xref: /openbmc/linux/arch/x86/kvm/vmx/nested.c (revision c4849f88)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5 
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8 
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "sgx.h"
15 #include "trace.h"
16 #include "vmx.h"
17 #include "x86.h"
18 
19 static bool __read_mostly enable_shadow_vmcs = 1;
20 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
21 
22 static bool __read_mostly nested_early_check = 0;
23 module_param(nested_early_check, bool, S_IRUGO);
24 
25 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
26 
27 /*
28  * Hyper-V requires all of these, so mark them as supported even though
29  * they are just treated the same as all-context.
30  */
31 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
32 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
33 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
34 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
35 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
36 
37 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
38 
39 enum {
40 	VMX_VMREAD_BITMAP,
41 	VMX_VMWRITE_BITMAP,
42 	VMX_BITMAP_NR
43 };
44 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
45 
46 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
47 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
48 
49 struct shadow_vmcs_field {
50 	u16	encoding;
51 	u16	offset;
52 };
53 static struct shadow_vmcs_field shadow_read_only_fields[] = {
54 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
55 #include "vmcs_shadow_fields.h"
56 };
57 static int max_shadow_read_only_fields =
58 	ARRAY_SIZE(shadow_read_only_fields);
59 
60 static struct shadow_vmcs_field shadow_read_write_fields[] = {
61 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
62 #include "vmcs_shadow_fields.h"
63 };
64 static int max_shadow_read_write_fields =
65 	ARRAY_SIZE(shadow_read_write_fields);
66 
67 static void init_vmcs_shadow_fields(void)
68 {
69 	int i, j;
70 
71 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
72 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
73 
74 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
75 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
76 		u16 field = entry.encoding;
77 
78 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
79 		    (i + 1 == max_shadow_read_only_fields ||
80 		     shadow_read_only_fields[i + 1].encoding != field + 1))
81 			pr_err("Missing field from shadow_read_only_field %x\n",
82 			       field + 1);
83 
84 		clear_bit(field, vmx_vmread_bitmap);
85 		if (field & 1)
86 #ifdef CONFIG_X86_64
87 			continue;
88 #else
89 			entry.offset += sizeof(u32);
90 #endif
91 		shadow_read_only_fields[j++] = entry;
92 	}
93 	max_shadow_read_only_fields = j;
94 
95 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
96 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
97 		u16 field = entry.encoding;
98 
99 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
100 		    (i + 1 == max_shadow_read_write_fields ||
101 		     shadow_read_write_fields[i + 1].encoding != field + 1))
102 			pr_err("Missing field from shadow_read_write_field %x\n",
103 			       field + 1);
104 
105 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
106 			  field <= GUEST_TR_AR_BYTES,
107 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
108 
109 		/*
110 		 * PML and the preemption timer can be emulated, but the
111 		 * processor cannot vmwrite to fields that don't exist
112 		 * on bare metal.
113 		 */
114 		switch (field) {
115 		case GUEST_PML_INDEX:
116 			if (!cpu_has_vmx_pml())
117 				continue;
118 			break;
119 		case VMX_PREEMPTION_TIMER_VALUE:
120 			if (!cpu_has_vmx_preemption_timer())
121 				continue;
122 			break;
123 		case GUEST_INTR_STATUS:
124 			if (!cpu_has_vmx_apicv())
125 				continue;
126 			break;
127 		default:
128 			break;
129 		}
130 
131 		clear_bit(field, vmx_vmwrite_bitmap);
132 		clear_bit(field, vmx_vmread_bitmap);
133 		if (field & 1)
134 #ifdef CONFIG_X86_64
135 			continue;
136 #else
137 			entry.offset += sizeof(u32);
138 #endif
139 		shadow_read_write_fields[j++] = entry;
140 	}
141 	max_shadow_read_write_fields = j;
142 }
143 
144 /*
145  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
146  * set the success or error code of an emulated VMX instruction (as specified
147  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
148  * instruction.
149  */
150 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
151 {
152 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
153 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
154 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
155 	return kvm_skip_emulated_instruction(vcpu);
156 }
157 
158 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
159 {
160 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
161 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
162 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
163 			| X86_EFLAGS_CF);
164 	return kvm_skip_emulated_instruction(vcpu);
165 }
166 
167 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
168 				u32 vm_instruction_error)
169 {
170 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
171 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
172 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
173 			| X86_EFLAGS_ZF);
174 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
175 	/*
176 	 * We don't need to force sync to shadow VMCS because
177 	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
178 	 * fields and thus must be synced.
179 	 */
180 	if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
181 		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
182 
183 	return kvm_skip_emulated_instruction(vcpu);
184 }
185 
186 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
187 {
188 	struct vcpu_vmx *vmx = to_vmx(vcpu);
189 
190 	/*
191 	 * failValid writes the error number to the current VMCS, which
192 	 * can't be done if there isn't a current VMCS.
193 	 */
194 	if (vmx->nested.current_vmptr == INVALID_GPA &&
195 	    !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
196 		return nested_vmx_failInvalid(vcpu);
197 
198 	return nested_vmx_failValid(vcpu, vm_instruction_error);
199 }
200 
201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
202 {
203 	/* TODO: not to reset guest simply here. */
204 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
206 }
207 
208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
209 {
210 	return fixed_bits_valid(control, low, high);
211 }
212 
213 static inline u64 vmx_control_msr(u32 low, u32 high)
214 {
215 	return low | ((u64)high << 32);
216 }
217 
218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
219 {
220 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
222 	vmx->nested.need_vmcs12_to_shadow_sync = false;
223 }
224 
225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
226 {
227 	struct vcpu_vmx *vmx = to_vmx(vcpu);
228 
229 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
230 		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
231 		vmx->nested.hv_evmcs = NULL;
232 	}
233 
234 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
235 }
236 
237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238 				     struct loaded_vmcs *prev)
239 {
240 	struct vmcs_host_state *dest, *src;
241 
242 	if (unlikely(!vmx->guest_state_loaded))
243 		return;
244 
245 	src = &prev->host_state;
246 	dest = &vmx->loaded_vmcs->host_state;
247 
248 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249 	dest->ldt_sel = src->ldt_sel;
250 #ifdef CONFIG_X86_64
251 	dest->ds_sel = src->ds_sel;
252 	dest->es_sel = src->es_sel;
253 #endif
254 }
255 
256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
257 {
258 	struct vcpu_vmx *vmx = to_vmx(vcpu);
259 	struct loaded_vmcs *prev;
260 	int cpu;
261 
262 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263 		return;
264 
265 	cpu = get_cpu();
266 	prev = vmx->loaded_vmcs;
267 	vmx->loaded_vmcs = vmcs;
268 	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269 	vmx_sync_vmcs_host_state(vmx, prev);
270 	put_cpu();
271 
272 	vmx_register_cache_reset(vcpu);
273 }
274 
275 /*
276  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277  * just stops using VMX.
278  */
279 static void free_nested(struct kvm_vcpu *vcpu)
280 {
281 	struct vcpu_vmx *vmx = to_vmx(vcpu);
282 
283 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
285 
286 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
287 		return;
288 
289 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290 
291 	vmx->nested.vmxon = false;
292 	vmx->nested.smm.vmxon = false;
293 	vmx->nested.vmxon_ptr = INVALID_GPA;
294 	free_vpid(vmx->nested.vpid02);
295 	vmx->nested.posted_intr_nv = -1;
296 	vmx->nested.current_vmptr = INVALID_GPA;
297 	if (enable_shadow_vmcs) {
298 		vmx_disable_shadow_vmcs(vmx);
299 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
300 		free_vmcs(vmx->vmcs01.shadow_vmcs);
301 		vmx->vmcs01.shadow_vmcs = NULL;
302 	}
303 	kfree(vmx->nested.cached_vmcs12);
304 	vmx->nested.cached_vmcs12 = NULL;
305 	kfree(vmx->nested.cached_shadow_vmcs12);
306 	vmx->nested.cached_shadow_vmcs12 = NULL;
307 	/* Unpin physical memory we referred to in the vmcs02 */
308 	if (vmx->nested.apic_access_page) {
309 		kvm_release_page_clean(vmx->nested.apic_access_page);
310 		vmx->nested.apic_access_page = NULL;
311 	}
312 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
313 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
314 	vmx->nested.pi_desc = NULL;
315 
316 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
317 
318 	nested_release_evmcs(vcpu);
319 
320 	free_loaded_vmcs(&vmx->nested.vmcs02);
321 }
322 
323 /*
324  * Ensure that the current vmcs of the logical processor is the
325  * vmcs01 of the vcpu before calling free_nested().
326  */
327 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
328 {
329 	vcpu_load(vcpu);
330 	vmx_leave_nested(vcpu);
331 	vcpu_put(vcpu);
332 }
333 
334 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
335 
336 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
337 {
338 	return VALID_PAGE(root_hpa) &&
339 	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
340 }
341 
342 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
343 				       gpa_t addr)
344 {
345 	uint i;
346 	struct kvm_mmu_root_info *cached_root;
347 
348 	WARN_ON_ONCE(!mmu_is_nested(vcpu));
349 
350 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
351 		cached_root = &vcpu->arch.mmu->prev_roots[i];
352 
353 		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
354 					    eptp))
355 			vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
356 	}
357 }
358 
359 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
360 		struct x86_exception *fault)
361 {
362 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
363 	struct vcpu_vmx *vmx = to_vmx(vcpu);
364 	u32 vm_exit_reason;
365 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
366 
367 	if (vmx->nested.pml_full) {
368 		vm_exit_reason = EXIT_REASON_PML_FULL;
369 		vmx->nested.pml_full = false;
370 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
371 	} else {
372 		if (fault->error_code & PFERR_RSVD_MASK)
373 			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
374 		else
375 			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
376 
377 		/*
378 		 * Although the caller (kvm_inject_emulated_page_fault) would
379 		 * have already synced the faulting address in the shadow EPT
380 		 * tables for the current EPTP12, we also need to sync it for
381 		 * any other cached EPTP02s based on the same EP4TA, since the
382 		 * TLB associates mappings to the EP4TA rather than the full EPTP.
383 		 */
384 		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
385 					   fault->address);
386 	}
387 
388 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
389 	vmcs12->guest_physical_address = fault->address;
390 }
391 
392 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
393 {
394 	kvm_init_shadow_ept_mmu(vcpu,
395 				to_vmx(vcpu)->nested.msrs.ept_caps &
396 				VMX_EPT_EXECUTE_ONLY_BIT,
397 				nested_ept_ad_enabled(vcpu),
398 				nested_ept_get_eptp(vcpu));
399 }
400 
401 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
402 {
403 	WARN_ON(mmu_is_nested(vcpu));
404 
405 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
406 	nested_ept_new_eptp(vcpu);
407 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
408 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
409 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
410 
411 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
412 }
413 
414 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
415 {
416 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
417 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
418 }
419 
420 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
421 					    u16 error_code)
422 {
423 	bool inequality, bit;
424 
425 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
426 	inequality =
427 		(error_code & vmcs12->page_fault_error_code_mask) !=
428 		 vmcs12->page_fault_error_code_match;
429 	return inequality ^ bit;
430 }
431 
432 
433 /*
434  * KVM wants to inject page-faults which it got to the guest. This function
435  * checks whether in a nested guest, we need to inject them to L1 or L2.
436  */
437 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
438 {
439 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
440 	unsigned int nr = vcpu->arch.exception.nr;
441 	bool has_payload = vcpu->arch.exception.has_payload;
442 	unsigned long payload = vcpu->arch.exception.payload;
443 
444 	if (nr == PF_VECTOR) {
445 		if (vcpu->arch.exception.nested_apf) {
446 			*exit_qual = vcpu->arch.apf.nested_apf_token;
447 			return 1;
448 		}
449 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
450 						    vcpu->arch.exception.error_code)) {
451 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
452 			return 1;
453 		}
454 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
455 		if (nr == DB_VECTOR) {
456 			if (!has_payload) {
457 				payload = vcpu->arch.dr6;
458 				payload &= ~DR6_BT;
459 				payload ^= DR6_ACTIVE_LOW;
460 			}
461 			*exit_qual = payload;
462 		} else
463 			*exit_qual = 0;
464 		return 1;
465 	}
466 
467 	return 0;
468 }
469 
470 
471 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
472 		struct x86_exception *fault)
473 {
474 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
475 
476 	WARN_ON(!is_guest_mode(vcpu));
477 
478 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
479 		!to_vmx(vcpu)->nested.nested_run_pending) {
480 		vmcs12->vm_exit_intr_error_code = fault->error_code;
481 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
482 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
483 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
484 				  fault->address);
485 	} else {
486 		kvm_inject_page_fault(vcpu, fault);
487 	}
488 }
489 
490 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
491 					       struct vmcs12 *vmcs12)
492 {
493 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
494 		return 0;
495 
496 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
497 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
498 		return -EINVAL;
499 
500 	return 0;
501 }
502 
503 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
504 						struct vmcs12 *vmcs12)
505 {
506 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
507 		return 0;
508 
509 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
510 		return -EINVAL;
511 
512 	return 0;
513 }
514 
515 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
516 						struct vmcs12 *vmcs12)
517 {
518 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
519 		return 0;
520 
521 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
522 		return -EINVAL;
523 
524 	return 0;
525 }
526 
527 /*
528  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
529  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
530  * only the "disable intercept" case needs to be handled.
531  */
532 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
533 							unsigned long *msr_bitmap_l0,
534 							u32 msr, int type)
535 {
536 	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
537 		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
538 
539 	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
540 		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
541 }
542 
543 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
544 {
545 	int msr;
546 
547 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
548 		unsigned word = msr / BITS_PER_LONG;
549 
550 		msr_bitmap[word] = ~0;
551 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
552 	}
553 }
554 
555 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
556 static inline									\
557 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
558 					 unsigned long *msr_bitmap_l1,		\
559 					 unsigned long *msr_bitmap_l0, u32 msr)	\
560 {										\
561 	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
562 	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
563 		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
564 	else									\
565 		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
566 }
567 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
568 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
569 
570 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
571 						    unsigned long *msr_bitmap_l1,
572 						    unsigned long *msr_bitmap_l0,
573 						    u32 msr, int types)
574 {
575 	if (types & MSR_TYPE_R)
576 		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
577 						  msr_bitmap_l0, msr);
578 	if (types & MSR_TYPE_W)
579 		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
580 						   msr_bitmap_l0, msr);
581 }
582 
583 /*
584  * Merge L0's and L1's MSR bitmap, return false to indicate that
585  * we do not use the hardware.
586  */
587 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
588 						 struct vmcs12 *vmcs12)
589 {
590 	struct vcpu_vmx *vmx = to_vmx(vcpu);
591 	int msr;
592 	unsigned long *msr_bitmap_l1;
593 	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
594 	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
595 
596 	/* Nothing to do if the MSR bitmap is not in use.  */
597 	if (!cpu_has_vmx_msr_bitmap() ||
598 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
599 		return false;
600 
601 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
602 		return false;
603 
604 	msr_bitmap_l1 = (unsigned long *)map->hva;
605 
606 	/*
607 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
608 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
609 	 * the x2APIC MSR range and selectively toggle those relevant to L2.
610 	 */
611 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
612 
613 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
614 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
615 			/*
616 			 * L0 need not intercept reads for MSRs between 0x800
617 			 * and 0x8ff, it just lets the processor take the value
618 			 * from the virtual-APIC page; take those 256 bits
619 			 * directly from the L1 bitmap.
620 			 */
621 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
622 				unsigned word = msr / BITS_PER_LONG;
623 
624 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
625 			}
626 		}
627 
628 		nested_vmx_disable_intercept_for_x2apic_msr(
629 			msr_bitmap_l1, msr_bitmap_l0,
630 			X2APIC_MSR(APIC_TASKPRI),
631 			MSR_TYPE_R | MSR_TYPE_W);
632 
633 		if (nested_cpu_has_vid(vmcs12)) {
634 			nested_vmx_disable_intercept_for_x2apic_msr(
635 				msr_bitmap_l1, msr_bitmap_l0,
636 				X2APIC_MSR(APIC_EOI),
637 				MSR_TYPE_W);
638 			nested_vmx_disable_intercept_for_x2apic_msr(
639 				msr_bitmap_l1, msr_bitmap_l0,
640 				X2APIC_MSR(APIC_SELF_IPI),
641 				MSR_TYPE_W);
642 		}
643 	}
644 
645 	/*
646 	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
647 	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
648 	 */
649 #ifdef CONFIG_X86_64
650 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
651 					 MSR_FS_BASE, MSR_TYPE_RW);
652 
653 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
654 					 MSR_GS_BASE, MSR_TYPE_RW);
655 
656 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
657 					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
658 #endif
659 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
660 					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
661 
662 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
663 					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
664 
665 	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
666 
667 	return true;
668 }
669 
670 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
671 				       struct vmcs12 *vmcs12)
672 {
673 	struct vcpu_vmx *vmx = to_vmx(vcpu);
674 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
675 
676 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
677 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
678 		return;
679 
680 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
681 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
682 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
683 		return;
684 
685 	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
686 			      VMCS12_SIZE);
687 }
688 
689 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
690 					      struct vmcs12 *vmcs12)
691 {
692 	struct vcpu_vmx *vmx = to_vmx(vcpu);
693 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
694 
695 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
696 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
697 		return;
698 
699 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
700 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
701 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
702 		return;
703 
704 	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
705 			       VMCS12_SIZE);
706 }
707 
708 /*
709  * In nested virtualization, check if L1 has set
710  * VM_EXIT_ACK_INTR_ON_EXIT
711  */
712 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
713 {
714 	return get_vmcs12(vcpu)->vm_exit_controls &
715 		VM_EXIT_ACK_INTR_ON_EXIT;
716 }
717 
718 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
719 					  struct vmcs12 *vmcs12)
720 {
721 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
722 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
723 		return -EINVAL;
724 	else
725 		return 0;
726 }
727 
728 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
729 					   struct vmcs12 *vmcs12)
730 {
731 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
732 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
733 	    !nested_cpu_has_vid(vmcs12) &&
734 	    !nested_cpu_has_posted_intr(vmcs12))
735 		return 0;
736 
737 	/*
738 	 * If virtualize x2apic mode is enabled,
739 	 * virtualize apic access must be disabled.
740 	 */
741 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
742 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
743 		return -EINVAL;
744 
745 	/*
746 	 * If virtual interrupt delivery is enabled,
747 	 * we must exit on external interrupts.
748 	 */
749 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
750 		return -EINVAL;
751 
752 	/*
753 	 * bits 15:8 should be zero in posted_intr_nv,
754 	 * the descriptor address has been already checked
755 	 * in nested_get_vmcs12_pages.
756 	 *
757 	 * bits 5:0 of posted_intr_desc_addr should be zero.
758 	 */
759 	if (nested_cpu_has_posted_intr(vmcs12) &&
760 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
761 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
762 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
763 	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
764 		return -EINVAL;
765 
766 	/* tpr shadow is needed by all apicv features. */
767 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
768 		return -EINVAL;
769 
770 	return 0;
771 }
772 
773 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
774 				       u32 count, u64 addr)
775 {
776 	if (count == 0)
777 		return 0;
778 
779 	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
780 	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
781 		return -EINVAL;
782 
783 	return 0;
784 }
785 
786 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
787 						     struct vmcs12 *vmcs12)
788 {
789 	if (CC(nested_vmx_check_msr_switch(vcpu,
790 					   vmcs12->vm_exit_msr_load_count,
791 					   vmcs12->vm_exit_msr_load_addr)) ||
792 	    CC(nested_vmx_check_msr_switch(vcpu,
793 					   vmcs12->vm_exit_msr_store_count,
794 					   vmcs12->vm_exit_msr_store_addr)))
795 		return -EINVAL;
796 
797 	return 0;
798 }
799 
800 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
801                                                       struct vmcs12 *vmcs12)
802 {
803 	if (CC(nested_vmx_check_msr_switch(vcpu,
804 					   vmcs12->vm_entry_msr_load_count,
805 					   vmcs12->vm_entry_msr_load_addr)))
806                 return -EINVAL;
807 
808 	return 0;
809 }
810 
811 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
812 					 struct vmcs12 *vmcs12)
813 {
814 	if (!nested_cpu_has_pml(vmcs12))
815 		return 0;
816 
817 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
818 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
819 		return -EINVAL;
820 
821 	return 0;
822 }
823 
824 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
825 							struct vmcs12 *vmcs12)
826 {
827 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
828 	       !nested_cpu_has_ept(vmcs12)))
829 		return -EINVAL;
830 	return 0;
831 }
832 
833 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
834 							 struct vmcs12 *vmcs12)
835 {
836 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
837 	       !nested_cpu_has_ept(vmcs12)))
838 		return -EINVAL;
839 	return 0;
840 }
841 
842 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
843 						 struct vmcs12 *vmcs12)
844 {
845 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
846 		return 0;
847 
848 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
849 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
850 		return -EINVAL;
851 
852 	return 0;
853 }
854 
855 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
856 				       struct vmx_msr_entry *e)
857 {
858 	/* x2APIC MSR accesses are not allowed */
859 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
860 		return -EINVAL;
861 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
862 	    CC(e->index == MSR_IA32_UCODE_REV))
863 		return -EINVAL;
864 	if (CC(e->reserved != 0))
865 		return -EINVAL;
866 	return 0;
867 }
868 
869 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
870 				     struct vmx_msr_entry *e)
871 {
872 	if (CC(e->index == MSR_FS_BASE) ||
873 	    CC(e->index == MSR_GS_BASE) ||
874 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
875 	    nested_vmx_msr_check_common(vcpu, e))
876 		return -EINVAL;
877 	return 0;
878 }
879 
880 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
881 				      struct vmx_msr_entry *e)
882 {
883 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
884 	    nested_vmx_msr_check_common(vcpu, e))
885 		return -EINVAL;
886 	return 0;
887 }
888 
889 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
890 {
891 	struct vcpu_vmx *vmx = to_vmx(vcpu);
892 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
893 				       vmx->nested.msrs.misc_high);
894 
895 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
896 }
897 
898 /*
899  * Load guest's/host's msr at nested entry/exit.
900  * return 0 for success, entry index for failure.
901  *
902  * One of the failure modes for MSR load/store is when a list exceeds the
903  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
904  * as possible, process all valid entries before failing rather than precheck
905  * for a capacity violation.
