xref: /openbmc/linux/arch/x86/kvm/vmx/nested.c (revision e657c18a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5 
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8 
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15 
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18 
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21 
22 /*
23  * Hyper-V requires all of these, so mark them as supported even though
24  * they are just treated the same as all-context.
25  */
26 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
27 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
28 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
29 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
30 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
31 
32 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
33 
34 enum {
35 	VMX_VMREAD_BITMAP,
36 	VMX_VMWRITE_BITMAP,
37 	VMX_BITMAP_NR
38 };
39 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
40 
41 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
42 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
43 
44 static u16 shadow_read_only_fields[] = {
45 #define SHADOW_FIELD_RO(x) x,
46 #include "vmcs_shadow_fields.h"
47 };
48 static int max_shadow_read_only_fields =
49 	ARRAY_SIZE(shadow_read_only_fields);
50 
51 static u16 shadow_read_write_fields[] = {
52 #define SHADOW_FIELD_RW(x) x,
53 #include "vmcs_shadow_fields.h"
54 };
55 static int max_shadow_read_write_fields =
56 	ARRAY_SIZE(shadow_read_write_fields);
57 
58 static void init_vmcs_shadow_fields(void)
59 {
60 	int i, j;
61 
62 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
63 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
64 
65 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
66 		u16 field = shadow_read_only_fields[i];
67 
68 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
69 		    (i + 1 == max_shadow_read_only_fields ||
70 		     shadow_read_only_fields[i + 1] != field + 1))
71 			pr_err("Missing field from shadow_read_only_field %x\n",
72 			       field + 1);
73 
74 		clear_bit(field, vmx_vmread_bitmap);
75 #ifdef CONFIG_X86_64
76 		if (field & 1)
77 			continue;
78 #endif
79 		if (j < i)
80 			shadow_read_only_fields[j] = field;
81 		j++;
82 	}
83 	max_shadow_read_only_fields = j;
84 
85 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
86 		u16 field = shadow_read_write_fields[i];
87 
88 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
89 		    (i + 1 == max_shadow_read_write_fields ||
90 		     shadow_read_write_fields[i + 1] != field + 1))
91 			pr_err("Missing field from shadow_read_write_field %x\n",
92 			       field + 1);
93 
94 		/*
95 		 * PML and the preemption timer can be emulated, but the
96 		 * processor cannot vmwrite to fields that don't exist
97 		 * on bare metal.
98 		 */
99 		switch (field) {
100 		case GUEST_PML_INDEX:
101 			if (!cpu_has_vmx_pml())
102 				continue;
103 			break;
104 		case VMX_PREEMPTION_TIMER_VALUE:
105 			if (!cpu_has_vmx_preemption_timer())
106 				continue;
107 			break;
108 		case GUEST_INTR_STATUS:
109 			if (!cpu_has_vmx_apicv())
110 				continue;
111 			break;
112 		default:
113 			break;
114 		}
115 
116 		clear_bit(field, vmx_vmwrite_bitmap);
117 		clear_bit(field, vmx_vmread_bitmap);
118 #ifdef CONFIG_X86_64
119 		if (field & 1)
120 			continue;
121 #endif
122 		if (j < i)
123 			shadow_read_write_fields[j] = field;
124 		j++;
125 	}
126 	max_shadow_read_write_fields = j;
127 }
128 
129 /*
130  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
131  * set the success or error code of an emulated VMX instruction (as specified
132  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
133  * instruction.
134  */
135 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
136 {
137 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
138 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
139 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
140 	return kvm_skip_emulated_instruction(vcpu);
141 }
142 
143 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
144 {
145 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
146 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
147 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
148 			| X86_EFLAGS_CF);
149 	return kvm_skip_emulated_instruction(vcpu);
150 }
151 
152 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
153 				u32 vm_instruction_error)
154 {
155 	struct vcpu_vmx *vmx = to_vmx(vcpu);
156 
157 	/*
158 	 * failValid writes the error number to the current VMCS, which
159 	 * can't be done if there isn't a current VMCS.
160 	 */
161 	if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
162 		return nested_vmx_failInvalid(vcpu);
163 
164 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
166 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
167 			| X86_EFLAGS_ZF);
168 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
169 	/*
170 	 * We don't need to force a shadow sync because
171 	 * VM_INSTRUCTION_ERROR is not shadowed
172 	 */
173 	return kvm_skip_emulated_instruction(vcpu);
174 }
175 
176 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
177 {
178 	/* TODO: not to reset guest simply here. */
179 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
180 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
181 }
182 
183 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
184 {
185 	vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
186 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
187 }
188 
189 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
190 {
191 	struct vcpu_vmx *vmx = to_vmx(vcpu);
192 
193 	if (!vmx->nested.hv_evmcs)
194 		return;
195 
196 	kunmap(vmx->nested.hv_evmcs_page);
197 	kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
198 	vmx->nested.hv_evmcs_vmptr = -1ull;
199 	vmx->nested.hv_evmcs_page = NULL;
200 	vmx->nested.hv_evmcs = NULL;
201 }
202 
203 /*
204  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
205  * just stops using VMX.
206  */
207 static void free_nested(struct kvm_vcpu *vcpu)
208 {
209 	struct vcpu_vmx *vmx = to_vmx(vcpu);
210 
211 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
212 		return;
213 
214 	vmx->nested.vmxon = false;
215 	vmx->nested.smm.vmxon = false;
216 	free_vpid(vmx->nested.vpid02);
217 	vmx->nested.posted_intr_nv = -1;
218 	vmx->nested.current_vmptr = -1ull;
219 	if (enable_shadow_vmcs) {
220 		vmx_disable_shadow_vmcs(vmx);
221 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
222 		free_vmcs(vmx->vmcs01.shadow_vmcs);
223 		vmx->vmcs01.shadow_vmcs = NULL;
224 	}
225 	kfree(vmx->nested.cached_vmcs12);
226 	kfree(vmx->nested.cached_shadow_vmcs12);
227 	/* Unpin physical memory we referred to in the vmcs02 */
228 	if (vmx->nested.apic_access_page) {
229 		kvm_release_page_dirty(vmx->nested.apic_access_page);
230 		vmx->nested.apic_access_page = NULL;
231 	}
232 	if (vmx->nested.virtual_apic_page) {
233 		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
234 		vmx->nested.virtual_apic_page = NULL;
235 	}
236 	if (vmx->nested.pi_desc_page) {
237 		kunmap(vmx->nested.pi_desc_page);
238 		kvm_release_page_dirty(vmx->nested.pi_desc_page);
239 		vmx->nested.pi_desc_page = NULL;
240 		vmx->nested.pi_desc = NULL;
241 	}
242 
243 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
244 
245 	nested_release_evmcs(vcpu);
246 
247 	free_loaded_vmcs(&vmx->nested.vmcs02);
248 }
249 
250 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
251 {
252 	struct vcpu_vmx *vmx = to_vmx(vcpu);
253 	int cpu;
254 
255 	if (vmx->loaded_vmcs == vmcs)
256 		return;
257 
258 	cpu = get_cpu();
259 	vmx_vcpu_put(vcpu);
260 	vmx->loaded_vmcs = vmcs;
261 	vmx_vcpu_load(vcpu, cpu);
262 	put_cpu();
263 
264 	vm_entry_controls_reset_shadow(vmx);
265 	vm_exit_controls_reset_shadow(vmx);
266 	vmx_segment_cache_clear(vmx);
267 }
268 
269 /*
270  * Ensure that the current vmcs of the logical processor is the
271  * vmcs01 of the vcpu before calling free_nested().
272  */
273 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
274 {
275 	vcpu_load(vcpu);
276 	vmx_leave_nested(vcpu);
277 	vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
278 	free_nested(vcpu);
279 	vcpu_put(vcpu);
280 }
281 
282 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
283 		struct x86_exception *fault)
284 {
285 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
286 	struct vcpu_vmx *vmx = to_vmx(vcpu);
287 	u32 exit_reason;
288 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
289 
290 	if (vmx->nested.pml_full) {
291 		exit_reason = EXIT_REASON_PML_FULL;
292 		vmx->nested.pml_full = false;
293 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
294 	} else if (fault->error_code & PFERR_RSVD_MASK)
295 		exit_reason = EXIT_REASON_EPT_MISCONFIG;
296 	else
297 		exit_reason = EXIT_REASON_EPT_VIOLATION;
298 
299 	nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
300 	vmcs12->guest_physical_address = fault->address;
301 }
302 
303 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
304 {
305 	WARN_ON(mmu_is_nested(vcpu));
306 
307 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
308 	kvm_init_shadow_ept_mmu(vcpu,
309 			to_vmx(vcpu)->nested.msrs.ept_caps &
310 			VMX_EPT_EXECUTE_ONLY_BIT,
311 			nested_ept_ad_enabled(vcpu),
312 			nested_ept_get_cr3(vcpu));
313 	vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
314 	vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
315 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
316 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
317 
318 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
319 }
320 
321 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
322 {
323 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
324 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
325 }
326 
327 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
328 					    u16 error_code)
329 {
330 	bool inequality, bit;
331 
332 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
333 	inequality =
334 		(error_code & vmcs12->page_fault_error_code_mask) !=
335 		 vmcs12->page_fault_error_code_match;
336 	return inequality ^ bit;
337 }
338 
339 
340 /*
341  * KVM wants to inject page-faults which it got to the guest. This function
342  * checks whether in a nested guest, we need to inject them to L1 or L2.
343  */
344 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
345 {
346 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
347 	unsigned int nr = vcpu->arch.exception.nr;
348 	bool has_payload = vcpu->arch.exception.has_payload;
349 	unsigned long payload = vcpu->arch.exception.payload;
350 
351 	if (nr == PF_VECTOR) {
352 		if (vcpu->arch.exception.nested_apf) {
353 			*exit_qual = vcpu->arch.apf.nested_apf_token;
354 			return 1;
355 		}
356 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
357 						    vcpu->arch.exception.error_code)) {
358 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
359 			return 1;
360 		}
361 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
362 		if (nr == DB_VECTOR) {
363 			if (!has_payload) {
364 				payload = vcpu->arch.dr6;
365 				payload &= ~(DR6_FIXED_1 | DR6_BT);
366 				payload ^= DR6_RTM;
367 			}
368 			*exit_qual = payload;
369 		} else
370 			*exit_qual = 0;
371 		return 1;
372 	}
373 
374 	return 0;
375 }
376 
377 
378 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
379 		struct x86_exception *fault)
380 {
381 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
382 
383 	WARN_ON(!is_guest_mode(vcpu));
384 
385 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
386 		!to_vmx(vcpu)->nested.nested_run_pending) {
387 		vmcs12->vm_exit_intr_error_code = fault->error_code;
388 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
389 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
390 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
391 				  fault->address);
392 	} else {
393 		kvm_inject_page_fault(vcpu, fault);
394 	}
395 }
396 
397 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
398 {
399 	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
400 }
401 
402 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
403 					       struct vmcs12 *vmcs12)
404 {
405 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
406 		return 0;
407 
408 	if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
409 	    !page_address_valid(vcpu, vmcs12->io_bitmap_b))
410 		return -EINVAL;
411 
412 	return 0;
413 }
414 
415 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
416 						struct vmcs12 *vmcs12)
417 {
418 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
419 		return 0;
420 
421 	if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
422 		return -EINVAL;
423 
424 	return 0;
425 }
426 
427 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
428 						struct vmcs12 *vmcs12)
429 {
430 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
431 		return 0;
432 
433 	if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
434 		return -EINVAL;
435 
436 	return 0;
437 }
438 
439 /*
440  * Check if MSR is intercepted for L01 MSR bitmap.
441  */
442 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
443 {
444 	unsigned long *msr_bitmap;
445 	int f = sizeof(unsigned long);
446 
447 	if (!cpu_has_vmx_msr_bitmap())
448 		return true;
449 
450 	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
451 
452 	if (msr <= 0x1fff) {
453 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
454 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
455 		msr &= 0x1fff;
456 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
457 	}
458 
459 	return true;
460 }
461 
462 /*
463  * If a msr is allowed by L0, we should check whether it is allowed by L1.
464  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
465  */
466 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
467 					       unsigned long *msr_bitmap_nested,
468 					       u32 msr, int type)
469 {
470 	int f = sizeof(unsigned long);
471 
472 	/*
473 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
474 	 * have the write-low and read-high bitmap offsets the wrong way round.
475 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
476 	 */
477 	if (msr <= 0x1fff) {
478 		if (type & MSR_TYPE_R &&
479 		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
480 			/* read-low */
481 			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
482 
483 		if (type & MSR_TYPE_W &&
484 		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
485 			/* write-low */
486 			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
487 
488 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
489 		msr &= 0x1fff;
490 		if (type & MSR_TYPE_R &&
491 		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
492 			/* read-high */
493 			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
494 
495 		if (type & MSR_TYPE_W &&
496 		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
497 			/* write-high */
498 			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
499 
500 	}
501 }
502 
503 /*
504  * Merge L0's and L1's MSR bitmap, return false to indicate that
505  * we do not use the hardware.
506  */
507 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
508 						 struct vmcs12 *vmcs12)
509 {
510 	int msr;
511 	struct page *page;
512 	unsigned long *msr_bitmap_l1;
513 	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
514 	/*
515 	 * pred_cmd & spec_ctrl are trying to verify two things:
516 	 *
517 	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
518 	 *    ensures that we do not accidentally generate an L02 MSR bitmap
519 	 *    from the L12 MSR bitmap that is too permissive.
520 	 * 2. That L1 or L2s have actually used the MSR. This avoids
521 	 *    unnecessarily merging of the bitmap if the MSR is unused. This
522 	 *    works properly because we only update the L01 MSR bitmap lazily.
523 	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
524 	 *    updated to reflect this when L1 (or its L2s) actually write to
525 	 *    the MSR.
526 	 */
527 	bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
528 	bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
529 
530 	/* Nothing to do if the MSR bitmap is not in use.  */
531 	if (!cpu_has_vmx_msr_bitmap() ||
532 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
533 		return false;
534 
535 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
536 	    !pred_cmd && !spec_ctrl)
537 		return false;
538 
539 	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
540 	if (is_error_page(page))
541 		return false;
542 
543 	msr_bitmap_l1 = (unsigned long *)kmap(page);
544 	if (nested_cpu_has_apic_reg_virt(vmcs12)) {
545 		/*
546 		 * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
547 		 * just lets the processor take the value from the virtual-APIC page;
548 		 * take those 256 bits directly from the L1 bitmap.
549 		 */
550 		for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551 			unsigned word = msr / BITS_PER_LONG;
552 			msr_bitmap_l0[word] = msr_bitmap_l1[word];
553 			msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
554 		}
555 	} else {
556 		for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
557 			unsigned word = msr / BITS_PER_LONG;
558 			msr_bitmap_l0[word] = ~0;
559 			msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
560 		}
561 	}
562 
563 	nested_vmx_disable_intercept_for_msr(
564 		msr_bitmap_l1, msr_bitmap_l0,
565 		X2APIC_MSR(APIC_TASKPRI),
566 		MSR_TYPE_W);
567 
568 	if (nested_cpu_has_vid(vmcs12)) {
569 		nested_vmx_disable_intercept_for_msr(
570 			msr_bitmap_l1, msr_bitmap_l0,
571 			X2APIC_MSR(APIC_EOI),
572 			MSR_TYPE_W);
573 		nested_vmx_disable_intercept_for_msr(
574 			msr_bitmap_l1, msr_bitmap_l0,
575 			X2APIC_MSR(APIC_SELF_IPI),
576 			MSR_TYPE_W);
577 	}
578 
579 	if (spec_ctrl)
580 		nested_vmx_disable_intercept_for_msr(
581 					msr_bitmap_l1, msr_bitmap_l0,
582 					MSR_IA32_SPEC_CTRL,
583 					MSR_TYPE_R | MSR_TYPE_W);
584 
585 	if (pred_cmd)
586 		nested_vmx_disable_intercept_for_msr(
587 					msr_bitmap_l1, msr_bitmap_l0,
588 					MSR_IA32_PRED_CMD,
589 					MSR_TYPE_W);
590 
591 	kunmap(page);
592 	kvm_release_page_clean(page);
593 
594 	return true;
595 }
596 
597 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
598 				       struct vmcs12 *vmcs12)
599 {
600 	struct vmcs12 *shadow;
601 	struct page *page;
602 
603 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
604 	    vmcs12->vmcs_link_pointer == -1ull)
605 		return;
606 
607 	shadow = get_shadow_vmcs12(vcpu);
608 	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
609 
610 	memcpy(shadow, kmap(page), VMCS12_SIZE);
611 
612 	kunmap(page);
613 	kvm_release_page_clean(page);
614 }
615 
616 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
617 					      struct vmcs12 *vmcs12)
618 {
619 	struct vcpu_vmx *vmx = to_vmx(vcpu);
620 
621 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
622 	    vmcs12->vmcs_link_pointer == -1ull)
623 		return;
624 
625 	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
626 			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
627 }
628 
629 /*
630  * In nested virtualization, check if L1 has set
631  * VM_EXIT_ACK_INTR_ON_EXIT
632  */
633 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
634 {
635 	return get_vmcs12(vcpu)->vm_exit_controls &
636 		VM_EXIT_ACK_INTR_ON_EXIT;
637 }
638 
639 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
640 {
641 	return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
642 }
643 
644 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
645 					  struct vmcs12 *vmcs12)
646 {
647 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
648 	    !page_address_valid(vcpu, vmcs12->apic_access_addr))
649 		return -EINVAL;
650 	else
651 		return 0;
652 }
653 
654 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
655 					   struct vmcs12 *vmcs12)
656 {
657 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
658 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
659 	    !nested_cpu_has_vid(vmcs12) &&
660 	    !nested_cpu_has_posted_intr(vmcs12))
661 		return 0;
662 
663 	/*
664 	 * If virtualize x2apic mode is enabled,
665 	 * virtualize apic access must be disabled.
666 	 */
667 	if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
668 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
669 		return -EINVAL;
670 
671 	/*
672 	 * If virtual interrupt delivery is enabled,
673 	 * we must exit on external interrupts.
674 	 */
675 	if (nested_cpu_has_vid(vmcs12) &&
676 	   !nested_exit_on_intr(vcpu))
677 		return -EINVAL;
678 
679 	/*
680 	 * bits 15:8 should be zero in posted_intr_nv,
681 	 * the descriptor address has been already checked
682 	 * in nested_get_vmcs12_pages.
683 	 *
684 	 * bits 5:0 of posted_intr_desc_addr should be zero.
685 	 */
686 	if (nested_cpu_has_posted_intr(vmcs12) &&
687 	   (!nested_cpu_has_vid(vmcs12) ||
688 	    !nested_exit_intr_ack_set(vcpu) ||
689 	    (vmcs12->posted_intr_nv & 0xff00) ||
690 	    (vmcs12->posted_intr_desc_addr & 0x3f) ||
691 	    (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
692 		return -EINVAL;
693 
694 	/* tpr shadow is needed by all apicv features. */
695 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
696 		return -EINVAL;
697 
698 	return 0;
699 }
700 
701 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
702 				       u32 count, u64 addr)
703 {
704 	int maxphyaddr;
705 
706 	if (count == 0)
707 		return 0;
708 	maxphyaddr = cpuid_maxphyaddr(vcpu);
709 	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
710 	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
711 		return -EINVAL;
712 
713 	return 0;
714 }
715 
716 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
717 						     struct vmcs12 *vmcs12)
718 {
719 	if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
720 					vmcs12->vm_exit_msr_load_addr) ||
721 	    nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
722 					vmcs12->vm_exit_msr_store_addr))
723 		return -EINVAL;
724 
725 	return 0;
726 }
727 
728 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
729                                                       struct vmcs12 *vmcs12)
730 {
731 	if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
732                                         vmcs12->vm_entry_msr_load_addr))
733                 return -EINVAL;
734 
735 	return 0;
736 }
737 
738 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
739 					 struct vmcs12 *vmcs12)
740 {
741 	if (!nested_cpu_has_pml(vmcs12))
742 		return 0;
743 
744 	if (!nested_cpu_has_ept(vmcs12) ||
745 	    !page_address_valid(vcpu, vmcs12->pml_address))
746 		return -EINVAL;
747 
748 	return 0;
749 }
750 
751 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
752 							struct vmcs12 *vmcs12)
753 {
754 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
755 	    !nested_cpu_has_ept(vmcs12))
756 		return -EINVAL;
757 	return 0;
758 }
759 
760 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
761 							 struct vmcs12 *vmcs12)
762 {
763 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
764 	    !nested_cpu_has_ept(vmcs12))
765 		return -EINVAL;
766 	return 0;
767 }
768 
769 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
770 						 struct vmcs12 *vmcs12)
771 {
772 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
773 		return 0;
774 
775 	if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
776 	    !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
777 		return -EINVAL;
778 
779 	return 0;
780 }
781 
782 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
783 				       struct vmx_msr_entry *e)
784 {
785 	/* x2APIC MSR accesses are not allowed */
786 	if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
787 		return -EINVAL;
788 	if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
789 	    e->index == MSR_IA32_UCODE_REV)
790 		return -EINVAL;
791 	if (e->reserved != 0)
792 		return -EINVAL;
793 	return 0;
794 }
795 
796 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
797 				     struct vmx_msr_entry *e)
798 {
799 	if (e->index == MSR_FS_BASE ||
800 	    e->index == MSR_GS_BASE ||
801 	    e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
802 	    nested_vmx_msr_check_common(vcpu, e))
803 		return -EINVAL;
804 	return 0;
805 }
806 
807 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
808 				      struct vmx_msr_entry *e)
809 {
810 	if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
811 	    nested_vmx_msr_check_common(vcpu, e))
812 		return -EINVAL;
813 	return 0;
814 }
815 
816 /*
817  * Load guest's/host's msr at nested entry/exit.
