xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision f77d1a49)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/fpu/api.h>
43 
44 #include <asm/virtext.h>
45 
46 #include <trace/events/ipi.h>
47 
48 #include "trace.h"
49 
50 #include "svm.h"
51 #include "svm_ops.h"
52 
53 #include "kvm_onhyperv.h"
54 #include "svm_onhyperv.h"
55 
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58 
59 #ifdef MODULE
60 static const struct x86_cpu_id svm_cpu_id[] = {
61 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
62 	{}
63 };
64 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
65 #endif
66 
67 #define SEG_TYPE_LDT 2
68 #define SEG_TYPE_BUSY_TSS16 3
69 
70 static bool erratum_383_found __read_mostly;
71 
72 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
73 
74 /*
75  * Set osvw_len to higher value when updated Revision Guides
76  * are published and we know what the new status bits are
77  */
78 static uint64_t osvw_len = 4, osvw_status;
79 
80 static DEFINE_PER_CPU(u64, current_tsc_ratio);
81 
82 #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
83 
84 static const struct svm_direct_access_msrs {
85 	u32 index;   /* Index of the MSR */
86 	bool always; /* True if intercept is initially cleared */
87 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
88 	{ .index = MSR_STAR,				.always = true  },
89 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
90 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
91 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
92 #ifdef CONFIG_X86_64
93 	{ .index = MSR_GS_BASE,				.always = true  },
94 	{ .index = MSR_FS_BASE,				.always = true  },
95 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
96 	{ .index = MSR_LSTAR,				.always = true  },
97 	{ .index = MSR_CSTAR,				.always = true  },
98 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
99 #endif
100 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
101 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
102 	{ .index = MSR_IA32_FLUSH_CMD,			.always = false },
103 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
104 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
105 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
106 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
107 	{ .index = MSR_EFER,				.always = false },
108 	{ .index = MSR_IA32_CR_PAT,			.always = false },
109 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
110 	{ .index = MSR_TSC_AUX,				.always = false },
111 	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
112 	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
113 	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
114 	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
115 	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
116 	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
117 	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
118 	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
119 	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
120 	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
121 	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
122 	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
123 	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
124 	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
125 	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
126 	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
127 
128 	/*
129 	 * Note:
130 	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
131 	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
132 	 * the AVIC hardware would generate GP fault. Therefore, always
133 	 * intercept the MSR 0x832, and do not setup direct_access_msr.
134 	 */
135 	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
136 	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
137 	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
138 	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
139 	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
140 	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
141 	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
142 	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
143 	{ .index = MSR_INVALID,				.always = false },
144 };
145 
146 /*
147  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
148  * pause_filter_count: On processors that support Pause filtering(indicated
149  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
150  *	count value. On VMRUN this value is loaded into an internal counter.
151  *	Each time a pause instruction is executed, this counter is decremented
152  *	until it reaches zero at which time a #VMEXIT is generated if pause
153  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
154  *	Intercept Filtering for more details.
155  *	This also indicate if ple logic enabled.
156  *
157  * pause_filter_thresh: In addition, some processor families support advanced
158  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
159  *	the amount of time a guest is allowed to execute in a pause loop.
160  *	In this mode, a 16-bit pause filter threshold field is added in the
161  *	VMCB. The threshold value is a cycle count that is used to reset the
162  *	pause counter. As with simple pause filtering, VMRUN loads the pause
163  *	count value from VMCB into an internal counter. Then, on each pause
164  *	instruction the hardware checks the elapsed number of cycles since
165  *	the most recent pause instruction against the pause filter threshold.
166  *	If the elapsed cycle count is greater than the pause filter threshold,
167  *	then the internal pause count is reloaded from the VMCB and execution
168  *	continues. If the elapsed cycle count is less than the pause filter
169  *	threshold, then the internal pause count is decremented. If the count
170  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
171  *	triggered. If advanced pause filtering is supported and pause filter
172  *	threshold field is set to zero, the filter will operate in the simpler,
173  *	count only mode.
174  */
175 
176 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
177 module_param(pause_filter_thresh, ushort, 0444);
178 
179 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
180 module_param(pause_filter_count, ushort, 0444);
181 
182 /* Default doubles per-vcpu window every exit. */
183 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
184 module_param(pause_filter_count_grow, ushort, 0444);
185 
186 /* Default resets per-vcpu window every exit to pause_filter_count. */
187 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
188 module_param(pause_filter_count_shrink, ushort, 0444);
189 
190 /* Default is to compute the maximum so we can never overflow. */
191 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
192 module_param(pause_filter_count_max, ushort, 0444);
193 
194 /*
195  * Use nested page tables by default.  Note, NPT may get forced off by
196  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
197  */
198 bool npt_enabled = true;
199 module_param_named(npt, npt_enabled, bool, 0444);
200 
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, S_IRUGO);
204 
205 /* enable/disable Next RIP Save */
206 static int nrips = true;
207 module_param(nrips, int, 0444);
208 
209 /* enable/disable Virtual VMLOAD VMSAVE */
210 static int vls = true;
211 module_param(vls, int, 0444);
212 
213 /* enable/disable Virtual GIF */
214 int vgif = true;
215 module_param(vgif, int, 0444);
216 
217 /* enable/disable LBR virtualization */
218 static int lbrv = true;
219 module_param(lbrv, int, 0444);
220 
221 static int tsc_scaling = true;
222 module_param(tsc_scaling, int, 0444);
223 
224 /*
225  * enable / disable AVIC.  Because the defaults differ for APICv
226  * support between VMX and SVM we cannot use module_param_named.
227  */
228 static bool avic;
229 module_param(avic, bool, 0444);
230 
231 bool __read_mostly dump_invalid_vmcb;
232 module_param(dump_invalid_vmcb, bool, 0644);
233 
234 
235 bool intercept_smi = true;
236 module_param(intercept_smi, bool, 0444);
237 
238 bool vnmi = true;
239 module_param(vnmi, bool, 0444);
240 
241 static bool svm_gp_erratum_intercept = true;
242 
243 static u8 rsm_ins_bytes[] = "\x0f\xaa";
244 
245 static unsigned long iopm_base;
246 
247 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
248 
249 /*
250  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
251  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
252  *
253  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
254  * defer the restoration of TSC_AUX until the CPU returns to userspace.
255  */
256 static int tsc_aux_uret_slot __read_mostly = -1;
257 
258 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
259 
260 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
261 #define MSRS_RANGE_SIZE 2048
262 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
263 
264 u32 svm_msrpm_offset(u32 msr)
265 {
266 	u32 offset;
267 	int i;
268 
269 	for (i = 0; i < NUM_MSR_MAPS; i++) {
270 		if (msr < msrpm_ranges[i] ||
271 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
272 			continue;
273 
274 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
275 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
276 
277 		/* Now we have the u8 offset - but need the u32 offset */
278 		return offset / 4;
279 	}
280 
281 	/* MSR not in any range */
282 	return MSR_INVALID;
283 }
284 
285 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
286 
287 static int get_npt_level(void)
288 {
289 #ifdef CONFIG_X86_64
290 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
291 #else
292 	return PT32E_ROOT_LEVEL;
293 #endif
294 }
295 
296 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
297 {
298 	struct vcpu_svm *svm = to_svm(vcpu);
299 	u64 old_efer = vcpu->arch.efer;
300 	vcpu->arch.efer = efer;
301 
302 	if (!npt_enabled) {
303 		/* Shadow paging assumes NX to be available.  */
304 		efer |= EFER_NX;
305 
306 		if (!(efer & EFER_LMA))
307 			efer &= ~EFER_LME;
308 	}
309 
310 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
311 		if (!(efer & EFER_SVME)) {
312 			svm_leave_nested(vcpu);
313 			svm_set_gif(svm, true);
314 			/* #GP intercept is still needed for vmware backdoor */
315 			if (!enable_vmware_backdoor)
316 				clr_exception_intercept(svm, GP_VECTOR);
317 
318 			/*
319 			 * Free the nested guest state, unless we are in SMM.
320 			 * In this case we will return to the nested guest
321 			 * as soon as we leave SMM.
322 			 */
323 			if (!is_smm(vcpu))
324 				svm_free_nested(svm);
325 
326 		} else {
327 			int ret = svm_allocate_nested(svm);
328 
329 			if (ret) {
330 				vcpu->arch.efer = old_efer;
331 				return ret;
332 			}
333 
334 			/*
335 			 * Never intercept #GP for SEV guests, KVM can't
336 			 * decrypt guest memory to workaround the erratum.
337 			 */
338 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
339 				set_exception_intercept(svm, GP_VECTOR);
340 		}
341 	}
342 
343 	svm->vmcb->save.efer = efer | EFER_SVME;
344 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
345 	return 0;
346 }
347 
348 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
349 {
350 	struct vcpu_svm *svm = to_svm(vcpu);
351 	u32 ret = 0;
352 
353 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
354 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
355 	return ret;
356 }
357 
358 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
359 {
360 	struct vcpu_svm *svm = to_svm(vcpu);
361 
362 	if (mask == 0)
363 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
364 	else
365 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
366 
367 }
368 
369 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
370 					   bool commit_side_effects)
371 {
372 	struct vcpu_svm *svm = to_svm(vcpu);
373 	unsigned long old_rflags;
374 
375 	/*
376 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
377 	 * the type of exit and the #VC handler in the guest.
378 	 */
379 	if (sev_es_guest(vcpu->kvm))
380 		goto done;
381 
382 	if (nrips && svm->vmcb->control.next_rip != 0) {
383 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
384 		svm->next_rip = svm->vmcb->control.next_rip;
385 	}
386 
387 	if (!svm->next_rip) {
388 		if (unlikely(!commit_side_effects))
389 			old_rflags = svm->vmcb->save.rflags;
390 
391 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
392 			return 0;
393 
394 		if (unlikely(!commit_side_effects))
395 			svm->vmcb->save.rflags = old_rflags;
396 	} else {
397 		kvm_rip_write(vcpu, svm->next_rip);
398 	}
399 
400 done:
401 	if (likely(commit_side_effects))
402 		svm_set_interrupt_shadow(vcpu, 0);
403 
404 	return 1;
405 }
406 
407 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
408 {
409 	return __svm_skip_emulated_instruction(vcpu, true);
410 }
411 
412 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
413 {
414 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
415 	struct vcpu_svm *svm = to_svm(vcpu);
416 
417 	/*
418 	 * Due to architectural shortcomings, the CPU doesn't always provide
419 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
420 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
421 	 * the instruction even if NextRIP is supported to acquire the next
422 	 * RIP so that it can be shoved into the NextRIP field, otherwise
423 	 * hardware will fail to advance guest RIP during event injection.
424 	 * Drop the exception/interrupt if emulation fails and effectively
425 	 * retry the instruction, it's the least awful option.  If NRIPS is
426 	 * in use, the skip must not commit any side effects such as clearing
427 	 * the interrupt shadow or RFLAGS.RF.
428 	 */
429 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
430 		return -EIO;
431 
432 	rip = kvm_rip_read(vcpu);
433 
434 	/*
435 	 * Save the injection information, even when using next_rip, as the
436 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
437 	 * doesn't complete due to a VM-Exit occurring while the CPU is
438 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
439 	 * work as there may be no backing instruction, e.g. if the event is
440 	 * being injected by L1 for L2, or if the guest is patching INT3 into
441 	 * a different instruction.
442 	 */
443 	svm->soft_int_injected = true;
444 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
445 	svm->soft_int_old_rip = old_rip;
446 	svm->soft_int_next_rip = rip;
447 
448 	if (nrips)
449 		kvm_rip_write(vcpu, old_rip);
450 
451 	if (static_cpu_has(X86_FEATURE_NRIPS))
452 		svm->vmcb->control.next_rip = rip;
453 
454 	return 0;
455 }
456 
457 static void svm_inject_exception(struct kvm_vcpu *vcpu)
458 {
459 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
460 	struct vcpu_svm *svm = to_svm(vcpu);
461 
462 	kvm_deliver_exception_payload(vcpu, ex);
463 
464 	if (kvm_exception_is_soft(ex->vector) &&
465 	    svm_update_soft_interrupt_rip(vcpu))
466 		return;
467 
468 	svm->vmcb->control.event_inj = ex->vector
469 		| SVM_EVTINJ_VALID
470 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
471 		| SVM_EVTINJ_TYPE_EXEPT;
472 	svm->vmcb->control.event_inj_err = ex->error_code;
473 }
474 
475 static void svm_init_erratum_383(void)
476 {
477 	u32 low, high;
478 	int err;
479 	u64 val;
480 
481 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
482 		return;
483 
484 	/* Use _safe variants to not break nested virtualization */
485 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
486 	if (err)
487 		return;
488 
489 	val |= (1ULL << 47);
490 
491 	low  = lower_32_bits(val);
492 	high = upper_32_bits(val);
493 
494 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
495 
496 	erratum_383_found = true;
497 }
498 
499 static void svm_init_osvw(struct kvm_vcpu *vcpu)
500 {
501 	/*
502 	 * Guests should see errata 400 and 415 as fixed (assuming that
503 	 * HLT and IO instructions are intercepted).
504 	 */
505 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
506 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
507 
508 	/*
509 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
510 	 * all osvw.status bits inside that length, including bit 0 (which is
511 	 * reserved for erratum 298), are valid. However, if host processor's
512 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
513 	 * be conservative here and therefore we tell the guest that erratum 298
514 	 * is present (because we really don't know).
515 	 */
516 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
517 		vcpu->arch.osvw.status |= 1;
518 }
519 
520 static bool kvm_is_svm_supported(void)
521 {
522 	int cpu = raw_smp_processor_id();
523 	const char *msg;
524 	u64 vm_cr;
525 
526 	if (!cpu_has_svm(&msg)) {
527 		pr_err("SVM not supported by CPU %d, %s\n", cpu, msg);
528 		return false;
529 	}
530 
531 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
532 		pr_info("KVM is unsupported when running as an SEV guest\n");
533 		return false;
534 	}
535 
536 	rdmsrl(MSR_VM_CR, vm_cr);
537 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) {
538 		pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu);
539 		return false;
540 	}
541 
542 	return true;
543 }
544 
545 static int svm_check_processor_compat(void)
546 {
547 	if (!kvm_is_svm_supported())
548 		return -EIO;
549 
550 	return 0;
551 }
552 
553 void __svm_write_tsc_multiplier(u64 multiplier)
554 {
555 	preempt_disable();
556 
557 	if (multiplier == __this_cpu_read(current_tsc_ratio))
558 		goto out;
559 
560 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
561 	__this_cpu_write(current_tsc_ratio, multiplier);
562 out:
563 	preempt_enable();
564 }
565 
566 static void svm_hardware_disable(void)
567 {
568 	/* Make sure we clean up behind us */
569 	if (tsc_scaling)
570 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
571 
572 	cpu_svm_disable();
573 
574 	amd_pmu_disable_virt();
575 }
576 
577 static int svm_hardware_enable(void)
578 {
579 
580 	struct svm_cpu_data *sd;
581 	uint64_t efer;
582 	int me = raw_smp_processor_id();
583 
584 	rdmsrl(MSR_EFER, efer);
585 	if (efer & EFER_SVME)
586 		return -EBUSY;
587 
588 	sd = per_cpu_ptr(&svm_data, me);
589 	sd->asid_generation = 1;
590 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
591 	sd->next_asid = sd->max_asid + 1;
592 	sd->min_asid = max_sev_asid + 1;
593 
594 	wrmsrl(MSR_EFER, efer | EFER_SVME);
595 
596 	wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
597 
598 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
599 		/*
600 		 * Set the default value, even if we don't use TSC scaling
601 		 * to avoid having stale value in the msr
602 		 */
603 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
604 	}
605 
606 
607 	/*
608 	 * Get OSVW bits.
609 	 *
610 	 * Note that it is possible to have a system with mixed processor
611 	 * revisions and therefore different OSVW bits. If bits are not the same
612 	 * on different processors then choose the worst case (i.e. if erratum
613 	 * is present on one processor and not on another then assume that the
614 	 * erratum is present everywhere).
615 	 */
616 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
617 		uint64_t len, status = 0;
618 		int err;
619 
620 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
621 		if (!err)
622 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
623 						      &err);
624 
625 		if (err)
626 			osvw_status = osvw_len = 0;
627 		else {
628 			if (len < osvw_len)
629 				osvw_len = len;
630 			osvw_status |= status;
631 			osvw_status &= (1ULL << osvw_len) - 1;
632 		}
633 	} else
634 		osvw_status = osvw_len = 0;
635 
636 	svm_init_erratum_383();
637 
638 	amd_pmu_enable_virt();
639 
640 	return 0;
641 }
642 
643 static void svm_cpu_uninit(int cpu)
644 {
645 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
646 
647 	if (!sd->save_area)
648 		return;
649 
650 	kfree(sd->sev_vmcbs);
651 	__free_page(sd->save_area);
652 	sd->save_area_pa = 0;
653 	sd->save_area = NULL;
654 }
655 
656 static int svm_cpu_init(int cpu)
657 {
658 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
659 	int ret = -ENOMEM;
660 
661 	memset(sd, 0, sizeof(struct svm_cpu_data));
662 	sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
663 	if (!sd->save_area)
664 		return ret;
665 
666 	ret = sev_cpu_init(sd);
667 	if (ret)
668 		goto free_save_area;
669 
670 	sd->save_area_pa = __sme_page_pa(sd->save_area);
671 	return 0;
672 
673 free_save_area:
674 	__free_page(sd->save_area);
675 	sd->save_area = NULL;
676 	return ret;
677 
678 }
679 
680 static int direct_access_msr_slot(u32 msr)
681 {
682 	u32 i;
683 
684 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
685 		if (direct_access_msrs[i].index == msr)
686 			return i;
687 
688 	return -ENOENT;
689 }
690 
691 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
692 				     int write)
693 {
694 	struct vcpu_svm *svm = to_svm(vcpu);
695 	int slot = direct_access_msr_slot(msr);
696 
697 	if (slot == -ENOENT)
698 		return;
699 
700 	/* Set the shadow bitmaps to the desired intercept states */
701 	if (read)
702 		set_bit(slot, svm->shadow_msr_intercept.read);
703 	else
704 		clear_bit(slot, svm->shadow_msr_intercept.read);
705 
706 	if (write)
707 		set_bit(slot, svm->shadow_msr_intercept.write);
708 	else
709 		clear_bit(slot, svm->shadow_msr_intercept.write);
710 }
711 
712 static bool valid_msr_intercept(u32 index)
713 {
714 	return direct_access_msr_slot(index) != -ENOENT;
715 }
716 
717 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
718 {
719 	u8 bit_write;
720 	unsigned long tmp;
721 	u32 offset;
722 	u32 *msrpm;
723 
724 	/*
725 	 * For non-nested case:
726 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
727 	 * save it.