906  */
907 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
908 {
909 	u32 i;
910 	struct vmx_msr_entry e;
911 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
912 
913 	for (i = 0; i < count; i++) {
914 		if (unlikely(i >= max_msr_list_size))
915 			goto fail;
916 
917 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
918 					&e, sizeof(e))) {
919 			pr_debug_ratelimited(
920 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
921 				__func__, i, gpa + i * sizeof(e));
922 			goto fail;
923 		}
924 		if (nested_vmx_load_msr_check(vcpu, &e)) {
925 			pr_debug_ratelimited(
926 				"%s check failed (%u, 0x%x, 0x%x)\n",
927 				__func__, i, e.index, e.reserved);
928 			goto fail;
929 		}
930 		if (kvm_set_msr(vcpu, e.index, e.value)) {
931 			pr_debug_ratelimited(
932 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
933 				__func__, i, e.index, e.value);
934 			goto fail;
935 		}
936 	}
937 	return 0;
938 fail:
939 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
940 	return i + 1;
941 }
942 
943 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
944 					    u32 msr_index,
945 					    u64 *data)
946 {
947 	struct vcpu_vmx *vmx = to_vmx(vcpu);
948 
949 	/*
950 	 * If the L0 hypervisor stored a more accurate value for the TSC that
951 	 * does not include the time taken for emulation of the L2->L1
952 	 * VM-exit in L0, use the more accurate value.
953 	 */
954 	if (msr_index == MSR_IA32_TSC) {
955 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
956 						    MSR_IA32_TSC);
957 
958 		if (i >= 0) {
959 			u64 val = vmx->msr_autostore.guest.val[i].value;
960 
961 			*data = kvm_read_l1_tsc(vcpu, val);
962 			return true;
963 		}
964 	}
965 
966 	if (kvm_get_msr(vcpu, msr_index, data)) {
967 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
968 			msr_index);
969 		return false;
970 	}
971 	return true;
972 }
973 
974 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
975 				     struct vmx_msr_entry *e)
976 {
977 	if (kvm_vcpu_read_guest(vcpu,
978 				gpa + i * sizeof(*e),
979 				e, 2 * sizeof(u32))) {
980 		pr_debug_ratelimited(
981 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
982 			__func__, i, gpa + i * sizeof(*e));
983 		return false;
984 	}
985 	if (nested_vmx_store_msr_check(vcpu, e)) {
986 		pr_debug_ratelimited(
987 			"%s check failed (%u, 0x%x, 0x%x)\n",
988 			__func__, i, e->index, e->reserved);
989 		return false;
990 	}
991 	return true;
992 }
993 
994 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
995 {
996 	u64 data;
997 	u32 i;
998 	struct vmx_msr_entry e;
999 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1000 
1001 	for (i = 0; i < count; i++) {
1002 		if (unlikely(i >= max_msr_list_size))
1003 			return -EINVAL;
1004 
1005 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1006 			return -EINVAL;
1007 
1008 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1009 			return -EINVAL;
1010 
1011 		if (kvm_vcpu_write_guest(vcpu,
1012 					 gpa + i * sizeof(e) +
1013 					     offsetof(struct vmx_msr_entry, value),
1014 					 &data, sizeof(data))) {
1015 			pr_debug_ratelimited(
1016 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1017 				__func__, i, e.index, data);
1018 			return -EINVAL;
1019 		}
1020 	}
1021 	return 0;
1022 }
1023 
1024 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1025 {
1026 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1027 	u32 count = vmcs12->vm_exit_msr_store_count;
1028 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1029 	struct vmx_msr_entry e;
1030 	u32 i;
1031 
1032 	for (i = 0; i < count; i++) {
1033 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1034 			return false;
1035 
1036 		if (e.index == msr_index)
1037 			return true;
1038 	}
1039 	return false;
1040 }
1041 
1042 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1043 					   u32 msr_index)
1044 {
1045 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1046 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1047 	bool in_vmcs12_store_list;
1048 	int msr_autostore_slot;
1049 	bool in_autostore_list;
1050 	int last;
1051 
1052 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1053 	in_autostore_list = msr_autostore_slot >= 0;
1054 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1055 
1056 	if (in_vmcs12_store_list && !in_autostore_list) {
1057 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1058 			/*
1059 			 * Emulated VMEntry does not fail here.  Instead a less
1060 			 * accurate value will be returned by
1061 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1062 			 * instead of reading the value from the vmcs02 VMExit
1063 			 * MSR-store area.
1064 			 */
1065 			pr_warn_ratelimited(
1066 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1067 				msr_index);
1068 			return;
1069 		}
1070 		last = autostore->nr++;
1071 		autostore->val[last].index = msr_index;
1072 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1073 		last = --autostore->nr;
1074 		autostore->val[msr_autostore_slot] = autostore->val[last];
1075 	}
1076 }
1077 
1078 /*
1079  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1080  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1081  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1082  * @entry_failure_code.
1083  */
1084 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1085 			       bool nested_ept, bool reload_pdptrs,
1086 			       enum vm_entry_failure_code *entry_failure_code)
1087 {
1088 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1089 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1090 		return -EINVAL;
1091 	}
1092 
1093 	/*
1094 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1095 	 * must not be dereferenced.
1096 	 */
1097 	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1098 	    CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1099 		*entry_failure_code = ENTRY_FAIL_PDPTE;
1100 		return -EINVAL;
1101 	}
1102 
1103 	if (!nested_ept)
1104 		kvm_mmu_new_pgd(vcpu, cr3);
1105 
1106 	vcpu->arch.cr3 = cr3;
1107 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1108 
1109 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1110 	kvm_init_mmu(vcpu);
1111 
1112 	return 0;
1113 }
1114 
1115 /*
1116  * Returns if KVM is able to config CPU to tag TLB entries
1117  * populated by L2 differently than TLB entries populated
1118  * by L1.
1119  *
1120  * If L0 uses EPT, L1 and L2 run with different EPTP because
1121  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1122  * are tagged with different EPTP.
1123  *
1124  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1125  * with different VPID (L1 entries are tagged with vmx->vpid
1126  * while L2 entries are tagged with vmx->nested.vpid02).
1127  */
1128 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1129 {
1130 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1131 
1132 	return enable_ept ||
1133 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1134 }
1135 
1136 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1137 					    struct vmcs12 *vmcs12,
1138 					    bool is_vmenter)
1139 {
1140 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1141 
1142 	/*
1143 	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1144 	 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1145 	 * full TLB flush from the guest's perspective.  This is required even
1146 	 * if VPID is disabled in the host as KVM may need to synchronize the
1147 	 * MMU in response to the guest TLB flush.
1148 	 *
1149 	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1150 	 * EPT is a special snowflake, as guest-physical mappings aren't
1151 	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1152 	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1153 	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1154 	 * those mappings.
1155 	 */
1156 	if (!nested_cpu_has_vpid(vmcs12)) {
1157 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1158 		return;
1159 	}
1160 
1161 	/* L2 should never have a VPID if VPID is disabled. */
1162 	WARN_ON(!enable_vpid);
1163 
1164 	/*
1165 	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1166 	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1167 	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1168 	 * that the new vpid12 has never been used and thus represents a new
1169 	 * guest ASID that cannot have entries in the TLB.
1170 	 */
1171 	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1172 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1173 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1174 		return;
1175 	}
1176 
1177 	/*
1178 	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1179 	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1180 	 * KVM was unable to allocate a VPID for L2, flush the current context
1181 	 * as the effective ASID is common to both L1 and L2.
1182 	 */
1183 	if (!nested_has_guest_tlb_tag(vcpu))
1184 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1185 }
1186 
1187 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1188 {
1189 	superset &= mask;
1190 	subset &= mask;
1191 
1192 	return (superset | subset) == superset;
1193 }
1194 
1195 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1196 {
1197 	const u64 feature_and_reserved =
1198 		/* feature (except bit 48; see below) */
1199 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1200 		/* reserved */
1201 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1202 	u64 vmx_basic = vmx->nested.msrs.basic;
1203 
1204 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1205 		return -EINVAL;
1206 
1207 	/*
1208 	 * KVM does not emulate a version of VMX that constrains physical
1209 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1210 	 */
1211 	if (data & BIT_ULL(48))
1212 		return -EINVAL;
1213 
1214 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1215 	    vmx_basic_vmcs_revision_id(data))
1216 		return -EINVAL;
1217 
1218 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1219 		return -EINVAL;
1220 
1221 	vmx->nested.msrs.basic = data;
1222 	return 0;
1223 }
1224 
1225 static int
1226 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1227 {
1228 	u64 supported;
1229 	u32 *lowp, *highp;
1230 
1231 	switch (msr_index) {
1232 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1233 		lowp = &vmx->nested.msrs.pinbased_ctls_low;
1234 		highp = &vmx->nested.msrs.pinbased_ctls_high;
1235 		break;
1236 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1237 		lowp = &vmx->nested.msrs.procbased_ctls_low;
1238 		highp = &vmx->nested.msrs.procbased_ctls_high;
1239 		break;
1240 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1241 		lowp = &vmx->nested.msrs.exit_ctls_low;
1242 		highp = &vmx->nested.msrs.exit_ctls_high;
1243 		break;
1244 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1245 		lowp = &vmx->nested.msrs.entry_ctls_low;
1246 		highp = &vmx->nested.msrs.entry_ctls_high;
1247 		break;
1248 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1249 		lowp = &vmx->nested.msrs.secondary_ctls_low;
1250 		highp = &vmx->nested.msrs.secondary_ctls_high;
1251 		break;
1252 	default:
1253 		BUG();
1254 	}
1255 
1256 	supported = vmx_control_msr(*lowp, *highp);
1257 
1258 	/* Check must-be-1 bits are still 1. */
1259 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1260 		return -EINVAL;
1261 
1262 	/* Check must-be-0 bits are still 0. */
1263 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1264 		return -EINVAL;
1265 
1266 	*lowp = data;
1267 	*highp = data >> 32;
1268 	return 0;
1269 }
1270 
1271 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1272 {
1273 	const u64 feature_and_reserved_bits =
1274 		/* feature */
1275 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1276 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1277 		/* reserved */
1278 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1279 	u64 vmx_misc;
1280 
1281 	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1282 				   vmx->nested.msrs.misc_high);
1283 
1284 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1285 		return -EINVAL;
1286 
1287 	if ((vmx->nested.msrs.pinbased_ctls_high &
1288 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1289 	    vmx_misc_preemption_timer_rate(data) !=
1290 	    vmx_misc_preemption_timer_rate(vmx_misc))
1291 		return -EINVAL;
1292 
1293 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1294 		return -EINVAL;
1295 
1296 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1297 		return -EINVAL;
1298 
1299 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1300 		return -EINVAL;
1301 
1302 	vmx->nested.msrs.misc_low = data;
1303 	vmx->nested.msrs.misc_high = data >> 32;
1304 
1305 	return 0;
1306 }
1307 
1308 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1309 {
1310 	u64 vmx_ept_vpid_cap;
1311 
1312 	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1313 					   vmx->nested.msrs.vpid_caps);
1314 
1315 	/* Every bit is either reserved or a feature bit. */
1316 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1317 		return -EINVAL;
1318 
1319 	vmx->nested.msrs.ept_caps = data;
1320 	vmx->nested.msrs.vpid_caps = data >> 32;
1321 	return 0;
1322 }
1323 
1324 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1325 {
1326 	u64 *msr;
1327 
1328 	switch (msr_index) {
1329 	case MSR_IA32_VMX_CR0_FIXED0:
1330 		msr = &vmx->nested.msrs.cr0_fixed0;
1331 		break;
1332 	case MSR_IA32_VMX_CR4_FIXED0:
1333 		msr = &vmx->nested.msrs.cr4_fixed0;
1334 		break;
1335 	default:
1336 		BUG();
1337 	}
1338 
1339 	/*
1340 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1341 	 * must be 1 in the restored value.
1342 	 */
1343 	if (!is_bitwise_subset(data, *msr, -1ULL))
1344 		return -EINVAL;
1345 
1346 	*msr = data;
1347 	return 0;
1348 }
1349 
1350 /*
1351  * Called when userspace is restoring VMX MSRs.
1352  *
1353  * Returns 0 on success, non-0 otherwise.
1354  */
1355 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1356 {
1357 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1358 
1359 	/*
1360 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1361 	 * is in VMX operation.
1362 	 */
1363 	if (vmx->nested.vmxon)
1364 		return -EBUSY;
1365 
1366 	switch (msr_index) {
1367 	case MSR_IA32_VMX_BASIC:
1368 		return vmx_restore_vmx_basic(vmx, data);
1369 	case MSR_IA32_VMX_PINBASED_CTLS:
1370 	case MSR_IA32_VMX_PROCBASED_CTLS:
1371 	case MSR_IA32_VMX_EXIT_CTLS:
1372 	case MSR_IA32_VMX_ENTRY_CTLS:
1373 		/*
1374 		 * The "non-true" VMX capability MSRs are generated from the
1375 		 * "true" MSRs, so we do not support restoring them directly.
1376 		 *
1377 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1378 		 * should restore the "true" MSRs with the must-be-1 bits
1379 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1380 		 * DEFAULT SETTINGS".
1381 		 */
1382 		return -EINVAL;
1383 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1384 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1385 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1386 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1387 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1388 		return vmx_restore_control_msr(vmx, msr_index, data);
1389 	case MSR_IA32_VMX_MISC:
1390 		return vmx_restore_vmx_misc(vmx, data);
1391 	case MSR_IA32_VMX_CR0_FIXED0:
1392 	case MSR_IA32_VMX_CR4_FIXED0:
1393 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1394 	case MSR_IA32_VMX_CR0_FIXED1:
1395 	case MSR_IA32_VMX_CR4_FIXED1:
1396 		/*
1397 		 * These MSRs are generated based on the vCPU's CPUID, so we
1398 		 * do not support restoring them directly.
1399 		 */
1400 		return -EINVAL;
1401 	case MSR_IA32_VMX_EPT_VPID_CAP:
1402 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1403 	case MSR_IA32_VMX_VMCS_ENUM:
1404 		vmx->nested.msrs.vmcs_enum = data;
1405 		return 0;
1406 	case MSR_IA32_VMX_VMFUNC:
1407 		if (data & ~vmx->nested.msrs.vmfunc_controls)
1408 			return -EINVAL;
1409 		vmx->nested.msrs.vmfunc_controls = data;
1410 		return 0;
1411 	default:
1412 		/*
1413 		 * The rest of the VMX capability MSRs do not support restore.
1414 		 */
1415 		return -EINVAL;
1416 	}
1417 }
1418 
1419 /* Returns 0 on success, non-0 otherwise. */
1420 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1421 {
1422 	switch (msr_index) {
1423 	case MSR_IA32_VMX_BASIC:
1424 		*pdata = msrs->basic;
1425 		break;
1426 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1427 	case MSR_IA32_VMX_PINBASED_CTLS:
1428 		*pdata = vmx_control_msr(
1429 			msrs->pinbased_ctls_low,
1430 			msrs->pinbased_ctls_high);
1431 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1432 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1433 		break;
1434 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1435 	case MSR_IA32_VMX_PROCBASED_CTLS:
1436 		*pdata = vmx_control_msr(
1437 			msrs->procbased_ctls_low,
1438 			msrs->procbased_ctls_high);
1439 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1440 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1441 		break;
1442 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1443 	case MSR_IA32_VMX_EXIT_CTLS:
1444 		*pdata = vmx_control_msr(
1445 			msrs->exit_ctls_low,
1446 			msrs->exit_ctls_high);
1447 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1448 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1449 		break;
1450 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1451 	case MSR_IA32_VMX_ENTRY_CTLS:
1452 		*pdata = vmx_control_msr(
1453 			msrs->entry_ctls_low,
1454 			msrs->entry_ctls_high);
1455 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1456 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1457 		break;
1458 	case MSR_IA32_VMX_MISC:
1459 		*pdata = vmx_control_msr(
1460 			msrs->misc_low,
1461 			msrs->misc_high);
1462 		break;
1463 	case MSR_IA32_VMX_CR0_FIXED0:
1464 		*pdata = msrs->cr0_fixed0;
1465 		break;
1466 	case MSR_IA32_VMX_CR0_FIXED1:
1467 		*pdata = msrs->cr0_fixed1;
1468 		break;
1469 	case MSR_IA32_VMX_CR4_FIXED0:
1470 		*pdata = msrs->cr4_fixed0;
1471 		break;
1472 	case MSR_IA32_VMX_CR4_FIXED1:
1473 		*pdata = msrs->cr4_fixed1;
1474 		break;
1475 	case MSR_IA32_VMX_VMCS_ENUM:
1476 		*pdata = msrs->vmcs_enum;
1477 		break;
1478 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1479 		*pdata = vmx_control_msr(
1480 			msrs->secondary_ctls_low,
1481 			msrs->secondary_ctls_high);
1482 		break;
1483 	case MSR_IA32_VMX_EPT_VPID_CAP:
1484 		*pdata = msrs->ept_caps |
1485 			((u64)msrs->vpid_caps << 32);
1486 		break;
1487 	case MSR_IA32_VMX_VMFUNC:
1488 		*pdata = msrs->vmfunc_controls;
1489 		break;
1490 	default:
1491 		return 1;
1492 	}
1493 
1494 	return 0;
1495 }
1496 
1497 /*
1498  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1499  * been modified by the L1 guest.  Note, "writable" in this context means
1500  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1501  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1502  * VM-exit information fields (which are actually writable if the vCPU is
1503  * configured to support "VMWRITE to any supported field in the VMCS").
1504  */
1505 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1506 {
1507 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1508 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1509 	struct shadow_vmcs_field field;
1510 	unsigned long val;
1511 	int i;
1512 
1513 	if (WARN_ON(!shadow_vmcs))
1514 		return;
1515 
1516 	preempt_disable();
1517 
1518 	vmcs_load(shadow_vmcs);
1519 
1520 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1521 		field = shadow_read_write_fields[i];
1522 		val = __vmcs_readl(field.encoding);
1523 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1524 	}
1525 
1526 	vmcs_clear(shadow_vmcs);
1527 	vmcs_load(vmx->loaded_vmcs->vmcs);
1528 
1529 	preempt_enable();
1530 }
1531 
1532 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1533 {
1534 	const struct shadow_vmcs_field *fields[] = {
1535 		shadow_read_write_fields,
1536 		shadow_read_only_fields
1537 	};
1538 	const int max_fields[] = {
1539 		max_shadow_read_write_fields,
1540 		max_shadow_read_only_fields
1541 	};
1542 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1543 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1544 	struct shadow_vmcs_field field;
1545 	unsigned long val;
1546 	int i, q;
1547 
1548 	if (WARN_ON(!shadow_vmcs))
1549 		return;
1550 
1551 	vmcs_load(shadow_vmcs);
1552 
1553 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1554 		for (i = 0; i < max_fields[q]; i++) {
1555 			field = fields[q][i];
1556 			val = vmcs12_read_any(vmcs12, field.encoding,
1557 					      field.offset);
1558 			__vmcs_writel(field.encoding, val);
1559 		}
1560 	}
1561 
1562 	vmcs_clear(shadow_vmcs);
1563 	vmcs_load(vmx->loaded_vmcs->vmcs);
1564 }
1565 
1566 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1567 {
1568 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1569 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1570 
1571 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1572 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1573 	vmcs12->guest_rip = evmcs->guest_rip;
1574 
1575 	if (unlikely(!(hv_clean_fields &
1576 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1577 		vmcs12->guest_rsp = evmcs->guest_rsp;
1578 		vmcs12->guest_rflags = evmcs->guest_rflags;
1579 		vmcs12->guest_interruptibility_info =
1580 			evmcs->guest_interruptibility_info;
1581 	}
1582 
1583 	if (unlikely(!(hv_clean_fields &
1584 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1585 		vmcs12->cpu_based_vm_exec_control =
1586 			evmcs->cpu_based_vm_exec_control;
1587 	}
1588 
1589 	if (unlikely(!(hv_clean_fields &
1590 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1591 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1592 	}
1593 
1594 	if (unlikely(!(hv_clean_fields &
1595 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1596 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1597 	}
1598 
1599 	if (unlikely(!(hv_clean_fields &
1600 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1601 		vmcs12->vm_entry_intr_info_field =
1602 			evmcs->vm_entry_intr_info_field;
1603 		vmcs12->vm_entry_exception_error_code =
1604 			evmcs->vm_entry_exception_error_code;
1605 		vmcs12->vm_entry_instruction_len =
1606 			evmcs->vm_entry_instruction_len;
1607 	}
1608 
1609 	if (unlikely(!(hv_clean_fields &
1610 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1611 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1612 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1613 		vmcs12->host_cr0 = evmcs->host_cr0;
1614 		vmcs12->host_cr3 = evmcs->host_cr3;
1615 		vmcs12->host_cr4 = evmcs->host_cr4;
1616 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1617 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1618 		vmcs12->host_rip = evmcs->host_rip;
1619 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1620 		vmcs12->host_es_selector = evmcs->host_es_selector;
1621 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1622 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1623 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1624 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1625 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1626 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1627 	}
1628 
1629 	if (unlikely(!(hv_clean_fields &
1630 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1631 		vmcs12->pin_based_vm_exec_control =
1632 			evmcs->pin_based_vm_exec_control;
1633 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1634 		vmcs12->secondary_vm_exec_control =
1635 			evmcs->secondary_vm_exec_control;
1636 	}
1637 
1638 	if (unlikely(!(hv_clean_fields &
1639 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1640 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1641 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1642 	}
1643 
1644 	if (unlikely(!(hv_clean_fields &
1645 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1646 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1647 	}
1648 
1649 	if (unlikely(!(hv_clean_fields &
1650 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1651 		vmcs12->guest_es_base = evmcs->guest_es_base;
1652 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1653 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1654 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1655 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1656 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1657 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1658 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1659 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1660 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1661 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1662 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1663 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1664 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1665 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1666 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1667 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1668 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1669 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1670 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1671 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1672 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1673 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1674 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1675 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1676 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1677 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1678 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1679 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1680 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1681 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1682 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1683 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1684 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1685 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1686 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1687 	}
1688 
1689 	if (unlikely(!(hv_clean_fields &
1690 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1691 		vmcs12->tsc_offset = evmcs->tsc_offset;
1692 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1693 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1694 	}
1695 
1696 	if (unlikely(!(hv_clean_fields &
1697 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1698 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1699 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1700 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1701 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1702 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1703 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1704 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1705 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1706 	}
1707 
1708 	if (unlikely(!(hv_clean_fields &
1709 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1710 		vmcs12->host_fs_base = evmcs->host_fs_base;
1711 		vmcs12->host_gs_base = evmcs->host_gs_base;
1712 		vmcs12->host_tr_base = evmcs->host_tr_base;
1713 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1714 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1715 		vmcs12->host_rsp = evmcs->host_rsp;
1716 	}
1717 
1718 	if (unlikely(!(hv_clean_fields &
1719 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1720 		vmcs12->ept_pointer = evmcs->ept_pointer;
1721 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1722 	}
1723 
1724 	if (unlikely(!(hv_clean_fields &
1725 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1726 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1727 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1728 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1729 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1730 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1731 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1732 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1733 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1734 		vmcs12->guest_pending_dbg_exceptions =
1735 			evmcs->guest_pending_dbg_exceptions;
1736 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1737 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1738 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1739 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1740 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1741 	}
1742 
1743 	/*
1744 	 * Not used?