818  * return 0 for success, entry index for failure.
819  */
820 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
821 {
822 	u32 i;
823 	struct vmx_msr_entry e;
824 	struct msr_data msr;
825 
826 	msr.host_initiated = false;
827 	for (i = 0; i < count; i++) {
828 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
829 					&e, sizeof(e))) {
830 			pr_debug_ratelimited(
831 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
832 				__func__, i, gpa + i * sizeof(e));
833 			goto fail;
834 		}
835 		if (nested_vmx_load_msr_check(vcpu, &e)) {
836 			pr_debug_ratelimited(
837 				"%s check failed (%u, 0x%x, 0x%x)\n",
838 				__func__, i, e.index, e.reserved);
839 			goto fail;
840 		}
841 		msr.index = e.index;
842 		msr.data = e.value;
843 		if (kvm_set_msr(vcpu, &msr)) {
844 			pr_debug_ratelimited(
845 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
846 				__func__, i, e.index, e.value);
847 			goto fail;
848 		}
849 	}
850 	return 0;
851 fail:
852 	return i + 1;
853 }
854 
855 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
856 {
857 	u32 i;
858 	struct vmx_msr_entry e;
859 
860 	for (i = 0; i < count; i++) {
861 		struct msr_data msr_info;
862 		if (kvm_vcpu_read_guest(vcpu,
863 					gpa + i * sizeof(e),
864 					&e, 2 * sizeof(u32))) {
865 			pr_debug_ratelimited(
866 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
867 				__func__, i, gpa + i * sizeof(e));
868 			return -EINVAL;
869 		}
870 		if (nested_vmx_store_msr_check(vcpu, &e)) {
871 			pr_debug_ratelimited(
872 				"%s check failed (%u, 0x%x, 0x%x)\n",
873 				__func__, i, e.index, e.reserved);
874 			return -EINVAL;
875 		}
876 		msr_info.host_initiated = false;
877 		msr_info.index = e.index;
878 		if (kvm_get_msr(vcpu, &msr_info)) {
879 			pr_debug_ratelimited(
880 				"%s cannot read MSR (%u, 0x%x)\n",
881 				__func__, i, e.index);
882 			return -EINVAL;
883 		}
884 		if (kvm_vcpu_write_guest(vcpu,
885 					 gpa + i * sizeof(e) +
886 					     offsetof(struct vmx_msr_entry, value),
887 					 &msr_info.data, sizeof(msr_info.data))) {
888 			pr_debug_ratelimited(
889 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
890 				__func__, i, e.index, msr_info.data);
891 			return -EINVAL;
892 		}
893 	}
894 	return 0;
895 }
896 
897 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
898 {
899 	unsigned long invalid_mask;
900 
901 	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
902 	return (val & invalid_mask) == 0;
903 }
904 
905 /*
906  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
907  * emulating VM entry into a guest with EPT enabled.
908  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
909  * is assigned to entry_failure_code on failure.
910  */
911 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
912 			       u32 *entry_failure_code)
913 {
914 	if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
915 		if (!nested_cr3_valid(vcpu, cr3)) {
916 			*entry_failure_code = ENTRY_FAIL_DEFAULT;
917 			return 1;
918 		}
919 
920 		/*
921 		 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
922 		 * must not be dereferenced.
923 		 */
924 		if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
925 		    !nested_ept) {
926 			if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
927 				*entry_failure_code = ENTRY_FAIL_PDPTE;
928 				return 1;
929 			}
930 		}
931 	}
932 
933 	if (!nested_ept)
934 		kvm_mmu_new_cr3(vcpu, cr3, false);
935 
936 	vcpu->arch.cr3 = cr3;
937 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
938 
939 	kvm_init_mmu(vcpu, false);
940 
941 	return 0;
942 }
943 
944 /*
945  * Returns if KVM is able to config CPU to tag TLB entries
946  * populated by L2 differently than TLB entries populated
947  * by L1.
948  *
949  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
950  *
951  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
952  * with different VPID (L1 entries are tagged with vmx->vpid
953  * while L2 entries are tagged with vmx->nested.vpid02).
954  */
955 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
956 {
957 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
958 
959 	return nested_cpu_has_ept(vmcs12) ||
960 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
961 }
962 
963 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
964 {
965 	struct vcpu_vmx *vmx = to_vmx(vcpu);
966 
967 	return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
968 }
969 
970 
971 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
972 {
973 	return fixed_bits_valid(control, low, high);
974 }
975 
976 static inline u64 vmx_control_msr(u32 low, u32 high)
977 {
978 	return low | ((u64)high << 32);
979 }
980 
981 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
982 {
983 	superset &= mask;
984 	subset &= mask;
985 
986 	return (superset | subset) == superset;
987 }
988 
989 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
990 {
991 	const u64 feature_and_reserved =
992 		/* feature (except bit 48; see below) */
993 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
994 		/* reserved */
995 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
996 	u64 vmx_basic = vmx->nested.msrs.basic;
997 
998 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
999 		return -EINVAL;
1000 
1001 	/*
1002 	 * KVM does not emulate a version of VMX that constrains physical
1003 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1004 	 */
1005 	if (data & BIT_ULL(48))
1006 		return -EINVAL;
1007 
1008 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1009 	    vmx_basic_vmcs_revision_id(data))
1010 		return -EINVAL;
1011 
1012 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1013 		return -EINVAL;
1014 
1015 	vmx->nested.msrs.basic = data;
1016 	return 0;
1017 }
1018 
1019 static int
1020 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1021 {
1022 	u64 supported;
1023 	u32 *lowp, *highp;
1024 
1025 	switch (msr_index) {
1026 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1027 		lowp = &vmx->nested.msrs.pinbased_ctls_low;
1028 		highp = &vmx->nested.msrs.pinbased_ctls_high;
1029 		break;
1030 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1031 		lowp = &vmx->nested.msrs.procbased_ctls_low;
1032 		highp = &vmx->nested.msrs.procbased_ctls_high;
1033 		break;
1034 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1035 		lowp = &vmx->nested.msrs.exit_ctls_low;
1036 		highp = &vmx->nested.msrs.exit_ctls_high;
1037 		break;
1038 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1039 		lowp = &vmx->nested.msrs.entry_ctls_low;
1040 		highp = &vmx->nested.msrs.entry_ctls_high;
1041 		break;
1042 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1043 		lowp = &vmx->nested.msrs.secondary_ctls_low;
1044 		highp = &vmx->nested.msrs.secondary_ctls_high;
1045 		break;
1046 	default:
1047 		BUG();
1048 	}
1049 
1050 	supported = vmx_control_msr(*lowp, *highp);
1051 
1052 	/* Check must-be-1 bits are still 1. */
1053 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1054 		return -EINVAL;
1055 
1056 	/* Check must-be-0 bits are still 0. */
1057 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1058 		return -EINVAL;
1059 
1060 	*lowp = data;
1061 	*highp = data >> 32;
1062 	return 0;
1063 }
1064 
1065 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1066 {
1067 	const u64 feature_and_reserved_bits =
1068 		/* feature */
1069 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1070 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1071 		/* reserved */
1072 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1073 	u64 vmx_misc;
1074 
1075 	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1076 				   vmx->nested.msrs.misc_high);
1077 
1078 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1079 		return -EINVAL;
1080 
1081 	if ((vmx->nested.msrs.pinbased_ctls_high &
1082 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1083 	    vmx_misc_preemption_timer_rate(data) !=
1084 	    vmx_misc_preemption_timer_rate(vmx_misc))
1085 		return -EINVAL;
1086 
1087 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1088 		return -EINVAL;
1089 
1090 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1091 		return -EINVAL;
1092 
1093 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1094 		return -EINVAL;
1095 
1096 	vmx->nested.msrs.misc_low = data;
1097 	vmx->nested.msrs.misc_high = data >> 32;
1098 
1099 	/*
1100 	 * If L1 has read-only VM-exit information fields, use the
1101 	 * less permissive vmx_vmwrite_bitmap to specify write
1102 	 * permissions for the shadow VMCS.
1103 	 */
1104 	if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1105 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
1106 
1107 	return 0;
1108 }
1109 
1110 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1111 {
1112 	u64 vmx_ept_vpid_cap;
1113 
1114 	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1115 					   vmx->nested.msrs.vpid_caps);
1116 
1117 	/* Every bit is either reserved or a feature bit. */
1118 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1119 		return -EINVAL;
1120 
1121 	vmx->nested.msrs.ept_caps = data;
1122 	vmx->nested.msrs.vpid_caps = data >> 32;
1123 	return 0;
1124 }
1125 
1126 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1127 {
1128 	u64 *msr;
1129 
1130 	switch (msr_index) {
1131 	case MSR_IA32_VMX_CR0_FIXED0:
1132 		msr = &vmx->nested.msrs.cr0_fixed0;
1133 		break;
1134 	case MSR_IA32_VMX_CR4_FIXED0:
1135 		msr = &vmx->nested.msrs.cr4_fixed0;
1136 		break;
1137 	default:
1138 		BUG();
1139 	}
1140 
1141 	/*
1142 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1143 	 * must be 1 in the restored value.
1144 	 */
1145 	if (!is_bitwise_subset(data, *msr, -1ULL))
1146 		return -EINVAL;
1147 
1148 	*msr = data;
1149 	return 0;
1150 }
1151 
1152 /*
1153  * Called when userspace is restoring VMX MSRs.
1154  *
1155  * Returns 0 on success, non-0 otherwise.
1156  */
1157 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1158 {
1159 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1160 
1161 	/*
1162 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1163 	 * is in VMX operation.
1164 	 */
1165 	if (vmx->nested.vmxon)
1166 		return -EBUSY;
1167 
1168 	switch (msr_index) {
1169 	case MSR_IA32_VMX_BASIC:
1170 		return vmx_restore_vmx_basic(vmx, data);
1171 	case MSR_IA32_VMX_PINBASED_CTLS:
1172 	case MSR_IA32_VMX_PROCBASED_CTLS:
1173 	case MSR_IA32_VMX_EXIT_CTLS:
1174 	case MSR_IA32_VMX_ENTRY_CTLS:
1175 		/*
1176 		 * The "non-true" VMX capability MSRs are generated from the
1177 		 * "true" MSRs, so we do not support restoring them directly.
1178 		 *
1179 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1180 		 * should restore the "true" MSRs with the must-be-1 bits
1181 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1182 		 * DEFAULT SETTINGS".
1183 		 */
1184 		return -EINVAL;
1185 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1186 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1187 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1188 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1189 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1190 		return vmx_restore_control_msr(vmx, msr_index, data);
1191 	case MSR_IA32_VMX_MISC:
1192 		return vmx_restore_vmx_misc(vmx, data);
1193 	case MSR_IA32_VMX_CR0_FIXED0:
1194 	case MSR_IA32_VMX_CR4_FIXED0:
1195 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1196 	case MSR_IA32_VMX_CR0_FIXED1:
1197 	case MSR_IA32_VMX_CR4_FIXED1:
1198 		/*
1199 		 * These MSRs are generated based on the vCPU's CPUID, so we
1200 		 * do not support restoring them directly.
1201 		 */
1202 		return -EINVAL;
1203 	case MSR_IA32_VMX_EPT_VPID_CAP:
1204 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1205 	case MSR_IA32_VMX_VMCS_ENUM:
1206 		vmx->nested.msrs.vmcs_enum = data;
1207 		return 0;
1208 	default:
1209 		/*
1210 		 * The rest of the VMX capability MSRs do not support restore.
1211 		 */
1212 		return -EINVAL;
1213 	}
1214 }
1215 
1216 /* Returns 0 on success, non-0 otherwise. */
1217 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1218 {
1219 	switch (msr_index) {
1220 	case MSR_IA32_VMX_BASIC:
1221 		*pdata = msrs->basic;
1222 		break;
1223 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1224 	case MSR_IA32_VMX_PINBASED_CTLS:
1225 		*pdata = vmx_control_msr(
1226 			msrs->pinbased_ctls_low,
1227 			msrs->pinbased_ctls_high);
1228 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1229 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1230 		break;
1231 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1232 	case MSR_IA32_VMX_PROCBASED_CTLS:
1233 		*pdata = vmx_control_msr(
1234 			msrs->procbased_ctls_low,
1235 			msrs->procbased_ctls_high);
1236 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1237 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1238 		break;
1239 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1240 	case MSR_IA32_VMX_EXIT_CTLS:
1241 		*pdata = vmx_control_msr(
1242 			msrs->exit_ctls_low,
1243 			msrs->exit_ctls_high);
1244 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1245 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1246 		break;
1247 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248 	case MSR_IA32_VMX_ENTRY_CTLS:
1249 		*pdata = vmx_control_msr(
1250 			msrs->entry_ctls_low,
1251 			msrs->entry_ctls_high);
1252 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1253 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1254 		break;
1255 	case MSR_IA32_VMX_MISC:
1256 		*pdata = vmx_control_msr(
1257 			msrs->misc_low,
1258 			msrs->misc_high);
1259 		break;
1260 	case MSR_IA32_VMX_CR0_FIXED0:
1261 		*pdata = msrs->cr0_fixed0;
1262 		break;
1263 	case MSR_IA32_VMX_CR0_FIXED1:
1264 		*pdata = msrs->cr0_fixed1;
1265 		break;
1266 	case MSR_IA32_VMX_CR4_FIXED0:
1267 		*pdata = msrs->cr4_fixed0;
1268 		break;
1269 	case MSR_IA32_VMX_CR4_FIXED1:
1270 		*pdata = msrs->cr4_fixed1;
1271 		break;
1272 	case MSR_IA32_VMX_VMCS_ENUM:
1273 		*pdata = msrs->vmcs_enum;
1274 		break;
1275 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1276 		*pdata = vmx_control_msr(
1277 			msrs->secondary_ctls_low,
1278 			msrs->secondary_ctls_high);
1279 		break;
1280 	case MSR_IA32_VMX_EPT_VPID_CAP:
1281 		*pdata = msrs->ept_caps |
1282 			((u64)msrs->vpid_caps << 32);
1283 		break;
1284 	case MSR_IA32_VMX_VMFUNC:
1285 		*pdata = msrs->vmfunc_controls;
1286 		break;
1287 	default:
1288 		return 1;
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 /*
1295  * Copy the writable VMCS shadow fields back to the VMCS12, in case
1296  * they have been modified by the L1 guest. Note that the "read-only"
1297  * VM-exit information fields are actually writable if the vCPU is
1298  * configured to support "VMWRITE to any supported field in the VMCS."
1299  */
1300 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1301 {
1302 	const u16 *fields[] = {
1303 		shadow_read_write_fields,
1304 		shadow_read_only_fields
1305 	};
1306 	const int max_fields[] = {
1307 		max_shadow_read_write_fields,
1308 		max_shadow_read_only_fields
1309 	};
1310 	int i, q;
1311 	unsigned long field;
1312 	u64 field_value;
1313 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1314 
1315 	preempt_disable();
1316 
1317 	vmcs_load(shadow_vmcs);
1318 
1319 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1320 		for (i = 0; i < max_fields[q]; i++) {
1321 			field = fields[q][i];
1322 			field_value = __vmcs_readl(field);
1323 			vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
1324 		}
1325 		/*
1326 		 * Skip the VM-exit information fields if they are read-only.
1327 		 */
1328 		if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1329 			break;
1330 	}
1331 
1332 	vmcs_clear(shadow_vmcs);
1333 	vmcs_load(vmx->loaded_vmcs->vmcs);
1334 
1335 	preempt_enable();
1336 }
1337 
1338 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1339 {
1340 	const u16 *fields[] = {
1341 		shadow_read_write_fields,
1342 		shadow_read_only_fields
1343 	};
1344 	const int max_fields[] = {
1345 		max_shadow_read_write_fields,
1346 		max_shadow_read_only_fields
1347 	};
1348 	int i, q;
1349 	unsigned long field;
1350 	u64 field_value = 0;
1351 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1352 
1353 	vmcs_load(shadow_vmcs);
1354 
1355 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1356 		for (i = 0; i < max_fields[q]; i++) {
1357 			field = fields[q][i];
1358 			vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
1359 			__vmcs_writel(field, field_value);
1360 		}
1361 	}
1362 
1363 	vmcs_clear(shadow_vmcs);
1364 	vmcs_load(vmx->loaded_vmcs->vmcs);
1365 }
1366 
1367 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1368 {
1369 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1370 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1371 
1372 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1373 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1374 	vmcs12->guest_rip = evmcs->guest_rip;
1375 
1376 	if (unlikely(!(evmcs->hv_clean_fields &
1377 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1378 		vmcs12->guest_rsp = evmcs->guest_rsp;
1379 		vmcs12->guest_rflags = evmcs->guest_rflags;
1380 		vmcs12->guest_interruptibility_info =
1381 			evmcs->guest_interruptibility_info;
1382 	}
1383 
1384 	if (unlikely(!(evmcs->hv_clean_fields &
1385 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1386 		vmcs12->cpu_based_vm_exec_control =
1387 			evmcs->cpu_based_vm_exec_control;
1388 	}
1389 
1390 	if (unlikely(!(evmcs->hv_clean_fields &
1391 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1392 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1393 	}
1394 
1395 	if (unlikely(!(evmcs->hv_clean_fields &
1396 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1397 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1398 	}
1399 
1400 	if (unlikely(!(evmcs->hv_clean_fields &
1401 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1402 		vmcs12->vm_entry_intr_info_field =
1403 			evmcs->vm_entry_intr_info_field;
1404 		vmcs12->vm_entry_exception_error_code =
1405 			evmcs->vm_entry_exception_error_code;
1406 		vmcs12->vm_entry_instruction_len =
1407 			evmcs->vm_entry_instruction_len;
1408 	}
1409 
1410 	if (unlikely(!(evmcs->hv_clean_fields &
1411 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1412 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1413 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1414 		vmcs12->host_cr0 = evmcs->host_cr0;
1415 		vmcs12->host_cr3 = evmcs->host_cr3;
1416 		vmcs12->host_cr4 = evmcs->host_cr4;
1417 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1418 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1419 		vmcs12->host_rip = evmcs->host_rip;
1420 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1421 		vmcs12->host_es_selector = evmcs->host_es_selector;
1422 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1423 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1424 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1425 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1426 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1427 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1428 	}
1429 
1430 	if (unlikely(!(evmcs->hv_clean_fields &
1431 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1432 		vmcs12->pin_based_vm_exec_control =
1433 			evmcs->pin_based_vm_exec_control;
1434 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1435 		vmcs12->secondary_vm_exec_control =
1436 			evmcs->secondary_vm_exec_control;
1437 	}
1438 
1439 	if (unlikely(!(evmcs->hv_clean_fields &
1440 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1441 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1442 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1443 	}
1444 
1445 	if (unlikely(!(evmcs->hv_clean_fields &
1446 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1447 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1448 	}
1449 
1450 	if (unlikely(!(evmcs->hv_clean_fields &
1451 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1452 		vmcs12->guest_es_base = evmcs->guest_es_base;
1453 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1454 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1455 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1456 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1457 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1458 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1459 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1460 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1461 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1462 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1463 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1464 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1465 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1466 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1467 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1468 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1469 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1470 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1471 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1472 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1473 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1474 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1475 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1476 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1477 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1478 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1479 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1480 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1481 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1482 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1483 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1484 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1485 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1486 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1487 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1488 	}
1489 
1490 	if (unlikely(!(evmcs->hv_clean_fields &
1491 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1492 		vmcs12->tsc_offset = evmcs->tsc_offset;
1493 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1494 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1495 	}
1496 
1497 	if (unlikely(!(evmcs->hv_clean_fields &
1498 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1499 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1500 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1501 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1502 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1503 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1504 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1505 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1506 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1507 	}
1508 
1509 	if (unlikely(!(evmcs->hv_clean_fields &
1510 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1511 		vmcs12->host_fs_base = evmcs->host_fs_base;
1512 		vmcs12->host_gs_base = evmcs->host_gs_base;
1513 		vmcs12->host_tr_base = evmcs->host_tr_base;
1514 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1515 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1516 		vmcs12->host_rsp = evmcs->host_rsp;
1517 	}
1518 
1519 	if (unlikely(!(evmcs->hv_clean_fields &
1520 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1521 		vmcs12->ept_pointer = evmcs->ept_pointer;
1522 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1523 	}
1524 
1525 	if (unlikely(!(evmcs->hv_clean_fields &
1526 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1527 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1528 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1529 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1530 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1531 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1532 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1533 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1534 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1535 		vmcs12->guest_pending_dbg_exceptions =
1536 			evmcs->guest_pending_dbg_exceptions;
1537 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1538 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1539 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1540 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1541 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1542 	}
1543 
1544 	/*
1545 	 * Not used?
