xref: /openbmc/linux/arch/x86/kvm/vmx/nested.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6 
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9 
10 #include "cpuid.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "posted_intr.h"
16 #include "sgx.h"
17 #include "trace.h"
18 #include "vmx.h"
19 #include "x86.h"
20 #include "smm.h"
21 
22 static bool __read_mostly enable_shadow_vmcs = 1;
23 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
24 
25 static bool __read_mostly nested_early_check = 0;
26 module_param(nested_early_check, bool, S_IRUGO);
27 
28 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
29 
30 /*
31  * Hyper-V requires all of these, so mark them as supported even though
32  * they are just treated the same as all-context.
33  */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
35 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
36 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
37 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
38 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39 
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41 
42 enum {
43 	VMX_VMREAD_BITMAP,
44 	VMX_VMWRITE_BITMAP,
45 	VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48 
49 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
51 
52 struct shadow_vmcs_field {
53 	u16	encoding;
54 	u16	offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61 	ARRAY_SIZE(shadow_read_only_fields);
62 
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68 	ARRAY_SIZE(shadow_read_write_fields);
69 
70 static void init_vmcs_shadow_fields(void)
71 {
72 	int i, j;
73 
74 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76 
77 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79 		u16 field = entry.encoding;
80 
81 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82 		    (i + 1 == max_shadow_read_only_fields ||
83 		     shadow_read_only_fields[i + 1].encoding != field + 1))
84 			pr_err("Missing field from shadow_read_only_field %x\n",
85 			       field + 1);
86 
87 		clear_bit(field, vmx_vmread_bitmap);
88 		if (field & 1)
89 #ifdef CONFIG_X86_64
90 			continue;
91 #else
92 			entry.offset += sizeof(u32);
93 #endif
94 		shadow_read_only_fields[j++] = entry;
95 	}
96 	max_shadow_read_only_fields = j;
97 
98 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100 		u16 field = entry.encoding;
101 
102 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103 		    (i + 1 == max_shadow_read_write_fields ||
104 		     shadow_read_write_fields[i + 1].encoding != field + 1))
105 			pr_err("Missing field from shadow_read_write_field %x\n",
106 			       field + 1);
107 
108 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109 			  field <= GUEST_TR_AR_BYTES,
110 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111 
112 		/*
113 		 * PML and the preemption timer can be emulated, but the
114 		 * processor cannot vmwrite to fields that don't exist
115 		 * on bare metal.
116 		 */
117 		switch (field) {
118 		case GUEST_PML_INDEX:
119 			if (!cpu_has_vmx_pml())
120 				continue;
121 			break;
122 		case VMX_PREEMPTION_TIMER_VALUE:
123 			if (!cpu_has_vmx_preemption_timer())
124 				continue;
125 			break;
126 		case GUEST_INTR_STATUS:
127 			if (!cpu_has_vmx_apicv())
128 				continue;
129 			break;
130 		default:
131 			break;
132 		}
133 
134 		clear_bit(field, vmx_vmwrite_bitmap);
135 		clear_bit(field, vmx_vmread_bitmap);
136 		if (field & 1)
137 #ifdef CONFIG_X86_64
138 			continue;
139 #else
140 			entry.offset += sizeof(u32);
141 #endif
142 		shadow_read_write_fields[j++] = entry;
143 	}
144 	max_shadow_read_write_fields = j;
145 }
146 
147 /*
148  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149  * set the success or error code of an emulated VMX instruction (as specified
150  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151  * instruction.
152  */
153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158 	return kvm_skip_emulated_instruction(vcpu);
159 }
160 
161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
166 			| X86_EFLAGS_CF);
167 	return kvm_skip_emulated_instruction(vcpu);
168 }
169 
170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171 				u32 vm_instruction_error)
172 {
173 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
174 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
175 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
176 			| X86_EFLAGS_ZF);
177 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
178 	/*
179 	 * We don't need to force sync to shadow VMCS because
180 	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
181 	 * fields and thus must be synced.
182 	 */
183 	if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
184 		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
185 
186 	return kvm_skip_emulated_instruction(vcpu);
187 }
188 
189 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
190 {
191 	struct vcpu_vmx *vmx = to_vmx(vcpu);
192 
193 	/*
194 	 * failValid writes the error number to the current VMCS, which
195 	 * can't be done if there isn't a current VMCS.
196 	 */
197 	if (vmx->nested.current_vmptr == INVALID_GPA &&
198 	    !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
199 		return nested_vmx_failInvalid(vcpu);
200 
201 	return nested_vmx_failValid(vcpu, vm_instruction_error);
202 }
203 
204 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
205 {
206 	/* TODO: not to reset guest simply here. */
207 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
208 	pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
209 }
210 
211 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
212 {
213 	return fixed_bits_valid(control, low, high);
214 }
215 
216 static inline u64 vmx_control_msr(u32 low, u32 high)
217 {
218 	return low | ((u64)high << 32);
219 }
220 
221 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
222 {
223 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
224 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
225 	vmx->nested.need_vmcs12_to_shadow_sync = false;
226 }
227 
228 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
229 {
230 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
231 	struct vcpu_vmx *vmx = to_vmx(vcpu);
232 
233 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
234 		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
235 		vmx->nested.hv_evmcs = NULL;
236 	}
237 
238 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
239 
240 	if (hv_vcpu) {
241 		hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
242 		hv_vcpu->nested.vm_id = 0;
243 		hv_vcpu->nested.vp_id = 0;
244 	}
245 }
246 
247 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
248 				     struct loaded_vmcs *prev)
249 {
250 	struct vmcs_host_state *dest, *src;
251 
252 	if (unlikely(!vmx->guest_state_loaded))
253 		return;
254 
255 	src = &prev->host_state;
256 	dest = &vmx->loaded_vmcs->host_state;
257 
258 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
259 	dest->ldt_sel = src->ldt_sel;
260 #ifdef CONFIG_X86_64
261 	dest->ds_sel = src->ds_sel;
262 	dest->es_sel = src->es_sel;
263 #endif
264 }
265 
266 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
267 {
268 	struct vcpu_vmx *vmx = to_vmx(vcpu);
269 	struct loaded_vmcs *prev;
270 	int cpu;
271 
272 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
273 		return;
274 
275 	cpu = get_cpu();
276 	prev = vmx->loaded_vmcs;
277 	vmx->loaded_vmcs = vmcs;
278 	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
279 	vmx_sync_vmcs_host_state(vmx, prev);
280 	put_cpu();
281 
282 	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
283 
284 	/*
285 	 * All lazily updated registers will be reloaded from VMCS12 on both
286 	 * vmentry and vmexit.
287 	 */
288 	vcpu->arch.regs_dirty = 0;
289 }
290 
291 /*
292  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
293  * just stops using VMX.
294  */
295 static void free_nested(struct kvm_vcpu *vcpu)
296 {
297 	struct vcpu_vmx *vmx = to_vmx(vcpu);
298 
299 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
300 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
301 
302 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
303 		return;
304 
305 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
306 
307 	vmx->nested.vmxon = false;
308 	vmx->nested.smm.vmxon = false;
309 	vmx->nested.vmxon_ptr = INVALID_GPA;
310 	free_vpid(vmx->nested.vpid02);
311 	vmx->nested.posted_intr_nv = -1;
312 	vmx->nested.current_vmptr = INVALID_GPA;
313 	if (enable_shadow_vmcs) {
314 		vmx_disable_shadow_vmcs(vmx);
315 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
316 		free_vmcs(vmx->vmcs01.shadow_vmcs);
317 		vmx->vmcs01.shadow_vmcs = NULL;
318 	}
319 	kfree(vmx->nested.cached_vmcs12);
320 	vmx->nested.cached_vmcs12 = NULL;
321 	kfree(vmx->nested.cached_shadow_vmcs12);
322 	vmx->nested.cached_shadow_vmcs12 = NULL;
323 	/*
324 	 * Unpin physical memory we referred to in the vmcs02.  The APIC access
325 	 * page's backing page (yeah, confusing) shouldn't actually be accessed,
326 	 * and if it is written, the contents are irrelevant.
327 	 */
328 	kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
329 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
330 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
331 	vmx->nested.pi_desc = NULL;
332 
333 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
334 
335 	nested_release_evmcs(vcpu);
336 
337 	free_loaded_vmcs(&vmx->nested.vmcs02);
338 }
339 
340 /*
341  * Ensure that the current vmcs of the logical processor is the
342  * vmcs01 of the vcpu before calling free_nested().
343  */
344 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
345 {
346 	vcpu_load(vcpu);
347 	vmx_leave_nested(vcpu);
348 	vcpu_put(vcpu);
349 }
350 
351 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
352 
353 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
354 {
355 	return VALID_PAGE(root_hpa) &&
356 	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
357 }
358 
359 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
360 				       gpa_t addr)
361 {
362 	unsigned long roots = 0;
363 	uint i;
364 	struct kvm_mmu_root_info *cached_root;
365 
366 	WARN_ON_ONCE(!mmu_is_nested(vcpu));
367 
368 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
369 		cached_root = &vcpu->arch.mmu->prev_roots[i];
370 
371 		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
372 					    eptp))
373 			roots |= KVM_MMU_ROOT_PREVIOUS(i);
374 	}
375 	if (roots)
376 		kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
377 }
378 
379 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
380 		struct x86_exception *fault)
381 {
382 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
383 	struct vcpu_vmx *vmx = to_vmx(vcpu);
384 	u32 vm_exit_reason;
385 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
386 
387 	if (vmx->nested.pml_full) {
388 		vm_exit_reason = EXIT_REASON_PML_FULL;
389 		vmx->nested.pml_full = false;
390 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
391 	} else {
392 		if (fault->error_code & PFERR_RSVD_MASK)
393 			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
394 		else
395 			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
396 
397 		/*
398 		 * Although the caller (kvm_inject_emulated_page_fault) would
399 		 * have already synced the faulting address in the shadow EPT
400 		 * tables for the current EPTP12, we also need to sync it for
401 		 * any other cached EPTP02s based on the same EP4TA, since the
402 		 * TLB associates mappings to the EP4TA rather than the full EPTP.
403 		 */
404 		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
405 					   fault->address);
406 	}
407 
408 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
409 	vmcs12->guest_physical_address = fault->address;
410 }
411 
412 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
413 {
414 	struct vcpu_vmx *vmx = to_vmx(vcpu);
415 	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
416 	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
417 
418 	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
419 				nested_ept_ad_enabled(vcpu),
420 				nested_ept_get_eptp(vcpu));
421 }
422 
423 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
424 {
425 	WARN_ON(mmu_is_nested(vcpu));
426 
427 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
428 	nested_ept_new_eptp(vcpu);
429 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
430 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
431 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
432 
433 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
434 }
435 
436 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
437 {
438 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
439 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
440 }
441 
442 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
443 					    u16 error_code)
444 {
445 	bool inequality, bit;
446 
447 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
448 	inequality =
449 		(error_code & vmcs12->page_fault_error_code_mask) !=
450 		 vmcs12->page_fault_error_code_match;
451 	return inequality ^ bit;
452 }
453 
454 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
455 					   u32 error_code)
456 {
457 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
458 
459 	/*
460 	 * Drop bits 31:16 of the error code when performing the #PF mask+match
461 	 * check.  All VMCS fields involved are 32 bits, but Intel CPUs never
462 	 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
463 	 * error code.  Including the to-be-dropped bits in the check might
464 	 * result in an "impossible" or missed exit from L1's perspective.
465 	 */
466 	if (vector == PF_VECTOR)
467 		return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
468 
469 	return (vmcs12->exception_bitmap & (1u << vector));
470 }
471 
472 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
473 					       struct vmcs12 *vmcs12)
474 {
475 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
476 		return 0;
477 
478 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
479 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
480 		return -EINVAL;
481 
482 	return 0;
483 }
484 
485 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
486 						struct vmcs12 *vmcs12)
487 {
488 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
489 		return 0;
490 
491 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
492 		return -EINVAL;
493 
494 	return 0;
495 }
496 
497 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
498 						struct vmcs12 *vmcs12)
499 {
500 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
501 		return 0;
502 
503 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
504 		return -EINVAL;
505 
506 	return 0;
507 }
508 
509 /*
510  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
511  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
512  * only the "disable intercept" case needs to be handled.
513  */
514 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
515 							unsigned long *msr_bitmap_l0,
516 							u32 msr, int type)
517 {
518 	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
519 		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
520 
521 	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
522 		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
523 }
524 
525 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
526 {
527 	int msr;
528 
529 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
530 		unsigned word = msr / BITS_PER_LONG;
531 
532 		msr_bitmap[word] = ~0;
533 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
534 	}
535 }
536 
537 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
538 static inline									\
539 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
540 					 unsigned long *msr_bitmap_l1,		\
541 					 unsigned long *msr_bitmap_l0, u32 msr)	\
542 {										\
543 	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
544 	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
545 		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
546 	else									\
547 		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
548 }
549 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
550 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
551 
552 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
553 						    unsigned long *msr_bitmap_l1,
554 						    unsigned long *msr_bitmap_l0,
555 						    u32 msr, int types)
556 {
557 	if (types & MSR_TYPE_R)
558 		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
559 						  msr_bitmap_l0, msr);
560 	if (types & MSR_TYPE_W)
561 		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
562 						   msr_bitmap_l0, msr);
563 }
564 
565 /*
566  * Merge L0's and L1's MSR bitmap, return false to indicate that
567  * we do not use the hardware.
568  */
569 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
570 						 struct vmcs12 *vmcs12)
571 {
572 	struct vcpu_vmx *vmx = to_vmx(vcpu);
573 	int msr;
574 	unsigned long *msr_bitmap_l1;
575 	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
576 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
577 	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
578 
579 	/* Nothing to do if the MSR bitmap is not in use.  */
580 	if (!cpu_has_vmx_msr_bitmap() ||
581 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
582 		return false;
583 
584 	/*
585 	 * MSR bitmap update can be skipped when:
586 	 * - MSR bitmap for L1 hasn't changed.
587 	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
588 	 *   before.
589 	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
590 	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
591 	 */
592 	if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
593 	    evmcs->hv_enlightenments_control.msr_bitmap &&
594 	    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
595 		return true;
596 
597 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
598 		return false;
599 
600 	msr_bitmap_l1 = (unsigned long *)map->hva;
601 
602 	/*
603 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
604 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
605 	 * the x2APIC MSR range and selectively toggle those relevant to L2.
606 	 */
607 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
608 
609 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
610 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
611 			/*
612 			 * L0 need not intercept reads for MSRs between 0x800
613 			 * and 0x8ff, it just lets the processor take the value
614 			 * from the virtual-APIC page; take those 256 bits
615 			 * directly from the L1 bitmap.
616 			 */
617 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
618 				unsigned word = msr / BITS_PER_LONG;
619 
620 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
621 			}
622 		}
623 
624 		nested_vmx_disable_intercept_for_x2apic_msr(
625 			msr_bitmap_l1, msr_bitmap_l0,
626 			X2APIC_MSR(APIC_TASKPRI),
627 			MSR_TYPE_R | MSR_TYPE_W);
628 
629 		if (nested_cpu_has_vid(vmcs12)) {
630 			nested_vmx_disable_intercept_for_x2apic_msr(
631 				msr_bitmap_l1, msr_bitmap_l0,
632 				X2APIC_MSR(APIC_EOI),
633 				MSR_TYPE_W);
634 			nested_vmx_disable_intercept_for_x2apic_msr(
635 				msr_bitmap_l1, msr_bitmap_l0,
636 				X2APIC_MSR(APIC_SELF_IPI),
637 				MSR_TYPE_W);
638 		}
639 	}
640 
641 	/*
642 	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
643 	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
644 	 */
645 #ifdef CONFIG_X86_64
646 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
647 					 MSR_FS_BASE, MSR_TYPE_RW);
648 
649 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
650 					 MSR_GS_BASE, MSR_TYPE_RW);
651 
652 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
653 					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
654 #endif
655 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
656 					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
657 
658 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
659 					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
660 
661 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
662 					 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
663 
664 	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
665 
666 	vmx->nested.force_msr_bitmap_recalc = false;
667 
668 	return true;
669 }
670 
671 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
672 				       struct vmcs12 *vmcs12)
673 {
674 	struct vcpu_vmx *vmx = to_vmx(vcpu);
675 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
676 
677 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
678 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
679 		return;
680 
681 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
682 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
683 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
684 		return;
685 
686 	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
687 			      VMCS12_SIZE);
688 }
689 
690 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
691 					      struct vmcs12 *vmcs12)
692 {
693 	struct vcpu_vmx *vmx = to_vmx(vcpu);
694 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
695 
696 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
697 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
698 		return;
699 
700 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
701 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
702 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
703 		return;
704 
705 	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
706 			       VMCS12_SIZE);
707 }
708 
709 /*
710  * In nested virtualization, check if L1 has set
711  * VM_EXIT_ACK_INTR_ON_EXIT
712  */
713 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
714 {
715 	return get_vmcs12(vcpu)->vm_exit_controls &
716 		VM_EXIT_ACK_INTR_ON_EXIT;
717 }
718 
719 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
720 					  struct vmcs12 *vmcs12)
721 {
722 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
723 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
724 		return -EINVAL;
725 	else
726 		return 0;
727 }
728 
729 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
730 					   struct vmcs12 *vmcs12)
731 {
732 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
733 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
734 	    !nested_cpu_has_vid(vmcs12) &&
735 	    !nested_cpu_has_posted_intr(vmcs12))
736 		return 0;
737 
738 	/*
739 	 * If virtualize x2apic mode is enabled,
740 	 * virtualize apic access must be disabled.
741 	 */
742 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
743 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
744 		return -EINVAL;
745 
746 	/*
747 	 * If virtual interrupt delivery is enabled,
748 	 * we must exit on external interrupts.
749 	 */
750 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
751 		return -EINVAL;
752 
753 	/*
754 	 * bits 15:8 should be zero in posted_intr_nv,
755 	 * the descriptor address has been already checked
756 	 * in nested_get_vmcs12_pages.
757 	 *
758 	 * bits 5:0 of posted_intr_desc_addr should be zero.
759 	 */
760 	if (nested_cpu_has_posted_intr(vmcs12) &&
761 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
762 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
763 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
764 	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
765 		return -EINVAL;
766 
767 	/* tpr shadow is needed by all apicv features. */
768 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
769 		return -EINVAL;
770 
771 	return 0;
772 }
773 
774 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
775 				       u32 count, u64 addr)
776 {
777 	if (count == 0)
778 		return 0;
779 
780 	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
781 	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
782 		return -EINVAL;
783 
784 	return 0;
785 }
786 
787 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
788 						     struct vmcs12 *vmcs12)
789 {
790 	if (CC(nested_vmx_check_msr_switch(vcpu,
791 					   vmcs12->vm_exit_msr_load_count,
792 					   vmcs12->vm_exit_msr_load_addr)) ||
793 	    CC(nested_vmx_check_msr_switch(vcpu,
794 					   vmcs12->vm_exit_msr_store_count,
795 					   vmcs12->vm_exit_msr_store_addr)))
796 		return -EINVAL;
797 
798 	return 0;
799 }
800 
801 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
802                                                       struct vmcs12 *vmcs12)
803 {
804 	if (CC(nested_vmx_check_msr_switch(vcpu,
805 					   vmcs12->vm_entry_msr_load_count,
806 					   vmcs12->vm_entry_msr_load_addr)))
807                 return -EINVAL;
808 
809 	return 0;
810 }
811 
812 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
813 					 struct vmcs12 *vmcs12)
814 {
815 	if (!nested_cpu_has_pml(vmcs12))
816 		return 0;
817 
818 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
819 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
820 		return -EINVAL;
821 
822 	return 0;
823 }
824 
825 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
826 							struct vmcs12 *vmcs12)
827 {
828 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
829 	       !nested_cpu_has_ept(vmcs12)))
830 		return -EINVAL;
831 	return 0;
832 }
833 
834 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
835 							 struct vmcs12 *vmcs12)
836 {
837 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
838 	       !nested_cpu_has_ept(vmcs12)))
839 		return -EINVAL;
840 	return 0;
841 }
842 
843 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
844 						 struct vmcs12 *vmcs12)
845 {
846 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
847 		return 0;
848 
849 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
850 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
851 		return -EINVAL;
852 
853 	return 0;
854 }
855 
856 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
857 				       struct vmx_msr_entry *e)
858 {
859 	/* x2APIC MSR accesses are not allowed */
860 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
861 		return -EINVAL;
862 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
863 	    CC(e->index == MSR_IA32_UCODE_REV))
864 		return -EINVAL;
865 	if (CC(e->reserved != 0))
866 		return -EINVAL;
867 	return 0;
868 }
869 
870 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
871 				     struct vmx_msr_entry *e)
872 {
873 	if (CC(e->index == MSR_FS_BASE) ||
874 	    CC(e->index == MSR_GS_BASE) ||
875 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
876 	    nested_vmx_msr_check_common(vcpu, e))
877 		return -EINVAL;
878 	return 0;
879 }
880 
881 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
882 				      struct vmx_msr_entry *e)
883 {
884 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
885 	    nested_vmx_msr_check_common(vcpu, e))
886 		return -EINVAL;
887 	return 0;
888 }
889 
890 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
891 {
892 	struct vcpu_vmx *vmx = to_vmx(vcpu);
893 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
894 				       vmx->nested.msrs.misc_high);
895 
896 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
897 }
898 
899 /*
900  * Load guest's/host's msr at nested entry/exit.
901  * return 0 for success, entry index for failure.
902  *
903  * One of the failure modes for MSR load/store is when a list exceeds the
904  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
905  * as possible, process all valid entries before failing rather than precheck
906  * for a capacity violation.
907  */
908 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
909 {
910 	u32 i;
911 	struct vmx_msr_entry e;
912 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
913 
914 	for (i = 0; i < count; i++) {
915 		if (unlikely(i >= max_msr_list_size))
916 			goto fail;
917 
918 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
919 					&e, sizeof(e))) {
920 			pr_debug_ratelimited(
921 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
922 				__func__, i, gpa + i * sizeof(e));
923 			goto fail;
924 		}
925 		if (nested_vmx_load_msr_check(vcpu, &e)) {
926 			pr_debug_ratelimited(
927 				"%s check failed (%u, 0x%x, 0x%x)\n",
928 				__func__, i, e.index, e.reserved);
929 			goto fail;
930 		}
931 		if (kvm_set_msr(vcpu, e.index, e.value)) {
932 			pr_debug_ratelimited(
933 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
934 				__func__, i, e.index, e.value);
935 			goto fail;
936 		}
937 	}
938 	return 0;
939 fail:
940 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
941 	return i + 1;
942 }
943 
944 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
945 					    u32 msr_index,
946 					    u64 *data)
947 {
948 	struct vcpu_vmx *vmx = to_vmx(vcpu);
949 
950 	/*
951 	 * If the L0 hypervisor stored a more accurate value for the TSC that
952 	 * does not include the time taken for emulation of the L2->L1
953 	 * VM-exit in L0, use the more accurate value.