1745 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1746 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1747 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1748 	 * vmcs12->page_fault_error_code_mask =
1749 	 *		evmcs->page_fault_error_code_mask;
1750 	 * vmcs12->page_fault_error_code_match =
1751 	 *		evmcs->page_fault_error_code_match;
1752 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1753 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1754 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1755 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1756 	 */
1757 
1758 	/*
1759 	 * Read only fields:
1760 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1761 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1762 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1763 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1764 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1765 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1766 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1767 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1768 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1769 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1770 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1771 	 *
1772 	 * Not present in struct vmcs12:
1773 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1774 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1775 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1776 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1777 	 */
1778 
1779 	return;
1780 }
1781 
1782 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1783 {
1784 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1785 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1786 
1787 	/*
1788 	 * Should not be changed by KVM:
1789 	 *
1790 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1791 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1792 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1793 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1794 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1795 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1796 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1797 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1798 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1799 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1800 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1801 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1802 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1803 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1804 	 * evmcs->host_rip = vmcs12->host_rip;
1805 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1806 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1807 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1808 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1809 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1810 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1811 	 * evmcs->host_rsp = vmcs12->host_rsp;
1812 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1813 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1814 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1815 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1816 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1817 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1818 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1819 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1820 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1821 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1822 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1823 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1824 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1825 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1826 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1827 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1828 	 * evmcs->page_fault_error_code_mask =
1829 	 *		vmcs12->page_fault_error_code_mask;
1830 	 * evmcs->page_fault_error_code_match =
1831 	 *		vmcs12->page_fault_error_code_match;
1832 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1833 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1834 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1835 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1836 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1837 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1838 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1839 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1840 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1841 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1842 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1843 	 *
1844 	 * Not present in struct vmcs12:
1845 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1846 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1847 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1848 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1849 	 */
1850 
1851 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1852 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1853 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1854 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1855 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1856 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1857 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1858 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1859 
1860 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1861 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1862 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1863 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1864 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1865 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1866 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1867 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1868 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1869 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1870 
1871 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1872 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1873 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1874 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1875 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1876 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1877 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1878 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1879 
1880 	evmcs->guest_es_base = vmcs12->guest_es_base;
1881 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1882 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1883 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1884 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1885 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1886 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1887 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1888 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1889 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1890 
1891 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1892 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1893 
1894 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1895 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1896 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1897 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1898 
1899 	evmcs->guest_pending_dbg_exceptions =
1900 		vmcs12->guest_pending_dbg_exceptions;
1901 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1902 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1903 
1904 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1905 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1906 
1907 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1908 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1909 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1910 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1911 
1912 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1913 
1914 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1915 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1916 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1917 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1918 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1919 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1920 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1921 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1922 
1923 	evmcs->exit_qualification = vmcs12->exit_qualification;
1924 
1925 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1926 	evmcs->guest_rsp = vmcs12->guest_rsp;
1927 	evmcs->guest_rflags = vmcs12->guest_rflags;
1928 
1929 	evmcs->guest_interruptibility_info =
1930 		vmcs12->guest_interruptibility_info;
1931 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1932 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1933 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1934 	evmcs->vm_entry_exception_error_code =
1935 		vmcs12->vm_entry_exception_error_code;
1936 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1937 
1938 	evmcs->guest_rip = vmcs12->guest_rip;
1939 
1940 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1941 
1942 	return;
1943 }
1944 
1945 /*
1946  * This is an equivalent of the nested hypervisor executing the vmptrld
1947  * instruction.
1948  */
1949 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1950 	struct kvm_vcpu *vcpu, bool from_launch)
1951 {
1952 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1953 	bool evmcs_gpa_changed = false;
1954 	u64 evmcs_gpa;
1955 
1956 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1957 		return EVMPTRLD_DISABLED;
1958 
1959 	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1960 		nested_release_evmcs(vcpu);
1961 		return EVMPTRLD_DISABLED;
1962 	}
1963 
1964 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1965 		vmx->nested.current_vmptr = INVALID_GPA;
1966 
1967 		nested_release_evmcs(vcpu);
1968 
1969 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1970 				 &vmx->nested.hv_evmcs_map))
1971 			return EVMPTRLD_ERROR;
1972 
1973 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1974 
1975 		/*
1976 		 * Currently, KVM only supports eVMCS version 1
1977 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1978 		 * value to first u32 field of eVMCS which should specify eVMCS
1979 		 * VersionNumber.
1980 		 *
1981 		 * Guest should be aware of supported eVMCS versions by host by
1982 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1983 		 * expected to set this CPUID leaf according to the value
1984 		 * returned in vmcs_version from nested_enable_evmcs().
1985 		 *
1986 		 * However, it turns out that Microsoft Hyper-V fails to comply
1987 		 * to their own invented interface: When Hyper-V use eVMCS, it
1988 		 * just sets first u32 field of eVMCS to revision_id specified
1989 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1990 		 * which is one of the supported versions specified in
1991 		 * CPUID.0x4000000A.EAX[0:15].
1992 		 *
1993 		 * To overcome Hyper-V bug, we accept here either a supported
1994 		 * eVMCS version or VMCS12 revision_id as valid values for first
1995 		 * u32 field of eVMCS.
1996 		 */
1997 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1998 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1999 			nested_release_evmcs(vcpu);
2000 			return EVMPTRLD_VMFAIL;
2001 		}
2002 
2003 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2004 
2005 		evmcs_gpa_changed = true;
2006 		/*
2007 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2008 		 * reloaded from guest's memory (read only fields, fields not
2009 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2010 		 * are no leftovers.
2011 		 */
2012 		if (from_launch) {
2013 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2014 			memset(vmcs12, 0, sizeof(*vmcs12));
2015 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2016 		}
2017 
2018 	}
2019 
2020 	/*
2021 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2022 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2023 	 */
2024 	if (from_launch || evmcs_gpa_changed)
2025 		vmx->nested.hv_evmcs->hv_clean_fields &=
2026 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2027 
2028 	return EVMPTRLD_SUCCEEDED;
2029 }
2030 
2031 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2032 {
2033 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2034 
2035 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2036 		copy_vmcs12_to_enlightened(vmx);
2037 	else
2038 		copy_vmcs12_to_shadow(vmx);
2039 
2040 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2041 }
2042 
2043 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2044 {
2045 	struct vcpu_vmx *vmx =
2046 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2047 
2048 	vmx->nested.preemption_timer_expired = true;
2049 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2050 	kvm_vcpu_kick(&vmx->vcpu);
2051 
2052 	return HRTIMER_NORESTART;
2053 }
2054 
2055 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2056 {
2057 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2058 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2059 
2060 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2061 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2062 
2063 	if (!vmx->nested.has_preemption_timer_deadline) {
2064 		vmx->nested.preemption_timer_deadline =
2065 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2066 		vmx->nested.has_preemption_timer_deadline = true;
2067 	}
2068 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2069 }
2070 
2071 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2072 					u64 preemption_timeout)
2073 {
2074 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2075 
2076 	/*
2077 	 * A timer value of zero is architecturally guaranteed to cause
2078 	 * a VMExit prior to executing any instructions in the guest.
2079 	 */
2080 	if (preemption_timeout == 0) {
2081 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2082 		return;
2083 	}
2084 
2085 	if (vcpu->arch.virtual_tsc_khz == 0)
2086 		return;
2087 
2088 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2089 	preemption_timeout *= 1000000;
2090 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2091 	hrtimer_start(&vmx->nested.preemption_timer,
2092 		      ktime_add_ns(ktime_get(), preemption_timeout),
2093 		      HRTIMER_MODE_ABS_PINNED);
2094 }
2095 
2096 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2097 {
2098 	if (vmx->nested.nested_run_pending &&
2099 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2100 		return vmcs12->guest_ia32_efer;
2101 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2102 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2103 	else
2104 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2105 }
2106 
2107 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2108 {
2109 	/*
2110 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2111 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2112 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2113 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2114 	 */
2115 	if (vmx->nested.vmcs02_initialized)
2116 		return;
2117 	vmx->nested.vmcs02_initialized = true;
2118 
2119 	/*
2120 	 * We don't care what the EPTP value is we just need to guarantee
2121 	 * it's valid so we don't get a false positive when doing early
2122 	 * consistency checks.
2123 	 */
2124 	if (enable_ept && nested_early_check)
2125 		vmcs_write64(EPT_POINTER,
2126 			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2127 
2128 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2129 	if (cpu_has_vmx_vmfunc())
2130 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2131 
2132 	if (cpu_has_vmx_posted_intr())
2133 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2134 
2135 	if (cpu_has_vmx_msr_bitmap())
2136 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2137 
2138 	/*
2139 	 * PML is emulated for L2, but never enabled in hardware as the MMU
2140 	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2141 	 * deal with filtering out L2 GPAs from the buffer.
2142 	 */
2143 	if (enable_pml) {
2144 		vmcs_write64(PML_ADDRESS, 0);
2145 		vmcs_write16(GUEST_PML_INDEX, -1);
2146 	}
2147 
2148 	if (cpu_has_vmx_encls_vmexit())
2149 		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2150 
2151 	/*
2152 	 * Set the MSR load/store lists to match L0's settings.  Only the
2153 	 * addresses are constant (for vmcs02), the counts can change based
2154 	 * on L2's behavior, e.g. switching to/from long mode.
2155 	 */
2156 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2157 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2158 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2159 
2160 	vmx_set_constant_host_state(vmx);
2161 }
2162 
2163 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2164 				      struct vmcs12 *vmcs12)
2165 {
2166 	prepare_vmcs02_constant_state(vmx);
2167 
2168 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2169 
2170 	if (enable_vpid) {
2171 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2172 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2173 		else
2174 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2175 	}
2176 }
2177 
2178 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2179 				 struct vmcs12 *vmcs12)
2180 {
2181 	u32 exec_control;
2182 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2183 
2184 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2185 		prepare_vmcs02_early_rare(vmx, vmcs12);
2186 
2187 	/*
2188 	 * PIN CONTROLS
2189 	 */
2190 	exec_control = __pin_controls_get(vmcs01);
2191 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2192 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2193 
2194 	/* Posted interrupts setting is only taken from vmcs12.  */
2195 	vmx->nested.pi_pending = false;
2196 	if (nested_cpu_has_posted_intr(vmcs12))
2197 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2198 	else
2199 		exec_control &= ~PIN_BASED_POSTED_INTR;
2200 	pin_controls_set(vmx, exec_control);
2201 
2202 	/*
2203 	 * EXEC CONTROLS
2204 	 */
2205 	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2206 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2207 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2208 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2209 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2210 
2211 	vmx->nested.l1_tpr_threshold = -1;
2212 	if (exec_control & CPU_BASED_TPR_SHADOW)
2213 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2214 #ifdef CONFIG_X86_64
2215 	else
2216 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2217 				CPU_BASED_CR8_STORE_EXITING;
2218 #endif
2219 
2220 	/*
2221 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2222 	 * for I/O port accesses.
2223 	 */
2224 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2225 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2226 
2227 	/*
2228 	 * This bit will be computed in nested_get_vmcs12_pages, because
2229 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2230 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2231 	 * only set/clear this bit.
2232 	 */
2233 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2234 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2235 
2236 	exec_controls_set(vmx, exec_control);
2237 
2238 	/*
2239 	 * SECONDARY EXEC CONTROLS
2240 	 */
2241 	if (cpu_has_secondary_exec_ctrls()) {
2242 		exec_control = __secondary_exec_controls_get(vmcs01);
2243 
2244 		/* Take the following fields only from vmcs12 */
2245 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2246 				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2247 				  SECONDARY_EXEC_ENABLE_INVPCID |
2248 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2249 				  SECONDARY_EXEC_XSAVES |
2250 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2251 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2252 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2253 				  SECONDARY_EXEC_ENABLE_VMFUNC |
2254 				  SECONDARY_EXEC_TSC_SCALING |
2255 				  SECONDARY_EXEC_DESC);
2256 
2257 		if (nested_cpu_has(vmcs12,
2258 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2259 			exec_control |= vmcs12->secondary_vm_exec_control;
2260 
2261 		/* PML is emulated and never enabled in hardware for L2. */
2262 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2263 
2264 		/* VMCS shadowing for L2 is emulated for now */
2265 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2266 
2267 		/*
2268 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2269 		 * will not have to rewrite the controls just for this bit.
2270 		 */
2271 		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2272 		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2273 			exec_control |= SECONDARY_EXEC_DESC;
2274 
2275 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2276 			vmcs_write16(GUEST_INTR_STATUS,
2277 				vmcs12->guest_intr_status);
2278 
2279 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2280 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2281 
2282 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2283 			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2284 
2285 		secondary_exec_controls_set(vmx, exec_control);
2286 	}
2287 
2288 	/*
2289 	 * ENTRY CONTROLS
2290 	 *
2291 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2292 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2293 	 * on the related bits (if supported by the CPU) in the hope that
2294 	 * we can avoid VMWrites during vmx_set_efer().
2295 	 */
2296 	exec_control = __vm_entry_controls_get(vmcs01);
2297 	exec_control |= vmcs12->vm_entry_controls;
2298 	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2299 	if (cpu_has_load_ia32_efer()) {
2300 		if (guest_efer & EFER_LMA)
2301 			exec_control |= VM_ENTRY_IA32E_MODE;
2302 		if (guest_efer != host_efer)
2303 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2304 	}
2305 	vm_entry_controls_set(vmx, exec_control);
2306 
2307 	/*
2308 	 * EXIT CONTROLS
2309 	 *
2310 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2311 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2312 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2313 	 */
2314 	exec_control = __vm_exit_controls_get(vmcs01);
2315 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2316 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2317 	else
2318 		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2319 	vm_exit_controls_set(vmx, exec_control);
2320 
2321 	/*
2322 	 * Interrupt/Exception Fields
2323 	 */
2324 	if (vmx->nested.nested_run_pending) {
2325 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2326 			     vmcs12->vm_entry_intr_info_field);
2327 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2328 			     vmcs12->vm_entry_exception_error_code);
2329 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2330 			     vmcs12->vm_entry_instruction_len);
2331 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2332 			     vmcs12->guest_interruptibility_info);
2333 		vmx->loaded_vmcs->nmi_known_unmasked =
2334 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2335 	} else {
2336 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2337 	}
2338 }
2339 
2340 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2341 {
2342 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2343 
2344 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2345 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2346 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2347 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2348 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2349 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2350 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2351 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2352 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2353 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2354 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2355 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2356 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2357 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2358 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2359 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2360 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2361 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2362 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2363 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2364 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2365 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2366 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2367 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2368 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2369 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2370 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2371 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2372 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2373 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2374 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2375 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2376 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2377 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2378 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2379 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2380 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2381 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2382 
2383 		vmx->segment_cache.bitmask = 0;
2384 	}
2385 
2386 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2387 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2388 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2389 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2390 			    vmcs12->guest_pending_dbg_exceptions);
2391 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2392 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2393 
2394 		/*
2395 		 * L1 may access the L2's PDPTR, so save them to construct
2396 		 * vmcs12
2397 		 */
2398 		if (enable_ept) {
2399 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2400 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2401 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2402 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2403 		}
2404 
2405 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2406 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2407 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2408 	}
2409 
2410 	if (nested_cpu_has_xsaves(vmcs12))
2411 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2412 
2413 	/*
2414 	 * Whether page-faults are trapped is determined by a combination of
2415 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2416 	 * doesn't care about page faults then we should set all of these to
2417 	 * L1's desires. However, if L0 does care about (some) page faults, it
2418 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2419 	 * simply ask to exit on each and every L2 page fault. This is done by
2420 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2421 	 * Note that below we don't need special code to set EB.PF beyond the
2422 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2423 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2424 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2425 	 */
2426 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2427 		/*
2428 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2429 		 * go ahead and use it?
2430 		 */
2431 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2432 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2433 	} else {
2434 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2435 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2436 	}
2437 
2438 	if (cpu_has_vmx_apicv()) {
2439 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2440 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2441 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2442 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2443 	}
2444 
2445 	/*
2446 	 * Make sure the msr_autostore list is up to date before we set the
2447 	 * count in the vmcs02.
2448 	 */
2449 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2450 
2451 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2452 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2453 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2454 
2455 	set_cr4_guest_host_mask(vmx);
2456 }
2457 
2458 /*
2459  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2460  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2461  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2462  * guest in a way that will both be appropriate to L1's requests, and our
2463  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2464  * function also has additional necessary side-effects, like setting various
2465  * vcpu->arch fields.
2466  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2467  * is assigned to entry_failure_code on failure.
2468  */
2469 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2470 			  bool from_vmentry,
2471 			  enum vm_entry_failure_code *entry_failure_code)
2472 {
2473 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2474 	bool load_guest_pdptrs_vmcs12 = false;
2475 
2476 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2477 		prepare_vmcs02_rare(vmx, vmcs12);
2478 		vmx->nested.dirty_vmcs12 = false;
2479 
2480 		load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2481 			!(vmx->nested.hv_evmcs->hv_clean_fields &
2482 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2483 	}
2484 
2485 	if (vmx->nested.nested_run_pending &&
2486 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2487 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2488 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2489 	} else {
2490 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2491 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2492 	}
2493 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2494 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2495 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2496 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2497 
2498 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2499 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2500 	 * trap. Note that CR0.TS also needs updating - we do this later.
2501 	 */
2502 	vmx_update_exception_bitmap(vcpu);
2503 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2504 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2505 
2506 	if (vmx->nested.nested_run_pending &&
2507 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2508 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2509 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2510 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2511 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2512 	}
2513 
2514 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2515 			vcpu->arch.l1_tsc_offset,
2516 			vmx_get_l2_tsc_offset(vcpu),
2517 			vmx_get_l2_tsc_multiplier(vcpu));
2518 
2519 	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2520 			vcpu->arch.l1_tsc_scaling_ratio,
2521 			vmx_get_l2_tsc_multiplier(vcpu));
2522 
2523 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2524 	if (kvm_has_tsc_control)
2525 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2526 
2527 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2528 
2529 	if (nested_cpu_has_ept(vmcs12))
2530 		nested_ept_init_mmu_context(vcpu);
2531 
2532 	/*
2533 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2534 	 * bits which we consider mandatory enabled.
2535 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
2536 	 * the specifications by L1; It's not enough to take
2537 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2538 	 * have more bits than L1 expected.
2539 	 */
2540 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2541 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2542 
2543 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2544 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2545 
2546 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2547 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2548 	vmx_set_efer(vcpu, vcpu->arch.efer);
2549 
2550 	/*
2551 	 * Guest state is invalid and unrestricted guest is disabled,
2552 	 * which means L1 attempted VMEntry to L2 with invalid state.
2553 	 * Fail the VMEntry.
2554 	 *
2555 	 * However when force loading the guest state (SMM exit or
2556 	 * loading nested state after migration, it is possible to
2557 	 * have invalid guest state now, which will be later fixed by
2558 	 * restoring L2 register state
2559 	 */
2560 	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2561 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2562 		return -EINVAL;
2563 	}
2564 
2565 	/* Shadow page tables on either EPT or shadow page tables. */
2566 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2567 				from_vmentry, entry_failure_code))
2568 		return -EINVAL;
2569 
2570 	/*
2571 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2572 	 * on nested VM-Exit, which can occur without actually running L2 and
2573 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2574 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2575 	 * transition to HLT instead of running L2.
2576 	 */
2577 	if (enable_ept)
2578 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2579 
2580 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2581 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2582 	    is_pae_paging(vcpu)) {
2583 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2584 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2585 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2586 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2587 	}
2588 
2589 	if (!enable_ept)
2590 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2591 
2592 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2593 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2594 				     vmcs12->guest_ia32_perf_global_ctrl))) {
2595 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2596 		return -EINVAL;
2597 	}
2598 
2599 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2600 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2601 
2602 	/*
2603 	 * It was observed that genuine Hyper-V running in L1 doesn't reset
2604 	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2605 	 * bits when it changes a field in eVMCS. Mark all fields as clean
2606 	 * here.
