xref: /openbmc/linux/arch/x86/kvm/vmx/nested.c (revision 402613f3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5 
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8 
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15 
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18 
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21 
22 #define CC(consistency_check)						\
23 ({									\
24 	bool failed = (consistency_check);				\
25 	if (failed)							\
26 		trace_kvm_nested_vmenter_failed(#consistency_check, 0);	\
27 	failed;								\
28 })
29 
30 /*
31  * Hyper-V requires all of these, so mark them as supported even though
32  * they are just treated the same as all-context.
33  */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
35 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
36 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
37 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
38 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39 
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41 
42 enum {
43 	VMX_VMREAD_BITMAP,
44 	VMX_VMWRITE_BITMAP,
45 	VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48 
49 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
51 
52 struct shadow_vmcs_field {
53 	u16	encoding;
54 	u16	offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61 	ARRAY_SIZE(shadow_read_only_fields);
62 
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68 	ARRAY_SIZE(shadow_read_write_fields);
69 
70 static void init_vmcs_shadow_fields(void)
71 {
72 	int i, j;
73 
74 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76 
77 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79 		u16 field = entry.encoding;
80 
81 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82 		    (i + 1 == max_shadow_read_only_fields ||
83 		     shadow_read_only_fields[i + 1].encoding != field + 1))
84 			pr_err("Missing field from shadow_read_only_field %x\n",
85 			       field + 1);
86 
87 		clear_bit(field, vmx_vmread_bitmap);
88 		if (field & 1)
89 #ifdef CONFIG_X86_64
90 			continue;
91 #else
92 			entry.offset += sizeof(u32);
93 #endif
94 		shadow_read_only_fields[j++] = entry;
95 	}
96 	max_shadow_read_only_fields = j;
97 
98 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100 		u16 field = entry.encoding;
101 
102 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103 		    (i + 1 == max_shadow_read_write_fields ||
104 		     shadow_read_write_fields[i + 1].encoding != field + 1))
105 			pr_err("Missing field from shadow_read_write_field %x\n",
106 			       field + 1);
107 
108 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109 			  field <= GUEST_TR_AR_BYTES,
110 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111 
112 		/*
113 		 * PML and the preemption timer can be emulated, but the
114 		 * processor cannot vmwrite to fields that don't exist
115 		 * on bare metal.
116 		 */
117 		switch (field) {
118 		case GUEST_PML_INDEX:
119 			if (!cpu_has_vmx_pml())
120 				continue;
121 			break;
122 		case VMX_PREEMPTION_TIMER_VALUE:
123 			if (!cpu_has_vmx_preemption_timer())
124 				continue;
125 			break;
126 		case GUEST_INTR_STATUS:
127 			if (!cpu_has_vmx_apicv())
128 				continue;
129 			break;
130 		default:
131 			break;
132 		}
133 
134 		clear_bit(field, vmx_vmwrite_bitmap);
135 		clear_bit(field, vmx_vmread_bitmap);
136 		if (field & 1)
137 #ifdef CONFIG_X86_64
138 			continue;
139 #else
140 			entry.offset += sizeof(u32);
141 #endif
142 		shadow_read_write_fields[j++] = entry;
143 	}
144 	max_shadow_read_write_fields = j;
145 }
146 
147 /*
148  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149  * set the success or error code of an emulated VMX instruction (as specified
150  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151  * instruction.
152  */
153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158 	return kvm_skip_emulated_instruction(vcpu);
159 }
160 
161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
166 			| X86_EFLAGS_CF);
167 	return kvm_skip_emulated_instruction(vcpu);
168 }
169 
170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171 				u32 vm_instruction_error)
172 {
173 	struct vcpu_vmx *vmx = to_vmx(vcpu);
174 
175 	/*
176 	 * failValid writes the error number to the current VMCS, which
177 	 * can't be done if there isn't a current VMCS.
178 	 */
179 	if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
180 		return nested_vmx_failInvalid(vcpu);
181 
182 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
183 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
184 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
185 			| X86_EFLAGS_ZF);
186 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
187 	/*
188 	 * We don't need to force a shadow sync because
189 	 * VM_INSTRUCTION_ERROR is not shadowed
190 	 */
191 	return kvm_skip_emulated_instruction(vcpu);
192 }
193 
194 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
195 {
196 	/* TODO: not to reset guest simply here. */
197 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
198 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
199 }
200 
201 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
202 {
203 	return fixed_bits_valid(control, low, high);
204 }
205 
206 static inline u64 vmx_control_msr(u32 low, u32 high)
207 {
208 	return low | ((u64)high << 32);
209 }
210 
211 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
212 {
213 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
214 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
215 	vmx->nested.need_vmcs12_to_shadow_sync = false;
216 }
217 
218 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
219 {
220 	struct vcpu_vmx *vmx = to_vmx(vcpu);
221 
222 	if (!vmx->nested.hv_evmcs)
223 		return;
224 
225 	kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
226 	vmx->nested.hv_evmcs_vmptr = -1ull;
227 	vmx->nested.hv_evmcs = NULL;
228 }
229 
230 /*
231  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
232  * just stops using VMX.
233  */
234 static void free_nested(struct kvm_vcpu *vcpu)
235 {
236 	struct vcpu_vmx *vmx = to_vmx(vcpu);
237 
238 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
239 		return;
240 
241 	kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
242 
243 	vmx->nested.vmxon = false;
244 	vmx->nested.smm.vmxon = false;
245 	free_vpid(vmx->nested.vpid02);
246 	vmx->nested.posted_intr_nv = -1;
247 	vmx->nested.current_vmptr = -1ull;
248 	if (enable_shadow_vmcs) {
249 		vmx_disable_shadow_vmcs(vmx);
250 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
251 		free_vmcs(vmx->vmcs01.shadow_vmcs);
252 		vmx->vmcs01.shadow_vmcs = NULL;
253 	}
254 	kfree(vmx->nested.cached_vmcs12);
255 	vmx->nested.cached_vmcs12 = NULL;
256 	kfree(vmx->nested.cached_shadow_vmcs12);
257 	vmx->nested.cached_shadow_vmcs12 = NULL;
258 	/* Unpin physical memory we referred to in the vmcs02 */
259 	if (vmx->nested.apic_access_page) {
260 		kvm_release_page_dirty(vmx->nested.apic_access_page);
261 		vmx->nested.apic_access_page = NULL;
262 	}
263 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
264 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
265 	vmx->nested.pi_desc = NULL;
266 
267 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
268 
269 	nested_release_evmcs(vcpu);
270 
271 	free_loaded_vmcs(&vmx->nested.vmcs02);
272 }
273 
274 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
275 				     struct loaded_vmcs *prev)
276 {
277 	struct vmcs_host_state *dest, *src;
278 
279 	if (unlikely(!vmx->guest_state_loaded))
280 		return;
281 
282 	src = &prev->host_state;
283 	dest = &vmx->loaded_vmcs->host_state;
284 
285 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
286 	dest->ldt_sel = src->ldt_sel;
287 #ifdef CONFIG_X86_64
288 	dest->ds_sel = src->ds_sel;
289 	dest->es_sel = src->es_sel;
290 #endif
291 }
292 
293 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
294 {
295 	struct vcpu_vmx *vmx = to_vmx(vcpu);
296 	struct loaded_vmcs *prev;
297 	int cpu;
298 
299 	if (vmx->loaded_vmcs == vmcs)
300 		return;
301 
302 	cpu = get_cpu();
303 	prev = vmx->loaded_vmcs;
304 	vmx->loaded_vmcs = vmcs;
305 	vmx_vcpu_load_vmcs(vcpu, cpu);
306 	vmx_sync_vmcs_host_state(vmx, prev);
307 	put_cpu();
308 
309 	vmx_segment_cache_clear(vmx);
310 }
311 
312 /*
313  * Ensure that the current vmcs of the logical processor is the
314  * vmcs01 of the vcpu before calling free_nested().
315  */
316 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
317 {
318 	vcpu_load(vcpu);
319 	vmx_leave_nested(vcpu);
320 	vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
321 	free_nested(vcpu);
322 	vcpu_put(vcpu);
323 }
324 
325 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
326 		struct x86_exception *fault)
327 {
328 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
329 	struct vcpu_vmx *vmx = to_vmx(vcpu);
330 	u32 exit_reason;
331 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
332 
333 	if (vmx->nested.pml_full) {
334 		exit_reason = EXIT_REASON_PML_FULL;
335 		vmx->nested.pml_full = false;
336 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
337 	} else if (fault->error_code & PFERR_RSVD_MASK)
338 		exit_reason = EXIT_REASON_EPT_MISCONFIG;
339 	else
340 		exit_reason = EXIT_REASON_EPT_VIOLATION;
341 
342 	nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
343 	vmcs12->guest_physical_address = fault->address;
344 }
345 
346 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
347 {
348 	WARN_ON(mmu_is_nested(vcpu));
349 
350 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
351 	kvm_init_shadow_ept_mmu(vcpu,
352 			to_vmx(vcpu)->nested.msrs.ept_caps &
353 			VMX_EPT_EXECUTE_ONLY_BIT,
354 			nested_ept_ad_enabled(vcpu),
355 			nested_ept_get_cr3(vcpu));
356 	vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
357 	vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
358 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
359 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
360 
361 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
362 }
363 
364 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
365 {
366 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
367 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
368 }
369 
370 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
371 					    u16 error_code)
372 {
373 	bool inequality, bit;
374 
375 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
376 	inequality =
377 		(error_code & vmcs12->page_fault_error_code_mask) !=
378 		 vmcs12->page_fault_error_code_match;
379 	return inequality ^ bit;
380 }
381 
382 
383 /*
384  * KVM wants to inject page-faults which it got to the guest. This function
385  * checks whether in a nested guest, we need to inject them to L1 or L2.
386  */
387 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
388 {
389 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
390 	unsigned int nr = vcpu->arch.exception.nr;
391 	bool has_payload = vcpu->arch.exception.has_payload;
392 	unsigned long payload = vcpu->arch.exception.payload;
393 
394 	if (nr == PF_VECTOR) {
395 		if (vcpu->arch.exception.nested_apf) {
396 			*exit_qual = vcpu->arch.apf.nested_apf_token;
397 			return 1;
398 		}
399 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
400 						    vcpu->arch.exception.error_code)) {
401 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
402 			return 1;
403 		}
404 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
405 		if (nr == DB_VECTOR) {
406 			if (!has_payload) {
407 				payload = vcpu->arch.dr6;
408 				payload &= ~(DR6_FIXED_1 | DR6_BT);
409 				payload ^= DR6_RTM;
410 			}
411 			*exit_qual = payload;
412 		} else
413 			*exit_qual = 0;
414 		return 1;
415 	}
416 
417 	return 0;
418 }
419 
420 
421 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
422 		struct x86_exception *fault)
423 {
424 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
425 
426 	WARN_ON(!is_guest_mode(vcpu));
427 
428 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
429 		!to_vmx(vcpu)->nested.nested_run_pending) {
430 		vmcs12->vm_exit_intr_error_code = fault->error_code;
431 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
432 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
433 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
434 				  fault->address);
435 	} else {
436 		kvm_inject_page_fault(vcpu, fault);
437 	}
438 }
439 
440 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
441 {
442 	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
443 }
444 
445 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
446 					       struct vmcs12 *vmcs12)
447 {
448 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
449 		return 0;
450 
451 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
452 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
453 		return -EINVAL;
454 
455 	return 0;
456 }
457 
458 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
459 						struct vmcs12 *vmcs12)
460 {
461 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
462 		return 0;
463 
464 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
465 		return -EINVAL;
466 
467 	return 0;
468 }
469 
470 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
471 						struct vmcs12 *vmcs12)
472 {
473 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
474 		return 0;
475 
476 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
477 		return -EINVAL;
478 
479 	return 0;
480 }
481 
482 /*
483  * Check if MSR is intercepted for L01 MSR bitmap.
484  */
485 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
486 {
487 	unsigned long *msr_bitmap;
488 	int f = sizeof(unsigned long);
489 
490 	if (!cpu_has_vmx_msr_bitmap())
491 		return true;
492 
493 	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
494 
495 	if (msr <= 0x1fff) {
496 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
497 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
498 		msr &= 0x1fff;
499 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
500 	}
501 
502 	return true;
503 }
504 
505 /*
506  * If a msr is allowed by L0, we should check whether it is allowed by L1.
507  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
508  */
509 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
510 					       unsigned long *msr_bitmap_nested,
511 					       u32 msr, int type)
512 {
513 	int f = sizeof(unsigned long);
514 
515 	/*
516 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
517 	 * have the write-low and read-high bitmap offsets the wrong way round.
518 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
519 	 */
520 	if (msr <= 0x1fff) {
521 		if (type & MSR_TYPE_R &&
522 		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
523 			/* read-low */
524 			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
525 
526 		if (type & MSR_TYPE_W &&
527 		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
528 			/* write-low */
529 			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
530 
531 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
532 		msr &= 0x1fff;
533 		if (type & MSR_TYPE_R &&
534 		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
535 			/* read-high */
536 			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
537 
538 		if (type & MSR_TYPE_W &&
539 		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
540 			/* write-high */
541 			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
542 
543 	}
544 }
545 
546 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
547 	int msr;
548 
549 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
550 		unsigned word = msr / BITS_PER_LONG;
551 
552 		msr_bitmap[word] = ~0;
553 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
554 	}
555 }
556 
557 /*
558  * Merge L0's and L1's MSR bitmap, return false to indicate that
559  * we do not use the hardware.
560  */
561 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
562 						 struct vmcs12 *vmcs12)
563 {
564 	int msr;
565 	unsigned long *msr_bitmap_l1;
566 	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
567 	struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
568 
569 	/* Nothing to do if the MSR bitmap is not in use.  */
570 	if (!cpu_has_vmx_msr_bitmap() ||
571 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
572 		return false;
573 
574 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
575 		return false;
576 
577 	msr_bitmap_l1 = (unsigned long *)map->hva;
578 
579 	/*
580 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
581 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
582 	 * the x2APIC MSR range and selectively disable them below.
583 	 */
584 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
585 
586 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
587 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
588 			/*
589 			 * L0 need not intercept reads for MSRs between 0x800
590 			 * and 0x8ff, it just lets the processor take the value
591 			 * from the virtual-APIC page; take those 256 bits
592 			 * directly from the L1 bitmap.
593 			 */
594 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
595 				unsigned word = msr / BITS_PER_LONG;
596 
597 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
598 			}
599 		}
600 
601 		nested_vmx_disable_intercept_for_msr(
602 			msr_bitmap_l1, msr_bitmap_l0,
603 			X2APIC_MSR(APIC_TASKPRI),
604 			MSR_TYPE_R | MSR_TYPE_W);
605 
606 		if (nested_cpu_has_vid(vmcs12)) {
607 			nested_vmx_disable_intercept_for_msr(
608 				msr_bitmap_l1, msr_bitmap_l0,
609 				X2APIC_MSR(APIC_EOI),
610 				MSR_TYPE_W);
611 			nested_vmx_disable_intercept_for_msr(
612 				msr_bitmap_l1, msr_bitmap_l0,
613 				X2APIC_MSR(APIC_SELF_IPI),
614 				MSR_TYPE_W);
615 		}
616 	}
617 
618 	/* KVM unconditionally exposes the FS/GS base MSRs to L1. */
619 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
620 					     MSR_FS_BASE, MSR_TYPE_RW);
621 
622 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
623 					     MSR_GS_BASE, MSR_TYPE_RW);
624 
625 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
626 					     MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
627 
628 	/*
629 	 * Checking the L0->L1 bitmap is trying to verify two things:
630 	 *
631 	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
632 	 *    ensures that we do not accidentally generate an L02 MSR bitmap
633 	 *    from the L12 MSR bitmap that is too permissive.
634 	 * 2. That L1 or L2s have actually used the MSR. This avoids
635 	 *    unnecessarily merging of the bitmap if the MSR is unused. This
636 	 *    works properly because we only update the L01 MSR bitmap lazily.
637 	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
638 	 *    updated to reflect this when L1 (or its L2s) actually write to
639 	 *    the MSR.
640 	 */
641 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
642 		nested_vmx_disable_intercept_for_msr(
643 					msr_bitmap_l1, msr_bitmap_l0,
644 					MSR_IA32_SPEC_CTRL,
645 					MSR_TYPE_R | MSR_TYPE_W);
646 
647 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
648 		nested_vmx_disable_intercept_for_msr(
649 					msr_bitmap_l1, msr_bitmap_l0,
650 					MSR_IA32_PRED_CMD,
651 					MSR_TYPE_W);
652 
653 	kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
654 
655 	return true;
656 }
657 
658 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
659 				       struct vmcs12 *vmcs12)
660 {
661 	struct kvm_host_map map;
662 	struct vmcs12 *shadow;
663 
664 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
665 	    vmcs12->vmcs_link_pointer == -1ull)
666 		return;
667 
668 	shadow = get_shadow_vmcs12(vcpu);
669 
670 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
671 		return;
672 
673 	memcpy(shadow, map.hva, VMCS12_SIZE);
674 	kvm_vcpu_unmap(vcpu, &map, false);
675 }
676 
677 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
678 					      struct vmcs12 *vmcs12)
679 {
680 	struct vcpu_vmx *vmx = to_vmx(vcpu);
681 
682 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
683 	    vmcs12->vmcs_link_pointer == -1ull)
684 		return;
685 
686 	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
687 			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
688 }
689 
690 /*
691  * In nested virtualization, check if L1 has set
692  * VM_EXIT_ACK_INTR_ON_EXIT
693  */
694 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
695 {
696 	return get_vmcs12(vcpu)->vm_exit_controls &
697 		VM_EXIT_ACK_INTR_ON_EXIT;
698 }
699 
700 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
701 {
702 	return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
703 }
704 
705 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
706 					  struct vmcs12 *vmcs12)
707 {
708 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
709 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
710 		return -EINVAL;
711 	else
712 		return 0;
713 }
714 
715 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
716 					   struct vmcs12 *vmcs12)
717 {
718 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
719 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
720 	    !nested_cpu_has_vid(vmcs12) &&
721 	    !nested_cpu_has_posted_intr(vmcs12))
722 		return 0;
723 
724 	/*
725 	 * If virtualize x2apic mode is enabled,
726 	 * virtualize apic access must be disabled.
727 	 */
728 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
729 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
730 		return -EINVAL;
731 
732 	/*
733 	 * If virtual interrupt delivery is enabled,
734 	 * we must exit on external interrupts.
735 	 */
736 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
737 		return -EINVAL;
738 
739 	/*
740 	 * bits 15:8 should be zero in posted_intr_nv,
741 	 * the descriptor address has been already checked
742 	 * in nested_get_vmcs12_pages.
743 	 *
744 	 * bits 5:0 of posted_intr_desc_addr should be zero.
745 	 */
746 	if (nested_cpu_has_posted_intr(vmcs12) &&
747 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
748 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
749 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
750 	    CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
751 	    CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
752 		return -EINVAL;
753 
754 	/* tpr shadow is needed by all apicv features. */
755 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
756 		return -EINVAL;
757 
758 	return 0;
759 }
760 
761 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
762 				       u32 count, u64 addr)
763 {
764 	int maxphyaddr;
765 
766 	if (count == 0)
767 		return 0;
768 	maxphyaddr = cpuid_maxphyaddr(vcpu);
769 	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
770 	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
771 		return -EINVAL;
772 
773 	return 0;
774 }
775 
776 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
777 						     struct vmcs12 *vmcs12)
778 {
779 	if (CC(nested_vmx_check_msr_switch(vcpu,
780 					   vmcs12->vm_exit_msr_load_count,
781 					   vmcs12->vm_exit_msr_load_addr)) ||
782 	    CC(nested_vmx_check_msr_switch(vcpu,
783 					   vmcs12->vm_exit_msr_store_count,
784 					   vmcs12->vm_exit_msr_store_addr)))
785 		return -EINVAL;
786 
787 	return 0;
788 }
789 
790 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
791                                                       struct vmcs12 *vmcs12)
792 {
793 	if (CC(nested_vmx_check_msr_switch(vcpu,
794 					   vmcs12->vm_entry_msr_load_count,
795 					   vmcs12->vm_entry_msr_load_addr)))
796                 return -EINVAL;
797 
798 	return 0;
799 }
800 
801 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
802 					 struct vmcs12 *vmcs12)
803 {
804 	if (!nested_cpu_has_pml(vmcs12))
805 		return 0;
806 
807 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
808 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
809 		return -EINVAL;
810 
811 	return 0;
812 }
813 
814 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
815 							struct vmcs12 *vmcs12)
816 {
817 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
818 	       !nested_cpu_has_ept(vmcs12)))
819 		return -EINVAL;
820 	return 0;
821 }
822 
823 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
824 							 struct vmcs12 *vmcs12)
825 {
826 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
827 	       !nested_cpu_has_ept(vmcs12)))
828 		return -EINVAL;
829 	return 0;
830 }
831 
832 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
833 						 struct vmcs12 *vmcs12)
834 {
835 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
836 		return 0;
837 
838 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
839 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
840 		return -EINVAL;
841 
842 	return 0;
843 }
844 
845 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
846 				       struct vmx_msr_entry *e)
847 {
848 	/* x2APIC MSR accesses are not allowed */
849 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
850 		return -EINVAL;
851 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
852 	    CC(e->index == MSR_IA32_UCODE_REV))
853 		return -EINVAL;
854 	if (CC(e->reserved != 0))
855 		return -EINVAL;
856 	return 0;
857 }
858 
859 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
860 				     struct vmx_msr_entry *e)
861 {
862 	if (CC(e->index == MSR_FS_BASE) ||
863 	    CC(e->index == MSR_GS_BASE) ||
864 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
865 	    nested_vmx_msr_check_common(vcpu, e))
866 		return -EINVAL;
867 	return 0;
868 }
869 
870 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
871 				      struct vmx_msr_entry *e)
872 {
873 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
874 	    nested_vmx_msr_check_common(vcpu, e))
875 		return -EINVAL;
876 	return 0;
877 }
878 
879 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
880 {
881 	struct vcpu_vmx *vmx = to_vmx(vcpu);
882 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
883 				       vmx->nested.msrs.misc_high);
884 
885 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
886 }
887 
888 /*
889  * Load guest's/host's msr at nested entry/exit.