728 	 *
729 	 * For nested case:
730 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
731 	 * save it.
732 	 */
733 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
734 				      to_svm(vcpu)->msrpm;
735 
736 	offset    = svm_msrpm_offset(msr);
737 	bit_write = 2 * (msr & 0x0f) + 1;
738 	tmp       = msrpm[offset];
739 
740 	BUG_ON(offset == MSR_INVALID);
741 
742 	return test_bit(bit_write, &tmp);
743 }
744 
745 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
746 					u32 msr, int read, int write)
747 {
748 	struct vcpu_svm *svm = to_svm(vcpu);
749 	u8 bit_read, bit_write;
750 	unsigned long tmp;
751 	u32 offset;
752 
753 	/*
754 	 * If this warning triggers extend the direct_access_msrs list at the
755 	 * beginning of the file
756 	 */
757 	WARN_ON(!valid_msr_intercept(msr));
758 
759 	/* Enforce non allowed MSRs to trap */
760 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
761 		read = 0;
762 
763 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
764 		write = 0;
765 
766 	offset    = svm_msrpm_offset(msr);
767 	bit_read  = 2 * (msr & 0x0f);
768 	bit_write = 2 * (msr & 0x0f) + 1;
769 	tmp       = msrpm[offset];
770 
771 	BUG_ON(offset == MSR_INVALID);
772 
773 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
774 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
775 
776 	msrpm[offset] = tmp;
777 
778 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
779 	svm->nested.force_msr_bitmap_recalc = true;
780 }
781 
782 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
783 			  int read, int write)
784 {
785 	set_shadow_msr_intercept(vcpu, msr, read, write);
786 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
787 }
788 
789 u32 *svm_vcpu_alloc_msrpm(void)
790 {
791 	unsigned int order = get_order(MSRPM_SIZE);
792 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
793 	u32 *msrpm;
794 
795 	if (!pages)
796 		return NULL;
797 
798 	msrpm = page_address(pages);
799 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
800 
801 	return msrpm;
802 }
803 
804 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
805 {
806 	int i;
807 
808 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
809 		if (!direct_access_msrs[i].always)
810 			continue;
811 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
812 	}
813 }
814 
815 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
816 {
817 	int i;
818 
819 	if (intercept == svm->x2avic_msrs_intercepted)
820 		return;
821 
822 	if (!x2avic_enabled ||
823 	    !apic_x2apic_mode(svm->vcpu.arch.apic))
824 		return;
825 
826 	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
827 		int index = direct_access_msrs[i].index;
828 
829 		if ((index < APIC_BASE_MSR) ||
830 		    (index > APIC_BASE_MSR + 0xff))
831 			continue;
832 		set_msr_interception(&svm->vcpu, svm->msrpm, index,
833 				     !intercept, !intercept);
834 	}
835 
836 	svm->x2avic_msrs_intercepted = intercept;
837 }
838 
839 void svm_vcpu_free_msrpm(u32 *msrpm)
840 {
841 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
842 }
843 
844 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
845 {
846 	struct vcpu_svm *svm = to_svm(vcpu);
847 	u32 i;
848 
849 	/*
850 	 * Set intercept permissions for all direct access MSRs again. They
851 	 * will automatically get filtered through the MSR filter, so we are
852 	 * back in sync after this.
853 	 */
854 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
855 		u32 msr = direct_access_msrs[i].index;
856 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
857 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
858 
859 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
860 	}
861 }
862 
863 static void add_msr_offset(u32 offset)
864 {
865 	int i;
866 
867 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
868 
869 		/* Offset already in list? */
870 		if (msrpm_offsets[i] == offset)
871 			return;
872 
873 		/* Slot used by another offset? */
874 		if (msrpm_offsets[i] != MSR_INVALID)
875 			continue;
876 
877 		/* Add offset to list */
878 		msrpm_offsets[i] = offset;
879 
880 		return;
881 	}
882 
883 	/*
884 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
885 	 * increase MSRPM_OFFSETS in this case.
886 	 */
887 	BUG();
888 }
889 
890 static void init_msrpm_offsets(void)
891 {
892 	int i;
893 
894 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
895 
896 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
897 		u32 offset;
898 
899 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
900 		BUG_ON(offset == MSR_INVALID);
901 
902 		add_msr_offset(offset);
903 	}
904 }
905 
906 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
907 {
908 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
909 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
910 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
911 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
912 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
913 
914 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
915 }
916 
917 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
918 {
919 	struct vcpu_svm *svm = to_svm(vcpu);
920 
921 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
922 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
923 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
924 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
925 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
926 
927 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
928 	if (is_guest_mode(vcpu))
929 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
930 }
931 
932 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
933 {
934 	struct vcpu_svm *svm = to_svm(vcpu);
935 
936 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
937 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
938 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
939 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
940 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
941 
942 	/*
943 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
944 	 * on nested guest entries.
945 	 */
946 	if (is_guest_mode(vcpu))
947 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
948 }
949 
950 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
951 {
952 	/*
953 	 * If the LBR virtualization is disabled, the LBR msrs are always
954 	 * kept in the vmcb01 to avoid copying them on nested guest entries.
955 	 *
956 	 * If nested, and the LBR virtualization is enabled/disabled, the msrs
957 	 * are moved between the vmcb01 and vmcb02 as needed.
958 	 */
959 	struct vmcb *vmcb =
960 		(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
961 			svm->vmcb : svm->vmcb01.ptr;
962 
963 	switch (index) {
964 	case MSR_IA32_DEBUGCTLMSR:
965 		return vmcb->save.dbgctl;
966 	case MSR_IA32_LASTBRANCHFROMIP:
967 		return vmcb->save.br_from;
968 	case MSR_IA32_LASTBRANCHTOIP:
969 		return vmcb->save.br_to;
970 	case MSR_IA32_LASTINTFROMIP:
971 		return vmcb->save.last_excp_from;
972 	case MSR_IA32_LASTINTTOIP:
973 		return vmcb->save.last_excp_to;
974 	default:
975 		KVM_BUG(false, svm->vcpu.kvm,
976 			"%s: Unknown MSR 0x%x", __func__, index);
977 		return 0;
978 	}
979 }
980 
981 void svm_update_lbrv(struct kvm_vcpu *vcpu)
982 {
983 	struct vcpu_svm *svm = to_svm(vcpu);
984 
985 	bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
986 					   DEBUGCTLMSR_LBR;
987 
988 	bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
989 				      LBR_CTL_ENABLE_MASK);
990 
991 	if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
992 		if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
993 			enable_lbrv = true;
994 
995 	if (enable_lbrv == current_enable_lbrv)
996 		return;
997 
998 	if (enable_lbrv)
999 		svm_enable_lbrv(vcpu);
1000 	else
1001 		svm_disable_lbrv(vcpu);
1002 }
1003 
1004 void disable_nmi_singlestep(struct vcpu_svm *svm)
1005 {
1006 	svm->nmi_singlestep = false;
1007 
1008 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1009 		/* Clear our flags if they were not set by the guest */
1010 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1011 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1012 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1013 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1014 	}
1015 }
1016 
1017 static void grow_ple_window(struct kvm_vcpu *vcpu)
1018 {
1019 	struct vcpu_svm *svm = to_svm(vcpu);
1020 	struct vmcb_control_area *control = &svm->vmcb->control;
1021 	int old = control->pause_filter_count;
1022 
1023 	if (kvm_pause_in_guest(vcpu->kvm))
1024 		return;
1025 
1026 	control->pause_filter_count = __grow_ple_window(old,
1027 							pause_filter_count,
1028 							pause_filter_count_grow,
1029 							pause_filter_count_max);
1030 
1031 	if (control->pause_filter_count != old) {
1032 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1033 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1034 					    control->pause_filter_count, old);
1035 	}
1036 }
1037 
1038 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1039 {
1040 	struct vcpu_svm *svm = to_svm(vcpu);
1041 	struct vmcb_control_area *control = &svm->vmcb->control;
1042 	int old = control->pause_filter_count;
1043 
1044 	if (kvm_pause_in_guest(vcpu->kvm))
1045 		return;
1046 
1047 	control->pause_filter_count =
1048 				__shrink_ple_window(old,
1049 						    pause_filter_count,
1050 						    pause_filter_count_shrink,
1051 						    pause_filter_count);
1052 	if (control->pause_filter_count != old) {
1053 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1054 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1055 					    control->pause_filter_count, old);
1056 	}
1057 }
1058 
1059 static void svm_hardware_unsetup(void)
1060 {
1061 	int cpu;
1062 
1063 	sev_hardware_unsetup();
1064 
1065 	for_each_possible_cpu(cpu)
1066 		svm_cpu_uninit(cpu);
1067 
1068 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1069 	get_order(IOPM_SIZE));
1070 	iopm_base = 0;
1071 }
1072 
1073 static void init_seg(struct vmcb_seg *seg)
1074 {
1075 	seg->selector = 0;
1076 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1077 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1078 	seg->limit = 0xffff;
1079 	seg->base = 0;
1080 }
1081 
1082 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1083 {
1084 	seg->selector = 0;
1085 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1086 	seg->limit = 0xffff;
1087 	seg->base = 0;
1088 }
1089 
1090 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1091 {
1092 	struct vcpu_svm *svm = to_svm(vcpu);
1093 
1094 	return svm->nested.ctl.tsc_offset;
1095 }
1096 
1097 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1098 {
1099 	struct vcpu_svm *svm = to_svm(vcpu);
1100 
1101 	return svm->tsc_ratio_msr;
1102 }
1103 
1104 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1105 {
1106 	struct vcpu_svm *svm = to_svm(vcpu);
1107 
1108 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1109 	svm->vmcb->control.tsc_offset = offset;
1110 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1111 }
1112 
1113 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1114 {
1115 	__svm_write_tsc_multiplier(multiplier);
1116 }
1117 
1118 
1119 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1120 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1121 					      struct vcpu_svm *svm)
1122 {
1123 	/*
1124 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1125 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1126 	 */
1127 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1128 		if (!npt_enabled ||
1129 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1130 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1131 		else
1132 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1133 	}
1134 
1135 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1136 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1137 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1138 		else
1139 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1140 	}
1141 }
1142 
1143 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1144 {
1145 	struct vcpu_svm *svm = to_svm(vcpu);
1146 
1147 	if (guest_cpuid_is_intel(vcpu)) {
1148 		/*
1149 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1150 		 * accesses because the processor only stores 32 bits.
1151 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1152 		 */
1153 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1154 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1155 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1156 
1157 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1158 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1159 
1160 		svm->v_vmload_vmsave_enabled = false;
1161 	} else {
1162 		/*
1163 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1164 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1165 		 */
1166 		if (vls) {
1167 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1168 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1169 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1170 		}
1171 		/* No need to intercept these MSRs */
1172 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1173 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1174 	}
1175 }
1176 
1177 static void init_vmcb(struct kvm_vcpu *vcpu)
1178 {
1179 	struct vcpu_svm *svm = to_svm(vcpu);
1180 	struct vmcb *vmcb = svm->vmcb01.ptr;
1181 	struct vmcb_control_area *control = &vmcb->control;
1182 	struct vmcb_save_area *save = &vmcb->save;
1183 
1184 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1185 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1186 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1187 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1188 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1189 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1190 	if (!kvm_vcpu_apicv_active(vcpu))
1191 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1192 
1193 	set_dr_intercepts(svm);
1194 
1195 	set_exception_intercept(svm, PF_VECTOR);
1196 	set_exception_intercept(svm, UD_VECTOR);
1197 	set_exception_intercept(svm, MC_VECTOR);
1198 	set_exception_intercept(svm, AC_VECTOR);
1199 	set_exception_intercept(svm, DB_VECTOR);
1200 	/*
1201 	 * Guest access to VMware backdoor ports could legitimately
1202 	 * trigger #GP because of TSS I/O permission bitmap.
1203 	 * We intercept those #GP and allow access to them anyway
1204 	 * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
1205 	 * decrypt guest memory to decode the faulting instruction.
1206 	 */
1207 	if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1208 		set_exception_intercept(svm, GP_VECTOR);
1209 
1210 	svm_set_intercept(svm, INTERCEPT_INTR);
1211 	svm_set_intercept(svm, INTERCEPT_NMI);
1212 
1213 	if (intercept_smi)
1214 		svm_set_intercept(svm, INTERCEPT_SMI);
1215 
1216 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1217 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1218 	svm_set_intercept(svm, INTERCEPT_CPUID);
1219 	svm_set_intercept(svm, INTERCEPT_INVD);
1220 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1221 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1222 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1223 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1224 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1225 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1226 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1227 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1228 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1229 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1230 	svm_set_intercept(svm, INTERCEPT_STGI);
1231 	svm_set_intercept(svm, INTERCEPT_CLGI);
1232 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1233 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1234 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1235 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1236 	svm_set_intercept(svm, INTERCEPT_RSM);
1237 
1238 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1239 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1240 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1241 	}
1242 
1243 	if (!kvm_hlt_in_guest(vcpu->kvm))
1244 		svm_set_intercept(svm, INTERCEPT_HLT);
1245 
1246 	control->iopm_base_pa = __sme_set(iopm_base);
1247 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1248 	control->int_ctl = V_INTR_MASKING_MASK;
1249 
1250 	init_seg(&save->es);
1251 	init_seg(&save->ss);
1252 	init_seg(&save->ds);
1253 	init_seg(&save->fs);
1254 	init_seg(&save->gs);
1255 
1256 	save->cs.selector = 0xf000;
1257 	save->cs.base = 0xffff0000;
1258 	/* Executable/Readable Code Segment */
1259 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1260 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1261 	save->cs.limit = 0xffff;
1262 
1263 	save->gdtr.base = 0;
1264 	save->gdtr.limit = 0xffff;
1265 	save->idtr.base = 0;
1266 	save->idtr.limit = 0xffff;
1267 
1268 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1269 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1270 
1271 	if (npt_enabled) {
1272 		/* Setup VMCB for Nested Paging */
1273 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1274 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1275 		clr_exception_intercept(svm, PF_VECTOR);
1276 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1277 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1278 		save->g_pat = vcpu->arch.pat;
1279 		save->cr3 = 0;
1280 	}
1281 	svm->current_vmcb->asid_generation = 0;
1282 	svm->asid = 0;
1283 
1284 	svm->nested.vmcb12_gpa = INVALID_GPA;
1285 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1286 
1287 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1288 		control->pause_filter_count = pause_filter_count;
1289 		if (pause_filter_thresh)
1290 			control->pause_filter_thresh = pause_filter_thresh;
1291 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1292 	} else {
1293 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1294 	}
1295 
1296 	svm_recalc_instruction_intercepts(vcpu, svm);
1297 
1298 	/*
1299 	 * If the host supports V_SPEC_CTRL then disable the interception
1300 	 * of MSR_IA32_SPEC_CTRL.
1301 	 */
1302 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1303 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1304 
1305 	if (kvm_vcpu_apicv_active(vcpu))
1306 		avic_init_vmcb(svm, vmcb);
1307 
1308 	if (vnmi)
1309 		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1310 
1311 	if (vgif) {
1312 		svm_clr_intercept(svm, INTERCEPT_STGI);
1313 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1314 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1315 	}
1316 
1317 	if (sev_guest(vcpu->kvm))
1318 		sev_init_vmcb(svm);
1319 
1320 	svm_hv_init_vmcb(vmcb);
1321 	init_vmcb_after_set_cpuid(vcpu);
1322 
1323 	vmcb_mark_all_dirty(vmcb);
1324 
1325 	enable_gif(svm);
1326 }
1327 
1328 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1329 {
1330 	struct vcpu_svm *svm = to_svm(vcpu);
1331 
1332 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1333 
1334 	svm_init_osvw(vcpu);
1335 	vcpu->arch.microcode_version = 0x01000065;
1336 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1337 
1338 	svm->nmi_masked = false;
1339 	svm->awaiting_iret_completion = false;
1340 
1341 	if (sev_es_guest(vcpu->kvm))
1342 		sev_es_vcpu_reset(svm);
1343 }
1344 
1345 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1346 {
1347 	struct vcpu_svm *svm = to_svm(vcpu);
1348 
1349 	svm->spec_ctrl = 0;
1350 	svm->virt_spec_ctrl = 0;
1351 
1352 	init_vmcb(vcpu);
1353 
1354 	if (!init_event)
1355 		__svm_vcpu_reset(vcpu);
1356 }
1357 
1358 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1359 {
1360 	svm->current_vmcb = target_vmcb;
1361 	svm->vmcb = target_vmcb->ptr;
1362 }
1363 
1364 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1365 {
1366 	struct vcpu_svm *svm;
1367 	struct page *vmcb01_page;
1368 	struct page *vmsa_page = NULL;
1369 	int err;
1370 
1371 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1372 	svm = to_svm(vcpu);
1373 
1374 	err = -ENOMEM;
1375 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1376 	if (!vmcb01_page)
1377 		goto out;
1378 
1379 	if (sev_es_guest(vcpu->kvm)) {
1380 		/*
1381 		 * SEV-ES guests require a separate VMSA page used to contain
1382 		 * the encrypted register state of the guest.
1383 		 */
1384 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1385 		if (!vmsa_page)
1386 			goto error_free_vmcb_page;
1387 
1388 		/*
1389 		 * SEV-ES guests maintain an encrypted version of their FPU
1390 		 * state which is restored and saved on VMRUN and VMEXIT.
1391 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1392 		 * do xsave/xrstor on it.