2607 	 */
2608 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2609 		vmx->nested.hv_evmcs->hv_clean_fields |=
2610 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2611 
2612 	return 0;
2613 }
2614 
2615 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2616 {
2617 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2618 	       nested_cpu_has_virtual_nmis(vmcs12)))
2619 		return -EINVAL;
2620 
2621 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2622 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2623 		return -EINVAL;
2624 
2625 	return 0;
2626 }
2627 
2628 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2629 {
2630 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2631 
2632 	/* Check for memory type validity */
2633 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2634 	case VMX_EPTP_MT_UC:
2635 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2636 			return false;
2637 		break;
2638 	case VMX_EPTP_MT_WB:
2639 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2640 			return false;
2641 		break;
2642 	default:
2643 		return false;
2644 	}
2645 
2646 	/* Page-walk levels validity. */
2647 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2648 	case VMX_EPTP_PWL_5:
2649 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2650 			return false;
2651 		break;
2652 	case VMX_EPTP_PWL_4:
2653 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2654 			return false;
2655 		break;
2656 	default:
2657 		return false;
2658 	}
2659 
2660 	/* Reserved bits should not be set */
2661 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2662 		return false;
2663 
2664 	/* AD, if set, should be supported */
2665 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2666 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2667 			return false;
2668 	}
2669 
2670 	return true;
2671 }
2672 
2673 /*
2674  * Checks related to VM-Execution Control Fields
2675  */
2676 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2677                                               struct vmcs12 *vmcs12)
2678 {
2679 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2680 
2681 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2682 				   vmx->nested.msrs.pinbased_ctls_low,
2683 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2684 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2685 				   vmx->nested.msrs.procbased_ctls_low,
2686 				   vmx->nested.msrs.procbased_ctls_high)))
2687 		return -EINVAL;
2688 
2689 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2690 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2691 				   vmx->nested.msrs.secondary_ctls_low,
2692 				   vmx->nested.msrs.secondary_ctls_high)))
2693 		return -EINVAL;
2694 
2695 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2696 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2697 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2698 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2699 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2700 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2701 	    nested_vmx_check_nmi_controls(vmcs12) ||
2702 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2703 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2704 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2705 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2706 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2707 		return -EINVAL;
2708 
2709 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2710 	    nested_cpu_has_save_preemption_timer(vmcs12))
2711 		return -EINVAL;
2712 
2713 	if (nested_cpu_has_ept(vmcs12) &&
2714 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2715 		return -EINVAL;
2716 
2717 	if (nested_cpu_has_vmfunc(vmcs12)) {
2718 		if (CC(vmcs12->vm_function_control &
2719 		       ~vmx->nested.msrs.vmfunc_controls))
2720 			return -EINVAL;
2721 
2722 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2723 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2724 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2725 				return -EINVAL;
2726 		}
2727 	}
2728 
2729 	return 0;
2730 }
2731 
2732 /*
2733  * Checks related to VM-Exit Control Fields
2734  */
2735 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2736                                          struct vmcs12 *vmcs12)
2737 {
2738 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2739 
2740 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2741 				    vmx->nested.msrs.exit_ctls_low,
2742 				    vmx->nested.msrs.exit_ctls_high)) ||
2743 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2744 		return -EINVAL;
2745 
2746 	return 0;
2747 }
2748 
2749 /*
2750  * Checks related to VM-Entry Control Fields
2751  */
2752 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2753 					  struct vmcs12 *vmcs12)
2754 {
2755 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2756 
2757 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2758 				    vmx->nested.msrs.entry_ctls_low,
2759 				    vmx->nested.msrs.entry_ctls_high)))
2760 		return -EINVAL;
2761 
2762 	/*
2763 	 * From the Intel SDM, volume 3:
2764 	 * Fields relevant to VM-entry event injection must be set properly.
2765 	 * These fields are the VM-entry interruption-information field, the
2766 	 * VM-entry exception error code, and the VM-entry instruction length.
2767 	 */
2768 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2769 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2770 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2771 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2772 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2773 		bool should_have_error_code;
2774 		bool urg = nested_cpu_has2(vmcs12,
2775 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2776 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2777 
2778 		/* VM-entry interruption-info field: interruption type */
2779 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2780 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2781 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2782 			return -EINVAL;
2783 
2784 		/* VM-entry interruption-info field: vector */
2785 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2786 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2787 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2788 			return -EINVAL;
2789 
2790 		/* VM-entry interruption-info field: deliver error code */
2791 		should_have_error_code =
2792 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2793 			x86_exception_has_error_code(vector);
2794 		if (CC(has_error_code != should_have_error_code))
2795 			return -EINVAL;
2796 
2797 		/* VM-entry exception error code */
2798 		if (CC(has_error_code &&
2799 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2800 			return -EINVAL;
2801 
2802 		/* VM-entry interruption-info field: reserved bits */
2803 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2804 			return -EINVAL;
2805 
2806 		/* VM-entry instruction length */
2807 		switch (intr_type) {
2808 		case INTR_TYPE_SOFT_EXCEPTION:
2809 		case INTR_TYPE_SOFT_INTR:
2810 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2811 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2812 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2813 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2814 				return -EINVAL;
2815 		}
2816 	}
2817 
2818 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2819 		return -EINVAL;
2820 
2821 	return 0;
2822 }
2823 
2824 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2825 				     struct vmcs12 *vmcs12)
2826 {
2827 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2828 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2829 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2830 		return -EINVAL;
2831 
2832 	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2833 		return nested_evmcs_check_controls(vmcs12);
2834 
2835 	return 0;
2836 }
2837 
2838 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2839 				       struct vmcs12 *vmcs12)
2840 {
2841 #ifdef CONFIG_X86_64
2842 	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2843 		!!(vcpu->arch.efer & EFER_LMA)))
2844 		return -EINVAL;
2845 #endif
2846 	return 0;
2847 }
2848 
2849 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2850 				       struct vmcs12 *vmcs12)
2851 {
2852 	bool ia32e;
2853 
2854 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2855 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2856 	    CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2857 		return -EINVAL;
2858 
2859 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2860 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2861 		return -EINVAL;
2862 
2863 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2864 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2865 		return -EINVAL;
2866 
2867 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2868 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2869 					   vmcs12->host_ia32_perf_global_ctrl)))
2870 		return -EINVAL;
2871 
2872 #ifdef CONFIG_X86_64
2873 	ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2874 #else
2875 	ia32e = false;
2876 #endif
2877 
2878 	if (ia32e) {
2879 		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2880 			return -EINVAL;
2881 	} else {
2882 		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2883 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2884 		    CC((vmcs12->host_rip) >> 32))
2885 			return -EINVAL;
2886 	}
2887 
2888 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2889 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2890 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2891 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2892 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2893 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2894 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2895 	    CC(vmcs12->host_cs_selector == 0) ||
2896 	    CC(vmcs12->host_tr_selector == 0) ||
2897 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2898 		return -EINVAL;
2899 
2900 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2901 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2902 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2903 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2904 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2905 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2906 		return -EINVAL;
2907 
2908 	/*
2909 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2910 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2911 	 * the values of the LMA and LME bits in the field must each be that of
2912 	 * the host address-space size VM-exit control.
2913 	 */
2914 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2915 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2916 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2917 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2918 			return -EINVAL;
2919 	}
2920 
2921 	return 0;
2922 }
2923 
2924 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2925 					  struct vmcs12 *vmcs12)
2926 {
2927 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2928 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2929 	struct vmcs_hdr hdr;
2930 
2931 	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2932 		return 0;
2933 
2934 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2935 		return -EINVAL;
2936 
2937 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
2938 	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
2939 					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
2940                 return -EINVAL;
2941 
2942 	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
2943 					    offsetof(struct vmcs12, hdr),
2944 					    sizeof(hdr))))
2945 		return -EINVAL;
2946 
2947 	if (CC(hdr.revision_id != VMCS12_REVISION) ||
2948 	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2949 		return -EINVAL;
2950 
2951 	return 0;
2952 }
2953 
2954 /*
2955  * Checks related to Guest Non-register State
2956  */
2957 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2958 {
2959 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2960 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2961 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2962 		return -EINVAL;
2963 
2964 	return 0;
2965 }
2966 
2967 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2968 					struct vmcs12 *vmcs12,
2969 					enum vm_entry_failure_code *entry_failure_code)
2970 {
2971 	bool ia32e;
2972 
2973 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
2974 
2975 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2976 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2977 		return -EINVAL;
2978 
2979 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2980 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2981 		return -EINVAL;
2982 
2983 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2984 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2985 		return -EINVAL;
2986 
2987 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2988 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2989 		return -EINVAL;
2990 	}
2991 
2992 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2993 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2994 					   vmcs12->guest_ia32_perf_global_ctrl)))
2995 		return -EINVAL;
2996 
2997 	/*
2998 	 * If the load IA32_EFER VM-entry control is 1, the following checks
2999 	 * are performed on the field for the IA32_EFER MSR:
3000 	 * - Bits reserved in the IA32_EFER MSR must be 0.
3001 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3002 	 *   the IA-32e mode guest VM-exit control. It must also be identical
3003 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3004 	 *   CR0.PG) is 1.
3005 	 */
3006 	if (to_vmx(vcpu)->nested.nested_run_pending &&
3007 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3008 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3009 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3010 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3011 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3012 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3013 			return -EINVAL;
3014 	}
3015 
3016 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3017 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3018 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3019 		return -EINVAL;
3020 
3021 	if (nested_check_guest_non_reg_state(vmcs12))
3022 		return -EINVAL;
3023 
3024 	return 0;
3025 }
3026 
3027 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3028 {
3029 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3030 	unsigned long cr3, cr4;
3031 	bool vm_fail;
3032 
3033 	if (!nested_early_check)
3034 		return 0;
3035 
3036 	if (vmx->msr_autoload.host.nr)
3037 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3038 	if (vmx->msr_autoload.guest.nr)
3039 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3040 
3041 	preempt_disable();
3042 
3043 	vmx_prepare_switch_to_guest(vcpu);
3044 
3045 	/*
3046 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3047 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3048 	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3049 	 * there is no need to preserve other bits or save/restore the field.
3050 	 */
3051 	vmcs_writel(GUEST_RFLAGS, 0);
3052 
3053 	cr3 = __get_current_cr3_fast();
3054 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3055 		vmcs_writel(HOST_CR3, cr3);
3056 		vmx->loaded_vmcs->host_state.cr3 = cr3;
3057 	}
3058 
3059 	cr4 = cr4_read_shadow();
3060 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3061 		vmcs_writel(HOST_CR4, cr4);
3062 		vmx->loaded_vmcs->host_state.cr4 = cr4;
3063 	}
3064 
3065 	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3066 				 vmx->loaded_vmcs->launched);
3067 
3068 	if (vmx->msr_autoload.host.nr)
3069 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3070 	if (vmx->msr_autoload.guest.nr)
3071 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3072 
3073 	if (vm_fail) {
3074 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3075 
3076 		preempt_enable();
3077 
3078 		trace_kvm_nested_vmenter_failed(
3079 			"early hardware check VM-instruction error: ", error);
3080 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3081 		return 1;
3082 	}
3083 
3084 	/*
3085 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3086 	 */
3087 	if (hw_breakpoint_active())
3088 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3089 	local_irq_enable();
3090 	preempt_enable();
3091 
3092 	/*
3093 	 * A non-failing VMEntry means we somehow entered guest mode with
3094 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3095 	 * is no telling what memory has been modified or what state has
3096 	 * been exposed to unknown code.  Hitting this all but guarantees
3097 	 * a (very critical) hardware issue.
3098 	 */
3099 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3100 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3101 
3102 	return 0;
3103 }
3104 
3105 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3106 {
3107 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3108 
3109 	/*
3110 	 * hv_evmcs may end up being not mapped after migration (when
3111 	 * L2 was running), map it here to make sure vmcs12 changes are
3112 	 * properly reflected.
3113 	 */
3114 	if (vmx->nested.enlightened_vmcs_enabled &&
3115 	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3116 		enum nested_evmptrld_status evmptrld_status =
3117 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3118 
3119 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3120 		    evmptrld_status == EVMPTRLD_ERROR)
3121 			return false;
3122 
3123 		/*
3124 		 * Post migration VMCS12 always provides the most actual
3125 		 * information, copy it to eVMCS upon entry.
3126 		 */
3127 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3128 	}
3129 
3130 	return true;
3131 }
3132 
3133 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3134 {
3135 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3136 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3137 	struct kvm_host_map *map;
3138 	struct page *page;
3139 	u64 hpa;
3140 
3141 	if (!vcpu->arch.pdptrs_from_userspace &&
3142 	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3143 		/*
3144 		 * Reload the guest's PDPTRs since after a migration
3145 		 * the guest CR3 might be restored prior to setting the nested
3146 		 * state which can lead to a load of wrong PDPTRs.
3147 		 */
3148 		if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)))
3149 			return false;
3150 	}
3151 
3152 
3153 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3154 		/*
3155 		 * Translate L1 physical address to host physical
3156 		 * address for vmcs02. Keep the page pinned, so this
3157 		 * physical address remains valid. We keep a reference
3158 		 * to it so we can release it later.
3159 		 */
3160 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
3161 			kvm_release_page_clean(vmx->nested.apic_access_page);
3162 			vmx->nested.apic_access_page = NULL;
3163 		}
3164 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3165 		if (!is_error_page(page)) {
3166 			vmx->nested.apic_access_page = page;
3167 			hpa = page_to_phys(vmx->nested.apic_access_page);
3168 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
3169 		} else {
3170 			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3171 					     __func__);
3172 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3173 			vcpu->run->internal.suberror =
3174 				KVM_INTERNAL_ERROR_EMULATION;
3175 			vcpu->run->internal.ndata = 0;
3176 			return false;
3177 		}
3178 	}
3179 
3180 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3181 		map = &vmx->nested.virtual_apic_map;
3182 
3183 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3184 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3185 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3186 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3187 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3188 			/*
3189 			 * The processor will never use the TPR shadow, simply
3190 			 * clear the bit from the execution control.  Such a
3191 			 * configuration is useless, but it happens in tests.
3192 			 * For any other configuration, failing the vm entry is
3193 			 * _not_ what the processor does but it's basically the
3194 			 * only possibility we have.
3195 			 */
3196 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3197 		} else {
3198 			/*
3199 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3200 			 * force VM-Entry to fail.
3201 			 */
3202 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3203 		}
3204 	}
3205 
3206 	if (nested_cpu_has_posted_intr(vmcs12)) {
3207 		map = &vmx->nested.pi_desc_map;
3208 
3209 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3210 			vmx->nested.pi_desc =
3211 				(struct pi_desc *)(((void *)map->hva) +
3212 				offset_in_page(vmcs12->posted_intr_desc_addr));
3213 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3214 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3215 		} else {
3216 			/*
3217 			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3218 			 * access the contents of the VMCS12 posted interrupt
3219 			 * descriptor. (Note that KVM may do this when it
3220 			 * should not, per the architectural specification.)
3221 			 */
3222 			vmx->nested.pi_desc = NULL;
3223 			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3224 		}
3225 	}
3226 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3227 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3228 	else
3229 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3230 
3231 	return true;
3232 }
3233 
3234 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3235 {
3236 	if (!nested_get_evmcs_page(vcpu)) {
3237 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3238 				     __func__);
3239 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3240 		vcpu->run->internal.suberror =
3241 			KVM_INTERNAL_ERROR_EMULATION;
3242 		vcpu->run->internal.ndata = 0;
3243 
3244 		return false;
3245 	}
3246 
3247 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3248 		return false;
3249 
3250 	return true;
3251 }
3252 
3253 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3254 {
3255 	struct vmcs12 *vmcs12;
3256 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3257 	gpa_t dst;
3258 
3259 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3260 		return 0;
3261 
3262 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3263 		return 1;
3264 
3265 	/*
3266 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3267 	 * set is already checked as part of A/D emulation.
3268 	 */
3269 	vmcs12 = get_vmcs12(vcpu);
3270 	if (!nested_cpu_has_pml(vmcs12))
3271 		return 0;
3272 
3273 	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3274 		vmx->nested.pml_full = true;
3275 		return 1;
3276 	}
3277 
3278 	gpa &= ~0xFFFull;
3279 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3280 
3281 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3282 				 offset_in_page(dst), sizeof(gpa)))
3283 		return 0;
3284 
3285 	vmcs12->guest_pml_index--;
3286 
3287 	return 0;
3288 }
3289 
3290 /*
3291  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3292  * for running VMX instructions (except VMXON, whose prerequisites are
3293  * slightly different). It also specifies what exception to inject otherwise.
3294  * Note that many of these exceptions have priority over VM exits, so they
3295  * don't have to be checked again here.
3296  */
3297 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3298 {
3299 	if (!to_vmx(vcpu)->nested.vmxon) {
3300 		kvm_queue_exception(vcpu, UD_VECTOR);
3301 		return 0;
3302 	}
3303 
3304 	if (vmx_get_cpl(vcpu)) {
3305 		kvm_inject_gp(vcpu, 0);
3306 		return 0;
3307 	}
3308 
3309 	return 1;
3310 }
3311 
3312 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3313 {
3314 	u8 rvi = vmx_get_rvi();
3315 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3316 
3317 	return ((rvi & 0xf0) > (vppr & 0xf0));
3318 }
3319 
3320 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3321 				   struct vmcs12 *vmcs12);
3322 
3323 /*
3324  * If from_vmentry is false, this is being called from state restore (either RSM
3325  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3326  *
3327  * Returns:
3328  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3329  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3330  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3331  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3332  */
3333 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3334 							bool from_vmentry)
3335 {
3336 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3337 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3338 	enum vm_entry_failure_code entry_failure_code;
3339 	bool evaluate_pending_interrupts;
3340 	union vmx_exit_reason exit_reason = {
3341 		.basic = EXIT_REASON_INVALID_STATE,
3342 		.failed_vmentry = 1,
3343 	};
3344 	u32 failed_index;
3345 
3346 	kvm_service_local_tlb_flush_requests(vcpu);
3347 
3348 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3349 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3350 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3351 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3352 
3353 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3354 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3355 	if (kvm_mpx_supported() &&
3356 		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3357 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3358 
3359 	/*
3360 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3361 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3362 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3363 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3364 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3365 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3366 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3367 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3368 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3369 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3370 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3371 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3372 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3373 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3374 	 */
3375 	if (!enable_ept && !nested_early_check)
3376 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3377 
3378 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3379 
3380 	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3381 
3382 	if (from_vmentry) {
3383 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3384 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3385 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3386 		}
3387 
3388 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3389 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3390 			return NVMX_VMENTRY_VMFAIL;
3391 		}
3392 
3393 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3394 						 &entry_failure_code)) {
3395 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3396 			vmcs12->exit_qualification = entry_failure_code;
3397 			goto vmentry_fail_vmexit;
3398 		}
3399 	}
3400 
3401 	enter_guest_mode(vcpu);
3402 
3403 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3404 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3405 		vmcs12->exit_qualification = entry_failure_code;
3406 		goto vmentry_fail_vmexit_guest_mode;
3407 	}
3408 
3409 	if (from_vmentry) {
3410 		failed_index = nested_vmx_load_msr(vcpu,
3411 						   vmcs12->vm_entry_msr_load_addr,
3412 						   vmcs12->vm_entry_msr_load_count);
3413 		if (failed_index) {
3414 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3415 			vmcs12->exit_qualification = failed_index;
3416 			goto vmentry_fail_vmexit_guest_mode;
3417 		}
3418 	} else {
3419 		/*
3420 		 * The MMU is not initialized to point at the right entities yet and
3421 		 * "get pages" would need to read data from the guest (i.e. we will
3422 		 * need to perform gpa to hpa translation). Request a call
3423 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3424 		 * have already been set at vmentry time and should not be reset.
3425 		 */
3426 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3427 	}
3428 
3429 	/*
3430 	 * If L1 had a pending IRQ/NMI until it executed
3431 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3432 	 * disallowed (e.g. interrupts disabled), L0 needs to
3433 	 * evaluate if this pending event should cause an exit from L2
3434 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3435 	 * intercept EXTERNAL_INTERRUPT).
3436 	 *
3437 	 * Usually this would be handled by the processor noticing an
3438 	 * IRQ/NMI window request, or checking RVI during evaluation of
3439 	 * pending virtual interrupts.  However, this setting was done
3440 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3441 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3442 	 */
3443 	if (unlikely(evaluate_pending_interrupts))
3444 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3445 
3446 	/*
3447 	 * Do not start the preemption timer hrtimer until after we know
3448 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3449 	 * the timer.
3450 	 */
3451 	vmx->nested.preemption_timer_expired = false;
3452 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3453 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3454 		vmx_start_preemption_timer(vcpu, timer_value);
3455 	}
3456 
3457 	/*
3458 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3459 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3460 	 * returned as far as L1 is concerned. It will only return (and set
3461 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3462 	 */
3463 	return NVMX_VMENTRY_SUCCESS;
3464 
3465 	/*
3466 	 * A failed consistency check that leads to a VMExit during L1's
3467 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3468 	 * 26.7 "VM-entry failures during or after loading guest state".
3469 	 */
3470 vmentry_fail_vmexit_guest_mode:
3471 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3472 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3473 	leave_guest_mode(vcpu);
3474 
3475 vmentry_fail_vmexit:
3476 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3477 
3478 	if (!from_vmentry)
3479 		return NVMX_VMENTRY_VMEXIT;
3480 
3481 	load_vmcs12_host_state(vcpu, vmcs12);
3482 	vmcs12->vm_exit_reason = exit_reason.full;
3483 	if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3484 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3485 	return NVMX_VMENTRY_VMEXIT;
3486 }
3487 
3488 /*
3489  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3490  * for running an L2 nested guest.
3491  */
3492 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3493 {
3494 	struct vmcs12 *vmcs12;
3495 	enum nvmx_vmentry_status status;
3496 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3497 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3498 	enum nested_evmptrld_status evmptrld_status;
3499 
3500 	if (!nested_vmx_check_permission(vcpu))
3501 		return 1;
3502 
3503 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3504 	if (evmptrld_status == EVMPTRLD_ERROR) {
3505 		kvm_queue_exception(vcpu, UD_VECTOR);
3506 		return 1;
3507 	} else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3508 		return nested_vmx_failInvalid(vcpu);
3509 	}
3510 
3511 	if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3512 	       vmx->nested.current_vmptr == INVALID_GPA))
3513 		return nested_vmx_failInvalid(vcpu);
3514 
3515 	vmcs12 = get_vmcs12(vcpu);
3516 
3517 	/*
3518 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3519 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3520 	 * rather than RFLAGS.ZF, and no error number is stored to the
3521 	 * VM-instruction error field.
3522 	 */
3523 	if (CC(vmcs12->hdr.shadow_vmcs))
3524 		return nested_vmx_failInvalid(vcpu);
3525 
3526 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3527 		copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3528 		/* Enlightened VMCS doesn't have launch state */
3529 		vmcs12->launch_state = !launch;
3530 	} else if (enable_shadow_vmcs) {
3531 		copy_shadow_to_vmcs12(vmx);
3532 	}
3533 
3534 	/*
3535 	 * The nested entry process starts with enforcing various prerequisites
3536 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3537 	 * they fail: As the SDM explains, some conditions should cause the
3538 	 * instruction to fail, while others will cause the instruction to seem
3539 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3540 	 * To speed up the normal (success) code path, we should avoid checking
3541 	 * for misconfigurations which will anyway be caught by the processor
3542 	 * when using the merged vmcs02.
3543 	 */
3544 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3545 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3546 
3547 	if (CC(vmcs12->launch_state == launch))
3548 		return nested_vmx_fail(vcpu,
3549 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3550 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3551 
3552 	if (nested_vmx_check_controls(vcpu, vmcs12))
3553 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3554 
3555 	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3556 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3557 
3558 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3559 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3560 
3561 	/*
3562 	 * We're finally done with prerequisite checking, and can start with
3563 	 * the nested entry.
3564 	 */
3565 	vmx->nested.nested_run_pending = 1;
3566 	vmx->nested.has_preemption_timer_deadline = false;
3567 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3568 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3569 		goto vmentry_failed;
3570 
3571 	/* Emulate processing of posted interrupts on VM-Enter. */
3572 	if (nested_cpu_has_posted_intr(vmcs12) &&
3573 	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3574 		vmx->nested.pi_pending = true;
3575 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3576 		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3577 	}
3578 
3579 	/* Hide L1D cache contents from the nested guest.  */
3580 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3581 
3582 	/*
3583 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3584 	 * also be used as part of restoring nVMX state for
3585 	 * snapshot restore (migration).