954 	 */
955 	if (msr_index == MSR_IA32_TSC) {
956 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
957 						    MSR_IA32_TSC);
958 
959 		if (i >= 0) {
960 			u64 val = vmx->msr_autostore.guest.val[i].value;
961 
962 			*data = kvm_read_l1_tsc(vcpu, val);
963 			return true;
964 		}
965 	}
966 
967 	if (kvm_get_msr(vcpu, msr_index, data)) {
968 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
969 			msr_index);
970 		return false;
971 	}
972 	return true;
973 }
974 
975 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
976 				     struct vmx_msr_entry *e)
977 {
978 	if (kvm_vcpu_read_guest(vcpu,
979 				gpa + i * sizeof(*e),
980 				e, 2 * sizeof(u32))) {
981 		pr_debug_ratelimited(
982 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
983 			__func__, i, gpa + i * sizeof(*e));
984 		return false;
985 	}
986 	if (nested_vmx_store_msr_check(vcpu, e)) {
987 		pr_debug_ratelimited(
988 			"%s check failed (%u, 0x%x, 0x%x)\n",
989 			__func__, i, e->index, e->reserved);
990 		return false;
991 	}
992 	return true;
993 }
994 
995 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
996 {
997 	u64 data;
998 	u32 i;
999 	struct vmx_msr_entry e;
1000 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1001 
1002 	for (i = 0; i < count; i++) {
1003 		if (unlikely(i >= max_msr_list_size))
1004 			return -EINVAL;
1005 
1006 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1007 			return -EINVAL;
1008 
1009 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1010 			return -EINVAL;
1011 
1012 		if (kvm_vcpu_write_guest(vcpu,
1013 					 gpa + i * sizeof(e) +
1014 					     offsetof(struct vmx_msr_entry, value),
1015 					 &data, sizeof(data))) {
1016 			pr_debug_ratelimited(
1017 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1018 				__func__, i, e.index, data);
1019 			return -EINVAL;
1020 		}
1021 	}
1022 	return 0;
1023 }
1024 
1025 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1026 {
1027 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1028 	u32 count = vmcs12->vm_exit_msr_store_count;
1029 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1030 	struct vmx_msr_entry e;
1031 	u32 i;
1032 
1033 	for (i = 0; i < count; i++) {
1034 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1035 			return false;
1036 
1037 		if (e.index == msr_index)
1038 			return true;
1039 	}
1040 	return false;
1041 }
1042 
1043 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1044 					   u32 msr_index)
1045 {
1046 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1047 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1048 	bool in_vmcs12_store_list;
1049 	int msr_autostore_slot;
1050 	bool in_autostore_list;
1051 	int last;
1052 
1053 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1054 	in_autostore_list = msr_autostore_slot >= 0;
1055 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1056 
1057 	if (in_vmcs12_store_list && !in_autostore_list) {
1058 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1059 			/*
1060 			 * Emulated VMEntry does not fail here.  Instead a less
1061 			 * accurate value will be returned by
1062 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1063 			 * instead of reading the value from the vmcs02 VMExit
1064 			 * MSR-store area.
1065 			 */
1066 			pr_warn_ratelimited(
1067 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1068 				msr_index);
1069 			return;
1070 		}
1071 		last = autostore->nr++;
1072 		autostore->val[last].index = msr_index;
1073 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1074 		last = --autostore->nr;
1075 		autostore->val[msr_autostore_slot] = autostore->val[last];
1076 	}
1077 }
1078 
1079 /*
1080  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1081  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1082  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1083  * @entry_failure_code.
1084  */
1085 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1086 			       bool nested_ept, bool reload_pdptrs,
1087 			       enum vm_entry_failure_code *entry_failure_code)
1088 {
1089 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1090 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1091 		return -EINVAL;
1092 	}
1093 
1094 	/*
1095 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1096 	 * must not be dereferenced.
1097 	 */
1098 	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1099 	    CC(!load_pdptrs(vcpu, cr3))) {
1100 		*entry_failure_code = ENTRY_FAIL_PDPTE;
1101 		return -EINVAL;
1102 	}
1103 
1104 	vcpu->arch.cr3 = cr3;
1105 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1106 
1107 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1108 	kvm_init_mmu(vcpu);
1109 
1110 	if (!nested_ept)
1111 		kvm_mmu_new_pgd(vcpu, cr3);
1112 
1113 	return 0;
1114 }
1115 
1116 /*
1117  * Returns if KVM is able to config CPU to tag TLB entries
1118  * populated by L2 differently than TLB entries populated
1119  * by L1.
1120  *
1121  * If L0 uses EPT, L1 and L2 run with different EPTP because
1122  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1123  * are tagged with different EPTP.
1124  *
1125  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1126  * with different VPID (L1 entries are tagged with vmx->vpid
1127  * while L2 entries are tagged with vmx->nested.vpid02).
1128  */
1129 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1130 {
1131 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1132 
1133 	return enable_ept ||
1134 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1135 }
1136 
1137 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1138 					    struct vmcs12 *vmcs12,
1139 					    bool is_vmenter)
1140 {
1141 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1142 
1143 	/*
1144 	 * KVM_REQ_HV_TLB_FLUSH flushes entries from either L1's VP_ID or
1145 	 * L2's VP_ID upon request from the guest. Make sure we check for
1146 	 * pending entries in the right FIFO upon L1/L2 transition as these
1147 	 * requests are put by other vCPUs asynchronously.
1148 	 */
1149 	if (to_hv_vcpu(vcpu) && enable_ept)
1150 		kvm_make_request(KVM_REQ_HV_TLB_FLUSH, vcpu);
1151 
1152 	/*
1153 	 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
1154 	 * same VPID as the host, and so architecturally, linear and combined
1155 	 * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit.  KVM
1156 	 * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2,
1157 	 * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01.  This
1158 	 * is required if VPID is disabled in KVM, as a TLB flush (there are no
1159 	 * VPIDs) still occurs from L1's perspective, and KVM may need to
1160 	 * synchronize the MMU in response to the guest TLB flush.
1161 	 *
1162 	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1163 	 * EPT is a special snowflake, as guest-physical mappings aren't
1164 	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1165 	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1166 	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1167 	 * those mappings.
1168 	 */
1169 	if (!nested_cpu_has_vpid(vmcs12)) {
1170 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1171 		return;
1172 	}
1173 
1174 	/* L2 should never have a VPID if VPID is disabled. */
1175 	WARN_ON(!enable_vpid);
1176 
1177 	/*
1178 	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1179 	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1180 	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1181 	 * that the new vpid12 has never been used and thus represents a new
1182 	 * guest ASID that cannot have entries in the TLB.
1183 	 */
1184 	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1185 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1186 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1187 		return;
1188 	}
1189 
1190 	/*
1191 	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1192 	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1193 	 * KVM was unable to allocate a VPID for L2, flush the current context
1194 	 * as the effective ASID is common to both L1 and L2.
1195 	 */
1196 	if (!nested_has_guest_tlb_tag(vcpu))
1197 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1198 }
1199 
1200 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1201 {
1202 	superset &= mask;
1203 	subset &= mask;
1204 
1205 	return (superset | subset) == superset;
1206 }
1207 
1208 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1209 {
1210 	const u64 feature_and_reserved =
1211 		/* feature (except bit 48; see below) */
1212 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1213 		/* reserved */
1214 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1215 	u64 vmx_basic = vmcs_config.nested.basic;
1216 
1217 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1218 		return -EINVAL;
1219 
1220 	/*
1221 	 * KVM does not emulate a version of VMX that constrains physical
1222 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1223 	 */
1224 	if (data & BIT_ULL(48))
1225 		return -EINVAL;
1226 
1227 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1228 	    vmx_basic_vmcs_revision_id(data))
1229 		return -EINVAL;
1230 
1231 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1232 		return -EINVAL;
1233 
1234 	vmx->nested.msrs.basic = data;
1235 	return 0;
1236 }
1237 
1238 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1239 				u32 **low, u32 **high)
1240 {
1241 	switch (msr_index) {
1242 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1243 		*low = &msrs->pinbased_ctls_low;
1244 		*high = &msrs->pinbased_ctls_high;
1245 		break;
1246 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1247 		*low = &msrs->procbased_ctls_low;
1248 		*high = &msrs->procbased_ctls_high;
1249 		break;
1250 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1251 		*low = &msrs->exit_ctls_low;
1252 		*high = &msrs->exit_ctls_high;
1253 		break;
1254 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1255 		*low = &msrs->entry_ctls_low;
1256 		*high = &msrs->entry_ctls_high;
1257 		break;
1258 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1259 		*low = &msrs->secondary_ctls_low;
1260 		*high = &msrs->secondary_ctls_high;
1261 		break;
1262 	default:
1263 		BUG();
1264 	}
1265 }
1266 
1267 static int
1268 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1269 {
1270 	u32 *lowp, *highp;
1271 	u64 supported;
1272 
1273 	vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1274 
1275 	supported = vmx_control_msr(*lowp, *highp);
1276 
1277 	/* Check must-be-1 bits are still 1. */
1278 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1279 		return -EINVAL;
1280 
1281 	/* Check must-be-0 bits are still 0. */
1282 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1283 		return -EINVAL;
1284 
1285 	vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1286 	*lowp = data;
1287 	*highp = data >> 32;
1288 	return 0;
1289 }
1290 
1291 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1292 {
1293 	const u64 feature_and_reserved_bits =
1294 		/* feature */
1295 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1296 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1297 		/* reserved */
1298 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1299 	u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1300 				       vmcs_config.nested.misc_high);
1301 
1302 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1303 		return -EINVAL;
1304 
1305 	if ((vmx->nested.msrs.pinbased_ctls_high &
1306 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1307 	    vmx_misc_preemption_timer_rate(data) !=
1308 	    vmx_misc_preemption_timer_rate(vmx_misc))
1309 		return -EINVAL;
1310 
1311 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1312 		return -EINVAL;
1313 
1314 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1315 		return -EINVAL;
1316 
1317 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1318 		return -EINVAL;
1319 
1320 	vmx->nested.msrs.misc_low = data;
1321 	vmx->nested.msrs.misc_high = data >> 32;
1322 
1323 	return 0;
1324 }
1325 
1326 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1327 {
1328 	u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1329 					       vmcs_config.nested.vpid_caps);
1330 
1331 	/* Every bit is either reserved or a feature bit. */
1332 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1333 		return -EINVAL;
1334 
1335 	vmx->nested.msrs.ept_caps = data;
1336 	vmx->nested.msrs.vpid_caps = data >> 32;
1337 	return 0;
1338 }
1339 
1340 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1341 {
1342 	switch (msr_index) {
1343 	case MSR_IA32_VMX_CR0_FIXED0:
1344 		return &msrs->cr0_fixed0;
1345 	case MSR_IA32_VMX_CR4_FIXED0:
1346 		return &msrs->cr4_fixed0;
1347 	default:
1348 		BUG();
1349 	}
1350 }
1351 
1352 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1353 {
1354 	const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1355 
1356 	/*
1357 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1358 	 * must be 1 in the restored value.
1359 	 */
1360 	if (!is_bitwise_subset(data, *msr, -1ULL))
1361 		return -EINVAL;
1362 
1363 	*vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1364 	return 0;
1365 }
1366 
1367 /*
1368  * Called when userspace is restoring VMX MSRs.
1369  *
1370  * Returns 0 on success, non-0 otherwise.
1371  */
1372 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1373 {
1374 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1375 
1376 	/*
1377 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1378 	 * is in VMX operation.
1379 	 */
1380 	if (vmx->nested.vmxon)
1381 		return -EBUSY;
1382 
1383 	switch (msr_index) {
1384 	case MSR_IA32_VMX_BASIC:
1385 		return vmx_restore_vmx_basic(vmx, data);
1386 	case MSR_IA32_VMX_PINBASED_CTLS:
1387 	case MSR_IA32_VMX_PROCBASED_CTLS:
1388 	case MSR_IA32_VMX_EXIT_CTLS:
1389 	case MSR_IA32_VMX_ENTRY_CTLS:
1390 		/*
1391 		 * The "non-true" VMX capability MSRs are generated from the
1392 		 * "true" MSRs, so we do not support restoring them directly.
1393 		 *
1394 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1395 		 * should restore the "true" MSRs with the must-be-1 bits
1396 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1397 		 * DEFAULT SETTINGS".
1398 		 */
1399 		return -EINVAL;
1400 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1401 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1402 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1403 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1404 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1405 		return vmx_restore_control_msr(vmx, msr_index, data);
1406 	case MSR_IA32_VMX_MISC:
1407 		return vmx_restore_vmx_misc(vmx, data);
1408 	case MSR_IA32_VMX_CR0_FIXED0:
1409 	case MSR_IA32_VMX_CR4_FIXED0:
1410 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1411 	case MSR_IA32_VMX_CR0_FIXED1:
1412 	case MSR_IA32_VMX_CR4_FIXED1:
1413 		/*
1414 		 * These MSRs are generated based on the vCPU's CPUID, so we
1415 		 * do not support restoring them directly.
1416 		 */
1417 		return -EINVAL;
1418 	case MSR_IA32_VMX_EPT_VPID_CAP:
1419 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1420 	case MSR_IA32_VMX_VMCS_ENUM:
1421 		vmx->nested.msrs.vmcs_enum = data;
1422 		return 0;
1423 	case MSR_IA32_VMX_VMFUNC:
1424 		if (data & ~vmcs_config.nested.vmfunc_controls)
1425 			return -EINVAL;
1426 		vmx->nested.msrs.vmfunc_controls = data;
1427 		return 0;
1428 	default:
1429 		/*
1430 		 * The rest of the VMX capability MSRs do not support restore.
1431 		 */
1432 		return -EINVAL;
1433 	}
1434 }
1435 
1436 /* Returns 0 on success, non-0 otherwise. */
1437 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1438 {
1439 	switch (msr_index) {
1440 	case MSR_IA32_VMX_BASIC:
1441 		*pdata = msrs->basic;
1442 		break;
1443 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1444 	case MSR_IA32_VMX_PINBASED_CTLS:
1445 		*pdata = vmx_control_msr(
1446 			msrs->pinbased_ctls_low,
1447 			msrs->pinbased_ctls_high);
1448 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1449 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1450 		break;
1451 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1452 	case MSR_IA32_VMX_PROCBASED_CTLS:
1453 		*pdata = vmx_control_msr(
1454 			msrs->procbased_ctls_low,
1455 			msrs->procbased_ctls_high);
1456 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1457 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1458 		break;
1459 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1460 	case MSR_IA32_VMX_EXIT_CTLS:
1461 		*pdata = vmx_control_msr(
1462 			msrs->exit_ctls_low,
1463 			msrs->exit_ctls_high);
1464 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1465 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1466 		break;
1467 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1468 	case MSR_IA32_VMX_ENTRY_CTLS:
1469 		*pdata = vmx_control_msr(
1470 			msrs->entry_ctls_low,
1471 			msrs->entry_ctls_high);
1472 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1473 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1474 		break;
1475 	case MSR_IA32_VMX_MISC:
1476 		*pdata = vmx_control_msr(
1477 			msrs->misc_low,
1478 			msrs->misc_high);
1479 		break;
1480 	case MSR_IA32_VMX_CR0_FIXED0:
1481 		*pdata = msrs->cr0_fixed0;
1482 		break;
1483 	case MSR_IA32_VMX_CR0_FIXED1:
1484 		*pdata = msrs->cr0_fixed1;
1485 		break;
1486 	case MSR_IA32_VMX_CR4_FIXED0:
1487 		*pdata = msrs->cr4_fixed0;
1488 		break;
1489 	case MSR_IA32_VMX_CR4_FIXED1:
1490 		*pdata = msrs->cr4_fixed1;
1491 		break;
1492 	case MSR_IA32_VMX_VMCS_ENUM:
1493 		*pdata = msrs->vmcs_enum;
1494 		break;
1495 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1496 		*pdata = vmx_control_msr(
1497 			msrs->secondary_ctls_low,
1498 			msrs->secondary_ctls_high);
1499 		break;
1500 	case MSR_IA32_VMX_EPT_VPID_CAP:
1501 		*pdata = msrs->ept_caps |
1502 			((u64)msrs->vpid_caps << 32);
1503 		break;
1504 	case MSR_IA32_VMX_VMFUNC:
1505 		*pdata = msrs->vmfunc_controls;
1506 		break;
1507 	default:
1508 		return 1;
1509 	}
1510 
1511 	return 0;
1512 }
1513 
1514 /*
1515  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1516  * been modified by the L1 guest.  Note, "writable" in this context means
1517  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1518  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1519  * VM-exit information fields (which are actually writable if the vCPU is
1520  * configured to support "VMWRITE to any supported field in the VMCS").
1521  */
1522 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1523 {
1524 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1525 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1526 	struct shadow_vmcs_field field;
1527 	unsigned long val;
1528 	int i;
1529 
1530 	if (WARN_ON(!shadow_vmcs))
1531 		return;
1532 
1533 	preempt_disable();
1534 
1535 	vmcs_load(shadow_vmcs);
1536 
1537 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1538 		field = shadow_read_write_fields[i];
1539 		val = __vmcs_readl(field.encoding);
1540 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1541 	}
1542 
1543 	vmcs_clear(shadow_vmcs);
1544 	vmcs_load(vmx->loaded_vmcs->vmcs);
1545 
1546 	preempt_enable();
1547 }
1548 
1549 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1550 {
1551 	const struct shadow_vmcs_field *fields[] = {
1552 		shadow_read_write_fields,
1553 		shadow_read_only_fields
1554 	};
1555 	const int max_fields[] = {
1556 		max_shadow_read_write_fields,
1557 		max_shadow_read_only_fields
1558 	};
1559 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1560 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1561 	struct shadow_vmcs_field field;
1562 	unsigned long val;
1563 	int i, q;
1564 
1565 	if (WARN_ON(!shadow_vmcs))
1566 		return;
1567 
1568 	vmcs_load(shadow_vmcs);
1569 
1570 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1571 		for (i = 0; i < max_fields[q]; i++) {
1572 			field = fields[q][i];
1573 			val = vmcs12_read_any(vmcs12, field.encoding,
1574 					      field.offset);
1575 			__vmcs_writel(field.encoding, val);
1576 		}
1577 	}
1578 
1579 	vmcs_clear(shadow_vmcs);
1580 	vmcs_load(vmx->loaded_vmcs->vmcs);
1581 }
1582 
1583 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1584 {
1585 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1586 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1587 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1588 
1589 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1590 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1591 	vmcs12->guest_rip = evmcs->guest_rip;
1592 
1593 	if (unlikely(!(hv_clean_fields &
1594 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1595 		hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1596 		hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1597 		hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1598 	}
1599 
1600 	if (unlikely(!(hv_clean_fields &
1601 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1602 		vmcs12->guest_rsp = evmcs->guest_rsp;
1603 		vmcs12->guest_rflags = evmcs->guest_rflags;
1604 		vmcs12->guest_interruptibility_info =
1605 			evmcs->guest_interruptibility_info;
1606 		/*
1607 		 * Not present in struct vmcs12:
1608 		 * vmcs12->guest_ssp = evmcs->guest_ssp;
1609 		 */
1610 	}
1611 
1612 	if (unlikely(!(hv_clean_fields &
1613 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1614 		vmcs12->cpu_based_vm_exec_control =
1615 			evmcs->cpu_based_vm_exec_control;
1616 	}
1617 
1618 	if (unlikely(!(hv_clean_fields &
1619 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1620 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1621 	}
1622 
1623 	if (unlikely(!(hv_clean_fields &
1624 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1625 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1626 	}
1627 
1628 	if (unlikely(!(hv_clean_fields &
1629 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1630 		vmcs12->vm_entry_intr_info_field =
1631 			evmcs->vm_entry_intr_info_field;
1632 		vmcs12->vm_entry_exception_error_code =
1633 			evmcs->vm_entry_exception_error_code;
1634 		vmcs12->vm_entry_instruction_len =
1635 			evmcs->vm_entry_instruction_len;
1636 	}
1637 
1638 	if (unlikely(!(hv_clean_fields &
1639 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1640 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1641 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1642 		vmcs12->host_cr0 = evmcs->host_cr0;
1643 		vmcs12->host_cr3 = evmcs->host_cr3;
1644 		vmcs12->host_cr4 = evmcs->host_cr4;
1645 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1646 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1647 		vmcs12->host_rip = evmcs->host_rip;
1648 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1649 		vmcs12->host_es_selector = evmcs->host_es_selector;
1650 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1651 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1652 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1653 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1654 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1655 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1656 		vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1657 		/*
1658 		 * Not present in struct vmcs12:
1659 		 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1660 		 * vmcs12->host_ssp = evmcs->host_ssp;
1661 		 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1662 		 */
1663 	}
1664 
1665 	if (unlikely(!(hv_clean_fields &
1666 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1667 		vmcs12->pin_based_vm_exec_control =
1668 			evmcs->pin_based_vm_exec_control;
1669 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1670 		vmcs12->secondary_vm_exec_control =
1671 			evmcs->secondary_vm_exec_control;
1672 	}
1673 
1674 	if (unlikely(!(hv_clean_fields &
1675 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1676 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1677 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1678 	}
1679 
1680 	if (unlikely(!(hv_clean_fields &
1681 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1682 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1683 	}
1684 
1685 	if (unlikely(!(hv_clean_fields &
1686 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1687 		vmcs12->guest_es_base = evmcs->guest_es_base;
1688 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1689 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1690 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1691 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1692 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1693 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1694 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1695 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1696 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1697 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1698 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1699 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1700 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1701 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1702 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1703 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1704 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1705 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1706 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1707 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1708 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1709 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1710 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1711 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1712 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1713 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1714 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1715 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1716 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1717 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1718 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1719 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1720 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1721 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1722 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1723 	}
1724 
1725 	if (unlikely(!(hv_clean_fields &
1726 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1727 		vmcs12->tsc_offset = evmcs->tsc_offset;
1728 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1729 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1730 		vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1731 		vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1732 	}
1733 
1734 	if (unlikely(!(hv_clean_fields &
1735 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1736 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1737 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1738 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1739 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1740 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1741 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1742 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1743 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1744 	}
1745 
1746 	if (unlikely(!(hv_clean_fields &
1747 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1748 		vmcs12->host_fs_base = evmcs->host_fs_base;
1749 		vmcs12->host_gs_base = evmcs->host_gs_base;
1750 		vmcs12->host_tr_base = evmcs->host_tr_base;
1751 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1752 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1753 		vmcs12->host_rsp = evmcs->host_rsp;
1754 	}
1755 
1756 	if (unlikely(!(hv_clean_fields &
1757 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1758 		vmcs12->ept_pointer = evmcs->ept_pointer;
1759 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1760 	}
1761 
1762 	if (unlikely(!(hv_clean_fields &
1763 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1764 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1765 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1766 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1767 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1768 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1769 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1770 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1771 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1772 		vmcs12->guest_pending_dbg_exceptions =
1773 			evmcs->guest_pending_dbg_exceptions;
1774 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1775 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1776 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1777 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1778 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1779 		vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1780 		/*
1781 		 * Not present in struct vmcs12:
1782 		 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1783 		 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1784 		 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1785 		 */
1786 	}
1787 
1788 	/*
1789 	 * Not used?
1790 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1791 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1792 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1793 	 * vmcs12->page_fault_error_code_mask =
1794 	 *		evmcs->page_fault_error_code_mask;
1795 	 * vmcs12->page_fault_error_code_match =
1796 	 *		evmcs->page_fault_error_code_match;
1797 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1798 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1799 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1800 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1801 	 */
1802 
1803 	/*
1804 	 * Read only fields:
1805 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1806 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1807 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1808 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1809 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1810 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1811 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1812 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1813 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1814 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1815 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1816 	 *
1817 	 * Not present in struct vmcs12:
1818 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1819 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1820 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1821 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1822 	 */
1823 
1824 	return;
1825 }
1826 
1827 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1828 {
1829 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1830 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1831 
1832 	/*
1833 	 * Should not be changed by KVM:
1834 	 *
1835 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1836 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1837 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1838 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1839 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1840 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1841 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1842 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1843 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1844 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1845 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1846 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1847 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1848 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1849 	 * evmcs->host_rip = vmcs12->host_rip;
1850 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1851 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1852 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1853 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1854 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1855 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1856 	 * evmcs->host_rsp = vmcs12->host_rsp;
1857 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1858 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1859 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1860 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1861 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1862 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1863 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1864 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1865 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1866 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1867 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1868 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1869 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1870 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1871 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1872 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1873 	 * evmcs->page_fault_error_code_mask =
1874 	 *		vmcs12->page_fault_error_code_mask;
1875 	 * evmcs->page_fault_error_code_match =
1876 	 *		vmcs12->page_fault_error_code_match;
1877 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1878 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1879 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1880 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1881 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1882 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1883 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1884 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1885 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1886 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1887 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1888 	 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1889 	 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1890 	 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1891 	 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1892 	 *
1893 	 * Not present in struct vmcs12:
1894 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1895 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1896 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1897 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1898 	 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1899 	 * evmcs->host_ssp = vmcs12->host_ssp;
1900 	 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1901 	 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1902 	 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1903 	 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1904 	 * evmcs->guest_ssp = vmcs12->guest_ssp;
1905 	 */
1906 
1907 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1908 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1909 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1910 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1911 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1912 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1913 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1914 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1915 
1916 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1917 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1918 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1919 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1920 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1921 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1922 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1923 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1924 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1925 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1926 
1927 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1928 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1929 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1930 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1931 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1932 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1933 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1934 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1935 
1936 	evmcs->guest_es_base = vmcs12->guest_es_base;
1937 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1938 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1939 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1940 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1941 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1942 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1943 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1944 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1945 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1946 
1947 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1948 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1949 
1950 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1951 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1952 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1953 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1954 
1955 	evmcs->guest_pending_dbg_exceptions =
1956 		vmcs12->guest_pending_dbg_exceptions;
1957 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1958 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1959 
1960 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1961 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1962 
1963 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1964 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1965 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1966 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1967 
1968 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1969 
1970 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1971 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1972 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1973 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1974 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1975 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1976 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1977 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1978 
1979 	evmcs->exit_qualification = vmcs12->exit_qualification;
1980 
1981 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1982 	evmcs->guest_rsp = vmcs12->guest_rsp;
1983 	evmcs->guest_rflags = vmcs12->guest_rflags;
1984 
1985 	evmcs->guest_interruptibility_info =
1986 		vmcs12->guest_interruptibility_info;
1987 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1988 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1989 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1990 	evmcs->vm_entry_exception_error_code =
1991 		vmcs12->vm_entry_exception_error_code;
1992 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1993 
1994 	evmcs->guest_rip = vmcs12->guest_rip;
1995 
1996 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1997 
1998 	return;
1999 }
2000 
2001 /*
2002  * This is an equivalent of the nested hypervisor executing the vmptrld
2003  * instruction.