890  * return 0 for success, entry index for failure.
891  *
892  * One of the failure modes for MSR load/store is when a list exceeds the
893  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
894  * as possible, process all valid entries before failing rather than precheck
895  * for a capacity violation.
896  */
897 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
898 {
899 	u32 i;
900 	struct vmx_msr_entry e;
901 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
902 
903 	for (i = 0; i < count; i++) {
904 		if (unlikely(i >= max_msr_list_size))
905 			goto fail;
906 
907 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
908 					&e, sizeof(e))) {
909 			pr_debug_ratelimited(
910 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
911 				__func__, i, gpa + i * sizeof(e));
912 			goto fail;
913 		}
914 		if (nested_vmx_load_msr_check(vcpu, &e)) {
915 			pr_debug_ratelimited(
916 				"%s check failed (%u, 0x%x, 0x%x)\n",
917 				__func__, i, e.index, e.reserved);
918 			goto fail;
919 		}
920 		if (kvm_set_msr(vcpu, e.index, e.value)) {
921 			pr_debug_ratelimited(
922 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
923 				__func__, i, e.index, e.value);
924 			goto fail;
925 		}
926 	}
927 	return 0;
928 fail:
929 	return i + 1;
930 }
931 
932 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
933 {
934 	u64 data;
935 	u32 i;
936 	struct vmx_msr_entry e;
937 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
938 
939 	for (i = 0; i < count; i++) {
940 		if (unlikely(i >= max_msr_list_size))
941 			return -EINVAL;
942 
943 		if (kvm_vcpu_read_guest(vcpu,
944 					gpa + i * sizeof(e),
945 					&e, 2 * sizeof(u32))) {
946 			pr_debug_ratelimited(
947 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
948 				__func__, i, gpa + i * sizeof(e));
949 			return -EINVAL;
950 		}
951 		if (nested_vmx_store_msr_check(vcpu, &e)) {
952 			pr_debug_ratelimited(
953 				"%s check failed (%u, 0x%x, 0x%x)\n",
954 				__func__, i, e.index, e.reserved);
955 			return -EINVAL;
956 		}
957 		if (kvm_get_msr(vcpu, e.index, &data)) {
958 			pr_debug_ratelimited(
959 				"%s cannot read MSR (%u, 0x%x)\n",
960 				__func__, i, e.index);
961 			return -EINVAL;
962 		}
963 		if (kvm_vcpu_write_guest(vcpu,
964 					 gpa + i * sizeof(e) +
965 					     offsetof(struct vmx_msr_entry, value),
966 					 &data, sizeof(data))) {
967 			pr_debug_ratelimited(
968 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
969 				__func__, i, e.index, data);
970 			return -EINVAL;
971 		}
972 	}
973 	return 0;
974 }
975 
976 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
977 {
978 	unsigned long invalid_mask;
979 
980 	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
981 	return (val & invalid_mask) == 0;
982 }
983 
984 /*
985  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
986  * emulating VM entry into a guest with EPT enabled.
987  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
988  * is assigned to entry_failure_code on failure.
989  */
990 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
991 			       u32 *entry_failure_code)
992 {
993 	if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
994 		if (CC(!nested_cr3_valid(vcpu, cr3))) {
995 			*entry_failure_code = ENTRY_FAIL_DEFAULT;
996 			return -EINVAL;
997 		}
998 
999 		/*
1000 		 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1001 		 * must not be dereferenced.
1002 		 */
1003 		if (is_pae_paging(vcpu) && !nested_ept) {
1004 			if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1005 				*entry_failure_code = ENTRY_FAIL_PDPTE;
1006 				return -EINVAL;
1007 			}
1008 		}
1009 	}
1010 
1011 	if (!nested_ept)
1012 		kvm_mmu_new_cr3(vcpu, cr3, false);
1013 
1014 	vcpu->arch.cr3 = cr3;
1015 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1016 
1017 	kvm_init_mmu(vcpu, false);
1018 
1019 	return 0;
1020 }
1021 
1022 /*
1023  * Returns if KVM is able to config CPU to tag TLB entries
1024  * populated by L2 differently than TLB entries populated
1025  * by L1.
1026  *
1027  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
1028  *
1029  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1030  * with different VPID (L1 entries are tagged with vmx->vpid
1031  * while L2 entries are tagged with vmx->nested.vpid02).
1032  */
1033 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1034 {
1035 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1036 
1037 	return nested_cpu_has_ept(vmcs12) ||
1038 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1039 }
1040 
1041 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1042 {
1043 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1044 
1045 	return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1046 }
1047 
1048 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1049 {
1050 	superset &= mask;
1051 	subset &= mask;
1052 
1053 	return (superset | subset) == superset;
1054 }
1055 
1056 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1057 {
1058 	const u64 feature_and_reserved =
1059 		/* feature (except bit 48; see below) */
1060 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1061 		/* reserved */
1062 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1063 	u64 vmx_basic = vmx->nested.msrs.basic;
1064 
1065 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1066 		return -EINVAL;
1067 
1068 	/*
1069 	 * KVM does not emulate a version of VMX that constrains physical
1070 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1071 	 */
1072 	if (data & BIT_ULL(48))
1073 		return -EINVAL;
1074 
1075 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1076 	    vmx_basic_vmcs_revision_id(data))
1077 		return -EINVAL;
1078 
1079 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1080 		return -EINVAL;
1081 
1082 	vmx->nested.msrs.basic = data;
1083 	return 0;
1084 }
1085 
1086 static int
1087 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1088 {
1089 	u64 supported;
1090 	u32 *lowp, *highp;
1091 
1092 	switch (msr_index) {
1093 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1094 		lowp = &vmx->nested.msrs.pinbased_ctls_low;
1095 		highp = &vmx->nested.msrs.pinbased_ctls_high;
1096 		break;
1097 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1098 		lowp = &vmx->nested.msrs.procbased_ctls_low;
1099 		highp = &vmx->nested.msrs.procbased_ctls_high;
1100 		break;
1101 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1102 		lowp = &vmx->nested.msrs.exit_ctls_low;
1103 		highp = &vmx->nested.msrs.exit_ctls_high;
1104 		break;
1105 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1106 		lowp = &vmx->nested.msrs.entry_ctls_low;
1107 		highp = &vmx->nested.msrs.entry_ctls_high;
1108 		break;
1109 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1110 		lowp = &vmx->nested.msrs.secondary_ctls_low;
1111 		highp = &vmx->nested.msrs.secondary_ctls_high;
1112 		break;
1113 	default:
1114 		BUG();
1115 	}
1116 
1117 	supported = vmx_control_msr(*lowp, *highp);
1118 
1119 	/* Check must-be-1 bits are still 1. */
1120 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1121 		return -EINVAL;
1122 
1123 	/* Check must-be-0 bits are still 0. */
1124 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1125 		return -EINVAL;
1126 
1127 	*lowp = data;
1128 	*highp = data >> 32;
1129 	return 0;
1130 }
1131 
1132 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1133 {
1134 	const u64 feature_and_reserved_bits =
1135 		/* feature */
1136 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1137 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1138 		/* reserved */
1139 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1140 	u64 vmx_misc;
1141 
1142 	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1143 				   vmx->nested.msrs.misc_high);
1144 
1145 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1146 		return -EINVAL;
1147 
1148 	if ((vmx->nested.msrs.pinbased_ctls_high &
1149 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1150 	    vmx_misc_preemption_timer_rate(data) !=
1151 	    vmx_misc_preemption_timer_rate(vmx_misc))
1152 		return -EINVAL;
1153 
1154 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1155 		return -EINVAL;
1156 
1157 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1158 		return -EINVAL;
1159 
1160 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1161 		return -EINVAL;
1162 
1163 	vmx->nested.msrs.misc_low = data;
1164 	vmx->nested.msrs.misc_high = data >> 32;
1165 
1166 	return 0;
1167 }
1168 
1169 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1170 {
1171 	u64 vmx_ept_vpid_cap;
1172 
1173 	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1174 					   vmx->nested.msrs.vpid_caps);
1175 
1176 	/* Every bit is either reserved or a feature bit. */
1177 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1178 		return -EINVAL;
1179 
1180 	vmx->nested.msrs.ept_caps = data;
1181 	vmx->nested.msrs.vpid_caps = data >> 32;
1182 	return 0;
1183 }
1184 
1185 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1186 {
1187 	u64 *msr;
1188 
1189 	switch (msr_index) {
1190 	case MSR_IA32_VMX_CR0_FIXED0:
1191 		msr = &vmx->nested.msrs.cr0_fixed0;
1192 		break;
1193 	case MSR_IA32_VMX_CR4_FIXED0:
1194 		msr = &vmx->nested.msrs.cr4_fixed0;
1195 		break;
1196 	default:
1197 		BUG();
1198 	}
1199 
1200 	/*
1201 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1202 	 * must be 1 in the restored value.
1203 	 */
1204 	if (!is_bitwise_subset(data, *msr, -1ULL))
1205 		return -EINVAL;
1206 
1207 	*msr = data;
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Called when userspace is restoring VMX MSRs.
1213  *
1214  * Returns 0 on success, non-0 otherwise.
1215  */
1216 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1217 {
1218 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1219 
1220 	/*
1221 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1222 	 * is in VMX operation.
1223 	 */
1224 	if (vmx->nested.vmxon)
1225 		return -EBUSY;
1226 
1227 	switch (msr_index) {
1228 	case MSR_IA32_VMX_BASIC:
1229 		return vmx_restore_vmx_basic(vmx, data);
1230 	case MSR_IA32_VMX_PINBASED_CTLS:
1231 	case MSR_IA32_VMX_PROCBASED_CTLS:
1232 	case MSR_IA32_VMX_EXIT_CTLS:
1233 	case MSR_IA32_VMX_ENTRY_CTLS:
1234 		/*
1235 		 * The "non-true" VMX capability MSRs are generated from the
1236 		 * "true" MSRs, so we do not support restoring them directly.
1237 		 *
1238 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1239 		 * should restore the "true" MSRs with the must-be-1 bits
1240 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1241 		 * DEFAULT SETTINGS".
1242 		 */
1243 		return -EINVAL;
1244 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1245 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1246 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1247 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1249 		return vmx_restore_control_msr(vmx, msr_index, data);
1250 	case MSR_IA32_VMX_MISC:
1251 		return vmx_restore_vmx_misc(vmx, data);
1252 	case MSR_IA32_VMX_CR0_FIXED0:
1253 	case MSR_IA32_VMX_CR4_FIXED0:
1254 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1255 	case MSR_IA32_VMX_CR0_FIXED1:
1256 	case MSR_IA32_VMX_CR4_FIXED1:
1257 		/*
1258 		 * These MSRs are generated based on the vCPU's CPUID, so we
1259 		 * do not support restoring them directly.
1260 		 */
1261 		return -EINVAL;
1262 	case MSR_IA32_VMX_EPT_VPID_CAP:
1263 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1264 	case MSR_IA32_VMX_VMCS_ENUM:
1265 		vmx->nested.msrs.vmcs_enum = data;
1266 		return 0;
1267 	case MSR_IA32_VMX_VMFUNC:
1268 		if (data & ~vmx->nested.msrs.vmfunc_controls)
1269 			return -EINVAL;
1270 		vmx->nested.msrs.vmfunc_controls = data;
1271 		return 0;
1272 	default:
1273 		/*
1274 		 * The rest of the VMX capability MSRs do not support restore.
1275 		 */
1276 		return -EINVAL;
1277 	}
1278 }
1279 
1280 /* Returns 0 on success, non-0 otherwise. */
1281 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1282 {
1283 	switch (msr_index) {
1284 	case MSR_IA32_VMX_BASIC:
1285 		*pdata = msrs->basic;
1286 		break;
1287 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1288 	case MSR_IA32_VMX_PINBASED_CTLS:
1289 		*pdata = vmx_control_msr(
1290 			msrs->pinbased_ctls_low,
1291 			msrs->pinbased_ctls_high);
1292 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1293 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1294 		break;
1295 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1296 	case MSR_IA32_VMX_PROCBASED_CTLS:
1297 		*pdata = vmx_control_msr(
1298 			msrs->procbased_ctls_low,
1299 			msrs->procbased_ctls_high);
1300 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1301 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1302 		break;
1303 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1304 	case MSR_IA32_VMX_EXIT_CTLS:
1305 		*pdata = vmx_control_msr(
1306 			msrs->exit_ctls_low,
1307 			msrs->exit_ctls_high);
1308 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1309 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1310 		break;
1311 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1312 	case MSR_IA32_VMX_ENTRY_CTLS:
1313 		*pdata = vmx_control_msr(
1314 			msrs->entry_ctls_low,
1315 			msrs->entry_ctls_high);
1316 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1317 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1318 		break;
1319 	case MSR_IA32_VMX_MISC:
1320 		*pdata = vmx_control_msr(
1321 			msrs->misc_low,
1322 			msrs->misc_high);
1323 		break;
1324 	case MSR_IA32_VMX_CR0_FIXED0:
1325 		*pdata = msrs->cr0_fixed0;
1326 		break;
1327 	case MSR_IA32_VMX_CR0_FIXED1:
1328 		*pdata = msrs->cr0_fixed1;
1329 		break;
1330 	case MSR_IA32_VMX_CR4_FIXED0:
1331 		*pdata = msrs->cr4_fixed0;
1332 		break;
1333 	case MSR_IA32_VMX_CR4_FIXED1:
1334 		*pdata = msrs->cr4_fixed1;
1335 		break;
1336 	case MSR_IA32_VMX_VMCS_ENUM:
1337 		*pdata = msrs->vmcs_enum;
1338 		break;
1339 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1340 		*pdata = vmx_control_msr(
1341 			msrs->secondary_ctls_low,
1342 			msrs->secondary_ctls_high);
1343 		break;
1344 	case MSR_IA32_VMX_EPT_VPID_CAP:
1345 		*pdata = msrs->ept_caps |
1346 			((u64)msrs->vpid_caps << 32);
1347 		break;
1348 	case MSR_IA32_VMX_VMFUNC:
1349 		*pdata = msrs->vmfunc_controls;
1350 		break;
1351 	default:
1352 		return 1;
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 /*
1359  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1360  * been modified by the L1 guest.  Note, "writable" in this context means
1361  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1362  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1363  * VM-exit information fields (which are actually writable if the vCPU is
1364  * configured to support "VMWRITE to any supported field in the VMCS").
1365  */
1366 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1367 {
1368 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1369 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1370 	struct shadow_vmcs_field field;
1371 	unsigned long val;
1372 	int i;
1373 
1374 	if (WARN_ON(!shadow_vmcs))
1375 		return;
1376 
1377 	preempt_disable();
1378 
1379 	vmcs_load(shadow_vmcs);
1380 
1381 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1382 		field = shadow_read_write_fields[i];
1383 		val = __vmcs_readl(field.encoding);
1384 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1385 	}
1386 
1387 	vmcs_clear(shadow_vmcs);
1388 	vmcs_load(vmx->loaded_vmcs->vmcs);
1389 
1390 	preempt_enable();
1391 }
1392 
1393 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1394 {
1395 	const struct shadow_vmcs_field *fields[] = {
1396 		shadow_read_write_fields,
1397 		shadow_read_only_fields
1398 	};
1399 	const int max_fields[] = {
1400 		max_shadow_read_write_fields,
1401 		max_shadow_read_only_fields
1402 	};
1403 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1404 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1405 	struct shadow_vmcs_field field;
1406 	unsigned long val;
1407 	int i, q;
1408 
1409 	if (WARN_ON(!shadow_vmcs))
1410 		return;
1411 
1412 	vmcs_load(shadow_vmcs);
1413 
1414 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1415 		for (i = 0; i < max_fields[q]; i++) {
1416 			field = fields[q][i];
1417 			val = vmcs12_read_any(vmcs12, field.encoding,
1418 					      field.offset);
1419 			__vmcs_writel(field.encoding, val);
1420 		}
1421 	}
1422 
1423 	vmcs_clear(shadow_vmcs);
1424 	vmcs_load(vmx->loaded_vmcs->vmcs);
1425 }
1426 
1427 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1428 {
1429 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1430 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1431 
1432 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1433 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1434 	vmcs12->guest_rip = evmcs->guest_rip;
1435 
1436 	if (unlikely(!(evmcs->hv_clean_fields &
1437 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1438 		vmcs12->guest_rsp = evmcs->guest_rsp;
1439 		vmcs12->guest_rflags = evmcs->guest_rflags;
1440 		vmcs12->guest_interruptibility_info =
1441 			evmcs->guest_interruptibility_info;
1442 	}
1443 
1444 	if (unlikely(!(evmcs->hv_clean_fields &
1445 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1446 		vmcs12->cpu_based_vm_exec_control =
1447 			evmcs->cpu_based_vm_exec_control;
1448 	}
1449 
1450 	if (unlikely(!(evmcs->hv_clean_fields &
1451 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1452 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1453 	}
1454 
1455 	if (unlikely(!(evmcs->hv_clean_fields &
1456 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1457 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1458 	}
1459 
1460 	if (unlikely(!(evmcs->hv_clean_fields &
1461 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1462 		vmcs12->vm_entry_intr_info_field =
1463 			evmcs->vm_entry_intr_info_field;
1464 		vmcs12->vm_entry_exception_error_code =
1465 			evmcs->vm_entry_exception_error_code;
1466 		vmcs12->vm_entry_instruction_len =
1467 			evmcs->vm_entry_instruction_len;
1468 	}
1469 
1470 	if (unlikely(!(evmcs->hv_clean_fields &
1471 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1472 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1473 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1474 		vmcs12->host_cr0 = evmcs->host_cr0;
1475 		vmcs12->host_cr3 = evmcs->host_cr3;
1476 		vmcs12->host_cr4 = evmcs->host_cr4;
1477 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1478 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1479 		vmcs12->host_rip = evmcs->host_rip;
1480 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1481 		vmcs12->host_es_selector = evmcs->host_es_selector;
1482 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1483 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1484 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1485 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1486 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1487 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1488 	}
1489 
1490 	if (unlikely(!(evmcs->hv_clean_fields &
1491 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1492 		vmcs12->pin_based_vm_exec_control =
1493 			evmcs->pin_based_vm_exec_control;
1494 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1495 		vmcs12->secondary_vm_exec_control =
1496 			evmcs->secondary_vm_exec_control;
1497 	}
1498 
1499 	if (unlikely(!(evmcs->hv_clean_fields &
1500 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1501 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1502 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1503 	}
1504 
1505 	if (unlikely(!(evmcs->hv_clean_fields &
1506 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1507 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1508 	}
1509 
1510 	if (unlikely(!(evmcs->hv_clean_fields &
1511 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1512 		vmcs12->guest_es_base = evmcs->guest_es_base;
1513 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1514 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1515 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1516 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1517 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1518 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1519 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1520 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1521 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1522 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1523 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1524 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1525 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1526 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1527 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1528 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1529 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1530 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1531 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1532 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1533 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1534 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1535 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1536 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1537 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1538 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1539 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1540 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1541 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1542 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1543 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1544 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1545 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1546 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1547 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1548 	}
1549 
1550 	if (unlikely(!(evmcs->hv_clean_fields &
1551 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1552 		vmcs12->tsc_offset = evmcs->tsc_offset;
1553 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1554 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1555 	}
1556 
1557 	if (unlikely(!(evmcs->hv_clean_fields &
1558 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1559 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1560 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1561 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1562 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1563 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1564 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1565 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1566 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1567 	}
1568 
1569 	if (unlikely(!(evmcs->hv_clean_fields &
1570 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1571 		vmcs12->host_fs_base = evmcs->host_fs_base;
1572 		vmcs12->host_gs_base = evmcs->host_gs_base;
1573 		vmcs12->host_tr_base = evmcs->host_tr_base;
1574 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1575 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1576 		vmcs12->host_rsp = evmcs->host_rsp;
1577 	}
1578 
1579 	if (unlikely(!(evmcs->hv_clean_fields &
1580 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1581 		vmcs12->ept_pointer = evmcs->ept_pointer;
1582 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1583 	}
1584 
1585 	if (unlikely(!(evmcs->hv_clean_fields &
1586 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1587 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1588 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1589 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1590 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1591 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1592 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1593 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1594 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1595 		vmcs12->guest_pending_dbg_exceptions =
1596 			evmcs->guest_pending_dbg_exceptions;
1597 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1598 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1599 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1600 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1601 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1602 	}
1603 
1604 	/*
1605 	 * Not used?