1546 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1547 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1548 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1549 	 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1550 	 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1551 	 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1552 	 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1553 	 * vmcs12->page_fault_error_code_mask =
1554 	 *		evmcs->page_fault_error_code_mask;
1555 	 * vmcs12->page_fault_error_code_match =
1556 	 *		evmcs->page_fault_error_code_match;
1557 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1558 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1559 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1560 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1561 	 */
1562 
1563 	/*
1564 	 * Read only fields:
1565 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1566 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1567 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1568 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1569 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1570 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1571 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1572 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1573 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1574 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1575 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1576 	 *
1577 	 * Not present in struct vmcs12:
1578 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1579 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1580 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1581 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1582 	 */
1583 
1584 	return 0;
1585 }
1586 
1587 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1588 {
1589 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1590 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1591 
1592 	/*
1593 	 * Should not be changed by KVM:
1594 	 *
1595 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1596 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1597 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1598 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1599 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1600 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1601 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1602 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1603 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1604 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1605 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1606 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1607 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1608 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1609 	 * evmcs->host_rip = vmcs12->host_rip;
1610 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1611 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1612 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1613 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1614 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1615 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1616 	 * evmcs->host_rsp = vmcs12->host_rsp;
1617 	 * sync_vmcs12() doesn't read these:
1618 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1619 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1620 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1621 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1622 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1623 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1624 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1625 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1626 	 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1627 	 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1628 	 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1629 	 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1630 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1631 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1632 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1633 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1634 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1635 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1636 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1637 	 * evmcs->page_fault_error_code_mask =
1638 	 *		vmcs12->page_fault_error_code_mask;
1639 	 * evmcs->page_fault_error_code_match =
1640 	 *		vmcs12->page_fault_error_code_match;
1641 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1642 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1643 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1644 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1645 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1646 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1647 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1648 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1649 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1650 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1651 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1652 	 *
1653 	 * Not present in struct vmcs12:
1654 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1655 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1656 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1657 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1658 	 */
1659 
1660 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1661 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1662 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1663 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1664 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1665 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1666 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1667 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1668 
1669 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1670 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1671 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1672 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1673 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1674 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1675 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1676 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1677 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1678 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1679 
1680 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1681 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1682 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1683 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1684 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1685 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1686 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1687 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1688 
1689 	evmcs->guest_es_base = vmcs12->guest_es_base;
1690 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1691 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1692 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1693 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1694 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1695 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1696 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1697 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1698 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1699 
1700 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1701 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1702 
1703 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1704 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1705 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1706 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1707 
1708 	evmcs->guest_pending_dbg_exceptions =
1709 		vmcs12->guest_pending_dbg_exceptions;
1710 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1711 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1712 
1713 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1714 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1715 
1716 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1717 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1718 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1719 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1720 
1721 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1722 
1723 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1724 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1725 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1726 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1727 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1728 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1729 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1730 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1731 
1732 	evmcs->exit_qualification = vmcs12->exit_qualification;
1733 
1734 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1735 	evmcs->guest_rsp = vmcs12->guest_rsp;
1736 	evmcs->guest_rflags = vmcs12->guest_rflags;
1737 
1738 	evmcs->guest_interruptibility_info =
1739 		vmcs12->guest_interruptibility_info;
1740 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1741 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1742 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1743 	evmcs->vm_entry_exception_error_code =
1744 		vmcs12->vm_entry_exception_error_code;
1745 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1746 
1747 	evmcs->guest_rip = vmcs12->guest_rip;
1748 
1749 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1750 
1751 	return 0;
1752 }
1753 
1754 /*
1755  * This is an equivalent of the nested hypervisor executing the vmptrld
1756  * instruction.
1757  */
1758 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1759 						 bool from_launch)
1760 {
1761 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1762 	struct hv_vp_assist_page assist_page;
1763 
1764 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1765 		return 1;
1766 
1767 	if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
1768 		return 1;
1769 
1770 	if (unlikely(!assist_page.enlighten_vmentry))
1771 		return 1;
1772 
1773 	if (unlikely(assist_page.current_nested_vmcs !=
1774 		     vmx->nested.hv_evmcs_vmptr)) {
1775 
1776 		if (!vmx->nested.hv_evmcs)
1777 			vmx->nested.current_vmptr = -1ull;
1778 
1779 		nested_release_evmcs(vcpu);
1780 
1781 		vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
1782 			vcpu, assist_page.current_nested_vmcs);
1783 
1784 		if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
1785 			return 0;
1786 
1787 		vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
1788 
1789 		/*
1790 		 * Currently, KVM only supports eVMCS version 1
1791 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1792 		 * value to first u32 field of eVMCS which should specify eVMCS
1793 		 * VersionNumber.
1794 		 *
1795 		 * Guest should be aware of supported eVMCS versions by host by
1796 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1797 		 * expected to set this CPUID leaf according to the value
1798 		 * returned in vmcs_version from nested_enable_evmcs().
1799 		 *
1800 		 * However, it turns out that Microsoft Hyper-V fails to comply
1801 		 * to their own invented interface: When Hyper-V use eVMCS, it
1802 		 * just sets first u32 field of eVMCS to revision_id specified
1803 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1804 		 * which is one of the supported versions specified in
1805 		 * CPUID.0x4000000A.EAX[0:15].
1806 		 *
1807 		 * To overcome Hyper-V bug, we accept here either a supported
1808 		 * eVMCS version or VMCS12 revision_id as valid values for first
1809 		 * u32 field of eVMCS.
1810 		 */
1811 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1812 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1813 			nested_release_evmcs(vcpu);
1814 			return 0;
1815 		}
1816 
1817 		vmx->nested.dirty_vmcs12 = true;
1818 		/*
1819 		 * As we keep L2 state for one guest only 'hv_clean_fields' mask
1820 		 * can't be used when we switch between them. Reset it here for
1821 		 * simplicity.
1822 		 */
1823 		vmx->nested.hv_evmcs->hv_clean_fields &=
1824 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1825 		vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
1826 
1827 		/*
1828 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
1829 		 * reloaded from guest's memory (read only fields, fields not
1830 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
1831 		 * are no leftovers.
1832 		 */
1833 		if (from_launch) {
1834 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1835 			memset(vmcs12, 0, sizeof(*vmcs12));
1836 			vmcs12->hdr.revision_id = VMCS12_REVISION;
1837 		}
1838 
1839 	}
1840 	return 1;
1841 }
1842 
1843 void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
1844 {
1845 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1846 
1847 	/*
1848 	 * hv_evmcs may end up being not mapped after migration (when
1849 	 * L2 was running), map it here to make sure vmcs12 changes are
1850 	 * properly reflected.
1851 	 */
1852 	if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1853 		nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1854 
1855 	if (vmx->nested.hv_evmcs) {
1856 		copy_vmcs12_to_enlightened(vmx);
1857 		/* All fields are clean */
1858 		vmx->nested.hv_evmcs->hv_clean_fields |=
1859 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1860 	} else {
1861 		copy_vmcs12_to_shadow(vmx);
1862 	}
1863 
1864 	vmx->nested.need_vmcs12_sync = false;
1865 }
1866 
1867 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1868 {
1869 	struct vcpu_vmx *vmx =
1870 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1871 
1872 	vmx->nested.preemption_timer_expired = true;
1873 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1874 	kvm_vcpu_kick(&vmx->vcpu);
1875 
1876 	return HRTIMER_NORESTART;
1877 }
1878 
1879 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1880 {
1881 	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1882 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1883 
1884 	/*
1885 	 * A timer value of zero is architecturally guaranteed to cause
1886 	 * a VMExit prior to executing any instructions in the guest.
1887 	 */
1888 	if (preemption_timeout == 0) {
1889 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1890 		return;
1891 	}
1892 
1893 	if (vcpu->arch.virtual_tsc_khz == 0)
1894 		return;
1895 
1896 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1897 	preemption_timeout *= 1000000;
1898 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1899 	hrtimer_start(&vmx->nested.preemption_timer,
1900 		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1901 }
1902 
1903 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1904 {
1905 	if (vmx->nested.nested_run_pending &&
1906 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1907 		return vmcs12->guest_ia32_efer;
1908 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1909 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1910 	else
1911 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1912 }
1913 
1914 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1915 {
1916 	/*
1917 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1918 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
1919 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
1920 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
1921 	 */
1922 	if (vmx->nested.vmcs02_initialized)
1923 		return;
1924 	vmx->nested.vmcs02_initialized = true;
1925 
1926 	/*
1927 	 * We don't care what the EPTP value is we just need to guarantee
1928 	 * it's valid so we don't get a false positive when doing early
1929 	 * consistency checks.
1930 	 */
1931 	if (enable_ept && nested_early_check)
1932 		vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1933 
1934 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
1935 	if (cpu_has_vmx_vmfunc())
1936 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
1937 
1938 	if (cpu_has_vmx_posted_intr())
1939 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1940 
1941 	if (cpu_has_vmx_msr_bitmap())
1942 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1943 
1944 	if (enable_pml)
1945 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1946 
1947 	/*
1948 	 * Set the MSR load/store lists to match L0's settings.  Only the
1949 	 * addresses are constant (for vmcs02), the counts can change based
1950 	 * on L2's behavior, e.g. switching to/from long mode.
1951 	 */
1952 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1953 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
1954 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
1955 
1956 	vmx_set_constant_host_state(vmx);
1957 }
1958 
1959 static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
1960 				      struct vmcs12 *vmcs12)
1961 {
1962 	prepare_vmcs02_constant_state(vmx);
1963 
1964 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
1965 
1966 	if (enable_vpid) {
1967 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
1968 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
1969 		else
1970 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1971 	}
1972 }
1973 
1974 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1975 {
1976 	u32 exec_control, vmcs12_exec_ctrl;
1977 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
1978 
1979 	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
1980 		prepare_vmcs02_early_full(vmx, vmcs12);
1981 
1982 	/*
1983 	 * PIN CONTROLS
1984 	 */
1985 	exec_control = vmcs12->pin_based_vm_exec_control;
1986 
1987 	/* Preemption timer setting is computed directly in vmx_vcpu_run.  */
1988 	exec_control |= vmcs_config.pin_based_exec_ctrl;
1989 	exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
1990 	vmx->loaded_vmcs->hv_timer_armed = false;
1991 
1992 	/* Posted interrupts setting is only taken from vmcs12.  */
1993 	if (nested_cpu_has_posted_intr(vmcs12)) {
1994 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
1995 		vmx->nested.pi_pending = false;
1996 	} else {
1997 		exec_control &= ~PIN_BASED_POSTED_INTR;
1998 	}
1999 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
2000 
2001 	/*
2002 	 * EXEC CONTROLS
2003 	 */
2004 	exec_control = vmx_exec_control(vmx); /* L0's desires */
2005 	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2006 	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2007 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2008 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2009 
2010 	/*
2011 	 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
2012 	 * nested_get_vmcs12_pages can't fix it up, the illegal value
2013 	 * will result in a VM entry failure.
2014 	 */
2015 	if (exec_control & CPU_BASED_TPR_SHADOW) {
2016 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2017 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2018 	} else {
2019 #ifdef CONFIG_X86_64
2020 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2021 				CPU_BASED_CR8_STORE_EXITING;
2022 #endif
2023 	}
2024 
2025 	/*
2026 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2027 	 * for I/O port accesses.
2028 	 */
2029 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2030 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2031 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2032 
2033 	/*
2034 	 * SECONDARY EXEC CONTROLS
2035 	 */
2036 	if (cpu_has_secondary_exec_ctrls()) {
2037 		exec_control = vmx->secondary_exec_control;
2038 
2039 		/* Take the following fields only from vmcs12 */
2040 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2041 				  SECONDARY_EXEC_ENABLE_INVPCID |
2042 				  SECONDARY_EXEC_RDTSCP |
2043 				  SECONDARY_EXEC_XSAVES |
2044 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2045 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2046 				  SECONDARY_EXEC_ENABLE_VMFUNC);
2047 		if (nested_cpu_has(vmcs12,
2048 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2049 			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2050 				~SECONDARY_EXEC_ENABLE_PML;
2051 			exec_control |= vmcs12_exec_ctrl;
2052 		}
2053 
2054 		/* VMCS shadowing for L2 is emulated for now */
2055 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2056 
2057 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2058 			vmcs_write16(GUEST_INTR_STATUS,
2059 				vmcs12->guest_intr_status);
2060 
2061 		/*
2062 		 * Write an illegal value to APIC_ACCESS_ADDR. Later,
2063 		 * nested_get_vmcs12_pages will either fix it up or
2064 		 * remove the VM execution control.
2065 		 */
2066 		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
2067 			vmcs_write64(APIC_ACCESS_ADDR, -1ull);
2068 
2069 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2070 			vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2071 
2072 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2073 	}
2074 
2075 	/*
2076 	 * ENTRY CONTROLS
2077 	 *
2078 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2079 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2080 	 * on the related bits (if supported by the CPU) in the hope that
2081 	 * we can avoid VMWrites during vmx_set_efer().
2082 	 */
2083 	exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2084 			~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2085 	if (cpu_has_load_ia32_efer()) {
2086 		if (guest_efer & EFER_LMA)
2087 			exec_control |= VM_ENTRY_IA32E_MODE;
2088 		if (guest_efer != host_efer)
2089 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2090 	}
2091 	vm_entry_controls_init(vmx, exec_control);
2092 
2093 	/*
2094 	 * EXIT CONTROLS
2095 	 *
2096 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2097 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2098 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2099 	 */
2100 	exec_control = vmx_vmexit_ctrl();
2101 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2102 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2103 	vm_exit_controls_init(vmx, exec_control);
2104 
2105 	/*
2106 	 * Conceptually we want to copy the PML address and index from
2107 	 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
2108 	 * since we always flush the log on each vmexit and never change
2109 	 * the PML address (once set), this happens to be equivalent to
2110 	 * simply resetting the index in vmcs02.
2111 	 */
2112 	if (enable_pml)
2113 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2114 
2115 	/*
2116 	 * Interrupt/Exception Fields
2117 	 */
2118 	if (vmx->nested.nested_run_pending) {
2119 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2120 			     vmcs12->vm_entry_intr_info_field);
2121 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2122 			     vmcs12->vm_entry_exception_error_code);
2123 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2124 			     vmcs12->vm_entry_instruction_len);
2125 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2126 			     vmcs12->guest_interruptibility_info);
2127 		vmx->loaded_vmcs->nmi_known_unmasked =
2128 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2129 	} else {
2130 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2131 	}
2132 }
2133 
2134 static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2135 {
2136 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2137 
2138 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2139 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2140 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2141 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2142 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2143 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2144 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2145 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2146 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2147 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2148 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2149 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2150 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2151 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2152 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2153 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2154 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2155 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2156 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2157 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2158 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2159 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2160 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2161 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2162 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2163 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2164 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2165 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2166 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2167 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2168 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2169 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2170 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2171 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2172 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2173 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2174 	}
2175 
2176 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2177 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2178 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2179 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2180 			    vmcs12->guest_pending_dbg_exceptions);
2181 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2182 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2183 
2184 		/*
2185 		 * L1 may access the L2's PDPTR, so save them to construct
2186 		 * vmcs12
2187 		 */
2188 		if (enable_ept) {
2189 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2190 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2191 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2192 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2193 		}
2194 	}
2195 
2196 	if (nested_cpu_has_xsaves(vmcs12))
2197 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2198 
2199 	/*
2200 	 * Whether page-faults are trapped is determined by a combination of
2201 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2202 	 * If enable_ept, L0 doesn't care about page faults and we should
2203 	 * set all of these to L1's desires. However, if !enable_ept, L0 does
2204 	 * care about (at least some) page faults, and because it is not easy
2205 	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
2206 	 * to exit on each and every L2 page fault. This is done by setting
2207 	 * MASK=MATCH=0 and (see below) EB.PF=1.
2208 	 * Note that below we don't need special code to set EB.PF beyond the
2209 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2210 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2211 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2212 	 */
2213 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2214 		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2215 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2216 		enable_ept ? vmcs12->page_fault_error_code_match : 0);
2217 
2218 	if (cpu_has_vmx_apicv()) {
2219 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2220 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2221 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2222 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2223 	}
2224 
2225 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2226 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2227 
2228 	set_cr4_guest_host_mask(vmx);
2229 
2230 	if (kvm_mpx_supported()) {
2231 		if (vmx->nested.nested_run_pending &&
2232 			(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2233 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2234 		else
2235 			vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2236 	}
2237 }
2238 
2239 /*
2240  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2241  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2242  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2243  * guest in a way that will both be appropriate to L1's requests, and our
2244  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2245  * function also has additional necessary side-effects, like setting various
2246  * vcpu->arch fields.
2247  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2248  * is assigned to entry_failure_code on failure.
2249  */
2250 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2251 			  u32 *entry_failure_code)
2252 {
2253 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2254 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2255 
2256 	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
2257 		prepare_vmcs02_full(vmx, vmcs12);
2258 		vmx->nested.dirty_vmcs12 = false;
2259 	}
2260 
2261 	/*
2262 	 * First, the fields that are shadowed.  This must be kept in sync
2263 	 * with vmcs_shadow_fields.h.
2264 	 */
2265 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2266 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2267 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2268 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2269 	}
2270 
2271 	if (vmx->nested.nested_run_pending &&
2272 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2273 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2274 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2275 	} else {
2276 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2277 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2278 	}
2279 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2280 
2281 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2282 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2283 	 * trap. Note that CR0.TS also needs updating - we do this later.
2284 	 */
2285 	update_exception_bitmap(vcpu);
2286 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2287 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2288 
2289 	if (vmx->nested.nested_run_pending &&
2290 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2291 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2292 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2293 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2294 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2295 	}
2296 
2297 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2298 
2299 	if (kvm_has_tsc_control)
2300 		decache_tsc_multiplier(vmx);
2301 
2302 	if (enable_vpid) {
2303 		/*
2304 		 * There is no direct mapping between vpid02 and vpid12, the
2305 		 * vpid02 is per-vCPU for L0 and reused while the value of
2306 		 * vpid12 is changed w/ one invvpid during nested vmentry.
2307 		 * The vpid12 is allocated by L1 for L2, so it will not
2308 		 * influence global bitmap(for vpid01 and vpid02 allocation)
2309 		 * even if spawn a lot of nested vCPUs.
2310 		 */
2311 		if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2312 			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2313 				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2314 				__vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2315 			}
2316 		} else {
2317 			/*
2318 			 * If L1 use EPT, then L0 needs to execute INVEPT on
2319 			 * EPTP02 instead of EPTP01. Therefore, delay TLB
2320 			 * flush until vmcs02->eptp is fully updated by
2321 			 * KVM_REQ_LOAD_CR3. Note that this assumes
2322 			 * KVM_REQ_TLB_FLUSH is evaluated after
2323 			 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2324 			 */
2325 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2326 		}
2327 	}
2328 
2329 	if (nested_cpu_has_ept(vmcs12))
2330 		nested_ept_init_mmu_context(vcpu);
2331 	else if (nested_cpu_has2(vmcs12,
2332 				 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2333 		vmx_flush_tlb(vcpu, true);
2334 
2335 	/*
2336 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2337 	 * bits which we consider mandatory enabled.
2338 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
2339 	 * the specifications by L1; It's not enough to take
2340 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2341 	 * have more bits than L1 expected.