1393 		 */
1394 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1395 	}
1396 
1397 	err = avic_init_vcpu(svm);
1398 	if (err)
1399 		goto error_free_vmsa_page;
1400 
1401 	svm->msrpm = svm_vcpu_alloc_msrpm();
1402 	if (!svm->msrpm) {
1403 		err = -ENOMEM;
1404 		goto error_free_vmsa_page;
1405 	}
1406 
1407 	svm->x2avic_msrs_intercepted = true;
1408 
1409 	svm->vmcb01.ptr = page_address(vmcb01_page);
1410 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1411 	svm_switch_vmcb(svm, &svm->vmcb01);
1412 
1413 	if (vmsa_page)
1414 		svm->sev_es.vmsa = page_address(vmsa_page);
1415 
1416 	svm->guest_state_loaded = false;
1417 
1418 	return 0;
1419 
1420 error_free_vmsa_page:
1421 	if (vmsa_page)
1422 		__free_page(vmsa_page);
1423 error_free_vmcb_page:
1424 	__free_page(vmcb01_page);
1425 out:
1426 	return err;
1427 }
1428 
1429 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1430 {
1431 	int i;
1432 
1433 	for_each_online_cpu(i)
1434 		cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1435 }
1436 
1437 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1438 {
1439 	struct vcpu_svm *svm = to_svm(vcpu);
1440 
1441 	/*
1442 	 * The vmcb page can be recycled, causing a false negative in
1443 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1444 	 * vmcb page recorded as its current vmcb.
1445 	 */
1446 	svm_clear_current_vmcb(svm->vmcb);
1447 
1448 	svm_leave_nested(vcpu);
1449 	svm_free_nested(svm);
1450 
1451 	sev_free_vcpu(vcpu);
1452 
1453 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1454 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1455 }
1456 
1457 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1458 {
1459 	struct vcpu_svm *svm = to_svm(vcpu);
1460 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1461 
1462 	if (sev_es_guest(vcpu->kvm))
1463 		sev_es_unmap_ghcb(svm);
1464 
1465 	if (svm->guest_state_loaded)
1466 		return;
1467 
1468 	/*
1469 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1470 	 * or subsequent vmload of host save area.
1471 	 */
1472 	vmsave(sd->save_area_pa);
1473 	if (sev_es_guest(vcpu->kvm)) {
1474 		struct sev_es_save_area *hostsa;
1475 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1476 
1477 		sev_es_prepare_switch_to_guest(hostsa);
1478 	}
1479 
1480 	if (tsc_scaling)
1481 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1482 
1483 	if (likely(tsc_aux_uret_slot >= 0))
1484 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1485 
1486 	svm->guest_state_loaded = true;
1487 }
1488 
1489 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1490 {
1491 	to_svm(vcpu)->guest_state_loaded = false;
1492 }
1493 
1494 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1495 {
1496 	struct vcpu_svm *svm = to_svm(vcpu);
1497 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1498 
1499 	if (sd->current_vmcb != svm->vmcb) {
1500 		sd->current_vmcb = svm->vmcb;
1501 		indirect_branch_prediction_barrier();
1502 	}
1503 	if (kvm_vcpu_apicv_active(vcpu))
1504 		avic_vcpu_load(vcpu, cpu);
1505 }
1506 
1507 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1508 {
1509 	if (kvm_vcpu_apicv_active(vcpu))
1510 		avic_vcpu_put(vcpu);
1511 
1512 	svm_prepare_host_switch(vcpu);
1513 
1514 	++vcpu->stat.host_state_reload;
1515 }
1516 
1517 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1518 {
1519 	struct vcpu_svm *svm = to_svm(vcpu);
1520 	unsigned long rflags = svm->vmcb->save.rflags;
1521 
1522 	if (svm->nmi_singlestep) {
1523 		/* Hide our flags if they were not set by the guest */
1524 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1525 			rflags &= ~X86_EFLAGS_TF;
1526 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1527 			rflags &= ~X86_EFLAGS_RF;
1528 	}
1529 	return rflags;
1530 }
1531 
1532 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1533 {
1534 	if (to_svm(vcpu)->nmi_singlestep)
1535 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1536 
1537        /*
1538         * Any change of EFLAGS.VM is accompanied by a reload of SS
1539         * (caused by either a task switch or an inter-privilege IRET),
1540         * so we do not need to update the CPL here.
1541         */
1542 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1543 }
1544 
1545 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1546 {
1547 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1548 
1549 	return sev_es_guest(vcpu->kvm)
1550 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1551 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1552 }
1553 
1554 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1555 {
1556 	kvm_register_mark_available(vcpu, reg);
1557 
1558 	switch (reg) {
1559 	case VCPU_EXREG_PDPTR:
1560 		/*
1561 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1562 		 * it is always updated per SDM when moving to CRs.
1563 		 */
1564 		if (npt_enabled)
1565 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1566 		break;
1567 	default:
1568 		KVM_BUG_ON(1, vcpu->kvm);
1569 	}
1570 }
1571 
1572 static void svm_set_vintr(struct vcpu_svm *svm)
1573 {
1574 	struct vmcb_control_area *control;
1575 
1576 	/*
1577 	 * The following fields are ignored when AVIC is enabled
1578 	 */
1579 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1580 
1581 	svm_set_intercept(svm, INTERCEPT_VINTR);
1582 
1583 	/*
1584 	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1585 	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1586 	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1587 	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1588 	 * interrupts will never be unblocked while L2 is running.
1589 	 */
1590 	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1591 		return;
1592 
1593 	/*
1594 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1595 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1596 	 */
1597 	control = &svm->vmcb->control;
1598 	control->int_vector = 0x0;
1599 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1600 	control->int_ctl |= V_IRQ_MASK |
1601 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1602 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1603 }
1604 
1605 static void svm_clear_vintr(struct vcpu_svm *svm)
1606 {
1607 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1608 
1609 	/* Drop int_ctl fields related to VINTR injection.  */
1610 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1611 	if (is_guest_mode(&svm->vcpu)) {
1612 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1613 
1614 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1615 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1616 
1617 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1618 			V_IRQ_INJECTION_BITS_MASK;
1619 
1620 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1621 	}
1622 
1623 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1624 }
1625 
1626 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1627 {
1628 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1629 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1630 
1631 	switch (seg) {
1632 	case VCPU_SREG_CS: return &save->cs;
1633 	case VCPU_SREG_DS: return &save->ds;
1634 	case VCPU_SREG_ES: return &save->es;
1635 	case VCPU_SREG_FS: return &save01->fs;
1636 	case VCPU_SREG_GS: return &save01->gs;
1637 	case VCPU_SREG_SS: return &save->ss;
1638 	case VCPU_SREG_TR: return &save01->tr;
1639 	case VCPU_SREG_LDTR: return &save01->ldtr;
1640 	}
1641 	BUG();
1642 	return NULL;
1643 }
1644 
1645 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1646 {
1647 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1648 
1649 	return s->base;
1650 }
1651 
1652 static void svm_get_segment(struct kvm_vcpu *vcpu,
1653 			    struct kvm_segment *var, int seg)
1654 {
1655 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1656 
1657 	var->base = s->base;
1658 	var->limit = s->limit;
1659 	var->selector = s->selector;
1660 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1661 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1662 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1663 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1664 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1665 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1666 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1667 
1668 	/*
1669 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1670 	 * However, the SVM spec states that the G bit is not observed by the
1671 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1672 	 * So let's synthesize a legal G bit for all segments, this helps
1673 	 * running KVM nested. It also helps cross-vendor migration, because
1674 	 * Intel's vmentry has a check on the 'G' bit.
1675 	 */
1676 	var->g = s->limit > 0xfffff;
1677 
1678 	/*
1679 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1680 	 * for cross vendor migration purposes by "not present"
1681 	 */
1682 	var->unusable = !var->present;
1683 
1684 	switch (seg) {
1685 	case VCPU_SREG_TR:
1686 		/*
1687 		 * Work around a bug where the busy flag in the tr selector
1688 		 * isn't exposed
1689 		 */
1690 		var->type |= 0x2;
1691 		break;
1692 	case VCPU_SREG_DS:
1693 	case VCPU_SREG_ES:
1694 	case VCPU_SREG_FS:
1695 	case VCPU_SREG_GS:
1696 		/*
1697 		 * The accessed bit must always be set in the segment
1698 		 * descriptor cache, although it can be cleared in the
1699 		 * descriptor, the cached bit always remains at 1. Since
1700 		 * Intel has a check on this, set it here to support
1701 		 * cross-vendor migration.
1702 		 */
1703 		if (!var->unusable)
1704 			var->type |= 0x1;
1705 		break;
1706 	case VCPU_SREG_SS:
1707 		/*
1708 		 * On AMD CPUs sometimes the DB bit in the segment
1709 		 * descriptor is left as 1, although the whole segment has
1710 		 * been made unusable. Clear it here to pass an Intel VMX
1711 		 * entry check when cross vendor migrating.
1712 		 */
1713 		if (var->unusable)
1714 			var->db = 0;
1715 		/* This is symmetric with svm_set_segment() */
1716 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1717 		break;
1718 	}
1719 }
1720 
1721 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1722 {
1723 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1724 
1725 	return save->cpl;
1726 }
1727 
1728 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1729 {
1730 	struct kvm_segment cs;
1731 
1732 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1733 	*db = cs.db;
1734 	*l = cs.l;
1735 }
1736 
1737 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1738 {
1739 	struct vcpu_svm *svm = to_svm(vcpu);
1740 
1741 	dt->size = svm->vmcb->save.idtr.limit;
1742 	dt->address = svm->vmcb->save.idtr.base;
1743 }
1744 
1745 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1746 {
1747 	struct vcpu_svm *svm = to_svm(vcpu);
1748 
1749 	svm->vmcb->save.idtr.limit = dt->size;
1750 	svm->vmcb->save.idtr.base = dt->address ;
1751 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1752 }
1753 
1754 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1755 {
1756 	struct vcpu_svm *svm = to_svm(vcpu);
1757 
1758 	dt->size = svm->vmcb->save.gdtr.limit;
1759 	dt->address = svm->vmcb->save.gdtr.base;
1760 }
1761 
1762 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1763 {
1764 	struct vcpu_svm *svm = to_svm(vcpu);
1765 
1766 	svm->vmcb->save.gdtr.limit = dt->size;
1767 	svm->vmcb->save.gdtr.base = dt->address ;
1768 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1769 }
1770 
1771 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1772 {
1773 	struct vcpu_svm *svm = to_svm(vcpu);
1774 
1775 	/*
1776 	 * For guests that don't set guest_state_protected, the cr3 update is
1777 	 * handled via kvm_mmu_load() while entering the guest. For guests
1778 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1779 	 * VMCB save area now, since the save area will become the initial
1780 	 * contents of the VMSA, and future VMCB save area updates won't be
1781 	 * seen.
1782 	 */
1783 	if (sev_es_guest(vcpu->kvm)) {
1784 		svm->vmcb->save.cr3 = cr3;
1785 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1786 	}
1787 }
1788 
1789 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1790 {
1791 	struct vcpu_svm *svm = to_svm(vcpu);
1792 	u64 hcr0 = cr0;
1793 	bool old_paging = is_paging(vcpu);
1794 
1795 #ifdef CONFIG_X86_64
1796 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1797 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1798 			vcpu->arch.efer |= EFER_LMA;
1799 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1800 		}
1801 
1802 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1803 			vcpu->arch.efer &= ~EFER_LMA;
1804 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1805 		}
1806 	}
1807 #endif
1808 	vcpu->arch.cr0 = cr0;
1809 
1810 	if (!npt_enabled) {
1811 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1812 		if (old_paging != is_paging(vcpu))
1813 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1814 	}
1815 
1816 	/*
1817 	 * re-enable caching here because the QEMU bios
1818 	 * does not do it - this results in some delay at
1819 	 * reboot
1820 	 */
1821 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1822 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1823 
1824 	svm->vmcb->save.cr0 = hcr0;
1825 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1826 
1827 	/*
1828 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1829 	 * tracking is done using the CR write traps.
1830 	 */
1831 	if (sev_es_guest(vcpu->kvm))
1832 		return;
1833 
1834 	if (hcr0 == cr0) {
1835 		/* Selective CR0 write remains on.  */
1836 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1837 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1838 	} else {
1839 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1840 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1841 	}
1842 }
1843 
1844 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1845 {
1846 	return true;
1847 }
1848 
1849 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1850 {
1851 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1852 	unsigned long old_cr4 = vcpu->arch.cr4;
1853 
1854 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1855 		svm_flush_tlb_current(vcpu);
1856 
1857 	vcpu->arch.cr4 = cr4;
1858 	if (!npt_enabled) {
1859 		cr4 |= X86_CR4_PAE;
1860 
1861 		if (!is_paging(vcpu))
1862 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1863 	}
1864 	cr4 |= host_cr4_mce;
1865 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1866 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1867 
1868 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1869 		kvm_update_cpuid_runtime(vcpu);
1870 }
1871 
1872 static void svm_set_segment(struct kvm_vcpu *vcpu,
1873 			    struct kvm_segment *var, int seg)
1874 {
1875 	struct vcpu_svm *svm = to_svm(vcpu);
1876 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1877 
1878 	s->base = var->base;
1879 	s->limit = var->limit;
1880 	s->selector = var->selector;
1881 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1882 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1883 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1884 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1885 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1886 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1887 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1888 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1889 
1890 	/*
1891 	 * This is always accurate, except if SYSRET returned to a segment
1892 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1893 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1894 	 * would entail passing the CPL to userspace and back.
1895 	 */
1896 	if (seg == VCPU_SREG_SS)
1897 		/* This is symmetric with svm_get_segment() */
1898 		svm->vmcb->save.cpl = (var->dpl & 3);
1899 
1900 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1901 }
1902 
1903 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1904 {
1905 	struct vcpu_svm *svm = to_svm(vcpu);
1906 
1907 	clr_exception_intercept(svm, BP_VECTOR);
1908 
1909 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1910 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1911 			set_exception_intercept(svm, BP_VECTOR);
1912 	}
1913 }
1914 
1915 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1916 {
1917 	if (sd->next_asid > sd->max_asid) {
1918 		++sd->asid_generation;
1919 		sd->next_asid = sd->min_asid;
1920 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1921 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1922 	}
1923 
1924 	svm->current_vmcb->asid_generation = sd->asid_generation;
1925 	svm->asid = sd->next_asid++;
1926 }
1927 
1928 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1929 {
1930 	struct vmcb *vmcb = svm->vmcb;
1931 
1932 	if (svm->vcpu.arch.guest_state_protected)
1933 		return;
1934 
1935 	if (unlikely(value != vmcb->save.dr6)) {
1936 		vmcb->save.dr6 = value;
1937 		vmcb_mark_dirty(vmcb, VMCB_DR);
1938 	}
1939 }
1940 
1941 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1942 {
1943 	struct vcpu_svm *svm = to_svm(vcpu);
1944 
1945 	if (vcpu->arch.guest_state_protected)
1946 		return;
1947 
1948 	get_debugreg(vcpu->arch.db[0], 0);
1949 	get_debugreg(vcpu->arch.db[1], 1);
1950 	get_debugreg(vcpu->arch.db[2], 2);
1951 	get_debugreg(vcpu->arch.db[3], 3);
1952 	/*
1953 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1954 	 * because db_interception might need it.  We can do it before vmentry.
1955 	 */
1956 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1957 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1958 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1959 	set_dr_intercepts(svm);
1960 }
1961 
1962 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1963 {
1964 	struct vcpu_svm *svm = to_svm(vcpu);
1965 
1966 	if (vcpu->arch.guest_state_protected)
1967 		return;
1968 
1969 	svm->vmcb->save.dr7 = value;
1970 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1971 }
1972 
1973 static int pf_interception(struct kvm_vcpu *vcpu)
1974 {
1975 	struct vcpu_svm *svm = to_svm(vcpu);
1976 
1977 	u64 fault_address = svm->vmcb->control.exit_info_2;
1978 	u64 error_code = svm->vmcb->control.exit_info_1;
1979 
1980 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1981 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1982 			svm->vmcb->control.insn_bytes : NULL,
1983 			svm->vmcb->control.insn_len);
1984 }
1985 
1986 static int npf_interception(struct kvm_vcpu *vcpu)
1987 {
1988 	struct vcpu_svm *svm = to_svm(vcpu);
1989 
1990 	u64 fault_address = svm->vmcb->control.exit_info_2;
1991 	u64 error_code = svm->vmcb->control.exit_info_1;
1992 
1993 	trace_kvm_page_fault(vcpu, fault_address, error_code);
1994 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1995 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1996 			svm->vmcb->control.insn_bytes : NULL,
1997 			svm->vmcb->control.insn_len);
1998 }
1999 
2000 static int db_interception(struct kvm_vcpu *vcpu)
2001 {
2002 	struct kvm_run *kvm_run = vcpu->run;
2003 	struct vcpu_svm *svm = to_svm(vcpu);
2004 
2005 	if (!(vcpu->guest_debug &
2006 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2007 		!svm->nmi_singlestep) {
2008 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2009 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2010 		return 1;
2011 	}
2012 
2013 	if (svm->nmi_singlestep) {
2014 		disable_nmi_singlestep(svm);
2015 		/* Make sure we check for pending NMIs upon entry */
2016 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2017 	}
2018 
2019 	if (vcpu->guest_debug &
2020 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2021 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2022 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2023 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2024 		kvm_run->debug.arch.pc =
2025 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2026 		kvm_run->debug.arch.exception = DB_VECTOR;
2027 		return 0;
2028 	}
2029 
2030 	return 1;
2031 }
2032 
2033 static int bp_interception(struct kvm_vcpu *vcpu)
2034 {
2035 	struct vcpu_svm *svm = to_svm(vcpu);
2036 	struct kvm_run *kvm_run = vcpu->run;
2037 
2038 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2039 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2040 	kvm_run->debug.arch.exception = BP_VECTOR;
2041 	return 0;
2042 }
2043 
2044 static int ud_interception(struct kvm_vcpu *vcpu)
2045 {
2046 	return handle_ud(vcpu);
2047 }
2048 
2049 static int ac_interception(struct kvm_vcpu *vcpu)
2050 {
2051 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2052 	return 1;
2053 }
2054 
2055 static bool is_erratum_383(void)
2056 {
2057 	int err, i;
2058 	u64 value;
2059 
2060 	if (!erratum_383_found)
2061 		return false;
2062 
2063 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2064 	if (err)
2065 		return false;
2066 
2067 	/* Bit 62 may or may not be set for this mce */
2068 	value &= ~(1ULL << 62);
2069 
2070 	if (value != 0xb600000000010015ULL)
2071 		return false;
2072 
2073 	/* Clear MCi_STATUS registers */
2074 	for (i = 0; i < 6; ++i)
2075 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2076 
2077 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2078 	if (!err) {
2079 		u32 low, high;
2080 
2081 		value &= ~(1ULL << 2);
2082 		low    = lower_32_bits(value);
2083 		high   = upper_32_bits(value);
2084 
2085 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2086 	}
2087 
2088 	/* Flush tlb to evict multi-match entries */
2089 	__flush_tlb_all();
2090 
2091 	return true;
2092 }
2093 
2094 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2095 {
2096 	if (is_erratum_383()) {
2097 		/*
2098 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2099 		 * guest.