1606 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1607 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1608 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1609 	 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1610 	 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1611 	 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1612 	 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1613 	 * vmcs12->page_fault_error_code_mask =
1614 	 *		evmcs->page_fault_error_code_mask;
1615 	 * vmcs12->page_fault_error_code_match =
1616 	 *		evmcs->page_fault_error_code_match;
1617 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1618 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1619 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1620 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1621 	 */
1622 
1623 	/*
1624 	 * Read only fields:
1625 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1626 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1627 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1628 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1629 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1630 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1631 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1632 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1633 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1634 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1635 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1636 	 *
1637 	 * Not present in struct vmcs12:
1638 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1639 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1640 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1641 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1642 	 */
1643 
1644 	return 0;
1645 }
1646 
1647 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1648 {
1649 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1650 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1651 
1652 	/*
1653 	 * Should not be changed by KVM:
1654 	 *
1655 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1656 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1657 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1658 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1659 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1660 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1661 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1662 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1663 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1664 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1665 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1666 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1667 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1668 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1669 	 * evmcs->host_rip = vmcs12->host_rip;
1670 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1671 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1672 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1673 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1674 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1675 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1676 	 * evmcs->host_rsp = vmcs12->host_rsp;
1677 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1678 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1679 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1680 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1681 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1682 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1683 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1684 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1685 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1686 	 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1687 	 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1688 	 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1689 	 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1690 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1691 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1692 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1693 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1694 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1695 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1696 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1697 	 * evmcs->page_fault_error_code_mask =
1698 	 *		vmcs12->page_fault_error_code_mask;
1699 	 * evmcs->page_fault_error_code_match =
1700 	 *		vmcs12->page_fault_error_code_match;
1701 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1702 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1703 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1704 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1705 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1706 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1707 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1708 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1709 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1710 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1711 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1712 	 *
1713 	 * Not present in struct vmcs12:
1714 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1715 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1716 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1717 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1718 	 */
1719 
1720 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1721 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1722 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1723 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1724 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1725 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1726 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1727 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1728 
1729 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1730 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1731 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1732 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1733 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1734 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1735 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1736 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1737 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1738 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1739 
1740 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1741 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1742 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1743 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1744 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1745 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1746 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1747 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1748 
1749 	evmcs->guest_es_base = vmcs12->guest_es_base;
1750 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1751 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1752 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1753 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1754 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1755 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1756 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1757 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1758 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1759 
1760 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1761 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1762 
1763 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1764 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1765 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1766 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1767 
1768 	evmcs->guest_pending_dbg_exceptions =
1769 		vmcs12->guest_pending_dbg_exceptions;
1770 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1771 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1772 
1773 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1774 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1775 
1776 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1777 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1778 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1779 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1780 
1781 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1782 
1783 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1784 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1785 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1786 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1787 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1788 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1789 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1790 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1791 
1792 	evmcs->exit_qualification = vmcs12->exit_qualification;
1793 
1794 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1795 	evmcs->guest_rsp = vmcs12->guest_rsp;
1796 	evmcs->guest_rflags = vmcs12->guest_rflags;
1797 
1798 	evmcs->guest_interruptibility_info =
1799 		vmcs12->guest_interruptibility_info;
1800 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1801 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1802 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1803 	evmcs->vm_entry_exception_error_code =
1804 		vmcs12->vm_entry_exception_error_code;
1805 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1806 
1807 	evmcs->guest_rip = vmcs12->guest_rip;
1808 
1809 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1810 
1811 	return 0;
1812 }
1813 
1814 /*
1815  * This is an equivalent of the nested hypervisor executing the vmptrld
1816  * instruction.
1817  */
1818 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1819 						 bool from_launch)
1820 {
1821 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1822 	bool evmcs_gpa_changed = false;
1823 	u64 evmcs_gpa;
1824 
1825 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1826 		return 1;
1827 
1828 	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1829 		return 1;
1830 
1831 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1832 		if (!vmx->nested.hv_evmcs)
1833 			vmx->nested.current_vmptr = -1ull;
1834 
1835 		nested_release_evmcs(vcpu);
1836 
1837 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1838 				 &vmx->nested.hv_evmcs_map))
1839 			return 0;
1840 
1841 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1842 
1843 		/*
1844 		 * Currently, KVM only supports eVMCS version 1
1845 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1846 		 * value to first u32 field of eVMCS which should specify eVMCS
1847 		 * VersionNumber.
1848 		 *
1849 		 * Guest should be aware of supported eVMCS versions by host by
1850 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1851 		 * expected to set this CPUID leaf according to the value
1852 		 * returned in vmcs_version from nested_enable_evmcs().
1853 		 *
1854 		 * However, it turns out that Microsoft Hyper-V fails to comply
1855 		 * to their own invented interface: When Hyper-V use eVMCS, it
1856 		 * just sets first u32 field of eVMCS to revision_id specified
1857 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1858 		 * which is one of the supported versions specified in
1859 		 * CPUID.0x4000000A.EAX[0:15].
1860 		 *
1861 		 * To overcome Hyper-V bug, we accept here either a supported
1862 		 * eVMCS version or VMCS12 revision_id as valid values for first
1863 		 * u32 field of eVMCS.
1864 		 */
1865 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1866 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1867 			nested_release_evmcs(vcpu);
1868 			return 0;
1869 		}
1870 
1871 		vmx->nested.dirty_vmcs12 = true;
1872 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1873 
1874 		evmcs_gpa_changed = true;
1875 		/*
1876 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
1877 		 * reloaded from guest's memory (read only fields, fields not
1878 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
1879 		 * are no leftovers.
1880 		 */
1881 		if (from_launch) {
1882 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1883 			memset(vmcs12, 0, sizeof(*vmcs12));
1884 			vmcs12->hdr.revision_id = VMCS12_REVISION;
1885 		}
1886 
1887 	}
1888 
1889 	/*
1890 	 * Clean fields data can't de used on VMLAUNCH and when we switch
1891 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
1892 	 */
1893 	if (from_launch || evmcs_gpa_changed)
1894 		vmx->nested.hv_evmcs->hv_clean_fields &=
1895 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1896 
1897 	return 1;
1898 }
1899 
1900 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1901 {
1902 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1903 
1904 	/*
1905 	 * hv_evmcs may end up being not mapped after migration (when
1906 	 * L2 was running), map it here to make sure vmcs12 changes are
1907 	 * properly reflected.
1908 	 */
1909 	if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1910 		nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1911 
1912 	if (vmx->nested.hv_evmcs) {
1913 		copy_vmcs12_to_enlightened(vmx);
1914 		/* All fields are clean */
1915 		vmx->nested.hv_evmcs->hv_clean_fields |=
1916 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1917 	} else {
1918 		copy_vmcs12_to_shadow(vmx);
1919 	}
1920 
1921 	vmx->nested.need_vmcs12_to_shadow_sync = false;
1922 }
1923 
1924 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1925 {
1926 	struct vcpu_vmx *vmx =
1927 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1928 
1929 	vmx->nested.preemption_timer_expired = true;
1930 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1931 	kvm_vcpu_kick(&vmx->vcpu);
1932 
1933 	return HRTIMER_NORESTART;
1934 }
1935 
1936 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1937 {
1938 	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1939 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1940 
1941 	/*
1942 	 * A timer value of zero is architecturally guaranteed to cause
1943 	 * a VMExit prior to executing any instructions in the guest.
1944 	 */
1945 	if (preemption_timeout == 0) {
1946 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1947 		return;
1948 	}
1949 
1950 	if (vcpu->arch.virtual_tsc_khz == 0)
1951 		return;
1952 
1953 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1954 	preemption_timeout *= 1000000;
1955 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1956 	hrtimer_start(&vmx->nested.preemption_timer,
1957 		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1958 }
1959 
1960 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1961 {
1962 	if (vmx->nested.nested_run_pending &&
1963 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1964 		return vmcs12->guest_ia32_efer;
1965 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1966 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1967 	else
1968 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1969 }
1970 
1971 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1972 {
1973 	/*
1974 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1975 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
1976 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
1977 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
1978 	 */
1979 	if (vmx->nested.vmcs02_initialized)
1980 		return;
1981 	vmx->nested.vmcs02_initialized = true;
1982 
1983 	/*
1984 	 * We don't care what the EPTP value is we just need to guarantee
1985 	 * it's valid so we don't get a false positive when doing early
1986 	 * consistency checks.
1987 	 */
1988 	if (enable_ept && nested_early_check)
1989 		vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1990 
1991 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
1992 	if (cpu_has_vmx_vmfunc())
1993 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
1994 
1995 	if (cpu_has_vmx_posted_intr())
1996 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1997 
1998 	if (cpu_has_vmx_msr_bitmap())
1999 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2000 
2001 	/*
2002 	 * The PML address never changes, so it is constant in vmcs02.
2003 	 * Conceptually we want to copy the PML index from vmcs01 here,
2004 	 * and then back to vmcs01 on nested vmexit.  But since we flush
2005 	 * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2006 	 * index is also effectively constant in vmcs02.
2007 	 */
2008 	if (enable_pml) {
2009 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2010 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2011 	}
2012 
2013 	if (cpu_has_vmx_encls_vmexit())
2014 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2015 
2016 	/*
2017 	 * Set the MSR load/store lists to match L0's settings.  Only the
2018 	 * addresses are constant (for vmcs02), the counts can change based
2019 	 * on L2's behavior, e.g. switching to/from long mode.
2020 	 */
2021 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2022 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2023 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2024 
2025 	vmx_set_constant_host_state(vmx);
2026 }
2027 
2028 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2029 				      struct vmcs12 *vmcs12)
2030 {
2031 	prepare_vmcs02_constant_state(vmx);
2032 
2033 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
2034 
2035 	if (enable_vpid) {
2036 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2037 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2038 		else
2039 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2040 	}
2041 }
2042 
2043 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2044 {
2045 	u32 exec_control, vmcs12_exec_ctrl;
2046 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2047 
2048 	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2049 		prepare_vmcs02_early_rare(vmx, vmcs12);
2050 
2051 	/*
2052 	 * PIN CONTROLS
2053 	 */
2054 	exec_control = vmx_pin_based_exec_ctrl(vmx);
2055 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2056 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2057 
2058 	/* Posted interrupts setting is only taken from vmcs12.  */
2059 	if (nested_cpu_has_posted_intr(vmcs12)) {
2060 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2061 		vmx->nested.pi_pending = false;
2062 	} else {
2063 		exec_control &= ~PIN_BASED_POSTED_INTR;
2064 	}
2065 	pin_controls_set(vmx, exec_control);
2066 
2067 	/*
2068 	 * EXEC CONTROLS
2069 	 */
2070 	exec_control = vmx_exec_control(vmx); /* L0's desires */
2071 	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2072 	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2073 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2074 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2075 
2076 	if (exec_control & CPU_BASED_TPR_SHADOW)
2077 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2078 #ifdef CONFIG_X86_64
2079 	else
2080 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2081 				CPU_BASED_CR8_STORE_EXITING;
2082 #endif
2083 
2084 	/*
2085 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2086 	 * for I/O port accesses.
2087 	 */
2088 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2089 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2090 
2091 	/*
2092 	 * This bit will be computed in nested_get_vmcs12_pages, because
2093 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2094 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2095 	 * only set/clear this bit.
2096 	 */
2097 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2098 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2099 
2100 	exec_controls_set(vmx, exec_control);
2101 
2102 	/*
2103 	 * SECONDARY EXEC CONTROLS
2104 	 */
2105 	if (cpu_has_secondary_exec_ctrls()) {
2106 		exec_control = vmx->secondary_exec_control;
2107 
2108 		/* Take the following fields only from vmcs12 */
2109 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2110 				  SECONDARY_EXEC_ENABLE_INVPCID |
2111 				  SECONDARY_EXEC_RDTSCP |
2112 				  SECONDARY_EXEC_XSAVES |
2113 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2114 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2115 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2116 				  SECONDARY_EXEC_ENABLE_VMFUNC);
2117 		if (nested_cpu_has(vmcs12,
2118 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2119 			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2120 				~SECONDARY_EXEC_ENABLE_PML;
2121 			exec_control |= vmcs12_exec_ctrl;
2122 		}
2123 
2124 		/* VMCS shadowing for L2 is emulated for now */
2125 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2126 
2127 		/*
2128 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2129 		 * will not have to rewrite the controls just for this bit.
2130 		 */
2131 		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2132 		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2133 			exec_control |= SECONDARY_EXEC_DESC;
2134 
2135 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2136 			vmcs_write16(GUEST_INTR_STATUS,
2137 				vmcs12->guest_intr_status);
2138 
2139 		secondary_exec_controls_set(vmx, exec_control);
2140 	}
2141 
2142 	/*
2143 	 * ENTRY CONTROLS
2144 	 *
2145 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2146 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2147 	 * on the related bits (if supported by the CPU) in the hope that
2148 	 * we can avoid VMWrites during vmx_set_efer().
2149 	 */
2150 	exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2151 			~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2152 	if (cpu_has_load_ia32_efer()) {
2153 		if (guest_efer & EFER_LMA)
2154 			exec_control |= VM_ENTRY_IA32E_MODE;
2155 		if (guest_efer != host_efer)
2156 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2157 	}
2158 	vm_entry_controls_set(vmx, exec_control);
2159 
2160 	/*
2161 	 * EXIT CONTROLS
2162 	 *
2163 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2164 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2165 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2166 	 */
2167 	exec_control = vmx_vmexit_ctrl();
2168 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2169 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2170 	vm_exit_controls_set(vmx, exec_control);
2171 
2172 	/*
2173 	 * Interrupt/Exception Fields
2174 	 */
2175 	if (vmx->nested.nested_run_pending) {
2176 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2177 			     vmcs12->vm_entry_intr_info_field);
2178 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2179 			     vmcs12->vm_entry_exception_error_code);
2180 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2181 			     vmcs12->vm_entry_instruction_len);
2182 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2183 			     vmcs12->guest_interruptibility_info);
2184 		vmx->loaded_vmcs->nmi_known_unmasked =
2185 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2186 	} else {
2187 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2188 	}
2189 }
2190 
2191 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2192 {
2193 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2194 
2195 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2196 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2197 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2198 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2199 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2200 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2201 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2202 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2203 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2204 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2205 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2206 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2207 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2208 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2209 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2210 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2211 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2212 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2213 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2214 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2215 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2216 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2217 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2218 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2219 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2220 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2221 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2222 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2223 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2224 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2225 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2226 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2227 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2228 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2229 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2230 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2231 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2232 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2233 	}
2234 
2235 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2236 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2237 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2238 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2239 			    vmcs12->guest_pending_dbg_exceptions);
2240 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2241 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2242 
2243 		/*
2244 		 * L1 may access the L2's PDPTR, so save them to construct
2245 		 * vmcs12
2246 		 */
2247 		if (enable_ept) {
2248 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2249 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2250 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2251 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2252 		}
2253 
2254 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2255 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2256 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2257 	}
2258 
2259 	if (nested_cpu_has_xsaves(vmcs12))
2260 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2261 
2262 	/*
2263 	 * Whether page-faults are trapped is determined by a combination of
2264 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2265 	 * If enable_ept, L0 doesn't care about page faults and we should
2266 	 * set all of these to L1's desires. However, if !enable_ept, L0 does
2267 	 * care about (at least some) page faults, and because it is not easy
2268 	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
2269 	 * to exit on each and every L2 page fault. This is done by setting
2270 	 * MASK=MATCH=0 and (see below) EB.PF=1.
2271 	 * Note that below we don't need special code to set EB.PF beyond the
2272 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2273 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2274 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2275 	 */
2276 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2277 		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2278 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2279 		enable_ept ? vmcs12->page_fault_error_code_match : 0);
2280 
2281 	if (cpu_has_vmx_apicv()) {
2282 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2283 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2284 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2285 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2286 	}
2287 
2288 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2289 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2290 
2291 	set_cr4_guest_host_mask(vmx);
2292 }
2293 
2294 /*
2295  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2296  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2297  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2298  * guest in a way that will both be appropriate to L1's requests, and our
2299  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2300  * function also has additional necessary side-effects, like setting various
2301  * vcpu->arch fields.
2302  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2303  * is assigned to entry_failure_code on failure.
2304  */
2305 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2306 			  u32 *entry_failure_code)
2307 {
2308 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2309 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2310 	bool load_guest_pdptrs_vmcs12 = false;
2311 
2312 	if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2313 		prepare_vmcs02_rare(vmx, vmcs12);
2314 		vmx->nested.dirty_vmcs12 = false;
2315 
2316 		load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2317 			!(hv_evmcs->hv_clean_fields &
2318 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2319 	}
2320 
2321 	if (vmx->nested.nested_run_pending &&
2322 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2323 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2324 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2325 	} else {
2326 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2327 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2328 	}
2329 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2330 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2331 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2332 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2333 
2334 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2335 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2336 	 * trap. Note that CR0.TS also needs updating - we do this later.
2337 	 */
2338 	update_exception_bitmap(vcpu);
2339 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2340 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2341 
2342 	if (vmx->nested.nested_run_pending &&
2343 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2344 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2345 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2346 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2347 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2348 	}
2349 
2350 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2351 
2352 	if (kvm_has_tsc_control)
2353 		decache_tsc_multiplier(vmx);
2354 
2355 	if (enable_vpid) {
2356 		/*
2357 		 * There is no direct mapping between vpid02 and vpid12, the
2358 		 * vpid02 is per-vCPU for L0 and reused while the value of
2359 		 * vpid12 is changed w/ one invvpid during nested vmentry.
2360 		 * The vpid12 is allocated by L1 for L2, so it will not
2361 		 * influence global bitmap(for vpid01 and vpid02 allocation)
2362 		 * even if spawn a lot of nested vCPUs.
2363 		 */
2364 		if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2365 			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2366 				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2367 				__vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2368 			}
2369 		} else {
2370 			/*
2371 			 * If L1 use EPT, then L0 needs to execute INVEPT on
2372 			 * EPTP02 instead of EPTP01. Therefore, delay TLB
2373 			 * flush until vmcs02->eptp is fully updated by
2374 			 * KVM_REQ_LOAD_CR3. Note that this assumes
2375 			 * KVM_REQ_TLB_FLUSH is evaluated after
2376 			 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2377 			 */
2378 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2379 		}
2380 	}
2381 
2382 	if (nested_cpu_has_ept(vmcs12))
2383 		nested_ept_init_mmu_context(vcpu);
2384 	else if (nested_cpu_has2(vmcs12,
2385 				 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2386 		vmx_flush_tlb(vcpu, true);
2387 
2388 	/*
2389 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2390 	 * bits which we consider mandatory enabled.
2391 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
2392 	 * the specifications by L1; It's not enough to take
2393 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2394 	 * have more bits than L1 expected.
2395 	 */
2396 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2397 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2398 
2399 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2400 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2401 
2402 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2403 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2404 	vmx_set_efer(vcpu, vcpu->arch.efer);
2405 
2406 	/*
2407 	 * Guest state is invalid and unrestricted guest is disabled,
2408 	 * which means L1 attempted VMEntry to L2 with invalid state.
2409 	 * Fail the VMEntry.