2342 	 */
2343 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2344 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2345 
2346 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2347 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2348 
2349 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2350 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2351 	vmx_set_efer(vcpu, vcpu->arch.efer);
2352 
2353 	/*
2354 	 * Guest state is invalid and unrestricted guest is disabled,
2355 	 * which means L1 attempted VMEntry to L2 with invalid state.
2356 	 * Fail the VMEntry.
2357 	 */
2358 	if (vmx->emulation_required) {
2359 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2360 		return 1;
2361 	}
2362 
2363 	/* Shadow page tables on either EPT or shadow page tables. */
2364 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2365 				entry_failure_code))
2366 		return 1;
2367 
2368 	if (!enable_ept)
2369 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2370 
2371 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
2372 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
2373 	return 0;
2374 }
2375 
2376 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2377 {
2378 	if (!nested_cpu_has_nmi_exiting(vmcs12) &&
2379 	    nested_cpu_has_virtual_nmis(vmcs12))
2380 		return -EINVAL;
2381 
2382 	if (!nested_cpu_has_virtual_nmis(vmcs12) &&
2383 	    nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
2384 		return -EINVAL;
2385 
2386 	return 0;
2387 }
2388 
2389 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2390 {
2391 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2392 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
2393 
2394 	/* Check for memory type validity */
2395 	switch (address & VMX_EPTP_MT_MASK) {
2396 	case VMX_EPTP_MT_UC:
2397 		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
2398 			return false;
2399 		break;
2400 	case VMX_EPTP_MT_WB:
2401 		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
2402 			return false;
2403 		break;
2404 	default:
2405 		return false;
2406 	}
2407 
2408 	/* only 4 levels page-walk length are valid */
2409 	if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
2410 		return false;
2411 
2412 	/* Reserved bits should not be set */
2413 	if (address >> maxphyaddr || ((address >> 7) & 0x1f))
2414 		return false;
2415 
2416 	/* AD, if set, should be supported */
2417 	if (address & VMX_EPTP_AD_ENABLE_BIT) {
2418 		if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
2419 			return false;
2420 	}
2421 
2422 	return true;
2423 }
2424 
2425 /*
2426  * Checks related to VM-Execution Control Fields
2427  */
2428 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2429                                               struct vmcs12 *vmcs12)
2430 {
2431 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2432 
2433 	if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2434 				vmx->nested.msrs.pinbased_ctls_low,
2435 				vmx->nested.msrs.pinbased_ctls_high) ||
2436 	    !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2437 				vmx->nested.msrs.procbased_ctls_low,
2438 				vmx->nested.msrs.procbased_ctls_high))
2439 		return -EINVAL;
2440 
2441 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2442 	    !vmx_control_verify(vmcs12->secondary_vm_exec_control,
2443 				 vmx->nested.msrs.secondary_ctls_low,
2444 				 vmx->nested.msrs.secondary_ctls_high))
2445 		return -EINVAL;
2446 
2447 	if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
2448 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2449 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2450 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2451 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2452 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2453 	    nested_vmx_check_nmi_controls(vmcs12) ||
2454 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2455 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2456 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2457 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2458 	    (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2459 		return -EINVAL;
2460 
2461 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2462 	    nested_cpu_has_save_preemption_timer(vmcs12))
2463 		return -EINVAL;
2464 
2465 	if (nested_cpu_has_ept(vmcs12) &&
2466 	    !valid_ept_address(vcpu, vmcs12->ept_pointer))
2467 		return -EINVAL;
2468 
2469 	if (nested_cpu_has_vmfunc(vmcs12)) {
2470 		if (vmcs12->vm_function_control &
2471 		    ~vmx->nested.msrs.vmfunc_controls)
2472 			return -EINVAL;
2473 
2474 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2475 			if (!nested_cpu_has_ept(vmcs12) ||
2476 			    !page_address_valid(vcpu, vmcs12->eptp_list_address))
2477 				return -EINVAL;
2478 		}
2479 	}
2480 
2481 	return 0;
2482 }
2483 
2484 /*
2485  * Checks related to VM-Exit Control Fields
2486  */
2487 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2488                                          struct vmcs12 *vmcs12)
2489 {
2490 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2491 
2492 	if (!vmx_control_verify(vmcs12->vm_exit_controls,
2493 				vmx->nested.msrs.exit_ctls_low,
2494 				vmx->nested.msrs.exit_ctls_high) ||
2495 	    nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
2496 		return -EINVAL;
2497 
2498 	return 0;
2499 }
2500 
2501 /*
2502  * Checks related to VM-Entry Control Fields
2503  */
2504 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2505 					  struct vmcs12 *vmcs12)
2506 {
2507 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2508 
2509 	if (!vmx_control_verify(vmcs12->vm_entry_controls,
2510 				vmx->nested.msrs.entry_ctls_low,
2511 				vmx->nested.msrs.entry_ctls_high))
2512 		return -EINVAL;
2513 
2514 	/*
2515 	 * From the Intel SDM, volume 3:
2516 	 * Fields relevant to VM-entry event injection must be set properly.
2517 	 * These fields are the VM-entry interruption-information field, the
2518 	 * VM-entry exception error code, and the VM-entry instruction length.
2519 	 */
2520 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2521 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2522 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2523 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2524 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2525 		bool should_have_error_code;
2526 		bool urg = nested_cpu_has2(vmcs12,
2527 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2528 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2529 
2530 		/* VM-entry interruption-info field: interruption type */
2531 		if (intr_type == INTR_TYPE_RESERVED ||
2532 		    (intr_type == INTR_TYPE_OTHER_EVENT &&
2533 		     !nested_cpu_supports_monitor_trap_flag(vcpu)))
2534 			return -EINVAL;
2535 
2536 		/* VM-entry interruption-info field: vector */
2537 		if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2538 		    (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2539 		    (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2540 			return -EINVAL;
2541 
2542 		/* VM-entry interruption-info field: deliver error code */
2543 		should_have_error_code =
2544 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2545 			x86_exception_has_error_code(vector);
2546 		if (has_error_code != should_have_error_code)
2547 			return -EINVAL;
2548 
2549 		/* VM-entry exception error code */
2550 		if (has_error_code &&
2551 		    vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
2552 			return -EINVAL;
2553 
2554 		/* VM-entry interruption-info field: reserved bits */
2555 		if (intr_info & INTR_INFO_RESVD_BITS_MASK)
2556 			return -EINVAL;
2557 
2558 		/* VM-entry instruction length */
2559 		switch (intr_type) {
2560 		case INTR_TYPE_SOFT_EXCEPTION:
2561 		case INTR_TYPE_SOFT_INTR:
2562 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2563 			if ((vmcs12->vm_entry_instruction_len > 15) ||
2564 			    (vmcs12->vm_entry_instruction_len == 0 &&
2565 			     !nested_cpu_has_zero_length_injection(vcpu)))
2566 				return -EINVAL;
2567 		}
2568 	}
2569 
2570 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2571 		return -EINVAL;
2572 
2573 	return 0;
2574 }
2575 
2576 /*
2577  * Checks related to Host Control Registers and MSRs
2578  */
2579 static int nested_check_host_control_regs(struct kvm_vcpu *vcpu,
2580                                           struct vmcs12 *vmcs12)
2581 {
2582 	bool ia32e;
2583 
2584 	if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
2585 	    !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
2586 	    !nested_cr3_valid(vcpu, vmcs12->host_cr3))
2587 		return -EINVAL;
2588 
2589 	if (is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu) ||
2590 	    is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu))
2591 		return -EINVAL;
2592 
2593 	/*
2594 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2595 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2596 	 * the values of the LMA and LME bits in the field must each be that of
2597 	 * the host address-space size VM-exit control.
2598 	 */
2599 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2600 		ia32e = (vmcs12->vm_exit_controls &
2601 			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2602 		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
2603 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
2604 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
2605 			return -EINVAL;
2606 	}
2607 
2608 	return 0;
2609 }
2610 
2611 /*
2612  * Checks related to Guest Non-register State
2613  */
2614 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2615 {
2616 	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2617 	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
2618 		return -EINVAL;
2619 
2620 	return 0;
2621 }
2622 
2623 static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu,
2624 					    struct vmcs12 *vmcs12)
2625 {
2626 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2627 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2628 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2629 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2630 
2631 	if (nested_check_host_control_regs(vcpu, vmcs12))
2632 		return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
2633 
2634 	if (nested_check_guest_non_reg_state(vmcs12))
2635 		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2636 
2637 	return 0;
2638 }
2639 
2640 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2641 					  struct vmcs12 *vmcs12)
2642 {
2643 	int r;
2644 	struct page *page;
2645 	struct vmcs12 *shadow;
2646 
2647 	if (vmcs12->vmcs_link_pointer == -1ull)
2648 		return 0;
2649 
2650 	if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
2651 		return -EINVAL;
2652 
2653 	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
2654 	if (is_error_page(page))
2655 		return -EINVAL;
2656 
2657 	r = 0;
2658 	shadow = kmap(page);
2659 	if (shadow->hdr.revision_id != VMCS12_REVISION ||
2660 	    shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
2661 		r = -EINVAL;
2662 	kunmap(page);
2663 	kvm_release_page_clean(page);
2664 	return r;
2665 }
2666 
2667 static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu,
2668 					     struct vmcs12 *vmcs12,
2669 					     u32 *exit_qual)
2670 {
2671 	bool ia32e;
2672 
2673 	*exit_qual = ENTRY_FAIL_DEFAULT;
2674 
2675 	if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
2676 	    !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2677 		return 1;
2678 
2679 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2680 		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2681 		return 1;
2682 	}
2683 
2684 	/*
2685 	 * If the load IA32_EFER VM-entry control is 1, the following checks
2686 	 * are performed on the field for the IA32_EFER MSR:
2687 	 * - Bits reserved in the IA32_EFER MSR must be 0.
2688 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2689 	 *   the IA-32e mode guest VM-exit control. It must also be identical
2690 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2691 	 *   CR0.PG) is 1.
2692 	 */
2693 	if (to_vmx(vcpu)->nested.nested_run_pending &&
2694 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2695 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2696 		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
2697 		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
2698 		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
2699 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2700 			return 1;
2701 	}
2702 
2703 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2704 		(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
2705 		(vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
2706 			return 1;
2707 
2708 	return 0;
2709 }
2710 
2711 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2712 {
2713 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2714 	unsigned long cr3, cr4;
2715 	bool vm_fail;
2716 
2717 	if (!nested_early_check)
2718 		return 0;
2719 
2720 	if (vmx->msr_autoload.host.nr)
2721 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2722 	if (vmx->msr_autoload.guest.nr)
2723 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2724 
2725 	preempt_disable();
2726 
2727 	vmx_prepare_switch_to_guest(vcpu);
2728 
2729 	/*
2730 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2731 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2732 	 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2733 	 * there is no need to preserve other bits or save/restore the field.
2734 	 */
2735 	vmcs_writel(GUEST_RFLAGS, 0);
2736 
2737 	cr3 = __get_current_cr3_fast();
2738 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2739 		vmcs_writel(HOST_CR3, cr3);
2740 		vmx->loaded_vmcs->host_state.cr3 = cr3;
2741 	}
2742 
2743 	cr4 = cr4_read_shadow();
2744 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2745 		vmcs_writel(HOST_CR4, cr4);
2746 		vmx->loaded_vmcs->host_state.cr4 = cr4;
2747 	}
2748 
2749 	asm(
2750 		"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2751 		"cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2752 		"je 1f \n\t"
2753 		__ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2754 		"mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2755 		"1: \n\t"
2756 		"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2757 
2758 		/* Check if vmlaunch or vmresume is needed */
2759 		"cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2760 
2761 		/*
2762 		 * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2763 		 * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2764 		 * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2765 		 * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2766 		 */
2767 		"call vmx_vmenter\n\t"
2768 
2769 		CC_SET(be)
2770 	      : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2771 	      :	[HOST_RSP]"r"((unsigned long)HOST_RSP),
2772 		[loaded_vmcs]"r"(vmx->loaded_vmcs),
2773 		[launched]"i"(offsetof(struct loaded_vmcs, launched)),
2774 		[host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2775 		[wordsize]"i"(sizeof(ulong))
2776 	      : "cc", "memory"
2777 	);
2778 
2779 	preempt_enable();
2780 
2781 	if (vmx->msr_autoload.host.nr)
2782 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2783 	if (vmx->msr_autoload.guest.nr)
2784 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2785 
2786 	if (vm_fail) {
2787 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
2788 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2789 		return 1;
2790 	}
2791 
2792 	/*
2793 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2794 	 */
2795 	local_irq_enable();
2796 	if (hw_breakpoint_active())
2797 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
2798 
2799 	/*
2800 	 * A non-failing VMEntry means we somehow entered guest mode with
2801 	 * an illegal RIP, and that's just the tip of the iceberg.  There
2802 	 * is no telling what memory has been modified or what state has
2803 	 * been exposed to unknown code.  Hitting this all but guarantees
2804 	 * a (very critical) hardware issue.
2805 	 */
2806 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2807 		VMX_EXIT_REASONS_FAILED_VMENTRY));
2808 
2809 	return 0;
2810 }
2811 
2812 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2813 						 struct vmcs12 *vmcs12);
2814 
2815 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2816 {
2817 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2818 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2819 	struct page *page;
2820 	u64 hpa;
2821 
2822 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2823 		/*
2824 		 * Translate L1 physical address to host physical
2825 		 * address for vmcs02. Keep the page pinned, so this
2826 		 * physical address remains valid. We keep a reference
2827 		 * to it so we can release it later.
2828 		 */
2829 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
2830 			kvm_release_page_dirty(vmx->nested.apic_access_page);
2831 			vmx->nested.apic_access_page = NULL;
2832 		}
2833 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2834 		/*
2835 		 * If translation failed, no matter: This feature asks
2836 		 * to exit when accessing the given address, and if it
2837 		 * can never be accessed, this feature won't do
2838 		 * anything anyway.
2839 		 */
2840 		if (!is_error_page(page)) {
2841 			vmx->nested.apic_access_page = page;
2842 			hpa = page_to_phys(vmx->nested.apic_access_page);
2843 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
2844 		} else {
2845 			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2846 					SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2847 		}
2848 	}
2849 
2850 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2851 		if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
2852 			kvm_release_page_dirty(vmx->nested.virtual_apic_page);
2853 			vmx->nested.virtual_apic_page = NULL;
2854 		}
2855 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
2856 
2857 		/*
2858 		 * If translation failed, VM entry will fail because
2859 		 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
2860 		 * Failing the vm entry is _not_ what the processor
2861 		 * does but it's basically the only possibility we
2862 		 * have.  We could still enter the guest if CR8 load
2863 		 * exits are enabled, CR8 store exits are enabled, and
2864 		 * virtualize APIC access is disabled; in this case
2865 		 * the processor would never use the TPR shadow and we
2866 		 * could simply clear the bit from the execution
2867 		 * control.  But such a configuration is useless, so
2868 		 * let's keep the code simple.
2869 		 */
2870 		if (!is_error_page(page)) {
2871 			vmx->nested.virtual_apic_page = page;
2872 			hpa = page_to_phys(vmx->nested.virtual_apic_page);
2873 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
2874 		}
2875 	}
2876 
2877 	if (nested_cpu_has_posted_intr(vmcs12)) {
2878 		if (vmx->nested.pi_desc_page) { /* shouldn't happen */
2879 			kunmap(vmx->nested.pi_desc_page);
2880 			kvm_release_page_dirty(vmx->nested.pi_desc_page);
2881 			vmx->nested.pi_desc_page = NULL;
2882 			vmx->nested.pi_desc = NULL;
2883 			vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
2884 		}
2885 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
2886 		if (is_error_page(page))
2887 			return;
2888 		vmx->nested.pi_desc_page = page;
2889 		vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
2890 		vmx->nested.pi_desc =
2891 			(struct pi_desc *)((void *)vmx->nested.pi_desc +
2892 			(unsigned long)(vmcs12->posted_intr_desc_addr &
2893 			(PAGE_SIZE - 1)));
2894 		vmcs_write64(POSTED_INTR_DESC_ADDR,
2895 			page_to_phys(vmx->nested.pi_desc_page) +
2896 			(unsigned long)(vmcs12->posted_intr_desc_addr &
2897 			(PAGE_SIZE - 1)));
2898 	}
2899 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2900 		vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
2901 			      CPU_BASED_USE_MSR_BITMAPS);
2902 	else
2903 		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
2904 				CPU_BASED_USE_MSR_BITMAPS);
2905 }
2906 
2907 /*
2908  * Intel's VMX Instruction Reference specifies a common set of prerequisites
2909  * for running VMX instructions (except VMXON, whose prerequisites are
2910  * slightly different). It also specifies what exception to inject otherwise.
2911  * Note that many of these exceptions have priority over VM exits, so they
2912  * don't have to be checked again here.
2913  */
2914 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2915 {
2916 	if (!to_vmx(vcpu)->nested.vmxon) {
2917 		kvm_queue_exception(vcpu, UD_VECTOR);
2918 		return 0;
2919 	}
2920 
2921 	if (vmx_get_cpl(vcpu)) {
2922 		kvm_inject_gp(vcpu, 0);
2923 		return 0;
2924 	}
2925 
2926 	return 1;
2927 }
2928 
2929 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2930 {
2931 	u8 rvi = vmx_get_rvi();
2932 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2933 
2934 	return ((rvi & 0xf0) > (vppr & 0xf0));
2935 }
2936 
2937 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2938 				   struct vmcs12 *vmcs12);
2939 
2940 /*
2941  * If from_vmentry is false, this is being called from state restore (either RSM
2942  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
2943 + *
2944 + * Returns:
2945 + *   0 - success, i.e. proceed with actual VMEnter
2946 + *   1 - consistency check VMExit
2947 + *  -1 - consistency check VMFail
2948  */
2949 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
2950 {
2951 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2952 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2953 	bool evaluate_pending_interrupts;
2954 	u32 exit_reason = EXIT_REASON_INVALID_STATE;
2955 	u32 exit_qual;
2956 
2957 	evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2958 		(CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
2959 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
2960 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
2961 
2962 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
2963 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
2964 	if (kvm_mpx_supported() &&
2965 		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2966 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
2967 
2968 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
2969 
2970 	prepare_vmcs02_early(vmx, vmcs12);
2971 
2972 	if (from_vmentry) {
2973 		nested_get_vmcs12_pages(vcpu);
2974 
2975 		if (nested_vmx_check_vmentry_hw(vcpu)) {
2976 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2977 			return -1;
2978 		}
2979 
2980 		if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
2981 			goto vmentry_fail_vmexit;
2982 	}
2983 
2984 	enter_guest_mode(vcpu);
2985 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
2986 		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
2987 
2988 	if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
2989 		goto vmentry_fail_vmexit_guest_mode;
2990 
2991 	if (from_vmentry) {
2992 		exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
2993 		exit_qual = nested_vmx_load_msr(vcpu,
2994 						vmcs12->vm_entry_msr_load_addr,
2995 						vmcs12->vm_entry_msr_load_count);
2996 		if (exit_qual)
2997 			goto vmentry_fail_vmexit_guest_mode;
2998 	} else {
2999 		/*
3000 		 * The MMU is not initialized to point at the right entities yet and
3001 		 * "get pages" would need to read data from the guest (i.e. we will
3002 		 * need to perform gpa to hpa translation). Request a call
3003 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3004 		 * have already been set at vmentry time and should not be reset.
3005 		 */
3006 		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3007 	}
3008 
3009 	/*
3010 	 * If L1 had a pending IRQ/NMI until it executed
3011 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3012 	 * disallowed (e.g. interrupts disabled), L0 needs to
3013 	 * evaluate if this pending event should cause an exit from L2
3014 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3015 	 * intercept EXTERNAL_INTERRUPT).
3016 	 *
3017 	 * Usually this would be handled by the processor noticing an
3018 	 * IRQ/NMI window request, or checking RVI during evaluation of
3019 	 * pending virtual interrupts.  However, this setting was done
3020 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3021 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3022 	 */
3023 	if (unlikely(evaluate_pending_interrupts))
3024 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3025 
3026 	/*
3027 	 * Do not start the preemption timer hrtimer until after we know
3028 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3029 	 * the timer.
3030 	 */
3031 	vmx->nested.preemption_timer_expired = false;
3032 	if (nested_cpu_has_preemption_timer(vmcs12))
3033 		vmx_start_preemption_timer(vcpu);
3034 
3035 	/*
3036 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3037 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3038 	 * returned as far as L1 is concerned. It will only return (and set
3039 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3040 	 */
3041 	return 0;
3042 
3043 	/*
3044 	 * A failed consistency check that leads to a VMExit during L1's
3045 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3046 	 * 26.7 "VM-entry failures during or after loading guest state".