3586 	 *
3587 	 * In this flow, it is assumed that vmcs12 cache was
3588 	 * transferred as part of captured nVMX state and should
3589 	 * therefore not be read from guest memory (which may not
3590 	 * exist on destination host yet).
3591 	 */
3592 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3593 
3594 	switch (vmcs12->guest_activity_state) {
3595 	case GUEST_ACTIVITY_HLT:
3596 		/*
3597 		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3598 		 * awakened by event injection or by an NMI-window VM-exit or
3599 		 * by an interrupt-window VM-exit, halt the vcpu.
3600 		 */
3601 		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3602 		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3603 		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3604 		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3605 			vmx->nested.nested_run_pending = 0;
3606 			return kvm_vcpu_halt(vcpu);
3607 		}
3608 		break;
3609 	case GUEST_ACTIVITY_WAIT_SIPI:
3610 		vmx->nested.nested_run_pending = 0;
3611 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3612 		break;
3613 	default:
3614 		break;
3615 	}
3616 
3617 	return 1;
3618 
3619 vmentry_failed:
3620 	vmx->nested.nested_run_pending = 0;
3621 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3622 		return 0;
3623 	if (status == NVMX_VMENTRY_VMEXIT)
3624 		return 1;
3625 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3626 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3627 }
3628 
3629 /*
3630  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3631  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3632  * This function returns the new value we should put in vmcs12.guest_cr0.
3633  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3634  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3635  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3636  *     didn't trap the bit, because if L1 did, so would L0).
3637  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3638  *     been modified by L2, and L1 knows it. So just leave the old value of
3639  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3640  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3641  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3642  *     changed these bits, and therefore they need to be updated, but L0
3643  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3644  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3645  */
3646 static inline unsigned long
3647 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3648 {
3649 	return
3650 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3651 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3652 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3653 			vcpu->arch.cr0_guest_owned_bits));
3654 }
3655 
3656 static inline unsigned long
3657 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3658 {
3659 	return
3660 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3661 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3662 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3663 			vcpu->arch.cr4_guest_owned_bits));
3664 }
3665 
3666 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3667 				      struct vmcs12 *vmcs12)
3668 {
3669 	u32 idt_vectoring;
3670 	unsigned int nr;
3671 
3672 	if (vcpu->arch.exception.injected) {
3673 		nr = vcpu->arch.exception.nr;
3674 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3675 
3676 		if (kvm_exception_is_soft(nr)) {
3677 			vmcs12->vm_exit_instruction_len =
3678 				vcpu->arch.event_exit_inst_len;
3679 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3680 		} else
3681 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3682 
3683 		if (vcpu->arch.exception.has_error_code) {
3684 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3685 			vmcs12->idt_vectoring_error_code =
3686 				vcpu->arch.exception.error_code;
3687 		}
3688 
3689 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3690 	} else if (vcpu->arch.nmi_injected) {
3691 		vmcs12->idt_vectoring_info_field =
3692 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3693 	} else if (vcpu->arch.interrupt.injected) {
3694 		nr = vcpu->arch.interrupt.nr;
3695 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3696 
3697 		if (vcpu->arch.interrupt.soft) {
3698 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3699 			vmcs12->vm_entry_instruction_len =
3700 				vcpu->arch.event_exit_inst_len;
3701 		} else
3702 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3703 
3704 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3705 	}
3706 }
3707 
3708 
3709 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3710 {
3711 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3712 	gfn_t gfn;
3713 
3714 	/*
3715 	 * Don't need to mark the APIC access page dirty; it is never
3716 	 * written to by the CPU during APIC virtualization.
3717 	 */
3718 
3719 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3720 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3721 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3722 	}
3723 
3724 	if (nested_cpu_has_posted_intr(vmcs12)) {
3725 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3726 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3727 	}
3728 }
3729 
3730 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3731 {
3732 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3733 	int max_irr;
3734 	void *vapic_page;
3735 	u16 status;
3736 
3737 	if (!vmx->nested.pi_pending)
3738 		return 0;
3739 
3740 	if (!vmx->nested.pi_desc)
3741 		goto mmio_needed;
3742 
3743 	vmx->nested.pi_pending = false;
3744 
3745 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3746 		return 0;
3747 
3748 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3749 	if (max_irr != 256) {
3750 		vapic_page = vmx->nested.virtual_apic_map.hva;
3751 		if (!vapic_page)
3752 			goto mmio_needed;
3753 
3754 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3755 			vapic_page, &max_irr);
3756 		status = vmcs_read16(GUEST_INTR_STATUS);
3757 		if ((u8)max_irr > ((u8)status & 0xff)) {
3758 			status &= ~0xff;
3759 			status |= (u8)max_irr;
3760 			vmcs_write16(GUEST_INTR_STATUS, status);
3761 		}
3762 	}
3763 
3764 	nested_mark_vmcs12_pages_dirty(vcpu);
3765 	return 0;
3766 
3767 mmio_needed:
3768 	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3769 	return -ENXIO;
3770 }
3771 
3772 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3773 					       unsigned long exit_qual)
3774 {
3775 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3776 	unsigned int nr = vcpu->arch.exception.nr;
3777 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3778 
3779 	if (vcpu->arch.exception.has_error_code) {
3780 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3781 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3782 	}
3783 
3784 	if (kvm_exception_is_soft(nr))
3785 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3786 	else
3787 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3788 
3789 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3790 	    vmx_get_nmi_mask(vcpu))
3791 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3792 
3793 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3794 }
3795 
3796 /*
3797  * Returns true if a debug trap is pending delivery.
3798  *
3799  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3800  * exception may be inferred from the presence of an exception payload.
3801  */
3802 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3803 {
3804 	return vcpu->arch.exception.pending &&
3805 			vcpu->arch.exception.nr == DB_VECTOR &&
3806 			vcpu->arch.exception.payload;
3807 }
3808 
3809 /*
3810  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3811  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3812  * represents these debug traps with a payload that is said to be compatible
3813  * with the 'pending debug exceptions' field, write the payload to the VMCS
3814  * field if a VM-exit is delivered before the debug trap.
3815  */
3816 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3817 {
3818 	if (vmx_pending_dbg_trap(vcpu))
3819 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3820 			    vcpu->arch.exception.payload);
3821 }
3822 
3823 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3824 {
3825 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3826 	       to_vmx(vcpu)->nested.preemption_timer_expired;
3827 }
3828 
3829 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3830 {
3831 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3832 	unsigned long exit_qual;
3833 	bool block_nested_events =
3834 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3835 	bool mtf_pending = vmx->nested.mtf_pending;
3836 	struct kvm_lapic *apic = vcpu->arch.apic;
3837 
3838 	/*
3839 	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3840 	 * this state is discarded.
3841 	 */
3842 	if (!block_nested_events)
3843 		vmx->nested.mtf_pending = false;
3844 
3845 	if (lapic_in_kernel(vcpu) &&
3846 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3847 		if (block_nested_events)
3848 			return -EBUSY;
3849 		nested_vmx_update_pending_dbg(vcpu);
3850 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
3851 		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3852 			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3853 		return 0;
3854 	}
3855 
3856 	if (lapic_in_kernel(vcpu) &&
3857 	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3858 		if (block_nested_events)
3859 			return -EBUSY;
3860 
3861 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3862 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3863 			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3864 						apic->sipi_vector & 0xFFUL);
3865 		return 0;
3866 	}
3867 
3868 	/*
3869 	 * Process any exceptions that are not debug traps before MTF.
3870 	 *
3871 	 * Note that only a pending nested run can block a pending exception.
3872 	 * Otherwise an injected NMI/interrupt should either be
3873 	 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3874 	 * while delivering the pending exception.
3875 	 */
3876 
3877 	if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3878 		if (vmx->nested.nested_run_pending)
3879 			return -EBUSY;
3880 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3881 			goto no_vmexit;
3882 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3883 		return 0;
3884 	}
3885 
3886 	if (mtf_pending) {
3887 		if (block_nested_events)
3888 			return -EBUSY;
3889 		nested_vmx_update_pending_dbg(vcpu);
3890 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3891 		return 0;
3892 	}
3893 
3894 	if (vcpu->arch.exception.pending) {
3895 		if (vmx->nested.nested_run_pending)
3896 			return -EBUSY;
3897 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3898 			goto no_vmexit;
3899 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3900 		return 0;
3901 	}
3902 
3903 	if (nested_vmx_preemption_timer_pending(vcpu)) {
3904 		if (block_nested_events)
3905 			return -EBUSY;
3906 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3907 		return 0;
3908 	}
3909 
3910 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3911 		if (block_nested_events)
3912 			return -EBUSY;
3913 		goto no_vmexit;
3914 	}
3915 
3916 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3917 		if (block_nested_events)
3918 			return -EBUSY;
3919 		if (!nested_exit_on_nmi(vcpu))
3920 			goto no_vmexit;
3921 
3922 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3923 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3924 				  INTR_INFO_VALID_MASK, 0);
3925 		/*
3926 		 * The NMI-triggered VM exit counts as injection:
3927 		 * clear this one and block further NMIs.
3928 		 */
3929 		vcpu->arch.nmi_pending = 0;
3930 		vmx_set_nmi_mask(vcpu, true);
3931 		return 0;
3932 	}
3933 
3934 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3935 		if (block_nested_events)
3936 			return -EBUSY;
3937 		if (!nested_exit_on_intr(vcpu))
3938 			goto no_vmexit;
3939 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3940 		return 0;
3941 	}
3942 
3943 no_vmexit:
3944 	return vmx_complete_nested_posted_interrupt(vcpu);
3945 }
3946 
3947 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3948 {
3949 	ktime_t remaining =
3950 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3951 	u64 value;
3952 
3953 	if (ktime_to_ns(remaining) <= 0)
3954 		return 0;
3955 
3956 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3957 	do_div(value, 1000000);
3958 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3959 }
3960 
3961 static bool is_vmcs12_ext_field(unsigned long field)
3962 {
3963 	switch (field) {
3964 	case GUEST_ES_SELECTOR:
3965 	case GUEST_CS_SELECTOR:
3966 	case GUEST_SS_SELECTOR:
3967 	case GUEST_DS_SELECTOR:
3968 	case GUEST_FS_SELECTOR:
3969 	case GUEST_GS_SELECTOR:
3970 	case GUEST_LDTR_SELECTOR:
3971 	case GUEST_TR_SELECTOR:
3972 	case GUEST_ES_LIMIT:
3973 	case GUEST_CS_LIMIT:
3974 	case GUEST_SS_LIMIT:
3975 	case GUEST_DS_LIMIT:
3976 	case GUEST_FS_LIMIT:
3977 	case GUEST_GS_LIMIT:
3978 	case GUEST_LDTR_LIMIT:
3979 	case GUEST_TR_LIMIT:
3980 	case GUEST_GDTR_LIMIT:
3981 	case GUEST_IDTR_LIMIT:
3982 	case GUEST_ES_AR_BYTES:
3983 	case GUEST_DS_AR_BYTES:
3984 	case GUEST_FS_AR_BYTES:
3985 	case GUEST_GS_AR_BYTES:
3986 	case GUEST_LDTR_AR_BYTES:
3987 	case GUEST_TR_AR_BYTES:
3988 	case GUEST_ES_BASE:
3989 	case GUEST_CS_BASE:
3990 	case GUEST_SS_BASE:
3991 	case GUEST_DS_BASE:
3992 	case GUEST_FS_BASE:
3993 	case GUEST_GS_BASE:
3994 	case GUEST_LDTR_BASE:
3995 	case GUEST_TR_BASE:
3996 	case GUEST_GDTR_BASE:
3997 	case GUEST_IDTR_BASE:
3998 	case GUEST_PENDING_DBG_EXCEPTIONS:
3999 	case GUEST_BNDCFGS:
4000 		return true;
4001 	default:
4002 		break;
4003 	}
4004 
4005 	return false;
4006 }
4007 
4008 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4009 				       struct vmcs12 *vmcs12)
4010 {
4011 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4012 
4013 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4014 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4015 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4016 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4017 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4018 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4019 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4020 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4021 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4022 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4023 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4024 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4025 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4026 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4027 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4028 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4029 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4030 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4031 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4032 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4033 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4034 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4035 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4036 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4037 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4038 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4039 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4040 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4041 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4042 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4043 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4044 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4045 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4046 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4047 	vmcs12->guest_pending_dbg_exceptions =
4048 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4049 	if (kvm_mpx_supported())
4050 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4051 
4052 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4053 }
4054 
4055 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4056 				       struct vmcs12 *vmcs12)
4057 {
4058 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4059 	int cpu;
4060 
4061 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4062 		return;
4063 
4064 
4065 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4066 
4067 	cpu = get_cpu();
4068 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4069 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4070 
4071 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4072 
4073 	vmx->loaded_vmcs = &vmx->vmcs01;
4074 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4075 	put_cpu();
4076 }
4077 
4078 /*
4079  * Update the guest state fields of vmcs12 to reflect changes that
4080  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4081  * VM-entry controls is also updated, since this is really a guest
4082  * state bit.)
4083  */
4084 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4085 {
4086 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4087 
4088 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4089 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4090 
4091 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4092 		!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4093 
4094 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4095 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4096 
4097 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4098 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4099 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4100 
4101 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4102 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4103 
4104 	vmcs12->guest_interruptibility_info =
4105 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4106 
4107 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4108 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4109 	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4110 		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4111 	else
4112 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4113 
4114 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4115 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4116 	    !vmx->nested.nested_run_pending)
4117 		vmcs12->vmx_preemption_timer_value =
4118 			vmx_get_preemption_timer_value(vcpu);
4119 
4120 	/*
4121 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4122 	 * own CR3 without exiting. If it has changed it, we must keep it.
4123 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4124 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4125 	 *
4126 	 * Additionally, restore L2's PDPTR to vmcs12.
4127 	 */
4128 	if (enable_ept) {
4129 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4130 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4131 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4132 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4133 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4134 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4135 		}
4136 	}
4137 
4138 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4139 
4140 	if (nested_cpu_has_vid(vmcs12))
4141 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4142 
4143 	vmcs12->vm_entry_controls =
4144 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4145 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4146 
4147 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4148 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4149 
4150 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4151 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4152 }
4153 
4154 /*
4155  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4156  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4157  * and this function updates it to reflect the changes to the guest state while
4158  * L2 was running (and perhaps made some exits which were handled directly by L0
4159  * without going back to L1), and to reflect the exit reason.
4160  * Note that we do not have to copy here all VMCS fields, just those that
4161  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4162  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4163  * which already writes to vmcs12 directly.
4164  */
4165 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4166 			   u32 vm_exit_reason, u32 exit_intr_info,
4167 			   unsigned long exit_qualification)
4168 {
4169 	/* update exit information fields: */
4170 	vmcs12->vm_exit_reason = vm_exit_reason;
4171 	if (to_vmx(vcpu)->exit_reason.enclave_mode)
4172 		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4173 	vmcs12->exit_qualification = exit_qualification;
4174 	vmcs12->vm_exit_intr_info = exit_intr_info;
4175 
4176 	vmcs12->idt_vectoring_info_field = 0;
4177 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4178 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4179 
4180 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4181 		vmcs12->launch_state = 1;
4182 
4183 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4184 		 * instead of reading the real value. */
4185 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4186 
4187 		/*
4188 		 * Transfer the event that L0 or L1 may wanted to inject into
4189 		 * L2 to IDT_VECTORING_INFO_FIELD.
4190 		 */
4191 		vmcs12_save_pending_event(vcpu, vmcs12);
4192 
4193 		/*
4194 		 * According to spec, there's no need to store the guest's
4195 		 * MSRs if the exit is due to a VM-entry failure that occurs
4196 		 * during or after loading the guest state. Since this exit
4197 		 * does not fall in that category, we need to save the MSRs.
4198 		 */
4199 		if (nested_vmx_store_msr(vcpu,
4200 					 vmcs12->vm_exit_msr_store_addr,
4201 					 vmcs12->vm_exit_msr_store_count))
4202 			nested_vmx_abort(vcpu,
4203 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4204 	}
4205 
4206 	/*
4207 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4208 	 * preserved above and would only end up incorrectly in L1.
4209 	 */
4210 	vcpu->arch.nmi_injected = false;
4211 	kvm_clear_exception_queue(vcpu);
4212 	kvm_clear_interrupt_queue(vcpu);
4213 }
4214 
4215 /*
4216  * A part of what we need to when the nested L2 guest exits and we want to
4217  * run its L1 parent, is to reset L1's guest state to the host state specified
4218  * in vmcs12.
4219  * This function is to be called not only on normal nested exit, but also on
4220  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4221  * Failures During or After Loading Guest State").
4222  * This function should be called when the active VMCS is L1's (vmcs01).
4223  */
4224 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4225 				   struct vmcs12 *vmcs12)
4226 {
4227 	enum vm_entry_failure_code ignored;
4228 	struct kvm_segment seg;
4229 
4230 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4231 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4232 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4233 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4234 	else
4235 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4236 	vmx_set_efer(vcpu, vcpu->arch.efer);
4237 
4238 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4239 	kvm_rip_write(vcpu, vmcs12->host_rip);
4240 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4241 	vmx_set_interrupt_shadow(vcpu, 0);
4242 
4243 	/*
4244 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4245 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4246 	 *
4247 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4248 	 * (KVM doesn't change it);
4249 	 */
4250 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4251 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4252 
4253 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4254 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4255 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4256 
4257 	nested_ept_uninit_mmu_context(vcpu);
4258 
4259 	/*
4260 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4261 	 * couldn't have changed.
4262 	 */
4263 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4264 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4265 
4266 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4267 
4268 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4269 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4270 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4271 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4272 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4273 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4274 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4275 
4276 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4277 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4278 		vmcs_write64(GUEST_BNDCFGS, 0);
4279 
4280 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4281 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4282 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4283 	}
4284 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4285 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4286 					 vmcs12->host_ia32_perf_global_ctrl));
4287 
4288 	/* Set L1 segment info according to Intel SDM
4289 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4290 	seg = (struct kvm_segment) {
4291 		.base = 0,
4292 		.limit = 0xFFFFFFFF,
4293 		.selector = vmcs12->host_cs_selector,
4294 		.type = 11,
4295 		.present = 1,
4296 		.s = 1,
4297 		.g = 1
4298 	};
4299 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4300 		seg.l = 1;
4301 	else
4302 		seg.db = 1;
4303 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4304 	seg = (struct kvm_segment) {
4305 		.base = 0,
4306 		.limit = 0xFFFFFFFF,
4307 		.type = 3,
4308 		.present = 1,
4309 		.s = 1,
4310 		.db = 1,
4311 		.g = 1
4312 	};
4313 	seg.selector = vmcs12->host_ds_selector;
4314 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4315 	seg.selector = vmcs12->host_es_selector;
4316 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4317 	seg.selector = vmcs12->host_ss_selector;
4318 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4319 	seg.selector = vmcs12->host_fs_selector;
4320 	seg.base = vmcs12->host_fs_base;
4321 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4322 	seg.selector = vmcs12->host_gs_selector;
4323 	seg.base = vmcs12->host_gs_base;
4324 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4325 	seg = (struct kvm_segment) {
4326 		.base = vmcs12->host_tr_base,
4327 		.limit = 0x67,
4328 		.selector = vmcs12->host_tr_selector,
4329 		.type = 11,
4330 		.present = 1
4331 	};
4332 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4333 
4334 	memset(&seg, 0, sizeof(seg));
4335 	seg.unusable = 1;
4336 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4337 
4338 	kvm_set_dr(vcpu, 7, 0x400);
4339 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4340 
4341 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4342 				vmcs12->vm_exit_msr_load_count))
4343 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4344 
4345 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4346 }
4347 
4348 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4349 {
4350 	struct vmx_uret_msr *efer_msr;
4351 	unsigned int i;
4352 
4353 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4354 		return vmcs_read64(GUEST_IA32_EFER);
4355 
4356 	if (cpu_has_load_ia32_efer())
4357 		return host_efer;
4358 
4359 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4360 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4361 			return vmx->msr_autoload.guest.val[i].value;
4362 	}
4363 
4364 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4365 	if (efer_msr)
4366 		return efer_msr->data;
4367 
4368 	return host_efer;
4369 }
4370 
4371 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4372 {
4373 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4374 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4375 	struct vmx_msr_entry g, h;
4376 	gpa_t gpa;
4377 	u32 i, j;
4378 
4379 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4380 
4381 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4382 		/*
4383 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4384 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4385 		 * and vcpu->arch.dr7 is not squirreled away before the
4386 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4387 		 */
4388 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4389 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4390 		else
4391 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4392 	}
4393 
4394 	/*
4395 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4396 	 * handle a variety of side effects to KVM's software model.
4397 	 */
4398 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4399 
4400 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4401 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4402 
4403 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4404 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4405 
4406 	nested_ept_uninit_mmu_context(vcpu);
4407 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4408 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4409 
4410 	/*
4411 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4412 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4413 	 * VMFail, like everything else we just need to ensure our
4414 	 * software model is up-to-date.
4415 	 */
4416 	if (enable_ept && is_pae_paging(vcpu))
4417 		ept_save_pdptrs(vcpu);
4418 
4419 	kvm_mmu_reset_context(vcpu);
4420 
4421 	/*
4422 	 * This nasty bit of open coding is a compromise between blindly
4423 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4424 	 * of VMFail), leaving the nested VM's MSRs in the software model
4425 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4426 	 * expensive since the lists are unbound by hardware).  For each
4427 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4428 	 * list, reload it from the exit load list if it exists and differs
4429 	 * from the guest value.  The intent is to stuff host state as
4430 	 * silently as possible, not to fully process the exit load list.