2410 	 */
2411 	if (vmx->emulation_required) {
2412 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2413 		return -EINVAL;
2414 	}
2415 
2416 	/* Shadow page tables on either EPT or shadow page tables. */
2417 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2418 				entry_failure_code))
2419 		return -EINVAL;
2420 
2421 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2422 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2423 	    is_pae_paging(vcpu)) {
2424 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2425 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2426 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2427 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2428 	}
2429 
2430 	if (!enable_ept)
2431 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2432 
2433 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2434 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2435 	return 0;
2436 }
2437 
2438 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2439 {
2440 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2441 	       nested_cpu_has_virtual_nmis(vmcs12)))
2442 		return -EINVAL;
2443 
2444 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2445 	       nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)))
2446 		return -EINVAL;
2447 
2448 	return 0;
2449 }
2450 
2451 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2452 {
2453 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2454 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
2455 
2456 	/* Check for memory type validity */
2457 	switch (address & VMX_EPTP_MT_MASK) {
2458 	case VMX_EPTP_MT_UC:
2459 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2460 			return false;
2461 		break;
2462 	case VMX_EPTP_MT_WB:
2463 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2464 			return false;
2465 		break;
2466 	default:
2467 		return false;
2468 	}
2469 
2470 	/* only 4 levels page-walk length are valid */
2471 	if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
2472 		return false;
2473 
2474 	/* Reserved bits should not be set */
2475 	if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
2476 		return false;
2477 
2478 	/* AD, if set, should be supported */
2479 	if (address & VMX_EPTP_AD_ENABLE_BIT) {
2480 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2481 			return false;
2482 	}
2483 
2484 	return true;
2485 }
2486 
2487 /*
2488  * Checks related to VM-Execution Control Fields
2489  */
2490 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2491                                               struct vmcs12 *vmcs12)
2492 {
2493 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2494 
2495 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2496 				   vmx->nested.msrs.pinbased_ctls_low,
2497 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2498 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2499 				   vmx->nested.msrs.procbased_ctls_low,
2500 				   vmx->nested.msrs.procbased_ctls_high)))
2501 		return -EINVAL;
2502 
2503 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2504 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2505 				   vmx->nested.msrs.secondary_ctls_low,
2506 				   vmx->nested.msrs.secondary_ctls_high)))
2507 		return -EINVAL;
2508 
2509 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2510 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2511 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2512 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2513 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2514 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2515 	    nested_vmx_check_nmi_controls(vmcs12) ||
2516 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2517 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2518 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2519 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2520 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2521 		return -EINVAL;
2522 
2523 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2524 	    nested_cpu_has_save_preemption_timer(vmcs12))
2525 		return -EINVAL;
2526 
2527 	if (nested_cpu_has_ept(vmcs12) &&
2528 	    CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
2529 		return -EINVAL;
2530 
2531 	if (nested_cpu_has_vmfunc(vmcs12)) {
2532 		if (CC(vmcs12->vm_function_control &
2533 		       ~vmx->nested.msrs.vmfunc_controls))
2534 			return -EINVAL;
2535 
2536 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2537 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2538 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2539 				return -EINVAL;
2540 		}
2541 	}
2542 
2543 	return 0;
2544 }
2545 
2546 /*
2547  * Checks related to VM-Exit Control Fields
2548  */
2549 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2550                                          struct vmcs12 *vmcs12)
2551 {
2552 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2553 
2554 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2555 				    vmx->nested.msrs.exit_ctls_low,
2556 				    vmx->nested.msrs.exit_ctls_high)) ||
2557 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2558 		return -EINVAL;
2559 
2560 	return 0;
2561 }
2562 
2563 /*
2564  * Checks related to VM-Entry Control Fields
2565  */
2566 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2567 					  struct vmcs12 *vmcs12)
2568 {
2569 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2570 
2571 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2572 				    vmx->nested.msrs.entry_ctls_low,
2573 				    vmx->nested.msrs.entry_ctls_high)))
2574 		return -EINVAL;
2575 
2576 	/*
2577 	 * From the Intel SDM, volume 3:
2578 	 * Fields relevant to VM-entry event injection must be set properly.
2579 	 * These fields are the VM-entry interruption-information field, the
2580 	 * VM-entry exception error code, and the VM-entry instruction length.
2581 	 */
2582 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2583 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2584 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2585 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2586 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2587 		bool should_have_error_code;
2588 		bool urg = nested_cpu_has2(vmcs12,
2589 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2590 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2591 
2592 		/* VM-entry interruption-info field: interruption type */
2593 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2594 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2595 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2596 			return -EINVAL;
2597 
2598 		/* VM-entry interruption-info field: vector */
2599 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2600 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2601 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2602 			return -EINVAL;
2603 
2604 		/* VM-entry interruption-info field: deliver error code */
2605 		should_have_error_code =
2606 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2607 			x86_exception_has_error_code(vector);
2608 		if (CC(has_error_code != should_have_error_code))
2609 			return -EINVAL;
2610 
2611 		/* VM-entry exception error code */
2612 		if (CC(has_error_code &&
2613 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2614 			return -EINVAL;
2615 
2616 		/* VM-entry interruption-info field: reserved bits */
2617 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2618 			return -EINVAL;
2619 
2620 		/* VM-entry instruction length */
2621 		switch (intr_type) {
2622 		case INTR_TYPE_SOFT_EXCEPTION:
2623 		case INTR_TYPE_SOFT_INTR:
2624 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2625 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2626 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2627 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2628 				return -EINVAL;
2629 		}
2630 	}
2631 
2632 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2633 		return -EINVAL;
2634 
2635 	return 0;
2636 }
2637 
2638 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2639 				     struct vmcs12 *vmcs12)
2640 {
2641 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2642 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2643 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2644 		return -EINVAL;
2645 
2646 	return 0;
2647 }
2648 
2649 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2650 				       struct vmcs12 *vmcs12)
2651 {
2652 	bool ia32e;
2653 
2654 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2655 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2656 	    CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2657 		return -EINVAL;
2658 
2659 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2660 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2661 		return -EINVAL;
2662 
2663 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2664 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2665 		return -EINVAL;
2666 
2667 #ifdef CONFIG_X86_64
2668 	ia32e = !!(vcpu->arch.efer & EFER_LMA);
2669 #else
2670 	ia32e = false;
2671 #endif
2672 
2673 	if (ia32e) {
2674 		if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2675 		    CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2676 			return -EINVAL;
2677 	} else {
2678 		if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2679 		    CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2680 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2681 		    CC((vmcs12->host_rip) >> 32))
2682 			return -EINVAL;
2683 	}
2684 
2685 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2686 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2687 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2688 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2689 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2690 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2691 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2692 	    CC(vmcs12->host_cs_selector == 0) ||
2693 	    CC(vmcs12->host_tr_selector == 0) ||
2694 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2695 		return -EINVAL;
2696 
2697 #ifdef CONFIG_X86_64
2698 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2699 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2700 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2701 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2702 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2703 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2704 		return -EINVAL;
2705 #endif
2706 
2707 	/*
2708 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2709 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2710 	 * the values of the LMA and LME bits in the field must each be that of
2711 	 * the host address-space size VM-exit control.
2712 	 */
2713 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2714 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2715 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2716 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2717 			return -EINVAL;
2718 	}
2719 
2720 	return 0;
2721 }
2722 
2723 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2724 					  struct vmcs12 *vmcs12)
2725 {
2726 	int r = 0;
2727 	struct vmcs12 *shadow;
2728 	struct kvm_host_map map;
2729 
2730 	if (vmcs12->vmcs_link_pointer == -1ull)
2731 		return 0;
2732 
2733 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2734 		return -EINVAL;
2735 
2736 	if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2737 		return -EINVAL;
2738 
2739 	shadow = map.hva;
2740 
2741 	if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2742 	    CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2743 		r = -EINVAL;
2744 
2745 	kvm_vcpu_unmap(vcpu, &map, false);
2746 	return r;
2747 }
2748 
2749 /*
2750  * Checks related to Guest Non-register State
2751  */
2752 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2753 {
2754 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2755 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2756 		return -EINVAL;
2757 
2758 	return 0;
2759 }
2760 
2761 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2762 					struct vmcs12 *vmcs12,
2763 					u32 *exit_qual)
2764 {
2765 	bool ia32e;
2766 
2767 	*exit_qual = ENTRY_FAIL_DEFAULT;
2768 
2769 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2770 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2771 		return -EINVAL;
2772 
2773 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2774 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2775 		return -EINVAL;
2776 
2777 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2778 		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2779 		return -EINVAL;
2780 	}
2781 
2782 	/*
2783 	 * If the load IA32_EFER VM-entry control is 1, the following checks
2784 	 * are performed on the field for the IA32_EFER MSR:
2785 	 * - Bits reserved in the IA32_EFER MSR must be 0.
2786 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2787 	 *   the IA-32e mode guest VM-exit control. It must also be identical
2788 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2789 	 *   CR0.PG) is 1.
2790 	 */
2791 	if (to_vmx(vcpu)->nested.nested_run_pending &&
2792 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2793 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2794 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2795 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2796 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2797 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2798 			return -EINVAL;
2799 	}
2800 
2801 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2802 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2803 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2804 		return -EINVAL;
2805 
2806 	if (nested_check_guest_non_reg_state(vmcs12))
2807 		return -EINVAL;
2808 
2809 	return 0;
2810 }
2811 
2812 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2813 {
2814 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2815 	unsigned long cr3, cr4;
2816 	bool vm_fail;
2817 
2818 	if (!nested_early_check)
2819 		return 0;
2820 
2821 	if (vmx->msr_autoload.host.nr)
2822 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2823 	if (vmx->msr_autoload.guest.nr)
2824 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2825 
2826 	preempt_disable();
2827 
2828 	vmx_prepare_switch_to_guest(vcpu);
2829 
2830 	/*
2831 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2832 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2833 	 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2834 	 * there is no need to preserve other bits or save/restore the field.
2835 	 */
2836 	vmcs_writel(GUEST_RFLAGS, 0);
2837 
2838 	cr3 = __get_current_cr3_fast();
2839 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2840 		vmcs_writel(HOST_CR3, cr3);
2841 		vmx->loaded_vmcs->host_state.cr3 = cr3;
2842 	}
2843 
2844 	cr4 = cr4_read_shadow();
2845 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2846 		vmcs_writel(HOST_CR4, cr4);
2847 		vmx->loaded_vmcs->host_state.cr4 = cr4;
2848 	}
2849 
2850 	asm(
2851 		"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2852 		"cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2853 		"je 1f \n\t"
2854 		__ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2855 		"mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2856 		"1: \n\t"
2857 		"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2858 
2859 		/* Check if vmlaunch or vmresume is needed */
2860 		"cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2861 
2862 		/*
2863 		 * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2864 		 * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2865 		 * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2866 		 * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2867 		 */
2868 		"call vmx_vmenter\n\t"
2869 
2870 		CC_SET(be)
2871 	      : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2872 	      :	[HOST_RSP]"r"((unsigned long)HOST_RSP),
2873 		[loaded_vmcs]"r"(vmx->loaded_vmcs),
2874 		[launched]"i"(offsetof(struct loaded_vmcs, launched)),
2875 		[host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2876 		[wordsize]"i"(sizeof(ulong))
2877 	      : "memory"
2878 	);
2879 
2880 	if (vmx->msr_autoload.host.nr)
2881 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2882 	if (vmx->msr_autoload.guest.nr)
2883 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2884 
2885 	if (vm_fail) {
2886 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
2887 
2888 		preempt_enable();
2889 
2890 		trace_kvm_nested_vmenter_failed(
2891 			"early hardware check VM-instruction error: ", error);
2892 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2893 		return 1;
2894 	}
2895 
2896 	/*
2897 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2898 	 */
2899 	local_irq_enable();
2900 	if (hw_breakpoint_active())
2901 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
2902 	preempt_enable();
2903 
2904 	/*
2905 	 * A non-failing VMEntry means we somehow entered guest mode with
2906 	 * an illegal RIP, and that's just the tip of the iceberg.  There
2907 	 * is no telling what memory has been modified or what state has
2908 	 * been exposed to unknown code.  Hitting this all but guarantees
2909 	 * a (very critical) hardware issue.
2910 	 */
2911 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2912 		VMX_EXIT_REASONS_FAILED_VMENTRY));
2913 
2914 	return 0;
2915 }
2916 
2917 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2918 						 struct vmcs12 *vmcs12);
2919 
2920 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2921 {
2922 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2923 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2924 	struct kvm_host_map *map;
2925 	struct page *page;
2926 	u64 hpa;
2927 
2928 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2929 		/*
2930 		 * Translate L1 physical address to host physical
2931 		 * address for vmcs02. Keep the page pinned, so this
2932 		 * physical address remains valid. We keep a reference
2933 		 * to it so we can release it later.
2934 		 */
2935 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
2936 			kvm_release_page_dirty(vmx->nested.apic_access_page);
2937 			vmx->nested.apic_access_page = NULL;
2938 		}
2939 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2940 		/*
2941 		 * If translation failed, no matter: This feature asks
2942 		 * to exit when accessing the given address, and if it
2943 		 * can never be accessed, this feature won't do
2944 		 * anything anyway.
2945 		 */
2946 		if (!is_error_page(page)) {
2947 			vmx->nested.apic_access_page = page;
2948 			hpa = page_to_phys(vmx->nested.apic_access_page);
2949 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
2950 		} else {
2951 			secondary_exec_controls_clearbit(vmx,
2952 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2953 		}
2954 	}
2955 
2956 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2957 		map = &vmx->nested.virtual_apic_map;
2958 
2959 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
2960 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
2961 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
2962 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
2963 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2964 			/*
2965 			 * The processor will never use the TPR shadow, simply
2966 			 * clear the bit from the execution control.  Such a
2967 			 * configuration is useless, but it happens in tests.
2968 			 * For any other configuration, failing the vm entry is
2969 			 * _not_ what the processor does but it's basically the
2970 			 * only possibility we have.
2971 			 */
2972 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
2973 		} else {
2974 			/*
2975 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
2976 			 * force VM-Entry to fail.
2977 			 */
2978 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2979 		}
2980 	}
2981 
2982 	if (nested_cpu_has_posted_intr(vmcs12)) {
2983 		map = &vmx->nested.pi_desc_map;
2984 
2985 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
2986 			vmx->nested.pi_desc =
2987 				(struct pi_desc *)(((void *)map->hva) +
2988 				offset_in_page(vmcs12->posted_intr_desc_addr));
2989 			vmcs_write64(POSTED_INTR_DESC_ADDR,
2990 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
2991 		}
2992 	}
2993 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2994 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2995 	else
2996 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2997 }
2998 
2999 /*
3000  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3001  * for running VMX instructions (except VMXON, whose prerequisites are
3002  * slightly different). It also specifies what exception to inject otherwise.
3003  * Note that many of these exceptions have priority over VM exits, so they
3004  * don't have to be checked again here.
3005  */
3006 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3007 {
3008 	if (!to_vmx(vcpu)->nested.vmxon) {
3009 		kvm_queue_exception(vcpu, UD_VECTOR);
3010 		return 0;
3011 	}
3012 
3013 	if (vmx_get_cpl(vcpu)) {
3014 		kvm_inject_gp(vcpu, 0);
3015 		return 0;
3016 	}
3017 
3018 	return 1;
3019 }
3020 
3021 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3022 {
3023 	u8 rvi = vmx_get_rvi();
3024 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3025 
3026 	return ((rvi & 0xf0) > (vppr & 0xf0));
3027 }
3028 
3029 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3030 				   struct vmcs12 *vmcs12);
3031 
3032 /*
3033  * If from_vmentry is false, this is being called from state restore (either RSM
3034  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3035 + *
3036 + * Returns:
3037 + *   0 - success, i.e. proceed with actual VMEnter
3038 + *   1 - consistency check VMExit
3039 + *  -1 - consistency check VMFail
3040  */
3041 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
3042 {
3043 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3044 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3045 	bool evaluate_pending_interrupts;
3046 	u32 exit_reason = EXIT_REASON_INVALID_STATE;
3047 	u32 exit_qual;
3048 
3049 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3050 		(CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
3051 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3052 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3053 
3054 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3055 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3056 	if (kvm_mpx_supported() &&
3057 		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3058 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3059 
3060 	/*
3061 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3062 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3063 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3064 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3065 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3066 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3067 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3068 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3069 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3070 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3071 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3072 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3073 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3074 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3075 	 */
3076 	if (!enable_ept && !nested_early_check)
3077 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3078 
3079 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3080 
3081 	prepare_vmcs02_early(vmx, vmcs12);
3082 
3083 	if (from_vmentry) {
3084 		nested_get_vmcs12_pages(vcpu);
3085 
3086 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3087 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3088 			return -1;
3089 		}
3090 
3091 		if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3092 			goto vmentry_fail_vmexit;
3093 	}
3094 
3095 	enter_guest_mode(vcpu);
3096 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3097 		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3098 
3099 	if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3100 		goto vmentry_fail_vmexit_guest_mode;
3101 
3102 	if (from_vmentry) {
3103 		exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3104 		exit_qual = nested_vmx_load_msr(vcpu,
3105 						vmcs12->vm_entry_msr_load_addr,
3106 						vmcs12->vm_entry_msr_load_count);
3107 		if (exit_qual)
3108 			goto vmentry_fail_vmexit_guest_mode;
3109 	} else {
3110 		/*
3111 		 * The MMU is not initialized to point at the right entities yet and
3112 		 * "get pages" would need to read data from the guest (i.e. we will
3113 		 * need to perform gpa to hpa translation). Request a call
3114 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3115 		 * have already been set at vmentry time and should not be reset.
3116 		 */
3117 		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3118 	}
3119 
3120 	/*
3121 	 * If L1 had a pending IRQ/NMI until it executed
3122 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3123 	 * disallowed (e.g. interrupts disabled), L0 needs to
3124 	 * evaluate if this pending event should cause an exit from L2
3125 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3126 	 * intercept EXTERNAL_INTERRUPT).
3127 	 *
3128 	 * Usually this would be handled by the processor noticing an
3129 	 * IRQ/NMI window request, or checking RVI during evaluation of
3130 	 * pending virtual interrupts.  However, this setting was done
3131 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3132 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3133 	 */
3134 	if (unlikely(evaluate_pending_interrupts))
3135 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3136 
3137 	/*
3138 	 * Do not start the preemption timer hrtimer until after we know
3139 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3140 	 * the timer.
3141 	 */
3142 	vmx->nested.preemption_timer_expired = false;
3143 	if (nested_cpu_has_preemption_timer(vmcs12))
3144 		vmx_start_preemption_timer(vcpu);
3145 
3146 	/*
3147 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3148 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3149 	 * returned as far as L1 is concerned. It will only return (and set
3150 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3151 	 */
3152 	return 0;
3153 
3154 	/*
3155 	 * A failed consistency check that leads to a VMExit during L1's
3156 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3157 	 * 26.7 "VM-entry failures during or after loading guest state".
3158 	 */
3159 vmentry_fail_vmexit_guest_mode:
3160 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3161 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3162 	leave_guest_mode(vcpu);
3163 
3164 vmentry_fail_vmexit:
3165 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3166 
3167 	if (!from_vmentry)
3168 		return 1;
3169 
3170 	load_vmcs12_host_state(vcpu, vmcs12);
3171 	vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3172 	vmcs12->exit_qualification = exit_qual;
3173 	if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3174 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3175 	return 1;
3176 }
3177 
3178 /*
3179  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3180  * for running an L2 nested guest.
3181  */
3182 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3183 {
3184 	struct vmcs12 *vmcs12;
3185 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3186 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3187 	int ret;
3188 
3189 	if (!nested_vmx_check_permission(vcpu))
3190 		return 1;
3191 
3192 	if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3193 		return 1;
3194 
3195 	if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3196 		return nested_vmx_failInvalid(vcpu);
3197 
3198 	vmcs12 = get_vmcs12(vcpu);
3199 
3200 	/*
3201 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3202 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3203 	 * rather than RFLAGS.ZF, and no error number is stored to the
3204 	 * VM-instruction error field.
3205 	 */
3206 	if (vmcs12->hdr.shadow_vmcs)
3207 		return nested_vmx_failInvalid(vcpu);
3208 
3209 	if (vmx->nested.hv_evmcs) {
3210 		copy_enlightened_to_vmcs12(vmx);
3211 		/* Enlightened VMCS doesn't have launch state */
3212 		vmcs12->launch_state = !launch;
3213 	} else if (enable_shadow_vmcs) {
3214 		copy_shadow_to_vmcs12(vmx);
3215 	}
3216 
3217 	/*
3218 	 * The nested entry process starts with enforcing various prerequisites
3219 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3220 	 * they fail: As the SDM explains, some conditions should cause the
3221 	 * instruction to fail, while others will cause the instruction to seem
3222 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3223 	 * To speed up the normal (success) code path, we should avoid checking
3224 	 * for misconfigurations which will anyway be caught by the processor
3225 	 * when using the merged vmcs02.
3226 	 */
3227 	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3228 		return nested_vmx_failValid(vcpu,
3229 			VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3230 
3231 	if (vmcs12->launch_state == launch)
3232 		return nested_vmx_failValid(vcpu,
3233 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3234 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3235 
3236 	if (nested_vmx_check_controls(vcpu, vmcs12))
3237 		return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3238 
3239 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3240 		return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3241 
3242 	/*
3243 	 * We're finally done with prerequisite checking, and can start with
3244 	 * the nested entry.