3047 	 */
3048 vmentry_fail_vmexit_guest_mode:
3049 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3050 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3051 	leave_guest_mode(vcpu);
3052 
3053 vmentry_fail_vmexit:
3054 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3055 
3056 	if (!from_vmentry)
3057 		return 1;
3058 
3059 	load_vmcs12_host_state(vcpu, vmcs12);
3060 	vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3061 	vmcs12->exit_qualification = exit_qual;
3062 	if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3063 		vmx->nested.need_vmcs12_sync = true;
3064 	return 1;
3065 }
3066 
3067 /*
3068  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3069  * for running an L2 nested guest.
3070  */
3071 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3072 {
3073 	struct vmcs12 *vmcs12;
3074 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3075 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3076 	int ret;
3077 
3078 	if (!nested_vmx_check_permission(vcpu))
3079 		return 1;
3080 
3081 	if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
3082 		return 1;
3083 
3084 	if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3085 		return nested_vmx_failInvalid(vcpu);
3086 
3087 	vmcs12 = get_vmcs12(vcpu);
3088 
3089 	/*
3090 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3091 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3092 	 * rather than RFLAGS.ZF, and no error number is stored to the
3093 	 * VM-instruction error field.
3094 	 */
3095 	if (vmcs12->hdr.shadow_vmcs)
3096 		return nested_vmx_failInvalid(vcpu);
3097 
3098 	if (vmx->nested.hv_evmcs) {
3099 		copy_enlightened_to_vmcs12(vmx);
3100 		/* Enlightened VMCS doesn't have launch state */
3101 		vmcs12->launch_state = !launch;
3102 	} else if (enable_shadow_vmcs) {
3103 		copy_shadow_to_vmcs12(vmx);
3104 	}
3105 
3106 	/*
3107 	 * The nested entry process starts with enforcing various prerequisites
3108 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3109 	 * they fail: As the SDM explains, some conditions should cause the
3110 	 * instruction to fail, while others will cause the instruction to seem
3111 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3112 	 * To speed up the normal (success) code path, we should avoid checking
3113 	 * for misconfigurations which will anyway be caught by the processor
3114 	 * when using the merged vmcs02.
3115 	 */
3116 	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3117 		return nested_vmx_failValid(vcpu,
3118 			VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3119 
3120 	if (vmcs12->launch_state == launch)
3121 		return nested_vmx_failValid(vcpu,
3122 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3123 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3124 
3125 	ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12);
3126 	if (ret)
3127 		return nested_vmx_failValid(vcpu, ret);
3128 
3129 	/*
3130 	 * We're finally done with prerequisite checking, and can start with
3131 	 * the nested entry.
3132 	 */
3133 	vmx->nested.nested_run_pending = 1;
3134 	ret = nested_vmx_enter_non_root_mode(vcpu, true);
3135 	vmx->nested.nested_run_pending = !ret;
3136 	if (ret > 0)
3137 		return 1;
3138 	else if (ret)
3139 		return nested_vmx_failValid(vcpu,
3140 			VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3141 
3142 	/* Hide L1D cache contents from the nested guest.  */
3143 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3144 
3145 	/*
3146 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3147 	 * also be used as part of restoring nVMX state for
3148 	 * snapshot restore (migration).
3149 	 *
3150 	 * In this flow, it is assumed that vmcs12 cache was
3151 	 * trasferred as part of captured nVMX state and should
3152 	 * therefore not be read from guest memory (which may not
3153 	 * exist on destination host yet).
3154 	 */
3155 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3156 
3157 	/*
3158 	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3159 	 * awakened by event injection or by an NMI-window VM-exit or
3160 	 * by an interrupt-window VM-exit, halt the vcpu.
3161 	 */
3162 	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3163 	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3164 	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3165 	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3166 	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3167 		vmx->nested.nested_run_pending = 0;
3168 		return kvm_vcpu_halt(vcpu);
3169 	}
3170 	return 1;
3171 }
3172 
3173 /*
3174  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3175  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3176  * This function returns the new value we should put in vmcs12.guest_cr0.
3177  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3178  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3179  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3180  *     didn't trap the bit, because if L1 did, so would L0).
3181  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3182  *     been modified by L2, and L1 knows it. So just leave the old value of
3183  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3184  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3185  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3186  *     changed these bits, and therefore they need to be updated, but L0
3187  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3188  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3189  */
3190 static inline unsigned long
3191 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3192 {
3193 	return
3194 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3195 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3196 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3197 			vcpu->arch.cr0_guest_owned_bits));
3198 }
3199 
3200 static inline unsigned long
3201 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3202 {
3203 	return
3204 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3205 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3206 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3207 			vcpu->arch.cr4_guest_owned_bits));
3208 }
3209 
3210 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3211 				      struct vmcs12 *vmcs12)
3212 {
3213 	u32 idt_vectoring;
3214 	unsigned int nr;
3215 
3216 	if (vcpu->arch.exception.injected) {
3217 		nr = vcpu->arch.exception.nr;
3218 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3219 
3220 		if (kvm_exception_is_soft(nr)) {
3221 			vmcs12->vm_exit_instruction_len =
3222 				vcpu->arch.event_exit_inst_len;
3223 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3224 		} else
3225 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3226 
3227 		if (vcpu->arch.exception.has_error_code) {
3228 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3229 			vmcs12->idt_vectoring_error_code =
3230 				vcpu->arch.exception.error_code;
3231 		}
3232 
3233 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3234 	} else if (vcpu->arch.nmi_injected) {
3235 		vmcs12->idt_vectoring_info_field =
3236 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3237 	} else if (vcpu->arch.interrupt.injected) {
3238 		nr = vcpu->arch.interrupt.nr;
3239 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3240 
3241 		if (vcpu->arch.interrupt.soft) {
3242 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3243 			vmcs12->vm_entry_instruction_len =
3244 				vcpu->arch.event_exit_inst_len;
3245 		} else
3246 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3247 
3248 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3249 	}
3250 }
3251 
3252 
3253 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3254 {
3255 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3256 	gfn_t gfn;
3257 
3258 	/*
3259 	 * Don't need to mark the APIC access page dirty; it is never
3260 	 * written to by the CPU during APIC virtualization.
3261 	 */
3262 
3263 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3264 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3265 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3266 	}
3267 
3268 	if (nested_cpu_has_posted_intr(vmcs12)) {
3269 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3270 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3271 	}
3272 }
3273 
3274 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3275 {
3276 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3277 	int max_irr;
3278 	void *vapic_page;
3279 	u16 status;
3280 
3281 	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3282 		return;
3283 
3284 	vmx->nested.pi_pending = false;
3285 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3286 		return;
3287 
3288 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3289 	if (max_irr != 256) {
3290 		vapic_page = kmap(vmx->nested.virtual_apic_page);
3291 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3292 			vapic_page, &max_irr);
3293 		kunmap(vmx->nested.virtual_apic_page);
3294 
3295 		status = vmcs_read16(GUEST_INTR_STATUS);
3296 		if ((u8)max_irr > ((u8)status & 0xff)) {
3297 			status &= ~0xff;
3298 			status |= (u8)max_irr;
3299 			vmcs_write16(GUEST_INTR_STATUS, status);
3300 		}
3301 	}
3302 
3303 	nested_mark_vmcs12_pages_dirty(vcpu);
3304 }
3305 
3306 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3307 					       unsigned long exit_qual)
3308 {
3309 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3310 	unsigned int nr = vcpu->arch.exception.nr;
3311 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3312 
3313 	if (vcpu->arch.exception.has_error_code) {
3314 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3315 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3316 	}
3317 
3318 	if (kvm_exception_is_soft(nr))
3319 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3320 	else
3321 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3322 
3323 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3324 	    vmx_get_nmi_mask(vcpu))
3325 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3326 
3327 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3328 }
3329 
3330 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3331 {
3332 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3333 	unsigned long exit_qual;
3334 	bool block_nested_events =
3335 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3336 
3337 	if (vcpu->arch.exception.pending &&
3338 		nested_vmx_check_exception(vcpu, &exit_qual)) {
3339 		if (block_nested_events)
3340 			return -EBUSY;
3341 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3342 		return 0;
3343 	}
3344 
3345 	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3346 	    vmx->nested.preemption_timer_expired) {
3347 		if (block_nested_events)
3348 			return -EBUSY;
3349 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3350 		return 0;
3351 	}
3352 
3353 	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3354 		if (block_nested_events)
3355 			return -EBUSY;
3356 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3357 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3358 				  INTR_INFO_VALID_MASK, 0);
3359 		/*
3360 		 * The NMI-triggered VM exit counts as injection:
3361 		 * clear this one and block further NMIs.
3362 		 */
3363 		vcpu->arch.nmi_pending = 0;
3364 		vmx_set_nmi_mask(vcpu, true);
3365 		return 0;
3366 	}
3367 
3368 	if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3369 	    nested_exit_on_intr(vcpu)) {
3370 		if (block_nested_events)
3371 			return -EBUSY;
3372 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3373 		return 0;
3374 	}
3375 
3376 	vmx_complete_nested_posted_interrupt(vcpu);
3377 	return 0;
3378 }
3379 
3380 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3381 {
3382 	ktime_t remaining =
3383 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3384 	u64 value;
3385 
3386 	if (ktime_to_ns(remaining) <= 0)
3387 		return 0;
3388 
3389 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3390 	do_div(value, 1000000);
3391 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3392 }
3393 
3394 /*
3395  * Update the guest state fields of vmcs12 to reflect changes that
3396  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3397  * VM-entry controls is also updated, since this is really a guest
3398  * state bit.)
3399  */
3400 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3401 {
3402 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3403 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3404 
3405 	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3406 	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
3407 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3408 
3409 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3410 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3411 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3412 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3413 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3414 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3415 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3416 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3417 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3418 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3419 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3420 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3421 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3422 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3423 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3424 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3425 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3426 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3427 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3428 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3429 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3430 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3431 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3432 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3433 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3434 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3435 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3436 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3437 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3438 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3439 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3440 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3441 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3442 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3443 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3444 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3445 
3446 	vmcs12->guest_interruptibility_info =
3447 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3448 	vmcs12->guest_pending_dbg_exceptions =
3449 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3450 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3451 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3452 	else
3453 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3454 
3455 	if (nested_cpu_has_preemption_timer(vmcs12) &&
3456 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3457 			vmcs12->vmx_preemption_timer_value =
3458 				vmx_get_preemption_timer_value(vcpu);
3459 
3460 	/*
3461 	 * In some cases (usually, nested EPT), L2 is allowed to change its
3462 	 * own CR3 without exiting. If it has changed it, we must keep it.
3463 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3464 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3465 	 *
3466 	 * Additionally, restore L2's PDPTR to vmcs12.
3467 	 */
3468 	if (enable_ept) {
3469 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3470 		vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3471 		vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3472 		vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3473 		vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3474 	}
3475 
3476 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3477 
3478 	if (nested_cpu_has_vid(vmcs12))
3479 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3480 
3481 	vmcs12->vm_entry_controls =
3482 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3483 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3484 
3485 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
3486 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3487 		vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3488 	}
3489 
3490 	/* TODO: These cannot have changed unless we have MSR bitmaps and
3491 	 * the relevant bit asks not to trap the change */
3492 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
3493 		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
3494 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3495 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
3496 	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3497 	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3498 	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3499 	if (kvm_mpx_supported())
3500 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3501 }
3502 
3503 /*
3504  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3505  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3506  * and this function updates it to reflect the changes to the guest state while
3507  * L2 was running (and perhaps made some exits which were handled directly by L0
3508  * without going back to L1), and to reflect the exit reason.
3509  * Note that we do not have to copy here all VMCS fields, just those that
3510  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3511  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3512  * which already writes to vmcs12 directly.
3513  */
3514 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3515 			   u32 exit_reason, u32 exit_intr_info,
3516 			   unsigned long exit_qualification)
3517 {
3518 	/* update guest state fields: */
3519 	sync_vmcs12(vcpu, vmcs12);
3520 
3521 	/* update exit information fields: */
3522 
3523 	vmcs12->vm_exit_reason = exit_reason;
3524 	vmcs12->exit_qualification = exit_qualification;
3525 	vmcs12->vm_exit_intr_info = exit_intr_info;
3526 
3527 	vmcs12->idt_vectoring_info_field = 0;
3528 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3529 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3530 
3531 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3532 		vmcs12->launch_state = 1;
3533 
3534 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
3535 		 * instead of reading the real value. */
3536 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3537 
3538 		/*
3539 		 * Transfer the event that L0 or L1 may wanted to inject into
3540 		 * L2 to IDT_VECTORING_INFO_FIELD.
3541 		 */
3542 		vmcs12_save_pending_event(vcpu, vmcs12);
3543 
3544 		/*
3545 		 * According to spec, there's no need to store the guest's
3546 		 * MSRs if the exit is due to a VM-entry failure that occurs
3547 		 * during or after loading the guest state. Since this exit
3548 		 * does not fall in that category, we need to save the MSRs.
3549 		 */
3550 		if (nested_vmx_store_msr(vcpu,
3551 					 vmcs12->vm_exit_msr_store_addr,
3552 					 vmcs12->vm_exit_msr_store_count))
3553 			nested_vmx_abort(vcpu,
3554 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3555 	}
3556 
3557 	/*
3558 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3559 	 * preserved above and would only end up incorrectly in L1.
3560 	 */
3561 	vcpu->arch.nmi_injected = false;
3562 	kvm_clear_exception_queue(vcpu);
3563 	kvm_clear_interrupt_queue(vcpu);
3564 }
3565 
3566 /*
3567  * A part of what we need to when the nested L2 guest exits and we want to
3568  * run its L1 parent, is to reset L1's guest state to the host state specified
3569  * in vmcs12.
3570  * This function is to be called not only on normal nested exit, but also on
3571  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3572  * Failures During or After Loading Guest State").
3573  * This function should be called when the active VMCS is L1's (vmcs01).
3574  */
3575 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3576 				   struct vmcs12 *vmcs12)
3577 {
3578 	struct kvm_segment seg;
3579 	u32 entry_failure_code;
3580 
3581 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3582 		vcpu->arch.efer = vmcs12->host_ia32_efer;
3583 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3584 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3585 	else
3586 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3587 	vmx_set_efer(vcpu, vcpu->arch.efer);
3588 
3589 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
3590 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
3591 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3592 	vmx_set_interrupt_shadow(vcpu, 0);
3593 
3594 	/*
3595 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3596 	 * actually changed, because vmx_set_cr0 refers to efer set above.
3597 	 *
3598 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3599 	 * (KVM doesn't change it);
3600 	 */
3601 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3602 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
3603 
3604 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
3605 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3606 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
3607 
3608 	nested_ept_uninit_mmu_context(vcpu);
3609 
3610 	/*
3611 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
3612 	 * couldn't have changed.
3613 	 */
3614 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3615 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3616 
3617 	if (!enable_ept)
3618 		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3619 
3620 	/*
3621 	 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3622 	 * VMEntry/VMExit. Thus, no need to flush TLB.
3623 	 *
3624 	 * If vmcs12 doesn't use VPID, L1 expects TLB to be
3625 	 * flushed on every VMEntry/VMExit.
3626 	 *
3627 	 * Otherwise, we can preserve TLB entries as long as we are
3628 	 * able to tag L1 TLB entries differently than L2 TLB entries.
3629 	 *
3630 	 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3631 	 * and therefore we request the TLB flush to happen only after VMCS EPTP
3632 	 * has been set by KVM_REQ_LOAD_CR3.
3633 	 */
3634 	if (enable_vpid &&
3635 	    (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3636 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3637 	}
3638 
3639 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3640 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3641 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3642 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3643 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3644 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3645 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3646 
3647 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3648 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3649 		vmcs_write64(GUEST_BNDCFGS, 0);
3650 
3651 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3652 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3653 		vcpu->arch.pat = vmcs12->host_ia32_pat;
3654 	}
3655 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3656 		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3657 			vmcs12->host_ia32_perf_global_ctrl);
3658 
3659 	/* Set L1 segment info according to Intel SDM
3660 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
3661 	seg = (struct kvm_segment) {
3662 		.base = 0,
3663 		.limit = 0xFFFFFFFF,
3664 		.selector = vmcs12->host_cs_selector,
3665 		.type = 11,
3666 		.present = 1,
3667 		.s = 1,
3668 		.g = 1
3669 	};
3670 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3671 		seg.l = 1;
3672 	else
3673 		seg.db = 1;
3674 	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3675 	seg = (struct kvm_segment) {
3676 		.base = 0,
3677 		.limit = 0xFFFFFFFF,
3678 		.type = 3,
3679 		.present = 1,
3680 		.s = 1,
3681 		.db = 1,
3682 		.g = 1
3683 	};
3684 	seg.selector = vmcs12->host_ds_selector;
3685 	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3686 	seg.selector = vmcs12->host_es_selector;
3687 	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3688 	seg.selector = vmcs12->host_ss_selector;
3689 	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3690 	seg.selector = vmcs12->host_fs_selector;
3691 	seg.base = vmcs12->host_fs_base;
3692 	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3693 	seg.selector = vmcs12->host_gs_selector;
3694 	seg.base = vmcs12->host_gs_base;
3695 	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3696 	seg = (struct kvm_segment) {
3697 		.base = vmcs12->host_tr_base,
3698 		.limit = 0x67,
3699 		.selector = vmcs12->host_tr_selector,
3700 		.type = 11,
3701 		.present = 1
3702 	};
3703 	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3704 
3705 	kvm_set_dr(vcpu, 7, 0x400);
3706 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3707 
3708 	if (cpu_has_vmx_msr_bitmap())
3709 		vmx_update_msr_bitmap(vcpu);
3710 
3711 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3712 				vmcs12->vm_exit_msr_load_count))
3713 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3714 }
3715 
3716 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3717 {
3718 	struct shared_msr_entry *efer_msr;
3719 	unsigned int i;
3720 
3721 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3722 		return vmcs_read64(GUEST_IA32_EFER);
3723 
3724 	if (cpu_has_load_ia32_efer())
3725 		return host_efer;
3726 
3727 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3728 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3729 			return vmx->msr_autoload.guest.val[i].value;
3730 	}
3731 
3732 	efer_msr = find_msr_entry(vmx, MSR_EFER);
3733 	if (efer_msr)
3734 		return efer_msr->data;
3735 
3736 	return host_efer;
3737 }
3738 
3739 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3740 {
3741 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3742 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3743 	struct vmx_msr_entry g, h;
3744 	struct msr_data msr;
3745 	gpa_t gpa;
3746 	u32 i, j;
3747 
3748 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3749 
3750 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3751 		/*
3752 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3753 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
3754 		 * and vcpu->arch.dr7 is not squirreled away before the
3755 		 * nested VMENTER (not worth adding a variable in nested_vmx).
3756 		 */
3757 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3758 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3759 		else
3760 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3761 	}
3762 
3763 	/*
3764 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3765 	 * handle a variety of side effects to KVM's software model.
3766 	 */
3767 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3768 
3769 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3770 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3771 
3772 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3773 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3774 
3775 	nested_ept_uninit_mmu_context(vcpu);
3776 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3777 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3778 
3779 	/*
3780 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3781 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3782 	 * VMFail, like everything else we just need to ensure our
3783 	 * software model is up-to-date.
3784 	 */
3785 	ept_save_pdptrs(vcpu);
3786 
3787 	kvm_mmu_reset_context(vcpu);
3788 
3789 	if (cpu_has_vmx_msr_bitmap())
3790 		vmx_update_msr_bitmap(vcpu);
3791 
3792 	/*
3793 	 * This nasty bit of open coding is a compromise between blindly
3794 	 * loading L1's MSRs using the exit load lists (incorrect emulation
3795 	 * of VMFail), leaving the nested VM's MSRs in the software model
3796 	 * (incorrect behavior) and snapshotting the modified MSRs (too
3797 	 * expensive since the lists are unbound by hardware).  For each
3798 	 * MSR that was (prematurely) loaded from the nested VMEntry load
3799 	 * list, reload it from the exit load list if it exists and differs
3800 	 * from the guest value.  The intent is to stuff host state as
3801 	 * silently as possible, not to fully process the exit load list.