4431 	 */
4432 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4433 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4434 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4435 			pr_debug_ratelimited(
4436 				"%s read MSR index failed (%u, 0x%08llx)\n",
4437 				__func__, i, gpa);
4438 			goto vmabort;
4439 		}
4440 
4441 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4442 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4443 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4444 				pr_debug_ratelimited(
4445 					"%s read MSR failed (%u, 0x%08llx)\n",
4446 					__func__, j, gpa);
4447 				goto vmabort;
4448 			}
4449 			if (h.index != g.index)
4450 				continue;
4451 			if (h.value == g.value)
4452 				break;
4453 
4454 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4455 				pr_debug_ratelimited(
4456 					"%s check failed (%u, 0x%x, 0x%x)\n",
4457 					__func__, j, h.index, h.reserved);
4458 				goto vmabort;
4459 			}
4460 
4461 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4462 				pr_debug_ratelimited(
4463 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4464 					__func__, j, h.index, h.value);
4465 				goto vmabort;
4466 			}
4467 		}
4468 	}
4469 
4470 	return;
4471 
4472 vmabort:
4473 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4474 }
4475 
4476 /*
4477  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4478  * and modify vmcs12 to make it see what it would expect to see there if
4479  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4480  */
4481 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4482 		       u32 exit_intr_info, unsigned long exit_qualification)
4483 {
4484 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4485 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4486 
4487 	/* trying to cancel vmlaunch/vmresume is a bug */
4488 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4489 
4490 	/* Similarly, triple faults in L2 should never escape. */
4491 	WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4492 
4493 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4494 		/*
4495 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4496 		 * Enlightened VMCS after migration and we still need to
4497 		 * do that when something is forcing L2->L1 exit prior to
4498 		 * the first L2 run.
4499 		 */
4500 		(void)nested_get_evmcs_page(vcpu);
4501 	}
4502 
4503 	/* Service pending TLB flush requests for L2 before switching to L1. */
4504 	kvm_service_local_tlb_flush_requests(vcpu);
4505 
4506 	/*
4507 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4508 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4509 	 * up-to-date before switching to L1.
4510 	 */
4511 	if (enable_ept && is_pae_paging(vcpu))
4512 		vmx_ept_load_pdptrs(vcpu);
4513 
4514 	leave_guest_mode(vcpu);
4515 
4516 	if (nested_cpu_has_preemption_timer(vmcs12))
4517 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4518 
4519 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4520 		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4521 		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4522 			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4523 	}
4524 
4525 	if (likely(!vmx->fail)) {
4526 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4527 
4528 		if (vm_exit_reason != -1)
4529 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4530 				       exit_intr_info, exit_qualification);
4531 
4532 		/*
4533 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4534 		 * also be used to capture vmcs12 cache as part of
4535 		 * capturing nVMX state for snapshot (migration).
4536 		 *
4537 		 * Otherwise, this flush will dirty guest memory at a
4538 		 * point it is already assumed by user-space to be
4539 		 * immutable.
4540 		 */
4541 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4542 	} else {
4543 		/*
4544 		 * The only expected VM-instruction error is "VM entry with
4545 		 * invalid control field(s)." Anything else indicates a
4546 		 * problem with L0.  And we should never get here with a
4547 		 * VMFail of any type if early consistency checks are enabled.
4548 		 */
4549 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4550 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4551 		WARN_ON_ONCE(nested_early_check);
4552 	}
4553 
4554 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4555 
4556 	/* Update any VMCS fields that might have changed while L2 ran */
4557 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4558 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4559 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4560 	if (kvm_has_tsc_control)
4561 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4562 
4563 	if (vmx->nested.l1_tpr_threshold != -1)
4564 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4565 
4566 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4567 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4568 		vmx_set_virtual_apic_mode(vcpu);
4569 	}
4570 
4571 	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4572 		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4573 		vmx_update_cpu_dirty_logging(vcpu);
4574 	}
4575 
4576 	/* Unpin physical memory we referred to in vmcs02 */
4577 	if (vmx->nested.apic_access_page) {
4578 		kvm_release_page_clean(vmx->nested.apic_access_page);
4579 		vmx->nested.apic_access_page = NULL;
4580 	}
4581 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4582 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4583 	vmx->nested.pi_desc = NULL;
4584 
4585 	if (vmx->nested.reload_vmcs01_apic_access_page) {
4586 		vmx->nested.reload_vmcs01_apic_access_page = false;
4587 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4588 	}
4589 
4590 	if ((vm_exit_reason != -1) &&
4591 	    (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4592 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4593 
4594 	/* in case we halted in L2 */
4595 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4596 
4597 	if (likely(!vmx->fail)) {
4598 		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4599 		    nested_exit_intr_ack_set(vcpu)) {
4600 			int irq = kvm_cpu_get_interrupt(vcpu);
4601 			WARN_ON(irq < 0);
4602 			vmcs12->vm_exit_intr_info = irq |
4603 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4604 		}
4605 
4606 		if (vm_exit_reason != -1)
4607 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4608 						       vmcs12->exit_qualification,
4609 						       vmcs12->idt_vectoring_info_field,
4610 						       vmcs12->vm_exit_intr_info,
4611 						       vmcs12->vm_exit_intr_error_code,
4612 						       KVM_ISA_VMX);
4613 
4614 		load_vmcs12_host_state(vcpu, vmcs12);
4615 
4616 		return;
4617 	}
4618 
4619 	/*
4620 	 * After an early L2 VM-entry failure, we're now back
4621 	 * in L1 which thinks it just finished a VMLAUNCH or
4622 	 * VMRESUME instruction, so we need to set the failure
4623 	 * flag and the VM-instruction error field of the VMCS
4624 	 * accordingly, and skip the emulated instruction.
4625 	 */
4626 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4627 
4628 	/*
4629 	 * Restore L1's host state to KVM's software model.  We're here
4630 	 * because a consistency check was caught by hardware, which
4631 	 * means some amount of guest state has been propagated to KVM's
4632 	 * model and needs to be unwound to the host's state.
4633 	 */
4634 	nested_vmx_restore_host_state(vcpu);
4635 
4636 	vmx->fail = 0;
4637 }
4638 
4639 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4640 {
4641 	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4642 }
4643 
4644 /*
4645  * Decode the memory-address operand of a vmx instruction, as recorded on an
4646  * exit caused by such an instruction (run by a guest hypervisor).
4647  * On success, returns 0. When the operand is invalid, returns 1 and throws
4648  * #UD, #GP, or #SS.
4649  */
4650 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4651 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4652 {
4653 	gva_t off;
4654 	bool exn;
4655 	struct kvm_segment s;
4656 
4657 	/*
4658 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4659 	 * Execution", on an exit, vmx_instruction_info holds most of the
4660 	 * addressing components of the operand. Only the displacement part
4661 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4662 	 * For how an actual address is calculated from all these components,
4663 	 * refer to Vol. 1, "Operand Addressing".
4664 	 */
4665 	int  scaling = vmx_instruction_info & 3;
4666 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4667 	bool is_reg = vmx_instruction_info & (1u << 10);
4668 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4669 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4670 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4671 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4672 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4673 
4674 	if (is_reg) {
4675 		kvm_queue_exception(vcpu, UD_VECTOR);
4676 		return 1;
4677 	}
4678 
4679 	/* Addr = segment_base + offset */
4680 	/* offset = base + [index * scale] + displacement */
4681 	off = exit_qualification; /* holds the displacement */
4682 	if (addr_size == 1)
4683 		off = (gva_t)sign_extend64(off, 31);
4684 	else if (addr_size == 0)
4685 		off = (gva_t)sign_extend64(off, 15);
4686 	if (base_is_valid)
4687 		off += kvm_register_read(vcpu, base_reg);
4688 	if (index_is_valid)
4689 		off += kvm_register_read(vcpu, index_reg) << scaling;
4690 	vmx_get_segment(vcpu, &s, seg_reg);
4691 
4692 	/*
4693 	 * The effective address, i.e. @off, of a memory operand is truncated
4694 	 * based on the address size of the instruction.  Note that this is
4695 	 * the *effective address*, i.e. the address prior to accounting for
4696 	 * the segment's base.
4697 	 */
4698 	if (addr_size == 1) /* 32 bit */
4699 		off &= 0xffffffff;
4700 	else if (addr_size == 0) /* 16 bit */
4701 		off &= 0xffff;
4702 
4703 	/* Checks for #GP/#SS exceptions. */
4704 	exn = false;
4705 	if (is_long_mode(vcpu)) {
4706 		/*
4707 		 * The virtual/linear address is never truncated in 64-bit
4708 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4709 		 * address when using FS/GS with a non-zero base.
4710 		 */
4711 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4712 			*ret = s.base + off;
4713 		else
4714 			*ret = off;
4715 
4716 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
4717 		 * non-canonical form. This is the only check on the memory
4718 		 * destination for long mode!
4719 		 */
4720 		exn = is_noncanonical_address(*ret, vcpu);
4721 	} else {
4722 		/*
4723 		 * When not in long mode, the virtual/linear address is
4724 		 * unconditionally truncated to 32 bits regardless of the
4725 		 * address size.
4726 		 */
4727 		*ret = (s.base + off) & 0xffffffff;
4728 
4729 		/* Protected mode: apply checks for segment validity in the
4730 		 * following order:
4731 		 * - segment type check (#GP(0) may be thrown)
4732 		 * - usability check (#GP(0)/#SS(0))
4733 		 * - limit check (#GP(0)/#SS(0))
4734 		 */
4735 		if (wr)
4736 			/* #GP(0) if the destination operand is located in a
4737 			 * read-only data segment or any code segment.
4738 			 */
4739 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
4740 		else
4741 			/* #GP(0) if the source operand is located in an
4742 			 * execute-only code segment
4743 			 */
4744 			exn = ((s.type & 0xa) == 8);
4745 		if (exn) {
4746 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4747 			return 1;
4748 		}
4749 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4750 		 */
4751 		exn = (s.unusable != 0);
4752 
4753 		/*
4754 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4755 		 * outside the segment limit.  All CPUs that support VMX ignore
4756 		 * limit checks for flat segments, i.e. segments with base==0,
4757 		 * limit==0xffffffff and of type expand-up data or code.
4758 		 */
4759 		if (!(s.base == 0 && s.limit == 0xffffffff &&
4760 		     ((s.type & 8) || !(s.type & 4))))
4761 			exn = exn || ((u64)off + len - 1 > s.limit);
4762 	}
4763 	if (exn) {
4764 		kvm_queue_exception_e(vcpu,
4765 				      seg_reg == VCPU_SREG_SS ?
4766 						SS_VECTOR : GP_VECTOR,
4767 				      0);
4768 		return 1;
4769 	}
4770 
4771 	return 0;
4772 }
4773 
4774 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4775 {
4776 	struct vcpu_vmx *vmx;
4777 
4778 	if (!nested_vmx_allowed(vcpu))
4779 		return;
4780 
4781 	vmx = to_vmx(vcpu);
4782 	if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4783 		vmx->nested.msrs.entry_ctls_high |=
4784 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4785 		vmx->nested.msrs.exit_ctls_high |=
4786 				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4787 	} else {
4788 		vmx->nested.msrs.entry_ctls_high &=
4789 				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4790 		vmx->nested.msrs.exit_ctls_high &=
4791 				~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4792 	}
4793 }
4794 
4795 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4796 				int *ret)
4797 {
4798 	gva_t gva;
4799 	struct x86_exception e;
4800 	int r;
4801 
4802 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4803 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4804 				sizeof(*vmpointer), &gva)) {
4805 		*ret = 1;
4806 		return -EINVAL;
4807 	}
4808 
4809 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4810 	if (r != X86EMUL_CONTINUE) {
4811 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
4812 		return -EINVAL;
4813 	}
4814 
4815 	return 0;
4816 }
4817 
4818 /*
4819  * Allocate a shadow VMCS and associate it with the currently loaded
4820  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4821  * VMCS is also VMCLEARed, so that it is ready for use.
4822  */
4823 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4824 {
4825 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4826 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4827 
4828 	/*
4829 	 * We should allocate a shadow vmcs for vmcs01 only when L1
4830 	 * executes VMXON and free it when L1 executes VMXOFF.
4831 	 * As it is invalid to execute VMXON twice, we shouldn't reach
4832 	 * here when vmcs01 already have an allocated shadow vmcs.
4833 	 */
4834 	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4835 
4836 	if (!loaded_vmcs->shadow_vmcs) {
4837 		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4838 		if (loaded_vmcs->shadow_vmcs)
4839 			vmcs_clear(loaded_vmcs->shadow_vmcs);
4840 	}
4841 	return loaded_vmcs->shadow_vmcs;
4842 }
4843 
4844 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4845 {
4846 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4847 	int r;
4848 
4849 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4850 	if (r < 0)
4851 		goto out_vmcs02;
4852 
4853 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4854 	if (!vmx->nested.cached_vmcs12)
4855 		goto out_cached_vmcs12;
4856 
4857 	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
4858 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4859 	if (!vmx->nested.cached_shadow_vmcs12)
4860 		goto out_cached_shadow_vmcs12;
4861 
4862 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4863 		goto out_shadow_vmcs;
4864 
4865 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4866 		     HRTIMER_MODE_ABS_PINNED);
4867 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4868 
4869 	vmx->nested.vpid02 = allocate_vpid();
4870 
4871 	vmx->nested.vmcs02_initialized = false;
4872 	vmx->nested.vmxon = true;
4873 
4874 	if (vmx_pt_mode_is_host_guest()) {
4875 		vmx->pt_desc.guest.ctl = 0;
4876 		pt_update_intercept_for_msr(vcpu);
4877 	}
4878 
4879 	return 0;
4880 
4881 out_shadow_vmcs:
4882 	kfree(vmx->nested.cached_shadow_vmcs12);
4883 
4884 out_cached_shadow_vmcs12:
4885 	kfree(vmx->nested.cached_vmcs12);
4886 
4887 out_cached_vmcs12:
4888 	free_loaded_vmcs(&vmx->nested.vmcs02);
4889 
4890 out_vmcs02:
4891 	return -ENOMEM;
4892 }
4893 
4894 /* Emulate the VMXON instruction. */
4895 static int handle_vmon(struct kvm_vcpu *vcpu)
4896 {
4897 	int ret;
4898 	gpa_t vmptr;
4899 	uint32_t revision;
4900 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4901 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4902 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4903 
4904 	/*
4905 	 * The Intel VMX Instruction Reference lists a bunch of bits that are
4906 	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4907 	 * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4908 	 * Otherwise, we should fail with #UD.  But most faulting conditions
4909 	 * have already been checked by hardware, prior to the VM-exit for
4910 	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4911 	 * that bit set to 1 in non-root mode.
4912 	 */
4913 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4914 		kvm_queue_exception(vcpu, UD_VECTOR);
4915 		return 1;
4916 	}
4917 
4918 	/* CPL=0 must be checked manually. */
4919 	if (vmx_get_cpl(vcpu)) {
4920 		kvm_inject_gp(vcpu, 0);
4921 		return 1;
4922 	}
4923 
4924 	if (vmx->nested.vmxon)
4925 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4926 
4927 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4928 			!= VMXON_NEEDED_FEATURES) {
4929 		kvm_inject_gp(vcpu, 0);
4930 		return 1;
4931 	}
4932 
4933 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4934 		return ret;
4935 
4936 	/*
4937 	 * SDM 3: 24.11.5
4938 	 * The first 4 bytes of VMXON region contain the supported
4939 	 * VMCS revision identifier
4940 	 *
4941 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4942 	 * which replaces physical address width with 32
4943 	 */
4944 	if (!page_address_valid(vcpu, vmptr))
4945 		return nested_vmx_failInvalid(vcpu);
4946 
4947 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4948 	    revision != VMCS12_REVISION)
4949 		return nested_vmx_failInvalid(vcpu);
4950 
4951 	vmx->nested.vmxon_ptr = vmptr;
4952 	ret = enter_vmx_operation(vcpu);
4953 	if (ret)
4954 		return ret;
4955 
4956 	return nested_vmx_succeed(vcpu);
4957 }
4958 
4959 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4960 {
4961 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4962 
4963 	if (vmx->nested.current_vmptr == INVALID_GPA)
4964 		return;
4965 
4966 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4967 
4968 	if (enable_shadow_vmcs) {
4969 		/* copy to memory all shadowed fields in case
4970 		   they were modified */
4971 		copy_shadow_to_vmcs12(vmx);
4972 		vmx_disable_shadow_vmcs(vmx);
4973 	}
4974 	vmx->nested.posted_intr_nv = -1;
4975 
4976 	/* Flush VMCS12 to guest memory */
4977 	kvm_vcpu_write_guest_page(vcpu,
4978 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
4979 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4980 
4981 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4982 
4983 	vmx->nested.current_vmptr = INVALID_GPA;
4984 }
4985 
4986 /* Emulate the VMXOFF instruction */
4987 static int handle_vmoff(struct kvm_vcpu *vcpu)
4988 {
4989 	if (!nested_vmx_check_permission(vcpu))
4990 		return 1;
4991 
4992 	free_nested(vcpu);
4993 
4994 	/* Process a latched INIT during time CPU was in VMX operation */
4995 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4996 
4997 	return nested_vmx_succeed(vcpu);
4998 }
4999 
5000 /* Emulate the VMCLEAR instruction */
5001 static int handle_vmclear(struct kvm_vcpu *vcpu)
5002 {
5003 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5004 	u32 zero = 0;
5005 	gpa_t vmptr;
5006 	u64 evmcs_gpa;
5007 	int r;
5008 
5009 	if (!nested_vmx_check_permission(vcpu))
5010 		return 1;
5011 
5012 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5013 		return r;
5014 
5015 	if (!page_address_valid(vcpu, vmptr))
5016 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5017 
5018 	if (vmptr == vmx->nested.vmxon_ptr)
5019 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5020 
5021 	/*
5022 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
5023 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5024 	 * way to distinguish it from VMCS12) and we must not corrupt it by
5025 	 * writing to the non-existent 'launch_state' field. The area doesn't
5026 	 * have to be the currently active EVMCS on the calling CPU and there's
5027 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
5028 	 * state. It is possible that the area will stay mapped as
5029 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5030 	 */
5031 	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5032 		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5033 		if (vmptr == vmx->nested.current_vmptr)
5034 			nested_release_vmcs12(vcpu);
5035 
5036 		kvm_vcpu_write_guest(vcpu,
5037 				     vmptr + offsetof(struct vmcs12,
5038 						      launch_state),
5039 				     &zero, sizeof(zero));
5040 	} else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5041 		nested_release_evmcs(vcpu);
5042 	}
5043 
5044 	return nested_vmx_succeed(vcpu);
5045 }
5046 
5047 /* Emulate the VMLAUNCH instruction */
5048 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5049 {
5050 	return nested_vmx_run(vcpu, true);
5051 }
5052 
5053 /* Emulate the VMRESUME instruction */
5054 static int handle_vmresume(struct kvm_vcpu *vcpu)
5055 {
5056 
5057 	return nested_vmx_run(vcpu, false);
5058 }
5059 
5060 static int handle_vmread(struct kvm_vcpu *vcpu)
5061 {
5062 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5063 						    : get_vmcs12(vcpu);
5064 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5065 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5066 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5067 	struct x86_exception e;
5068 	unsigned long field;
5069 	u64 value;
5070 	gva_t gva = 0;
5071 	short offset;
5072 	int len, r;
5073 
5074 	if (!nested_vmx_check_permission(vcpu))
5075 		return 1;
5076 
5077 	/*
5078 	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5079 	 * any VMREAD sets the ALU flags for VMfailInvalid.
5080 	 */
5081 	if (vmx->nested.current_vmptr == INVALID_GPA ||
5082 	    (is_guest_mode(vcpu) &&
5083 	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5084 		return nested_vmx_failInvalid(vcpu);
5085 
5086 	/* Decode instruction info and find the field to read */
5087 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5088 
5089 	offset = vmcs_field_to_offset(field);
5090 	if (offset < 0)
5091 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5092 
5093 	if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5094 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5095 
5096 	/* Read the field, zero-extended to a u64 value */
5097 	value = vmcs12_read_any(vmcs12, field, offset);
5098 
5099 	/*
5100 	 * Now copy part of this value to register or memory, as requested.
5101 	 * Note that the number of bits actually copied is 32 or 64 depending
5102 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5103 	 */
5104 	if (instr_info & BIT(10)) {
5105 		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5106 	} else {
5107 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5108 		if (get_vmx_mem_address(vcpu, exit_qualification,
5109 					instr_info, true, len, &gva))
5110 			return 1;
5111 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5112 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5113 		if (r != X86EMUL_CONTINUE)
5114 			return kvm_handle_memory_failure(vcpu, r, &e);
5115 	}
5116 
5117 	return nested_vmx_succeed(vcpu);
5118 }
5119 
5120 static bool is_shadow_field_rw(unsigned long field)
5121 {
5122 	switch (field) {
5123 #define SHADOW_FIELD_RW(x, y) case x:
5124 #include "vmcs_shadow_fields.h"
5125 		return true;
5126 	default:
5127 		break;
5128 	}
5129 	return false;
5130 }
5131 
5132 static bool is_shadow_field_ro(unsigned long field)
5133 {
5134 	switch (field) {
5135 #define SHADOW_FIELD_RO(x, y) case x:
5136 #include "vmcs_shadow_fields.h"
5137 		return true;
5138 	default:
5139 		break;
5140 	}
5141 	return false;
5142 }
5143 
5144 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5145 {
5146 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5147 						    : get_vmcs12(vcpu);
5148 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5149 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5150 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5151 	struct x86_exception e;
5152 	unsigned long field;
5153 	short offset;
5154 	gva_t gva;
5155 	int len, r;
5156 
5157 	/*
5158 	 * The value to write might be 32 or 64 bits, depending on L1's long
5159 	 * mode, and eventually we need to write that into a field of several
5160 	 * possible lengths. The code below first zero-extends the value to 64
5161 	 * bit (value), and then copies only the appropriate number of
5162 	 * bits into the vmcs12 field.
5163 	 */
5164 	u64 value = 0;
5165 
5166 	if (!nested_vmx_check_permission(vcpu))
5167 		return 1;
5168 
5169 	/*
5170 	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5171 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5172 	 */
5173 	if (vmx->nested.current_vmptr == INVALID_GPA ||
5174 	    (is_guest_mode(vcpu) &&
5175 	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5176 		return nested_vmx_failInvalid(vcpu);
5177 
5178 	if (instr_info & BIT(10))
5179 		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5180 	else {
5181 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5182 		if (get_vmx_mem_address(vcpu, exit_qualification,
5183 					instr_info, false, len, &gva))
5184 			return 1;
5185 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5186 		if (r != X86EMUL_CONTINUE)
5187 			return kvm_handle_memory_failure(vcpu, r, &e);
5188 	}
5189 
5190 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5191 
5192 	offset = vmcs_field_to_offset(field);
5193 	if (offset < 0)
5194 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5195 
5196 	/*
5197 	 * If the vCPU supports "VMWRITE to any supported field in the
5198 	 * VMCS," then the "read-only" fields are actually read/write.