2004  */
2005 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2006 	struct kvm_vcpu *vcpu, bool from_launch)
2007 {
2008 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2009 	bool evmcs_gpa_changed = false;
2010 	u64 evmcs_gpa;
2011 
2012 	if (likely(!guest_cpuid_has_evmcs(vcpu)))
2013 		return EVMPTRLD_DISABLED;
2014 
2015 	evmcs_gpa = nested_get_evmptr(vcpu);
2016 	if (!evmptr_is_valid(evmcs_gpa)) {
2017 		nested_release_evmcs(vcpu);
2018 		return EVMPTRLD_DISABLED;
2019 	}
2020 
2021 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2022 		vmx->nested.current_vmptr = INVALID_GPA;
2023 
2024 		nested_release_evmcs(vcpu);
2025 
2026 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2027 				 &vmx->nested.hv_evmcs_map))
2028 			return EVMPTRLD_ERROR;
2029 
2030 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2031 
2032 		/*
2033 		 * Currently, KVM only supports eVMCS version 1
2034 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2035 		 * value to first u32 field of eVMCS which should specify eVMCS
2036 		 * VersionNumber.
2037 		 *
2038 		 * Guest should be aware of supported eVMCS versions by host by
2039 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2040 		 * expected to set this CPUID leaf according to the value
2041 		 * returned in vmcs_version from nested_enable_evmcs().
2042 		 *
2043 		 * However, it turns out that Microsoft Hyper-V fails to comply
2044 		 * to their own invented interface: When Hyper-V use eVMCS, it
2045 		 * just sets first u32 field of eVMCS to revision_id specified
2046 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2047 		 * which is one of the supported versions specified in
2048 		 * CPUID.0x4000000A.EAX[0:15].
2049 		 *
2050 		 * To overcome Hyper-V bug, we accept here either a supported
2051 		 * eVMCS version or VMCS12 revision_id as valid values for first
2052 		 * u32 field of eVMCS.
2053 		 */
2054 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2055 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2056 			nested_release_evmcs(vcpu);
2057 			return EVMPTRLD_VMFAIL;
2058 		}
2059 
2060 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2061 
2062 		evmcs_gpa_changed = true;
2063 		/*
2064 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2065 		 * reloaded from guest's memory (read only fields, fields not
2066 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2067 		 * are no leftovers.
2068 		 */
2069 		if (from_launch) {
2070 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2071 			memset(vmcs12, 0, sizeof(*vmcs12));
2072 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2073 		}
2074 
2075 	}
2076 
2077 	/*
2078 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2079 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2080 	 */
2081 	if (from_launch || evmcs_gpa_changed) {
2082 		vmx->nested.hv_evmcs->hv_clean_fields &=
2083 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2084 
2085 		vmx->nested.force_msr_bitmap_recalc = true;
2086 	}
2087 
2088 	return EVMPTRLD_SUCCEEDED;
2089 }
2090 
2091 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2092 {
2093 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2094 
2095 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2096 		copy_vmcs12_to_enlightened(vmx);
2097 	else
2098 		copy_vmcs12_to_shadow(vmx);
2099 
2100 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2101 }
2102 
2103 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2104 {
2105 	struct vcpu_vmx *vmx =
2106 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2107 
2108 	vmx->nested.preemption_timer_expired = true;
2109 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2110 	kvm_vcpu_kick(&vmx->vcpu);
2111 
2112 	return HRTIMER_NORESTART;
2113 }
2114 
2115 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2116 {
2117 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2118 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2119 
2120 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2121 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2122 
2123 	if (!vmx->nested.has_preemption_timer_deadline) {
2124 		vmx->nested.preemption_timer_deadline =
2125 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2126 		vmx->nested.has_preemption_timer_deadline = true;
2127 	}
2128 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2129 }
2130 
2131 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2132 					u64 preemption_timeout)
2133 {
2134 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2135 
2136 	/*
2137 	 * A timer value of zero is architecturally guaranteed to cause
2138 	 * a VMExit prior to executing any instructions in the guest.
2139 	 */
2140 	if (preemption_timeout == 0) {
2141 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2142 		return;
2143 	}
2144 
2145 	if (vcpu->arch.virtual_tsc_khz == 0)
2146 		return;
2147 
2148 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2149 	preemption_timeout *= 1000000;
2150 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2151 	hrtimer_start(&vmx->nested.preemption_timer,
2152 		      ktime_add_ns(ktime_get(), preemption_timeout),
2153 		      HRTIMER_MODE_ABS_PINNED);
2154 }
2155 
2156 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2157 {
2158 	if (vmx->nested.nested_run_pending &&
2159 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2160 		return vmcs12->guest_ia32_efer;
2161 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2162 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2163 	else
2164 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2165 }
2166 
2167 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2168 {
2169 	struct kvm *kvm = vmx->vcpu.kvm;
2170 
2171 	/*
2172 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2173 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2174 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2175 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2176 	 */
2177 	if (vmx->nested.vmcs02_initialized)
2178 		return;
2179 	vmx->nested.vmcs02_initialized = true;
2180 
2181 	/*
2182 	 * We don't care what the EPTP value is we just need to guarantee
2183 	 * it's valid so we don't get a false positive when doing early
2184 	 * consistency checks.
2185 	 */
2186 	if (enable_ept && nested_early_check)
2187 		vmcs_write64(EPT_POINTER,
2188 			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2189 
2190 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2191 	if (cpu_has_vmx_vmfunc())
2192 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2193 
2194 	if (cpu_has_vmx_posted_intr())
2195 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2196 
2197 	if (cpu_has_vmx_msr_bitmap())
2198 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2199 
2200 	/*
2201 	 * PML is emulated for L2, but never enabled in hardware as the MMU
2202 	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2203 	 * deal with filtering out L2 GPAs from the buffer.
2204 	 */
2205 	if (enable_pml) {
2206 		vmcs_write64(PML_ADDRESS, 0);
2207 		vmcs_write16(GUEST_PML_INDEX, -1);
2208 	}
2209 
2210 	if (cpu_has_vmx_encls_vmexit())
2211 		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2212 
2213 	if (kvm_notify_vmexit_enabled(kvm))
2214 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2215 
2216 	/*
2217 	 * Set the MSR load/store lists to match L0's settings.  Only the
2218 	 * addresses are constant (for vmcs02), the counts can change based
2219 	 * on L2's behavior, e.g. switching to/from long mode.
2220 	 */
2221 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2222 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2223 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2224 
2225 	vmx_set_constant_host_state(vmx);
2226 }
2227 
2228 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2229 				      struct vmcs12 *vmcs12)
2230 {
2231 	prepare_vmcs02_constant_state(vmx);
2232 
2233 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2234 
2235 	/*
2236 	 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
2237 	 * same VPID as the host.  Emulate this behavior by using vpid01 for L2
2238 	 * if VPID is disabled in vmcs12.  Note, if VPID is disabled, VM-Enter
2239 	 * and VM-Exit are architecturally required to flush VPID=0, but *only*
2240 	 * VPID=0.  I.e. using vpid02 would be ok (so long as KVM emulates the
2241 	 * required flushes), but doing so would cause KVM to over-flush.  E.g.
2242 	 * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled,
2243 	 * and then runs L2 X again, then KVM can and should retain TLB entries
2244 	 * for VPID12=1.
2245 	 */
2246 	if (enable_vpid) {
2247 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2248 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2249 		else
2250 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2251 	}
2252 }
2253 
2254 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2255 				 struct vmcs12 *vmcs12)
2256 {
2257 	u32 exec_control;
2258 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2259 
2260 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2261 		prepare_vmcs02_early_rare(vmx, vmcs12);
2262 
2263 	/*
2264 	 * PIN CONTROLS
2265 	 */
2266 	exec_control = __pin_controls_get(vmcs01);
2267 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2268 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2269 
2270 	/* Posted interrupts setting is only taken from vmcs12.  */
2271 	vmx->nested.pi_pending = false;
2272 	if (nested_cpu_has_posted_intr(vmcs12))
2273 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2274 	else
2275 		exec_control &= ~PIN_BASED_POSTED_INTR;
2276 	pin_controls_set(vmx, exec_control);
2277 
2278 	/*
2279 	 * EXEC CONTROLS
2280 	 */
2281 	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2282 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2283 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2284 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2285 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2286 
2287 	vmx->nested.l1_tpr_threshold = -1;
2288 	if (exec_control & CPU_BASED_TPR_SHADOW)
2289 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2290 #ifdef CONFIG_X86_64
2291 	else
2292 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2293 				CPU_BASED_CR8_STORE_EXITING;
2294 #endif
2295 
2296 	/*
2297 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2298 	 * for I/O port accesses.
2299 	 */
2300 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2301 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2302 
2303 	/*
2304 	 * This bit will be computed in nested_get_vmcs12_pages, because
2305 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2306 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2307 	 * only set/clear this bit.
2308 	 */
2309 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2310 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2311 
2312 	exec_controls_set(vmx, exec_control);
2313 
2314 	/*
2315 	 * SECONDARY EXEC CONTROLS
2316 	 */
2317 	if (cpu_has_secondary_exec_ctrls()) {
2318 		exec_control = __secondary_exec_controls_get(vmcs01);
2319 
2320 		/* Take the following fields only from vmcs12 */
2321 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2322 				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2323 				  SECONDARY_EXEC_ENABLE_INVPCID |
2324 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2325 				  SECONDARY_EXEC_ENABLE_XSAVES |
2326 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2327 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2328 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2329 				  SECONDARY_EXEC_ENABLE_VMFUNC |
2330 				  SECONDARY_EXEC_DESC);
2331 
2332 		if (nested_cpu_has(vmcs12,
2333 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2334 			exec_control |= vmcs12->secondary_vm_exec_control;
2335 
2336 		/* PML is emulated and never enabled in hardware for L2. */
2337 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2338 
2339 		/* VMCS shadowing for L2 is emulated for now */
2340 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2341 
2342 		/*
2343 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2344 		 * will not have to rewrite the controls just for this bit.
2345 		 */
2346 		if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2347 			exec_control |= SECONDARY_EXEC_DESC;
2348 
2349 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2350 			vmcs_write16(GUEST_INTR_STATUS,
2351 				vmcs12->guest_intr_status);
2352 
2353 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2354 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2355 
2356 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2357 			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2358 
2359 		secondary_exec_controls_set(vmx, exec_control);
2360 	}
2361 
2362 	/*
2363 	 * ENTRY CONTROLS
2364 	 *
2365 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2366 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2367 	 * on the related bits (if supported by the CPU) in the hope that
2368 	 * we can avoid VMWrites during vmx_set_efer().
2369 	 *
2370 	 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2371 	 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2372 	 * do the same for L2.
2373 	 */
2374 	exec_control = __vm_entry_controls_get(vmcs01);
2375 	exec_control |= (vmcs12->vm_entry_controls &
2376 			 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2377 	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2378 	if (cpu_has_load_ia32_efer()) {
2379 		if (guest_efer & EFER_LMA)
2380 			exec_control |= VM_ENTRY_IA32E_MODE;
2381 		if (guest_efer != host_efer)
2382 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2383 	}
2384 	vm_entry_controls_set(vmx, exec_control);
2385 
2386 	/*
2387 	 * EXIT CONTROLS
2388 	 *
2389 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2390 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2391 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2392 	 */
2393 	exec_control = __vm_exit_controls_get(vmcs01);
2394 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2395 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2396 	else
2397 		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2398 	vm_exit_controls_set(vmx, exec_control);
2399 
2400 	/*
2401 	 * Interrupt/Exception Fields
2402 	 */
2403 	if (vmx->nested.nested_run_pending) {
2404 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2405 			     vmcs12->vm_entry_intr_info_field);
2406 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2407 			     vmcs12->vm_entry_exception_error_code);
2408 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2409 			     vmcs12->vm_entry_instruction_len);
2410 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2411 			     vmcs12->guest_interruptibility_info);
2412 		vmx->loaded_vmcs->nmi_known_unmasked =
2413 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2414 	} else {
2415 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2416 	}
2417 }
2418 
2419 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2420 {
2421 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2422 
2423 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2424 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2425 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2426 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2427 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2428 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2429 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2430 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2431 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2432 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2433 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2434 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2435 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2436 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2437 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2438 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2439 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2440 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2441 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2442 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2443 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2444 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2445 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2446 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2447 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2448 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2449 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2450 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2451 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2452 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2453 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2454 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2455 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2456 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2457 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2458 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2459 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2460 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2461 
2462 		vmx->segment_cache.bitmask = 0;
2463 	}
2464 
2465 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2466 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2467 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2468 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2469 			    vmcs12->guest_pending_dbg_exceptions);
2470 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2471 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2472 
2473 		/*
2474 		 * L1 may access the L2's PDPTR, so save them to construct
2475 		 * vmcs12
2476 		 */
2477 		if (enable_ept) {
2478 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2479 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2480 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2481 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2482 		}
2483 
2484 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2485 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2486 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2487 	}
2488 
2489 	if (nested_cpu_has_xsaves(vmcs12))
2490 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2491 
2492 	/*
2493 	 * Whether page-faults are trapped is determined by a combination of
2494 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2495 	 * doesn't care about page faults then we should set all of these to
2496 	 * L1's desires. However, if L0 does care about (some) page faults, it
2497 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2498 	 * simply ask to exit on each and every L2 page fault. This is done by
2499 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2500 	 * Note that below we don't need special code to set EB.PF beyond the
2501 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2502 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2503 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2504 	 */
2505 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2506 		/*
2507 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2508 		 * go ahead and use it?
2509 		 */
2510 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2511 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2512 	} else {
2513 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2514 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2515 	}
2516 
2517 	if (cpu_has_vmx_apicv()) {
2518 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2519 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2520 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2521 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2522 	}
2523 
2524 	/*
2525 	 * Make sure the msr_autostore list is up to date before we set the
2526 	 * count in the vmcs02.
2527 	 */
2528 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2529 
2530 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2531 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2532 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2533 
2534 	set_cr4_guest_host_mask(vmx);
2535 }
2536 
2537 /*
2538  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2539  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2540  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2541  * guest in a way that will both be appropriate to L1's requests, and our
2542  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2543  * function also has additional necessary side-effects, like setting various
2544  * vcpu->arch fields.
2545  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2546  * is assigned to entry_failure_code on failure.
2547  */
2548 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2549 			  bool from_vmentry,
2550 			  enum vm_entry_failure_code *entry_failure_code)
2551 {
2552 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2553 	bool load_guest_pdptrs_vmcs12 = false;
2554 
2555 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2556 		prepare_vmcs02_rare(vmx, vmcs12);
2557 		vmx->nested.dirty_vmcs12 = false;
2558 
2559 		load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2560 			!(vmx->nested.hv_evmcs->hv_clean_fields &
2561 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2562 	}
2563 
2564 	if (vmx->nested.nested_run_pending &&
2565 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2566 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2567 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2568 	} else {
2569 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2570 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2571 	}
2572 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2573 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2574 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2575 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2576 
2577 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2578 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2579 	 * trap. Note that CR0.TS also needs updating - we do this later.
2580 	 */
2581 	vmx_update_exception_bitmap(vcpu);
2582 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2583 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2584 
2585 	if (vmx->nested.nested_run_pending &&
2586 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2587 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2588 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2589 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2590 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2591 	}
2592 
2593 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2594 			vcpu->arch.l1_tsc_offset,
2595 			vmx_get_l2_tsc_offset(vcpu),
2596 			vmx_get_l2_tsc_multiplier(vcpu));
2597 
2598 	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2599 			vcpu->arch.l1_tsc_scaling_ratio,
2600 			vmx_get_l2_tsc_multiplier(vcpu));
2601 
2602 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2603 	if (kvm_caps.has_tsc_control)
2604 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2605 
2606 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2607 
2608 	if (nested_cpu_has_ept(vmcs12))
2609 		nested_ept_init_mmu_context(vcpu);
2610 
2611 	/*
2612 	 * Override the CR0/CR4 read shadows after setting the effective guest
2613 	 * CR0/CR4.  The common helpers also set the shadows, but they don't
2614 	 * account for vmcs12's cr0/4_guest_host_mask.
2615 	 */
2616 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2617 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2618 
2619 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2620 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2621 
2622 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2623 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2624 	vmx_set_efer(vcpu, vcpu->arch.efer);
2625 
2626 	/*
2627 	 * Guest state is invalid and unrestricted guest is disabled,
2628 	 * which means L1 attempted VMEntry to L2 with invalid state.
2629 	 * Fail the VMEntry.
2630 	 *
2631 	 * However when force loading the guest state (SMM exit or
2632 	 * loading nested state after migration, it is possible to
2633 	 * have invalid guest state now, which will be later fixed by
2634 	 * restoring L2 register state
2635 	 */
2636 	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2637 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2638 		return -EINVAL;
2639 	}
2640 
2641 	/* Shadow page tables on either EPT or shadow page tables. */
2642 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2643 				from_vmentry, entry_failure_code))
2644 		return -EINVAL;
2645 
2646 	/*
2647 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2648 	 * on nested VM-Exit, which can occur without actually running L2 and
2649 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2650 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2651 	 * transition to HLT instead of running L2.
2652 	 */
2653 	if (enable_ept)
2654 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2655 
2656 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2657 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2658 	    is_pae_paging(vcpu)) {
2659 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2660 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2661 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2662 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2663 	}
2664 
2665 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2666 	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2667 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2668 				     vmcs12->guest_ia32_perf_global_ctrl))) {
2669 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2670 		return -EINVAL;
2671 	}
2672 
2673 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2674 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2675 
2676 	/*
2677 	 * It was observed that genuine Hyper-V running in L1 doesn't reset
2678 	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2679 	 * bits when it changes a field in eVMCS. Mark all fields as clean
2680 	 * here.
2681 	 */
2682 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2683 		vmx->nested.hv_evmcs->hv_clean_fields |=
2684 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2685 
2686 	return 0;
2687 }
2688 
2689 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2690 {
2691 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2692 	       nested_cpu_has_virtual_nmis(vmcs12)))
2693 		return -EINVAL;
2694 
2695 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2696 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2697 		return -EINVAL;
2698 
2699 	return 0;
2700 }
2701 
2702 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2703 {
2704 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2705 
2706 	/* Check for memory type validity */
2707 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2708 	case VMX_EPTP_MT_UC:
2709 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2710 			return false;
2711 		break;
2712 	case VMX_EPTP_MT_WB:
2713 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2714 			return false;
2715 		break;
2716 	default:
2717 		return false;
2718 	}
2719 
2720 	/* Page-walk levels validity. */
2721 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2722 	case VMX_EPTP_PWL_5:
2723 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2724 			return false;
2725 		break;
2726 	case VMX_EPTP_PWL_4:
2727 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2728 			return false;
2729 		break;
2730 	default:
2731 		return false;
2732 	}
2733 
2734 	/* Reserved bits should not be set */
2735 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2736 		return false;
2737 
2738 	/* AD, if set, should be supported */
2739 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2740 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2741 			return false;
2742 	}
2743 
2744 	return true;
2745 }
2746 
2747 /*
2748  * Checks related to VM-Execution Control Fields
2749  */
2750 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2751                                               struct vmcs12 *vmcs12)
2752 {
2753 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2754 
2755 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2756 				   vmx->nested.msrs.pinbased_ctls_low,
2757 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2758 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2759 				   vmx->nested.msrs.procbased_ctls_low,
2760 				   vmx->nested.msrs.procbased_ctls_high)))
2761 		return -EINVAL;
2762 
2763 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2764 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2765 				   vmx->nested.msrs.secondary_ctls_low,
2766 				   vmx->nested.msrs.secondary_ctls_high)))
2767 		return -EINVAL;
2768 
2769 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2770 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2771 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2772 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2773 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2774 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2775 	    nested_vmx_check_nmi_controls(vmcs12) ||
2776 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2777 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2778 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2779 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2780 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2781 		return -EINVAL;
2782 
2783 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2784 	    nested_cpu_has_save_preemption_timer(vmcs12))
2785 		return -EINVAL;
2786 
2787 	if (nested_cpu_has_ept(vmcs12) &&
2788 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2789 		return -EINVAL;
2790 
2791 	if (nested_cpu_has_vmfunc(vmcs12)) {
2792 		if (CC(vmcs12->vm_function_control &
2793 		       ~vmx->nested.msrs.vmfunc_controls))
2794 			return -EINVAL;
2795 
2796 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2797 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2798 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2799 				return -EINVAL;
2800 		}
2801 	}
2802 
2803 	return 0;
2804 }
2805 
2806 /*
2807  * Checks related to VM-Exit Control Fields
2808  */
2809 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2810                                          struct vmcs12 *vmcs12)
2811 {
2812 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2813 
2814 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2815 				    vmx->nested.msrs.exit_ctls_low,
2816 				    vmx->nested.msrs.exit_ctls_high)) ||
2817 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2818 		return -EINVAL;
2819 
2820 	return 0;
2821 }
2822 
2823 /*
2824  * Checks related to VM-Entry Control Fields
2825  */
2826 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2827 					  struct vmcs12 *vmcs12)
2828 {
2829 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2830 
2831 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2832 				    vmx->nested.msrs.entry_ctls_low,
2833 				    vmx->nested.msrs.entry_ctls_high)))
2834 		return -EINVAL;
2835 
2836 	/*
2837 	 * From the Intel SDM, volume 3:
2838 	 * Fields relevant to VM-entry event injection must be set properly.
2839 	 * These fields are the VM-entry interruption-information field, the
2840 	 * VM-entry exception error code, and the VM-entry instruction length.