3802 	 */
3803 	msr.host_initiated = false;
3804 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3805 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3806 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3807 			pr_debug_ratelimited(
3808 				"%s read MSR index failed (%u, 0x%08llx)\n",
3809 				__func__, i, gpa);
3810 			goto vmabort;
3811 		}
3812 
3813 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3814 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3815 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3816 				pr_debug_ratelimited(
3817 					"%s read MSR failed (%u, 0x%08llx)\n",
3818 					__func__, j, gpa);
3819 				goto vmabort;
3820 			}
3821 			if (h.index != g.index)
3822 				continue;
3823 			if (h.value == g.value)
3824 				break;
3825 
3826 			if (nested_vmx_load_msr_check(vcpu, &h)) {
3827 				pr_debug_ratelimited(
3828 					"%s check failed (%u, 0x%x, 0x%x)\n",
3829 					__func__, j, h.index, h.reserved);
3830 				goto vmabort;
3831 			}
3832 
3833 			msr.index = h.index;
3834 			msr.data = h.value;
3835 			if (kvm_set_msr(vcpu, &msr)) {
3836 				pr_debug_ratelimited(
3837 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
3838 					__func__, j, h.index, h.value);
3839 				goto vmabort;
3840 			}
3841 		}
3842 	}
3843 
3844 	return;
3845 
3846 vmabort:
3847 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3848 }
3849 
3850 /*
3851  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
3852  * and modify vmcs12 to make it see what it would expect to see there if
3853  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
3854  */
3855 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
3856 		       u32 exit_intr_info, unsigned long exit_qualification)
3857 {
3858 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3859 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3860 
3861 	/* trying to cancel vmlaunch/vmresume is a bug */
3862 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
3863 
3864 	leave_guest_mode(vcpu);
3865 
3866 	if (nested_cpu_has_preemption_timer(vmcs12))
3867 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
3868 
3869 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3870 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3871 
3872 	if (likely(!vmx->fail)) {
3873 		if (exit_reason == -1)
3874 			sync_vmcs12(vcpu, vmcs12);
3875 		else
3876 			prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
3877 				       exit_qualification);
3878 
3879 		/*
3880 		 * Must happen outside of sync_vmcs12() as it will
3881 		 * also be used to capture vmcs12 cache as part of
3882 		 * capturing nVMX state for snapshot (migration).
3883 		 *
3884 		 * Otherwise, this flush will dirty guest memory at a
3885 		 * point it is already assumed by user-space to be
3886 		 * immutable.
3887 		 */
3888 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
3889 	} else {
3890 		/*
3891 		 * The only expected VM-instruction error is "VM entry with
3892 		 * invalid control field(s)." Anything else indicates a
3893 		 * problem with L0.  And we should never get here with a
3894 		 * VMFail of any type if early consistency checks are enabled.
3895 		 */
3896 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
3897 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3898 		WARN_ON_ONCE(nested_early_check);
3899 	}
3900 
3901 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3902 
3903 	/* Update any VMCS fields that might have changed while L2 ran */
3904 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3905 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3906 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
3907 
3908 	if (kvm_has_tsc_control)
3909 		decache_tsc_multiplier(vmx);
3910 
3911 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
3912 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
3913 		vmx_set_virtual_apic_mode(vcpu);
3914 	} else if (!nested_cpu_has_ept(vmcs12) &&
3915 		   nested_cpu_has2(vmcs12,
3916 				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3917 		vmx_flush_tlb(vcpu, true);
3918 	}
3919 
3920 	/* Unpin physical memory we referred to in vmcs02 */
3921 	if (vmx->nested.apic_access_page) {
3922 		kvm_release_page_dirty(vmx->nested.apic_access_page);
3923 		vmx->nested.apic_access_page = NULL;
3924 	}
3925 	if (vmx->nested.virtual_apic_page) {
3926 		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
3927 		vmx->nested.virtual_apic_page = NULL;
3928 	}
3929 	if (vmx->nested.pi_desc_page) {
3930 		kunmap(vmx->nested.pi_desc_page);
3931 		kvm_release_page_dirty(vmx->nested.pi_desc_page);
3932 		vmx->nested.pi_desc_page = NULL;
3933 		vmx->nested.pi_desc = NULL;
3934 	}
3935 
3936 	/*
3937 	 * We are now running in L2, mmu_notifier will force to reload the
3938 	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
3939 	 */
3940 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
3941 
3942 	if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
3943 		vmx->nested.need_vmcs12_sync = true;
3944 
3945 	/* in case we halted in L2 */
3946 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3947 
3948 	if (likely(!vmx->fail)) {
3949 		/*
3950 		 * TODO: SDM says that with acknowledge interrupt on
3951 		 * exit, bit 31 of the VM-exit interrupt information
3952 		 * (valid interrupt) is always set to 1 on
3953 		 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
3954 		 * need kvm_cpu_has_interrupt().  See the commit
3955 		 * message for details.
3956 		 */
3957 		if (nested_exit_intr_ack_set(vcpu) &&
3958 		    exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
3959 		    kvm_cpu_has_interrupt(vcpu)) {
3960 			int irq = kvm_cpu_get_interrupt(vcpu);
3961 			WARN_ON(irq < 0);
3962 			vmcs12->vm_exit_intr_info = irq |
3963 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
3964 		}
3965 
3966 		if (exit_reason != -1)
3967 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
3968 						       vmcs12->exit_qualification,
3969 						       vmcs12->idt_vectoring_info_field,
3970 						       vmcs12->vm_exit_intr_info,
3971 						       vmcs12->vm_exit_intr_error_code,
3972 						       KVM_ISA_VMX);
3973 
3974 		load_vmcs12_host_state(vcpu, vmcs12);
3975 
3976 		return;
3977 	}
3978 
3979 	/*
3980 	 * After an early L2 VM-entry failure, we're now back
3981 	 * in L1 which thinks it just finished a VMLAUNCH or
3982 	 * VMRESUME instruction, so we need to set the failure
3983 	 * flag and the VM-instruction error field of the VMCS
3984 	 * accordingly, and skip the emulated instruction.
3985 	 */
3986 	(void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3987 
3988 	/*
3989 	 * Restore L1's host state to KVM's software model.  We're here
3990 	 * because a consistency check was caught by hardware, which
3991 	 * means some amount of guest state has been propagated to KVM's
3992 	 * model and needs to be unwound to the host's state.
3993 	 */
3994 	nested_vmx_restore_host_state(vcpu);
3995 
3996 	vmx->fail = 0;
3997 }
3998 
3999 /*
4000  * Decode the memory-address operand of a vmx instruction, as recorded on an
4001  * exit caused by such an instruction (run by a guest hypervisor).
4002  * On success, returns 0. When the operand is invalid, returns 1 and throws
4003  * #UD or #GP.
4004  */
4005 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4006 			u32 vmx_instruction_info, bool wr, gva_t *ret)
4007 {
4008 	gva_t off;
4009 	bool exn;
4010 	struct kvm_segment s;
4011 
4012 	/*
4013 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4014 	 * Execution", on an exit, vmx_instruction_info holds most of the
4015 	 * addressing components of the operand. Only the displacement part
4016 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4017 	 * For how an actual address is calculated from all these components,
4018 	 * refer to Vol. 1, "Operand Addressing".
4019 	 */
4020 	int  scaling = vmx_instruction_info & 3;
4021 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4022 	bool is_reg = vmx_instruction_info & (1u << 10);
4023 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4024 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4025 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4026 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4027 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4028 
4029 	if (is_reg) {
4030 		kvm_queue_exception(vcpu, UD_VECTOR);
4031 		return 1;
4032 	}
4033 
4034 	/* Addr = segment_base + offset */
4035 	/* offset = base + [index * scale] + displacement */
4036 	off = exit_qualification; /* holds the displacement */
4037 	if (addr_size == 1)
4038 		off = (gva_t)sign_extend64(off, 31);
4039 	else if (addr_size == 0)
4040 		off = (gva_t)sign_extend64(off, 15);
4041 	if (base_is_valid)
4042 		off += kvm_register_read(vcpu, base_reg);
4043 	if (index_is_valid)
4044 		off += kvm_register_read(vcpu, index_reg)<<scaling;
4045 	vmx_get_segment(vcpu, &s, seg_reg);
4046 
4047 	/*
4048 	 * The effective address, i.e. @off, of a memory operand is truncated
4049 	 * based on the address size of the instruction.  Note that this is
4050 	 * the *effective address*, i.e. the address prior to accounting for
4051 	 * the segment's base.
4052 	 */
4053 	if (addr_size == 1) /* 32 bit */
4054 		off &= 0xffffffff;
4055 	else if (addr_size == 0) /* 16 bit */
4056 		off &= 0xffff;
4057 
4058 	/* Checks for #GP/#SS exceptions. */
4059 	exn = false;
4060 	if (is_long_mode(vcpu)) {
4061 		/*
4062 		 * The virtual/linear address is never truncated in 64-bit
4063 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4064 		 * address when using FS/GS with a non-zero base.
4065 		 */
4066 		*ret = s.base + off;
4067 
4068 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
4069 		 * non-canonical form. This is the only check on the memory
4070 		 * destination for long mode!
4071 		 */
4072 		exn = is_noncanonical_address(*ret, vcpu);
4073 	} else {
4074 		/*
4075 		 * When not in long mode, the virtual/linear address is
4076 		 * unconditionally truncated to 32 bits regardless of the
4077 		 * address size.
4078 		 */
4079 		*ret = (s.base + off) & 0xffffffff;
4080 
4081 		/* Protected mode: apply checks for segment validity in the
4082 		 * following order:
4083 		 * - segment type check (#GP(0) may be thrown)
4084 		 * - usability check (#GP(0)/#SS(0))
4085 		 * - limit check (#GP(0)/#SS(0))
4086 		 */
4087 		if (wr)
4088 			/* #GP(0) if the destination operand is located in a
4089 			 * read-only data segment or any code segment.
4090 			 */
4091 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
4092 		else
4093 			/* #GP(0) if the source operand is located in an
4094 			 * execute-only code segment
4095 			 */
4096 			exn = ((s.type & 0xa) == 8);
4097 		if (exn) {
4098 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4099 			return 1;
4100 		}
4101 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4102 		 */
4103 		exn = (s.unusable != 0);
4104 
4105 		/*
4106 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4107 		 * outside the segment limit.  All CPUs that support VMX ignore
4108 		 * limit checks for flat segments, i.e. segments with base==0,
4109 		 * limit==0xffffffff and of type expand-up data or code.
4110 		 */
4111 		if (!(s.base == 0 && s.limit == 0xffffffff &&
4112 		     ((s.type & 8) || !(s.type & 4))))
4113 			exn = exn || (off + sizeof(u64) > s.limit);
4114 	}
4115 	if (exn) {
4116 		kvm_queue_exception_e(vcpu,
4117 				      seg_reg == VCPU_SREG_SS ?
4118 						SS_VECTOR : GP_VECTOR,
4119 				      0);
4120 		return 1;
4121 	}
4122 
4123 	return 0;
4124 }
4125 
4126 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4127 {
4128 	gva_t gva;
4129 	struct x86_exception e;
4130 
4131 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4132 			vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
4133 		return 1;
4134 
4135 	if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4136 		kvm_inject_page_fault(vcpu, &e);
4137 		return 1;
4138 	}
4139 
4140 	return 0;
4141 }
4142 
4143 /*
4144  * Allocate a shadow VMCS and associate it with the currently loaded
4145  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4146  * VMCS is also VMCLEARed, so that it is ready for use.
4147  */
4148 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4149 {
4150 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4151 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4152 
4153 	/*
4154 	 * We should allocate a shadow vmcs for vmcs01 only when L1
4155 	 * executes VMXON and free it when L1 executes VMXOFF.
4156 	 * As it is invalid to execute VMXON twice, we shouldn't reach
4157 	 * here when vmcs01 already have an allocated shadow vmcs.
4158 	 */
4159 	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4160 
4161 	if (!loaded_vmcs->shadow_vmcs) {
4162 		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4163 		if (loaded_vmcs->shadow_vmcs)
4164 			vmcs_clear(loaded_vmcs->shadow_vmcs);
4165 	}
4166 	return loaded_vmcs->shadow_vmcs;
4167 }
4168 
4169 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4170 {
4171 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4172 	int r;
4173 
4174 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4175 	if (r < 0)
4176 		goto out_vmcs02;
4177 
4178 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4179 	if (!vmx->nested.cached_vmcs12)
4180 		goto out_cached_vmcs12;
4181 
4182 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4183 	if (!vmx->nested.cached_shadow_vmcs12)
4184 		goto out_cached_shadow_vmcs12;
4185 
4186 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4187 		goto out_shadow_vmcs;
4188 
4189 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4190 		     HRTIMER_MODE_REL_PINNED);
4191 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4192 
4193 	vmx->nested.vpid02 = allocate_vpid();
4194 
4195 	vmx->nested.vmcs02_initialized = false;
4196 	vmx->nested.vmxon = true;
4197 
4198 	if (pt_mode == PT_MODE_HOST_GUEST) {
4199 		vmx->pt_desc.guest.ctl = 0;
4200 		pt_update_intercept_for_msr(vmx);
4201 	}
4202 
4203 	return 0;
4204 
4205 out_shadow_vmcs:
4206 	kfree(vmx->nested.cached_shadow_vmcs12);
4207 
4208 out_cached_shadow_vmcs12:
4209 	kfree(vmx->nested.cached_vmcs12);
4210 
4211 out_cached_vmcs12:
4212 	free_loaded_vmcs(&vmx->nested.vmcs02);
4213 
4214 out_vmcs02:
4215 	return -ENOMEM;
4216 }
4217 
4218 /*
4219  * Emulate the VMXON instruction.
4220  * Currently, we just remember that VMX is active, and do not save or even
4221  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4222  * do not currently need to store anything in that guest-allocated memory
4223  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4224  * argument is different from the VMXON pointer (which the spec says they do).
4225  */
4226 static int handle_vmon(struct kvm_vcpu *vcpu)
4227 {
4228 	int ret;
4229 	gpa_t vmptr;
4230 	struct page *page;
4231 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4232 	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4233 		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4234 
4235 	/*
4236 	 * The Intel VMX Instruction Reference lists a bunch of bits that are
4237 	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4238 	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4239 	 * Otherwise, we should fail with #UD.  But most faulting conditions
4240 	 * have already been checked by hardware, prior to the VM-exit for
4241 	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4242 	 * that bit set to 1 in non-root mode.
4243 	 */
4244 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4245 		kvm_queue_exception(vcpu, UD_VECTOR);
4246 		return 1;
4247 	}
4248 
4249 	/* CPL=0 must be checked manually. */
4250 	if (vmx_get_cpl(vcpu)) {
4251 		kvm_inject_gp(vcpu, 0);
4252 		return 1;
4253 	}
4254 
4255 	if (vmx->nested.vmxon)
4256 		return nested_vmx_failValid(vcpu,
4257 			VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4258 
4259 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4260 			!= VMXON_NEEDED_FEATURES) {
4261 		kvm_inject_gp(vcpu, 0);
4262 		return 1;
4263 	}
4264 
4265 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4266 		return 1;
4267 
4268 	/*
4269 	 * SDM 3: 24.11.5
4270 	 * The first 4 bytes of VMXON region contain the supported
4271 	 * VMCS revision identifier
4272 	 *
4273 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4274 	 * which replaces physical address width with 32
4275 	 */
4276 	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4277 		return nested_vmx_failInvalid(vcpu);
4278 
4279 	page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4280 	if (is_error_page(page))
4281 		return nested_vmx_failInvalid(vcpu);
4282 
4283 	if (*(u32 *)kmap(page) != VMCS12_REVISION) {
4284 		kunmap(page);
4285 		kvm_release_page_clean(page);
4286 		return nested_vmx_failInvalid(vcpu);
4287 	}
4288 	kunmap(page);
4289 	kvm_release_page_clean(page);
4290 
4291 	vmx->nested.vmxon_ptr = vmptr;
4292 	ret = enter_vmx_operation(vcpu);
4293 	if (ret)
4294 		return ret;
4295 
4296 	return nested_vmx_succeed(vcpu);
4297 }
4298 
4299 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4300 {
4301 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4302 
4303 	if (vmx->nested.current_vmptr == -1ull)
4304 		return;
4305 
4306 	if (enable_shadow_vmcs) {
4307 		/* copy to memory all shadowed fields in case
4308 		   they were modified */
4309 		copy_shadow_to_vmcs12(vmx);
4310 		vmx->nested.need_vmcs12_sync = false;
4311 		vmx_disable_shadow_vmcs(vmx);
4312 	}
4313 	vmx->nested.posted_intr_nv = -1;
4314 
4315 	/* Flush VMCS12 to guest memory */
4316 	kvm_vcpu_write_guest_page(vcpu,
4317 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
4318 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4319 
4320 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4321 
4322 	vmx->nested.current_vmptr = -1ull;
4323 }
4324 
4325 /* Emulate the VMXOFF instruction */
4326 static int handle_vmoff(struct kvm_vcpu *vcpu)
4327 {
4328 	if (!nested_vmx_check_permission(vcpu))
4329 		return 1;
4330 	free_nested(vcpu);
4331 	return nested_vmx_succeed(vcpu);
4332 }
4333 
4334 /* Emulate the VMCLEAR instruction */
4335 static int handle_vmclear(struct kvm_vcpu *vcpu)
4336 {
4337 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4338 	u32 zero = 0;
4339 	gpa_t vmptr;
4340 
4341 	if (!nested_vmx_check_permission(vcpu))
4342 		return 1;
4343 
4344 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4345 		return 1;
4346 
4347 	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4348 		return nested_vmx_failValid(vcpu,
4349 			VMXERR_VMCLEAR_INVALID_ADDRESS);
4350 
4351 	if (vmptr == vmx->nested.vmxon_ptr)
4352 		return nested_vmx_failValid(vcpu,
4353 			VMXERR_VMCLEAR_VMXON_POINTER);
4354 
4355 	if (vmx->nested.hv_evmcs_page) {
4356 		if (vmptr == vmx->nested.hv_evmcs_vmptr)
4357 			nested_release_evmcs(vcpu);
4358 	} else {
4359 		if (vmptr == vmx->nested.current_vmptr)
4360 			nested_release_vmcs12(vcpu);
4361 
4362 		kvm_vcpu_write_guest(vcpu,
4363 				     vmptr + offsetof(struct vmcs12,
4364 						      launch_state),
4365 				     &zero, sizeof(zero));
4366 	}
4367 
4368 	return nested_vmx_succeed(vcpu);
4369 }
4370 
4371 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4372 
4373 /* Emulate the VMLAUNCH instruction */
4374 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4375 {
4376 	return nested_vmx_run(vcpu, true);
4377 }
4378 
4379 /* Emulate the VMRESUME instruction */
4380 static int handle_vmresume(struct kvm_vcpu *vcpu)
4381 {
4382 
4383 	return nested_vmx_run(vcpu, false);
4384 }
4385 
4386 static int handle_vmread(struct kvm_vcpu *vcpu)
4387 {
4388 	unsigned long field;
4389 	u64 field_value;
4390 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4391 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4392 	gva_t gva = 0;
4393 	struct vmcs12 *vmcs12;
4394 
4395 	if (!nested_vmx_check_permission(vcpu))
4396 		return 1;
4397 
4398 	if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4399 		return nested_vmx_failInvalid(vcpu);
4400 
4401 	if (!is_guest_mode(vcpu))
4402 		vmcs12 = get_vmcs12(vcpu);
4403 	else {
4404 		/*
4405 		 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4406 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
4407 		 */
4408 		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4409 			return nested_vmx_failInvalid(vcpu);
4410 		vmcs12 = get_shadow_vmcs12(vcpu);
4411 	}
4412 
4413 	/* Decode instruction info and find the field to read */
4414 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4415 	/* Read the field, zero-extended to a u64 field_value */
4416 	if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
4417 		return nested_vmx_failValid(vcpu,
4418 			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4419 
4420 	/*
4421 	 * Now copy part of this value to register or memory, as requested.
4422 	 * Note that the number of bits actually copied is 32 or 64 depending
4423 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
4424 	 */
4425 	if (vmx_instruction_info & (1u << 10)) {
4426 		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4427 			field_value);
4428 	} else {
4429 		if (get_vmx_mem_address(vcpu, exit_qualification,
4430 				vmx_instruction_info, true, &gva))
4431 			return 1;
4432 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
4433 		kvm_write_guest_virt_system(vcpu, gva, &field_value,
4434 					    (is_long_mode(vcpu) ? 8 : 4), NULL);
4435 	}
4436 
4437 	return nested_vmx_succeed(vcpu);
4438 }
4439 
4440 
4441 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4442 {
4443 	unsigned long field;
4444 	gva_t gva;
4445 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4446 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4447 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4448 
4449 	/* The value to write might be 32 or 64 bits, depending on L1's long
4450 	 * mode, and eventually we need to write that into a field of several
4451 	 * possible lengths. The code below first zero-extends the value to 64
4452 	 * bit (field_value), and then copies only the appropriate number of
4453 	 * bits into the vmcs12 field.