5199 	 */
5200 	if (vmcs_field_readonly(field) &&
5201 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5202 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5203 
5204 	/*
5205 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5206 	 * vmcs12, else we may crush a field or consume a stale value.
5207 	 */
5208 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5209 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5210 
5211 	/*
5212 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5213 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5214 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5215 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5216 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5217 	 * the stripped down value, L2 sees the full value as stored by KVM).
5218 	 */
5219 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5220 		value &= 0x1f0ff;
5221 
5222 	vmcs12_write_any(vmcs12, field, offset, value);
5223 
5224 	/*
5225 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5226 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5227 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5228 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5229 	 */
5230 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5231 		/*
5232 		 * L1 can read these fields without exiting, ensure the
5233 		 * shadow VMCS is up-to-date.
5234 		 */
5235 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5236 			preempt_disable();
5237 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5238 
5239 			__vmcs_writel(field, value);
5240 
5241 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5242 			vmcs_load(vmx->loaded_vmcs->vmcs);
5243 			preempt_enable();
5244 		}
5245 		vmx->nested.dirty_vmcs12 = true;
5246 	}
5247 
5248 	return nested_vmx_succeed(vcpu);
5249 }
5250 
5251 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5252 {
5253 	vmx->nested.current_vmptr = vmptr;
5254 	if (enable_shadow_vmcs) {
5255 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5256 		vmcs_write64(VMCS_LINK_POINTER,
5257 			     __pa(vmx->vmcs01.shadow_vmcs));
5258 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5259 	}
5260 	vmx->nested.dirty_vmcs12 = true;
5261 }
5262 
5263 /* Emulate the VMPTRLD instruction */
5264 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5265 {
5266 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5267 	gpa_t vmptr;
5268 	int r;
5269 
5270 	if (!nested_vmx_check_permission(vcpu))
5271 		return 1;
5272 
5273 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5274 		return r;
5275 
5276 	if (!page_address_valid(vcpu, vmptr))
5277 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5278 
5279 	if (vmptr == vmx->nested.vmxon_ptr)
5280 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5281 
5282 	/* Forbid normal VMPTRLD if Enlightened version was used */
5283 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5284 		return 1;
5285 
5286 	if (vmx->nested.current_vmptr != vmptr) {
5287 		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5288 		struct vmcs_hdr hdr;
5289 
5290 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5291 			/*
5292 			 * Reads from an unbacked page return all 1s,
5293 			 * which means that the 32 bits located at the
5294 			 * given physical address won't match the required
5295 			 * VMCS12_REVISION identifier.
5296 			 */
5297 			return nested_vmx_fail(vcpu,
5298 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5299 		}
5300 
5301 		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5302 						 offsetof(struct vmcs12, hdr),
5303 						 sizeof(hdr))) {
5304 			return nested_vmx_fail(vcpu,
5305 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5306 		}
5307 
5308 		if (hdr.revision_id != VMCS12_REVISION ||
5309 		    (hdr.shadow_vmcs &&
5310 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5311 			return nested_vmx_fail(vcpu,
5312 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5313 		}
5314 
5315 		nested_release_vmcs12(vcpu);
5316 
5317 		/*
5318 		 * Load VMCS12 from guest memory since it is not already
5319 		 * cached.
5320 		 */
5321 		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5322 					  VMCS12_SIZE)) {
5323 			return nested_vmx_fail(vcpu,
5324 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5325 		}
5326 
5327 		set_current_vmptr(vmx, vmptr);
5328 	}
5329 
5330 	return nested_vmx_succeed(vcpu);
5331 }
5332 
5333 /* Emulate the VMPTRST instruction */
5334 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5335 {
5336 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5337 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5338 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5339 	struct x86_exception e;
5340 	gva_t gva;
5341 	int r;
5342 
5343 	if (!nested_vmx_check_permission(vcpu))
5344 		return 1;
5345 
5346 	if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5347 		return 1;
5348 
5349 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5350 				true, sizeof(gpa_t), &gva))
5351 		return 1;
5352 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5353 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5354 					sizeof(gpa_t), &e);
5355 	if (r != X86EMUL_CONTINUE)
5356 		return kvm_handle_memory_failure(vcpu, r, &e);
5357 
5358 	return nested_vmx_succeed(vcpu);
5359 }
5360 
5361 /* Emulate the INVEPT instruction */
5362 static int handle_invept(struct kvm_vcpu *vcpu)
5363 {
5364 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5365 	u32 vmx_instruction_info, types;
5366 	unsigned long type, roots_to_free;
5367 	struct kvm_mmu *mmu;
5368 	gva_t gva;
5369 	struct x86_exception e;
5370 	struct {
5371 		u64 eptp, gpa;
5372 	} operand;
5373 	int i, r, gpr_index;
5374 
5375 	if (!(vmx->nested.msrs.secondary_ctls_high &
5376 	      SECONDARY_EXEC_ENABLE_EPT) ||
5377 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5378 		kvm_queue_exception(vcpu, UD_VECTOR);
5379 		return 1;
5380 	}
5381 
5382 	if (!nested_vmx_check_permission(vcpu))
5383 		return 1;
5384 
5385 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5386 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5387 	type = kvm_register_read(vcpu, gpr_index);
5388 
5389 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5390 
5391 	if (type >= 32 || !(types & (1 << type)))
5392 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5393 
5394 	/* According to the Intel VMX instruction reference, the memory
5395 	 * operand is read even if it isn't needed (e.g., for type==global)
5396 	 */
5397 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5398 			vmx_instruction_info, false, sizeof(operand), &gva))
5399 		return 1;
5400 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5401 	if (r != X86EMUL_CONTINUE)
5402 		return kvm_handle_memory_failure(vcpu, r, &e);
5403 
5404 	/*
5405 	 * Nested EPT roots are always held through guest_mmu,
5406 	 * not root_mmu.
5407 	 */
5408 	mmu = &vcpu->arch.guest_mmu;
5409 
5410 	switch (type) {
5411 	case VMX_EPT_EXTENT_CONTEXT:
5412 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5413 			return nested_vmx_fail(vcpu,
5414 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5415 
5416 		roots_to_free = 0;
5417 		if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5418 					    operand.eptp))
5419 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5420 
5421 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5422 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5423 						    mmu->prev_roots[i].pgd,
5424 						    operand.eptp))
5425 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5426 		}
5427 		break;
5428 	case VMX_EPT_EXTENT_GLOBAL:
5429 		roots_to_free = KVM_MMU_ROOTS_ALL;
5430 		break;
5431 	default:
5432 		BUG();
5433 		break;
5434 	}
5435 
5436 	if (roots_to_free)
5437 		kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5438 
5439 	return nested_vmx_succeed(vcpu);
5440 }
5441 
5442 static int handle_invvpid(struct kvm_vcpu *vcpu)
5443 {
5444 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5445 	u32 vmx_instruction_info;
5446 	unsigned long type, types;
5447 	gva_t gva;
5448 	struct x86_exception e;
5449 	struct {
5450 		u64 vpid;
5451 		u64 gla;
5452 	} operand;
5453 	u16 vpid02;
5454 	int r, gpr_index;
5455 
5456 	if (!(vmx->nested.msrs.secondary_ctls_high &
5457 	      SECONDARY_EXEC_ENABLE_VPID) ||
5458 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5459 		kvm_queue_exception(vcpu, UD_VECTOR);
5460 		return 1;
5461 	}
5462 
5463 	if (!nested_vmx_check_permission(vcpu))
5464 		return 1;
5465 
5466 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5467 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5468 	type = kvm_register_read(vcpu, gpr_index);
5469 
5470 	types = (vmx->nested.msrs.vpid_caps &
5471 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5472 
5473 	if (type >= 32 || !(types & (1 << type)))
5474 		return nested_vmx_fail(vcpu,
5475 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5476 
5477 	/* according to the intel vmx instruction reference, the memory
5478 	 * operand is read even if it isn't needed (e.g., for type==global)
5479 	 */
5480 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5481 			vmx_instruction_info, false, sizeof(operand), &gva))
5482 		return 1;
5483 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5484 	if (r != X86EMUL_CONTINUE)
5485 		return kvm_handle_memory_failure(vcpu, r, &e);
5486 
5487 	if (operand.vpid >> 16)
5488 		return nested_vmx_fail(vcpu,
5489 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5490 
5491 	vpid02 = nested_get_vpid02(vcpu);
5492 	switch (type) {
5493 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5494 		if (!operand.vpid ||
5495 		    is_noncanonical_address(operand.gla, vcpu))
5496 			return nested_vmx_fail(vcpu,
5497 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5498 		vpid_sync_vcpu_addr(vpid02, operand.gla);
5499 		break;
5500 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5501 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5502 		if (!operand.vpid)
5503 			return nested_vmx_fail(vcpu,
5504 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5505 		vpid_sync_context(vpid02);
5506 		break;
5507 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5508 		vpid_sync_context(vpid02);
5509 		break;
5510 	default:
5511 		WARN_ON_ONCE(1);
5512 		return kvm_skip_emulated_instruction(vcpu);
5513 	}
5514 
5515 	/*
5516 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5517 	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5518 	 * roots as VPIDs are not tracked in the MMU role.
5519 	 *
5520 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5521 	 * an MMU when EPT is disabled.
5522 	 *
5523 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5524 	 */
5525 	if (!enable_ept)
5526 		kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5527 
5528 	return nested_vmx_succeed(vcpu);
5529 }
5530 
5531 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5532 				     struct vmcs12 *vmcs12)
5533 {
5534 	u32 index = kvm_rcx_read(vcpu);
5535 	u64 new_eptp;
5536 
5537 	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5538 		return 1;
5539 	if (index >= VMFUNC_EPTP_ENTRIES)
5540 		return 1;
5541 
5542 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5543 				     &new_eptp, index * 8, 8))
5544 		return 1;
5545 
5546 	/*
5547 	 * If the (L2) guest does a vmfunc to the currently
5548 	 * active ept pointer, we don't have to do anything else
5549 	 */
5550 	if (vmcs12->ept_pointer != new_eptp) {
5551 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5552 			return 1;
5553 
5554 		vmcs12->ept_pointer = new_eptp;
5555 		nested_ept_new_eptp(vcpu);
5556 
5557 		if (!nested_cpu_has_vpid(vmcs12))
5558 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5559 	}
5560 
5561 	return 0;
5562 }
5563 
5564 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5565 {
5566 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5567 	struct vmcs12 *vmcs12;
5568 	u32 function = kvm_rax_read(vcpu);
5569 
5570 	/*
5571 	 * VMFUNC is only supported for nested guests, but we always enable the
5572 	 * secondary control for simplicity; for non-nested mode, fake that we
5573 	 * didn't by injecting #UD.
5574 	 */
5575 	if (!is_guest_mode(vcpu)) {
5576 		kvm_queue_exception(vcpu, UD_VECTOR);
5577 		return 1;
5578 	}
5579 
5580 	vmcs12 = get_vmcs12(vcpu);
5581 
5582 	/*
5583 	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5584 	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5585 	 */
5586 	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5587 		kvm_queue_exception(vcpu, UD_VECTOR);
5588 		return 1;
5589 	}
5590 
5591 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5592 		goto fail;
5593 
5594 	switch (function) {
5595 	case 0:
5596 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5597 			goto fail;
5598 		break;
5599 	default:
5600 		goto fail;
5601 	}
5602 	return kvm_skip_emulated_instruction(vcpu);
5603 
5604 fail:
5605 	/*
5606 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5607 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5608 	 * EXIT_REASON_VMFUNC as the exit reason.
5609 	 */
5610 	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5611 			  vmx_get_intr_info(vcpu),
5612 			  vmx_get_exit_qual(vcpu));
5613 	return 1;
5614 }
5615 
5616 /*
5617  * Return true if an IO instruction with the specified port and size should cause
5618  * a VM-exit into L1.
5619  */
5620 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5621 				 int size)
5622 {
5623 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5624 	gpa_t bitmap, last_bitmap;
5625 	u8 b;
5626 
5627 	last_bitmap = INVALID_GPA;
5628 	b = -1;
5629 
5630 	while (size > 0) {
5631 		if (port < 0x8000)
5632 			bitmap = vmcs12->io_bitmap_a;
5633 		else if (port < 0x10000)
5634 			bitmap = vmcs12->io_bitmap_b;
5635 		else
5636 			return true;
5637 		bitmap += (port & 0x7fff) / 8;
5638 
5639 		if (last_bitmap != bitmap)
5640 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5641 				return true;
5642 		if (b & (1 << (port & 7)))
5643 			return true;
5644 
5645 		port++;
5646 		size--;
5647 		last_bitmap = bitmap;
5648 	}
5649 
5650 	return false;
5651 }
5652 
5653 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5654 				       struct vmcs12 *vmcs12)
5655 {
5656 	unsigned long exit_qualification;
5657 	unsigned short port;
5658 	int size;
5659 
5660 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5661 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5662 
5663 	exit_qualification = vmx_get_exit_qual(vcpu);
5664 
5665 	port = exit_qualification >> 16;
5666 	size = (exit_qualification & 7) + 1;
5667 
5668 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
5669 }
5670 
5671 /*
5672  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5673  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5674  * disinterest in the current event (read or write a specific MSR) by using an
5675  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5676  */
5677 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5678 					struct vmcs12 *vmcs12,
5679 					union vmx_exit_reason exit_reason)
5680 {
5681 	u32 msr_index = kvm_rcx_read(vcpu);
5682 	gpa_t bitmap;
5683 
5684 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5685 		return true;
5686 
5687 	/*
5688 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5689 	 * for the four combinations of read/write and low/high MSR numbers.
5690 	 * First we need to figure out which of the four to use:
5691 	 */
5692 	bitmap = vmcs12->msr_bitmap;
5693 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5694 		bitmap += 2048;
5695 	if (msr_index >= 0xc0000000) {
5696 		msr_index -= 0xc0000000;
5697 		bitmap += 1024;
5698 	}
5699 
5700 	/* Then read the msr_index'th bit from this bitmap: */
5701 	if (msr_index < 1024*8) {
5702 		unsigned char b;
5703 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5704 			return true;
5705 		return 1 & (b >> (msr_index & 7));
5706 	} else
5707 		return true; /* let L1 handle the wrong parameter */
5708 }
5709 
5710 /*
5711  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5712  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5713  * intercept (via guest_host_mask etc.) the current event.
5714  */
5715 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5716 	struct vmcs12 *vmcs12)
5717 {
5718 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5719 	int cr = exit_qualification & 15;
5720 	int reg;
5721 	unsigned long val;
5722 
5723 	switch ((exit_qualification >> 4) & 3) {
5724 	case 0: /* mov to cr */
5725 		reg = (exit_qualification >> 8) & 15;
5726 		val = kvm_register_read(vcpu, reg);
5727 		switch (cr) {
5728 		case 0:
5729 			if (vmcs12->cr0_guest_host_mask &
5730 			    (val ^ vmcs12->cr0_read_shadow))
5731 				return true;
5732 			break;
5733 		case 3:
5734 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5735 				return true;
5736 			break;
5737 		case 4:
5738 			if (vmcs12->cr4_guest_host_mask &
5739 			    (vmcs12->cr4_read_shadow ^ val))
5740 				return true;
5741 			break;
5742 		case 8:
5743 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5744 				return true;
5745 			break;
5746 		}
5747 		break;
5748 	case 2: /* clts */
5749 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5750 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5751 			return true;
5752 		break;
5753 	case 1: /* mov from cr */
5754 		switch (cr) {
5755 		case 3:
5756 			if (vmcs12->cpu_based_vm_exec_control &
5757 			    CPU_BASED_CR3_STORE_EXITING)
5758 				return true;
5759 			break;
5760 		case 8:
5761 			if (vmcs12->cpu_based_vm_exec_control &
5762 			    CPU_BASED_CR8_STORE_EXITING)
5763 				return true;
5764 			break;
5765 		}
5766 		break;
5767 	case 3: /* lmsw */
5768 		/*
5769 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5770 		 * cr0. Other attempted changes are ignored, with no exit.
5771 		 */
5772 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5773 		if (vmcs12->cr0_guest_host_mask & 0xe &
5774 		    (val ^ vmcs12->cr0_read_shadow))
5775 			return true;
5776 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5777 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5778 		    (val & 0x1))
5779 			return true;
5780 		break;
5781 	}
5782 	return false;
5783 }
5784 
5785 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5786 					  struct vmcs12 *vmcs12)
5787 {
5788 	u32 encls_leaf;
5789 
5790 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5791 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5792 		return false;
5793 
5794 	encls_leaf = kvm_rax_read(vcpu);
5795 	if (encls_leaf > 62)
5796 		encls_leaf = 63;
5797 	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5798 }
5799 
5800 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5801 	struct vmcs12 *vmcs12, gpa_t bitmap)
5802 {
5803 	u32 vmx_instruction_info;
5804 	unsigned long field;
5805 	u8 b;
5806 
5807 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
5808 		return true;
5809 
5810 	/* Decode instruction info and find the field to access */
5811 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5812 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5813 
5814 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
5815 	if (field >> 15)
5816 		return true;
5817 
5818 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5819 		return true;
5820 
5821 	return 1 & (b >> (field & 7));
5822 }
5823 
5824 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5825 {
5826 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5827 
5828 	if (nested_cpu_has_mtf(vmcs12))
5829 		return true;
5830 
5831 	/*
5832 	 * An MTF VM-exit may be injected into the guest by setting the
5833 	 * interruption-type to 7 (other event) and the vector field to 0. Such
5834 	 * is the case regardless of the 'monitor trap flag' VM-execution
5835 	 * control.
5836 	 */
5837 	return entry_intr_info == (INTR_INFO_VALID_MASK
5838 				   | INTR_TYPE_OTHER_EVENT);
5839 }
5840 
5841 /*
5842  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5843  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5844  */
5845 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5846 				     union vmx_exit_reason exit_reason)
5847 {
5848 	u32 intr_info;
5849 
5850 	switch ((u16)exit_reason.basic) {
5851 	case EXIT_REASON_EXCEPTION_NMI:
5852 		intr_info = vmx_get_intr_info(vcpu);
5853 		if (is_nmi(intr_info))
5854 			return true;
5855 		else if (is_page_fault(intr_info))
5856 			return vcpu->arch.apf.host_apf_flags ||
5857 			       vmx_need_pf_intercept(vcpu);
5858 		else if (is_debug(intr_info) &&
5859 			 vcpu->guest_debug &
5860 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5861 			return true;
5862 		else if (is_breakpoint(intr_info) &&
5863 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5864 			return true;
5865 		else if (is_alignment_check(intr_info) &&
5866 			 !vmx_guest_inject_ac(vcpu))
5867 			return true;
5868 		return false;
5869 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5870 		return true;
5871 	case EXIT_REASON_MCE_DURING_VMENTRY:
5872 		return true;
5873 	case EXIT_REASON_EPT_VIOLATION:
5874 		/*
5875 		 * L0 always deals with the EPT violation. If nested EPT is
5876 		 * used, and the nested mmu code discovers that the address is
5877 		 * missing in the guest EPT table (EPT12), the EPT violation
5878 		 * will be injected with nested_ept_inject_page_fault()
5879 		 */
5880 		return true;
5881 	case EXIT_REASON_EPT_MISCONFIG:
5882 		/*
5883 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
5884 		 * table (shadow on EPT) or a merged EPT table that L0 built
5885 		 * (EPT on EPT). So any problems with the structure of the
5886 		 * table is L0's fault.
5887 		 */
5888 		return true;
5889 	case EXIT_REASON_PREEMPTION_TIMER:
5890 		return true;
5891 	case EXIT_REASON_PML_FULL:
5892 		/*
5893 		 * PML is emulated for an L1 VMM and should never be enabled in
5894 		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
5895 		 */
5896 		return true;
5897 	case EXIT_REASON_VMFUNC:
5898 		/* VM functions are emulated through L2->L0 vmexits. */
5899 		return true;
5900 	case EXIT_REASON_BUS_LOCK:
5901 		/*
5902 		 * At present, bus lock VM exit is never exposed to L1.
5903 		 * Handle L2's bus locks in L0 directly.
5904 		 */
5905 		return true;
5906 	default:
5907 		break;
5908 	}
5909 	return false;
5910 }
5911 
5912 /*
5913  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5914  * is_guest_mode (L2).
5915  */
5916 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5917 				     union vmx_exit_reason exit_reason)
5918 {
5919 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5920 	u32 intr_info;
5921 
5922 	switch ((u16)exit_reason.basic) {
5923 	case EXIT_REASON_EXCEPTION_NMI:
5924 		intr_info = vmx_get_intr_info(vcpu);
5925 		if (is_nmi(intr_info))
5926 			return true;
5927 		else if (is_page_fault(intr_info))
5928 			return true;
5929 		return vmcs12->exception_bitmap &
5930 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
5931 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5932 		return nested_exit_on_intr(vcpu);
5933 	case EXIT_REASON_TRIPLE_FAULT:
5934 		return true;
5935 	case EXIT_REASON_INTERRUPT_WINDOW:
5936 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5937 	case EXIT_REASON_NMI_WINDOW:
5938 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5939 	case EXIT_REASON_TASK_SWITCH:
5940 		return true;
5941 	case EXIT_REASON_CPUID:
5942 		return true;
5943 	case EXIT_REASON_HLT:
5944 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5945 	case EXIT_REASON_INVD:
5946 		return true;
5947 	case EXIT_REASON_INVLPG:
5948 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5949 	case EXIT_REASON_RDPMC:
5950 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5951 	case EXIT_REASON_RDRAND:
5952 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5953 	case EXIT_REASON_RDSEED:
5954 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5955 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5956 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5957 	case EXIT_REASON_VMREAD:
5958 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5959 			vmcs12->vmread_bitmap);
5960 	case EXIT_REASON_VMWRITE:
5961 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5962 			vmcs12->vmwrite_bitmap);
5963 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5964 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5965 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5966 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5967 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5968 		/*
5969 		 * VMX instructions trap unconditionally. This allows L1 to
5970 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5971 		 */
5972 		return true;
5973 	case EXIT_REASON_CR_ACCESS:
5974 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5975 	case EXIT_REASON_DR_ACCESS:
5976 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5977 	case EXIT_REASON_IO_INSTRUCTION:
5978 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
5979 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5980 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5981 	case EXIT_REASON_MSR_READ:
5982 	case EXIT_REASON_MSR_WRITE:
5983 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5984 	case EXIT_REASON_INVALID_STATE:
5985 		return true;
5986 	case EXIT_REASON_MWAIT_INSTRUCTION:
5987 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5988 	case EXIT_REASON_MONITOR_TRAP_FLAG:
5989 		return nested_vmx_exit_handled_mtf(vmcs12);
5990 	case EXIT_REASON_MONITOR_INSTRUCTION:
5991 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5992 	case EXIT_REASON_PAUSE_INSTRUCTION:
5993 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5994 			nested_cpu_has2(vmcs12,
5995 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5996 	case EXIT_REASON_MCE_DURING_VMENTRY:
5997 		return true;
5998 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
5999 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6000 	case EXIT_REASON_APIC_ACCESS:
6001 	case EXIT_REASON_APIC_WRITE:
6002 	case EXIT_REASON_EOI_INDUCED:
6003 		/*
6004 		 * The controls for "virtualize APIC accesses," "APIC-
6005 		 * register virtualization," and "virtual-interrupt
6006 		 * delivery" only come from vmcs12.