2841 	 */
2842 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2843 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2844 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2845 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2846 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2847 		bool should_have_error_code;
2848 		bool urg = nested_cpu_has2(vmcs12,
2849 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2850 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2851 
2852 		/* VM-entry interruption-info field: interruption type */
2853 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2854 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2855 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2856 			return -EINVAL;
2857 
2858 		/* VM-entry interruption-info field: vector */
2859 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2860 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2861 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2862 			return -EINVAL;
2863 
2864 		/* VM-entry interruption-info field: deliver error code */
2865 		should_have_error_code =
2866 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2867 			x86_exception_has_error_code(vector);
2868 		if (CC(has_error_code != should_have_error_code))
2869 			return -EINVAL;
2870 
2871 		/* VM-entry exception error code */
2872 		if (CC(has_error_code &&
2873 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2874 			return -EINVAL;
2875 
2876 		/* VM-entry interruption-info field: reserved bits */
2877 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2878 			return -EINVAL;
2879 
2880 		/* VM-entry instruction length */
2881 		switch (intr_type) {
2882 		case INTR_TYPE_SOFT_EXCEPTION:
2883 		case INTR_TYPE_SOFT_INTR:
2884 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2885 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2886 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2887 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2888 				return -EINVAL;
2889 		}
2890 	}
2891 
2892 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2893 		return -EINVAL;
2894 
2895 	return 0;
2896 }
2897 
2898 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2899 				     struct vmcs12 *vmcs12)
2900 {
2901 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2902 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2903 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2904 		return -EINVAL;
2905 
2906 	if (guest_cpuid_has_evmcs(vcpu))
2907 		return nested_evmcs_check_controls(vmcs12);
2908 
2909 	return 0;
2910 }
2911 
2912 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2913 				       struct vmcs12 *vmcs12)
2914 {
2915 #ifdef CONFIG_X86_64
2916 	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2917 		!!(vcpu->arch.efer & EFER_LMA)))
2918 		return -EINVAL;
2919 #endif
2920 	return 0;
2921 }
2922 
2923 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2924 				       struct vmcs12 *vmcs12)
2925 {
2926 	bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2927 
2928 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2929 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2930 	    CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2931 		return -EINVAL;
2932 
2933 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2934 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2935 		return -EINVAL;
2936 
2937 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2938 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2939 		return -EINVAL;
2940 
2941 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2942 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2943 					   vmcs12->host_ia32_perf_global_ctrl)))
2944 		return -EINVAL;
2945 
2946 	if (ia32e) {
2947 		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2948 			return -EINVAL;
2949 	} else {
2950 		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2951 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2952 		    CC((vmcs12->host_rip) >> 32))
2953 			return -EINVAL;
2954 	}
2955 
2956 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2957 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2958 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2959 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2960 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2961 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2962 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2963 	    CC(vmcs12->host_cs_selector == 0) ||
2964 	    CC(vmcs12->host_tr_selector == 0) ||
2965 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2966 		return -EINVAL;
2967 
2968 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2969 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2970 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2971 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2972 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2973 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2974 		return -EINVAL;
2975 
2976 	/*
2977 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2978 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2979 	 * the values of the LMA and LME bits in the field must each be that of
2980 	 * the host address-space size VM-exit control.
2981 	 */
2982 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2983 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2984 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2985 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2986 			return -EINVAL;
2987 	}
2988 
2989 	return 0;
2990 }
2991 
2992 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2993 					  struct vmcs12 *vmcs12)
2994 {
2995 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2996 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2997 	struct vmcs_hdr hdr;
2998 
2999 	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3000 		return 0;
3001 
3002 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3003 		return -EINVAL;
3004 
3005 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3006 	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3007 					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3008                 return -EINVAL;
3009 
3010 	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3011 					    offsetof(struct vmcs12, hdr),
3012 					    sizeof(hdr))))
3013 		return -EINVAL;
3014 
3015 	if (CC(hdr.revision_id != VMCS12_REVISION) ||
3016 	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3017 		return -EINVAL;
3018 
3019 	return 0;
3020 }
3021 
3022 /*
3023  * Checks related to Guest Non-register State
3024  */
3025 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3026 {
3027 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3028 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3029 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3030 		return -EINVAL;
3031 
3032 	return 0;
3033 }
3034 
3035 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3036 					struct vmcs12 *vmcs12,
3037 					enum vm_entry_failure_code *entry_failure_code)
3038 {
3039 	bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3040 
3041 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
3042 
3043 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3044 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3045 		return -EINVAL;
3046 
3047 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3048 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3049 		return -EINVAL;
3050 
3051 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3052 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3053 		return -EINVAL;
3054 
3055 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3056 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3057 		return -EINVAL;
3058 	}
3059 
3060 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3061 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3062 					   vmcs12->guest_ia32_perf_global_ctrl)))
3063 		return -EINVAL;
3064 
3065 	if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3066 		return -EINVAL;
3067 
3068 	if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3069 	    CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3070 		return -EINVAL;
3071 
3072 	/*
3073 	 * If the load IA32_EFER VM-entry control is 1, the following checks
3074 	 * are performed on the field for the IA32_EFER MSR:
3075 	 * - Bits reserved in the IA32_EFER MSR must be 0.
3076 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3077 	 *   the IA-32e mode guest VM-exit control. It must also be identical
3078 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3079 	 *   CR0.PG) is 1.
3080 	 */
3081 	if (to_vmx(vcpu)->nested.nested_run_pending &&
3082 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3083 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3084 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3085 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3086 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3087 			return -EINVAL;
3088 	}
3089 
3090 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3091 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3092 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3093 		return -EINVAL;
3094 
3095 	if (nested_check_guest_non_reg_state(vmcs12))
3096 		return -EINVAL;
3097 
3098 	return 0;
3099 }
3100 
3101 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3102 {
3103 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3104 	unsigned long cr3, cr4;
3105 	bool vm_fail;
3106 
3107 	if (!nested_early_check)
3108 		return 0;
3109 
3110 	if (vmx->msr_autoload.host.nr)
3111 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3112 	if (vmx->msr_autoload.guest.nr)
3113 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3114 
3115 	preempt_disable();
3116 
3117 	vmx_prepare_switch_to_guest(vcpu);
3118 
3119 	/*
3120 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3121 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3122 	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3123 	 * there is no need to preserve other bits or save/restore the field.
3124 	 */
3125 	vmcs_writel(GUEST_RFLAGS, 0);
3126 
3127 	cr3 = __get_current_cr3_fast();
3128 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3129 		vmcs_writel(HOST_CR3, cr3);
3130 		vmx->loaded_vmcs->host_state.cr3 = cr3;
3131 	}
3132 
3133 	cr4 = cr4_read_shadow();
3134 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3135 		vmcs_writel(HOST_CR4, cr4);
3136 		vmx->loaded_vmcs->host_state.cr4 = cr4;
3137 	}
3138 
3139 	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3140 				 __vmx_vcpu_run_flags(vmx));
3141 
3142 	if (vmx->msr_autoload.host.nr)
3143 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3144 	if (vmx->msr_autoload.guest.nr)
3145 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3146 
3147 	if (vm_fail) {
3148 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3149 
3150 		preempt_enable();
3151 
3152 		trace_kvm_nested_vmenter_failed(
3153 			"early hardware check VM-instruction error: ", error);
3154 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3155 		return 1;
3156 	}
3157 
3158 	/*
3159 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3160 	 */
3161 	if (hw_breakpoint_active())
3162 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3163 	local_irq_enable();
3164 	preempt_enable();
3165 
3166 	/*
3167 	 * A non-failing VMEntry means we somehow entered guest mode with
3168 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3169 	 * is no telling what memory has been modified or what state has
3170 	 * been exposed to unknown code.  Hitting this all but guarantees
3171 	 * a (very critical) hardware issue.
3172 	 */
3173 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3174 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3175 
3176 	return 0;
3177 }
3178 
3179 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3180 {
3181 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3182 
3183 	/*
3184 	 * hv_evmcs may end up being not mapped after migration (when
3185 	 * L2 was running), map it here to make sure vmcs12 changes are
3186 	 * properly reflected.
3187 	 */
3188 	if (guest_cpuid_has_evmcs(vcpu) &&
3189 	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3190 		enum nested_evmptrld_status evmptrld_status =
3191 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3192 
3193 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3194 		    evmptrld_status == EVMPTRLD_ERROR)
3195 			return false;
3196 
3197 		/*
3198 		 * Post migration VMCS12 always provides the most actual
3199 		 * information, copy it to eVMCS upon entry.
3200 		 */
3201 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3202 	}
3203 
3204 	return true;
3205 }
3206 
3207 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3208 {
3209 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3210 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3211 	struct kvm_host_map *map;
3212 
3213 	if (!vcpu->arch.pdptrs_from_userspace &&
3214 	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3215 		/*
3216 		 * Reload the guest's PDPTRs since after a migration
3217 		 * the guest CR3 might be restored prior to setting the nested
3218 		 * state which can lead to a load of wrong PDPTRs.
3219 		 */
3220 		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3221 			return false;
3222 	}
3223 
3224 
3225 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3226 		map = &vmx->nested.apic_access_page_map;
3227 
3228 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3229 			vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3230 		} else {
3231 			pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3232 					     __func__);
3233 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3234 			vcpu->run->internal.suberror =
3235 				KVM_INTERNAL_ERROR_EMULATION;
3236 			vcpu->run->internal.ndata = 0;
3237 			return false;
3238 		}
3239 	}
3240 
3241 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3242 		map = &vmx->nested.virtual_apic_map;
3243 
3244 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3245 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3246 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3247 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3248 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3249 			/*
3250 			 * The processor will never use the TPR shadow, simply
3251 			 * clear the bit from the execution control.  Such a
3252 			 * configuration is useless, but it happens in tests.
3253 			 * For any other configuration, failing the vm entry is
3254 			 * _not_ what the processor does but it's basically the
3255 			 * only possibility we have.
3256 			 */
3257 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3258 		} else {
3259 			/*
3260 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3261 			 * force VM-Entry to fail.
3262 			 */
3263 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3264 		}
3265 	}
3266 
3267 	if (nested_cpu_has_posted_intr(vmcs12)) {
3268 		map = &vmx->nested.pi_desc_map;
3269 
3270 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3271 			vmx->nested.pi_desc =
3272 				(struct pi_desc *)(((void *)map->hva) +
3273 				offset_in_page(vmcs12->posted_intr_desc_addr));
3274 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3275 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3276 		} else {
3277 			/*
3278 			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3279 			 * access the contents of the VMCS12 posted interrupt
3280 			 * descriptor. (Note that KVM may do this when it
3281 			 * should not, per the architectural specification.)
3282 			 */
3283 			vmx->nested.pi_desc = NULL;
3284 			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3285 		}
3286 	}
3287 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3288 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3289 	else
3290 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3291 
3292 	return true;
3293 }
3294 
3295 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3296 {
3297 	/*
3298 	 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3299 	 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3300 	 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3301 	 * migration.
3302 	 */
3303 	if (!nested_get_evmcs_page(vcpu)) {
3304 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3305 				     __func__);
3306 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3307 		vcpu->run->internal.suberror =
3308 			KVM_INTERNAL_ERROR_EMULATION;
3309 		vcpu->run->internal.ndata = 0;
3310 
3311 		return false;
3312 	}
3313 
3314 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3315 		return false;
3316 
3317 	return true;
3318 }
3319 
3320 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3321 {
3322 	struct vmcs12 *vmcs12;
3323 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3324 	gpa_t dst;
3325 
3326 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3327 		return 0;
3328 
3329 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3330 		return 1;
3331 
3332 	/*
3333 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3334 	 * set is already checked as part of A/D emulation.
3335 	 */
3336 	vmcs12 = get_vmcs12(vcpu);
3337 	if (!nested_cpu_has_pml(vmcs12))
3338 		return 0;
3339 
3340 	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3341 		vmx->nested.pml_full = true;
3342 		return 1;
3343 	}
3344 
3345 	gpa &= ~0xFFFull;
3346 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3347 
3348 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3349 				 offset_in_page(dst), sizeof(gpa)))
3350 		return 0;
3351 
3352 	vmcs12->guest_pml_index--;
3353 
3354 	return 0;
3355 }
3356 
3357 /*
3358  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3359  * for running VMX instructions (except VMXON, whose prerequisites are
3360  * slightly different). It also specifies what exception to inject otherwise.
3361  * Note that many of these exceptions have priority over VM exits, so they
3362  * don't have to be checked again here.
3363  */
3364 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3365 {
3366 	if (!to_vmx(vcpu)->nested.vmxon) {
3367 		kvm_queue_exception(vcpu, UD_VECTOR);
3368 		return 0;
3369 	}
3370 
3371 	if (vmx_get_cpl(vcpu)) {
3372 		kvm_inject_gp(vcpu, 0);
3373 		return 0;
3374 	}
3375 
3376 	return 1;
3377 }
3378 
3379 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3380 {
3381 	u8 rvi = vmx_get_rvi();
3382 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3383 
3384 	return ((rvi & 0xf0) > (vppr & 0xf0));
3385 }
3386 
3387 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3388 				   struct vmcs12 *vmcs12);
3389 
3390 /*
3391  * If from_vmentry is false, this is being called from state restore (either RSM
3392  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3393  *
3394  * Returns:
3395  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3396  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3397  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3398  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3399  */
3400 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3401 							bool from_vmentry)
3402 {
3403 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3404 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3405 	enum vm_entry_failure_code entry_failure_code;
3406 	bool evaluate_pending_interrupts;
3407 	union vmx_exit_reason exit_reason = {
3408 		.basic = EXIT_REASON_INVALID_STATE,
3409 		.failed_vmentry = 1,
3410 	};
3411 	u32 failed_index;
3412 
3413 	trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3414 				 vmx->nested.current_vmptr,
3415 				 vmcs12->guest_rip,
3416 				 vmcs12->guest_intr_status,
3417 				 vmcs12->vm_entry_intr_info_field,
3418 				 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3419 				 vmcs12->ept_pointer,
3420 				 vmcs12->guest_cr3,
3421 				 KVM_ISA_VMX);
3422 
3423 	kvm_service_local_tlb_flush_requests(vcpu);
3424 
3425 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3426 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3427 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3428 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3429 	if (!evaluate_pending_interrupts)
3430 		evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3431 
3432 	if (!vmx->nested.nested_run_pending ||
3433 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3434 		vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3435 	if (kvm_mpx_supported() &&
3436 	    (!vmx->nested.nested_run_pending ||
3437 	     !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3438 		vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3439 
3440 	/*
3441 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3442 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3443 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3444 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3445 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3446 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3447 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3448 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3449 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3450 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3451 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3452 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3453 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3454 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3455 	 */
3456 	if (!enable_ept && !nested_early_check)
3457 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3458 
3459 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3460 
3461 	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3462 
3463 	if (from_vmentry) {
3464 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3465 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3466 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3467 		}
3468 
3469 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3470 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3471 			return NVMX_VMENTRY_VMFAIL;
3472 		}
3473 
3474 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3475 						 &entry_failure_code)) {
3476 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3477 			vmcs12->exit_qualification = entry_failure_code;
3478 			goto vmentry_fail_vmexit;
3479 		}
3480 	}
3481 
3482 	enter_guest_mode(vcpu);
3483 
3484 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3485 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3486 		vmcs12->exit_qualification = entry_failure_code;
3487 		goto vmentry_fail_vmexit_guest_mode;
3488 	}
3489 
3490 	if (from_vmentry) {
3491 		failed_index = nested_vmx_load_msr(vcpu,
3492 						   vmcs12->vm_entry_msr_load_addr,
3493 						   vmcs12->vm_entry_msr_load_count);
3494 		if (failed_index) {
3495 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3496 			vmcs12->exit_qualification = failed_index;
3497 			goto vmentry_fail_vmexit_guest_mode;
3498 		}
3499 	} else {
3500 		/*
3501 		 * The MMU is not initialized to point at the right entities yet and
3502 		 * "get pages" would need to read data from the guest (i.e. we will
3503 		 * need to perform gpa to hpa translation). Request a call
3504 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3505 		 * have already been set at vmentry time and should not be reset.
3506 		 */
3507 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3508 	}
3509 
3510 	/*
3511 	 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3512 	 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3513 	 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3514 	 * unconditionally.
3515 	 */
3516 	if (unlikely(evaluate_pending_interrupts))
3517 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3518 
3519 	/*
3520 	 * Do not start the preemption timer hrtimer until after we know
3521 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3522 	 * the timer.
3523 	 */
3524 	vmx->nested.preemption_timer_expired = false;
3525 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3526 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3527 		vmx_start_preemption_timer(vcpu, timer_value);
3528 	}
3529 
3530 	/*
3531 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3532 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3533 	 * returned as far as L1 is concerned. It will only return (and set
3534 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3535 	 */
3536 	return NVMX_VMENTRY_SUCCESS;
3537 
3538 	/*
3539 	 * A failed consistency check that leads to a VMExit during L1's
3540 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3541 	 * 26.7 "VM-entry failures during or after loading guest state".
3542 	 */
3543 vmentry_fail_vmexit_guest_mode:
3544 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3545 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3546 	leave_guest_mode(vcpu);
3547 
3548 vmentry_fail_vmexit:
3549 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3550 
3551 	if (!from_vmentry)
3552 		return NVMX_VMENTRY_VMEXIT;
3553 
3554 	load_vmcs12_host_state(vcpu, vmcs12);
3555 	vmcs12->vm_exit_reason = exit_reason.full;
3556 	if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3557 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3558 	return NVMX_VMENTRY_VMEXIT;
3559 }
3560 
3561 /*
3562  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3563  * for running an L2 nested guest.
3564  */
3565 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3566 {
3567 	struct vmcs12 *vmcs12;
3568 	enum nvmx_vmentry_status status;
3569 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3570 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3571 	enum nested_evmptrld_status evmptrld_status;
3572 
3573 	if (!nested_vmx_check_permission(vcpu))
3574 		return 1;
3575 
3576 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3577 	if (evmptrld_status == EVMPTRLD_ERROR) {
3578 		kvm_queue_exception(vcpu, UD_VECTOR);
3579 		return 1;
3580 	}
3581 
3582 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3583 
3584 	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3585 		return nested_vmx_failInvalid(vcpu);
3586 
3587 	if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3588 	       vmx->nested.current_vmptr == INVALID_GPA))
3589 		return nested_vmx_failInvalid(vcpu);
3590 
3591 	vmcs12 = get_vmcs12(vcpu);
3592 
3593 	/*
3594 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3595 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3596 	 * rather than RFLAGS.ZF, and no error number is stored to the
3597 	 * VM-instruction error field.
3598 	 */
3599 	if (CC(vmcs12->hdr.shadow_vmcs))
3600 		return nested_vmx_failInvalid(vcpu);
3601 
3602 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3603 		copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3604 		/* Enlightened VMCS doesn't have launch state */
3605 		vmcs12->launch_state = !launch;
3606 	} else if (enable_shadow_vmcs) {
3607 		copy_shadow_to_vmcs12(vmx);
3608 	}
3609 
3610 	/*
3611 	 * The nested entry process starts with enforcing various prerequisites
3612 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3613 	 * they fail: As the SDM explains, some conditions should cause the
3614 	 * instruction to fail, while others will cause the instruction to seem
3615 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3616 	 * To speed up the normal (success) code path, we should avoid checking
3617 	 * for misconfigurations which will anyway be caught by the processor
3618 	 * when using the merged vmcs02.
3619 	 */
3620 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3621 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3622 
3623 	if (CC(vmcs12->launch_state == launch))
3624 		return nested_vmx_fail(vcpu,
3625 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3626 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3627 
3628 	if (nested_vmx_check_controls(vcpu, vmcs12))
3629 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3630 
3631 	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3632 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3633 
3634 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3635 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3636 
3637 	/*
3638 	 * We're finally done with prerequisite checking, and can start with
3639 	 * the nested entry.
3640 	 */
3641 	vmx->nested.nested_run_pending = 1;
3642 	vmx->nested.has_preemption_timer_deadline = false;
3643 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3644 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3645 		goto vmentry_failed;
3646 
3647 	/* Emulate processing of posted interrupts on VM-Enter. */
3648 	if (nested_cpu_has_posted_intr(vmcs12) &&
3649 	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3650 		vmx->nested.pi_pending = true;
3651 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3652 		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3653 	}
3654 
3655 	/* Hide L1D cache contents from the nested guest.  */
3656 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3657 
3658 	/*
3659 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3660 	 * also be used as part of restoring nVMX state for
3661 	 * snapshot restore (migration).
3662 	 *
3663 	 * In this flow, it is assumed that vmcs12 cache was
3664 	 * transferred as part of captured nVMX state and should
3665 	 * therefore not be read from guest memory (which may not
3666 	 * exist on destination host yet).
3667 	 */
3668 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3669 
3670 	switch (vmcs12->guest_activity_state) {
3671 	case GUEST_ACTIVITY_HLT:
3672 		/*
3673 		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3674 		 * awakened by event injection or by an NMI-window VM-exit or
3675 		 * by an interrupt-window VM-exit, halt the vcpu.
3676 		 */
3677 		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3678 		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3679 		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3680 		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3681 			vmx->nested.nested_run_pending = 0;
3682 			return kvm_emulate_halt_noskip(vcpu);
3683 		}
3684 		break;
3685 	case GUEST_ACTIVITY_WAIT_SIPI:
3686 		vmx->nested.nested_run_pending = 0;
3687 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3688 		break;
3689 	default:
3690 		break;
3691 	}
3692 
3693 	return 1;
3694 
3695 vmentry_failed:
3696 	vmx->nested.nested_run_pending = 0;
3697 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3698 		return 0;
3699 	if (status == NVMX_VMENTRY_VMEXIT)
3700 		return 1;
3701 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3702 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3703 }
3704 
3705 /*
3706  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3707  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3708  * This function returns the new value we should put in vmcs12.guest_cr0.
3709  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3710  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3711  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3712  *     didn't trap the bit, because if L1 did, so would L0).
3713  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3714  *     been modified by L2, and L1 knows it. So just leave the old value of
3715  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3716  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3717  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3718  *     changed these bits, and therefore they need to be updated, but L0
3719  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3720  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3721  */
3722 static inline unsigned long
3723 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3724 {
3725 	return
3726 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3727 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3728 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3729 			vcpu->arch.cr0_guest_owned_bits));
3730 }
3731 
3732 static inline unsigned long
3733 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3734 {
3735 	return
3736 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3737 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3738 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3739 			vcpu->arch.cr4_guest_owned_bits));
3740 }
3741 
3742 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3743 				      struct vmcs12 *vmcs12,
3744 				      u32 vm_exit_reason, u32 exit_intr_info)
3745 {
3746 	u32 idt_vectoring;
3747 	unsigned int nr;
3748 
3749 	/*
3750 	 * Per the SDM, VM-Exits due to double and triple faults are never
3751 	 * considered to occur during event delivery, even if the double/triple
3752 	 * fault is the result of an escalating vectoring issue.
3753 	 *
3754 	 * Note, the SDM qualifies the double fault behavior with "The original
3755 	 * event results in a double-fault exception".  It's unclear why the
3756 	 * qualification exists since exits due to double fault can occur only
3757 	 * while vectoring a different exception (injected events are never
3758 	 * subject to interception), i.e. there's _always_ an original event.
3759 	 *
3760 	 * The SDM also uses NMI as a confusing example for the "original event
3761 	 * causes the VM exit directly" clause.  NMI isn't special in any way,
3762 	 * the same rule applies to all events that cause an exit directly.
3763 	 * NMI is an odd choice for the example because NMIs can only occur on
3764 	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3765 	 */
3766 	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3767 	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3768 	     is_double_fault(exit_intr_info))) {
3769 		vmcs12->idt_vectoring_info_field = 0;
3770 	} else if (vcpu->arch.exception.injected) {
3771 		nr = vcpu->arch.exception.vector;
3772 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3773 
3774 		if (kvm_exception_is_soft(nr)) {
3775 			vmcs12->vm_exit_instruction_len =
3776 				vcpu->arch.event_exit_inst_len;
3777 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3778 		} else
3779 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3780 
3781 		if (vcpu->arch.exception.has_error_code) {
3782 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3783 			vmcs12->idt_vectoring_error_code =
3784 				vcpu->arch.exception.error_code;
3785 		}
3786 
3787 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3788 	} else if (vcpu->arch.nmi_injected) {
3789 		vmcs12->idt_vectoring_info_field =
3790 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3791 	} else if (vcpu->arch.interrupt.injected) {
3792 		nr = vcpu->arch.interrupt.nr;
3793 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3794 
3795 		if (vcpu->arch.interrupt.soft) {
3796 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3797 			vmcs12->vm_entry_instruction_len =
3798 				vcpu->arch.event_exit_inst_len;
3799 		} else
3800 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3801 
3802 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3803 	} else {
3804 		vmcs12->idt_vectoring_info_field = 0;
3805 	}
3806 }
3807 
3808 
3809 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3810 {
3811 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3812 	gfn_t gfn;
3813 
3814 	/*
3815 	 * Don't need to mark the APIC access page dirty; it is never
3816 	 * written to by the CPU during APIC virtualization.