3245 	 */
3246 	vmx->nested.nested_run_pending = 1;
3247 	ret = nested_vmx_enter_non_root_mode(vcpu, true);
3248 	vmx->nested.nested_run_pending = !ret;
3249 	if (ret > 0)
3250 		return 1;
3251 	else if (ret)
3252 		return nested_vmx_failValid(vcpu,
3253 			VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3254 
3255 	/* Hide L1D cache contents from the nested guest.  */
3256 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3257 
3258 	/*
3259 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3260 	 * also be used as part of restoring nVMX state for
3261 	 * snapshot restore (migration).
3262 	 *
3263 	 * In this flow, it is assumed that vmcs12 cache was
3264 	 * trasferred as part of captured nVMX state and should
3265 	 * therefore not be read from guest memory (which may not
3266 	 * exist on destination host yet).
3267 	 */
3268 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3269 
3270 	/*
3271 	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3272 	 * awakened by event injection or by an NMI-window VM-exit or
3273 	 * by an interrupt-window VM-exit, halt the vcpu.
3274 	 */
3275 	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3276 	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3277 	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3278 	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3279 	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3280 		vmx->nested.nested_run_pending = 0;
3281 		return kvm_vcpu_halt(vcpu);
3282 	}
3283 	return 1;
3284 }
3285 
3286 /*
3287  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3288  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3289  * This function returns the new value we should put in vmcs12.guest_cr0.
3290  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3291  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3292  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3293  *     didn't trap the bit, because if L1 did, so would L0).
3294  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3295  *     been modified by L2, and L1 knows it. So just leave the old value of
3296  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3297  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3298  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3299  *     changed these bits, and therefore they need to be updated, but L0
3300  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3301  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3302  */
3303 static inline unsigned long
3304 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3305 {
3306 	return
3307 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3308 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3309 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3310 			vcpu->arch.cr0_guest_owned_bits));
3311 }
3312 
3313 static inline unsigned long
3314 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3315 {
3316 	return
3317 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3318 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3319 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3320 			vcpu->arch.cr4_guest_owned_bits));
3321 }
3322 
3323 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3324 				      struct vmcs12 *vmcs12)
3325 {
3326 	u32 idt_vectoring;
3327 	unsigned int nr;
3328 
3329 	if (vcpu->arch.exception.injected) {
3330 		nr = vcpu->arch.exception.nr;
3331 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3332 
3333 		if (kvm_exception_is_soft(nr)) {
3334 			vmcs12->vm_exit_instruction_len =
3335 				vcpu->arch.event_exit_inst_len;
3336 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3337 		} else
3338 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3339 
3340 		if (vcpu->arch.exception.has_error_code) {
3341 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3342 			vmcs12->idt_vectoring_error_code =
3343 				vcpu->arch.exception.error_code;
3344 		}
3345 
3346 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3347 	} else if (vcpu->arch.nmi_injected) {
3348 		vmcs12->idt_vectoring_info_field =
3349 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3350 	} else if (vcpu->arch.interrupt.injected) {
3351 		nr = vcpu->arch.interrupt.nr;
3352 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3353 
3354 		if (vcpu->arch.interrupt.soft) {
3355 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3356 			vmcs12->vm_entry_instruction_len =
3357 				vcpu->arch.event_exit_inst_len;
3358 		} else
3359 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3360 
3361 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3362 	}
3363 }
3364 
3365 
3366 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3367 {
3368 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3369 	gfn_t gfn;
3370 
3371 	/*
3372 	 * Don't need to mark the APIC access page dirty; it is never
3373 	 * written to by the CPU during APIC virtualization.
3374 	 */
3375 
3376 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3377 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3378 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3379 	}
3380 
3381 	if (nested_cpu_has_posted_intr(vmcs12)) {
3382 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3383 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3384 	}
3385 }
3386 
3387 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3388 {
3389 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3390 	int max_irr;
3391 	void *vapic_page;
3392 	u16 status;
3393 
3394 	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3395 		return;
3396 
3397 	vmx->nested.pi_pending = false;
3398 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3399 		return;
3400 
3401 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3402 	if (max_irr != 256) {
3403 		vapic_page = vmx->nested.virtual_apic_map.hva;
3404 		if (!vapic_page)
3405 			return;
3406 
3407 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3408 			vapic_page, &max_irr);
3409 		status = vmcs_read16(GUEST_INTR_STATUS);
3410 		if ((u8)max_irr > ((u8)status & 0xff)) {
3411 			status &= ~0xff;
3412 			status |= (u8)max_irr;
3413 			vmcs_write16(GUEST_INTR_STATUS, status);
3414 		}
3415 	}
3416 
3417 	nested_mark_vmcs12_pages_dirty(vcpu);
3418 }
3419 
3420 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3421 					       unsigned long exit_qual)
3422 {
3423 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3424 	unsigned int nr = vcpu->arch.exception.nr;
3425 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3426 
3427 	if (vcpu->arch.exception.has_error_code) {
3428 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3429 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3430 	}
3431 
3432 	if (kvm_exception_is_soft(nr))
3433 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3434 	else
3435 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3436 
3437 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3438 	    vmx_get_nmi_mask(vcpu))
3439 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3440 
3441 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3442 }
3443 
3444 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3445 {
3446 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3447 	unsigned long exit_qual;
3448 	bool block_nested_events =
3449 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3450 	struct kvm_lapic *apic = vcpu->arch.apic;
3451 
3452 	if (lapic_in_kernel(vcpu) &&
3453 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3454 		if (block_nested_events)
3455 			return -EBUSY;
3456 		nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3457 		return 0;
3458 	}
3459 
3460 	if (vcpu->arch.exception.pending &&
3461 		nested_vmx_check_exception(vcpu, &exit_qual)) {
3462 		if (block_nested_events)
3463 			return -EBUSY;
3464 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3465 		return 0;
3466 	}
3467 
3468 	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3469 	    vmx->nested.preemption_timer_expired) {
3470 		if (block_nested_events)
3471 			return -EBUSY;
3472 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3473 		return 0;
3474 	}
3475 
3476 	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3477 		if (block_nested_events)
3478 			return -EBUSY;
3479 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3480 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3481 				  INTR_INFO_VALID_MASK, 0);
3482 		/*
3483 		 * The NMI-triggered VM exit counts as injection:
3484 		 * clear this one and block further NMIs.
3485 		 */
3486 		vcpu->arch.nmi_pending = 0;
3487 		vmx_set_nmi_mask(vcpu, true);
3488 		return 0;
3489 	}
3490 
3491 	if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3492 	    nested_exit_on_intr(vcpu)) {
3493 		if (block_nested_events)
3494 			return -EBUSY;
3495 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3496 		return 0;
3497 	}
3498 
3499 	vmx_complete_nested_posted_interrupt(vcpu);
3500 	return 0;
3501 }
3502 
3503 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3504 {
3505 	ktime_t remaining =
3506 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3507 	u64 value;
3508 
3509 	if (ktime_to_ns(remaining) <= 0)
3510 		return 0;
3511 
3512 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3513 	do_div(value, 1000000);
3514 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3515 }
3516 
3517 static bool is_vmcs12_ext_field(unsigned long field)
3518 {
3519 	switch (field) {
3520 	case GUEST_ES_SELECTOR:
3521 	case GUEST_CS_SELECTOR:
3522 	case GUEST_SS_SELECTOR:
3523 	case GUEST_DS_SELECTOR:
3524 	case GUEST_FS_SELECTOR:
3525 	case GUEST_GS_SELECTOR:
3526 	case GUEST_LDTR_SELECTOR:
3527 	case GUEST_TR_SELECTOR:
3528 	case GUEST_ES_LIMIT:
3529 	case GUEST_CS_LIMIT:
3530 	case GUEST_SS_LIMIT:
3531 	case GUEST_DS_LIMIT:
3532 	case GUEST_FS_LIMIT:
3533 	case GUEST_GS_LIMIT:
3534 	case GUEST_LDTR_LIMIT:
3535 	case GUEST_TR_LIMIT:
3536 	case GUEST_GDTR_LIMIT:
3537 	case GUEST_IDTR_LIMIT:
3538 	case GUEST_ES_AR_BYTES:
3539 	case GUEST_DS_AR_BYTES:
3540 	case GUEST_FS_AR_BYTES:
3541 	case GUEST_GS_AR_BYTES:
3542 	case GUEST_LDTR_AR_BYTES:
3543 	case GUEST_TR_AR_BYTES:
3544 	case GUEST_ES_BASE:
3545 	case GUEST_CS_BASE:
3546 	case GUEST_SS_BASE:
3547 	case GUEST_DS_BASE:
3548 	case GUEST_FS_BASE:
3549 	case GUEST_GS_BASE:
3550 	case GUEST_LDTR_BASE:
3551 	case GUEST_TR_BASE:
3552 	case GUEST_GDTR_BASE:
3553 	case GUEST_IDTR_BASE:
3554 	case GUEST_PENDING_DBG_EXCEPTIONS:
3555 	case GUEST_BNDCFGS:
3556 		return true;
3557 	default:
3558 		break;
3559 	}
3560 
3561 	return false;
3562 }
3563 
3564 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3565 				       struct vmcs12 *vmcs12)
3566 {
3567 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3568 
3569 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3570 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3571 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3572 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3573 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3574 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3575 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3576 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3577 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3578 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3579 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3580 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3581 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3582 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3583 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3584 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3585 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3586 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3587 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3588 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3589 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3590 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3591 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3592 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3593 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3594 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3595 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3596 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3597 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3598 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3599 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3600 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3601 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3602 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3603 	vmcs12->guest_pending_dbg_exceptions =
3604 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3605 	if (kvm_mpx_supported())
3606 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3607 
3608 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3609 }
3610 
3611 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3612 				       struct vmcs12 *vmcs12)
3613 {
3614 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3615 	int cpu;
3616 
3617 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3618 		return;
3619 
3620 
3621 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3622 
3623 	cpu = get_cpu();
3624 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
3625 	vmx_vcpu_load(&vmx->vcpu, cpu);
3626 
3627 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3628 
3629 	vmx->loaded_vmcs = &vmx->vmcs01;
3630 	vmx_vcpu_load(&vmx->vcpu, cpu);
3631 	put_cpu();
3632 }
3633 
3634 /*
3635  * Update the guest state fields of vmcs12 to reflect changes that
3636  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3637  * VM-entry controls is also updated, since this is really a guest
3638  * state bit.)
3639  */
3640 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3641 {
3642 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3643 
3644 	if (vmx->nested.hv_evmcs)
3645 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3646 
3647 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3648 
3649 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3650 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3651 
3652 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3653 	vmcs12->guest_rip = kvm_rip_read(vcpu);
3654 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3655 
3656 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3657 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3658 
3659 	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3660 	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3661 	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3662 
3663 	vmcs12->guest_interruptibility_info =
3664 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3665 
3666 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3667 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3668 	else
3669 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3670 
3671 	if (nested_cpu_has_preemption_timer(vmcs12) &&
3672 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3673 			vmcs12->vmx_preemption_timer_value =
3674 				vmx_get_preemption_timer_value(vcpu);
3675 
3676 	/*
3677 	 * In some cases (usually, nested EPT), L2 is allowed to change its
3678 	 * own CR3 without exiting. If it has changed it, we must keep it.
3679 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3680 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3681 	 *
3682 	 * Additionally, restore L2's PDPTR to vmcs12.
3683 	 */
3684 	if (enable_ept) {
3685 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3686 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3687 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3688 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3689 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3690 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3691 		}
3692 	}
3693 
3694 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3695 
3696 	if (nested_cpu_has_vid(vmcs12))
3697 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3698 
3699 	vmcs12->vm_entry_controls =
3700 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3701 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3702 
3703 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3704 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3705 
3706 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3707 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
3708 }
3709 
3710 /*
3711  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3712  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3713  * and this function updates it to reflect the changes to the guest state while
3714  * L2 was running (and perhaps made some exits which were handled directly by L0
3715  * without going back to L1), and to reflect the exit reason.
3716  * Note that we do not have to copy here all VMCS fields, just those that
3717  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3718  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3719  * which already writes to vmcs12 directly.
3720  */
3721 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3722 			   u32 exit_reason, u32 exit_intr_info,
3723 			   unsigned long exit_qualification)
3724 {
3725 	/* update exit information fields: */
3726 	vmcs12->vm_exit_reason = exit_reason;
3727 	vmcs12->exit_qualification = exit_qualification;
3728 	vmcs12->vm_exit_intr_info = exit_intr_info;
3729 
3730 	vmcs12->idt_vectoring_info_field = 0;
3731 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3732 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3733 
3734 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3735 		vmcs12->launch_state = 1;
3736 
3737 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
3738 		 * instead of reading the real value. */
3739 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3740 
3741 		/*
3742 		 * Transfer the event that L0 or L1 may wanted to inject into
3743 		 * L2 to IDT_VECTORING_INFO_FIELD.
3744 		 */
3745 		vmcs12_save_pending_event(vcpu, vmcs12);
3746 
3747 		/*
3748 		 * According to spec, there's no need to store the guest's
3749 		 * MSRs if the exit is due to a VM-entry failure that occurs
3750 		 * during or after loading the guest state. Since this exit
3751 		 * does not fall in that category, we need to save the MSRs.
3752 		 */
3753 		if (nested_vmx_store_msr(vcpu,
3754 					 vmcs12->vm_exit_msr_store_addr,
3755 					 vmcs12->vm_exit_msr_store_count))
3756 			nested_vmx_abort(vcpu,
3757 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3758 	}
3759 
3760 	/*
3761 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3762 	 * preserved above and would only end up incorrectly in L1.
3763 	 */
3764 	vcpu->arch.nmi_injected = false;
3765 	kvm_clear_exception_queue(vcpu);
3766 	kvm_clear_interrupt_queue(vcpu);
3767 }
3768 
3769 /*
3770  * A part of what we need to when the nested L2 guest exits and we want to
3771  * run its L1 parent, is to reset L1's guest state to the host state specified
3772  * in vmcs12.
3773  * This function is to be called not only on normal nested exit, but also on
3774  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3775  * Failures During or After Loading Guest State").
3776  * This function should be called when the active VMCS is L1's (vmcs01).
3777  */
3778 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3779 				   struct vmcs12 *vmcs12)
3780 {
3781 	struct kvm_segment seg;
3782 	u32 entry_failure_code;
3783 
3784 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3785 		vcpu->arch.efer = vmcs12->host_ia32_efer;
3786 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3787 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3788 	else
3789 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3790 	vmx_set_efer(vcpu, vcpu->arch.efer);
3791 
3792 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
3793 	kvm_rip_write(vcpu, vmcs12->host_rip);
3794 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3795 	vmx_set_interrupt_shadow(vcpu, 0);
3796 
3797 	/*
3798 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3799 	 * actually changed, because vmx_set_cr0 refers to efer set above.
3800 	 *
3801 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3802 	 * (KVM doesn't change it);
3803 	 */
3804 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3805 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
3806 
3807 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
3808 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3809 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
3810 
3811 	nested_ept_uninit_mmu_context(vcpu);
3812 
3813 	/*
3814 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
3815 	 * couldn't have changed.
3816 	 */
3817 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3818 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3819 
3820 	if (!enable_ept)
3821 		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3822 
3823 	/*
3824 	 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3825 	 * VMEntry/VMExit. Thus, no need to flush TLB.
3826 	 *
3827 	 * If vmcs12 doesn't use VPID, L1 expects TLB to be
3828 	 * flushed on every VMEntry/VMExit.
3829 	 *
3830 	 * Otherwise, we can preserve TLB entries as long as we are
3831 	 * able to tag L1 TLB entries differently than L2 TLB entries.
3832 	 *
3833 	 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3834 	 * and therefore we request the TLB flush to happen only after VMCS EPTP
3835 	 * has been set by KVM_REQ_LOAD_CR3.
3836 	 */
3837 	if (enable_vpid &&
3838 	    (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3839 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3840 	}
3841 
3842 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3843 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3844 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3845 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3846 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3847 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3848 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3849 
3850 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3851 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3852 		vmcs_write64(GUEST_BNDCFGS, 0);
3853 
3854 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3855 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3856 		vcpu->arch.pat = vmcs12->host_ia32_pat;
3857 	}
3858 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3859 		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3860 			vmcs12->host_ia32_perf_global_ctrl);
3861 
3862 	/* Set L1 segment info according to Intel SDM
3863 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
3864 	seg = (struct kvm_segment) {
3865 		.base = 0,
3866 		.limit = 0xFFFFFFFF,
3867 		.selector = vmcs12->host_cs_selector,
3868 		.type = 11,
3869 		.present = 1,
3870 		.s = 1,
3871 		.g = 1
3872 	};
3873 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3874 		seg.l = 1;
3875 	else
3876 		seg.db = 1;
3877 	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3878 	seg = (struct kvm_segment) {
3879 		.base = 0,
3880 		.limit = 0xFFFFFFFF,
3881 		.type = 3,
3882 		.present = 1,
3883 		.s = 1,
3884 		.db = 1,
3885 		.g = 1
3886 	};
3887 	seg.selector = vmcs12->host_ds_selector;
3888 	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3889 	seg.selector = vmcs12->host_es_selector;
3890 	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3891 	seg.selector = vmcs12->host_ss_selector;
3892 	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3893 	seg.selector = vmcs12->host_fs_selector;
3894 	seg.base = vmcs12->host_fs_base;
3895 	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3896 	seg.selector = vmcs12->host_gs_selector;
3897 	seg.base = vmcs12->host_gs_base;
3898 	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3899 	seg = (struct kvm_segment) {
3900 		.base = vmcs12->host_tr_base,
3901 		.limit = 0x67,
3902 		.selector = vmcs12->host_tr_selector,
3903 		.type = 11,
3904 		.present = 1
3905 	};
3906 	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3907 
3908 	kvm_set_dr(vcpu, 7, 0x400);
3909 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3910 
3911 	if (cpu_has_vmx_msr_bitmap())
3912 		vmx_update_msr_bitmap(vcpu);
3913 
3914 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3915 				vmcs12->vm_exit_msr_load_count))
3916 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3917 }
3918 
3919 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3920 {
3921 	struct shared_msr_entry *efer_msr;
3922 	unsigned int i;
3923 
3924 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3925 		return vmcs_read64(GUEST_IA32_EFER);
3926 
3927 	if (cpu_has_load_ia32_efer())
3928 		return host_efer;
3929 
3930 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3931 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3932 			return vmx->msr_autoload.guest.val[i].value;
3933 	}
3934 
3935 	efer_msr = find_msr_entry(vmx, MSR_EFER);
3936 	if (efer_msr)
3937 		return efer_msr->data;
3938 
3939 	return host_efer;
3940 }
3941 
3942 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3943 {
3944 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3945 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3946 	struct vmx_msr_entry g, h;
3947 	gpa_t gpa;
3948 	u32 i, j;
3949 
3950 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3951 
3952 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3953 		/*
3954 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3955 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
3956 		 * and vcpu->arch.dr7 is not squirreled away before the
3957 		 * nested VMENTER (not worth adding a variable in nested_vmx).
3958 		 */
3959 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3960 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3961 		else
3962 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3963 	}
3964 
3965 	/*
3966 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3967 	 * handle a variety of side effects to KVM's software model.
3968 	 */
3969 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3970 
3971 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3972 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3973 
3974 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3975 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3976 
3977 	nested_ept_uninit_mmu_context(vcpu);
3978 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3979 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3980 
3981 	/*
3982 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3983 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3984 	 * VMFail, like everything else we just need to ensure our
3985 	 * software model is up-to-date.
3986 	 */
3987 	if (enable_ept)
3988 		ept_save_pdptrs(vcpu);
3989 
3990 	kvm_mmu_reset_context(vcpu);
3991 
3992 	if (cpu_has_vmx_msr_bitmap())
3993 		vmx_update_msr_bitmap(vcpu);
3994 
3995 	/*
3996 	 * This nasty bit of open coding is a compromise between blindly
3997 	 * loading L1's MSRs using the exit load lists (incorrect emulation
3998 	 * of VMFail), leaving the nested VM's MSRs in the software model
3999 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4000 	 * expensive since the lists are unbound by hardware).  For each
4001 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4002 	 * list, reload it from the exit load list if it exists and differs
4003 	 * from the guest value.  The intent is to stuff host state as
4004 	 * silently as possible, not to fully process the exit load list.