2100 		 */
2101 		pr_err("Guest triggered AMD Erratum 383\n");
2102 
2103 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2104 
2105 		return;
2106 	}
2107 
2108 	/*
2109 	 * On an #MC intercept the MCE handler is not called automatically in
2110 	 * the host. So do it by hand here.
2111 	 */
2112 	kvm_machine_check();
2113 }
2114 
2115 static int mc_interception(struct kvm_vcpu *vcpu)
2116 {
2117 	return 1;
2118 }
2119 
2120 static int shutdown_interception(struct kvm_vcpu *vcpu)
2121 {
2122 	struct kvm_run *kvm_run = vcpu->run;
2123 	struct vcpu_svm *svm = to_svm(vcpu);
2124 
2125 	/*
2126 	 * The VM save area has already been encrypted so it
2127 	 * cannot be reinitialized - just terminate.
2128 	 */
2129 	if (sev_es_guest(vcpu->kvm))
2130 		return -EINVAL;
2131 
2132 	/*
2133 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2134 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2135 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2136 	 * userspace.  At a platform view, INIT is acceptable behavior as
2137 	 * there exist bare metal platforms that automatically INIT the CPU
2138 	 * in response to shutdown.
2139 	 */
2140 	clear_page(svm->vmcb);
2141 	kvm_vcpu_reset(vcpu, true);
2142 
2143 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2144 	return 0;
2145 }
2146 
2147 static int io_interception(struct kvm_vcpu *vcpu)
2148 {
2149 	struct vcpu_svm *svm = to_svm(vcpu);
2150 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2151 	int size, in, string;
2152 	unsigned port;
2153 
2154 	++vcpu->stat.io_exits;
2155 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2156 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2157 	port = io_info >> 16;
2158 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2159 
2160 	if (string) {
2161 		if (sev_es_guest(vcpu->kvm))
2162 			return sev_es_string_io(svm, size, port, in);
2163 		else
2164 			return kvm_emulate_instruction(vcpu, 0);
2165 	}
2166 
2167 	svm->next_rip = svm->vmcb->control.exit_info_2;
2168 
2169 	return kvm_fast_pio(vcpu, size, port, in);
2170 }
2171 
2172 static int nmi_interception(struct kvm_vcpu *vcpu)
2173 {
2174 	return 1;
2175 }
2176 
2177 static int smi_interception(struct kvm_vcpu *vcpu)
2178 {
2179 	return 1;
2180 }
2181 
2182 static int intr_interception(struct kvm_vcpu *vcpu)
2183 {
2184 	++vcpu->stat.irq_exits;
2185 	return 1;
2186 }
2187 
2188 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2189 {
2190 	struct vcpu_svm *svm = to_svm(vcpu);
2191 	struct vmcb *vmcb12;
2192 	struct kvm_host_map map;
2193 	int ret;
2194 
2195 	if (nested_svm_check_permissions(vcpu))
2196 		return 1;
2197 
2198 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2199 	if (ret) {
2200 		if (ret == -EINVAL)
2201 			kvm_inject_gp(vcpu, 0);
2202 		return 1;
2203 	}
2204 
2205 	vmcb12 = map.hva;
2206 
2207 	ret = kvm_skip_emulated_instruction(vcpu);
2208 
2209 	if (vmload) {
2210 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2211 		svm->sysenter_eip_hi = 0;
2212 		svm->sysenter_esp_hi = 0;
2213 	} else {
2214 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2215 	}
2216 
2217 	kvm_vcpu_unmap(vcpu, &map, true);
2218 
2219 	return ret;
2220 }
2221 
2222 static int vmload_interception(struct kvm_vcpu *vcpu)
2223 {
2224 	return vmload_vmsave_interception(vcpu, true);
2225 }
2226 
2227 static int vmsave_interception(struct kvm_vcpu *vcpu)
2228 {
2229 	return vmload_vmsave_interception(vcpu, false);
2230 }
2231 
2232 static int vmrun_interception(struct kvm_vcpu *vcpu)
2233 {
2234 	if (nested_svm_check_permissions(vcpu))
2235 		return 1;
2236 
2237 	return nested_svm_vmrun(vcpu);
2238 }
2239 
2240 enum {
2241 	NONE_SVM_INSTR,
2242 	SVM_INSTR_VMRUN,
2243 	SVM_INSTR_VMLOAD,
2244 	SVM_INSTR_VMSAVE,
2245 };
2246 
2247 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2248 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2249 {
2250 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2251 
2252 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2253 		return NONE_SVM_INSTR;
2254 
2255 	switch (ctxt->modrm) {
2256 	case 0xd8: /* VMRUN */
2257 		return SVM_INSTR_VMRUN;
2258 	case 0xda: /* VMLOAD */
2259 		return SVM_INSTR_VMLOAD;
2260 	case 0xdb: /* VMSAVE */
2261 		return SVM_INSTR_VMSAVE;
2262 	default:
2263 		break;
2264 	}
2265 
2266 	return NONE_SVM_INSTR;
2267 }
2268 
2269 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2270 {
2271 	const int guest_mode_exit_codes[] = {
2272 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2273 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2274 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2275 	};
2276 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2277 		[SVM_INSTR_VMRUN] = vmrun_interception,
2278 		[SVM_INSTR_VMLOAD] = vmload_interception,
2279 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2280 	};
2281 	struct vcpu_svm *svm = to_svm(vcpu);
2282 	int ret;
2283 
2284 	if (is_guest_mode(vcpu)) {
2285 		/* Returns '1' or -errno on failure, '0' on success. */
2286 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2287 		if (ret)
2288 			return ret;
2289 		return 1;
2290 	}
2291 	return svm_instr_handlers[opcode](vcpu);
2292 }
2293 
2294 /*
2295  * #GP handling code. Note that #GP can be triggered under the following two
2296  * cases:
2297  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2298  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2299  *      regions (e.g. SMM memory on host).
2300  *   2) VMware backdoor
2301  */
2302 static int gp_interception(struct kvm_vcpu *vcpu)
2303 {
2304 	struct vcpu_svm *svm = to_svm(vcpu);
2305 	u32 error_code = svm->vmcb->control.exit_info_1;
2306 	int opcode;
2307 
2308 	/* Both #GP cases have zero error_code */
2309 	if (error_code)
2310 		goto reinject;
2311 
2312 	/* Decode the instruction for usage later */
2313 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2314 		goto reinject;
2315 
2316 	opcode = svm_instr_opcode(vcpu);
2317 
2318 	if (opcode == NONE_SVM_INSTR) {
2319 		if (!enable_vmware_backdoor)
2320 			goto reinject;
2321 
2322 		/*
2323 		 * VMware backdoor emulation on #GP interception only handles
2324 		 * IN{S}, OUT{S}, and RDPMC.
2325 		 */
2326 		if (!is_guest_mode(vcpu))
2327 			return kvm_emulate_instruction(vcpu,
2328 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2329 	} else {
2330 		/* All SVM instructions expect page aligned RAX */
2331 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2332 			goto reinject;
2333 
2334 		return emulate_svm_instr(vcpu, opcode);
2335 	}
2336 
2337 reinject:
2338 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2339 	return 1;
2340 }
2341 
2342 void svm_set_gif(struct vcpu_svm *svm, bool value)
2343 {
2344 	if (value) {
2345 		/*
2346 		 * If VGIF is enabled, the STGI intercept is only added to
2347 		 * detect the opening of the SMI/NMI window; remove it now.
2348 		 * Likewise, clear the VINTR intercept, we will set it
2349 		 * again while processing KVM_REQ_EVENT if needed.
2350 		 */
2351 		if (vgif)
2352 			svm_clr_intercept(svm, INTERCEPT_STGI);
2353 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2354 			svm_clear_vintr(svm);
2355 
2356 		enable_gif(svm);
2357 		if (svm->vcpu.arch.smi_pending ||
2358 		    svm->vcpu.arch.nmi_pending ||
2359 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2360 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2361 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2362 	} else {
2363 		disable_gif(svm);
2364 
2365 		/*
2366 		 * After a CLGI no interrupts should come.  But if vGIF is
2367 		 * in use, we still rely on the VINTR intercept (rather than
2368 		 * STGI) to detect an open interrupt window.
2369 		*/
2370 		if (!vgif)
2371 			svm_clear_vintr(svm);
2372 	}
2373 }
2374 
2375 static int stgi_interception(struct kvm_vcpu *vcpu)
2376 {
2377 	int ret;
2378 
2379 	if (nested_svm_check_permissions(vcpu))
2380 		return 1;
2381 
2382 	ret = kvm_skip_emulated_instruction(vcpu);
2383 	svm_set_gif(to_svm(vcpu), true);
2384 	return ret;
2385 }
2386 
2387 static int clgi_interception(struct kvm_vcpu *vcpu)
2388 {
2389 	int ret;
2390 
2391 	if (nested_svm_check_permissions(vcpu))
2392 		return 1;
2393 
2394 	ret = kvm_skip_emulated_instruction(vcpu);
2395 	svm_set_gif(to_svm(vcpu), false);
2396 	return ret;
2397 }
2398 
2399 static int invlpga_interception(struct kvm_vcpu *vcpu)
2400 {
2401 	gva_t gva = kvm_rax_read(vcpu);
2402 	u32 asid = kvm_rcx_read(vcpu);
2403 
2404 	/* FIXME: Handle an address size prefix. */
2405 	if (!is_long_mode(vcpu))
2406 		gva = (u32)gva;
2407 
2408 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2409 
2410 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2411 	kvm_mmu_invlpg(vcpu, gva);
2412 
2413 	return kvm_skip_emulated_instruction(vcpu);
2414 }
2415 
2416 static int skinit_interception(struct kvm_vcpu *vcpu)
2417 {
2418 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2419 
2420 	kvm_queue_exception(vcpu, UD_VECTOR);
2421 	return 1;
2422 }
2423 
2424 static int task_switch_interception(struct kvm_vcpu *vcpu)
2425 {
2426 	struct vcpu_svm *svm = to_svm(vcpu);
2427 	u16 tss_selector;
2428 	int reason;
2429 	int int_type = svm->vmcb->control.exit_int_info &
2430 		SVM_EXITINTINFO_TYPE_MASK;
2431 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2432 	uint32_t type =
2433 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2434 	uint32_t idt_v =
2435 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2436 	bool has_error_code = false;
2437 	u32 error_code = 0;
2438 
2439 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2440 
2441 	if (svm->vmcb->control.exit_info_2 &
2442 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2443 		reason = TASK_SWITCH_IRET;
2444 	else if (svm->vmcb->control.exit_info_2 &
2445 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2446 		reason = TASK_SWITCH_JMP;
2447 	else if (idt_v)
2448 		reason = TASK_SWITCH_GATE;
2449 	else
2450 		reason = TASK_SWITCH_CALL;
2451 
2452 	if (reason == TASK_SWITCH_GATE) {
2453 		switch (type) {
2454 		case SVM_EXITINTINFO_TYPE_NMI:
2455 			vcpu->arch.nmi_injected = false;
2456 			break;
2457 		case SVM_EXITINTINFO_TYPE_EXEPT:
2458 			if (svm->vmcb->control.exit_info_2 &
2459 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2460 				has_error_code = true;
2461 				error_code =
2462 					(u32)svm->vmcb->control.exit_info_2;
2463 			}
2464 			kvm_clear_exception_queue(vcpu);
2465 			break;
2466 		case SVM_EXITINTINFO_TYPE_INTR:
2467 		case SVM_EXITINTINFO_TYPE_SOFT:
2468 			kvm_clear_interrupt_queue(vcpu);
2469 			break;
2470 		default:
2471 			break;
2472 		}
2473 	}
2474 
2475 	if (reason != TASK_SWITCH_GATE ||
2476 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2477 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2478 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2479 		if (!svm_skip_emulated_instruction(vcpu))
2480 			return 0;
2481 	}
2482 
2483 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2484 		int_vec = -1;
2485 
2486 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2487 			       has_error_code, error_code);
2488 }
2489 
2490 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2491 {
2492 	if (!sev_es_guest(svm->vcpu.kvm))
2493 		svm_clr_intercept(svm, INTERCEPT_IRET);
2494 }
2495 
2496 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2497 {
2498 	if (!sev_es_guest(svm->vcpu.kvm))
2499 		svm_set_intercept(svm, INTERCEPT_IRET);
2500 }
2501 
2502 static int iret_interception(struct kvm_vcpu *vcpu)
2503 {
2504 	struct vcpu_svm *svm = to_svm(vcpu);
2505 
2506 	++vcpu->stat.nmi_window_exits;
2507 	svm->awaiting_iret_completion = true;
2508 
2509 	svm_clr_iret_intercept(svm);
2510 	if (!sev_es_guest(vcpu->kvm))
2511 		svm->nmi_iret_rip = kvm_rip_read(vcpu);
2512 
2513 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2514 	return 1;
2515 }
2516 
2517 static int invlpg_interception(struct kvm_vcpu *vcpu)
2518 {
2519 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2520 		return kvm_emulate_instruction(vcpu, 0);
2521 
2522 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2523 	return kvm_skip_emulated_instruction(vcpu);
2524 }
2525 
2526 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2527 {
2528 	return kvm_emulate_instruction(vcpu, 0);
2529 }
2530 
2531 static int rsm_interception(struct kvm_vcpu *vcpu)
2532 {
2533 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2534 }
2535 
2536 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2537 					    unsigned long val)
2538 {
2539 	struct vcpu_svm *svm = to_svm(vcpu);
2540 	unsigned long cr0 = vcpu->arch.cr0;
2541 	bool ret = false;
2542 
2543 	if (!is_guest_mode(vcpu) ||
2544 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2545 		return false;
2546 
2547 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2548 	val &= ~SVM_CR0_SELECTIVE_MASK;
2549 
2550 	if (cr0 ^ val) {
2551 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2552 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2553 	}
2554 
2555 	return ret;
2556 }
2557 
2558 #define CR_VALID (1ULL << 63)
2559 
2560 static int cr_interception(struct kvm_vcpu *vcpu)
2561 {
2562 	struct vcpu_svm *svm = to_svm(vcpu);
2563 	int reg, cr;
2564 	unsigned long val;
2565 	int err;
2566 
2567 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2568 		return emulate_on_interception(vcpu);
2569 
2570 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2571 		return emulate_on_interception(vcpu);
2572 
2573 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2574 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2575 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2576 	else
2577 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2578 
2579 	err = 0;
2580 	if (cr >= 16) { /* mov to cr */
2581 		cr -= 16;
2582 		val = kvm_register_read(vcpu, reg);
2583 		trace_kvm_cr_write(cr, val);
2584 		switch (cr) {
2585 		case 0:
2586 			if (!check_selective_cr0_intercepted(vcpu, val))
2587 				err = kvm_set_cr0(vcpu, val);
2588 			else
2589 				return 1;
2590 
2591 			break;
2592 		case 3:
2593 			err = kvm_set_cr3(vcpu, val);
2594 			break;
2595 		case 4:
2596 			err = kvm_set_cr4(vcpu, val);
2597 			break;
2598 		case 8:
2599 			err = kvm_set_cr8(vcpu, val);
2600 			break;
2601 		default:
2602 			WARN(1, "unhandled write to CR%d", cr);
2603 			kvm_queue_exception(vcpu, UD_VECTOR);
2604 			return 1;
2605 		}
2606 	} else { /* mov from cr */
2607 		switch (cr) {
2608 		case 0:
2609 			val = kvm_read_cr0(vcpu);
2610 			break;
2611 		case 2:
2612 			val = vcpu->arch.cr2;
2613 			break;
2614 		case 3:
2615 			val = kvm_read_cr3(vcpu);
2616 			break;
2617 		case 4:
2618 			val = kvm_read_cr4(vcpu);
2619 			break;
2620 		case 8:
2621 			val = kvm_get_cr8(vcpu);
2622 			break;
2623 		default:
2624 			WARN(1, "unhandled read from CR%d", cr);
2625 			kvm_queue_exception(vcpu, UD_VECTOR);
2626 			return 1;
2627 		}
2628 		kvm_register_write(vcpu, reg, val);
2629 		trace_kvm_cr_read(cr, val);
2630 	}
2631 	return kvm_complete_insn_gp(vcpu, err);
2632 }
2633 
2634 static int cr_trap(struct kvm_vcpu *vcpu)
2635 {
2636 	struct vcpu_svm *svm = to_svm(vcpu);
2637 	unsigned long old_value, new_value;
2638 	unsigned int cr;
2639 	int ret = 0;
2640 
2641 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2642 
2643 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2644 	switch (cr) {
2645 	case 0:
2646 		old_value = kvm_read_cr0(vcpu);
2647 		svm_set_cr0(vcpu, new_value);
2648 
2649 		kvm_post_set_cr0(vcpu, old_value, new_value);
2650 		break;
2651 	case 4:
2652 		old_value = kvm_read_cr4(vcpu);
2653 		svm_set_cr4(vcpu, new_value);
2654 
2655 		kvm_post_set_cr4(vcpu, old_value, new_value);
2656 		break;
2657 	case 8:
2658 		ret = kvm_set_cr8(vcpu, new_value);
2659 		break;
2660 	default:
2661 		WARN(1, "unhandled CR%d write trap", cr);
2662 		kvm_queue_exception(vcpu, UD_VECTOR);
2663 		return 1;
2664 	}
2665 
2666 	return kvm_complete_insn_gp(vcpu, ret);
2667 }
2668 
2669 static int dr_interception(struct kvm_vcpu *vcpu)
2670 {
2671 	struct vcpu_svm *svm = to_svm(vcpu);
2672 	int reg, dr;
2673 	unsigned long val;
2674 	int err = 0;
2675 
2676 	if (vcpu->guest_debug == 0) {
2677 		/*
2678 		 * No more DR vmexits; force a reload of the debug registers
2679 		 * and reenter on this instruction.  The next vmexit will
2680 		 * retrieve the full state of the debug registers.
