check_events = vmx_check_nested_events,
6801 	.hv_timer_pending = nested_vmx_preemption_timer_pending,
6802 	.triple_fault = nested_vmx_triple_fault,
6803 	.get_state = vmx_get_nested_state,
6804 	.set_state = vmx_set_nested_state,
6805 	.get_nested_state_pages = vmx_get_nested_state_pages,
6806 	.write_log_dirty = nested_vmx_write_pml_buffer,
6807 	.enable_evmcs = nested_enable_evmcs,
6808 	.get_evmcs_version = nested_get_evmcs_version,
6809 };
6810