4005 	 */
4006 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4007 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4008 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4009 			pr_debug_ratelimited(
4010 				"%s read MSR index failed (%u, 0x%08llx)\n",
4011 				__func__, i, gpa);
4012 			goto vmabort;
4013 		}
4014 
4015 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4016 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4017 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4018 				pr_debug_ratelimited(
4019 					"%s read MSR failed (%u, 0x%08llx)\n",
4020 					__func__, j, gpa);
4021 				goto vmabort;
4022 			}
4023 			if (h.index != g.index)
4024 				continue;
4025 			if (h.value == g.value)
4026 				break;
4027 
4028 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4029 				pr_debug_ratelimited(
4030 					"%s check failed (%u, 0x%x, 0x%x)\n",
4031 					__func__, j, h.index, h.reserved);
4032 				goto vmabort;
4033 			}
4034 
4035 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4036 				pr_debug_ratelimited(
4037 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4038 					__func__, j, h.index, h.value);
4039 				goto vmabort;
4040 			}
4041 		}
4042 	}
4043 
4044 	return;
4045 
4046 vmabort:
4047 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4048 }
4049 
4050 /*
4051  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4052  * and modify vmcs12 to make it see what it would expect to see there if
4053  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4054  */
4055 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4056 		       u32 exit_intr_info, unsigned long exit_qualification)
4057 {
4058 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4059 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4060 
4061 	/* trying to cancel vmlaunch/vmresume is a bug */
4062 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4063 
4064 	leave_guest_mode(vcpu);
4065 
4066 	if (nested_cpu_has_preemption_timer(vmcs12))
4067 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4068 
4069 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
4070 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4071 
4072 	if (likely(!vmx->fail)) {
4073 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4074 
4075 		if (exit_reason != -1)
4076 			prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4077 				       exit_qualification);
4078 
4079 		/*
4080 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4081 		 * also be used to capture vmcs12 cache as part of
4082 		 * capturing nVMX state for snapshot (migration).
4083 		 *
4084 		 * Otherwise, this flush will dirty guest memory at a
4085 		 * point it is already assumed by user-space to be
4086 		 * immutable.
4087 		 */
4088 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4089 	} else {
4090 		/*
4091 		 * The only expected VM-instruction error is "VM entry with
4092 		 * invalid control field(s)." Anything else indicates a
4093 		 * problem with L0.  And we should never get here with a
4094 		 * VMFail of any type if early consistency checks are enabled.
4095 		 */
4096 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4097 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4098 		WARN_ON_ONCE(nested_early_check);
4099 	}
4100 
4101 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4102 
4103 	/* Update any VMCS fields that might have changed while L2 ran */
4104 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4105 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4106 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4107 
4108 	if (kvm_has_tsc_control)
4109 		decache_tsc_multiplier(vmx);
4110 
4111 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4112 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4113 		vmx_set_virtual_apic_mode(vcpu);
4114 	} else if (!nested_cpu_has_ept(vmcs12) &&
4115 		   nested_cpu_has2(vmcs12,
4116 				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
4117 		vmx_flush_tlb(vcpu, true);
4118 	}
4119 
4120 	/* Unpin physical memory we referred to in vmcs02 */
4121 	if (vmx->nested.apic_access_page) {
4122 		kvm_release_page_dirty(vmx->nested.apic_access_page);
4123 		vmx->nested.apic_access_page = NULL;
4124 	}
4125 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4126 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4127 	vmx->nested.pi_desc = NULL;
4128 
4129 	/*
4130 	 * We are now running in L2, mmu_notifier will force to reload the
4131 	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4132 	 */
4133 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4134 
4135 	if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4136 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4137 
4138 	/* in case we halted in L2 */
4139 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4140 
4141 	if (likely(!vmx->fail)) {
4142 		/*
4143 		 * TODO: SDM says that with acknowledge interrupt on
4144 		 * exit, bit 31 of the VM-exit interrupt information
4145 		 * (valid interrupt) is always set to 1 on
4146 		 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4147 		 * need kvm_cpu_has_interrupt().  See the commit
4148 		 * message for details.
4149 		 */
4150 		if (nested_exit_intr_ack_set(vcpu) &&
4151 		    exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4152 		    kvm_cpu_has_interrupt(vcpu)) {
4153 			int irq = kvm_cpu_get_interrupt(vcpu);
4154 			WARN_ON(irq < 0);
4155 			vmcs12->vm_exit_intr_info = irq |
4156 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4157 		}
4158 
4159 		if (exit_reason != -1)
4160 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4161 						       vmcs12->exit_qualification,
4162 						       vmcs12->idt_vectoring_info_field,
4163 						       vmcs12->vm_exit_intr_info,
4164 						       vmcs12->vm_exit_intr_error_code,
4165 						       KVM_ISA_VMX);
4166 
4167 		load_vmcs12_host_state(vcpu, vmcs12);
4168 
4169 		return;
4170 	}
4171 
4172 	/*
4173 	 * After an early L2 VM-entry failure, we're now back
4174 	 * in L1 which thinks it just finished a VMLAUNCH or
4175 	 * VMRESUME instruction, so we need to set the failure
4176 	 * flag and the VM-instruction error field of the VMCS
4177 	 * accordingly, and skip the emulated instruction.
4178 	 */
4179 	(void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4180 
4181 	/*
4182 	 * Restore L1's host state to KVM's software model.  We're here
4183 	 * because a consistency check was caught by hardware, which
4184 	 * means some amount of guest state has been propagated to KVM's
4185 	 * model and needs to be unwound to the host's state.
4186 	 */
4187 	nested_vmx_restore_host_state(vcpu);
4188 
4189 	vmx->fail = 0;
4190 }
4191 
4192 /*
4193  * Decode the memory-address operand of a vmx instruction, as recorded on an
4194  * exit caused by such an instruction (run by a guest hypervisor).
4195  * On success, returns 0. When the operand is invalid, returns 1 and throws
4196  * #UD or #GP.
4197  */
4198 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4199 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4200 {
4201 	gva_t off;
4202 	bool exn;
4203 	struct kvm_segment s;
4204 
4205 	/*
4206 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4207 	 * Execution", on an exit, vmx_instruction_info holds most of the
4208 	 * addressing components of the operand. Only the displacement part
4209 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4210 	 * For how an actual address is calculated from all these components,
4211 	 * refer to Vol. 1, "Operand Addressing".
4212 	 */
4213 	int  scaling = vmx_instruction_info & 3;
4214 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4215 	bool is_reg = vmx_instruction_info & (1u << 10);
4216 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4217 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4218 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4219 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4220 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4221 
4222 	if (is_reg) {
4223 		kvm_queue_exception(vcpu, UD_VECTOR);
4224 		return 1;
4225 	}
4226 
4227 	/* Addr = segment_base + offset */
4228 	/* offset = base + [index * scale] + displacement */
4229 	off = exit_qualification; /* holds the displacement */
4230 	if (addr_size == 1)
4231 		off = (gva_t)sign_extend64(off, 31);
4232 	else if (addr_size == 0)
4233 		off = (gva_t)sign_extend64(off, 15);
4234 	if (base_is_valid)
4235 		off += kvm_register_read(vcpu, base_reg);
4236 	if (index_is_valid)
4237 		off += kvm_register_read(vcpu, index_reg)<<scaling;
4238 	vmx_get_segment(vcpu, &s, seg_reg);
4239 
4240 	/*
4241 	 * The effective address, i.e. @off, of a memory operand is truncated
4242 	 * based on the address size of the instruction.  Note that this is
4243 	 * the *effective address*, i.e. the address prior to accounting for
4244 	 * the segment's base.
4245 	 */
4246 	if (addr_size == 1) /* 32 bit */
4247 		off &= 0xffffffff;
4248 	else if (addr_size == 0) /* 16 bit */
4249 		off &= 0xffff;
4250 
4251 	/* Checks for #GP/#SS exceptions. */
4252 	exn = false;
4253 	if (is_long_mode(vcpu)) {
4254 		/*
4255 		 * The virtual/linear address is never truncated in 64-bit
4256 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4257 		 * address when using FS/GS with a non-zero base.
4258 		 */
4259 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4260 			*ret = s.base + off;
4261 		else
4262 			*ret = off;
4263 
4264 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
4265 		 * non-canonical form. This is the only check on the memory
4266 		 * destination for long mode!
4267 		 */
4268 		exn = is_noncanonical_address(*ret, vcpu);
4269 	} else {
4270 		/*
4271 		 * When not in long mode, the virtual/linear address is
4272 		 * unconditionally truncated to 32 bits regardless of the
4273 		 * address size.
4274 		 */
4275 		*ret = (s.base + off) & 0xffffffff;
4276 
4277 		/* Protected mode: apply checks for segment validity in the
4278 		 * following order:
4279 		 * - segment type check (#GP(0) may be thrown)
4280 		 * - usability check (#GP(0)/#SS(0))
4281 		 * - limit check (#GP(0)/#SS(0))
4282 		 */
4283 		if (wr)
4284 			/* #GP(0) if the destination operand is located in a
4285 			 * read-only data segment or any code segment.
4286 			 */
4287 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
4288 		else
4289 			/* #GP(0) if the source operand is located in an
4290 			 * execute-only code segment
4291 			 */
4292 			exn = ((s.type & 0xa) == 8);
4293 		if (exn) {
4294 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4295 			return 1;
4296 		}
4297 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4298 		 */
4299 		exn = (s.unusable != 0);
4300 
4301 		/*
4302 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4303 		 * outside the segment limit.  All CPUs that support VMX ignore
4304 		 * limit checks for flat segments, i.e. segments with base==0,
4305 		 * limit==0xffffffff and of type expand-up data or code.
4306 		 */
4307 		if (!(s.base == 0 && s.limit == 0xffffffff &&
4308 		     ((s.type & 8) || !(s.type & 4))))
4309 			exn = exn || ((u64)off + len - 1 > s.limit);
4310 	}
4311 	if (exn) {
4312 		kvm_queue_exception_e(vcpu,
4313 				      seg_reg == VCPU_SREG_SS ?
4314 						SS_VECTOR : GP_VECTOR,
4315 				      0);
4316 		return 1;
4317 	}
4318 
4319 	return 0;
4320 }
4321 
4322 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4323 {
4324 	gva_t gva;
4325 	struct x86_exception e;
4326 
4327 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4328 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4329 				sizeof(*vmpointer), &gva))
4330 		return 1;
4331 
4332 	if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4333 		kvm_inject_page_fault(vcpu, &e);
4334 		return 1;
4335 	}
4336 
4337 	return 0;
4338 }
4339 
4340 /*
4341  * Allocate a shadow VMCS and associate it with the currently loaded
4342  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4343  * VMCS is also VMCLEARed, so that it is ready for use.
4344  */
4345 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4346 {
4347 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4348 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4349 
4350 	/*
4351 	 * We should allocate a shadow vmcs for vmcs01 only when L1
4352 	 * executes VMXON and free it when L1 executes VMXOFF.
4353 	 * As it is invalid to execute VMXON twice, we shouldn't reach
4354 	 * here when vmcs01 already have an allocated shadow vmcs.
4355 	 */
4356 	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4357 
4358 	if (!loaded_vmcs->shadow_vmcs) {
4359 		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4360 		if (loaded_vmcs->shadow_vmcs)
4361 			vmcs_clear(loaded_vmcs->shadow_vmcs);
4362 	}
4363 	return loaded_vmcs->shadow_vmcs;
4364 }
4365 
4366 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4367 {
4368 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4369 	int r;
4370 
4371 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4372 	if (r < 0)
4373 		goto out_vmcs02;
4374 
4375 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4376 	if (!vmx->nested.cached_vmcs12)
4377 		goto out_cached_vmcs12;
4378 
4379 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4380 	if (!vmx->nested.cached_shadow_vmcs12)
4381 		goto out_cached_shadow_vmcs12;
4382 
4383 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4384 		goto out_shadow_vmcs;
4385 
4386 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4387 		     HRTIMER_MODE_REL_PINNED);
4388 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4389 
4390 	vmx->nested.vpid02 = allocate_vpid();
4391 
4392 	vmx->nested.vmcs02_initialized = false;
4393 	vmx->nested.vmxon = true;
4394 
4395 	if (pt_mode == PT_MODE_HOST_GUEST) {
4396 		vmx->pt_desc.guest.ctl = 0;
4397 		pt_update_intercept_for_msr(vmx);
4398 	}
4399 
4400 	return 0;
4401 
4402 out_shadow_vmcs:
4403 	kfree(vmx->nested.cached_shadow_vmcs12);
4404 
4405 out_cached_shadow_vmcs12:
4406 	kfree(vmx->nested.cached_vmcs12);
4407 
4408 out_cached_vmcs12:
4409 	free_loaded_vmcs(&vmx->nested.vmcs02);
4410 
4411 out_vmcs02:
4412 	return -ENOMEM;
4413 }
4414 
4415 /*
4416  * Emulate the VMXON instruction.
4417  * Currently, we just remember that VMX is active, and do not save or even
4418  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4419  * do not currently need to store anything in that guest-allocated memory
4420  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4421  * argument is different from the VMXON pointer (which the spec says they do).
4422  */
4423 static int handle_vmon(struct kvm_vcpu *vcpu)
4424 {
4425 	int ret;
4426 	gpa_t vmptr;
4427 	uint32_t revision;
4428 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4429 	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4430 		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4431 
4432 	/*
4433 	 * The Intel VMX Instruction Reference lists a bunch of bits that are
4434 	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4435 	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4436 	 * Otherwise, we should fail with #UD.  But most faulting conditions
4437 	 * have already been checked by hardware, prior to the VM-exit for
4438 	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4439 	 * that bit set to 1 in non-root mode.
4440 	 */
4441 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4442 		kvm_queue_exception(vcpu, UD_VECTOR);
4443 		return 1;
4444 	}
4445 
4446 	/* CPL=0 must be checked manually. */
4447 	if (vmx_get_cpl(vcpu)) {
4448 		kvm_inject_gp(vcpu, 0);
4449 		return 1;
4450 	}
4451 
4452 	if (vmx->nested.vmxon)
4453 		return nested_vmx_failValid(vcpu,
4454 			VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4455 
4456 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4457 			!= VMXON_NEEDED_FEATURES) {
4458 		kvm_inject_gp(vcpu, 0);
4459 		return 1;
4460 	}
4461 
4462 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4463 		return 1;
4464 
4465 	/*
4466 	 * SDM 3: 24.11.5
4467 	 * The first 4 bytes of VMXON region contain the supported
4468 	 * VMCS revision identifier
4469 	 *
4470 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4471 	 * which replaces physical address width with 32
4472 	 */
4473 	if (!page_address_valid(vcpu, vmptr))
4474 		return nested_vmx_failInvalid(vcpu);
4475 
4476 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4477 	    revision != VMCS12_REVISION)
4478 		return nested_vmx_failInvalid(vcpu);
4479 
4480 	vmx->nested.vmxon_ptr = vmptr;
4481 	ret = enter_vmx_operation(vcpu);
4482 	if (ret)
4483 		return ret;
4484 
4485 	return nested_vmx_succeed(vcpu);
4486 }
4487 
4488 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4489 {
4490 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4491 
4492 	if (vmx->nested.current_vmptr == -1ull)
4493 		return;
4494 
4495 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4496 
4497 	if (enable_shadow_vmcs) {
4498 		/* copy to memory all shadowed fields in case
4499 		   they were modified */
4500 		copy_shadow_to_vmcs12(vmx);
4501 		vmx_disable_shadow_vmcs(vmx);
4502 	}
4503 	vmx->nested.posted_intr_nv = -1;
4504 
4505 	/* Flush VMCS12 to guest memory */
4506 	kvm_vcpu_write_guest_page(vcpu,
4507 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
4508 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4509 
4510 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4511 
4512 	vmx->nested.current_vmptr = -1ull;
4513 }
4514 
4515 /* Emulate the VMXOFF instruction */
4516 static int handle_vmoff(struct kvm_vcpu *vcpu)
4517 {
4518 	if (!nested_vmx_check_permission(vcpu))
4519 		return 1;
4520 
4521 	free_nested(vcpu);
4522 
4523 	/* Process a latched INIT during time CPU was in VMX operation */
4524 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4525 
4526 	return nested_vmx_succeed(vcpu);
4527 }
4528 
4529 /* Emulate the VMCLEAR instruction */
4530 static int handle_vmclear(struct kvm_vcpu *vcpu)
4531 {
4532 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4533 	u32 zero = 0;
4534 	gpa_t vmptr;
4535 	u64 evmcs_gpa;
4536 
4537 	if (!nested_vmx_check_permission(vcpu))
4538 		return 1;
4539 
4540 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4541 		return 1;
4542 
4543 	if (!page_address_valid(vcpu, vmptr))
4544 		return nested_vmx_failValid(vcpu,
4545 			VMXERR_VMCLEAR_INVALID_ADDRESS);
4546 
4547 	if (vmptr == vmx->nested.vmxon_ptr)
4548 		return nested_vmx_failValid(vcpu,
4549 			VMXERR_VMCLEAR_VMXON_POINTER);
4550 
4551 	/*
4552 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
4553 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4554 	 * way to distinguish it from VMCS12) and we must not corrupt it by
4555 	 * writing to the non-existent 'launch_state' field. The area doesn't
4556 	 * have to be the currently active EVMCS on the calling CPU and there's
4557 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
4558 	 * state. It is possible that the area will stay mapped as
4559 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
4560 	 */
4561 	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4562 		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4563 		if (vmptr == vmx->nested.current_vmptr)
4564 			nested_release_vmcs12(vcpu);
4565 
4566 		kvm_vcpu_write_guest(vcpu,
4567 				     vmptr + offsetof(struct vmcs12,
4568 						      launch_state),
4569 				     &zero, sizeof(zero));
4570 	}
4571 
4572 	return nested_vmx_succeed(vcpu);
4573 }
4574 
4575 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4576 
4577 /* Emulate the VMLAUNCH instruction */
4578 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4579 {
4580 	return nested_vmx_run(vcpu, true);
4581 }
4582 
4583 /* Emulate the VMRESUME instruction */
4584 static int handle_vmresume(struct kvm_vcpu *vcpu)
4585 {
4586 
4587 	return nested_vmx_run(vcpu, false);
4588 }
4589 
4590 static int handle_vmread(struct kvm_vcpu *vcpu)
4591 {
4592 	unsigned long field;
4593 	u64 field_value;
4594 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4595 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4596 	int len;
4597 	gva_t gva = 0;
4598 	struct vmcs12 *vmcs12;
4599 	struct x86_exception e;
4600 	short offset;
4601 
4602 	if (!nested_vmx_check_permission(vcpu))
4603 		return 1;
4604 
4605 	if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4606 		return nested_vmx_failInvalid(vcpu);
4607 
4608 	if (!is_guest_mode(vcpu))
4609 		vmcs12 = get_vmcs12(vcpu);
4610 	else {
4611 		/*
4612 		 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4613 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
4614 		 */
4615 		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4616 			return nested_vmx_failInvalid(vcpu);
4617 		vmcs12 = get_shadow_vmcs12(vcpu);
4618 	}
4619 
4620 	/* Decode instruction info and find the field to read */
4621 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4622 
4623 	offset = vmcs_field_to_offset(field);
4624 	if (offset < 0)
4625 		return nested_vmx_failValid(vcpu,
4626 			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4627 
4628 	if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4629 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4630 
4631 	/* Read the field, zero-extended to a u64 field_value */
4632 	field_value = vmcs12_read_any(vmcs12, field, offset);
4633 
4634 	/*
4635 	 * Now copy part of this value to register or memory, as requested.
4636 	 * Note that the number of bits actually copied is 32 or 64 depending
4637 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
4638 	 */
4639 	if (vmx_instruction_info & (1u << 10)) {
4640 		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4641 			field_value);
4642 	} else {
4643 		len = is_64_bit_mode(vcpu) ? 8 : 4;
4644 		if (get_vmx_mem_address(vcpu, exit_qualification,
4645 				vmx_instruction_info, true, len, &gva))
4646 			return 1;
4647 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
4648 		if (kvm_write_guest_virt_system(vcpu, gva, &field_value, len, &e))
4649 			kvm_inject_page_fault(vcpu, &e);
4650 	}
4651 
4652 	return nested_vmx_succeed(vcpu);
4653 }
4654 
4655 static bool is_shadow_field_rw(unsigned long field)
4656 {
4657 	switch (field) {
4658 #define SHADOW_FIELD_RW(x, y) case x:
4659 #include "vmcs_shadow_fields.h"
4660 		return true;
4661 	default:
4662 		break;
4663 	}
4664 	return false;
4665 }
4666 
4667 static bool is_shadow_field_ro(unsigned long field)
4668 {
4669 	switch (field) {
4670 #define SHADOW_FIELD_RO(x, y) case x:
4671 #include "vmcs_shadow_fields.h"
4672 		return true;
4673 	default:
4674 		break;
4675 	}
4676 	return false;
4677 }
4678 
4679 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4680 {
4681 	unsigned long field;
4682 	int len;
4683 	gva_t gva;
4684 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4685 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4686 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4687 
4688 	/* The value to write might be 32 or 64 bits, depending on L1's long
4689 	 * mode, and eventually we need to write that into a field of several
4690 	 * possible lengths. The code below first zero-extends the value to 64
4691 	 * bit (field_value), and then copies only the appropriate number of
4692 	 * bits into the vmcs12 field.