3817 	 */
3818 
3819 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3820 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3821 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3822 	}
3823 
3824 	if (nested_cpu_has_posted_intr(vmcs12)) {
3825 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3826 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3827 	}
3828 }
3829 
3830 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3831 {
3832 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3833 	int max_irr;
3834 	void *vapic_page;
3835 	u16 status;
3836 
3837 	if (!vmx->nested.pi_pending)
3838 		return 0;
3839 
3840 	if (!vmx->nested.pi_desc)
3841 		goto mmio_needed;
3842 
3843 	vmx->nested.pi_pending = false;
3844 
3845 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3846 		return 0;
3847 
3848 	max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3849 	if (max_irr > 0) {
3850 		vapic_page = vmx->nested.virtual_apic_map.hva;
3851 		if (!vapic_page)
3852 			goto mmio_needed;
3853 
3854 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3855 			vapic_page, &max_irr);
3856 		status = vmcs_read16(GUEST_INTR_STATUS);
3857 		if ((u8)max_irr > ((u8)status & 0xff)) {
3858 			status &= ~0xff;
3859 			status |= (u8)max_irr;
3860 			vmcs_write16(GUEST_INTR_STATUS, status);
3861 		}
3862 	}
3863 
3864 	nested_mark_vmcs12_pages_dirty(vcpu);
3865 	return 0;
3866 
3867 mmio_needed:
3868 	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3869 	return -ENXIO;
3870 }
3871 
3872 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3873 {
3874 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3875 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3876 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3877 	unsigned long exit_qual;
3878 
3879 	if (ex->has_payload) {
3880 		exit_qual = ex->payload;
3881 	} else if (ex->vector == PF_VECTOR) {
3882 		exit_qual = vcpu->arch.cr2;
3883 	} else if (ex->vector == DB_VECTOR) {
3884 		exit_qual = vcpu->arch.dr6;
3885 		exit_qual &= ~DR6_BT;
3886 		exit_qual ^= DR6_ACTIVE_LOW;
3887 	} else {
3888 		exit_qual = 0;
3889 	}
3890 
3891 	/*
3892 	 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3893 	 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3894 	 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3895 	 */
3896 	if (ex->has_error_code && is_protmode(vcpu)) {
3897 		/*
3898 		 * Intel CPUs do not generate error codes with bits 31:16 set,
3899 		 * and more importantly VMX disallows setting bits 31:16 in the
3900 		 * injected error code for VM-Entry.  Drop the bits to mimic
3901 		 * hardware and avoid inducing failure on nested VM-Entry if L1
3902 		 * chooses to inject the exception back to L2.  AMD CPUs _do_
3903 		 * generate "full" 32-bit error codes, so KVM allows userspace
3904 		 * to inject exception error codes with bits 31:16 set.
3905 		 */
3906 		vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3907 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3908 	}
3909 
3910 	if (kvm_exception_is_soft(ex->vector))
3911 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3912 	else
3913 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3914 
3915 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3916 	    vmx_get_nmi_mask(vcpu))
3917 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3918 
3919 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3920 }
3921 
3922 /*
3923  * Returns true if a debug trap is (likely) pending delivery.  Infer the class
3924  * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
3925  * Using the payload is flawed because code breakpoints (fault-like) and data
3926  * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
3927  * this will return false positives if a to-be-injected code breakpoint #DB is
3928  * pending (from KVM's perspective, but not "pending" across an instruction
3929  * boundary).  ICEBP, a.k.a. INT1, is also not reflected here even though it
3930  * too is trap-like.
3931  *
3932  * KVM "works" despite these flaws as ICEBP isn't currently supported by the
3933  * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
3934  * #DB has already happened), and MTF isn't marked pending on code breakpoints
3935  * from the emulator (because such #DBs are fault-like and thus don't trigger
3936  * actions that fire on instruction retire).
3937  */
3938 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
3939 {
3940 	if (!ex->pending || ex->vector != DB_VECTOR)
3941 		return 0;
3942 
3943 	/* General Detect #DBs are always fault-like. */
3944 	return ex->payload & ~DR6_BD;
3945 }
3946 
3947 /*
3948  * Returns true if there's a pending #DB exception that is lower priority than
3949  * a pending Monitor Trap Flag VM-Exit.  TSS T-flag #DBs are not emulated by
3950  * KVM, but could theoretically be injected by userspace.  Note, this code is
3951  * imperfect, see above.
3952  */
3953 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
3954 {
3955 	return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
3956 }
3957 
3958 /*
3959  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3960  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3961  * represents these debug traps with a payload that is said to be compatible
3962  * with the 'pending debug exceptions' field, write the payload to the VMCS
3963  * field if a VM-exit is delivered before the debug trap.
3964  */
3965 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3966 {
3967 	unsigned long pending_dbg;
3968 
3969 	pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
3970 	if (pending_dbg)
3971 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
3972 }
3973 
3974 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3975 {
3976 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3977 	       to_vmx(vcpu)->nested.preemption_timer_expired;
3978 }
3979 
3980 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
3981 {
3982 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3983 	void *vapic = vmx->nested.virtual_apic_map.hva;
3984 	int max_irr, vppr;
3985 
3986 	if (nested_vmx_preemption_timer_pending(vcpu) ||
3987 	    vmx->nested.mtf_pending)
3988 		return true;
3989 
3990 	/*
3991 	 * Virtual Interrupt Delivery doesn't require manual injection.  Either
3992 	 * the interrupt is already in GUEST_RVI and will be recognized by CPU
3993 	 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
3994 	 * the interrupt from the PIR to RVI prior to entering the guest.
3995 	 */
3996 	if (for_injection)
3997 		return false;
3998 
3999 	if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4000 	    __vmx_interrupt_blocked(vcpu))
4001 		return false;
4002 
4003 	if (!vapic)
4004 		return false;
4005 
4006 	vppr = *((u32 *)(vapic + APIC_PROCPRI));
4007 
4008 	if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4009 	    pi_test_on(vmx->nested.pi_desc)) {
4010 		max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4011 		if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4012 			return true;
4013 	}
4014 
4015 	return false;
4016 }
4017 
4018 /*
4019  * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4020  * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4021  * and less minor edits to splice in the priority of VMX Non-Root specific
4022  * events, e.g. MTF and NMI/INTR-window exiting.
4023  *
4024  * 1 Hardware Reset and Machine Checks
4025  *	- RESET
4026  *	- Machine Check
4027  *
4028  * 2 Trap on Task Switch
4029  *	- T flag in TSS is set (on task switch)
4030  *
4031  * 3 External Hardware Interventions
4032  *	- FLUSH
4033  *	- STOPCLK
4034  *	- SMI
4035  *	- INIT
4036  *
4037  * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4038  *
4039  * 4 Traps on Previous Instruction
4040  *	- Breakpoints
4041  *	- Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4042  *	  breakpoint, or #DB due to a split-lock access)
4043  *
4044  * 4.3	VMX-preemption timer expired VM-exit
4045  *
4046  * 4.6	NMI-window exiting VM-exit[2]
4047  *
4048  * 5 Nonmaskable Interrupts (NMI)
4049  *
4050  * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4051  *
4052  * 6 Maskable Hardware Interrupts
4053  *
4054  * 7 Code Breakpoint Fault
4055  *
4056  * 8 Faults from Fetching Next Instruction
4057  *	- Code-Segment Limit Violation
4058  *	- Code Page Fault
4059  *	- Control protection exception (missing ENDBRANCH at target of indirect
4060  *					call or jump)
4061  *
4062  * 9 Faults from Decoding Next Instruction
4063  *	- Instruction length > 15 bytes
4064  *	- Invalid Opcode
4065  *	- Coprocessor Not Available
4066  *
4067  *10 Faults on Executing Instruction
4068  *	- Overflow
4069  *	- Bound error
4070  *	- Invalid TSS
4071  *	- Segment Not Present
4072  *	- Stack fault
4073  *	- General Protection
4074  *	- Data Page Fault
4075  *	- Alignment Check
4076  *	- x86 FPU Floating-point exception
4077  *	- SIMD floating-point exception
4078  *	- Virtualization exception
4079  *	- Control protection exception
4080  *
4081  * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4082  *     INIT signals, and higher priority events take priority over MTF VM exits.
4083  *     MTF VM exits take priority over debug-trap exceptions and lower priority
4084  *     events.
4085  *
4086  * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4087  *     caused by the VMX-preemption timer.  VM exits caused by the VMX-preemption
4088  *     timer take priority over VM exits caused by the "NMI-window exiting"
4089  *     VM-execution control and lower priority events.
4090  *
4091  * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4092  *     caused by "NMI-window exiting".  VM exits caused by this control take
4093  *     priority over non-maskable interrupts (NMIs) and lower priority events.
4094  *
4095  * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4096  *     the 1-setting of the "interrupt-window exiting" VM-execution control.  Thus,
4097  *     non-maskable interrupts (NMIs) and higher priority events take priority over
4098  *     delivery of a virtual interrupt; delivery of a virtual interrupt takes
4099  *     priority over external interrupts and lower priority events.
4100  */
4101 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4102 {
4103 	struct kvm_lapic *apic = vcpu->arch.apic;
4104 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4105 	/*
4106 	 * Only a pending nested run blocks a pending exception.  If there is a
4107 	 * previously injected event, the pending exception occurred while said
4108 	 * event was being delivered and thus needs to be handled.
4109 	 */
4110 	bool block_nested_exceptions = vmx->nested.nested_run_pending;
4111 	/*
4112 	 * New events (not exceptions) are only recognized at instruction
4113 	 * boundaries.  If an event needs reinjection, then KVM is handling a
4114 	 * VM-Exit that occurred _during_ instruction execution; new events are
4115 	 * blocked until the instruction completes.
4116 	 */
4117 	bool block_nested_events = block_nested_exceptions ||
4118 				   kvm_event_needs_reinjection(vcpu);
4119 
4120 	if (lapic_in_kernel(vcpu) &&
4121 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4122 		if (block_nested_events)
4123 			return -EBUSY;
4124 		nested_vmx_update_pending_dbg(vcpu);
4125 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
4126 		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4127 			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4128 
4129 		/* MTF is discarded if the vCPU is in WFS. */
4130 		vmx->nested.mtf_pending = false;
4131 		return 0;
4132 	}
4133 
4134 	if (lapic_in_kernel(vcpu) &&
4135 	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4136 		if (block_nested_events)
4137 			return -EBUSY;
4138 
4139 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4140 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4141 			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4142 						apic->sipi_vector & 0xFFUL);
4143 			return 0;
4144 		}
4145 		/* Fallthrough, the SIPI is completely ignored. */
4146 	}
4147 
4148 	/*
4149 	 * Process exceptions that are higher priority than Monitor Trap Flag:
4150 	 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4151 	 * could theoretically come in from userspace), and ICEBP (INT1).
4152 	 *
4153 	 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4154 	 * for TSS T flag #DBs).  KVM also doesn't save/restore pending MTF
4155 	 * across SMI/RSM as it should; that needs to be addressed in order to
4156 	 * prioritize SMI over MTF and trap-like #DBs.
4157 	 */
4158 	if (vcpu->arch.exception_vmexit.pending &&
4159 	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4160 		if (block_nested_exceptions)
4161 			return -EBUSY;
4162 
4163 		nested_vmx_inject_exception_vmexit(vcpu);
4164 		return 0;
4165 	}
4166 
4167 	if (vcpu->arch.exception.pending &&
4168 	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4169 		if (block_nested_exceptions)
4170 			return -EBUSY;
4171 		goto no_vmexit;
4172 	}
4173 
4174 	if (vmx->nested.mtf_pending) {
4175 		if (block_nested_events)
4176 			return -EBUSY;
4177 		nested_vmx_update_pending_dbg(vcpu);
4178 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4179 		return 0;
4180 	}
4181 
4182 	if (vcpu->arch.exception_vmexit.pending) {
4183 		if (block_nested_exceptions)
4184 			return -EBUSY;
4185 
4186 		nested_vmx_inject_exception_vmexit(vcpu);
4187 		return 0;
4188 	}
4189 
4190 	if (vcpu->arch.exception.pending) {
4191 		if (block_nested_exceptions)
4192 			return -EBUSY;
4193 		goto no_vmexit;
4194 	}
4195 
4196 	if (nested_vmx_preemption_timer_pending(vcpu)) {
4197 		if (block_nested_events)
4198 			return -EBUSY;
4199 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4200 		return 0;
4201 	}
4202 
4203 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4204 		if (block_nested_events)
4205 			return -EBUSY;
4206 		goto no_vmexit;
4207 	}
4208 
4209 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4210 		if (block_nested_events)
4211 			return -EBUSY;
4212 		if (!nested_exit_on_nmi(vcpu))
4213 			goto no_vmexit;
4214 
4215 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4216 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
4217 				  INTR_INFO_VALID_MASK, 0);
4218 		/*
4219 		 * The NMI-triggered VM exit counts as injection:
4220 		 * clear this one and block further NMIs.
4221 		 */
4222 		vcpu->arch.nmi_pending = 0;
4223 		vmx_set_nmi_mask(vcpu, true);
4224 		return 0;
4225 	}
4226 
4227 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4228 		if (block_nested_events)
4229 			return -EBUSY;
4230 		if (!nested_exit_on_intr(vcpu))
4231 			goto no_vmexit;
4232 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4233 		return 0;
4234 	}
4235 
4236 no_vmexit:
4237 	return vmx_complete_nested_posted_interrupt(vcpu);
4238 }
4239 
4240 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4241 {
4242 	ktime_t remaining =
4243 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4244 	u64 value;
4245 
4246 	if (ktime_to_ns(remaining) <= 0)
4247 		return 0;
4248 
4249 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4250 	do_div(value, 1000000);
4251 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4252 }
4253 
4254 static bool is_vmcs12_ext_field(unsigned long field)
4255 {
4256 	switch (field) {
4257 	case GUEST_ES_SELECTOR:
4258 	case GUEST_CS_SELECTOR:
4259 	case GUEST_SS_SELECTOR:
4260 	case GUEST_DS_SELECTOR:
4261 	case GUEST_FS_SELECTOR:
4262 	case GUEST_GS_SELECTOR:
4263 	case GUEST_LDTR_SELECTOR:
4264 	case GUEST_TR_SELECTOR:
4265 	case GUEST_ES_LIMIT:
4266 	case GUEST_CS_LIMIT:
4267 	case GUEST_SS_LIMIT:
4268 	case GUEST_DS_LIMIT:
4269 	case GUEST_FS_LIMIT:
4270 	case GUEST_GS_LIMIT:
4271 	case GUEST_LDTR_LIMIT:
4272 	case GUEST_TR_LIMIT:
4273 	case GUEST_GDTR_LIMIT:
4274 	case GUEST_IDTR_LIMIT:
4275 	case GUEST_ES_AR_BYTES:
4276 	case GUEST_DS_AR_BYTES:
4277 	case GUEST_FS_AR_BYTES:
4278 	case GUEST_GS_AR_BYTES:
4279 	case GUEST_LDTR_AR_BYTES:
4280 	case GUEST_TR_AR_BYTES:
4281 	case GUEST_ES_BASE:
4282 	case GUEST_CS_BASE:
4283 	case GUEST_SS_BASE:
4284 	case GUEST_DS_BASE:
4285 	case GUEST_FS_BASE:
4286 	case GUEST_GS_BASE:
4287 	case GUEST_LDTR_BASE:
4288 	case GUEST_TR_BASE:
4289 	case GUEST_GDTR_BASE:
4290 	case GUEST_IDTR_BASE:
4291 	case GUEST_PENDING_DBG_EXCEPTIONS:
4292 	case GUEST_BNDCFGS:
4293 		return true;
4294 	default:
4295 		break;
4296 	}
4297 
4298 	return false;
4299 }
4300 
4301 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4302 				       struct vmcs12 *vmcs12)
4303 {
4304 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4305 
4306 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4307 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4308 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4309 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4310 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4311 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4312 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4313 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4314 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4315 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4316 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4317 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4318 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4319 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4320 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4321 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4322 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4323 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4324 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4325 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4326 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4327 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4328 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4329 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4330 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4331 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4332 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4333 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4334 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4335 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4336 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4337 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4338 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4339 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4340 	vmcs12->guest_pending_dbg_exceptions =
4341 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4342 
4343 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4344 }
4345 
4346 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4347 				       struct vmcs12 *vmcs12)
4348 {
4349 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4350 	int cpu;
4351 
4352 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4353 		return;
4354 
4355 
4356 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4357 
4358 	cpu = get_cpu();
4359 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4360 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4361 
4362 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4363 
4364 	vmx->loaded_vmcs = &vmx->vmcs01;
4365 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4366 	put_cpu();
4367 }
4368 
4369 /*
4370  * Update the guest state fields of vmcs12 to reflect changes that
4371  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4372  * VM-entry controls is also updated, since this is really a guest
4373  * state bit.)
4374  */
4375 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4376 {
4377 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4378 
4379 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4380 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4381 
4382 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4383 		!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4384 
4385 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4386 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4387 
4388 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4389 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4390 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4391 
4392 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4393 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4394 
4395 	vmcs12->guest_interruptibility_info =
4396 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4397 
4398 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4399 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4400 	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4401 		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4402 	else
4403 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4404 
4405 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4406 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4407 	    !vmx->nested.nested_run_pending)
4408 		vmcs12->vmx_preemption_timer_value =
4409 			vmx_get_preemption_timer_value(vcpu);
4410 
4411 	/*
4412 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4413 	 * own CR3 without exiting. If it has changed it, we must keep it.
4414 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4415 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4416 	 *
4417 	 * Additionally, restore L2's PDPTR to vmcs12.
4418 	 */
4419 	if (enable_ept) {
4420 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4421 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4422 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4423 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4424 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4425 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4426 		}
4427 	}
4428 
4429 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4430 
4431 	if (nested_cpu_has_vid(vmcs12))
4432 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4433 
4434 	vmcs12->vm_entry_controls =
4435 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4436 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4437 
4438 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4439 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4440 
4441 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4442 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4443 }
4444 
4445 /*
4446  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4447  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4448  * and this function updates it to reflect the changes to the guest state while
4449  * L2 was running (and perhaps made some exits which were handled directly by L0
4450  * without going back to L1), and to reflect the exit reason.
4451  * Note that we do not have to copy here all VMCS fields, just those that
4452  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4453  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4454  * which already writes to vmcs12 directly.
4455  */
4456 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4457 			   u32 vm_exit_reason, u32 exit_intr_info,
4458 			   unsigned long exit_qualification)
4459 {
4460 	/* update exit information fields: */
4461 	vmcs12->vm_exit_reason = vm_exit_reason;
4462 	if (to_vmx(vcpu)->exit_reason.enclave_mode)
4463 		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4464 	vmcs12->exit_qualification = exit_qualification;
4465 
4466 	/*
4467 	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4468 	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4469 	 * exit info fields are unmodified.
4470 	 */
4471 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4472 		vmcs12->launch_state = 1;
4473 
4474 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4475 		 * instead of reading the real value. */
4476 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4477 
4478 		/*
4479 		 * Transfer the event that L0 or L1 may wanted to inject into
4480 		 * L2 to IDT_VECTORING_INFO_FIELD.
4481 		 */
4482 		vmcs12_save_pending_event(vcpu, vmcs12,
4483 					  vm_exit_reason, exit_intr_info);
4484 
4485 		vmcs12->vm_exit_intr_info = exit_intr_info;
4486 		vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4487 		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4488 
4489 		/*
4490 		 * According to spec, there's no need to store the guest's
4491 		 * MSRs if the exit is due to a VM-entry failure that occurs
4492 		 * during or after loading the guest state. Since this exit
4493 		 * does not fall in that category, we need to save the MSRs.
4494 		 */
4495 		if (nested_vmx_store_msr(vcpu,
4496 					 vmcs12->vm_exit_msr_store_addr,
4497 					 vmcs12->vm_exit_msr_store_count))
4498 			nested_vmx_abort(vcpu,
4499 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4500 	}
4501 }
4502 
4503 /*
4504  * A part of what we need to when the nested L2 guest exits and we want to
4505  * run its L1 parent, is to reset L1's guest state to the host state specified
4506  * in vmcs12.
4507  * This function is to be called not only on normal nested exit, but also on
4508  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4509  * Failures During or After Loading Guest State").
4510  * This function should be called when the active VMCS is L1's (vmcs01).
4511  */
4512 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4513 				   struct vmcs12 *vmcs12)
4514 {
4515 	enum vm_entry_failure_code ignored;
4516 	struct kvm_segment seg;
4517 
4518 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4519 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4520 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4521 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4522 	else
4523 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4524 	vmx_set_efer(vcpu, vcpu->arch.efer);
4525 
4526 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4527 	kvm_rip_write(vcpu, vmcs12->host_rip);
4528 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4529 	vmx_set_interrupt_shadow(vcpu, 0);
4530 
4531 	/*
4532 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4533 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4534 	 *
4535 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4536 	 * (KVM doesn't change it);
4537 	 */
4538 	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4539 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4540 
4541 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4542 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4543 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4544 
4545 	nested_ept_uninit_mmu_context(vcpu);
4546 
4547 	/*
4548 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4549 	 * couldn't have changed.
4550 	 */
4551 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4552 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4553 
4554 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4555 
4556 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4557 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4558 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4559 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4560 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4561 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4562 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4563 
4564 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4565 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4566 		vmcs_write64(GUEST_BNDCFGS, 0);
4567 
4568 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4569 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4570 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4571 	}
4572 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4573 	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4574 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4575 					 vmcs12->host_ia32_perf_global_ctrl));
4576 
4577 	/* Set L1 segment info according to Intel SDM
4578 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4579 	seg = (struct kvm_segment) {
4580 		.base = 0,
4581 		.limit = 0xFFFFFFFF,
4582 		.selector = vmcs12->host_cs_selector,
4583 		.type = 11,
4584 		.present = 1,
4585 		.s = 1,
4586 		.g = 1
4587 	};
4588 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4589 		seg.l = 1;
4590 	else
4591 		seg.db = 1;
4592 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4593 	seg = (struct kvm_segment) {
4594 		.base = 0,
4595 		.limit = 0xFFFFFFFF,
4596 		.type = 3,
4597 		.present = 1,
4598 		.s = 1,
4599 		.db = 1,
4600 		.g = 1
4601 	};
4602 	seg.selector = vmcs12->host_ds_selector;
4603 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4604 	seg.selector = vmcs12->host_es_selector;
4605 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4606 	seg.selector = vmcs12->host_ss_selector;
4607 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4608 	seg.selector = vmcs12->host_fs_selector;
4609 	seg.base = vmcs12->host_fs_base;
4610 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4611 	seg.selector = vmcs12->host_gs_selector;
4612 	seg.base = vmcs12->host_gs_base;
4613 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4614 	seg = (struct kvm_segment) {
4615 		.base = vmcs12->host_tr_base,
4616 		.limit = 0x67,
4617 		.selector = vmcs12->host_tr_selector,
4618 		.type = 11,
4619 		.present = 1
4620 	};
4621 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4622 
4623 	memset(&seg, 0, sizeof(seg));
4624 	seg.unusable = 1;
4625 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4626 
4627 	kvm_set_dr(vcpu, 7, 0x400);
4628 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4629 
4630 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4631 				vmcs12->vm_exit_msr_load_count))
4632 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4633 
4634 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4635 }
4636 
4637 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4638 {
4639 	struct vmx_uret_msr *efer_msr;
4640 	unsigned int i;
4641 
4642 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4643 		return vmcs_read64(GUEST_IA32_EFER);
4644 
4645 	if (cpu_has_load_ia32_efer())
4646 		return host_efer;
4647 
4648 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4649 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4650 			return vmx->msr_autoload.guest.val[i].value;
4651 	}
4652 
4653 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4654 	if (efer_msr)
4655 		return efer_msr->data;
4656 
4657 	return host_efer;
4658 }
4659 
4660 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4661 {
4662 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4663 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4664 	struct vmx_msr_entry g, h;
4665 	gpa_t gpa;
4666 	u32 i, j;
4667 
4668 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4669 
4670 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4671 		/*
4672 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4673 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4674 		 * and vcpu->arch.dr7 is not squirreled away before the
4675 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4676 		 */
4677 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4678 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4679 		else
4680 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4681 	}
4682 
4683 	/*
4684 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4685 	 * handle a variety of side effects to KVM's software model.
4686 	 */
4687 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4688 
4689 	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4690 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4691 
4692 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4693 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4694 
4695 	nested_ept_uninit_mmu_context(vcpu);
4696 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4697 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4698 
4699 	/*
4700 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4701 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4702 	 * VMFail, like everything else we just need to ensure our
4703 	 * software model is up-to-date.