4454 	 */
4455 	u64 field_value = 0;
4456 	struct x86_exception e;
4457 	struct vmcs12 *vmcs12;
4458 
4459 	if (!nested_vmx_check_permission(vcpu))
4460 		return 1;
4461 
4462 	if (vmx->nested.current_vmptr == -1ull)
4463 		return nested_vmx_failInvalid(vcpu);
4464 
4465 	if (vmx_instruction_info & (1u << 10))
4466 		field_value = kvm_register_readl(vcpu,
4467 			(((vmx_instruction_info) >> 3) & 0xf));
4468 	else {
4469 		if (get_vmx_mem_address(vcpu, exit_qualification,
4470 				vmx_instruction_info, false, &gva))
4471 			return 1;
4472 		if (kvm_read_guest_virt(vcpu, gva, &field_value,
4473 					(is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
4474 			kvm_inject_page_fault(vcpu, &e);
4475 			return 1;
4476 		}
4477 	}
4478 
4479 
4480 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4481 	/*
4482 	 * If the vCPU supports "VMWRITE to any supported field in the
4483 	 * VMCS," then the "read-only" fields are actually read/write.
4484 	 */
4485 	if (vmcs_field_readonly(field) &&
4486 	    !nested_cpu_has_vmwrite_any_field(vcpu))
4487 		return nested_vmx_failValid(vcpu,
4488 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4489 
4490 	if (!is_guest_mode(vcpu))
4491 		vmcs12 = get_vmcs12(vcpu);
4492 	else {
4493 		/*
4494 		 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4495 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
4496 		 */
4497 		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4498 			return nested_vmx_failInvalid(vcpu);
4499 		vmcs12 = get_shadow_vmcs12(vcpu);
4500 	}
4501 
4502 	if (vmcs12_write_any(vmcs12, field, field_value) < 0)
4503 		return nested_vmx_failValid(vcpu,
4504 			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4505 
4506 	/*
4507 	 * Do not track vmcs12 dirty-state if in guest-mode
4508 	 * as we actually dirty shadow vmcs12 instead of vmcs12.
4509 	 */
4510 	if (!is_guest_mode(vcpu)) {
4511 		switch (field) {
4512 #define SHADOW_FIELD_RW(x) case x:
4513 #include "vmcs_shadow_fields.h"
4514 			/*
4515 			 * The fields that can be updated by L1 without a vmexit are
4516 			 * always updated in the vmcs02, the others go down the slow
4517 			 * path of prepare_vmcs02.
4518 			 */
4519 			break;
4520 		default:
4521 			vmx->nested.dirty_vmcs12 = true;
4522 			break;
4523 		}
4524 	}
4525 
4526 	return nested_vmx_succeed(vcpu);
4527 }
4528 
4529 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4530 {
4531 	vmx->nested.current_vmptr = vmptr;
4532 	if (enable_shadow_vmcs) {
4533 		vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4534 			      SECONDARY_EXEC_SHADOW_VMCS);
4535 		vmcs_write64(VMCS_LINK_POINTER,
4536 			     __pa(vmx->vmcs01.shadow_vmcs));
4537 		vmx->nested.need_vmcs12_sync = true;
4538 	}
4539 	vmx->nested.dirty_vmcs12 = true;
4540 }
4541 
4542 /* Emulate the VMPTRLD instruction */
4543 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4544 {
4545 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4546 	gpa_t vmptr;
4547 
4548 	if (!nested_vmx_check_permission(vcpu))
4549 		return 1;
4550 
4551 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4552 		return 1;
4553 
4554 	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4555 		return nested_vmx_failValid(vcpu,
4556 			VMXERR_VMPTRLD_INVALID_ADDRESS);
4557 
4558 	if (vmptr == vmx->nested.vmxon_ptr)
4559 		return nested_vmx_failValid(vcpu,
4560 			VMXERR_VMPTRLD_VMXON_POINTER);
4561 
4562 	/* Forbid normal VMPTRLD if Enlightened version was used */
4563 	if (vmx->nested.hv_evmcs)
4564 		return 1;
4565 
4566 	if (vmx->nested.current_vmptr != vmptr) {
4567 		struct vmcs12 *new_vmcs12;
4568 		struct page *page;
4569 
4570 		page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4571 		if (is_error_page(page)) {
4572 			/*
4573 			 * Reads from an unbacked page return all 1s,
4574 			 * which means that the 32 bits located at the
4575 			 * given physical address won't match the required
4576 			 * VMCS12_REVISION identifier.
4577 			 */
4578 			return nested_vmx_failValid(vcpu,
4579 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4580 		}
4581 		new_vmcs12 = kmap(page);
4582 		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4583 		    (new_vmcs12->hdr.shadow_vmcs &&
4584 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4585 			kunmap(page);
4586 			kvm_release_page_clean(page);
4587 			return nested_vmx_failValid(vcpu,
4588 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4589 		}
4590 
4591 		nested_release_vmcs12(vcpu);
4592 
4593 		/*
4594 		 * Load VMCS12 from guest memory since it is not already
4595 		 * cached.
4596 		 */
4597 		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4598 		kunmap(page);
4599 		kvm_release_page_clean(page);
4600 
4601 		set_current_vmptr(vmx, vmptr);
4602 	}
4603 
4604 	return nested_vmx_succeed(vcpu);
4605 }
4606 
4607 /* Emulate the VMPTRST instruction */
4608 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4609 {
4610 	unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4611 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4612 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4613 	struct x86_exception e;
4614 	gva_t gva;
4615 
4616 	if (!nested_vmx_check_permission(vcpu))
4617 		return 1;
4618 
4619 	if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4620 		return 1;
4621 
4622 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
4623 		return 1;
4624 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4625 	if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4626 					sizeof(gpa_t), &e)) {
4627 		kvm_inject_page_fault(vcpu, &e);
4628 		return 1;
4629 	}
4630 	return nested_vmx_succeed(vcpu);
4631 }
4632 
4633 /* Emulate the INVEPT instruction */
4634 static int handle_invept(struct kvm_vcpu *vcpu)
4635 {
4636 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4637 	u32 vmx_instruction_info, types;
4638 	unsigned long type;
4639 	gva_t gva;
4640 	struct x86_exception e;
4641 	struct {
4642 		u64 eptp, gpa;
4643 	} operand;
4644 
4645 	if (!(vmx->nested.msrs.secondary_ctls_high &
4646 	      SECONDARY_EXEC_ENABLE_EPT) ||
4647 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4648 		kvm_queue_exception(vcpu, UD_VECTOR);
4649 		return 1;
4650 	}
4651 
4652 	if (!nested_vmx_check_permission(vcpu))
4653 		return 1;
4654 
4655 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4656 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4657 
4658 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4659 
4660 	if (type >= 32 || !(types & (1 << type)))
4661 		return nested_vmx_failValid(vcpu,
4662 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4663 
4664 	/* According to the Intel VMX instruction reference, the memory
4665 	 * operand is read even if it isn't needed (e.g., for type==global)
4666 	 */
4667 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4668 			vmx_instruction_info, false, &gva))
4669 		return 1;
4670 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4671 		kvm_inject_page_fault(vcpu, &e);
4672 		return 1;
4673 	}
4674 
4675 	switch (type) {
4676 	case VMX_EPT_EXTENT_GLOBAL:
4677 	/*
4678 	 * TODO: track mappings and invalidate
4679 	 * single context requests appropriately
4680 	 */
4681 	case VMX_EPT_EXTENT_CONTEXT:
4682 		kvm_mmu_sync_roots(vcpu);
4683 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4684 		break;
4685 	default:
4686 		BUG_ON(1);
4687 		break;
4688 	}
4689 
4690 	return nested_vmx_succeed(vcpu);
4691 }
4692 
4693 static int handle_invvpid(struct kvm_vcpu *vcpu)
4694 {
4695 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4696 	u32 vmx_instruction_info;
4697 	unsigned long type, types;
4698 	gva_t gva;
4699 	struct x86_exception e;
4700 	struct {
4701 		u64 vpid;
4702 		u64 gla;
4703 	} operand;
4704 	u16 vpid02;
4705 
4706 	if (!(vmx->nested.msrs.secondary_ctls_high &
4707 	      SECONDARY_EXEC_ENABLE_VPID) ||
4708 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4709 		kvm_queue_exception(vcpu, UD_VECTOR);
4710 		return 1;
4711 	}
4712 
4713 	if (!nested_vmx_check_permission(vcpu))
4714 		return 1;
4715 
4716 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4717 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4718 
4719 	types = (vmx->nested.msrs.vpid_caps &
4720 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4721 
4722 	if (type >= 32 || !(types & (1 << type)))
4723 		return nested_vmx_failValid(vcpu,
4724 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4725 
4726 	/* according to the intel vmx instruction reference, the memory
4727 	 * operand is read even if it isn't needed (e.g., for type==global)
4728 	 */
4729 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4730 			vmx_instruction_info, false, &gva))
4731 		return 1;
4732 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4733 		kvm_inject_page_fault(vcpu, &e);
4734 		return 1;
4735 	}
4736 	if (operand.vpid >> 16)
4737 		return nested_vmx_failValid(vcpu,
4738 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4739 
4740 	vpid02 = nested_get_vpid02(vcpu);
4741 	switch (type) {
4742 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4743 		if (!operand.vpid ||
4744 		    is_noncanonical_address(operand.gla, vcpu))
4745 			return nested_vmx_failValid(vcpu,
4746 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4747 		if (cpu_has_vmx_invvpid_individual_addr()) {
4748 			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4749 				vpid02, operand.gla);
4750 		} else
4751 			__vmx_flush_tlb(vcpu, vpid02, false);
4752 		break;
4753 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4754 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4755 		if (!operand.vpid)
4756 			return nested_vmx_failValid(vcpu,
4757 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4758 		__vmx_flush_tlb(vcpu, vpid02, false);
4759 		break;
4760 	case VMX_VPID_EXTENT_ALL_CONTEXT:
4761 		__vmx_flush_tlb(vcpu, vpid02, false);
4762 		break;
4763 	default:
4764 		WARN_ON_ONCE(1);
4765 		return kvm_skip_emulated_instruction(vcpu);
4766 	}
4767 
4768 	return nested_vmx_succeed(vcpu);
4769 }
4770 
4771 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4772 				     struct vmcs12 *vmcs12)
4773 {
4774 	u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
4775 	u64 address;
4776 	bool accessed_dirty;
4777 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4778 
4779 	if (!nested_cpu_has_eptp_switching(vmcs12) ||
4780 	    !nested_cpu_has_ept(vmcs12))
4781 		return 1;
4782 
4783 	if (index >= VMFUNC_EPTP_ENTRIES)
4784 		return 1;
4785 
4786 
4787 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
4788 				     &address, index * 8, 8))
4789 		return 1;
4790 
4791 	accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
4792 
4793 	/*
4794 	 * If the (L2) guest does a vmfunc to the currently
4795 	 * active ept pointer, we don't have to do anything else
4796 	 */
4797 	if (vmcs12->ept_pointer != address) {
4798 		if (!valid_ept_address(vcpu, address))
4799 			return 1;
4800 
4801 		kvm_mmu_unload(vcpu);
4802 		mmu->ept_ad = accessed_dirty;
4803 		mmu->mmu_role.base.ad_disabled = !accessed_dirty;
4804 		vmcs12->ept_pointer = address;
4805 		/*
4806 		 * TODO: Check what's the correct approach in case
4807 		 * mmu reload fails. Currently, we just let the next
4808 		 * reload potentially fail
4809 		 */
4810 		kvm_mmu_reload(vcpu);
4811 	}
4812 
4813 	return 0;
4814 }
4815 
4816 static int handle_vmfunc(struct kvm_vcpu *vcpu)
4817 {
4818 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4819 	struct vmcs12 *vmcs12;
4820 	u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
4821 
4822 	/*
4823 	 * VMFUNC is only supported for nested guests, but we always enable the
4824 	 * secondary control for simplicity; for non-nested mode, fake that we
4825 	 * didn't by injecting #UD.
4826 	 */
4827 	if (!is_guest_mode(vcpu)) {
4828 		kvm_queue_exception(vcpu, UD_VECTOR);
4829 		return 1;
4830 	}
4831 
4832 	vmcs12 = get_vmcs12(vcpu);
4833 	if ((vmcs12->vm_function_control & (1 << function)) == 0)
4834 		goto fail;
4835 
4836 	switch (function) {
4837 	case 0:
4838 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
4839 			goto fail;
4840 		break;
4841 	default:
4842 		goto fail;
4843 	}
4844 	return kvm_skip_emulated_instruction(vcpu);
4845 
4846 fail:
4847 	nested_vmx_vmexit(vcpu, vmx->exit_reason,
4848 			  vmcs_read32(VM_EXIT_INTR_INFO),
4849 			  vmcs_readl(EXIT_QUALIFICATION));
4850 	return 1;
4851 }
4852 
4853 
4854 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4855 				       struct vmcs12 *vmcs12)
4856 {
4857 	unsigned long exit_qualification;
4858 	gpa_t bitmap, last_bitmap;
4859 	unsigned int port;
4860 	int size;
4861 	u8 b;
4862 
4863 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
4864 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
4865 
4866 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4867 
4868 	port = exit_qualification >> 16;
4869 	size = (exit_qualification & 7) + 1;
4870 
4871 	last_bitmap = (gpa_t)-1;
4872 	b = -1;
4873 
4874 	while (size > 0) {
4875 		if (port < 0x8000)
4876 			bitmap = vmcs12->io_bitmap_a;
4877 		else if (port < 0x10000)
4878 			bitmap = vmcs12->io_bitmap_b;
4879 		else
4880 			return true;
4881 		bitmap += (port & 0x7fff) / 8;
4882 
4883 		if (last_bitmap != bitmap)
4884 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
4885 				return true;
4886 		if (b & (1 << (port & 7)))
4887 			return true;
4888 
4889 		port++;
4890 		size--;
4891 		last_bitmap = bitmap;
4892 	}
4893 
4894 	return false;
4895 }
4896 
4897 /*
4898  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
4899  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
4900  * disinterest in the current event (read or write a specific MSR) by using an
4901  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
4902  */
4903 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
4904 	struct vmcs12 *vmcs12, u32 exit_reason)
4905 {
4906 	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
4907 	gpa_t bitmap;
4908 
4909 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
4910 		return true;
4911 
4912 	/*
4913 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
4914 	 * for the four combinations of read/write and low/high MSR numbers.
4915 	 * First we need to figure out which of the four to use:
4916 	 */
4917 	bitmap = vmcs12->msr_bitmap;
4918 	if (exit_reason == EXIT_REASON_MSR_WRITE)
4919 		bitmap += 2048;
4920 	if (msr_index >= 0xc0000000) {
4921 		msr_index -= 0xc0000000;
4922 		bitmap += 1024;
4923 	}
4924 
4925 	/* Then read the msr_index'th bit from this bitmap: */
4926 	if (msr_index < 1024*8) {
4927 		unsigned char b;
4928 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
4929 			return true;
4930 		return 1 & (b >> (msr_index & 7));
4931 	} else
4932 		return true; /* let L1 handle the wrong parameter */
4933 }
4934 
4935 /*
4936  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
4937  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
4938  * intercept (via guest_host_mask etc.) the current event.
4939  */
4940 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
4941 	struct vmcs12 *vmcs12)
4942 {
4943 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4944 	int cr = exit_qualification & 15;
4945 	int reg;
4946 	unsigned long val;
4947 
4948 	switch ((exit_qualification >> 4) & 3) {
4949 	case 0: /* mov to cr */
4950 		reg = (exit_qualification >> 8) & 15;
4951 		val = kvm_register_readl(vcpu, reg);
4952 		switch (cr) {
4953 		case 0:
4954 			if (vmcs12->cr0_guest_host_mask &
4955 			    (val ^ vmcs12->cr0_read_shadow))
4956 				return true;
4957 			break;
4958 		case 3:
4959 			if ((vmcs12->cr3_target_count >= 1 &&
4960 					vmcs12->cr3_target_value0 == val) ||
4961 				(vmcs12->cr3_target_count >= 2 &&
4962 					vmcs12->cr3_target_value1 == val) ||
4963 				(vmcs12->cr3_target_count >= 3 &&
4964 					vmcs12->cr3_target_value2 == val) ||
4965 				(vmcs12->cr3_target_count >= 4 &&
4966 					vmcs12->cr3_target_value3 == val))
4967 				return false;
4968 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
4969 				return true;
4970 			break;
4971 		case 4:
4972 			if (vmcs12->cr4_guest_host_mask &
4973 			    (vmcs12->cr4_read_shadow ^ val))
4974 				return true;
4975 			break;
4976 		case 8:
4977 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
4978 				return true;
4979 			break;
4980 		}
4981 		break;
4982 	case 2: /* clts */
4983 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
4984 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
4985 			return true;
4986 		break;
4987 	case 1: /* mov from cr */
4988 		switch (cr) {
4989 		case 3:
4990 			if (vmcs12->cpu_based_vm_exec_control &
4991 			    CPU_BASED_CR3_STORE_EXITING)
4992 				return true;
4993 			break;
4994 		case 8:
4995 			if (vmcs12->cpu_based_vm_exec_control &
4996 			    CPU_BASED_CR8_STORE_EXITING)
4997 				return true;
4998 			break;
4999 		}
5000 		break;
5001 	case 3: /* lmsw */
5002 		/*
5003 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5004 		 * cr0. Other attempted changes are ignored, with no exit.
5005 		 */
5006 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5007 		if (vmcs12->cr0_guest_host_mask & 0xe &
5008 		    (val ^ vmcs12->cr0_read_shadow))
5009 			return true;
5010 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5011 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5012 		    (val & 0x1))
5013 			return true;
5014 		break;
5015 	}
5016 	return false;
5017 }
5018 
5019 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5020 	struct vmcs12 *vmcs12, gpa_t bitmap)
5021 {
5022 	u32 vmx_instruction_info;
5023 	unsigned long field;
5024 	u8 b;
5025 
5026 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
5027 		return true;
5028 
5029 	/* Decode instruction info and find the field to access */
5030 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5031 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5032 
5033 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
5034 	if (field >> 15)
5035 		return true;
5036 
5037 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5038 		return true;
5039 
5040 	return 1 & (b >> (field & 7));
5041 }
5042 
5043 /*
5044  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5045  * should handle it ourselves in L0 (and then continue L2). Only call this
5046  * when in is_guest_mode (L2).
5047  */
5048 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5049 {
5050 	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5051 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5052 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5053 
5054 	if (vmx->nested.nested_run_pending)
5055 		return false;
5056 
5057 	if (unlikely(vmx->fail)) {
5058 		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5059 				    vmcs_read32(VM_INSTRUCTION_ERROR));
5060 		return true;
5061 	}
5062 
5063 	/*
5064 	 * The host physical addresses of some pages of guest memory
5065 	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5066 	 * Page). The CPU may write to these pages via their host
5067 	 * physical address while L2 is running, bypassing any
5068 	 * address-translation-based dirty tracking (e.g. EPT write
5069 	 * protection).
5070 	 *
5071 	 * Mark them dirty on every exit from L2 to prevent them from
5072 	 * getting out of sync with dirty tracking.