2681 		 */
2682 		clr_dr_intercepts(svm);
2683 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2684 		return 1;
2685 	}
2686 
2687 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2688 		return emulate_on_interception(vcpu);
2689 
2690 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2691 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2692 	if (dr >= 16) { /* mov to DRn  */
2693 		dr -= 16;
2694 		val = kvm_register_read(vcpu, reg);
2695 		err = kvm_set_dr(vcpu, dr, val);
2696 	} else {
2697 		kvm_get_dr(vcpu, dr, &val);
2698 		kvm_register_write(vcpu, reg, val);
2699 	}
2700 
2701 	return kvm_complete_insn_gp(vcpu, err);
2702 }
2703 
2704 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2705 {
2706 	int r;
2707 
2708 	u8 cr8_prev = kvm_get_cr8(vcpu);
2709 	/* instruction emulation calls kvm_set_cr8() */
2710 	r = cr_interception(vcpu);
2711 	if (lapic_in_kernel(vcpu))
2712 		return r;
2713 	if (cr8_prev <= kvm_get_cr8(vcpu))
2714 		return r;
2715 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2716 	return 0;
2717 }
2718 
2719 static int efer_trap(struct kvm_vcpu *vcpu)
2720 {
2721 	struct msr_data msr_info;
2722 	int ret;
2723 
2724 	/*
2725 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2726 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2727 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2728 	 * the guest doesn't have X86_FEATURE_SVM.
2729 	 */
2730 	msr_info.host_initiated = false;
2731 	msr_info.index = MSR_EFER;
2732 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2733 	ret = kvm_set_msr_common(vcpu, &msr_info);
2734 
2735 	return kvm_complete_insn_gp(vcpu, ret);
2736 }
2737 
2738 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2739 {
2740 	msr->data = 0;
2741 
2742 	switch (msr->index) {
2743 	case MSR_AMD64_DE_CFG:
2744 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2745 			msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2746 		break;
2747 	default:
2748 		return KVM_MSR_RET_INVALID;
2749 	}
2750 
2751 	return 0;
2752 }
2753 
2754 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2755 {
2756 	struct vcpu_svm *svm = to_svm(vcpu);
2757 
2758 	switch (msr_info->index) {
2759 	case MSR_AMD64_TSC_RATIO:
2760 		if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2761 			return 1;
2762 		msr_info->data = svm->tsc_ratio_msr;
2763 		break;
2764 	case MSR_STAR:
2765 		msr_info->data = svm->vmcb01.ptr->save.star;
2766 		break;
2767 #ifdef CONFIG_X86_64
2768 	case MSR_LSTAR:
2769 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2770 		break;
2771 	case MSR_CSTAR:
2772 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2773 		break;
2774 	case MSR_KERNEL_GS_BASE:
2775 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2776 		break;
2777 	case MSR_SYSCALL_MASK:
2778 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2779 		break;
2780 #endif
2781 	case MSR_IA32_SYSENTER_CS:
2782 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2783 		break;
2784 	case MSR_IA32_SYSENTER_EIP:
2785 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2786 		if (guest_cpuid_is_intel(vcpu))
2787 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2788 		break;
2789 	case MSR_IA32_SYSENTER_ESP:
2790 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2791 		if (guest_cpuid_is_intel(vcpu))
2792 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2793 		break;
2794 	case MSR_TSC_AUX:
2795 		msr_info->data = svm->tsc_aux;
2796 		break;
2797 	case MSR_IA32_DEBUGCTLMSR:
2798 	case MSR_IA32_LASTBRANCHFROMIP:
2799 	case MSR_IA32_LASTBRANCHTOIP:
2800 	case MSR_IA32_LASTINTFROMIP:
2801 	case MSR_IA32_LASTINTTOIP:
2802 		msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
2803 		break;
2804 	case MSR_VM_HSAVE_PA:
2805 		msr_info->data = svm->nested.hsave_msr;
2806 		break;
2807 	case MSR_VM_CR:
2808 		msr_info->data = svm->nested.vm_cr_msr;
2809 		break;
2810 	case MSR_IA32_SPEC_CTRL:
2811 		if (!msr_info->host_initiated &&
2812 		    !guest_has_spec_ctrl_msr(vcpu))
2813 			return 1;
2814 
2815 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2816 			msr_info->data = svm->vmcb->save.spec_ctrl;
2817 		else
2818 			msr_info->data = svm->spec_ctrl;
2819 		break;
2820 	case MSR_AMD64_VIRT_SPEC_CTRL:
2821 		if (!msr_info->host_initiated &&
2822 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2823 			return 1;
2824 
2825 		msr_info->data = svm->virt_spec_ctrl;
2826 		break;
2827 	case MSR_F15H_IC_CFG: {
2828 
2829 		int family, model;
2830 
2831 		family = guest_cpuid_family(vcpu);
2832 		model  = guest_cpuid_model(vcpu);
2833 
2834 		if (family < 0 || model < 0)
2835 			return kvm_get_msr_common(vcpu, msr_info);
2836 
2837 		msr_info->data = 0;
2838 
2839 		if (family == 0x15 &&
2840 		    (model >= 0x2 && model < 0x20))
2841 			msr_info->data = 0x1E;
2842 		}
2843 		break;
2844 	case MSR_AMD64_DE_CFG:
2845 		msr_info->data = svm->msr_decfg;
2846 		break;
2847 	default:
2848 		return kvm_get_msr_common(vcpu, msr_info);
2849 	}
2850 	return 0;
2851 }
2852 
2853 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2854 {
2855 	struct vcpu_svm *svm = to_svm(vcpu);
2856 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2857 		return kvm_complete_insn_gp(vcpu, err);
2858 
2859 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2860 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2861 				X86_TRAP_GP |
2862 				SVM_EVTINJ_TYPE_EXEPT |
2863 				SVM_EVTINJ_VALID);
2864 	return 1;
2865 }
2866 
2867 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2868 {
2869 	struct vcpu_svm *svm = to_svm(vcpu);
2870 	int svm_dis, chg_mask;
2871 
2872 	if (data & ~SVM_VM_CR_VALID_MASK)
2873 		return 1;
2874 
2875 	chg_mask = SVM_VM_CR_VALID_MASK;
2876 
2877 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2878 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2879 
2880 	svm->nested.vm_cr_msr &= ~chg_mask;
2881 	svm->nested.vm_cr_msr |= (data & chg_mask);
2882 
2883 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2884 
2885 	/* check for svm_disable while efer.svme is set */
2886 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2887 		return 1;
2888 
2889 	return 0;
2890 }
2891 
2892 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2893 {
2894 	struct vcpu_svm *svm = to_svm(vcpu);
2895 	int ret = 0;
2896 
2897 	u32 ecx = msr->index;
2898 	u64 data = msr->data;
2899 	switch (ecx) {
2900 	case MSR_AMD64_TSC_RATIO:
2901 
2902 		if (!svm->tsc_scaling_enabled) {
2903 
2904 			if (!msr->host_initiated)
2905 				return 1;
2906 			/*
2907 			 * In case TSC scaling is not enabled, always
2908 			 * leave this MSR at the default value.
2909 			 *
2910 			 * Due to bug in qemu 6.2.0, it would try to set
2911 			 * this msr to 0 if tsc scaling is not enabled.
2912 			 * Ignore this value as well.
2913 			 */
2914 			if (data != 0 && data != svm->tsc_ratio_msr)
2915 				return 1;
2916 			break;
2917 		}
2918 
2919 		if (data & SVM_TSC_RATIO_RSVD)
2920 			return 1;
2921 
2922 		svm->tsc_ratio_msr = data;
2923 
2924 		if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2925 			nested_svm_update_tsc_ratio_msr(vcpu);
2926 
2927 		break;
2928 	case MSR_IA32_CR_PAT:
2929 		ret = kvm_set_msr_common(vcpu, msr);
2930 		if (ret)
2931 			break;
2932 
2933 		svm->vmcb01.ptr->save.g_pat = data;
2934 		if (is_guest_mode(vcpu))
2935 			nested_vmcb02_compute_g_pat(svm);
2936 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2937 		break;
2938 	case MSR_IA32_SPEC_CTRL:
2939 		if (!msr->host_initiated &&
2940 		    !guest_has_spec_ctrl_msr(vcpu))
2941 			return 1;
2942 
2943 		if (kvm_spec_ctrl_test_value(data))
2944 			return 1;
2945 
2946 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2947 			svm->vmcb->save.spec_ctrl = data;
2948 		else
2949 			svm->spec_ctrl = data;
2950 		if (!data)
2951 			break;
2952 
2953 		/*
2954 		 * For non-nested:
2955 		 * When it's written (to non-zero) for the first time, pass
2956 		 * it through.
2957 		 *
2958 		 * For nested:
2959 		 * The handling of the MSR bitmap for L2 guests is done in
2960 		 * nested_svm_vmrun_msrpm.
2961 		 * We update the L1 MSR bit as well since it will end up
2962 		 * touching the MSR anyway now.
2963 		 */
2964 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2965 		break;
2966 	case MSR_AMD64_VIRT_SPEC_CTRL:
2967 		if (!msr->host_initiated &&
2968 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2969 			return 1;
2970 
2971 		if (data & ~SPEC_CTRL_SSBD)
2972 			return 1;
2973 
2974 		svm->virt_spec_ctrl = data;
2975 		break;
2976 	case MSR_STAR:
2977 		svm->vmcb01.ptr->save.star = data;
2978 		break;
2979 #ifdef CONFIG_X86_64
2980 	case MSR_LSTAR:
2981 		svm->vmcb01.ptr->save.lstar = data;
2982 		break;
2983 	case MSR_CSTAR:
2984 		svm->vmcb01.ptr->save.cstar = data;
2985 		break;
2986 	case MSR_KERNEL_GS_BASE:
2987 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2988 		break;
2989 	case MSR_SYSCALL_MASK:
2990 		svm->vmcb01.ptr->save.sfmask = data;
2991 		break;
2992 #endif
2993 	case MSR_IA32_SYSENTER_CS:
2994 		svm->vmcb01.ptr->save.sysenter_cs = data;
2995 		break;
2996 	case MSR_IA32_SYSENTER_EIP:
2997 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2998 		/*
2999 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3000 		 * when we spoof an Intel vendor ID (for cross vendor migration).
3001 		 * In this case we use this intercept to track the high
3002 		 * 32 bit part of these msrs to support Intel's
3003 		 * implementation of SYSENTER/SYSEXIT.
3004 		 */
3005 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3006 		break;
3007 	case MSR_IA32_SYSENTER_ESP:
3008 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3009 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3010 		break;
3011 	case MSR_TSC_AUX:
3012 		/*
3013 		 * TSC_AUX is usually changed only during boot and never read
3014 		 * directly.  Intercept TSC_AUX instead of exposing it to the
3015 		 * guest via direct_access_msrs, and switch it via user return.
3016 		 */
3017 		preempt_disable();
3018 		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3019 		preempt_enable();
3020 		if (ret)
3021 			break;
3022 
3023 		svm->tsc_aux = data;
3024 		break;
3025 	case MSR_IA32_DEBUGCTLMSR:
3026 		if (!lbrv) {
3027 			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3028 			break;
3029 		}
3030 		if (data & DEBUGCTL_RESERVED_BITS)
3031 			return 1;
3032 
3033 		if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
3034 			svm->vmcb->save.dbgctl = data;
3035 		else
3036 			svm->vmcb01.ptr->save.dbgctl = data;
3037 
3038 		svm_update_lbrv(vcpu);
3039 
3040 		break;
3041 	case MSR_VM_HSAVE_PA:
3042 		/*
3043 		 * Old kernels did not validate the value written to
3044 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3045 		 * value to allow live migrating buggy or malicious guests
3046 		 * originating from those kernels.
3047 		 */
3048 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3049 			return 1;
3050 
3051 		svm->nested.hsave_msr = data & PAGE_MASK;
3052 		break;
3053 	case MSR_VM_CR:
3054 		return svm_set_vm_cr(vcpu, data);
3055 	case MSR_VM_IGNNE:
3056 		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3057 		break;
3058 	case MSR_AMD64_DE_CFG: {
3059 		struct kvm_msr_entry msr_entry;
3060 
3061 		msr_entry.index = msr->index;
3062 		if (svm_get_msr_feature(&msr_entry))
3063 			return 1;
3064 
3065 		/* Check the supported bits */
3066 		if (data & ~msr_entry.data)
3067 			return 1;
3068 
3069 		/* Don't allow the guest to change a bit, #GP */
3070 		if (!msr->host_initiated && (data ^ msr_entry.data))
3071 			return 1;
3072 
3073 		svm->msr_decfg = data;
3074 		break;
3075 	}
3076 	default:
3077 		return kvm_set_msr_common(vcpu, msr);
3078 	}
3079 	return ret;
3080 }
3081 
3082 static int msr_interception(struct kvm_vcpu *vcpu)
3083 {
3084 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3085 		return kvm_emulate_wrmsr(vcpu);
3086 	else
3087 		return kvm_emulate_rdmsr(vcpu);
3088 }
3089 
3090 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3091 {
3092 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3093 	svm_clear_vintr(to_svm(vcpu));
3094 
3095 	/*
3096 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3097 	 * In this case AVIC was temporarily disabled for
3098 	 * requesting the IRQ window and we have to re-enable it.
3099 	 *
3100 	 * If running nested, still remove the VM wide AVIC inhibit to
3101 	 * support case in which the interrupt window was requested when the
3102 	 * vCPU was not running nested.
3103 
3104 	 * All vCPUs which run still run nested, will remain to have their
3105 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3106 	 */
3107 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3108 
3109 	++vcpu->stat.irq_window_exits;
3110 	return 1;
3111 }
3112 
3113 static int pause_interception(struct kvm_vcpu *vcpu)
3114 {
3115 	bool in_kernel;
3116 	/*
3117 	 * CPL is not made available for an SEV-ES guest, therefore
3118 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3119 	 * set in_kernel to false as well.
3120 	 */
3121 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3122 
3123 	grow_ple_window(vcpu);
3124 
3125 	kvm_vcpu_on_spin(vcpu, in_kernel);
3126 	return kvm_skip_emulated_instruction(vcpu);
3127 }
3128 
3129 static int invpcid_interception(struct kvm_vcpu *vcpu)
3130 {
3131 	struct vcpu_svm *svm = to_svm(vcpu);
3132 	unsigned long type;
3133 	gva_t gva;
3134 
3135 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3136 		kvm_queue_exception(vcpu, UD_VECTOR);
3137 		return 1;
3138 	}
3139 
3140 	/*
3141 	 * For an INVPCID intercept:
3142 	 * EXITINFO1 provides the linear address of the memory operand.
3143 	 * EXITINFO2 provides the contents of the register operand.