4704 	 */
4705 	if (enable_ept && is_pae_paging(vcpu))
4706 		ept_save_pdptrs(vcpu);
4707 
4708 	kvm_mmu_reset_context(vcpu);
4709 
4710 	/*
4711 	 * This nasty bit of open coding is a compromise between blindly
4712 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4713 	 * of VMFail), leaving the nested VM's MSRs in the software model
4714 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4715 	 * expensive since the lists are unbound by hardware).  For each
4716 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4717 	 * list, reload it from the exit load list if it exists and differs
4718 	 * from the guest value.  The intent is to stuff host state as
4719 	 * silently as possible, not to fully process the exit load list.
4720 	 */
4721 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4722 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4723 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4724 			pr_debug_ratelimited(
4725 				"%s read MSR index failed (%u, 0x%08llx)\n",
4726 				__func__, i, gpa);
4727 			goto vmabort;
4728 		}
4729 
4730 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4731 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4732 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4733 				pr_debug_ratelimited(
4734 					"%s read MSR failed (%u, 0x%08llx)\n",
4735 					__func__, j, gpa);
4736 				goto vmabort;
4737 			}
4738 			if (h.index != g.index)
4739 				continue;
4740 			if (h.value == g.value)
4741 				break;
4742 
4743 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4744 				pr_debug_ratelimited(
4745 					"%s check failed (%u, 0x%x, 0x%x)\n",
4746 					__func__, j, h.index, h.reserved);
4747 				goto vmabort;
4748 			}
4749 
4750 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4751 				pr_debug_ratelimited(
4752 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4753 					__func__, j, h.index, h.value);
4754 				goto vmabort;
4755 			}
4756 		}
4757 	}
4758 
4759 	return;
4760 
4761 vmabort:
4762 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4763 }
4764 
4765 /*
4766  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4767  * and modify vmcs12 to make it see what it would expect to see there if
4768  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4769  */
4770 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4771 		       u32 exit_intr_info, unsigned long exit_qualification)
4772 {
4773 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4774 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4775 
4776 	/* Pending MTF traps are discarded on VM-Exit. */
4777 	vmx->nested.mtf_pending = false;
4778 
4779 	/* trying to cancel vmlaunch/vmresume is a bug */
4780 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4781 
4782 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4783 		/*
4784 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4785 		 * Enlightened VMCS after migration and we still need to
4786 		 * do that when something is forcing L2->L1 exit prior to
4787 		 * the first L2 run.
4788 		 */
4789 		(void)nested_get_evmcs_page(vcpu);
4790 	}
4791 
4792 	/* Service pending TLB flush requests for L2 before switching to L1. */
4793 	kvm_service_local_tlb_flush_requests(vcpu);
4794 
4795 	/*
4796 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4797 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4798 	 * up-to-date before switching to L1.
4799 	 */
4800 	if (enable_ept && is_pae_paging(vcpu))
4801 		vmx_ept_load_pdptrs(vcpu);
4802 
4803 	leave_guest_mode(vcpu);
4804 
4805 	if (nested_cpu_has_preemption_timer(vmcs12))
4806 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4807 
4808 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4809 		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4810 		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4811 			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4812 	}
4813 
4814 	if (likely(!vmx->fail)) {
4815 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4816 
4817 		if (vm_exit_reason != -1)
4818 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4819 				       exit_intr_info, exit_qualification);
4820 
4821 		/*
4822 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4823 		 * also be used to capture vmcs12 cache as part of
4824 		 * capturing nVMX state for snapshot (migration).
4825 		 *
4826 		 * Otherwise, this flush will dirty guest memory at a
4827 		 * point it is already assumed by user-space to be
4828 		 * immutable.
4829 		 */
4830 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4831 	} else {
4832 		/*
4833 		 * The only expected VM-instruction error is "VM entry with
4834 		 * invalid control field(s)." Anything else indicates a
4835 		 * problem with L0.  And we should never get here with a
4836 		 * VMFail of any type if early consistency checks are enabled.
4837 		 */
4838 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4839 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4840 		WARN_ON_ONCE(nested_early_check);
4841 	}
4842 
4843 	/*
4844 	 * Drop events/exceptions that were queued for re-injection to L2
4845 	 * (picked up via vmx_complete_interrupts()), as well as exceptions
4846 	 * that were pending for L2.  Note, this must NOT be hoisted above
4847 	 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4848 	 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4849 	 */
4850 	vcpu->arch.nmi_injected = false;
4851 	kvm_clear_exception_queue(vcpu);
4852 	kvm_clear_interrupt_queue(vcpu);
4853 
4854 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4855 
4856 	/*
4857 	 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4858 	 * branch predictors when transitioning from L2 to L1, as L1 expects
4859 	 * hardware (KVM in this case) to provide separate predictor modes.
4860 	 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4861 	 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4862 	 * separate modes for L2 vs L1.
4863 	 */
4864 	if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4865 		indirect_branch_prediction_barrier();
4866 
4867 	/* Update any VMCS fields that might have changed while L2 ran */
4868 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4869 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4870 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4871 	if (kvm_caps.has_tsc_control)
4872 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4873 
4874 	if (vmx->nested.l1_tpr_threshold != -1)
4875 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4876 
4877 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4878 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4879 		vmx_set_virtual_apic_mode(vcpu);
4880 	}
4881 
4882 	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4883 		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4884 		vmx_update_cpu_dirty_logging(vcpu);
4885 	}
4886 
4887 	/* Unpin physical memory we referred to in vmcs02 */
4888 	kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
4889 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4890 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4891 	vmx->nested.pi_desc = NULL;
4892 
4893 	if (vmx->nested.reload_vmcs01_apic_access_page) {
4894 		vmx->nested.reload_vmcs01_apic_access_page = false;
4895 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4896 	}
4897 
4898 	if (vmx->nested.update_vmcs01_apicv_status) {
4899 		vmx->nested.update_vmcs01_apicv_status = false;
4900 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4901 	}
4902 
4903 	if ((vm_exit_reason != -1) &&
4904 	    (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4905 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4906 
4907 	/* in case we halted in L2 */
4908 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4909 
4910 	if (likely(!vmx->fail)) {
4911 		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4912 		    nested_exit_intr_ack_set(vcpu)) {
4913 			int irq = kvm_cpu_get_interrupt(vcpu);
4914 			WARN_ON(irq < 0);
4915 			vmcs12->vm_exit_intr_info = irq |
4916 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4917 		}
4918 
4919 		if (vm_exit_reason != -1)
4920 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4921 						       vmcs12->exit_qualification,
4922 						       vmcs12->idt_vectoring_info_field,
4923 						       vmcs12->vm_exit_intr_info,
4924 						       vmcs12->vm_exit_intr_error_code,
4925 						       KVM_ISA_VMX);
4926 
4927 		load_vmcs12_host_state(vcpu, vmcs12);
4928 
4929 		return;
4930 	}
4931 
4932 	/*
4933 	 * After an early L2 VM-entry failure, we're now back
4934 	 * in L1 which thinks it just finished a VMLAUNCH or
4935 	 * VMRESUME instruction, so we need to set the failure
4936 	 * flag and the VM-instruction error field of the VMCS
4937 	 * accordingly, and skip the emulated instruction.
4938 	 */
4939 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4940 
4941 	/*
4942 	 * Restore L1's host state to KVM's software model.  We're here
4943 	 * because a consistency check was caught by hardware, which
4944 	 * means some amount of guest state has been propagated to KVM's
4945 	 * model and needs to be unwound to the host's state.
4946 	 */
4947 	nested_vmx_restore_host_state(vcpu);
4948 
4949 	vmx->fail = 0;
4950 }
4951 
4952 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4953 {
4954 	kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4955 	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4956 }
4957 
4958 /*
4959  * Decode the memory-address operand of a vmx instruction, as recorded on an
4960  * exit caused by such an instruction (run by a guest hypervisor).
4961  * On success, returns 0. When the operand is invalid, returns 1 and throws
4962  * #UD, #GP, or #SS.
4963  */
4964 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4965 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4966 {
4967 	gva_t off;
4968 	bool exn;
4969 	struct kvm_segment s;
4970 
4971 	/*
4972 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4973 	 * Execution", on an exit, vmx_instruction_info holds most of the
4974 	 * addressing components of the operand. Only the displacement part
4975 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4976 	 * For how an actual address is calculated from all these components,
4977 	 * refer to Vol. 1, "Operand Addressing".
4978 	 */
4979 	int  scaling = vmx_instruction_info & 3;
4980 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4981 	bool is_reg = vmx_instruction_info & (1u << 10);
4982 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4983 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4984 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4985 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4986 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4987 
4988 	if (is_reg) {
4989 		kvm_queue_exception(vcpu, UD_VECTOR);
4990 		return 1;
4991 	}
4992 
4993 	/* Addr = segment_base + offset */
4994 	/* offset = base + [index * scale] + displacement */
4995 	off = exit_qualification; /* holds the displacement */
4996 	if (addr_size == 1)
4997 		off = (gva_t)sign_extend64(off, 31);
4998 	else if (addr_size == 0)
4999 		off = (gva_t)sign_extend64(off, 15);
5000 	if (base_is_valid)
5001 		off += kvm_register_read(vcpu, base_reg);
5002 	if (index_is_valid)
5003 		off += kvm_register_read(vcpu, index_reg) << scaling;
5004 	vmx_get_segment(vcpu, &s, seg_reg);
5005 
5006 	/*
5007 	 * The effective address, i.e. @off, of a memory operand is truncated
5008 	 * based on the address size of the instruction.  Note that this is
5009 	 * the *effective address*, i.e. the address prior to accounting for
5010 	 * the segment's base.
5011 	 */
5012 	if (addr_size == 1) /* 32 bit */
5013 		off &= 0xffffffff;
5014 	else if (addr_size == 0) /* 16 bit */
5015 		off &= 0xffff;
5016 
5017 	/* Checks for #GP/#SS exceptions. */
5018 	exn = false;
5019 	if (is_long_mode(vcpu)) {
5020 		/*
5021 		 * The virtual/linear address is never truncated in 64-bit
5022 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5023 		 * address when using FS/GS with a non-zero base.
5024 		 */
5025 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5026 			*ret = s.base + off;
5027 		else
5028 			*ret = off;
5029 
5030 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
5031 		 * non-canonical form. This is the only check on the memory
5032 		 * destination for long mode!
5033 		 */
5034 		exn = is_noncanonical_address(*ret, vcpu);
5035 	} else {
5036 		/*
5037 		 * When not in long mode, the virtual/linear address is
5038 		 * unconditionally truncated to 32 bits regardless of the
5039 		 * address size.
5040 		 */
5041 		*ret = (s.base + off) & 0xffffffff;
5042 
5043 		/* Protected mode: apply checks for segment validity in the
5044 		 * following order:
5045 		 * - segment type check (#GP(0) may be thrown)
5046 		 * - usability check (#GP(0)/#SS(0))
5047 		 * - limit check (#GP(0)/#SS(0))
5048 		 */
5049 		if (wr)
5050 			/* #GP(0) if the destination operand is located in a
5051 			 * read-only data segment or any code segment.
5052 			 */
5053 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
5054 		else
5055 			/* #GP(0) if the source operand is located in an
5056 			 * execute-only code segment
5057 			 */
5058 			exn = ((s.type & 0xa) == 8);
5059 		if (exn) {
5060 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5061 			return 1;
5062 		}
5063 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5064 		 */
5065 		exn = (s.unusable != 0);
5066 
5067 		/*
5068 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5069 		 * outside the segment limit.  All CPUs that support VMX ignore
5070 		 * limit checks for flat segments, i.e. segments with base==0,
5071 		 * limit==0xffffffff and of type expand-up data or code.
5072 		 */
5073 		if (!(s.base == 0 && s.limit == 0xffffffff &&
5074 		     ((s.type & 8) || !(s.type & 4))))
5075 			exn = exn || ((u64)off + len - 1 > s.limit);
5076 	}
5077 	if (exn) {
5078 		kvm_queue_exception_e(vcpu,
5079 				      seg_reg == VCPU_SREG_SS ?
5080 						SS_VECTOR : GP_VECTOR,
5081 				      0);
5082 		return 1;
5083 	}
5084 
5085 	return 0;
5086 }
5087 
5088 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5089 				int *ret)
5090 {
5091 	gva_t gva;
5092 	struct x86_exception e;
5093 	int r;
5094 
5095 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5096 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
5097 				sizeof(*vmpointer), &gva)) {
5098 		*ret = 1;
5099 		return -EINVAL;
5100 	}
5101 
5102 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5103 	if (r != X86EMUL_CONTINUE) {
5104 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
5105 		return -EINVAL;
5106 	}
5107 
5108 	return 0;
5109 }
5110 
5111 /*
5112  * Allocate a shadow VMCS and associate it with the currently loaded
5113  * VMCS, unless such a shadow VMCS already exists. The newly allocated
5114  * VMCS is also VMCLEARed, so that it is ready for use.
5115  */
5116 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5117 {
5118 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5119 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5120 
5121 	/*
5122 	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5123 	 * when L1 executes VMXOFF or the vCPU is forced out of nested
5124 	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
5125 	 * should be impossible to already have an allocated shadow VMCS.  KVM
5126 	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5127 	 * always be the loaded VMCS.
5128 	 */
5129 	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5130 		return loaded_vmcs->shadow_vmcs;
5131 
5132 	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5133 	if (loaded_vmcs->shadow_vmcs)
5134 		vmcs_clear(loaded_vmcs->shadow_vmcs);
5135 
5136 	return loaded_vmcs->shadow_vmcs;
5137 }
5138 
5139 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5140 {
5141 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5142 	int r;
5143 
5144 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5145 	if (r < 0)
5146 		goto out_vmcs02;
5147 
5148 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5149 	if (!vmx->nested.cached_vmcs12)
5150 		goto out_cached_vmcs12;
5151 
5152 	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5153 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5154 	if (!vmx->nested.cached_shadow_vmcs12)
5155 		goto out_cached_shadow_vmcs12;
5156 
5157 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5158 		goto out_shadow_vmcs;
5159 
5160 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5161 		     HRTIMER_MODE_ABS_PINNED);
5162 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5163 
5164 	vmx->nested.vpid02 = allocate_vpid();
5165 
5166 	vmx->nested.vmcs02_initialized = false;
5167 	vmx->nested.vmxon = true;
5168 
5169 	if (vmx_pt_mode_is_host_guest()) {
5170 		vmx->pt_desc.guest.ctl = 0;
5171 		pt_update_intercept_for_msr(vcpu);
5172 	}
5173 
5174 	return 0;
5175 
5176 out_shadow_vmcs:
5177 	kfree(vmx->nested.cached_shadow_vmcs12);
5178 
5179 out_cached_shadow_vmcs12:
5180 	kfree(vmx->nested.cached_vmcs12);
5181 
5182 out_cached_vmcs12:
5183 	free_loaded_vmcs(&vmx->nested.vmcs02);
5184 
5185 out_vmcs02:
5186 	return -ENOMEM;
5187 }
5188 
5189 /* Emulate the VMXON instruction. */
5190 static int handle_vmxon(struct kvm_vcpu *vcpu)
5191 {
5192 	int ret;
5193 	gpa_t vmptr;
5194 	uint32_t revision;
5195 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5196 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5197 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5198 
5199 	/*
5200 	 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5201 	 * the guest and so cannot rely on hardware to perform the check,
5202 	 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5203 	 * for VMXON).
5204 	 *
5205 	 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5206 	 * and !COMPATIBILITY modes.  For an unrestricted guest, KVM doesn't
5207 	 * force any of the relevant guest state.  For a restricted guest, KVM
5208 	 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5209 	 * Real Mode, and so there's no need to check CR0.PE manually.
5210 	 */
5211 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5212 		kvm_queue_exception(vcpu, UD_VECTOR);
5213 		return 1;
5214 	}
5215 
5216 	/*
5217 	 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5218 	 * and has higher priority than the VM-Fail due to being post-VMXON,
5219 	 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0.  In VMX non-root,
5220 	 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5221 	 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5222 	 * VMX non-root.
5223 	 *
5224 	 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5225 	 * #UD checks (see above), is functionally ok because KVM doesn't allow
5226 	 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5227 	 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5228 	 * missed by hardware due to shadowing CR0 and/or CR4.
5229 	 */
5230 	if (vmx_get_cpl(vcpu)) {
5231 		kvm_inject_gp(vcpu, 0);
5232 		return 1;
5233 	}
5234 
5235 	if (vmx->nested.vmxon)
5236 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5237 
5238 	/*
5239 	 * Invalid CR0/CR4 generates #GP.  These checks are performed if and
5240 	 * only if the vCPU isn't already in VMX operation, i.e. effectively
5241 	 * have lower priority than the VM-Fail above.
5242 	 */
5243 	if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5244 	    !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5245 		kvm_inject_gp(vcpu, 0);
5246 		return 1;
5247 	}
5248 
5249 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5250 			!= VMXON_NEEDED_FEATURES) {
5251 		kvm_inject_gp(vcpu, 0);
5252 		return 1;
5253 	}
5254 
5255 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5256 		return ret;
5257 
5258 	/*
5259 	 * SDM 3: 24.11.5
5260 	 * The first 4 bytes of VMXON region contain the supported
5261 	 * VMCS revision identifier
5262 	 *
5263 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5264 	 * which replaces physical address width with 32
5265 	 */
5266 	if (!page_address_valid(vcpu, vmptr))
5267 		return nested_vmx_failInvalid(vcpu);
5268 
5269 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5270 	    revision != VMCS12_REVISION)
5271 		return nested_vmx_failInvalid(vcpu);
5272 
5273 	vmx->nested.vmxon_ptr = vmptr;
5274 	ret = enter_vmx_operation(vcpu);
5275 	if (ret)
5276 		return ret;
5277 
5278 	return nested_vmx_succeed(vcpu);
5279 }
5280 
5281 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5282 {
5283 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5284 
5285 	if (vmx->nested.current_vmptr == INVALID_GPA)
5286 		return;
5287 
5288 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5289 
5290 	if (enable_shadow_vmcs) {
5291 		/* copy to memory all shadowed fields in case
5292 		   they were modified */
5293 		copy_shadow_to_vmcs12(vmx);
5294 		vmx_disable_shadow_vmcs(vmx);
5295 	}
5296 	vmx->nested.posted_intr_nv = -1;
5297 
5298 	/* Flush VMCS12 to guest memory */
5299 	kvm_vcpu_write_guest_page(vcpu,
5300 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
5301 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5302 
5303 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5304 
5305 	vmx->nested.current_vmptr = INVALID_GPA;
5306 }
5307 
5308 /* Emulate the VMXOFF instruction */
5309 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5310 {
5311 	if (!nested_vmx_check_permission(vcpu))
5312 		return 1;
5313 
5314 	free_nested(vcpu);
5315 
5316 	if (kvm_apic_has_pending_init_or_sipi(vcpu))
5317 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5318 
5319 	return nested_vmx_succeed(vcpu);
5320 }
5321 
5322 /* Emulate the VMCLEAR instruction */
5323 static int handle_vmclear(struct kvm_vcpu *vcpu)
5324 {
5325 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5326 	u32 zero = 0;
5327 	gpa_t vmptr;
5328 	int r;
5329 
5330 	if (!nested_vmx_check_permission(vcpu))
5331 		return 1;
5332 
5333 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5334 		return r;
5335 
5336 	if (!page_address_valid(vcpu, vmptr))
5337 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5338 
5339 	if (vmptr == vmx->nested.vmxon_ptr)
5340 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5341 
5342 	/*
5343 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
5344 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5345 	 * way to distinguish it from VMCS12) and we must not corrupt it by
5346 	 * writing to the non-existent 'launch_state' field. The area doesn't
5347 	 * have to be the currently active EVMCS on the calling CPU and there's
5348 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
5349 	 * state. It is possible that the area will stay mapped as
5350 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5351 	 */
5352 	if (likely(!guest_cpuid_has_evmcs(vcpu) ||
5353 		   !evmptr_is_valid(nested_get_evmptr(vcpu)))) {
5354 		if (vmptr == vmx->nested.current_vmptr)
5355 			nested_release_vmcs12(vcpu);
5356 
5357 		/*
5358 		 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5359 		 * for VMCLEAR includes a "ensure that data for VMCS referenced
5360 		 * by the operand is in memory" clause that guards writes to
5361 		 * memory, i.e. doing nothing for I/O is architecturally valid.
5362 		 *
5363 		 * FIXME: Suppress failures if and only if no memslot is found,
5364 		 * i.e. exit to userspace if __copy_to_user() fails.
5365 		 */
5366 		(void)kvm_vcpu_write_guest(vcpu,
5367 					   vmptr + offsetof(struct vmcs12,
5368 							    launch_state),
5369 					   &zero, sizeof(zero));
5370 	} else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5371 		nested_release_evmcs(vcpu);
5372 	}
5373 
5374 	return nested_vmx_succeed(vcpu);
5375 }
5376 
5377 /* Emulate the VMLAUNCH instruction */
5378 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5379 {
5380 	return nested_vmx_run(vcpu, true);
5381 }
5382 
5383 /* Emulate the VMRESUME instruction */
5384 static int handle_vmresume(struct kvm_vcpu *vcpu)
5385 {
5386 
5387 	return nested_vmx_run(vcpu, false);
5388 }
5389 
5390 static int handle_vmread(struct kvm_vcpu *vcpu)
5391 {
5392 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5393 						    : get_vmcs12(vcpu);
5394 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5395 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5396 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5397 	struct x86_exception e;
5398 	unsigned long field;
5399 	u64 value;
5400 	gva_t gva = 0;
5401 	short offset;
5402 	int len, r;
5403 
5404 	if (!nested_vmx_check_permission(vcpu))
5405 		return 1;
5406 
5407 	/* Decode instruction info and find the field to read */
5408 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5409 
5410 	if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5411 		/*
5412 		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5413 		 * any VMREAD sets the ALU flags for VMfailInvalid.
5414 		 */
5415 		if (vmx->nested.current_vmptr == INVALID_GPA ||
5416 		    (is_guest_mode(vcpu) &&
5417 		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5418 			return nested_vmx_failInvalid(vcpu);
5419 
5420 		offset = get_vmcs12_field_offset(field);
5421 		if (offset < 0)
5422 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5423 
5424 		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5425 			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5426 
5427 		/* Read the field, zero-extended to a u64 value */
5428 		value = vmcs12_read_any(vmcs12, field, offset);
5429 	} else {
5430 		/*
5431 		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5432 		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5433 		 * unsupported. Unfortunately, certain versions of Windows 11
5434 		 * don't comply with this requirement which is not enforced in
5435 		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5436 		 * workaround, as misbehaving guests will panic on VM-Fail.
5437 		 * Note, enlightened VMCS is incompatible with shadow VMCS so
5438 		 * all VMREADs from L2 should go to L1.
5439 		 */
5440 		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5441 			return nested_vmx_failInvalid(vcpu);
5442 
5443 		offset = evmcs_field_offset(field, NULL);
5444 		if (offset < 0)
5445 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5446 
5447 		/* Read the field, zero-extended to a u64 value */
5448 		value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5449 	}
5450 
5451 	/*
5452 	 * Now copy part of this value to register or memory, as requested.
5453 	 * Note that the number of bits actually copied is 32 or 64 depending
5454 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5455 	 */
5456 	if (instr_info & BIT(10)) {
5457 		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5458 	} else {
5459 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5460 		if (get_vmx_mem_address(vcpu, exit_qualification,
5461 					instr_info, true, len, &gva))
5462 			return 1;
5463 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5464 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5465 		if (r != X86EMUL_CONTINUE)
5466 			return kvm_handle_memory_failure(vcpu, r, &e);
5467 	}
5468 
5469 	return nested_vmx_succeed(vcpu);
5470 }
5471 
5472 static bool is_shadow_field_rw(unsigned long field)
5473 {
5474 	switch (field) {
5475 #define SHADOW_FIELD_RW(x, y) case x:
5476 #include "vmcs_shadow_fields.h"
5477 		return true;
5478 	default:
5479 		break;
5480 	}
5481 	return false;
5482 }
5483 
5484 static bool is_shadow_field_ro(unsigned long field)
5485 {
5486 	switch (field) {
5487 #define SHADOW_FIELD_RO(x, y) case x:
5488 #include "vmcs_shadow_fields.h"
5489 		return true;
5490 	default:
5491 		break;
5492 	}
5493 	return false;
5494 }
5495 
5496 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5497 {
5498 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5499 						    : get_vmcs12(vcpu);
5500 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5501 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5502 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5503 	struct x86_exception e;
5504 	unsigned long field;
5505 	short offset;
5506 	gva_t gva;
5507 	int len, r;
5508 
5509 	/*
5510 	 * The value to write might be 32 or 64 bits, depending on L1's long
5511 	 * mode, and eventually we need to write that into a field of several
5512 	 * possible lengths. The code below first zero-extends the value to 64
5513 	 * bit (value), and then copies only the appropriate number of
5514 	 * bits into the vmcs12 field.