4693 	 */
4694 	u64 field_value = 0;
4695 	struct x86_exception e;
4696 	struct vmcs12 *vmcs12;
4697 	short offset;
4698 
4699 	if (!nested_vmx_check_permission(vcpu))
4700 		return 1;
4701 
4702 	if (vmx->nested.current_vmptr == -1ull)
4703 		return nested_vmx_failInvalid(vcpu);
4704 
4705 	if (vmx_instruction_info & (1u << 10))
4706 		field_value = kvm_register_readl(vcpu,
4707 			(((vmx_instruction_info) >> 3) & 0xf));
4708 	else {
4709 		len = is_64_bit_mode(vcpu) ? 8 : 4;
4710 		if (get_vmx_mem_address(vcpu, exit_qualification,
4711 				vmx_instruction_info, false, len, &gva))
4712 			return 1;
4713 		if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
4714 			kvm_inject_page_fault(vcpu, &e);
4715 			return 1;
4716 		}
4717 	}
4718 
4719 
4720 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4721 	/*
4722 	 * If the vCPU supports "VMWRITE to any supported field in the
4723 	 * VMCS," then the "read-only" fields are actually read/write.
4724 	 */
4725 	if (vmcs_field_readonly(field) &&
4726 	    !nested_cpu_has_vmwrite_any_field(vcpu))
4727 		return nested_vmx_failValid(vcpu,
4728 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4729 
4730 	if (!is_guest_mode(vcpu)) {
4731 		vmcs12 = get_vmcs12(vcpu);
4732 
4733 		/*
4734 		 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4735 		 * vmcs12, else we may crush a field or consume a stale value.
4736 		 */
4737 		if (!is_shadow_field_rw(field))
4738 			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4739 	} else {
4740 		/*
4741 		 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4742 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
4743 		 */
4744 		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4745 			return nested_vmx_failInvalid(vcpu);
4746 		vmcs12 = get_shadow_vmcs12(vcpu);
4747 	}
4748 
4749 	offset = vmcs_field_to_offset(field);
4750 	if (offset < 0)
4751 		return nested_vmx_failValid(vcpu,
4752 			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4753 
4754 	/*
4755 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4756 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4757 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4758 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4759 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
4760 	 * the stripped down value, L2 sees the full value as stored by KVM).
4761 	 */
4762 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4763 		field_value &= 0x1f0ff;
4764 
4765 	vmcs12_write_any(vmcs12, field, offset, field_value);
4766 
4767 	/*
4768 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
4769 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4770 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4771 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4772 	 */
4773 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4774 		/*
4775 		 * L1 can read these fields without exiting, ensure the
4776 		 * shadow VMCS is up-to-date.
4777 		 */
4778 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4779 			preempt_disable();
4780 			vmcs_load(vmx->vmcs01.shadow_vmcs);
4781 
4782 			__vmcs_writel(field, field_value);
4783 
4784 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
4785 			vmcs_load(vmx->loaded_vmcs->vmcs);
4786 			preempt_enable();
4787 		}
4788 		vmx->nested.dirty_vmcs12 = true;
4789 	}
4790 
4791 	return nested_vmx_succeed(vcpu);
4792 }
4793 
4794 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4795 {
4796 	vmx->nested.current_vmptr = vmptr;
4797 	if (enable_shadow_vmcs) {
4798 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4799 		vmcs_write64(VMCS_LINK_POINTER,
4800 			     __pa(vmx->vmcs01.shadow_vmcs));
4801 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4802 	}
4803 	vmx->nested.dirty_vmcs12 = true;
4804 }
4805 
4806 /* Emulate the VMPTRLD instruction */
4807 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4808 {
4809 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4810 	gpa_t vmptr;
4811 
4812 	if (!nested_vmx_check_permission(vcpu))
4813 		return 1;
4814 
4815 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4816 		return 1;
4817 
4818 	if (!page_address_valid(vcpu, vmptr))
4819 		return nested_vmx_failValid(vcpu,
4820 			VMXERR_VMPTRLD_INVALID_ADDRESS);
4821 
4822 	if (vmptr == vmx->nested.vmxon_ptr)
4823 		return nested_vmx_failValid(vcpu,
4824 			VMXERR_VMPTRLD_VMXON_POINTER);
4825 
4826 	/* Forbid normal VMPTRLD if Enlightened version was used */
4827 	if (vmx->nested.hv_evmcs)
4828 		return 1;
4829 
4830 	if (vmx->nested.current_vmptr != vmptr) {
4831 		struct kvm_host_map map;
4832 		struct vmcs12 *new_vmcs12;
4833 
4834 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4835 			/*
4836 			 * Reads from an unbacked page return all 1s,
4837 			 * which means that the 32 bits located at the
4838 			 * given physical address won't match the required
4839 			 * VMCS12_REVISION identifier.
4840 			 */
4841 			return nested_vmx_failValid(vcpu,
4842 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4843 		}
4844 
4845 		new_vmcs12 = map.hva;
4846 
4847 		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4848 		    (new_vmcs12->hdr.shadow_vmcs &&
4849 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4850 			kvm_vcpu_unmap(vcpu, &map, false);
4851 			return nested_vmx_failValid(vcpu,
4852 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4853 		}
4854 
4855 		nested_release_vmcs12(vcpu);
4856 
4857 		/*
4858 		 * Load VMCS12 from guest memory since it is not already
4859 		 * cached.
4860 		 */
4861 		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4862 		kvm_vcpu_unmap(vcpu, &map, false);
4863 
4864 		set_current_vmptr(vmx, vmptr);
4865 	}
4866 
4867 	return nested_vmx_succeed(vcpu);
4868 }
4869 
4870 /* Emulate the VMPTRST instruction */
4871 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4872 {
4873 	unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4874 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4875 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4876 	struct x86_exception e;
4877 	gva_t gva;
4878 
4879 	if (!nested_vmx_check_permission(vcpu))
4880 		return 1;
4881 
4882 	if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4883 		return 1;
4884 
4885 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
4886 				true, sizeof(gpa_t), &gva))
4887 		return 1;
4888 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4889 	if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4890 					sizeof(gpa_t), &e)) {
4891 		kvm_inject_page_fault(vcpu, &e);
4892 		return 1;
4893 	}
4894 	return nested_vmx_succeed(vcpu);
4895 }
4896 
4897 /* Emulate the INVEPT instruction */
4898 static int handle_invept(struct kvm_vcpu *vcpu)
4899 {
4900 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4901 	u32 vmx_instruction_info, types;
4902 	unsigned long type;
4903 	gva_t gva;
4904 	struct x86_exception e;
4905 	struct {
4906 		u64 eptp, gpa;
4907 	} operand;
4908 
4909 	if (!(vmx->nested.msrs.secondary_ctls_high &
4910 	      SECONDARY_EXEC_ENABLE_EPT) ||
4911 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4912 		kvm_queue_exception(vcpu, UD_VECTOR);
4913 		return 1;
4914 	}
4915 
4916 	if (!nested_vmx_check_permission(vcpu))
4917 		return 1;
4918 
4919 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4920 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4921 
4922 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4923 
4924 	if (type >= 32 || !(types & (1 << type)))
4925 		return nested_vmx_failValid(vcpu,
4926 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4927 
4928 	/* According to the Intel VMX instruction reference, the memory
4929 	 * operand is read even if it isn't needed (e.g., for type==global)
4930 	 */
4931 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4932 			vmx_instruction_info, false, sizeof(operand), &gva))
4933 		return 1;
4934 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4935 		kvm_inject_page_fault(vcpu, &e);
4936 		return 1;
4937 	}
4938 
4939 	switch (type) {
4940 	case VMX_EPT_EXTENT_GLOBAL:
4941 	case VMX_EPT_EXTENT_CONTEXT:
4942 	/*
4943 	 * TODO: Sync the necessary shadow EPT roots here, rather than
4944 	 * at the next emulated VM-entry.
4945 	 */
4946 		break;
4947 	default:
4948 		BUG_ON(1);
4949 		break;
4950 	}
4951 
4952 	return nested_vmx_succeed(vcpu);
4953 }
4954 
4955 static int handle_invvpid(struct kvm_vcpu *vcpu)
4956 {
4957 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4958 	u32 vmx_instruction_info;
4959 	unsigned long type, types;
4960 	gva_t gva;
4961 	struct x86_exception e;
4962 	struct {
4963 		u64 vpid;
4964 		u64 gla;
4965 	} operand;
4966 	u16 vpid02;
4967 
4968 	if (!(vmx->nested.msrs.secondary_ctls_high &
4969 	      SECONDARY_EXEC_ENABLE_VPID) ||
4970 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4971 		kvm_queue_exception(vcpu, UD_VECTOR);
4972 		return 1;
4973 	}
4974 
4975 	if (!nested_vmx_check_permission(vcpu))
4976 		return 1;
4977 
4978 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4979 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4980 
4981 	types = (vmx->nested.msrs.vpid_caps &
4982 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4983 
4984 	if (type >= 32 || !(types & (1 << type)))
4985 		return nested_vmx_failValid(vcpu,
4986 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4987 
4988 	/* according to the intel vmx instruction reference, the memory
4989 	 * operand is read even if it isn't needed (e.g., for type==global)
4990 	 */
4991 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4992 			vmx_instruction_info, false, sizeof(operand), &gva))
4993 		return 1;
4994 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4995 		kvm_inject_page_fault(vcpu, &e);
4996 		return 1;
4997 	}
4998 	if (operand.vpid >> 16)
4999 		return nested_vmx_failValid(vcpu,
5000 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5001 
5002 	vpid02 = nested_get_vpid02(vcpu);
5003 	switch (type) {
5004 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5005 		if (!operand.vpid ||
5006 		    is_noncanonical_address(operand.gla, vcpu))
5007 			return nested_vmx_failValid(vcpu,
5008 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5009 		if (cpu_has_vmx_invvpid_individual_addr()) {
5010 			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5011 				vpid02, operand.gla);
5012 		} else
5013 			__vmx_flush_tlb(vcpu, vpid02, false);
5014 		break;
5015 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5016 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5017 		if (!operand.vpid)
5018 			return nested_vmx_failValid(vcpu,
5019 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5020 		__vmx_flush_tlb(vcpu, vpid02, false);
5021 		break;
5022 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5023 		__vmx_flush_tlb(vcpu, vpid02, false);
5024 		break;
5025 	default:
5026 		WARN_ON_ONCE(1);
5027 		return kvm_skip_emulated_instruction(vcpu);
5028 	}
5029 
5030 	return nested_vmx_succeed(vcpu);
5031 }
5032 
5033 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5034 				     struct vmcs12 *vmcs12)
5035 {
5036 	u32 index = kvm_rcx_read(vcpu);
5037 	u64 address;
5038 	bool accessed_dirty;
5039 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5040 
5041 	if (!nested_cpu_has_eptp_switching(vmcs12) ||
5042 	    !nested_cpu_has_ept(vmcs12))
5043 		return 1;
5044 
5045 	if (index >= VMFUNC_EPTP_ENTRIES)
5046 		return 1;
5047 
5048 
5049 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5050 				     &address, index * 8, 8))
5051 		return 1;
5052 
5053 	accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5054 
5055 	/*
5056 	 * If the (L2) guest does a vmfunc to the currently
5057 	 * active ept pointer, we don't have to do anything else
5058 	 */
5059 	if (vmcs12->ept_pointer != address) {
5060 		if (!valid_ept_address(vcpu, address))
5061 			return 1;
5062 
5063 		kvm_mmu_unload(vcpu);
5064 		mmu->ept_ad = accessed_dirty;
5065 		mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5066 		vmcs12->ept_pointer = address;
5067 		/*
5068 		 * TODO: Check what's the correct approach in case
5069 		 * mmu reload fails. Currently, we just let the next
5070 		 * reload potentially fail
5071 		 */
5072 		kvm_mmu_reload(vcpu);
5073 	}
5074 
5075 	return 0;
5076 }
5077 
5078 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5079 {
5080 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5081 	struct vmcs12 *vmcs12;
5082 	u32 function = kvm_rax_read(vcpu);
5083 
5084 	/*
5085 	 * VMFUNC is only supported for nested guests, but we always enable the
5086 	 * secondary control for simplicity; for non-nested mode, fake that we
5087 	 * didn't by injecting #UD.
5088 	 */
5089 	if (!is_guest_mode(vcpu)) {
5090 		kvm_queue_exception(vcpu, UD_VECTOR);
5091 		return 1;
5092 	}
5093 
5094 	vmcs12 = get_vmcs12(vcpu);
5095 	if ((vmcs12->vm_function_control & (1 << function)) == 0)
5096 		goto fail;
5097 
5098 	switch (function) {
5099 	case 0:
5100 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5101 			goto fail;
5102 		break;
5103 	default:
5104 		goto fail;
5105 	}
5106 	return kvm_skip_emulated_instruction(vcpu);
5107 
5108 fail:
5109 	nested_vmx_vmexit(vcpu, vmx->exit_reason,
5110 			  vmcs_read32(VM_EXIT_INTR_INFO),
5111 			  vmcs_readl(EXIT_QUALIFICATION));
5112 	return 1;
5113 }
5114 
5115 
5116 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5117 				       struct vmcs12 *vmcs12)
5118 {
5119 	unsigned long exit_qualification;
5120 	gpa_t bitmap, last_bitmap;
5121 	unsigned int port;
5122 	int size;
5123 	u8 b;
5124 
5125 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5126 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5127 
5128 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5129 
5130 	port = exit_qualification >> 16;
5131 	size = (exit_qualification & 7) + 1;
5132 
5133 	last_bitmap = (gpa_t)-1;
5134 	b = -1;
5135 
5136 	while (size > 0) {
5137 		if (port < 0x8000)
5138 			bitmap = vmcs12->io_bitmap_a;
5139 		else if (port < 0x10000)
5140 			bitmap = vmcs12->io_bitmap_b;
5141 		else
5142 			return true;
5143 		bitmap += (port & 0x7fff) / 8;
5144 
5145 		if (last_bitmap != bitmap)
5146 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5147 				return true;
5148 		if (b & (1 << (port & 7)))
5149 			return true;
5150 
5151 		port++;
5152 		size--;
5153 		last_bitmap = bitmap;
5154 	}
5155 
5156 	return false;
5157 }
5158 
5159 /*
5160  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5161  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5162  * disinterest in the current event (read or write a specific MSR) by using an
5163  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5164  */
5165 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5166 	struct vmcs12 *vmcs12, u32 exit_reason)
5167 {
5168 	u32 msr_index = kvm_rcx_read(vcpu);
5169 	gpa_t bitmap;
5170 
5171 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5172 		return true;
5173 
5174 	/*
5175 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5176 	 * for the four combinations of read/write and low/high MSR numbers.
5177 	 * First we need to figure out which of the four to use:
5178 	 */
5179 	bitmap = vmcs12->msr_bitmap;
5180 	if (exit_reason == EXIT_REASON_MSR_WRITE)
5181 		bitmap += 2048;
5182 	if (msr_index >= 0xc0000000) {
5183 		msr_index -= 0xc0000000;
5184 		bitmap += 1024;
5185 	}
5186 
5187 	/* Then read the msr_index'th bit from this bitmap: */
5188 	if (msr_index < 1024*8) {
5189 		unsigned char b;
5190 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5191 			return true;
5192 		return 1 & (b >> (msr_index & 7));
5193 	} else
5194 		return true; /* let L1 handle the wrong parameter */
5195 }
5196 
5197 /*
5198  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5199  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5200  * intercept (via guest_host_mask etc.) the current event.
5201  */
5202 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5203 	struct vmcs12 *vmcs12)
5204 {
5205 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5206 	int cr = exit_qualification & 15;
5207 	int reg;
5208 	unsigned long val;
5209 
5210 	switch ((exit_qualification >> 4) & 3) {
5211 	case 0: /* mov to cr */
5212 		reg = (exit_qualification >> 8) & 15;
5213 		val = kvm_register_readl(vcpu, reg);
5214 		switch (cr) {
5215 		case 0:
5216 			if (vmcs12->cr0_guest_host_mask &
5217 			    (val ^ vmcs12->cr0_read_shadow))
5218 				return true;
5219 			break;
5220 		case 3:
5221 			if ((vmcs12->cr3_target_count >= 1 &&
5222 					vmcs12->cr3_target_value0 == val) ||
5223 				(vmcs12->cr3_target_count >= 2 &&
5224 					vmcs12->cr3_target_value1 == val) ||
5225 				(vmcs12->cr3_target_count >= 3 &&
5226 					vmcs12->cr3_target_value2 == val) ||
5227 				(vmcs12->cr3_target_count >= 4 &&
5228 					vmcs12->cr3_target_value3 == val))
5229 				return false;
5230 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5231 				return true;
5232 			break;
5233 		case 4:
5234 			if (vmcs12->cr4_guest_host_mask &
5235 			    (vmcs12->cr4_read_shadow ^ val))
5236 				return true;
5237 			break;
5238 		case 8:
5239 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5240 				return true;
5241 			break;
5242 		}
5243 		break;
5244 	case 2: /* clts */
5245 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5246 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5247 			return true;
5248 		break;
5249 	case 1: /* mov from cr */
5250 		switch (cr) {
5251 		case 3:
5252 			if (vmcs12->cpu_based_vm_exec_control &
5253 			    CPU_BASED_CR3_STORE_EXITING)
5254 				return true;
5255 			break;
5256 		case 8:
5257 			if (vmcs12->cpu_based_vm_exec_control &
5258 			    CPU_BASED_CR8_STORE_EXITING)
5259 				return true;
5260 			break;
5261 		}
5262 		break;
5263 	case 3: /* lmsw */
5264 		/*
5265 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5266 		 * cr0. Other attempted changes are ignored, with no exit.
5267 		 */
5268 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5269 		if (vmcs12->cr0_guest_host_mask & 0xe &
5270 		    (val ^ vmcs12->cr0_read_shadow))
5271 			return true;
5272 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5273 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5274 		    (val & 0x1))
5275 			return true;
5276 		break;
5277 	}
5278 	return false;
5279 }
5280 
5281 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5282 	struct vmcs12 *vmcs12, gpa_t bitmap)
5283 {
5284 	u32 vmx_instruction_info;
5285 	unsigned long field;
5286 	u8 b;
5287 
5288 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
5289 		return true;
5290 
5291 	/* Decode instruction info and find the field to access */
5292 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5293 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5294 
5295 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
5296 	if (field >> 15)
5297 		return true;
5298 
5299 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5300 		return true;
5301 
5302 	return 1 & (b >> (field & 7));
5303 }
5304 
5305 /*
5306  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5307  * should handle it ourselves in L0 (and then continue L2). Only call this
5308  * when in is_guest_mode (L2).
5309  */
5310 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5311 {
5312 	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5313 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5314 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5315 
5316 	if (vmx->nested.nested_run_pending)
5317 		return false;
5318 
5319 	if (unlikely(vmx->fail)) {
5320 		trace_kvm_nested_vmenter_failed(
5321 			"hardware VM-instruction error: ",
5322 			vmcs_read32(VM_INSTRUCTION_ERROR));
5323 		return true;
5324 	}
5325 
5326 	/*
5327 	 * The host physical addresses of some pages of guest memory
5328 	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5329 	 * Page). The CPU may write to these pages via their host
5330 	 * physical address while L2 is running, bypassing any
5331 	 * address-translation-based dirty tracking (e.g. EPT write
5332 	 * protection).
5333 	 *
5334 	 * Mark them dirty on every exit from L2 to prevent them from
5335 	 * getting out of sync with dirty tracking.