3144 	 */
3145 	type = svm->vmcb->control.exit_info_2;
3146 	gva = svm->vmcb->control.exit_info_1;
3147 
3148 	return kvm_handle_invpcid(vcpu, type, gva);
3149 }
3150 
3151 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3152 	[SVM_EXIT_READ_CR0]			= cr_interception,
3153 	[SVM_EXIT_READ_CR3]			= cr_interception,
3154 	[SVM_EXIT_READ_CR4]			= cr_interception,
3155 	[SVM_EXIT_READ_CR8]			= cr_interception,
3156 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3157 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3158 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3159 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3160 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3161 	[SVM_EXIT_READ_DR0]			= dr_interception,
3162 	[SVM_EXIT_READ_DR1]			= dr_interception,
3163 	[SVM_EXIT_READ_DR2]			= dr_interception,
3164 	[SVM_EXIT_READ_DR3]			= dr_interception,
3165 	[SVM_EXIT_READ_DR4]			= dr_interception,
3166 	[SVM_EXIT_READ_DR5]			= dr_interception,
3167 	[SVM_EXIT_READ_DR6]			= dr_interception,
3168 	[SVM_EXIT_READ_DR7]			= dr_interception,
3169 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3170 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3171 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3172 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3173 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3174 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3175 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3176 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3177 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3178 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3179 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3180 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3181 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3182 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3183 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3184 	[SVM_EXIT_INTR]				= intr_interception,
3185 	[SVM_EXIT_NMI]				= nmi_interception,
3186 	[SVM_EXIT_SMI]				= smi_interception,
3187 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3188 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3189 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3190 	[SVM_EXIT_IRET]                         = iret_interception,
3191 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3192 	[SVM_EXIT_PAUSE]			= pause_interception,
3193 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3194 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3195 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3196 	[SVM_EXIT_IOIO]				= io_interception,
3197 	[SVM_EXIT_MSR]				= msr_interception,
3198 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3199 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3200 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3201 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3202 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3203 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3204 	[SVM_EXIT_STGI]				= stgi_interception,
3205 	[SVM_EXIT_CLGI]				= clgi_interception,
3206 	[SVM_EXIT_SKINIT]			= skinit_interception,
3207 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3208 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3209 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3210 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3211 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3212 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3213 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3214 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3215 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3216 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3217 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3218 	[SVM_EXIT_NPF]				= npf_interception,
3219 	[SVM_EXIT_RSM]                          = rsm_interception,
3220 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3221 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3222 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3223 };
3224 
3225 static void dump_vmcb(struct kvm_vcpu *vcpu)
3226 {
3227 	struct vcpu_svm *svm = to_svm(vcpu);
3228 	struct vmcb_control_area *control = &svm->vmcb->control;
3229 	struct vmcb_save_area *save = &svm->vmcb->save;
3230 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3231 
3232 	if (!dump_invalid_vmcb) {
3233 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3234 		return;
3235 	}
3236 
3237 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3238 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3239 	pr_err("VMCB Control Area:\n");
3240 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3241 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3242 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3243 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3244 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3245 	pr_err("%-20s%08x %08x\n", "intercepts:",
3246               control->intercepts[INTERCEPT_WORD3],
3247 	       control->intercepts[INTERCEPT_WORD4]);
3248 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3249 	pr_err("%-20s%d\n", "pause filter threshold:",
3250 	       control->pause_filter_thresh);
3251 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3252 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3253 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3254 	pr_err("%-20s%d\n", "asid:", control->asid);
3255 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3256 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3257 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3258 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3259 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3260 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3261 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3262 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3263 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3264 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3265 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3266 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3267 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3268 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3269 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3270 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3271 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3272 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3273 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3274 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3275 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3276 	pr_err("VMCB State Save Area:\n");
3277 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3278 	       "es:",
3279 	       save->es.selector, save->es.attrib,
3280 	       save->es.limit, save->es.base);
3281 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3282 	       "cs:",
3283 	       save->cs.selector, save->cs.attrib,
3284 	       save->cs.limit, save->cs.base);
3285 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3286 	       "ss:",
3287 	       save->ss.selector, save->ss.attrib,
3288 	       save->ss.limit, save->ss.base);
3289 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3290 	       "ds:",
3291 	       save->ds.selector, save->ds.attrib,
3292 	       save->ds.limit, save->ds.base);
3293 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3294 	       "fs:",
3295 	       save01->fs.selector, save01->fs.attrib,
3296 	       save01->fs.limit, save01->fs.base);
3297 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3298 	       "gs:",
3299 	       save01->gs.selector, save01->gs.attrib,
3300 	       save01->gs.limit, save01->gs.base);
3301 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3302 	       "gdtr:",
3303 	       save->gdtr.selector, save->gdtr.attrib,
3304 	       save->gdtr.limit, save->gdtr.base);
3305 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3306 	       "ldtr:",
3307 	       save01->ldtr.selector, save01->ldtr.attrib,
3308 	       save01->ldtr.limit, save01->ldtr.base);
3309 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3310 	       "idtr:",
3311 	       save->idtr.selector, save->idtr.attrib,
3312 	       save->idtr.limit, save->idtr.base);
3313 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3314 	       "tr:",
3315 	       save01->tr.selector, save01->tr.attrib,
3316 	       save01->tr.limit, save01->tr.base);
3317 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3318 	       save->vmpl, save->cpl, save->efer);
3319 	pr_err("%-15s %016llx %-13s %016llx\n",
3320 	       "cr0:", save->cr0, "cr2:", save->cr2);
3321 	pr_err("%-15s %016llx %-13s %016llx\n",
3322 	       "cr3:", save->cr3, "cr4:", save->cr4);
3323 	pr_err("%-15s %016llx %-13s %016llx\n",
3324 	       "dr6:", save->dr6, "dr7:", save->dr7);
3325 	pr_err("%-15s %016llx %-13s %016llx\n",
3326 	       "rip:", save->rip, "rflags:", save->rflags);
3327 	pr_err("%-15s %016llx %-13s %016llx\n",
3328 	       "rsp:", save->rsp, "rax:", save->rax);
3329 	pr_err("%-15s %016llx %-13s %016llx\n",
3330 	       "star:", save01->star, "lstar:", save01->lstar);
3331 	pr_err("%-15s %016llx %-13s %016llx\n",
3332 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3333 	pr_err("%-15s %016llx %-13s %016llx\n",
3334 	       "kernel_gs_base:", save01->kernel_gs_base,
3335 	       "sysenter_cs:", save01->sysenter_cs);
3336 	pr_err("%-15s %016llx %-13s %016llx\n",
3337 	       "sysenter_esp:", save01->sysenter_esp,
3338 	       "sysenter_eip:", save01->sysenter_eip);
3339 	pr_err("%-15s %016llx %-13s %016llx\n",
3340 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3341 	pr_err("%-15s %016llx %-13s %016llx\n",
3342 	       "br_from:", save->br_from, "br_to:", save->br_to);
3343 	pr_err("%-15s %016llx %-13s %016llx\n",
3344 	       "excp_from:", save->last_excp_from,
3345 	       "excp_to:", save->last_excp_to);
3346 }
3347 
3348 static bool svm_check_exit_valid(u64 exit_code)
3349 {
3350 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3351 		svm_exit_handlers[exit_code]);
3352 }
3353 
3354 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3355 {
3356 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3357 	dump_vmcb(vcpu);
3358 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3359 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3360 	vcpu->run->internal.ndata = 2;
3361 	vcpu->run->internal.data[0] = exit_code;
3362 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3363 	return 0;
3364 }
3365 
3366 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3367 {
3368 	if (!svm_check_exit_valid(exit_code))
3369 		return svm_handle_invalid_exit(vcpu, exit_code);
3370 
3371 #ifdef CONFIG_RETPOLINE
3372 	if (exit_code == SVM_EXIT_MSR)
3373 		return msr_interception(vcpu);
3374 	else if (exit_code == SVM_EXIT_VINTR)
3375 		return interrupt_window_interception(vcpu);
3376 	else if (exit_code == SVM_EXIT_INTR)
3377 		return intr_interception(vcpu);
3378 	else if (exit_code == SVM_EXIT_HLT)
3379 		return kvm_emulate_halt(vcpu);
3380 	else if (exit_code == SVM_EXIT_NPF)
3381 		return npf_interception(vcpu);
3382 #endif
3383 	return svm_exit_handlers[exit_code](vcpu);
3384 }
3385 
3386 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3387 			      u64 *info1, u64 *info2,
3388 			      u32 *intr_info, u32 *error_code)
3389 {
3390 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3391 
3392 	*reason = control->exit_code;
3393 	*info1 = control->exit_info_1;
3394 	*info2 = control->exit_info_2;
3395 	*intr_info = control->exit_int_info;
3396 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3397 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3398 		*error_code = control->exit_int_info_err;
3399 	else
3400 		*error_code = 0;
3401 }
3402 
3403 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3404 {
3405 	struct vcpu_svm *svm = to_svm(vcpu);
3406 	struct kvm_run *kvm_run = vcpu->run;
3407 	u32 exit_code = svm->vmcb->control.exit_code;
3408 
3409 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3410 	if (!sev_es_guest(vcpu->kvm)) {
3411 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3412 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3413 		if (npt_enabled)
3414 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3415 	}
3416 
3417 	if (is_guest_mode(vcpu)) {
3418 		int vmexit;
3419 
3420 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3421 
3422 		vmexit = nested_svm_exit_special(svm);
3423 
3424 		if (vmexit == NESTED_EXIT_CONTINUE)
3425 			vmexit = nested_svm_exit_handled(svm);
3426 
3427 		if (vmexit == NESTED_EXIT_DONE)
3428 			return 1;
3429 	}
3430 
3431 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3432 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3433 		kvm_run->fail_entry.hardware_entry_failure_reason
3434 			= svm->vmcb->control.exit_code;
3435 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3436 		dump_vmcb(vcpu);
3437 		return 0;
3438 	}
3439 
3440 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3441 		return 1;
3442 
3443 	return svm_invoke_exit_handler(vcpu, exit_code);
3444 }
3445 
3446 static void pre_svm_run(struct kvm_vcpu *vcpu)
3447 {
3448 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3449 	struct vcpu_svm *svm = to_svm(vcpu);
3450 
3451 	/*
3452 	 * If the previous vmrun of the vmcb occurred on a different physical
3453 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3454 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3455 	 */
3456 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3457 		svm->current_vmcb->asid_generation = 0;
3458 		vmcb_mark_all_dirty(svm->vmcb);
3459 		svm->current_vmcb->cpu = vcpu->cpu;
3460         }
3461 
3462 	if (sev_guest(vcpu->kvm))
3463 		return pre_sev_run(svm, vcpu->cpu);
3464 
3465 	/* FIXME: handle wraparound of asid_generation */
3466 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3467 		new_asid(svm, sd);
3468 }
3469 
3470 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3471 {
3472 	struct vcpu_svm *svm = to_svm(vcpu);
3473 
3474 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3475 
3476 	if (svm->nmi_l1_to_l2)
3477 		return;
3478 
3479 	svm->nmi_masked = true;
3480 	svm_set_iret_intercept(svm);
3481 	++vcpu->stat.nmi_injections;
3482 }
3483 
3484 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3485 {
3486 	struct vcpu_svm *svm = to_svm(vcpu);
3487 
3488 	if (!is_vnmi_enabled(svm))
3489 		return false;
3490 
3491 	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3492 }
3493 
3494 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3495 {
3496 	struct vcpu_svm *svm = to_svm(vcpu);
3497 
3498 	if (!is_vnmi_enabled(svm))
3499 		return false;
3500 
3501 	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3502 		return false;
3503 
3504 	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3505 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3506 
3507 	/*
3508 	 * Because the pending NMI is serviced by hardware, KVM can't know when
3509 	 * the NMI is "injected", but for all intents and purposes, passing the
3510 	 * NMI off to hardware counts as injection.
3511 	 */
3512 	++vcpu->stat.nmi_injections;
3513 
3514 	return true;
3515 }
3516 
3517 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3518 {
3519 	struct vcpu_svm *svm = to_svm(vcpu);
3520 	u32 type;
3521 
3522 	if (vcpu->arch.interrupt.soft) {
3523 		if (svm_update_soft_interrupt_rip(vcpu))
3524 			return;
3525 
3526 		type = SVM_EVTINJ_TYPE_SOFT;
3527 	} else {
3528 		type = SVM_EVTINJ_TYPE_INTR;
3529 	}
3530 
3531 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3532 			   vcpu->arch.interrupt.soft, reinjected);
3533 	++vcpu->stat.irq_injections;
3534 
3535 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3536 				       SVM_EVTINJ_VALID | type;
3537 }
3538 
3539 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3540 				     int trig_mode, int vector)
3541 {
3542 	/*
3543 	 * apic->apicv_active must be read after vcpu->mode.
3544 	 * Pairs with smp_store_release in vcpu_enter_guest.
3545 	 */
3546 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3547 
3548 	/* Note, this is called iff the local APIC is in-kernel. */
3549 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3550 		/* Process the interrupt via kvm_check_and_inject_events(). */
3551 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3552 		kvm_vcpu_kick(vcpu);
3553 		return;
3554 	}
3555 
3556 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3557 	if (in_guest_mode) {
3558 		/*
3559 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3560 		 * the vCPU exits the guest before the doorbell chimes, hardware
3561 		 * will automatically process AVIC interrupts at the next VMRUN.
3562 		 */
3563 		avic_ring_doorbell(vcpu);
3564 	} else {
3565 		/*
3566 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3567 		 * pending IRQ when checking if the vCPU has a wake event.
3568 		 */
3569 		kvm_vcpu_wake_up(vcpu);
3570 	}
3571 }
3572 
3573 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3574 				  int trig_mode, int vector)
3575 {
3576 	kvm_lapic_set_irr(vector, apic);
3577 
3578 	/*
3579 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3580 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3581 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3582 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3583 	 * will signal the doorbell if the CPU has already entered the guest.
3584 	 */
3585 	smp_mb__after_atomic();
3586 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3587 }
3588 
3589 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3590 {
3591 	struct vcpu_svm *svm = to_svm(vcpu);
3592 
3593 	/*
3594 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3595 	 * tracking is done using the CR write traps.
3596 	 */
3597 	if (sev_es_guest(vcpu->kvm))
3598 		return;
3599 
3600 	if (nested_svm_virtualize_tpr(vcpu))
3601 		return;
3602 
3603 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3604 
3605 	if (irr == -1)
3606 		return;
3607 
3608 	if (tpr >= irr)
3609 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3610 }
3611 
3612 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3613 {
3614 	struct vcpu_svm *svm = to_svm(vcpu);
3615 
3616 	if (is_vnmi_enabled(svm))
3617 		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3618 	else
3619 		return svm->nmi_masked;
3620 }
3621 
3622 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3623 {
3624 	struct vcpu_svm *svm = to_svm(vcpu);
3625 
3626 	if (is_vnmi_enabled(svm)) {
3627 		if (masked)
3628 			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3629 		else
3630 			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3631 
3632 	} else {
3633 		svm->nmi_masked = masked;
3634 		if (masked)
3635 			svm_set_iret_intercept(svm);
3636 		else
3637 			svm_clr_iret_intercept(svm);
3638 	}
3639 }
3640 
3641 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3642 {
3643 	struct vcpu_svm *svm = to_svm(vcpu);
3644 	struct vmcb *vmcb = svm->vmcb;
3645 
3646 	if (!gif_set(svm))
3647 		return true;
3648 
3649 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3650 		return false;
3651 
3652 	if (svm_get_nmi_mask(vcpu))
3653 		return true;
3654 
3655 	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3656 }
3657 
3658 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3659 {
3660 	struct vcpu_svm *svm = to_svm(vcpu);
3661 	if (svm->nested.nested_run_pending)
3662 		return -EBUSY;
3663 
3664 	if (svm_nmi_blocked(vcpu))
3665 		return 0;
3666 
3667 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3668 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3669 		return -EBUSY;
3670 	return 1;
3671 }
3672 
3673 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3674 {
3675 	struct vcpu_svm *svm = to_svm(vcpu);
3676 	struct vmcb *vmcb = svm->vmcb;
3677 
3678 	if (!gif_set(svm))
3679 		return true;
3680 
3681 	if (is_guest_mode(vcpu)) {
3682 		/* As long as interrupts are being delivered...  */
3683 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3684 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3685 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3686 			return true;
3687 
3688 		/* ... vmexits aren't blocked by the interrupt shadow  */
3689 		if (nested_exit_on_intr(svm))
3690 			return false;
3691 	} else {
3692 		if (!svm_get_if_flag(vcpu))
3693 			return true;
3694 	}
3695 
3696 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3697 }
3698 
3699 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3700 {
3701 	struct vcpu_svm *svm = to_svm(vcpu);
3702 
3703 	if (svm->nested.nested_run_pending)
3704 		return -EBUSY;
3705 
3706 	if (svm_interrupt_blocked(vcpu))
3707 		return 0;
3708 
3709 	/*
3710 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3711 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3712 	 */
3713 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3714 		return -EBUSY;
3715 
3716 	return 1;
3717 }
3718 
3719 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3720 {
3721 	struct vcpu_svm *svm = to_svm(vcpu);
3722 
3723 	/*
3724 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3725 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3726 	 * get that intercept, this function will be called again though and
3727 	 * we'll get the vintr intercept. However, if the vGIF feature is
3728 	 * enabled, the STGI interception will not occur. Enable the irq
3729 	 * window under the assumption that the hardware will set the GIF.
3730 	 */
3731 	if (vgif || gif_set(svm)) {
3732 		/*
3733 		 * IRQ window is not needed when AVIC is enabled,
3734 		 * unless we have pending ExtINT since it cannot be injected
3735 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3736 		 * and fallback to injecting IRQ via V_IRQ.
3737 		 *
3738 		 * If running nested, AVIC is already locally inhibited
3739 		 * on this vCPU, therefore there is no need to request
3740 		 * the VM wide AVIC inhibition.
3741 		 */
3742 		if (!is_guest_mode(vcpu))
3743 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3744 
3745 		svm_set_vintr(svm);
3746 	}
3747 }
3748 
3749 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3750 {
3751 	struct vcpu_svm *svm = to_svm(vcpu);
3752 
3753 	/*
3754 	 * KVM should never request an NMI window when vNMI is enabled, as KVM
3755 	 * allows at most one to-be-injected NMI and one pending NMI, i.e. if
3756 	 * two NMIs arrive simultaneously, KVM will inject one and set
3757 	 * V_NMI_PENDING for the other.  WARN, but continue with the standard
3758 	 * single-step approach to try and salvage the pending NMI.
3759 	 */
3760 	WARN_ON_ONCE(is_vnmi_enabled(svm));
3761 
3762 	if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion)
3763 		return; /* IRET will cause a vm exit */
3764 
3765 	if (!gif_set(svm)) {
3766 		if (vgif)
3767 			svm_set_intercept(svm, INTERCEPT_STGI);
3768 		return; /* STGI will cause a vm exit */
3769 	}
3770 
3771 	/*
3772 	 * Something prevents NMI from been injected. Single step over possible
3773 	 * problem (IRET or exception injection or interrupt shadow)
3774 	 */
3775 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3776 	svm->nmi_singlestep = true;
3777 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3778 }
3779 
3780 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3781 {
3782 	struct vcpu_svm *svm = to_svm(vcpu);
3783 
3784 	/*
3785 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3786 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3787 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3788 	 */
3789 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3790 
3791 	/*
3792 	 * Flush only the current ASID even if the TLB flush was invoked via
3793 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3794 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3795 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3796 	 * VM-Exit (via kvm_mmu_reset_context()).
3797 	 */
3798 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3799 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3800 	else
3801 		svm->current_vmcb->asid_generation--;
3802 }
3803 
3804 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3805 {
3806 	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3807 
3808 	/*
3809 	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3810 	 * flush the NPT mappings via hypercall as flushing the ASID only
3811 	 * affects virtual to physical mappings, it does not invalidate guest
3812 	 * physical to host physical mappings.
3813 	 */
3814 	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3815 		hyperv_flush_guest_mapping(root_tdp);
3816 
3817 	svm_flush_tlb_asid(vcpu);
3818 }
3819 
3820 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3821 {
3822 	/*
3823 	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3824 	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3825 	 * a "regular" remote flush.  Reaching this point means either there's
3826 	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3827 	 * which might be fatal to the guest.  Yell, but try to recover.