5515 	 */
5516 	u64 value = 0;
5517 
5518 	if (!nested_vmx_check_permission(vcpu))
5519 		return 1;
5520 
5521 	/*
5522 	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5523 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5524 	 */
5525 	if (vmx->nested.current_vmptr == INVALID_GPA ||
5526 	    (is_guest_mode(vcpu) &&
5527 	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5528 		return nested_vmx_failInvalid(vcpu);
5529 
5530 	if (instr_info & BIT(10))
5531 		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5532 	else {
5533 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5534 		if (get_vmx_mem_address(vcpu, exit_qualification,
5535 					instr_info, false, len, &gva))
5536 			return 1;
5537 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5538 		if (r != X86EMUL_CONTINUE)
5539 			return kvm_handle_memory_failure(vcpu, r, &e);
5540 	}
5541 
5542 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5543 
5544 	offset = get_vmcs12_field_offset(field);
5545 	if (offset < 0)
5546 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5547 
5548 	/*
5549 	 * If the vCPU supports "VMWRITE to any supported field in the
5550 	 * VMCS," then the "read-only" fields are actually read/write.
5551 	 */
5552 	if (vmcs_field_readonly(field) &&
5553 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5554 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5555 
5556 	/*
5557 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5558 	 * vmcs12, else we may crush a field or consume a stale value.
5559 	 */
5560 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5561 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5562 
5563 	/*
5564 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5565 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5566 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5567 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5568 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5569 	 * the stripped down value, L2 sees the full value as stored by KVM).
5570 	 */
5571 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5572 		value &= 0x1f0ff;
5573 
5574 	vmcs12_write_any(vmcs12, field, offset, value);
5575 
5576 	/*
5577 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5578 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5579 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5580 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5581 	 */
5582 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5583 		/*
5584 		 * L1 can read these fields without exiting, ensure the
5585 		 * shadow VMCS is up-to-date.
5586 		 */
5587 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5588 			preempt_disable();
5589 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5590 
5591 			__vmcs_writel(field, value);
5592 
5593 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5594 			vmcs_load(vmx->loaded_vmcs->vmcs);
5595 			preempt_enable();
5596 		}
5597 		vmx->nested.dirty_vmcs12 = true;
5598 	}
5599 
5600 	return nested_vmx_succeed(vcpu);
5601 }
5602 
5603 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5604 {
5605 	vmx->nested.current_vmptr = vmptr;
5606 	if (enable_shadow_vmcs) {
5607 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5608 		vmcs_write64(VMCS_LINK_POINTER,
5609 			     __pa(vmx->vmcs01.shadow_vmcs));
5610 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5611 	}
5612 	vmx->nested.dirty_vmcs12 = true;
5613 	vmx->nested.force_msr_bitmap_recalc = true;
5614 }
5615 
5616 /* Emulate the VMPTRLD instruction */
5617 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5618 {
5619 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5620 	gpa_t vmptr;
5621 	int r;
5622 
5623 	if (!nested_vmx_check_permission(vcpu))
5624 		return 1;
5625 
5626 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5627 		return r;
5628 
5629 	if (!page_address_valid(vcpu, vmptr))
5630 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5631 
5632 	if (vmptr == vmx->nested.vmxon_ptr)
5633 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5634 
5635 	/* Forbid normal VMPTRLD if Enlightened version was used */
5636 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5637 		return 1;
5638 
5639 	if (vmx->nested.current_vmptr != vmptr) {
5640 		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5641 		struct vmcs_hdr hdr;
5642 
5643 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5644 			/*
5645 			 * Reads from an unbacked page return all 1s,
5646 			 * which means that the 32 bits located at the
5647 			 * given physical address won't match the required
5648 			 * VMCS12_REVISION identifier.
5649 			 */
5650 			return nested_vmx_fail(vcpu,
5651 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5652 		}
5653 
5654 		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5655 						 offsetof(struct vmcs12, hdr),
5656 						 sizeof(hdr))) {
5657 			return nested_vmx_fail(vcpu,
5658 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5659 		}
5660 
5661 		if (hdr.revision_id != VMCS12_REVISION ||
5662 		    (hdr.shadow_vmcs &&
5663 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5664 			return nested_vmx_fail(vcpu,
5665 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5666 		}
5667 
5668 		nested_release_vmcs12(vcpu);
5669 
5670 		/*
5671 		 * Load VMCS12 from guest memory since it is not already
5672 		 * cached.
5673 		 */
5674 		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5675 					  VMCS12_SIZE)) {
5676 			return nested_vmx_fail(vcpu,
5677 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5678 		}
5679 
5680 		set_current_vmptr(vmx, vmptr);
5681 	}
5682 
5683 	return nested_vmx_succeed(vcpu);
5684 }
5685 
5686 /* Emulate the VMPTRST instruction */
5687 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5688 {
5689 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5690 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5691 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5692 	struct x86_exception e;
5693 	gva_t gva;
5694 	int r;
5695 
5696 	if (!nested_vmx_check_permission(vcpu))
5697 		return 1;
5698 
5699 	if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5700 		return 1;
5701 
5702 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5703 				true, sizeof(gpa_t), &gva))
5704 		return 1;
5705 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5706 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5707 					sizeof(gpa_t), &e);
5708 	if (r != X86EMUL_CONTINUE)
5709 		return kvm_handle_memory_failure(vcpu, r, &e);
5710 
5711 	return nested_vmx_succeed(vcpu);
5712 }
5713 
5714 /* Emulate the INVEPT instruction */
5715 static int handle_invept(struct kvm_vcpu *vcpu)
5716 {
5717 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5718 	u32 vmx_instruction_info, types;
5719 	unsigned long type, roots_to_free;
5720 	struct kvm_mmu *mmu;
5721 	gva_t gva;
5722 	struct x86_exception e;
5723 	struct {
5724 		u64 eptp, gpa;
5725 	} operand;
5726 	int i, r, gpr_index;
5727 
5728 	if (!(vmx->nested.msrs.secondary_ctls_high &
5729 	      SECONDARY_EXEC_ENABLE_EPT) ||
5730 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5731 		kvm_queue_exception(vcpu, UD_VECTOR);
5732 		return 1;
5733 	}
5734 
5735 	if (!nested_vmx_check_permission(vcpu))
5736 		return 1;
5737 
5738 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5739 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5740 	type = kvm_register_read(vcpu, gpr_index);
5741 
5742 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5743 
5744 	if (type >= 32 || !(types & (1 << type)))
5745 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5746 
5747 	/* According to the Intel VMX instruction reference, the memory
5748 	 * operand is read even if it isn't needed (e.g., for type==global)
5749 	 */
5750 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5751 			vmx_instruction_info, false, sizeof(operand), &gva))
5752 		return 1;
5753 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5754 	if (r != X86EMUL_CONTINUE)
5755 		return kvm_handle_memory_failure(vcpu, r, &e);
5756 
5757 	/*
5758 	 * Nested EPT roots are always held through guest_mmu,
5759 	 * not root_mmu.
5760 	 */
5761 	mmu = &vcpu->arch.guest_mmu;
5762 
5763 	switch (type) {
5764 	case VMX_EPT_EXTENT_CONTEXT:
5765 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5766 			return nested_vmx_fail(vcpu,
5767 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5768 
5769 		roots_to_free = 0;
5770 		if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5771 					    operand.eptp))
5772 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5773 
5774 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5775 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5776 						    mmu->prev_roots[i].pgd,
5777 						    operand.eptp))
5778 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5779 		}
5780 		break;
5781 	case VMX_EPT_EXTENT_GLOBAL:
5782 		roots_to_free = KVM_MMU_ROOTS_ALL;
5783 		break;
5784 	default:
5785 		BUG();
5786 		break;
5787 	}
5788 
5789 	if (roots_to_free)
5790 		kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5791 
5792 	return nested_vmx_succeed(vcpu);
5793 }
5794 
5795 static int handle_invvpid(struct kvm_vcpu *vcpu)
5796 {
5797 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5798 	u32 vmx_instruction_info;
5799 	unsigned long type, types;
5800 	gva_t gva;
5801 	struct x86_exception e;
5802 	struct {
5803 		u64 vpid;
5804 		u64 gla;
5805 	} operand;
5806 	u16 vpid02;
5807 	int r, gpr_index;
5808 
5809 	if (!(vmx->nested.msrs.secondary_ctls_high &
5810 	      SECONDARY_EXEC_ENABLE_VPID) ||
5811 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5812 		kvm_queue_exception(vcpu, UD_VECTOR);
5813 		return 1;
5814 	}
5815 
5816 	if (!nested_vmx_check_permission(vcpu))
5817 		return 1;
5818 
5819 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5820 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5821 	type = kvm_register_read(vcpu, gpr_index);
5822 
5823 	types = (vmx->nested.msrs.vpid_caps &
5824 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5825 
5826 	if (type >= 32 || !(types & (1 << type)))
5827 		return nested_vmx_fail(vcpu,
5828 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5829 
5830 	/* according to the intel vmx instruction reference, the memory
5831 	 * operand is read even if it isn't needed (e.g., for type==global)
5832 	 */
5833 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5834 			vmx_instruction_info, false, sizeof(operand), &gva))
5835 		return 1;
5836 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5837 	if (r != X86EMUL_CONTINUE)
5838 		return kvm_handle_memory_failure(vcpu, r, &e);
5839 
5840 	if (operand.vpid >> 16)
5841 		return nested_vmx_fail(vcpu,
5842 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5843 
5844 	/*
5845 	 * Always flush the effective vpid02, i.e. never flush the current VPID
5846 	 * and never explicitly flush vpid01.  INVVPID targets a VPID, not a
5847 	 * VMCS, and so whether or not the current vmcs12 has VPID enabled is
5848 	 * irrelevant (and there may not be a loaded vmcs12).
5849 	 */
5850 	vpid02 = nested_get_vpid02(vcpu);
5851 	switch (type) {
5852 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5853 		if (!operand.vpid ||
5854 		    is_noncanonical_address(operand.gla, vcpu))
5855 			return nested_vmx_fail(vcpu,
5856 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5857 		vpid_sync_vcpu_addr(vpid02, operand.gla);
5858 		break;
5859 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5860 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5861 		if (!operand.vpid)
5862 			return nested_vmx_fail(vcpu,
5863 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5864 		vpid_sync_context(vpid02);
5865 		break;
5866 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5867 		vpid_sync_context(vpid02);
5868 		break;
5869 	default:
5870 		WARN_ON_ONCE(1);
5871 		return kvm_skip_emulated_instruction(vcpu);
5872 	}
5873 
5874 	/*
5875 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5876 	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5877 	 * roots as VPIDs are not tracked in the MMU role.
5878 	 *
5879 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5880 	 * an MMU when EPT is disabled.
5881 	 *
5882 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5883 	 */
5884 	if (!enable_ept)
5885 		kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5886 
5887 	return nested_vmx_succeed(vcpu);
5888 }
5889 
5890 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5891 				     struct vmcs12 *vmcs12)
5892 {
5893 	u32 index = kvm_rcx_read(vcpu);
5894 	u64 new_eptp;
5895 
5896 	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5897 		return 1;
5898 	if (index >= VMFUNC_EPTP_ENTRIES)
5899 		return 1;
5900 
5901 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5902 				     &new_eptp, index * 8, 8))
5903 		return 1;
5904 
5905 	/*
5906 	 * If the (L2) guest does a vmfunc to the currently
5907 	 * active ept pointer, we don't have to do anything else
5908 	 */
5909 	if (vmcs12->ept_pointer != new_eptp) {
5910 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5911 			return 1;
5912 
5913 		vmcs12->ept_pointer = new_eptp;
5914 		nested_ept_new_eptp(vcpu);
5915 
5916 		if (!nested_cpu_has_vpid(vmcs12))
5917 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5918 	}
5919 
5920 	return 0;
5921 }
5922 
5923 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5924 {
5925 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5926 	struct vmcs12 *vmcs12;
5927 	u32 function = kvm_rax_read(vcpu);
5928 
5929 	/*
5930 	 * VMFUNC should never execute cleanly while L1 is active; KVM supports
5931 	 * VMFUNC for nested VMs, but not for L1.
5932 	 */
5933 	if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
5934 		kvm_queue_exception(vcpu, UD_VECTOR);
5935 		return 1;
5936 	}
5937 
5938 	vmcs12 = get_vmcs12(vcpu);
5939 
5940 	/*
5941 	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5942 	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5943 	 */
5944 	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5945 		kvm_queue_exception(vcpu, UD_VECTOR);
5946 		return 1;
5947 	}
5948 
5949 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5950 		goto fail;
5951 
5952 	switch (function) {
5953 	case 0:
5954 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5955 			goto fail;
5956 		break;
5957 	default:
5958 		goto fail;
5959 	}
5960 	return kvm_skip_emulated_instruction(vcpu);
5961 
5962 fail:
5963 	/*
5964 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5965 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5966 	 * EXIT_REASON_VMFUNC as the exit reason.
5967 	 */
5968 	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5969 			  vmx_get_intr_info(vcpu),
5970 			  vmx_get_exit_qual(vcpu));
5971 	return 1;
5972 }
5973 
5974 /*
5975  * Return true if an IO instruction with the specified port and size should cause
5976  * a VM-exit into L1.
5977  */
5978 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5979 				 int size)
5980 {
5981 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5982 	gpa_t bitmap, last_bitmap;
5983 	u8 b;
5984 
5985 	last_bitmap = INVALID_GPA;
5986 	b = -1;
5987 
5988 	while (size > 0) {
5989 		if (port < 0x8000)
5990 			bitmap = vmcs12->io_bitmap_a;
5991 		else if (port < 0x10000)
5992 			bitmap = vmcs12->io_bitmap_b;
5993 		else
5994 			return true;
5995 		bitmap += (port & 0x7fff) / 8;
5996 
5997 		if (last_bitmap != bitmap)
5998 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5999 				return true;
6000 		if (b & (1 << (port & 7)))
6001 			return true;
6002 
6003 		port++;
6004 		size--;
6005 		last_bitmap = bitmap;
6006 	}
6007 
6008 	return false;
6009 }
6010 
6011 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6012 				       struct vmcs12 *vmcs12)
6013 {
6014 	unsigned long exit_qualification;
6015 	unsigned short port;
6016 	int size;
6017 
6018 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6019 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6020 
6021 	exit_qualification = vmx_get_exit_qual(vcpu);
6022 
6023 	port = exit_qualification >> 16;
6024 	size = (exit_qualification & 7) + 1;
6025 
6026 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
6027 }
6028 
6029 /*
6030  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6031  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6032  * disinterest in the current event (read or write a specific MSR) by using an
6033  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6034  */
6035 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6036 					struct vmcs12 *vmcs12,
6037 					union vmx_exit_reason exit_reason)
6038 {
6039 	u32 msr_index = kvm_rcx_read(vcpu);
6040 	gpa_t bitmap;
6041 
6042 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6043 		return true;
6044 
6045 	/*
6046 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6047 	 * for the four combinations of read/write and low/high MSR numbers.
6048 	 * First we need to figure out which of the four to use:
6049 	 */
6050 	bitmap = vmcs12->msr_bitmap;
6051 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6052 		bitmap += 2048;
6053 	if (msr_index >= 0xc0000000) {
6054 		msr_index -= 0xc0000000;
6055 		bitmap += 1024;
6056 	}
6057 
6058 	/* Then read the msr_index'th bit from this bitmap: */
6059 	if (msr_index < 1024*8) {
6060 		unsigned char b;
6061 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6062 			return true;
6063 		return 1 & (b >> (msr_index & 7));
6064 	} else
6065 		return true; /* let L1 handle the wrong parameter */
6066 }
6067 
6068 /*
6069  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6070  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6071  * intercept (via guest_host_mask etc.) the current event.
6072  */
6073 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6074 	struct vmcs12 *vmcs12)
6075 {
6076 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6077 	int cr = exit_qualification & 15;
6078 	int reg;
6079 	unsigned long val;
6080 
6081 	switch ((exit_qualification >> 4) & 3) {
6082 	case 0: /* mov to cr */
6083 		reg = (exit_qualification >> 8) & 15;
6084 		val = kvm_register_read(vcpu, reg);
6085 		switch (cr) {
6086 		case 0:
6087 			if (vmcs12->cr0_guest_host_mask &
6088 			    (val ^ vmcs12->cr0_read_shadow))
6089 				return true;
6090 			break;
6091 		case 3:
6092 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6093 				return true;
6094 			break;
6095 		case 4:
6096 			if (vmcs12->cr4_guest_host_mask &
6097 			    (vmcs12->cr4_read_shadow ^ val))
6098 				return true;
6099 			break;
6100 		case 8:
6101 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6102 				return true;
6103 			break;
6104 		}
6105 		break;
6106 	case 2: /* clts */
6107 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6108 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
6109 			return true;
6110 		break;
6111 	case 1: /* mov from cr */
6112 		switch (cr) {
6113 		case 3:
6114 			if (vmcs12->cpu_based_vm_exec_control &
6115 			    CPU_BASED_CR3_STORE_EXITING)
6116 				return true;
6117 			break;
6118 		case 8:
6119 			if (vmcs12->cpu_based_vm_exec_control &
6120 			    CPU_BASED_CR8_STORE_EXITING)
6121 				return true;
6122 			break;
6123 		}
6124 		break;
6125 	case 3: /* lmsw */
6126 		/*
6127 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6128 		 * cr0. Other attempted changes are ignored, with no exit.
6129 		 */
6130 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6131 		if (vmcs12->cr0_guest_host_mask & 0xe &
6132 		    (val ^ vmcs12->cr0_read_shadow))
6133 			return true;
6134 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6135 		    !(vmcs12->cr0_read_shadow & 0x1) &&
6136 		    (val & 0x1))
6137 			return true;
6138 		break;
6139 	}
6140 	return false;
6141 }
6142 
6143 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6144 					  struct vmcs12 *vmcs12)
6145 {
6146 	u32 encls_leaf;
6147 
6148 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6149 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6150 		return false;
6151 
6152 	encls_leaf = kvm_rax_read(vcpu);
6153 	if (encls_leaf > 62)
6154 		encls_leaf = 63;
6155 	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6156 }
6157 
6158 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6159 	struct vmcs12 *vmcs12, gpa_t bitmap)
6160 {
6161 	u32 vmx_instruction_info;
6162 	unsigned long field;
6163 	u8 b;
6164 
6165 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
6166 		return true;
6167 
6168 	/* Decode instruction info and find the field to access */
6169 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6170 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6171 
6172 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
6173 	if (field >> 15)
6174 		return true;
6175 
6176 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6177 		return true;
6178 
6179 	return 1 & (b >> (field & 7));
6180 }
6181 
6182 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6183 {
6184 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6185 
6186 	if (nested_cpu_has_mtf(vmcs12))
6187 		return true;
6188 
6189 	/*
6190 	 * An MTF VM-exit may be injected into the guest by setting the
6191 	 * interruption-type to 7 (other event) and the vector field to 0. Such
6192 	 * is the case regardless of the 'monitor trap flag' VM-execution
6193 	 * control.
6194 	 */
6195 	return entry_intr_info == (INTR_INFO_VALID_MASK
6196 				   | INTR_TYPE_OTHER_EVENT);
6197 }
6198 
6199 /*
6200  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6201  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
6202  */
6203 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6204 				     union vmx_exit_reason exit_reason)
6205 {
6206 	u32 intr_info;
6207 
6208 	switch ((u16)exit_reason.basic) {
6209 	case EXIT_REASON_EXCEPTION_NMI:
6210 		intr_info = vmx_get_intr_info(vcpu);
6211 		if (is_nmi(intr_info))
6212 			return true;
6213 		else if (is_page_fault(intr_info))
6214 			return vcpu->arch.apf.host_apf_flags ||
6215 			       vmx_need_pf_intercept(vcpu);
6216 		else if (is_debug(intr_info) &&
6217 			 vcpu->guest_debug &
6218 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6219 			return true;
6220 		else if (is_breakpoint(intr_info) &&
6221 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6222 			return true;
6223 		else if (is_alignment_check(intr_info) &&
6224 			 !vmx_guest_inject_ac(vcpu))
6225 			return true;
6226 		return false;
6227 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6228 		return true;
6229 	case EXIT_REASON_MCE_DURING_VMENTRY:
6230 		return true;
6231 	case EXIT_REASON_EPT_VIOLATION:
6232 		/*
6233 		 * L0 always deals with the EPT violation. If nested EPT is
6234 		 * used, and the nested mmu code discovers that the address is
6235 		 * missing in the guest EPT table (EPT12), the EPT violation
6236 		 * will be injected with nested_ept_inject_page_fault()
6237 		 */
6238 		return true;
6239 	case EXIT_REASON_EPT_MISCONFIG:
6240 		/*
6241 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
6242 		 * table (shadow on EPT) or a merged EPT table that L0 built
6243 		 * (EPT on EPT). So any problems with the structure of the
6244 		 * table is L0's fault.
6245 		 */
6246 		return true;
6247 	case EXIT_REASON_PREEMPTION_TIMER:
6248 		return true;
6249 	case EXIT_REASON_PML_FULL:
6250 		/*
6251 		 * PML is emulated for an L1 VMM and should never be enabled in
6252 		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6253 		 */
6254 		return true;
6255 	case EXIT_REASON_VMFUNC:
6256 		/* VM functions are emulated through L2->L0 vmexits. */
6257 		return true;
6258 	case EXIT_REASON_BUS_LOCK:
6259 		/*
6260 		 * At present, bus lock VM exit is never exposed to L1.
6261 		 * Handle L2's bus locks in L0 directly.
6262 		 */
6263 		return true;
6264 	case EXIT_REASON_VMCALL:
6265 		/* Hyper-V L2 TLB flush hypercall is handled by L0 */
6266 		return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6267 			nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6268 			kvm_hv_is_tlb_flush_hcall(vcpu);
6269 	default:
6270 		break;
6271 	}
6272 	return false;
6273 }
6274 
6275 /*
6276  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
6277  * is_guest_mode (L2).