6007 		 */
6008 		return true;
6009 	case EXIT_REASON_INVPCID:
6010 		return
6011 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6012 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6013 	case EXIT_REASON_WBINVD:
6014 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6015 	case EXIT_REASON_XSETBV:
6016 		return true;
6017 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6018 		/*
6019 		 * This should never happen, since it is not possible to
6020 		 * set XSS to a non-zero value---neither in L1 nor in L2.
6021 		 * If if it were, XSS would have to be checked against
6022 		 * the XSS exit bitmap in vmcs12.
6023 		 */
6024 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6025 	case EXIT_REASON_UMWAIT:
6026 	case EXIT_REASON_TPAUSE:
6027 		return nested_cpu_has2(vmcs12,
6028 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6029 	case EXIT_REASON_ENCLS:
6030 		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6031 	default:
6032 		return true;
6033 	}
6034 }
6035 
6036 /*
6037  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6038  * reflected into L1.
6039  */
6040 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6041 {
6042 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6043 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6044 	unsigned long exit_qual;
6045 	u32 exit_intr_info;
6046 
6047 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6048 
6049 	/*
6050 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6051 	 * has already loaded L2's state.
6052 	 */
6053 	if (unlikely(vmx->fail)) {
6054 		trace_kvm_nested_vmenter_failed(
6055 			"hardware VM-instruction error: ",
6056 			vmcs_read32(VM_INSTRUCTION_ERROR));
6057 		exit_intr_info = 0;
6058 		exit_qual = 0;
6059 		goto reflect_vmexit;
6060 	}
6061 
6062 	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6063 
6064 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6065 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6066 		return false;
6067 
6068 	/* If L1 doesn't want the exit, handle it in L0. */
6069 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6070 		return false;
6071 
6072 	/*
6073 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6074 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6075 	 * need to be synthesized by querying the in-kernel LAPIC, but external
6076 	 * interrupts are never reflected to L1 so it's a non-issue.
6077 	 */
6078 	exit_intr_info = vmx_get_intr_info(vcpu);
6079 	if (is_exception_with_error_code(exit_intr_info)) {
6080 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6081 
6082 		vmcs12->vm_exit_intr_error_code =
6083 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6084 	}
6085 	exit_qual = vmx_get_exit_qual(vcpu);
6086 
6087 reflect_vmexit:
6088 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6089 	return true;
6090 }
6091 
6092 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6093 				struct kvm_nested_state __user *user_kvm_nested_state,
6094 				u32 user_data_size)
6095 {
6096 	struct vcpu_vmx *vmx;
6097 	struct vmcs12 *vmcs12;
6098 	struct kvm_nested_state kvm_state = {
6099 		.flags = 0,
6100 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6101 		.size = sizeof(kvm_state),
6102 		.hdr.vmx.flags = 0,
6103 		.hdr.vmx.vmxon_pa = INVALID_GPA,
6104 		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6105 		.hdr.vmx.preemption_timer_deadline = 0,
6106 	};
6107 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6108 		&user_kvm_nested_state->data.vmx[0];
6109 
6110 	if (!vcpu)
6111 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6112 
6113 	vmx = to_vmx(vcpu);
6114 	vmcs12 = get_vmcs12(vcpu);
6115 
6116 	if (nested_vmx_allowed(vcpu) &&
6117 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6118 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6119 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6120 
6121 		if (vmx_has_valid_vmcs12(vcpu)) {
6122 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6123 
6124 			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6125 			if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6126 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6127 
6128 			if (is_guest_mode(vcpu) &&
6129 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6130 			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6131 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6132 		}
6133 
6134 		if (vmx->nested.smm.vmxon)
6135 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6136 
6137 		if (vmx->nested.smm.guest_mode)
6138 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6139 
6140 		if (is_guest_mode(vcpu)) {
6141 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6142 
6143 			if (vmx->nested.nested_run_pending)
6144 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6145 
6146 			if (vmx->nested.mtf_pending)
6147 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6148 
6149 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6150 			    vmx->nested.has_preemption_timer_deadline) {
6151 				kvm_state.hdr.vmx.flags |=
6152 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6153 				kvm_state.hdr.vmx.preemption_timer_deadline =
6154 					vmx->nested.preemption_timer_deadline;
6155 			}
6156 		}
6157 	}
6158 
6159 	if (user_data_size < kvm_state.size)
6160 		goto out;
6161 
6162 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6163 		return -EFAULT;
6164 
6165 	if (!vmx_has_valid_vmcs12(vcpu))
6166 		goto out;
6167 
6168 	/*
6169 	 * When running L2, the authoritative vmcs12 state is in the
6170 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6171 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6172 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6173 	 * vmcs12 state is in the vmcs12 already.
6174 	 */
6175 	if (is_guest_mode(vcpu)) {
6176 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6177 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6178 	} else  {
6179 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6180 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6181 			if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6182 				/*
6183 				 * L1 hypervisor is not obliged to keep eVMCS
6184 				 * clean fields data always up-to-date while
6185 				 * not in guest mode, 'hv_clean_fields' is only
6186 				 * supposed to be actual upon vmentry so we need
6187 				 * to ignore it here and do full copy.
6188 				 */
6189 				copy_enlightened_to_vmcs12(vmx, 0);
6190 			else if (enable_shadow_vmcs)
6191 				copy_shadow_to_vmcs12(vmx);
6192 		}
6193 	}
6194 
6195 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6196 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6197 
6198 	/*
6199 	 * Copy over the full allocated size of vmcs12 rather than just the size
6200 	 * of the struct.
6201 	 */
6202 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6203 		return -EFAULT;
6204 
6205 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6206 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6207 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6208 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6209 			return -EFAULT;
6210 	}
6211 out:
6212 	return kvm_state.size;
6213 }
6214 
6215 /*
6216  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6217  */
6218 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6219 {
6220 	if (is_guest_mode(vcpu)) {
6221 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6222 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6223 	}
6224 	free_nested(vcpu);
6225 }
6226 
6227 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6228 				struct kvm_nested_state __user *user_kvm_nested_state,
6229 				struct kvm_nested_state *kvm_state)
6230 {
6231 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6232 	struct vmcs12 *vmcs12;
6233 	enum vm_entry_failure_code ignored;
6234 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6235 		&user_kvm_nested_state->data.vmx[0];
6236 	int ret;
6237 
6238 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6239 		return -EINVAL;
6240 
6241 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6242 		if (kvm_state->hdr.vmx.smm.flags)
6243 			return -EINVAL;
6244 
6245 		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6246 			return -EINVAL;
6247 
6248 		/*
6249 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6250 		 * enable eVMCS capability on vCPU. However, since then
6251 		 * code was changed such that flag signals vmcs12 should
6252 		 * be copied into eVMCS in guest memory.
6253 		 *
6254 		 * To preserve backwards compatability, allow user
6255 		 * to set this flag even when there is no VMXON region.
6256 		 */
6257 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6258 			return -EINVAL;
6259 	} else {
6260 		if (!nested_vmx_allowed(vcpu))
6261 			return -EINVAL;
6262 
6263 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6264 			return -EINVAL;
6265 	}
6266 
6267 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6268 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6269 		return -EINVAL;
6270 
6271 	if (kvm_state->hdr.vmx.smm.flags &
6272 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6273 		return -EINVAL;
6274 
6275 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6276 		return -EINVAL;
6277 
6278 	/*
6279 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6280 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6281 	 * must be zero.
6282 	 */
6283 	if (is_smm(vcpu) ?
6284 		(kvm_state->flags &
6285 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6286 		: kvm_state->hdr.vmx.smm.flags)
6287 		return -EINVAL;
6288 
6289 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6290 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6291 		return -EINVAL;
6292 
6293 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6294 		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6295 			return -EINVAL;
6296 
6297 	vmx_leave_nested(vcpu);
6298 
6299 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6300 		return 0;
6301 
6302 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6303 	ret = enter_vmx_operation(vcpu);
6304 	if (ret)
6305 		return ret;
6306 
6307 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6308 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6309 		/* See vmx_has_valid_vmcs12.  */
6310 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6311 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6312 		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6313 			return -EINVAL;
6314 		else
6315 			return 0;
6316 	}
6317 
6318 	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6319 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6320 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6321 			return -EINVAL;
6322 
6323 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6324 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6325 		/*
6326 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6327 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6328 		 * restored yet. EVMCS will be mapped from
6329 		 * nested_get_vmcs12_pages().
6330 		 */
6331 		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6332 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6333 	} else {
6334 		return -EINVAL;
6335 	}
6336 
6337 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6338 		vmx->nested.smm.vmxon = true;
6339 		vmx->nested.vmxon = false;
6340 
6341 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6342 			vmx->nested.smm.guest_mode = true;
6343 	}
6344 
6345 	vmcs12 = get_vmcs12(vcpu);
6346 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6347 		return -EFAULT;
6348 
6349 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6350 		return -EINVAL;
6351 
6352 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6353 		return 0;
6354 
6355 	vmx->nested.nested_run_pending =
6356 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6357 
6358 	vmx->nested.mtf_pending =
6359 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6360 
6361 	ret = -EINVAL;
6362 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6363 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6364 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6365 
6366 		if (kvm_state->size <
6367 		    sizeof(*kvm_state) +
6368 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6369 			goto error_guest_mode;
6370 
6371 		if (copy_from_user(shadow_vmcs12,
6372 				   user_vmx_nested_state->shadow_vmcs12,
6373 				   sizeof(*shadow_vmcs12))) {
6374 			ret = -EFAULT;
6375 			goto error_guest_mode;
6376 		}
6377 
6378 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6379 		    !shadow_vmcs12->hdr.shadow_vmcs)
6380 			goto error_guest_mode;
6381 	}
6382 
6383 	vmx->nested.has_preemption_timer_deadline = false;
6384 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6385 		vmx->nested.has_preemption_timer_deadline = true;
6386 		vmx->nested.preemption_timer_deadline =
6387 			kvm_state->hdr.vmx.preemption_timer_deadline;
6388 	}
6389 
6390 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6391 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6392 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6393 		goto error_guest_mode;
6394 
6395 	vmx->nested.dirty_vmcs12 = true;
6396 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6397 	if (ret)
6398 		goto error_guest_mode;
6399 
6400 	return 0;
6401 
6402 error_guest_mode:
6403 	vmx->nested.nested_run_pending = 0;
6404 	return ret;
6405 }
6406 
6407 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6408 {
6409 	if (enable_shadow_vmcs) {
6410 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6411 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6412 	}
6413 }
6414 
6415 /*
6416  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6417  * that madness to get the encoding for comparison.
6418  */
6419 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6420 
6421 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6422 {
6423 	/*
6424 	 * Note these are the so called "index" of the VMCS field encoding, not
6425 	 * the index into vmcs12.
6426 	 */
6427 	unsigned int max_idx, idx;
6428 	int i;
6429 
6430 	/*
6431 	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6432 	 * vmcs12, regardless of whether or not the associated feature is
6433 	 * exposed to L1.  Simply find the field with the highest index.
6434 	 */
6435 	max_idx = 0;
6436 	for (i = 0; i < nr_vmcs12_fields; i++) {
6437 		/* The vmcs12 table is very, very sparsely populated. */
6438 		if (!vmcs_field_to_offset_table[i])
6439 			continue;
6440 
6441 		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6442 		if (idx > max_idx)
6443 			max_idx = idx;
6444 	}
6445 
6446 	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6447 }
6448 
6449 /*
6450  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6451  * returned for the various VMX controls MSRs when nested VMX is enabled.
6452  * The same values should also be used to verify that vmcs12 control fields are
6453  * valid during nested entry from L1 to L2.
6454  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6455  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6456  * bit in the high half is on if the corresponding bit in the control field
6457  * may be on. See also vmx_control_verify().
6458  */
6459 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6460 {
6461 	/*
6462 	 * Note that as a general rule, the high half of the MSRs (bits in
6463 	 * the control fields which may be 1) should be initialized by the
6464 	 * intersection of the underlying hardware's MSR (i.e., features which
6465 	 * can be supported) and the list of features we want to expose -
6466 	 * because they are known to be properly supported in our code.
6467 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
6468 	 * be set to 0, meaning that L1 may turn off any of these bits. The
6469 	 * reason is that if one of these bits is necessary, it will appear
6470 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6471 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
6472 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6473 	 * These rules have exceptions below.
6474 	 */
6475 
6476 	/* pin-based controls */
6477 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6478 		msrs->pinbased_ctls_low,
6479 		msrs->pinbased_ctls_high);
6480 	msrs->pinbased_ctls_low |=
6481 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6482 	msrs->pinbased_ctls_high &=
6483 		PIN_BASED_EXT_INTR_MASK |
6484 		PIN_BASED_NMI_EXITING |
6485 		PIN_BASED_VIRTUAL_NMIS |
6486 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6487 	msrs->pinbased_ctls_high |=
6488 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6489 		PIN_BASED_VMX_PREEMPTION_TIMER;
6490 
6491 	/* exit controls */
6492 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6493 		msrs->exit_ctls_low,
6494 		msrs->exit_ctls_high);
6495 	msrs->exit_ctls_low =
6496 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6497 
6498 	msrs->exit_ctls_high &=
6499 #ifdef CONFIG_X86_64
6500 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6501 #endif
6502 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6503 		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6504 	msrs->exit_ctls_high |=
6505 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6506 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6507 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6508 
6509 	/* We support free control of debug control saving. */
6510 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6511 
6512 	/* entry controls */
6513 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6514 		msrs->entry_ctls_low,
6515 		msrs->entry_ctls_high);
6516 	msrs->entry_ctls_low =
6517 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6518 	msrs->entry_ctls_high &=
6519 #ifdef CONFIG_X86_64
6520 		VM_ENTRY_IA32E_MODE |
6521 #endif
6522 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6523 		VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6524 	msrs->entry_ctls_high |=
6525 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6526 
6527 	/* We support free control of debug control loading. */
6528 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6529 
6530 	/* cpu-based controls */
6531 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6532 		msrs->procbased_ctls_low,
6533 		msrs->procbased_ctls_high);
6534 	msrs->procbased_ctls_low =
6535 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6536 	msrs->procbased_ctls_high &=
6537 		CPU_BASED_INTR_WINDOW_EXITING |
6538 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6539 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6540 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6541 		CPU_BASED_CR3_STORE_EXITING |
6542 #ifdef CONFIG_X86_64
6543 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6544 #endif
6545 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6546 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6547 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6548 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6549 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6550 	/*
6551 	 * We can allow some features even when not supported by the
6552 	 * hardware. For example, L1 can specify an MSR bitmap - and we
6553 	 * can use it to avoid exits to L1 - even when L0 runs L2
6554 	 * without MSR bitmaps.
6555 	 */
6556 	msrs->procbased_ctls_high |=
6557 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6558 		CPU_BASED_USE_MSR_BITMAPS;
6559 
6560 	/* We support free control of CR3 access interception. */
6561 	msrs->procbased_ctls_low &=
6562 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6563 
6564 	/*
6565 	 * secondary cpu-based controls.  Do not include those that
6566 	 * depend on CPUID bits, they are added later by
6567 	 * vmx_vcpu_after_set_cpuid.
6568 	 */
6569 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6570 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6571 		      msrs->secondary_ctls_low,
6572 		      msrs->secondary_ctls_high);
6573 
6574 	msrs->secondary_ctls_low = 0;
6575 	msrs->secondary_ctls_high &=
6576 		SECONDARY_EXEC_DESC |
6577 		SECONDARY_EXEC_ENABLE_RDTSCP |
6578 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6579 		SECONDARY_EXEC_WBINVD_EXITING |
6580 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6581 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6582 		SECONDARY_EXEC_RDRAND_EXITING |
6583 		SECONDARY_EXEC_ENABLE_INVPCID |
6584 		SECONDARY_EXEC_RDSEED_EXITING |
6585 		SECONDARY_EXEC_XSAVES |
6586 		SECONDARY_EXEC_TSC_SCALING;
6587 
6588 	/*
6589 	 * We can emulate "VMCS shadowing," even if the hardware
6590 	 * doesn't support it.
6591 	 */
6592 	msrs->secondary_ctls_high |=
6593 		SECONDARY_EXEC_SHADOW_VMCS;
6594 
6595 	if (enable_ept) {
6596 		/* nested EPT: emulate EPT also to L1 */
6597 		msrs->secondary_ctls_high |=
6598 			SECONDARY_EXEC_ENABLE_EPT;
6599 		msrs->ept_caps =
6600 			VMX_EPT_PAGE_WALK_4_BIT |
6601 			VMX_EPT_PAGE_WALK_5_BIT |
6602 			VMX_EPTP_WB_BIT |
6603 			VMX_EPT_INVEPT_BIT |
6604 			VMX_EPT_EXECUTE_ONLY_BIT;
6605 
6606 		msrs->ept_caps &= ept_caps;
6607 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6608 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6609 			VMX_EPT_1GB_PAGE_BIT;
6610 		if (enable_ept_ad_bits) {
6611 			msrs->secondary_ctls_high |=
6612 				SECONDARY_EXEC_ENABLE_PML;
6613 			msrs->ept_caps |= VMX_EPT_AD_BIT;
6614 		}
6615 	}
6616 
6617 	if (cpu_has_vmx_vmfunc()) {
6618 		msrs->secondary_ctls_high |=
6619 			SECONDARY_EXEC_ENABLE_VMFUNC;
6620 		/*
6621 		 * Advertise EPTP switching unconditionally
6622 		 * since we emulate it
6623 		 */
6624 		if (enable_ept)
6625 			msrs->vmfunc_controls =
6626 				VMX_VMFUNC_EPTP_SWITCHING;
6627 	}
6628 
6629 	/*
6630 	 * Old versions of KVM use the single-context version without
6631 	 * checking for support, so declare that it is supported even
6632 	 * though it is treated as global context.  The alternative is
6633 	 * not failing the single-context invvpid, and it is worse.
6634 	 */
6635 	if (enable_vpid) {
6636 		msrs->secondary_ctls_high |=
6637 			SECONDARY_EXEC_ENABLE_VPID;
6638 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6639 			VMX_VPID_EXTENT_SUPPORTED_MASK;
6640 	}
6641 
6642 	if (enable_unrestricted_guest)
6643 		msrs->secondary_ctls_high |=
6644 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
6645 
6646 	if (flexpriority_enabled)
6647 		msrs->secondary_ctls_high |=
6648 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6649 
6650 	if (enable_sgx)
6651 		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6652 
6653 	/* miscellaneous data */
6654 	rdmsr(MSR_IA32_VMX_MISC,
6655 		msrs->misc_low,
6656 		msrs->misc_high);
6657 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6658 	msrs->misc_low |=
6659 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6660 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6661 		VMX_MISC_ACTIVITY_HLT |
6662 		VMX_MISC_ACTIVITY_WAIT_SIPI;
6663 	msrs->misc_high = 0;
6664 
6665 	/*
6666 	 * This MSR reports some information about VMX support. We
6667 	 * should return information about the VMX we emulate for the
6668 	 * guest, and the VMCS structure we give it - not about the
6669 	 * VMX support of the underlying hardware.
6670 	 */
6671 	msrs->basic =
6672 		VMCS12_REVISION |
6673 		VMX_BASIC_TRUE_CTLS |
6674 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6675 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6676 
6677 	if (cpu_has_vmx_basic_inout())
6678 		msrs->basic |= VMX_BASIC_INOUT;
6679 
6680 	/*
6681 	 * These MSRs specify bits which the guest must keep fixed on
6682 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6683 	 * We picked the standard core2 setting.
6684 	 */
6685 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6686 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6687 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6688 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6689 
6690 	/* These MSRs specify bits which the guest must keep fixed off. */
6691 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6692 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6693 
6694 	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6695 }
6696 
6697 void nested_vmx_hardware_unsetup(void)
6698 {
6699 	int i;
6700 
6701 	if (enable_shadow_vmcs) {
6702 		for (i = 0; i < VMX_BITMAP_NR; i++)
6703 			free_page((unsigned long)vmx_bitmap[i]);
6704 	}
6705 }
6706 
6707 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6708 {
6709 	int i;
6710 
6711 	if (!cpu_has_vmx_shadow_vmcs())
6712 		enable_shadow_vmcs = 0;
6713 	if (enable_shadow_vmcs) {
6714 		for (i = 0; i < VMX_BITMAP_NR; i++) {
6715 			/*
6716 			 * The vmx_bitmap is not tied to a VM and so should
6717 			 * not be charged to a memcg.
6718 			 */
6719 			vmx_bitmap[i] = (unsigned long *)
6720 				__get_free_page(GFP_KERNEL);
6721 			if (!vmx_bitmap[i]) {
6722 				nested_vmx_hardware_unsetup();
6723 				return -ENOMEM;
6724 			}
6725 		}
6726 
6727 		init_vmcs_shadow_fields();
6728 	}
6729 
6730 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
6731 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
6732 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
6733 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
6734 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
6735 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
6736 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
6737 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
6738 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
6739 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
6740 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
6741 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
6742 
6743 	return 0;
6744 }
6745 
6746 struct kvm_x86_nested_ops vmx_nested_ops = {
6747 	.check_events = vmx_check_nested_events,
6748 	.hv_timer_pending = nested_vmx_preemption_timer_pending,
6749 	.triple_fault = nested_vmx_triple_fault,
6750 	.get_state = vmx_get_nested_state,
6751 	.set_state = vmx_set_nested_state,
6752 	.get_nested_state_pages = vmx_get_nested_state_pages,
6753 	.write_log_dirty = nested_vmx_write_pml_buffer,
6754 	.enable_evmcs = nested_enable_evmcs,
6755 	.get_evmcs_version = nested_get_evmcs_version,
6756 };
6757