5336 	 */
5337 	nested_mark_vmcs12_pages_dirty(vcpu);
5338 
5339 	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5340 				vmcs_readl(EXIT_QUALIFICATION),
5341 				vmx->idt_vectoring_info,
5342 				intr_info,
5343 				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5344 				KVM_ISA_VMX);
5345 
5346 	switch (exit_reason) {
5347 	case EXIT_REASON_EXCEPTION_NMI:
5348 		if (is_nmi(intr_info))
5349 			return false;
5350 		else if (is_page_fault(intr_info))
5351 			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5352 		else if (is_debug(intr_info) &&
5353 			 vcpu->guest_debug &
5354 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5355 			return false;
5356 		else if (is_breakpoint(intr_info) &&
5357 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5358 			return false;
5359 		return vmcs12->exception_bitmap &
5360 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
5361 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5362 		return false;
5363 	case EXIT_REASON_TRIPLE_FAULT:
5364 		return true;
5365 	case EXIT_REASON_PENDING_INTERRUPT:
5366 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5367 	case EXIT_REASON_NMI_WINDOW:
5368 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5369 	case EXIT_REASON_TASK_SWITCH:
5370 		return true;
5371 	case EXIT_REASON_CPUID:
5372 		return true;
5373 	case EXIT_REASON_HLT:
5374 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5375 	case EXIT_REASON_INVD:
5376 		return true;
5377 	case EXIT_REASON_INVLPG:
5378 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5379 	case EXIT_REASON_RDPMC:
5380 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5381 	case EXIT_REASON_RDRAND:
5382 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5383 	case EXIT_REASON_RDSEED:
5384 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5385 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5386 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5387 	case EXIT_REASON_VMREAD:
5388 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5389 			vmcs12->vmread_bitmap);
5390 	case EXIT_REASON_VMWRITE:
5391 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5392 			vmcs12->vmwrite_bitmap);
5393 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5394 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5395 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5396 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5397 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5398 		/*
5399 		 * VMX instructions trap unconditionally. This allows L1 to
5400 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5401 		 */
5402 		return true;
5403 	case EXIT_REASON_CR_ACCESS:
5404 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5405 	case EXIT_REASON_DR_ACCESS:
5406 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5407 	case EXIT_REASON_IO_INSTRUCTION:
5408 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
5409 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5410 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5411 	case EXIT_REASON_MSR_READ:
5412 	case EXIT_REASON_MSR_WRITE:
5413 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5414 	case EXIT_REASON_INVALID_STATE:
5415 		return true;
5416 	case EXIT_REASON_MWAIT_INSTRUCTION:
5417 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5418 	case EXIT_REASON_MONITOR_TRAP_FLAG:
5419 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5420 	case EXIT_REASON_MONITOR_INSTRUCTION:
5421 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5422 	case EXIT_REASON_PAUSE_INSTRUCTION:
5423 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5424 			nested_cpu_has2(vmcs12,
5425 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5426 	case EXIT_REASON_MCE_DURING_VMENTRY:
5427 		return false;
5428 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
5429 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5430 	case EXIT_REASON_APIC_ACCESS:
5431 	case EXIT_REASON_APIC_WRITE:
5432 	case EXIT_REASON_EOI_INDUCED:
5433 		/*
5434 		 * The controls for "virtualize APIC accesses," "APIC-
5435 		 * register virtualization," and "virtual-interrupt
5436 		 * delivery" only come from vmcs12.
5437 		 */
5438 		return true;
5439 	case EXIT_REASON_EPT_VIOLATION:
5440 		/*
5441 		 * L0 always deals with the EPT violation. If nested EPT is
5442 		 * used, and the nested mmu code discovers that the address is
5443 		 * missing in the guest EPT table (EPT12), the EPT violation
5444 		 * will be injected with nested_ept_inject_page_fault()
5445 		 */
5446 		return false;
5447 	case EXIT_REASON_EPT_MISCONFIG:
5448 		/*
5449 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
5450 		 * table (shadow on EPT) or a merged EPT table that L0 built
5451 		 * (EPT on EPT). So any problems with the structure of the
5452 		 * table is L0's fault.
5453 		 */
5454 		return false;
5455 	case EXIT_REASON_INVPCID:
5456 		return
5457 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5458 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5459 	case EXIT_REASON_WBINVD:
5460 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5461 	case EXIT_REASON_XSETBV:
5462 		return true;
5463 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5464 		/*
5465 		 * This should never happen, since it is not possible to
5466 		 * set XSS to a non-zero value---neither in L1 nor in L2.
5467 		 * If if it were, XSS would have to be checked against
5468 		 * the XSS exit bitmap in vmcs12.
5469 		 */
5470 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5471 	case EXIT_REASON_PREEMPTION_TIMER:
5472 		return false;
5473 	case EXIT_REASON_PML_FULL:
5474 		/* We emulate PML support to L1. */
5475 		return false;
5476 	case EXIT_REASON_VMFUNC:
5477 		/* VM functions are emulated through L2->L0 vmexits. */
5478 		return false;
5479 	case EXIT_REASON_ENCLS:
5480 		/* SGX is never exposed to L1 */
5481 		return false;
5482 	case EXIT_REASON_UMWAIT:
5483 	case EXIT_REASON_TPAUSE:
5484 		return nested_cpu_has2(vmcs12,
5485 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5486 	default:
5487 		return true;
5488 	}
5489 }
5490 
5491 
5492 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5493 				struct kvm_nested_state __user *user_kvm_nested_state,
5494 				u32 user_data_size)
5495 {
5496 	struct vcpu_vmx *vmx;
5497 	struct vmcs12 *vmcs12;
5498 	struct kvm_nested_state kvm_state = {
5499 		.flags = 0,
5500 		.format = KVM_STATE_NESTED_FORMAT_VMX,
5501 		.size = sizeof(kvm_state),
5502 		.hdr.vmx.vmxon_pa = -1ull,
5503 		.hdr.vmx.vmcs12_pa = -1ull,
5504 	};
5505 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5506 		&user_kvm_nested_state->data.vmx[0];
5507 
5508 	if (!vcpu)
5509 		return kvm_state.size + sizeof(*user_vmx_nested_state);
5510 
5511 	vmx = to_vmx(vcpu);
5512 	vmcs12 = get_vmcs12(vcpu);
5513 
5514 	if (nested_vmx_allowed(vcpu) &&
5515 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5516 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5517 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5518 
5519 		if (vmx_has_valid_vmcs12(vcpu)) {
5520 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5521 
5522 			if (vmx->nested.hv_evmcs)
5523 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5524 
5525 			if (is_guest_mode(vcpu) &&
5526 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
5527 			    vmcs12->vmcs_link_pointer != -1ull)
5528 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5529 		}
5530 
5531 		if (vmx->nested.smm.vmxon)
5532 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5533 
5534 		if (vmx->nested.smm.guest_mode)
5535 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5536 
5537 		if (is_guest_mode(vcpu)) {
5538 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5539 
5540 			if (vmx->nested.nested_run_pending)
5541 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5542 		}
5543 	}
5544 
5545 	if (user_data_size < kvm_state.size)
5546 		goto out;
5547 
5548 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5549 		return -EFAULT;
5550 
5551 	if (!vmx_has_valid_vmcs12(vcpu))
5552 		goto out;
5553 
5554 	/*
5555 	 * When running L2, the authoritative vmcs12 state is in the
5556 	 * vmcs02. When running L1, the authoritative vmcs12 state is
5557 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
5558 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5559 	 * vmcs12 state is in the vmcs12 already.
5560 	 */
5561 	if (is_guest_mode(vcpu)) {
5562 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5563 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5564 	} else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5565 		if (vmx->nested.hv_evmcs)
5566 			copy_enlightened_to_vmcs12(vmx);
5567 		else if (enable_shadow_vmcs)
5568 			copy_shadow_to_vmcs12(vmx);
5569 	}
5570 
5571 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5572 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5573 
5574 	/*
5575 	 * Copy over the full allocated size of vmcs12 rather than just the size
5576 	 * of the struct.
5577 	 */
5578 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5579 		return -EFAULT;
5580 
5581 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5582 	    vmcs12->vmcs_link_pointer != -1ull) {
5583 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5584 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5585 			return -EFAULT;
5586 	}
5587 
5588 out:
5589 	return kvm_state.size;
5590 }
5591 
5592 /*
5593  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5594  */
5595 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5596 {
5597 	if (is_guest_mode(vcpu)) {
5598 		to_vmx(vcpu)->nested.nested_run_pending = 0;
5599 		nested_vmx_vmexit(vcpu, -1, 0, 0);
5600 	}
5601 	free_nested(vcpu);
5602 }
5603 
5604 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5605 				struct kvm_nested_state __user *user_kvm_nested_state,
5606 				struct kvm_nested_state *kvm_state)
5607 {
5608 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5609 	struct vmcs12 *vmcs12;
5610 	u32 exit_qual;
5611 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5612 		&user_kvm_nested_state->data.vmx[0];
5613 	int ret;
5614 
5615 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5616 		return -EINVAL;
5617 
5618 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5619 		if (kvm_state->hdr.vmx.smm.flags)
5620 			return -EINVAL;
5621 
5622 		if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5623 			return -EINVAL;
5624 
5625 		/*
5626 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5627 		 * enable eVMCS capability on vCPU. However, since then
5628 		 * code was changed such that flag signals vmcs12 should
5629 		 * be copied into eVMCS in guest memory.
5630 		 *
5631 		 * To preserve backwards compatability, allow user
5632 		 * to set this flag even when there is no VMXON region.
5633 		 */
5634 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5635 			return -EINVAL;
5636 	} else {
5637 		if (!nested_vmx_allowed(vcpu))
5638 			return -EINVAL;
5639 
5640 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5641 			return -EINVAL;
5642 	}
5643 
5644 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5645 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5646 		return -EINVAL;
5647 
5648 	if (kvm_state->hdr.vmx.smm.flags &
5649 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5650 		return -EINVAL;
5651 
5652 	/*
5653 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
5654 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5655 	 * must be zero.
5656 	 */
5657 	if (is_smm(vcpu) ?
5658 		(kvm_state->flags &
5659 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5660 		: kvm_state->hdr.vmx.smm.flags)
5661 		return -EINVAL;
5662 
5663 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5664 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5665 		return -EINVAL;
5666 
5667 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5668 		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5669 			return -EINVAL;
5670 
5671 	vmx_leave_nested(vcpu);
5672 
5673 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5674 		return 0;
5675 
5676 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5677 	ret = enter_vmx_operation(vcpu);
5678 	if (ret)
5679 		return ret;
5680 
5681 	/* Empty 'VMXON' state is permitted */
5682 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5683 		return 0;
5684 
5685 	if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5686 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5687 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5688 			return -EINVAL;
5689 
5690 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5691 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5692 		/*
5693 		 * Sync eVMCS upon entry as we may not have
5694 		 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5695 		 */
5696 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5697 	} else {
5698 		return -EINVAL;
5699 	}
5700 
5701 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5702 		vmx->nested.smm.vmxon = true;
5703 		vmx->nested.vmxon = false;
5704 
5705 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5706 			vmx->nested.smm.guest_mode = true;
5707 	}
5708 
5709 	vmcs12 = get_vmcs12(vcpu);
5710 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5711 		return -EFAULT;
5712 
5713 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5714 		return -EINVAL;
5715 
5716 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5717 		return 0;
5718 
5719 	vmx->nested.nested_run_pending =
5720 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5721 
5722 	ret = -EINVAL;
5723 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5724 	    vmcs12->vmcs_link_pointer != -1ull) {
5725 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5726 
5727 		if (kvm_state->size <
5728 		    sizeof(*kvm_state) +
5729 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5730 			goto error_guest_mode;
5731 
5732 		if (copy_from_user(shadow_vmcs12,
5733 				   user_vmx_nested_state->shadow_vmcs12,
5734 				   sizeof(*shadow_vmcs12))) {
5735 			ret = -EFAULT;
5736 			goto error_guest_mode;
5737 		}
5738 
5739 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5740 		    !shadow_vmcs12->hdr.shadow_vmcs)
5741 			goto error_guest_mode;
5742 	}
5743 
5744 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
5745 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
5746 	    nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5747 		goto error_guest_mode;
5748 
5749 	vmx->nested.dirty_vmcs12 = true;
5750 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
5751 	if (ret)
5752 		goto error_guest_mode;
5753 
5754 	return 0;
5755 
5756 error_guest_mode:
5757 	vmx->nested.nested_run_pending = 0;
5758 	return ret;
5759 }
5760 
5761 void nested_vmx_vcpu_setup(void)
5762 {
5763 	if (enable_shadow_vmcs) {
5764 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5765 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5766 	}
5767 }
5768 
5769 /*
5770  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5771  * returned for the various VMX controls MSRs when nested VMX is enabled.
5772  * The same values should also be used to verify that vmcs12 control fields are
5773  * valid during nested entry from L1 to L2.
5774  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5775  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5776  * bit in the high half is on if the corresponding bit in the control field
5777  * may be on. See also vmx_control_verify().
5778  */
5779 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5780 				bool apicv)
5781 {
5782 	/*
5783 	 * Note that as a general rule, the high half of the MSRs (bits in
5784 	 * the control fields which may be 1) should be initialized by the
5785 	 * intersection of the underlying hardware's MSR (i.e., features which
5786 	 * can be supported) and the list of features we want to expose -
5787 	 * because they are known to be properly supported in our code.
5788 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
5789 	 * be set to 0, meaning that L1 may turn off any of these bits. The
5790 	 * reason is that if one of these bits is necessary, it will appear
5791 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5792 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
5793 	 * nested_vmx_exit_reflected() will not pass related exits to L1.
5794 	 * These rules have exceptions below.
5795 	 */
5796 
5797 	/* pin-based controls */
5798 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5799 		msrs->pinbased_ctls_low,
5800 		msrs->pinbased_ctls_high);
5801 	msrs->pinbased_ctls_low |=
5802 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5803 	msrs->pinbased_ctls_high &=
5804 		PIN_BASED_EXT_INTR_MASK |
5805 		PIN_BASED_NMI_EXITING |
5806 		PIN_BASED_VIRTUAL_NMIS |
5807 		(apicv ? PIN_BASED_POSTED_INTR : 0);
5808 	msrs->pinbased_ctls_high |=
5809 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5810 		PIN_BASED_VMX_PREEMPTION_TIMER;
5811 
5812 	/* exit controls */
5813 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5814 		msrs->exit_ctls_low,
5815 		msrs->exit_ctls_high);
5816 	msrs->exit_ctls_low =
5817 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5818 
5819 	msrs->exit_ctls_high &=
5820 #ifdef CONFIG_X86_64
5821 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
5822 #endif
5823 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5824 	msrs->exit_ctls_high |=
5825 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5826 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5827 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5828 
5829 	/* We support free control of debug control saving. */
5830 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5831 
5832 	/* entry controls */
5833 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5834 		msrs->entry_ctls_low,
5835 		msrs->entry_ctls_high);
5836 	msrs->entry_ctls_low =
5837 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5838 	msrs->entry_ctls_high &=
5839 #ifdef CONFIG_X86_64
5840 		VM_ENTRY_IA32E_MODE |
5841 #endif
5842 		VM_ENTRY_LOAD_IA32_PAT;
5843 	msrs->entry_ctls_high |=
5844 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5845 
5846 	/* We support free control of debug control loading. */
5847 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5848 
5849 	/* cpu-based controls */
5850 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5851 		msrs->procbased_ctls_low,
5852 		msrs->procbased_ctls_high);
5853 	msrs->procbased_ctls_low =
5854 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5855 	msrs->procbased_ctls_high &=
5856 		CPU_BASED_VIRTUAL_INTR_PENDING |
5857 		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5858 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5859 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5860 		CPU_BASED_CR3_STORE_EXITING |
5861 #ifdef CONFIG_X86_64
5862 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5863 #endif
5864 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5865 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5866 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5867 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5868 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5869 	/*
5870 	 * We can allow some features even when not supported by the
5871 	 * hardware. For example, L1 can specify an MSR bitmap - and we
5872 	 * can use it to avoid exits to L1 - even when L0 runs L2
5873 	 * without MSR bitmaps.
5874 	 */
5875 	msrs->procbased_ctls_high |=
5876 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5877 		CPU_BASED_USE_MSR_BITMAPS;
5878 
5879 	/* We support free control of CR3 access interception. */
5880 	msrs->procbased_ctls_low &=
5881 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5882 
5883 	/*
5884 	 * secondary cpu-based controls.  Do not include those that
5885 	 * depend on CPUID bits, they are added later by vmx_cpuid_update.
5886 	 */
5887 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5888 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5889 		      msrs->secondary_ctls_low,
5890 		      msrs->secondary_ctls_high);
5891 
5892 	msrs->secondary_ctls_low = 0;
5893 	msrs->secondary_ctls_high &=
5894 		SECONDARY_EXEC_DESC |
5895 		SECONDARY_EXEC_RDTSCP |
5896 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5897 		SECONDARY_EXEC_WBINVD_EXITING |
5898 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
5899 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5900 		SECONDARY_EXEC_RDRAND_EXITING |
5901 		SECONDARY_EXEC_ENABLE_INVPCID |
5902 		SECONDARY_EXEC_RDSEED_EXITING |
5903 		SECONDARY_EXEC_XSAVES;
5904 
5905 	/*
5906 	 * We can emulate "VMCS shadowing," even if the hardware
5907 	 * doesn't support it.
5908 	 */
5909 	msrs->secondary_ctls_high |=
5910 		SECONDARY_EXEC_SHADOW_VMCS;
5911 
5912 	if (enable_ept) {
5913 		/* nested EPT: emulate EPT also to L1 */
5914 		msrs->secondary_ctls_high |=
5915 			SECONDARY_EXEC_ENABLE_EPT;
5916 		msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5917 			 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5918 		if (cpu_has_vmx_ept_execute_only())
5919 			msrs->ept_caps |=
5920 				VMX_EPT_EXECUTE_ONLY_BIT;
5921 		msrs->ept_caps &= ept_caps;
5922 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5923 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5924 			VMX_EPT_1GB_PAGE_BIT;
5925 		if (enable_ept_ad_bits) {
5926 			msrs->secondary_ctls_high |=
5927 				SECONDARY_EXEC_ENABLE_PML;
5928 			msrs->ept_caps |= VMX_EPT_AD_BIT;
5929 		}
5930 	}
5931 
5932 	if (cpu_has_vmx_vmfunc()) {
5933 		msrs->secondary_ctls_high |=
5934 			SECONDARY_EXEC_ENABLE_VMFUNC;
5935 		/*
5936 		 * Advertise EPTP switching unconditionally
5937 		 * since we emulate it
5938 		 */
5939 		if (enable_ept)
5940 			msrs->vmfunc_controls =
5941 				VMX_VMFUNC_EPTP_SWITCHING;
5942 	}
5943 
5944 	/*
5945 	 * Old versions of KVM use the single-context version without
5946 	 * checking for support, so declare that it is supported even
5947 	 * though it is treated as global context.  The alternative is
5948 	 * not failing the single-context invvpid, and it is worse.
5949 	 */
5950 	if (enable_vpid) {
5951 		msrs->secondary_ctls_high |=
5952 			SECONDARY_EXEC_ENABLE_VPID;
5953 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5954 			VMX_VPID_EXTENT_SUPPORTED_MASK;
5955 	}
5956 
5957 	if (enable_unrestricted_guest)
5958 		msrs->secondary_ctls_high |=
5959 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
5960 
5961 	if (flexpriority_enabled)
5962 		msrs->secondary_ctls_high |=
5963 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5964 
5965 	/* miscellaneous data */
5966 	rdmsr(MSR_IA32_VMX_MISC,
5967 		msrs->misc_low,
5968 		msrs->misc_high);
5969 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5970 	msrs->misc_low |=
5971 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5972 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5973 		VMX_MISC_ACTIVITY_HLT;
5974 	msrs->misc_high = 0;
5975 
5976 	/*
5977 	 * This MSR reports some information about VMX support. We
5978 	 * should return information about the VMX we emulate for the
5979 	 * guest, and the VMCS structure we give it - not about the
5980 	 * VMX support of the underlying hardware.
5981 	 */
5982 	msrs->basic =
5983 		VMCS12_REVISION |
5984 		VMX_BASIC_TRUE_CTLS |
5985 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5986 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5987 
5988 	if (cpu_has_vmx_basic_inout())
5989 		msrs->basic |= VMX_BASIC_INOUT;
5990 
5991 	/*
5992 	 * These MSRs specify bits which the guest must keep fixed on
5993 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5994 	 * We picked the standard core2 setting.
5995 	 */
5996 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5997 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
5998 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5999 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6000 
6001 	/* These MSRs specify bits which the guest must keep fixed off. */
6002 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6003 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6004 
6005 	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
6006 	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6007 }
6008 
6009 void nested_vmx_hardware_unsetup(void)
6010 {
6011 	int i;
6012 
6013 	if (enable_shadow_vmcs) {
6014 		for (i = 0; i < VMX_BITMAP_NR; i++)
6015 			free_page((unsigned long)vmx_bitmap[i]);
6016 	}
6017 }
6018 
6019 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6020 {
6021 	int i;
6022 
6023 	if (!cpu_has_vmx_shadow_vmcs())
6024 		enable_shadow_vmcs = 0;
6025 	if (enable_shadow_vmcs) {
6026 		for (i = 0; i < VMX_BITMAP_NR; i++) {
6027 			/*
6028 			 * The vmx_bitmap is not tied to a VM and so should
6029 			 * not be charged to a memcg.
6030 			 */
6031 			vmx_bitmap[i] = (unsigned long *)
6032 				__get_free_page(GFP_KERNEL);
6033 			if (!vmx_bitmap[i]) {
6034 				nested_vmx_hardware_unsetup();
6035 				return -ENOMEM;
6036 			}
6037 		}
6038 
6039 		init_vmcs_shadow_fields();
6040 	}
6041 
6042 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear,
6043 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch,
6044 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld,
6045 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst,
6046 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread,
6047 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume,
6048 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite,
6049 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff,
6050 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon,
6051 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept,
6052 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid,
6053 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc,
6054 
6055 	kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6056 	kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6057 	kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6058 	kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
6059 	kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6060 	kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6061 
6062 	return 0;
6063 }
6064