6278  */
6279 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6280 				     union vmx_exit_reason exit_reason)
6281 {
6282 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6283 	u32 intr_info;
6284 
6285 	switch ((u16)exit_reason.basic) {
6286 	case EXIT_REASON_EXCEPTION_NMI:
6287 		intr_info = vmx_get_intr_info(vcpu);
6288 		if (is_nmi(intr_info))
6289 			return true;
6290 		else if (is_page_fault(intr_info))
6291 			return true;
6292 		return vmcs12->exception_bitmap &
6293 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
6294 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6295 		return nested_exit_on_intr(vcpu);
6296 	case EXIT_REASON_TRIPLE_FAULT:
6297 		return true;
6298 	case EXIT_REASON_INTERRUPT_WINDOW:
6299 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6300 	case EXIT_REASON_NMI_WINDOW:
6301 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6302 	case EXIT_REASON_TASK_SWITCH:
6303 		return true;
6304 	case EXIT_REASON_CPUID:
6305 		return true;
6306 	case EXIT_REASON_HLT:
6307 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6308 	case EXIT_REASON_INVD:
6309 		return true;
6310 	case EXIT_REASON_INVLPG:
6311 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6312 	case EXIT_REASON_RDPMC:
6313 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6314 	case EXIT_REASON_RDRAND:
6315 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6316 	case EXIT_REASON_RDSEED:
6317 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6318 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6319 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6320 	case EXIT_REASON_VMREAD:
6321 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6322 			vmcs12->vmread_bitmap);
6323 	case EXIT_REASON_VMWRITE:
6324 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6325 			vmcs12->vmwrite_bitmap);
6326 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6327 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6328 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6329 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6330 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6331 		/*
6332 		 * VMX instructions trap unconditionally. This allows L1 to
6333 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6334 		 */
6335 		return true;
6336 	case EXIT_REASON_CR_ACCESS:
6337 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6338 	case EXIT_REASON_DR_ACCESS:
6339 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6340 	case EXIT_REASON_IO_INSTRUCTION:
6341 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
6342 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6343 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6344 	case EXIT_REASON_MSR_READ:
6345 	case EXIT_REASON_MSR_WRITE:
6346 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6347 	case EXIT_REASON_INVALID_STATE:
6348 		return true;
6349 	case EXIT_REASON_MWAIT_INSTRUCTION:
6350 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6351 	case EXIT_REASON_MONITOR_TRAP_FLAG:
6352 		return nested_vmx_exit_handled_mtf(vmcs12);
6353 	case EXIT_REASON_MONITOR_INSTRUCTION:
6354 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6355 	case EXIT_REASON_PAUSE_INSTRUCTION:
6356 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6357 			nested_cpu_has2(vmcs12,
6358 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6359 	case EXIT_REASON_MCE_DURING_VMENTRY:
6360 		return true;
6361 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
6362 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6363 	case EXIT_REASON_APIC_ACCESS:
6364 	case EXIT_REASON_APIC_WRITE:
6365 	case EXIT_REASON_EOI_INDUCED:
6366 		/*
6367 		 * The controls for "virtualize APIC accesses," "APIC-
6368 		 * register virtualization," and "virtual-interrupt
6369 		 * delivery" only come from vmcs12.
6370 		 */
6371 		return true;
6372 	case EXIT_REASON_INVPCID:
6373 		return
6374 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6375 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6376 	case EXIT_REASON_WBINVD:
6377 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6378 	case EXIT_REASON_XSETBV:
6379 		return true;
6380 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6381 		/*
6382 		 * This should never happen, since it is not possible to
6383 		 * set XSS to a non-zero value---neither in L1 nor in L2.
6384 		 * If if it were, XSS would have to be checked against
6385 		 * the XSS exit bitmap in vmcs12.
6386 		 */
6387 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6388 	case EXIT_REASON_UMWAIT:
6389 	case EXIT_REASON_TPAUSE:
6390 		return nested_cpu_has2(vmcs12,
6391 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6392 	case EXIT_REASON_ENCLS:
6393 		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6394 	case EXIT_REASON_NOTIFY:
6395 		/* Notify VM exit is not exposed to L1 */
6396 		return false;
6397 	default:
6398 		return true;
6399 	}
6400 }
6401 
6402 /*
6403  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6404  * reflected into L1.
6405  */
6406 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6407 {
6408 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6409 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6410 	unsigned long exit_qual;
6411 	u32 exit_intr_info;
6412 
6413 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6414 
6415 	/*
6416 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6417 	 * has already loaded L2's state.
6418 	 */
6419 	if (unlikely(vmx->fail)) {
6420 		trace_kvm_nested_vmenter_failed(
6421 			"hardware VM-instruction error: ",
6422 			vmcs_read32(VM_INSTRUCTION_ERROR));
6423 		exit_intr_info = 0;
6424 		exit_qual = 0;
6425 		goto reflect_vmexit;
6426 	}
6427 
6428 	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6429 
6430 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6431 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6432 		return false;
6433 
6434 	/* If L1 doesn't want the exit, handle it in L0. */
6435 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6436 		return false;
6437 
6438 	/*
6439 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6440 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6441 	 * need to be synthesized by querying the in-kernel LAPIC, but external
6442 	 * interrupts are never reflected to L1 so it's a non-issue.
6443 	 */
6444 	exit_intr_info = vmx_get_intr_info(vcpu);
6445 	if (is_exception_with_error_code(exit_intr_info)) {
6446 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6447 
6448 		vmcs12->vm_exit_intr_error_code =
6449 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6450 	}
6451 	exit_qual = vmx_get_exit_qual(vcpu);
6452 
6453 reflect_vmexit:
6454 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6455 	return true;
6456 }
6457 
6458 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6459 				struct kvm_nested_state __user *user_kvm_nested_state,
6460 				u32 user_data_size)
6461 {
6462 	struct vcpu_vmx *vmx;
6463 	struct vmcs12 *vmcs12;
6464 	struct kvm_nested_state kvm_state = {
6465 		.flags = 0,
6466 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6467 		.size = sizeof(kvm_state),
6468 		.hdr.vmx.flags = 0,
6469 		.hdr.vmx.vmxon_pa = INVALID_GPA,
6470 		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6471 		.hdr.vmx.preemption_timer_deadline = 0,
6472 	};
6473 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6474 		&user_kvm_nested_state->data.vmx[0];
6475 
6476 	if (!vcpu)
6477 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6478 
6479 	vmx = to_vmx(vcpu);
6480 	vmcs12 = get_vmcs12(vcpu);
6481 
6482 	if (guest_can_use(vcpu, X86_FEATURE_VMX) &&
6483 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6484 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6485 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6486 
6487 		if (vmx_has_valid_vmcs12(vcpu)) {
6488 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6489 
6490 			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6491 			if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6492 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6493 
6494 			if (is_guest_mode(vcpu) &&
6495 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6496 			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6497 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6498 		}
6499 
6500 		if (vmx->nested.smm.vmxon)
6501 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6502 
6503 		if (vmx->nested.smm.guest_mode)
6504 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6505 
6506 		if (is_guest_mode(vcpu)) {
6507 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6508 
6509 			if (vmx->nested.nested_run_pending)
6510 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6511 
6512 			if (vmx->nested.mtf_pending)
6513 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6514 
6515 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6516 			    vmx->nested.has_preemption_timer_deadline) {
6517 				kvm_state.hdr.vmx.flags |=
6518 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6519 				kvm_state.hdr.vmx.preemption_timer_deadline =
6520 					vmx->nested.preemption_timer_deadline;
6521 			}
6522 		}
6523 	}
6524 
6525 	if (user_data_size < kvm_state.size)
6526 		goto out;
6527 
6528 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6529 		return -EFAULT;
6530 
6531 	if (!vmx_has_valid_vmcs12(vcpu))
6532 		goto out;
6533 
6534 	/*
6535 	 * When running L2, the authoritative vmcs12 state is in the
6536 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6537 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6538 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6539 	 * vmcs12 state is in the vmcs12 already.
6540 	 */
6541 	if (is_guest_mode(vcpu)) {
6542 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6543 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6544 	} else  {
6545 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6546 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6547 			if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6548 				/*
6549 				 * L1 hypervisor is not obliged to keep eVMCS
6550 				 * clean fields data always up-to-date while
6551 				 * not in guest mode, 'hv_clean_fields' is only
6552 				 * supposed to be actual upon vmentry so we need
6553 				 * to ignore it here and do full copy.
6554 				 */
6555 				copy_enlightened_to_vmcs12(vmx, 0);
6556 			else if (enable_shadow_vmcs)
6557 				copy_shadow_to_vmcs12(vmx);
6558 		}
6559 	}
6560 
6561 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6562 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6563 
6564 	/*
6565 	 * Copy over the full allocated size of vmcs12 rather than just the size
6566 	 * of the struct.
6567 	 */
6568 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6569 		return -EFAULT;
6570 
6571 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6572 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6573 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6574 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6575 			return -EFAULT;
6576 	}
6577 out:
6578 	return kvm_state.size;
6579 }
6580 
6581 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6582 {
6583 	if (is_guest_mode(vcpu)) {
6584 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6585 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6586 	}
6587 	free_nested(vcpu);
6588 }
6589 
6590 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6591 				struct kvm_nested_state __user *user_kvm_nested_state,
6592 				struct kvm_nested_state *kvm_state)
6593 {
6594 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6595 	struct vmcs12 *vmcs12;
6596 	enum vm_entry_failure_code ignored;
6597 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6598 		&user_kvm_nested_state->data.vmx[0];
6599 	int ret;
6600 
6601 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6602 		return -EINVAL;
6603 
6604 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6605 		if (kvm_state->hdr.vmx.smm.flags)
6606 			return -EINVAL;
6607 
6608 		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6609 			return -EINVAL;
6610 
6611 		/*
6612 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6613 		 * enable eVMCS capability on vCPU. However, since then
6614 		 * code was changed such that flag signals vmcs12 should
6615 		 * be copied into eVMCS in guest memory.
6616 		 *
6617 		 * To preserve backwards compatability, allow user
6618 		 * to set this flag even when there is no VMXON region.
6619 		 */
6620 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6621 			return -EINVAL;
6622 	} else {
6623 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
6624 			return -EINVAL;
6625 
6626 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6627 			return -EINVAL;
6628 	}
6629 
6630 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6631 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6632 		return -EINVAL;
6633 
6634 	if (kvm_state->hdr.vmx.smm.flags &
6635 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6636 		return -EINVAL;
6637 
6638 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6639 		return -EINVAL;
6640 
6641 	/*
6642 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6643 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6644 	 * must be zero.
6645 	 */
6646 	if (is_smm(vcpu) ?
6647 		(kvm_state->flags &
6648 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6649 		: kvm_state->hdr.vmx.smm.flags)
6650 		return -EINVAL;
6651 
6652 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6653 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6654 		return -EINVAL;
6655 
6656 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6657 	    (!guest_can_use(vcpu, X86_FEATURE_VMX) ||
6658 	     !vmx->nested.enlightened_vmcs_enabled))
6659 			return -EINVAL;
6660 
6661 	vmx_leave_nested(vcpu);
6662 
6663 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6664 		return 0;
6665 
6666 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6667 	ret = enter_vmx_operation(vcpu);
6668 	if (ret)
6669 		return ret;
6670 
6671 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6672 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6673 		/* See vmx_has_valid_vmcs12.  */
6674 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6675 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6676 		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6677 			return -EINVAL;
6678 		else
6679 			return 0;
6680 	}
6681 
6682 	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6683 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6684 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6685 			return -EINVAL;
6686 
6687 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6688 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6689 		/*
6690 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6691 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6692 		 * restored yet. EVMCS will be mapped from
6693 		 * nested_get_vmcs12_pages().
6694 		 */
6695 		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6696 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6697 	} else {
6698 		return -EINVAL;
6699 	}
6700 
6701 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6702 		vmx->nested.smm.vmxon = true;
6703 		vmx->nested.vmxon = false;
6704 
6705 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6706 			vmx->nested.smm.guest_mode = true;
6707 	}
6708 
6709 	vmcs12 = get_vmcs12(vcpu);
6710 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6711 		return -EFAULT;
6712 
6713 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6714 		return -EINVAL;
6715 
6716 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6717 		return 0;
6718 
6719 	vmx->nested.nested_run_pending =
6720 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6721 
6722 	vmx->nested.mtf_pending =
6723 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6724 
6725 	ret = -EINVAL;
6726 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6727 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6728 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6729 
6730 		if (kvm_state->size <
6731 		    sizeof(*kvm_state) +
6732 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6733 			goto error_guest_mode;
6734 
6735 		if (copy_from_user(shadow_vmcs12,
6736 				   user_vmx_nested_state->shadow_vmcs12,
6737 				   sizeof(*shadow_vmcs12))) {
6738 			ret = -EFAULT;
6739 			goto error_guest_mode;
6740 		}
6741 
6742 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6743 		    !shadow_vmcs12->hdr.shadow_vmcs)
6744 			goto error_guest_mode;
6745 	}
6746 
6747 	vmx->nested.has_preemption_timer_deadline = false;
6748 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6749 		vmx->nested.has_preemption_timer_deadline = true;
6750 		vmx->nested.preemption_timer_deadline =
6751 			kvm_state->hdr.vmx.preemption_timer_deadline;
6752 	}
6753 
6754 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6755 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6756 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6757 		goto error_guest_mode;
6758 
6759 	vmx->nested.dirty_vmcs12 = true;
6760 	vmx->nested.force_msr_bitmap_recalc = true;
6761 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6762 	if (ret)
6763 		goto error_guest_mode;
6764 
6765 	if (vmx->nested.mtf_pending)
6766 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6767 
6768 	return 0;
6769 
6770 error_guest_mode:
6771 	vmx->nested.nested_run_pending = 0;
6772 	return ret;
6773 }
6774 
6775 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6776 {
6777 	if (enable_shadow_vmcs) {
6778 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6779 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6780 	}
6781 }
6782 
6783 /*
6784  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6785  * that madness to get the encoding for comparison.
6786  */
6787 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6788 
6789 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6790 {
6791 	/*
6792 	 * Note these are the so called "index" of the VMCS field encoding, not
6793 	 * the index into vmcs12.
6794 	 */
6795 	unsigned int max_idx, idx;
6796 	int i;
6797 
6798 	/*
6799 	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6800 	 * vmcs12, regardless of whether or not the associated feature is
6801 	 * exposed to L1.  Simply find the field with the highest index.
6802 	 */
6803 	max_idx = 0;
6804 	for (i = 0; i < nr_vmcs12_fields; i++) {
6805 		/* The vmcs12 table is very, very sparsely populated. */
6806 		if (!vmcs12_field_offsets[i])
6807 			continue;
6808 
6809 		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6810 		if (idx > max_idx)
6811 			max_idx = idx;
6812 	}
6813 
6814 	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6815 }
6816 
6817 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6818 					   struct nested_vmx_msrs *msrs)
6819 {
6820 	msrs->pinbased_ctls_low =
6821 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6822 
6823 	msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6824 	msrs->pinbased_ctls_high &=
6825 		PIN_BASED_EXT_INTR_MASK |
6826 		PIN_BASED_NMI_EXITING |
6827 		PIN_BASED_VIRTUAL_NMIS |
6828 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6829 	msrs->pinbased_ctls_high |=
6830 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6831 		PIN_BASED_VMX_PREEMPTION_TIMER;
6832 }
6833 
6834 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
6835 				       struct nested_vmx_msrs *msrs)
6836 {
6837 	msrs->exit_ctls_low =
6838 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6839 
6840 	msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6841 	msrs->exit_ctls_high &=
6842 #ifdef CONFIG_X86_64
6843 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6844 #endif
6845 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6846 		VM_EXIT_CLEAR_BNDCFGS;
6847 	msrs->exit_ctls_high |=
6848 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6849 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6850 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6851 		VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6852 
6853 	/* We support free control of debug control saving. */
6854 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6855 }
6856 
6857 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
6858 					struct nested_vmx_msrs *msrs)
6859 {
6860 	msrs->entry_ctls_low =
6861 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6862 
6863 	msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6864 	msrs->entry_ctls_high &=
6865 #ifdef CONFIG_X86_64
6866 		VM_ENTRY_IA32E_MODE |
6867 #endif
6868 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6869 	msrs->entry_ctls_high |=
6870 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6871 		 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6872 
6873 	/* We support free control of debug control loading. */
6874 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6875 }
6876 
6877 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
6878 					   struct nested_vmx_msrs *msrs)
6879 {
6880 	msrs->procbased_ctls_low =
6881 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6882 
6883 	msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6884 	msrs->procbased_ctls_high &=
6885 		CPU_BASED_INTR_WINDOW_EXITING |
6886 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6887 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6888 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6889 		CPU_BASED_CR3_STORE_EXITING |
6890 #ifdef CONFIG_X86_64
6891 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6892 #endif
6893 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6894 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6895 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6896 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6897 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6898 	/*
6899 	 * We can allow some features even when not supported by the
6900 	 * hardware. For example, L1 can specify an MSR bitmap - and we
6901 	 * can use it to avoid exits to L1 - even when L0 runs L2
6902 	 * without MSR bitmaps.
6903 	 */
6904 	msrs->procbased_ctls_high |=
6905 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6906 		CPU_BASED_USE_MSR_BITMAPS;
6907 
6908 	/* We support free control of CR3 access interception. */
6909 	msrs->procbased_ctls_low &=
6910 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6911 }
6912 
6913 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
6914 					    struct vmcs_config *vmcs_conf,
6915 					    struct nested_vmx_msrs *msrs)
6916 {
6917 	msrs->secondary_ctls_low = 0;
6918 
6919 	msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
6920 	msrs->secondary_ctls_high &=
6921 		SECONDARY_EXEC_DESC |
6922 		SECONDARY_EXEC_ENABLE_RDTSCP |
6923 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6924 		SECONDARY_EXEC_WBINVD_EXITING |
6925 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6926 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6927 		SECONDARY_EXEC_RDRAND_EXITING |
6928 		SECONDARY_EXEC_ENABLE_INVPCID |
6929 		SECONDARY_EXEC_ENABLE_VMFUNC |
6930 		SECONDARY_EXEC_RDSEED_EXITING |
6931 		SECONDARY_EXEC_ENABLE_XSAVES |
6932 		SECONDARY_EXEC_TSC_SCALING |
6933 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
6934 
6935 	/*
6936 	 * We can emulate "VMCS shadowing," even if the hardware
6937 	 * doesn't support it.
6938 	 */
6939 	msrs->secondary_ctls_high |=
6940 		SECONDARY_EXEC_SHADOW_VMCS;
6941 
6942 	if (enable_ept) {
6943 		/* nested EPT: emulate EPT also to L1 */
6944 		msrs->secondary_ctls_high |=
6945 			SECONDARY_EXEC_ENABLE_EPT;
6946 		msrs->ept_caps =
6947 			VMX_EPT_PAGE_WALK_4_BIT |
6948 			VMX_EPT_PAGE_WALK_5_BIT |
6949 			VMX_EPTP_WB_BIT |
6950 			VMX_EPT_INVEPT_BIT |
6951 			VMX_EPT_EXECUTE_ONLY_BIT;
6952 
6953 		msrs->ept_caps &= ept_caps;
6954 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6955 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6956 			VMX_EPT_1GB_PAGE_BIT;
6957 		if (enable_ept_ad_bits) {
6958 			msrs->secondary_ctls_high |=
6959 				SECONDARY_EXEC_ENABLE_PML;
6960 			msrs->ept_caps |= VMX_EPT_AD_BIT;
6961 		}
6962 
6963 		/*
6964 		 * Advertise EPTP switching irrespective of hardware support,
6965 		 * KVM emulates it in software so long as VMFUNC is supported.
6966 		 */
6967 		if (cpu_has_vmx_vmfunc())
6968 			msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
6969 	}
6970 
6971 	/*
6972 	 * Old versions of KVM use the single-context version without
6973 	 * checking for support, so declare that it is supported even
6974 	 * though it is treated as global context.  The alternative is
6975 	 * not failing the single-context invvpid, and it is worse.
6976 	 */
6977 	if (enable_vpid) {
6978 		msrs->secondary_ctls_high |=
6979 			SECONDARY_EXEC_ENABLE_VPID;
6980 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6981 			VMX_VPID_EXTENT_SUPPORTED_MASK;
6982 	}
6983 
6984 	if (enable_unrestricted_guest)
6985 		msrs->secondary_ctls_high |=
6986 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
6987 
6988 	if (flexpriority_enabled)
6989 		msrs->secondary_ctls_high |=
6990 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6991 
6992 	if (enable_sgx)
6993 		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6994 }
6995 
6996 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
6997 				       struct nested_vmx_msrs *msrs)
6998 {
6999 	msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7000 	msrs->misc_low |=
7001 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7002 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7003 		VMX_MISC_ACTIVITY_HLT |
7004 		VMX_MISC_ACTIVITY_WAIT_SIPI;
7005 	msrs->misc_high = 0;
7006 }
7007 
7008 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7009 {
7010 	/*
7011 	 * This MSR reports some information about VMX support. We
7012 	 * should return information about the VMX we emulate for the
7013 	 * guest, and the VMCS structure we give it - not about the
7014 	 * VMX support of the underlying hardware.
7015 	 */
7016 	msrs->basic =
7017 		VMCS12_REVISION |
7018 		VMX_BASIC_TRUE_CTLS |
7019 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
7020 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
7021 
7022 	if (cpu_has_vmx_basic_inout())
7023 		msrs->basic |= VMX_BASIC_INOUT;
7024 }
7025 
7026 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7027 {
7028 	/*
7029 	 * These MSRs specify bits which the guest must keep fixed on
7030 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7031 	 * We picked the standard core2 setting.
7032 	 */
7033 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7034 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
7035 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7036 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7037 
7038 	/* These MSRs specify bits which the guest must keep fixed off. */
7039 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7040 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7041 
7042 	if (vmx_umip_emulated())
7043 		msrs->cr4_fixed1 |= X86_CR4_UMIP;
7044 }
7045 
7046 /*
7047  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7048  * returned for the various VMX controls MSRs when nested VMX is enabled.
7049  * The same values should also be used to verify that vmcs12 control fields are
7050  * valid during nested entry from L1 to L2.
7051  * Each of these control msrs has a low and high 32-bit half: A low bit is on
7052  * if the corresponding bit in the (32-bit) control field *must* be on, and a
7053  * bit in the high half is on if the corresponding bit in the control field
7054  * may be on. See also vmx_control_verify().
7055  */
7056 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7057 {
7058 	struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7059 
7060 	/*
7061 	 * Note that as a general rule, the high half of the MSRs (bits in
7062 	 * the control fields which may be 1) should be initialized by the
7063 	 * intersection of the underlying hardware's MSR (i.e., features which
7064 	 * can be supported) and the list of features we want to expose -
7065 	 * because they are known to be properly supported in our code.
7066 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
7067 	 * be set to 0, meaning that L1 may turn off any of these bits. The
7068 	 * reason is that if one of these bits is necessary, it will appear
7069 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7070 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
7071 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7072 	 * These rules have exceptions below.
7073 	 */
7074 	nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7075 
7076 	nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7077 
7078 	nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7079 
7080 	nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7081 
7082 	nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7083 
7084 	nested_vmx_setup_misc_data(vmcs_conf, msrs);
7085 
7086 	nested_vmx_setup_basic(msrs);
7087 
7088 	nested_vmx_setup_cr_fixed(msrs);
7089 
7090 	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7091 }
7092 
7093 void nested_vmx_hardware_unsetup(void)
7094 {
7095 	int i;
7096 
7097 	if (enable_shadow_vmcs) {
7098 		for (i = 0; i < VMX_BITMAP_NR; i++)
7099 			free_page((unsigned long)vmx_bitmap[i]);
7100 	}
7101 }
7102 
7103 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7104 {
7105 	int i;
7106 
7107 	if (!cpu_has_vmx_shadow_vmcs())
7108 		enable_shadow_vmcs = 0;
7109 	if (enable_shadow_vmcs) {
7110 		for (i = 0; i < VMX_BITMAP_NR; i++) {
7111 			/*
7112 			 * The vmx_bitmap is not tied to a VM and so should
7113 			 * not be charged to a memcg.
7114 			 */
7115 			vmx_bitmap[i] = (unsigned long *)
7116 				__get_free_page(GFP_KERNEL);
7117 			if (!vmx_bitmap[i]) {
7118 				nested_vmx_hardware_unsetup();
7119 				return -ENOMEM;
7120 			}
7121 		}
7122 
7123 		init_vmcs_shadow_fields();
7124 	}
7125 
7126 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
7127 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
7128 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
7129 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
7130 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
7131 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
7132 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
7133 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmxoff;
7134 	exit_handlers[EXIT_REASON_VMON]		= handle_vmxon;
7135 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
7136 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
7137 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
7138 
7139 	return 0;
7140 }
7141 
7142 struct kvm_x86_nested_ops vmx_nested_ops = {
7143 	.leave_nested = vmx_leave_nested,
7144 	.is_exception_vmexit = nested_vmx_is_exception_vmexit,
7145 	.check_events = vmx_check_nested_events,
7146 	.has_events = vmx_has_nested_events,
7147 	.triple_fault = nested_vmx_triple_fault,
7148 	.get_state = vmx_get_nested_state,
7149 	.set_state = vmx_set_nested_state,
7150 	.get_nested_state_pages = vmx_get_nested_state_pages,
7151 	.write_log_dirty = nested_vmx_write_pml_buffer,
7152 	.enable_evmcs = nested_enable_evmcs,
7153 	.get_evmcs_version = nested_get_evmcs_version,
7154 	.hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7155 };
7156