5073 	 */
5074 	nested_mark_vmcs12_pages_dirty(vcpu);
5075 
5076 	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5077 				vmcs_readl(EXIT_QUALIFICATION),
5078 				vmx->idt_vectoring_info,
5079 				intr_info,
5080 				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5081 				KVM_ISA_VMX);
5082 
5083 	switch (exit_reason) {
5084 	case EXIT_REASON_EXCEPTION_NMI:
5085 		if (is_nmi(intr_info))
5086 			return false;
5087 		else if (is_page_fault(intr_info))
5088 			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5089 		else if (is_debug(intr_info) &&
5090 			 vcpu->guest_debug &
5091 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5092 			return false;
5093 		else if (is_breakpoint(intr_info) &&
5094 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5095 			return false;
5096 		return vmcs12->exception_bitmap &
5097 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
5098 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5099 		return false;
5100 	case EXIT_REASON_TRIPLE_FAULT:
5101 		return true;
5102 	case EXIT_REASON_PENDING_INTERRUPT:
5103 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5104 	case EXIT_REASON_NMI_WINDOW:
5105 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5106 	case EXIT_REASON_TASK_SWITCH:
5107 		return true;
5108 	case EXIT_REASON_CPUID:
5109 		return true;
5110 	case EXIT_REASON_HLT:
5111 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5112 	case EXIT_REASON_INVD:
5113 		return true;
5114 	case EXIT_REASON_INVLPG:
5115 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5116 	case EXIT_REASON_RDPMC:
5117 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5118 	case EXIT_REASON_RDRAND:
5119 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5120 	case EXIT_REASON_RDSEED:
5121 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5122 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5123 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5124 	case EXIT_REASON_VMREAD:
5125 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5126 			vmcs12->vmread_bitmap);
5127 	case EXIT_REASON_VMWRITE:
5128 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5129 			vmcs12->vmwrite_bitmap);
5130 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5131 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5132 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5133 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5134 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5135 		/*
5136 		 * VMX instructions trap unconditionally. This allows L1 to
5137 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5138 		 */
5139 		return true;
5140 	case EXIT_REASON_CR_ACCESS:
5141 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5142 	case EXIT_REASON_DR_ACCESS:
5143 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5144 	case EXIT_REASON_IO_INSTRUCTION:
5145 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
5146 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5147 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5148 	case EXIT_REASON_MSR_READ:
5149 	case EXIT_REASON_MSR_WRITE:
5150 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5151 	case EXIT_REASON_INVALID_STATE:
5152 		return true;
5153 	case EXIT_REASON_MWAIT_INSTRUCTION:
5154 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5155 	case EXIT_REASON_MONITOR_TRAP_FLAG:
5156 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5157 	case EXIT_REASON_MONITOR_INSTRUCTION:
5158 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5159 	case EXIT_REASON_PAUSE_INSTRUCTION:
5160 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5161 			nested_cpu_has2(vmcs12,
5162 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5163 	case EXIT_REASON_MCE_DURING_VMENTRY:
5164 		return false;
5165 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
5166 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5167 	case EXIT_REASON_APIC_ACCESS:
5168 	case EXIT_REASON_APIC_WRITE:
5169 	case EXIT_REASON_EOI_INDUCED:
5170 		/*
5171 		 * The controls for "virtualize APIC accesses," "APIC-
5172 		 * register virtualization," and "virtual-interrupt
5173 		 * delivery" only come from vmcs12.
5174 		 */
5175 		return true;
5176 	case EXIT_REASON_EPT_VIOLATION:
5177 		/*
5178 		 * L0 always deals with the EPT violation. If nested EPT is
5179 		 * used, and the nested mmu code discovers that the address is
5180 		 * missing in the guest EPT table (EPT12), the EPT violation
5181 		 * will be injected with nested_ept_inject_page_fault()
5182 		 */
5183 		return false;
5184 	case EXIT_REASON_EPT_MISCONFIG:
5185 		/*
5186 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
5187 		 * table (shadow on EPT) or a merged EPT table that L0 built
5188 		 * (EPT on EPT). So any problems with the structure of the
5189 		 * table is L0's fault.
5190 		 */
5191 		return false;
5192 	case EXIT_REASON_INVPCID:
5193 		return
5194 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5195 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5196 	case EXIT_REASON_WBINVD:
5197 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5198 	case EXIT_REASON_XSETBV:
5199 		return true;
5200 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5201 		/*
5202 		 * This should never happen, since it is not possible to
5203 		 * set XSS to a non-zero value---neither in L1 nor in L2.
5204 		 * If if it were, XSS would have to be checked against
5205 		 * the XSS exit bitmap in vmcs12.
5206 		 */
5207 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5208 	case EXIT_REASON_PREEMPTION_TIMER:
5209 		return false;
5210 	case EXIT_REASON_PML_FULL:
5211 		/* We emulate PML support to L1. */
5212 		return false;
5213 	case EXIT_REASON_VMFUNC:
5214 		/* VM functions are emulated through L2->L0 vmexits. */
5215 		return false;
5216 	case EXIT_REASON_ENCLS:
5217 		/* SGX is never exposed to L1 */
5218 		return false;
5219 	default:
5220 		return true;
5221 	}
5222 }
5223 
5224 
5225 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5226 				struct kvm_nested_state __user *user_kvm_nested_state,
5227 				u32 user_data_size)
5228 {
5229 	struct vcpu_vmx *vmx;
5230 	struct vmcs12 *vmcs12;
5231 	struct kvm_nested_state kvm_state = {
5232 		.flags = 0,
5233 		.format = 0,
5234 		.size = sizeof(kvm_state),
5235 		.vmx.vmxon_pa = -1ull,
5236 		.vmx.vmcs_pa = -1ull,
5237 	};
5238 
5239 	if (!vcpu)
5240 		return kvm_state.size + 2 * VMCS12_SIZE;
5241 
5242 	vmx = to_vmx(vcpu);
5243 	vmcs12 = get_vmcs12(vcpu);
5244 
5245 	if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
5246 		kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5247 
5248 	if (nested_vmx_allowed(vcpu) &&
5249 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5250 		kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5251 		kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
5252 
5253 		if (vmx_has_valid_vmcs12(vcpu)) {
5254 			kvm_state.size += VMCS12_SIZE;
5255 
5256 			if (is_guest_mode(vcpu) &&
5257 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
5258 			    vmcs12->vmcs_link_pointer != -1ull)
5259 				kvm_state.size += VMCS12_SIZE;
5260 		}
5261 
5262 		if (vmx->nested.smm.vmxon)
5263 			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5264 
5265 		if (vmx->nested.smm.guest_mode)
5266 			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5267 
5268 		if (is_guest_mode(vcpu)) {
5269 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5270 
5271 			if (vmx->nested.nested_run_pending)
5272 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5273 		}
5274 	}
5275 
5276 	if (user_data_size < kvm_state.size)
5277 		goto out;
5278 
5279 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5280 		return -EFAULT;
5281 
5282 	if (!vmx_has_valid_vmcs12(vcpu))
5283 		goto out;
5284 
5285 	/*
5286 	 * When running L2, the authoritative vmcs12 state is in the
5287 	 * vmcs02. When running L1, the authoritative vmcs12 state is
5288 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
5289 	 * need_vmcs12_sync is set, in which case, the authoritative
5290 	 * vmcs12 state is in the vmcs12 already.
5291 	 */
5292 	if (is_guest_mode(vcpu)) {
5293 		sync_vmcs12(vcpu, vmcs12);
5294 	} else if (!vmx->nested.need_vmcs12_sync) {
5295 		if (vmx->nested.hv_evmcs)
5296 			copy_enlightened_to_vmcs12(vmx);
5297 		else if (enable_shadow_vmcs)
5298 			copy_shadow_to_vmcs12(vmx);
5299 	}
5300 
5301 	/*
5302 	 * Copy over the full allocated size of vmcs12 rather than just the size
5303 	 * of the struct.
5304 	 */
5305 	if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
5306 		return -EFAULT;
5307 
5308 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5309 	    vmcs12->vmcs_link_pointer != -1ull) {
5310 		if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
5311 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5312 			return -EFAULT;
5313 	}
5314 
5315 out:
5316 	return kvm_state.size;
5317 }
5318 
5319 /*
5320  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5321  */
5322 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5323 {
5324 	if (is_guest_mode(vcpu)) {
5325 		to_vmx(vcpu)->nested.nested_run_pending = 0;
5326 		nested_vmx_vmexit(vcpu, -1, 0, 0);
5327 	}
5328 	free_nested(vcpu);
5329 }
5330 
5331 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5332 				struct kvm_nested_state __user *user_kvm_nested_state,
5333 				struct kvm_nested_state *kvm_state)
5334 {
5335 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5336 	struct vmcs12 *vmcs12;
5337 	u32 exit_qual;
5338 	int ret;
5339 
5340 	if (kvm_state->format != 0)
5341 		return -EINVAL;
5342 
5343 	if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
5344 		nested_enable_evmcs(vcpu, NULL);
5345 
5346 	if (!nested_vmx_allowed(vcpu))
5347 		return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
5348 
5349 	if (kvm_state->vmx.vmxon_pa == -1ull) {
5350 		if (kvm_state->vmx.smm.flags)
5351 			return -EINVAL;
5352 
5353 		if (kvm_state->vmx.vmcs_pa != -1ull)
5354 			return -EINVAL;
5355 
5356 		vmx_leave_nested(vcpu);
5357 		return 0;
5358 	}
5359 
5360 	if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
5361 		return -EINVAL;
5362 
5363 	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5364 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5365 		return -EINVAL;
5366 
5367 	if (kvm_state->vmx.smm.flags &
5368 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5369 		return -EINVAL;
5370 
5371 	/*
5372 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
5373 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5374 	 * must be zero.
5375 	 */
5376 	if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
5377 		return -EINVAL;
5378 
5379 	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5380 	    !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5381 		return -EINVAL;
5382 
5383 	vmx_leave_nested(vcpu);
5384 	if (kvm_state->vmx.vmxon_pa == -1ull)
5385 		return 0;
5386 
5387 	vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
5388 	ret = enter_vmx_operation(vcpu);
5389 	if (ret)
5390 		return ret;
5391 
5392 	/* Empty 'VMXON' state is permitted */
5393 	if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
5394 		return 0;
5395 
5396 	if (kvm_state->vmx.vmcs_pa != -1ull) {
5397 		if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
5398 		    !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
5399 			return -EINVAL;
5400 
5401 		set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
5402 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5403 		/*
5404 		 * Sync eVMCS upon entry as we may not have
5405 		 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5406 		 */
5407 		vmx->nested.need_vmcs12_sync = true;
5408 	} else {
5409 		return -EINVAL;
5410 	}
5411 
5412 	if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5413 		vmx->nested.smm.vmxon = true;
5414 		vmx->nested.vmxon = false;
5415 
5416 		if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5417 			vmx->nested.smm.guest_mode = true;
5418 	}
5419 
5420 	vmcs12 = get_vmcs12(vcpu);
5421 	if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
5422 		return -EFAULT;
5423 
5424 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5425 		return -EINVAL;
5426 
5427 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5428 		return 0;
5429 
5430 	vmx->nested.nested_run_pending =
5431 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5432 
5433 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5434 	    vmcs12->vmcs_link_pointer != -1ull) {
5435 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5436 
5437 		if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
5438 			return -EINVAL;
5439 
5440 		if (copy_from_user(shadow_vmcs12,
5441 				   user_kvm_nested_state->data + VMCS12_SIZE,
5442 				   sizeof(*vmcs12)))
5443 			return -EFAULT;
5444 
5445 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5446 		    !shadow_vmcs12->hdr.shadow_vmcs)
5447 			return -EINVAL;
5448 	}
5449 
5450 	if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) ||
5451 	    nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
5452 		return -EINVAL;
5453 
5454 	vmx->nested.dirty_vmcs12 = true;
5455 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
5456 	if (ret)
5457 		return -EINVAL;
5458 
5459 	return 0;
5460 }
5461 
5462 void nested_vmx_vcpu_setup(void)
5463 {
5464 	if (enable_shadow_vmcs) {
5465 		/*
5466 		 * At vCPU creation, "VMWRITE to any supported field
5467 		 * in the VMCS" is supported, so use the more
5468 		 * permissive vmx_vmread_bitmap to specify both read
5469 		 * and write permissions for the shadow VMCS.
5470 		 */
5471 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5472 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
5473 	}
5474 }
5475 
5476 /*
5477  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5478  * returned for the various VMX controls MSRs when nested VMX is enabled.
5479  * The same values should also be used to verify that vmcs12 control fields are
5480  * valid during nested entry from L1 to L2.
5481  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5482  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5483  * bit in the high half is on if the corresponding bit in the control field
5484  * may be on. See also vmx_control_verify().
5485  */
5486 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5487 				bool apicv)
5488 {
5489 	/*
5490 	 * Note that as a general rule, the high half of the MSRs (bits in
5491 	 * the control fields which may be 1) should be initialized by the
5492 	 * intersection of the underlying hardware's MSR (i.e., features which
5493 	 * can be supported) and the list of features we want to expose -
5494 	 * because they are known to be properly supported in our code.
5495 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
5496 	 * be set to 0, meaning that L1 may turn off any of these bits. The
5497 	 * reason is that if one of these bits is necessary, it will appear
5498 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5499 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
5500 	 * nested_vmx_exit_reflected() will not pass related exits to L1.
5501 	 * These rules have exceptions below.
5502 	 */
5503 
5504 	/* pin-based controls */
5505 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5506 		msrs->pinbased_ctls_low,
5507 		msrs->pinbased_ctls_high);
5508 	msrs->pinbased_ctls_low |=
5509 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5510 	msrs->pinbased_ctls_high &=
5511 		PIN_BASED_EXT_INTR_MASK |
5512 		PIN_BASED_NMI_EXITING |
5513 		PIN_BASED_VIRTUAL_NMIS |
5514 		(apicv ? PIN_BASED_POSTED_INTR : 0);
5515 	msrs->pinbased_ctls_high |=
5516 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5517 		PIN_BASED_VMX_PREEMPTION_TIMER;
5518 
5519 	/* exit controls */
5520 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5521 		msrs->exit_ctls_low,
5522 		msrs->exit_ctls_high);
5523 	msrs->exit_ctls_low =
5524 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5525 
5526 	msrs->exit_ctls_high &=
5527 #ifdef CONFIG_X86_64
5528 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
5529 #endif
5530 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5531 	msrs->exit_ctls_high |=
5532 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5533 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5534 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5535 
5536 	/* We support free control of debug control saving. */
5537 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5538 
5539 	/* entry controls */
5540 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5541 		msrs->entry_ctls_low,
5542 		msrs->entry_ctls_high);
5543 	msrs->entry_ctls_low =
5544 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5545 	msrs->entry_ctls_high &=
5546 #ifdef CONFIG_X86_64
5547 		VM_ENTRY_IA32E_MODE |
5548 #endif
5549 		VM_ENTRY_LOAD_IA32_PAT;
5550 	msrs->entry_ctls_high |=
5551 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5552 
5553 	/* We support free control of debug control loading. */
5554 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5555 
5556 	/* cpu-based controls */
5557 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5558 		msrs->procbased_ctls_low,
5559 		msrs->procbased_ctls_high);
5560 	msrs->procbased_ctls_low =
5561 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5562 	msrs->procbased_ctls_high &=
5563 		CPU_BASED_VIRTUAL_INTR_PENDING |
5564 		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5565 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5566 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5567 		CPU_BASED_CR3_STORE_EXITING |
5568 #ifdef CONFIG_X86_64
5569 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5570 #endif
5571 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5572 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5573 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5574 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5575 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5576 	/*
5577 	 * We can allow some features even when not supported by the
5578 	 * hardware. For example, L1 can specify an MSR bitmap - and we
5579 	 * can use it to avoid exits to L1 - even when L0 runs L2
5580 	 * without MSR bitmaps.
5581 	 */
5582 	msrs->procbased_ctls_high |=
5583 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5584 		CPU_BASED_USE_MSR_BITMAPS;
5585 
5586 	/* We support free control of CR3 access interception. */
5587 	msrs->procbased_ctls_low &=
5588 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5589 
5590 	/*
5591 	 * secondary cpu-based controls.  Do not include those that
5592 	 * depend on CPUID bits, they are added later by vmx_cpuid_update.
5593 	 */
5594 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5595 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5596 		      msrs->secondary_ctls_low,
5597 		      msrs->secondary_ctls_high);
5598 
5599 	msrs->secondary_ctls_low = 0;
5600 	msrs->secondary_ctls_high &=
5601 		SECONDARY_EXEC_DESC |
5602 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5603 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
5604 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5605 		SECONDARY_EXEC_WBINVD_EXITING;
5606 
5607 	/*
5608 	 * We can emulate "VMCS shadowing," even if the hardware
5609 	 * doesn't support it.
5610 	 */
5611 	msrs->secondary_ctls_high |=
5612 		SECONDARY_EXEC_SHADOW_VMCS;
5613 
5614 	if (enable_ept) {
5615 		/* nested EPT: emulate EPT also to L1 */
5616 		msrs->secondary_ctls_high |=
5617 			SECONDARY_EXEC_ENABLE_EPT;
5618 		msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5619 			 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5620 		if (cpu_has_vmx_ept_execute_only())
5621 			msrs->ept_caps |=
5622 				VMX_EPT_EXECUTE_ONLY_BIT;
5623 		msrs->ept_caps &= ept_caps;
5624 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5625 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5626 			VMX_EPT_1GB_PAGE_BIT;
5627 		if (enable_ept_ad_bits) {
5628 			msrs->secondary_ctls_high |=
5629 				SECONDARY_EXEC_ENABLE_PML;
5630 			msrs->ept_caps |= VMX_EPT_AD_BIT;
5631 		}
5632 	}
5633 
5634 	if (cpu_has_vmx_vmfunc()) {
5635 		msrs->secondary_ctls_high |=
5636 			SECONDARY_EXEC_ENABLE_VMFUNC;
5637 		/*
5638 		 * Advertise EPTP switching unconditionally
5639 		 * since we emulate it
5640 		 */
5641 		if (enable_ept)
5642 			msrs->vmfunc_controls =
5643 				VMX_VMFUNC_EPTP_SWITCHING;
5644 	}
5645 
5646 	/*
5647 	 * Old versions of KVM use the single-context version without
5648 	 * checking for support, so declare that it is supported even
5649 	 * though it is treated as global context.  The alternative is
5650 	 * not failing the single-context invvpid, and it is worse.
5651 	 */
5652 	if (enable_vpid) {
5653 		msrs->secondary_ctls_high |=
5654 			SECONDARY_EXEC_ENABLE_VPID;
5655 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5656 			VMX_VPID_EXTENT_SUPPORTED_MASK;
5657 	}
5658 
5659 	if (enable_unrestricted_guest)
5660 		msrs->secondary_ctls_high |=
5661 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
5662 
5663 	if (flexpriority_enabled)
5664 		msrs->secondary_ctls_high |=
5665 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5666 
5667 	/* miscellaneous data */
5668 	rdmsr(MSR_IA32_VMX_MISC,
5669 		msrs->misc_low,
5670 		msrs->misc_high);
5671 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5672 	msrs->misc_low |=
5673 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5674 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5675 		VMX_MISC_ACTIVITY_HLT;
5676 	msrs->misc_high = 0;
5677 
5678 	/*
5679 	 * This MSR reports some information about VMX support. We
5680 	 * should return information about the VMX we emulate for the
5681 	 * guest, and the VMCS structure we give it - not about the
5682 	 * VMX support of the underlying hardware.
5683 	 */
5684 	msrs->basic =
5685 		VMCS12_REVISION |
5686 		VMX_BASIC_TRUE_CTLS |
5687 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5688 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5689 
5690 	if (cpu_has_vmx_basic_inout())
5691 		msrs->basic |= VMX_BASIC_INOUT;
5692 
5693 	/*
5694 	 * These MSRs specify bits which the guest must keep fixed on
5695 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5696 	 * We picked the standard core2 setting.
5697 	 */
5698 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5699 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
5700 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5701 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5702 
5703 	/* These MSRs specify bits which the guest must keep fixed off. */
5704 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5705 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5706 
5707 	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
5708 	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5709 }
5710 
5711 void nested_vmx_hardware_unsetup(void)
5712 {
5713 	int i;
5714 
5715 	if (enable_shadow_vmcs) {
5716 		for (i = 0; i < VMX_BITMAP_NR; i++)
5717 			free_page((unsigned long)vmx_bitmap[i]);
5718 	}
5719 }
5720 
5721 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5722 {
5723 	int i;
5724 
5725 	if (!cpu_has_vmx_shadow_vmcs())
5726 		enable_shadow_vmcs = 0;
5727 	if (enable_shadow_vmcs) {
5728 		for (i = 0; i < VMX_BITMAP_NR; i++) {
5729 			/*
5730 			 * The vmx_bitmap is not tied to a VM and so should
5731 			 * not be charged to a memcg.
5732 			 */
5733 			vmx_bitmap[i] = (unsigned long *)
5734 				__get_free_page(GFP_KERNEL);
5735 			if (!vmx_bitmap[i]) {
5736 				nested_vmx_hardware_unsetup();
5737 				return -ENOMEM;
5738 			}
5739 		}
5740 
5741 		init_vmcs_shadow_fields();
5742 	}
5743 
5744 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear,
5745 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch,
5746 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld,
5747 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst,
5748 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread,
5749 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume,
5750 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite,
5751 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff,
5752 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon,
5753 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept,
5754 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid,
5755 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc,
5756 
5757 	kvm_x86_ops->check_nested_events = vmx_check_nested_events;
5758 	kvm_x86_ops->get_nested_state = vmx_get_nested_state;
5759 	kvm_x86_ops->set_nested_state = vmx_set_nested_state;
5760 	kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
5761 	kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
5762 	kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
5763 
5764 	return 0;
5765 }
5766