3828 	 */
3829 	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3830 		hv_flush_remote_tlbs(vcpu->kvm);
3831 
3832 	svm_flush_tlb_asid(vcpu);
3833 }
3834 
3835 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3836 {
3837 	struct vcpu_svm *svm = to_svm(vcpu);
3838 
3839 	invlpga(gva, svm->vmcb->control.asid);
3840 }
3841 
3842 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3843 {
3844 	struct vcpu_svm *svm = to_svm(vcpu);
3845 
3846 	if (nested_svm_virtualize_tpr(vcpu))
3847 		return;
3848 
3849 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3850 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3851 		kvm_set_cr8(vcpu, cr8);
3852 	}
3853 }
3854 
3855 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3856 {
3857 	struct vcpu_svm *svm = to_svm(vcpu);
3858 	u64 cr8;
3859 
3860 	if (nested_svm_virtualize_tpr(vcpu) ||
3861 	    kvm_vcpu_apicv_active(vcpu))
3862 		return;
3863 
3864 	cr8 = kvm_get_cr8(vcpu);
3865 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3866 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3867 }
3868 
3869 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3870 					int type)
3871 {
3872 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3873 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3874 	struct vcpu_svm *svm = to_svm(vcpu);
3875 
3876 	/*
3877 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3878 	 * associated with the original soft exception/interrupt.  next_rip is
3879 	 * cleared on all exits that can occur while vectoring an event, so KVM
3880 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
3881 	 * case below, this needs to be done if and only if KVM is re-injecting
3882 	 * the same event, i.e. if the event is a soft exception/interrupt,
3883 	 * otherwise next_rip is unused on VMRUN.
3884 	 */
3885 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3886 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3887 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3888 	/*
3889 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3890 	 * injecting the soft exception/interrupt.  That advancement needs to
3891 	 * be unwound if vectoring didn't complete.  Note, the new event may
3892 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
3893 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3894 	 * be the reported vectored event, but RIP still needs to be unwound.
3895 	 */
3896 	else if (!nrips && (is_soft || is_exception) &&
3897 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3898 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
3899 }
3900 
3901 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3902 {
3903 	struct vcpu_svm *svm = to_svm(vcpu);
3904 	u8 vector;
3905 	int type;
3906 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3907 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
3908 	bool soft_int_injected = svm->soft_int_injected;
3909 
3910 	svm->nmi_l1_to_l2 = false;
3911 	svm->soft_int_injected = false;
3912 
3913 	/*
3914 	 * If we've made progress since setting HF_IRET_MASK, we've
3915 	 * executed an IRET and can allow NMI injection.
3916 	 */
3917 	if (svm->awaiting_iret_completion &&
3918 	    (sev_es_guest(vcpu->kvm) ||
3919 	     kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3920 		svm->awaiting_iret_completion = false;
3921 		svm->nmi_masked = false;
3922 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3923 	}
3924 
3925 	vcpu->arch.nmi_injected = false;
3926 	kvm_clear_exception_queue(vcpu);
3927 	kvm_clear_interrupt_queue(vcpu);
3928 
3929 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3930 		return;
3931 
3932 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3933 
3934 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3935 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3936 
3937 	if (soft_int_injected)
3938 		svm_complete_soft_interrupt(vcpu, vector, type);
3939 
3940 	switch (type) {
3941 	case SVM_EXITINTINFO_TYPE_NMI:
3942 		vcpu->arch.nmi_injected = true;
3943 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
3944 		break;
3945 	case SVM_EXITINTINFO_TYPE_EXEPT:
3946 		/*
3947 		 * Never re-inject a #VC exception.
3948 		 */
3949 		if (vector == X86_TRAP_VC)
3950 			break;
3951 
3952 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3953 			u32 err = svm->vmcb->control.exit_int_info_err;
3954 			kvm_requeue_exception_e(vcpu, vector, err);
3955 
3956 		} else
3957 			kvm_requeue_exception(vcpu, vector);
3958 		break;
3959 	case SVM_EXITINTINFO_TYPE_INTR:
3960 		kvm_queue_interrupt(vcpu, vector, false);
3961 		break;
3962 	case SVM_EXITINTINFO_TYPE_SOFT:
3963 		kvm_queue_interrupt(vcpu, vector, true);
3964 		break;
3965 	default:
3966 		break;
3967 	}
3968 
3969 }
3970 
3971 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3972 {
3973 	struct vcpu_svm *svm = to_svm(vcpu);
3974 	struct vmcb_control_area *control = &svm->vmcb->control;
3975 
3976 	control->exit_int_info = control->event_inj;
3977 	control->exit_int_info_err = control->event_inj_err;
3978 	control->event_inj = 0;
3979 	svm_complete_interrupts(vcpu);
3980 }
3981 
3982 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3983 {
3984 	return 1;
3985 }
3986 
3987 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3988 {
3989 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3990 
3991 	/*
3992 	 * Note, the next RIP must be provided as SRCU isn't held, i.e. KVM
3993 	 * can't read guest memory (dereference memslots) to decode the WRMSR.
3994 	 */
3995 	if (control->exit_code == SVM_EXIT_MSR && control->exit_info_1 &&
3996 	    nrips && control->next_rip)
3997 		return handle_fastpath_set_msr_irqoff(vcpu);
3998 
3999 	return EXIT_FASTPATH_NONE;
4000 }
4001 
4002 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4003 {
4004 	struct vcpu_svm *svm = to_svm(vcpu);
4005 
4006 	guest_state_enter_irqoff();
4007 
4008 	if (sev_es_guest(vcpu->kvm))
4009 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
4010 	else
4011 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4012 
4013 	guest_state_exit_irqoff();
4014 }
4015 
4016 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
4017 {
4018 	struct vcpu_svm *svm = to_svm(vcpu);
4019 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4020 
4021 	trace_kvm_entry(vcpu);
4022 
4023 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4024 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4025 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4026 
4027 	/*
4028 	 * Disable singlestep if we're injecting an interrupt/exception.
4029 	 * We don't want our modified rflags to be pushed on the stack where
4030 	 * we might not be able to easily reset them if we disabled NMI
4031 	 * singlestep later.
4032 	 */
4033 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4034 		/*
4035 		 * Event injection happens before external interrupts cause a
4036 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4037 		 * is enough to force an immediate vmexit.
4038 		 */
4039 		disable_nmi_singlestep(svm);
4040 		smp_send_reschedule(vcpu->cpu);
4041 	}
4042 
4043 	pre_svm_run(vcpu);
4044 
4045 	sync_lapic_to_cr8(vcpu);
4046 
4047 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4048 		svm->vmcb->control.asid = svm->asid;
4049 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4050 	}
4051 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4052 
4053 	svm_hv_update_vp_id(svm->vmcb, vcpu);
4054 
4055 	/*
4056 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4057 	 * of a #DB.
4058 	 */
4059 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4060 		svm_set_dr6(svm, vcpu->arch.dr6);
4061 	else
4062 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
4063 
4064 	clgi();
4065 	kvm_load_guest_xsave_state(vcpu);
4066 
4067 	kvm_wait_lapic_expire(vcpu);
4068 
4069 	/*
4070 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4071 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4072 	 * is no need to worry about the conditional branch over the wrmsr
4073 	 * being speculatively taken.
4074 	 */
4075 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4076 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4077 
4078 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4079 
4080 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4081 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4082 
4083 	if (!sev_es_guest(vcpu->kvm)) {
4084 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4085 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4086 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4087 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4088 	}
4089 	vcpu->arch.regs_dirty = 0;
4090 
4091 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4092 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4093 
4094 	kvm_load_host_xsave_state(vcpu);
4095 	stgi();
4096 
4097 	/* Any pending NMI will happen here */
4098 
4099 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4100 		kvm_after_interrupt(vcpu);
4101 
4102 	sync_cr8_to_lapic(vcpu);
4103 
4104 	svm->next_rip = 0;
4105 	if (is_guest_mode(vcpu)) {
4106 		nested_sync_control_from_vmcb02(svm);
4107 
4108 		/* Track VMRUNs that have made past consistency checking */
4109 		if (svm->nested.nested_run_pending &&
4110 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4111                         ++vcpu->stat.nested_run;
4112 
4113 		svm->nested.nested_run_pending = 0;
4114 	}
4115 
4116 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4117 	vmcb_mark_all_clean(svm->vmcb);
4118 
4119 	/* if exit due to PF check for async PF */
4120 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4121 		vcpu->arch.apf.host_apf_flags =
4122 			kvm_read_and_reset_apf_flags();
4123 
4124 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4125 
4126 	/*
4127 	 * We need to handle MC intercepts here before the vcpu has a chance to
4128 	 * change the physical cpu
4129 	 */
4130 	if (unlikely(svm->vmcb->control.exit_code ==
4131 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4132 		svm_handle_mce(vcpu);
4133 
4134 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4135 
4136 	svm_complete_interrupts(vcpu);
4137 
4138 	if (is_guest_mode(vcpu))
4139 		return EXIT_FASTPATH_NONE;
4140 
4141 	return svm_exit_handlers_fastpath(vcpu);
4142 }
4143 
4144 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4145 			     int root_level)
4146 {
4147 	struct vcpu_svm *svm = to_svm(vcpu);
4148 	unsigned long cr3;
4149 
4150 	if (npt_enabled) {
4151 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4152 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4153 
4154 		hv_track_root_tdp(vcpu, root_hpa);
4155 
4156 		cr3 = vcpu->arch.cr3;
4157 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4158 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4159 	} else {
4160 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4161 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4162 		cr3 = root_hpa;
4163 	}
4164 
4165 	svm->vmcb->save.cr3 = cr3;
4166 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4167 }
4168 
4169 static void
4170 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4171 {
4172 	/*
4173 	 * Patch in the VMMCALL instruction:
4174 	 */
4175 	hypercall[0] = 0x0f;
4176 	hypercall[1] = 0x01;
4177 	hypercall[2] = 0xd9;
4178 }
4179 
4180 /*
4181  * The kvm parameter can be NULL (module initialization, or invocation before
4182  * VM creation). Be sure to check the kvm parameter before using it.
4183  */
4184 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4185 {
4186 	switch (index) {
4187 	case MSR_IA32_MCG_EXT_CTL:
4188 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4189 		return false;
4190 	case MSR_IA32_SMBASE:
4191 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4192 			return false;
4193 		/* SEV-ES guests do not support SMM, so report false */
4194 		if (kvm && sev_es_guest(kvm))
4195 			return false;
4196 		break;
4197 	default:
4198 		break;
4199 	}
4200 
4201 	return true;
4202 }
4203 
4204 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4205 {
4206 	struct vcpu_svm *svm = to_svm(vcpu);
4207 	struct kvm_cpuid_entry2 *best;
4208 
4209 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4210 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
4211 				    boot_cpu_has(X86_FEATURE_XSAVES);
4212 
4213 	/* Update nrips enabled cache */
4214 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4215 			     guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4216 
4217 	svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4218 	svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
4219 
4220 	svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4221 
4222 	svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
4223 			guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
4224 
4225 	svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
4226 			guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
4227 
4228 	svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF);
4229 
4230 	svm->vnmi_enabled = vnmi && guest_cpuid_has(vcpu, X86_FEATURE_VNMI);
4231 
4232 	svm_recalc_instruction_intercepts(vcpu, svm);
4233 
4234 	if (boot_cpu_has(X86_FEATURE_IBPB))
4235 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4236 				     !!guest_has_pred_cmd_msr(vcpu));
4237 
4238 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4239 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4240 				     !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4241 
4242 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4243 	if (sev_guest(vcpu->kvm)) {
4244 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4245 		if (best)
4246 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4247 	}
4248 
4249 	init_vmcb_after_set_cpuid(vcpu);
4250 }
4251 
4252 static bool svm_has_wbinvd_exit(void)
4253 {
4254 	return true;
4255 }
4256 
4257 #define PRE_EX(exit)  { .exit_code = (exit), \
4258 			.stage = X86_ICPT_PRE_EXCEPT, }
4259 #define POST_EX(exit) { .exit_code = (exit), \
4260 			.stage = X86_ICPT_POST_EXCEPT, }
4261 #define POST_MEM(exit) { .exit_code = (exit), \
4262 			.stage = X86_ICPT_POST_MEMACCESS, }
4263 
4264 static const struct __x86_intercept {
4265 	u32 exit_code;
4266 	enum x86_intercept_stage stage;
4267 } x86_intercept_map[] = {
4268 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4269 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4270 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4271 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4272 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4273 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4274 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4275 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4276 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4277 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4278 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4279 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4280 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4281 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4282 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4283 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4284 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4285 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4286 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4287 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4288 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4289 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4290 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4291 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4292 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4293 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4294 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4295 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4296 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4297 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4298 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4299 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4300 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4301 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4302 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4303 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4304 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4305 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4306 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4307 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4308 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4309 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4310 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4311 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4312 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4313 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4314 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4315 };
4316 
4317 #undef PRE_EX
4318 #undef POST_EX
4319 #undef POST_MEM
4320 
4321 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4322 			       struct x86_instruction_info *info,
4323 			       enum x86_intercept_stage stage,
4324 			       struct x86_exception *exception)
4325 {
4326 	struct vcpu_svm *svm = to_svm(vcpu);
4327 	int vmexit, ret = X86EMUL_CONTINUE;
4328 	struct __x86_intercept icpt_info;
4329 	struct vmcb *vmcb = svm->vmcb;
4330 
4331 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4332 		goto out;
4333 
4334 	icpt_info = x86_intercept_map[info->intercept];
4335 
4336 	if (stage != icpt_info.stage)
4337 		goto out;
4338 
4339 	switch (icpt_info.exit_code) {
4340 	case SVM_EXIT_READ_CR0:
4341 		if (info->intercept == x86_intercept_cr_read)
4342 			icpt_info.exit_code += info->modrm_reg;
4343 		break;
4344 	case SVM_EXIT_WRITE_CR0: {
4345 		unsigned long cr0, val;
4346 
4347 		if (info->intercept == x86_intercept_cr_write)
4348 			icpt_info.exit_code += info->modrm_reg;
4349 
4350 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4351 		    info->intercept == x86_intercept_clts)
4352 			break;
4353 
4354 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4355 					INTERCEPT_SELECTIVE_CR0)))
4356 			break;
4357 
4358 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4359 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4360 
4361 		if (info->intercept == x86_intercept_lmsw) {
4362 			cr0 &= 0xfUL;
4363 			val &= 0xfUL;
4364 			/* lmsw can't clear PE - catch this here */
4365 			if (cr0 & X86_CR0_PE)
4366 				val |= X86_CR0_PE;
4367 		}
4368 
4369 		if (cr0 ^ val)
4370 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4371 
4372 		break;
4373 	}
4374 	case SVM_EXIT_READ_DR0:
4375 	case SVM_EXIT_WRITE_DR0:
4376 		icpt_info.exit_code += info->modrm_reg;
4377 		break;
4378 	case SVM_EXIT_MSR:
4379 		if (info->intercept == x86_intercept_wrmsr)
4380 			vmcb->control.exit_info_1 = 1;
4381 		else
4382 			vmcb->control.exit_info_1 = 0;
4383 		break;
4384 	case SVM_EXIT_PAUSE:
4385 		/*
4386 		 * We get this for NOP only, but pause
4387 		 * is rep not, check this here
4388 		 */
4389 		if (info->rep_prefix != REPE_PREFIX)
4390 			goto out;
4391 		break;
4392 	case SVM_EXIT_IOIO: {
4393 		u64 exit_info;
4394 		u32 bytes;
4395 
4396 		if (info->intercept == x86_intercept_in ||
4397 		    info->intercept == x86_intercept_ins) {
4398 			exit_info = ((info->src_val & 0xffff) << 16) |
4399 				SVM_IOIO_TYPE_MASK;
4400 			bytes = info->dst_bytes;
4401 		} else {
4402 			exit_info = (info->dst_val & 0xffff) << 16;
4403 			bytes = info->src_bytes;
4404 		}
4405 
4406 		if (info->intercept == x86_intercept_outs ||
4407 		    info->intercept == x86_intercept_ins)
4408 			exit_info |= SVM_IOIO_STR_MASK;
4409 
4410 		if (info->rep_prefix)
4411 			exit_info |= SVM_IOIO_REP_MASK;
4412 
4413 		bytes = min(bytes, 4u);
4414 
4415 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4416 
4417 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4418 
4419 		vmcb->control.exit_info_1 = exit_info;
4420 		vmcb->control.exit_info_2 = info->next_rip;
4421 
4422 		break;
4423 	}
4424 	default:
4425 		break;
4426 	}
4427 
4428 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4429 	if (static_cpu_has(X86_FEATURE_NRIPS))
4430 		vmcb->control.next_rip  = info->next_rip;
4431 	vmcb->control.exit_code = icpt_info.exit_code;
4432 	vmexit = nested_svm_exit_handled(svm);
4433 
4434 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4435 					   : X86EMUL_CONTINUE;
4436 
4437 out:
4438 	return ret;
4439 }
4440 
4441 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4442 {
4443 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4444 		vcpu->arch.at_instruction_boundary = true;
4445 }
4446 
4447 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4448 {
4449 	if (!kvm_pause_in_guest(vcpu->kvm))
4450 		shrink_ple_window(vcpu);
4451 }
4452 
4453 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4454 {
4455 	/* [63:9] are reserved. */
4456 	vcpu->arch.mcg_cap &= 0x1ff;
4457 }
4458 
4459 #ifdef CONFIG_KVM_SMM
4460 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4461 {
4462 	struct vcpu_svm *svm = to_svm(vcpu);
4463 
4464 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4465 	if (!gif_set(svm))
4466 		return true;
4467 
4468 	return is_smm(vcpu);
4469 }
4470 
4471 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4472 {
4473 	struct vcpu_svm *svm = to_svm(vcpu);
4474 	if (svm->nested.nested_run_pending)
4475 		return -EBUSY;
4476 
4477 	if (svm_smi_blocked(vcpu))
4478 		return 0;
4479 
4480 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4481 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4482 		return -EBUSY;
4483 
4484 	return 1;
4485 }
4486 
4487 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4488 {
4489 	struct vcpu_svm *svm = to_svm(vcpu);
4490 	struct kvm_host_map map_save;
4491 	int ret;
4492 
4493 	if (!is_guest_mode(vcpu))
4494 		return 0;
4495 
4496 	/*
4497 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4498 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4499 	 */
4500 
4501 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4502 		return 1;
4503 
4504 	smram->smram64.svm_guest_flag = 1;
4505 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4506 
4507 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4508 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4509 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4510 
4511 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4512 	if (ret)
4513 		return ret;
4514 
4515 	/*
4516 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4517 	 * VMCB01 is going to be used during SMM and thus the state will
4518 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4519 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4520 	 * format of the area is identical to guest save area offsetted
4521 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4522 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4523 	 * L1 hypervisor to save additional host context (e.g. KVM does
4524 	 * that, see svm_prepare_switch_to_guest()) which must be
4525 	 * preserved.
4526 	 */
4527 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4528 		return 1;
4529 
4530 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4531 
4532 	svm_copy_vmrun_state(map_save.hva + 0x400,
4533 			     &svm->vmcb01.ptr->save);
4534 
4535 	kvm_vcpu_unmap(vcpu, &map_save, true);
4536 	return 0;
4537 }
4538 
4539 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4540 {
4541 	struct vcpu_svm *svm = to_svm(vcpu);
4542 	struct kvm_host_map map, map_save;
4543 	struct vmcb *vmcb12;
4544 	int ret;
4545 
4546 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4547 
4548 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4549 		return 0;
4550 
4551 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4552 	if (!smram64->svm_guest_flag)
4553 		return 0;
4554 
4555 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4556 		return 1;
4557 
4558 	if (!(smram64->efer & EFER_SVME))
4559 		return 1;
4560 
4561 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4562 		return 1;
4563 
4564 	ret = 1;
4565 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4566 		goto unmap_map;
4567 
4568 	if (svm_allocate_nested(svm))
4569 		goto unmap_save;
4570 
4571 	/*
4572 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4573 	 * used during SMM (see svm_enter_smm())
4574 	 */
4575 
4576 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4577 
4578 	/*
4579 	 * Enter the nested guest now
4580 	 */
4581 
4582 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4583 
4584 	vmcb12 = map.hva;
4585 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4586 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4587 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4588 
4589 	if (ret)
4590 		goto unmap_save;
4591 
4592 	svm->nested.nested_run_pending = 1;
4593 
4594 unmap_save:
4595 	kvm_vcpu_unmap(vcpu, &map_save, true);
4596 unmap_map:
4597 	kvm_vcpu_unmap(vcpu, &map, true);
4598 	return ret;
4599 }
4600 
4601 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4602 {
4603 	struct vcpu_svm *svm = to_svm(vcpu);
4604 
4605 	if (!gif_set(svm)) {
4606 		if (vgif)
4607 			svm_set_intercept(svm, INTERCEPT_STGI);
4608 		/* STGI will cause a vm exit */
4609 	} else {
4610 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4611 	}
4612 }
4613 #endif
4614 
4615 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4616 					void *insn, int insn_len)
4617 {
4618 	bool smep, smap, is_user;
4619 	u64 error_code;
4620 
4621 	/* Emulation is always possible when KVM has access to all guest state. */
4622 	if (!sev_guest(vcpu->kvm))
4623 		return true;
4624 
4625 	/* #UD and #GP should never be intercepted for SEV guests. */
4626 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4627 				  EMULTYPE_TRAP_UD_FORCED |
4628 				  EMULTYPE_VMWARE_GP));
4629 
4630 	/*
4631 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4632 	 * to guest register state.
4633 	 */
4634 	if (sev_es_guest(vcpu->kvm))
4635 		return false;
4636 
4637 	/*
4638 	 * Emulation is possible if the instruction is already decoded, e.g.
4639 	 * when completing I/O after returning from userspace.
4640 	 */
4641 	if (emul_type & EMULTYPE_NO_DECODE)
4642 		return true;
4643 
4644 	/*
4645 	 * Emulation is possible for SEV guests if and only if a prefilled
4646 	 * buffer containing the bytes of the intercepted instruction is
4647 	 * available. SEV guest memory is encrypted with a guest specific key
4648 	 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4649 	 * decode garbage.
4650 	 *
4651 	 * Inject #UD if KVM reached this point without an instruction buffer.
4652 	 * In practice, this path should never be hit by a well-behaved guest,
4653 	 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4654 	 * is still theoretically reachable, e.g. via unaccelerated fault-like
4655 	 * AVIC access, and needs to be handled by KVM to avoid putting the
4656 	 * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
4657 	 * but its the least awful option given lack of insight into the guest.
4658 	 */
4659 	if (unlikely(!insn)) {
4660 		kvm_queue_exception(vcpu, UD_VECTOR);
4661 		return false;
4662 	}
4663 
4664 	/*
4665 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4666 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4667 	 * the faulting instruction because the code fetch itself faulted, e.g.
4668 	 * the guest attempted to fetch from emulated MMIO or a guest page
4669 	 * table used to translate CS:RIP resides in emulated MMIO.
4670 	 */
4671 	if (likely(insn_len))
4672 		return true;
4673 
4674 	/*
4675 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4676 	 *
4677 	 * Errata:
4678 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4679 	 * possible that CPU microcode implementing DecodeAssist will fail to
4680 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4681 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4682 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4683 	 * gives up and does not fill the instruction bytes buffer.
4684 	 *
4685 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4686 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4687 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4688 	 * GuestIntrBytes field of the VMCB.
4689 	 *
4690 	 * This does _not_ mean that the erratum has been encountered, as the
4691 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4692 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4693 	 * encountered a reserved/not-present #PF.
4694 	 *
4695 	 * To hit the erratum, the following conditions must be true:
4696 	 *    1. CR4.SMAP=1 (obviously).
4697 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4698 	 *       have been hit as the guest would have encountered a SMEP
4699 	 *       violation #PF, not a #NPF.
4700 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4701 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4702 	 *
4703 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4704 	 * while translating guest page tables (see below).
4705 	 */
4706 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4707 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4708 		goto resume_guest;
4709 
4710 	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4711 	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4712 	is_user = svm_get_cpl(vcpu) == 3;
4713 	if (smap && (!smep || is_user)) {
4714 		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4715 
4716 		/*
4717 		 * If the fault occurred in userspace, arbitrarily inject #GP
4718 		 * to avoid killing the guest and to hopefully avoid confusing
4719 		 * the guest kernel too much, e.g. injecting #PF would not be
4720 		 * coherent with respect to the guest's page tables.  Request
4721 		 * triple fault if the fault occurred in the kernel as there's
4722 		 * no fault that KVM can inject without confusing the guest.
4723 		 * In practice, the triple fault is moot as no sane SEV kernel
4724 		 * will execute from user memory while also running with SMAP=1.
4725 		 */
4726 		if (is_user)
4727 			kvm_inject_gp(vcpu, 0);
4728 		else
4729 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4730 	}
4731 
4732 resume_guest:
4733 	/*
4734 	 * If the erratum was not hit, simply resume the guest and let it fault
4735 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4736 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4737 	 * userspace will kill the guest, and letting the emulator read garbage
4738 	 * will yield random behavior and potentially corrupt the guest.
4739 	 *
4740 	 * Simply resuming the guest is technically not a violation of the SEV
4741 	 * architecture.  AMD's APM states that all code fetches and page table
4742 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4743 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4744 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4745 	 * the guest spin is technically "ignoring" the access.
4746 	 */
4747 	return false;
4748 }
4749 
4750 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4751 {
4752 	struct vcpu_svm *svm = to_svm(vcpu);
4753 
4754 	return !gif_set(svm);
4755 }
4756 
4757 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4758 {
4759 	if (!sev_es_guest(vcpu->kvm))
4760 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4761 
4762 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4763 }
4764 
4765 static void svm_vm_destroy(struct kvm *kvm)
4766 {
4767 	avic_vm_destroy(kvm);
4768 	sev_vm_destroy(kvm);
4769 }
4770 
4771 static int svm_vm_init(struct kvm *kvm)
4772 {
4773 	if (!pause_filter_count || !pause_filter_thresh)
4774 		kvm->arch.pause_in_guest = true;
4775 
4776 	if (enable_apicv) {
4777 		int ret = avic_vm_init(kvm);
4778 		if (ret)
4779 			return ret;
4780 	}
4781 
4782 	return 0;
4783 }
4784 
4785 static struct kvm_x86_ops svm_x86_ops __initdata = {
4786 	.name = KBUILD_MODNAME,
4787 
4788 	.check_processor_compatibility = svm_check_processor_compat,
4789 
4790 	.hardware_unsetup = svm_hardware_unsetup,
4791 	.hardware_enable = svm_hardware_enable,
4792 	.hardware_disable = svm_hardware_disable,
4793 	.has_emulated_msr = svm_has_emulated_msr,
4794 
4795 	.vcpu_create = svm_vcpu_create,
4796 	.vcpu_free = svm_vcpu_free,
4797 	.vcpu_reset = svm_vcpu_reset,
4798 
4799 	.vm_size = sizeof(struct kvm_svm),
4800 	.vm_init = svm_vm_init,
4801 	.vm_destroy = svm_vm_destroy,
4802 
4803 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4804 	.vcpu_load = svm_vcpu_load,
4805 	.vcpu_put = svm_vcpu_put,
4806 	.vcpu_blocking = avic_vcpu_blocking,
4807 	.vcpu_unblocking = avic_vcpu_unblocking,
4808 
4809 	.update_exception_bitmap = svm_update_exception_bitmap,
4810 	.get_msr_feature = svm_get_msr_feature,
4811 	.get_msr = svm_get_msr,
4812 	.set_msr = svm_set_msr,
4813 	.get_segment_base = svm_get_segment_base,
4814 	.get_segment = svm_get_segment,
4815 	.set_segment = svm_set_segment,
4816 	.get_cpl = svm_get_cpl,
4817 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4818 	.set_cr0 = svm_set_cr0,
4819 	.post_set_cr3 = sev_post_set_cr3,
4820 	.is_valid_cr4 = svm_is_valid_cr4,
4821 	.set_cr4 = svm_set_cr4,
4822 	.set_efer = svm_set_efer,
4823 	.get_idt = svm_get_idt,
4824 	.set_idt = svm_set_idt,
4825 	.get_gdt = svm_get_gdt,
4826 	.set_gdt = svm_set_gdt,
4827 	.set_dr7 = svm_set_dr7,
4828 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4829 	.cache_reg = svm_cache_reg,
4830 	.get_rflags = svm_get_rflags,
4831 	.set_rflags = svm_set_rflags,
4832 	.get_if_flag = svm_get_if_flag,
4833 
4834 	.flush_tlb_all = svm_flush_tlb_all,
4835 	.flush_tlb_current = svm_flush_tlb_current,
4836 	.flush_tlb_gva = svm_flush_tlb_gva,
4837 	.flush_tlb_guest = svm_flush_tlb_asid,
4838 
4839 	.vcpu_pre_run = svm_vcpu_pre_run,
4840 	.vcpu_run = svm_vcpu_run,
4841 	.handle_exit = svm_handle_exit,
4842 	.skip_emulated_instruction = svm_skip_emulated_instruction,
4843 	.update_emulated_instruction = NULL,
4844 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4845 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4846 	.patch_hypercall = svm_patch_hypercall,
4847 	.inject_irq = svm_inject_irq,
4848 	.inject_nmi = svm_inject_nmi,
4849 	.is_vnmi_pending = svm_is_vnmi_pending,
4850 	.set_vnmi_pending = svm_set_vnmi_pending,
4851 	.inject_exception = svm_inject_exception,
4852 	.cancel_injection = svm_cancel_injection,
4853 	.interrupt_allowed = svm_interrupt_allowed,
4854 	.nmi_allowed = svm_nmi_allowed,
4855 	.get_nmi_mask = svm_get_nmi_mask,
4856 	.set_nmi_mask = svm_set_nmi_mask,
4857 	.enable_nmi_window = svm_enable_nmi_window,
4858 	.enable_irq_window = svm_enable_irq_window,
4859 	.update_cr8_intercept = svm_update_cr8_intercept,
4860 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4861 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4862 	.apicv_post_state_restore = avic_apicv_post_state_restore,
4863 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
4864 
4865 	.get_exit_info = svm_get_exit_info,
4866 
4867 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4868 
4869 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4870 
4871 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
4872 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4873 	.write_tsc_offset = svm_write_tsc_offset,
4874 	.write_tsc_multiplier = svm_write_tsc_multiplier,
4875 
4876 	.load_mmu_pgd = svm_load_mmu_pgd,
4877 
4878 	.check_intercept = svm_check_intercept,
4879 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4880 
4881 	.request_immediate_exit = __kvm_request_immediate_exit,
4882 
4883 	.sched_in = svm_sched_in,
4884 
4885 	.nested_ops = &svm_nested_ops,
4886 
4887 	.deliver_interrupt = svm_deliver_interrupt,
4888 	.pi_update_irte = avic_pi_update_irte,
4889 	.setup_mce = svm_setup_mce,
4890 
4891 #ifdef CONFIG_KVM_SMM
4892 	.smi_allowed = svm_smi_allowed,
4893 	.enter_smm = svm_enter_smm,
4894 	.leave_smm = svm_leave_smm,
4895 	.enable_smi_window = svm_enable_smi_window,
4896 #endif
4897 
4898 	.mem_enc_ioctl = sev_mem_enc_ioctl,
4899 	.mem_enc_register_region = sev_mem_enc_register_region,
4900 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
4901 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
4902 
4903 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4904 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
4905 
4906 	.can_emulate_instruction = svm_can_emulate_instruction,
4907 
4908 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4909 
4910 	.msr_filter_changed = svm_msr_filter_changed,
4911 	.complete_emulated_msr = svm_complete_emulated_msr,
4912 
4913 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4914 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
4915 };
4916 
4917 /*
4918  * The default MMIO mask is a single bit (excluding the present bit),
4919  * which could conflict with the memory encryption bit. Check for
4920  * memory encryption support and override the default MMIO mask if
4921  * memory encryption is enabled.
4922  */
4923 static __init void svm_adjust_mmio_mask(void)
4924 {
4925 	unsigned int enc_bit, mask_bit;
4926 	u64 msr, mask;
4927 
4928 	/* If there is no memory encryption support, use existing mask */
4929 	if (cpuid_eax(0x80000000) < 0x8000001f)
4930 		return;
4931 
4932 	/* If memory encryption is not enabled, use existing mask */
4933 	rdmsrl(MSR_AMD64_SYSCFG, msr);
4934 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4935 		return;
4936 
4937 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4938 	mask_bit = boot_cpu_data.x86_phys_bits;
4939 
4940 	/* Increment the mask bit if it is the same as the encryption bit */
4941 	if (enc_bit == mask_bit)
4942 		mask_bit++;
4943 
4944 	/*
4945 	 * If the mask bit location is below 52, then some bits above the
4946 	 * physical addressing limit will always be reserved, so use the
4947 	 * rsvd_bits() function to generate the mask. This mask, along with
4948 	 * the present bit, will be used to generate a page fault with
4949 	 * PFER.RSV = 1.
4950 	 *
4951 	 * If the mask bit location is 52 (or above), then clear the mask.
4952 	 */
4953 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4954 
4955 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4956 }
4957 
4958 static __init void svm_set_cpu_caps(void)
4959 {
4960 	kvm_set_cpu_caps();
4961 
4962 	kvm_caps.supported_perf_cap = 0;
4963 	kvm_caps.supported_xss = 0;
4964 
4965 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
4966 	if (nested) {
4967 		kvm_cpu_cap_set(X86_FEATURE_SVM);
4968 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4969 
4970 		if (nrips)
4971 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4972 
4973 		if (npt_enabled)
4974 			kvm_cpu_cap_set(X86_FEATURE_NPT);
4975 
4976 		if (tsc_scaling)
4977 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4978 
4979 		if (vls)
4980 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
4981 		if (lbrv)
4982 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
4983 
4984 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
4985 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
4986 
4987 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
4988 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
4989 
4990 		if (vgif)
4991 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
4992 
4993 		if (vnmi)
4994 			kvm_cpu_cap_set(X86_FEATURE_VNMI);
4995 
4996 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
4997 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4998 	}
4999 
5000 	/* CPUID 0x80000008 */
5001 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5002 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5003 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5004 
5005 	if (enable_pmu) {
5006 		/*
5007 		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5008 		 * access to enough counters to virtualize "core" support,
5009 		 * otherwise limit vPMU support to the legacy number of counters.
5010 		 */
5011 		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5012 			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5013 							  kvm_pmu_cap.num_counters_gp);
5014 		else
5015 			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5016 
5017 		if (kvm_pmu_cap.version != 2 ||
5018 		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5019 			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5020 	}
5021 
5022 	/* CPUID 0x8000001F (SME/SEV features) */
5023 	sev_set_cpu_caps();
5024 }
5025 
5026 static __init int svm_hardware_setup(void)
5027 {
5028 	int cpu;
5029 	struct page *iopm_pages;
5030 	void *iopm_va;
5031 	int r;
5032 	unsigned int order = get_order(IOPM_SIZE);
5033 
5034 	/*
5035 	 * NX is required for shadow paging and for NPT if the NX huge pages
5036 	 * mitigation is enabled.
5037 	 */
5038 	if (!boot_cpu_has(X86_FEATURE_NX)) {
5039 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5040 		return -EOPNOTSUPP;
5041 	}
5042 	kvm_enable_efer_bits(EFER_NX);
5043 
5044 	iopm_pages = alloc_pages(GFP_KERNEL, order);
5045 
5046 	if (!iopm_pages)
5047 		return -ENOMEM;
5048 
5049 	iopm_va = page_address(iopm_pages);
5050 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5051 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5052 
5053 	init_msrpm_offsets();
5054 
5055 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5056 				     XFEATURE_MASK_BNDCSR);
5057 
5058 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5059 		kvm_enable_efer_bits(EFER_FFXSR);
5060 
5061 	if (tsc_scaling) {
5062 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5063 			tsc_scaling = false;
5064 		} else {
5065 			pr_info("TSC scaling supported\n");
5066 			kvm_caps.has_tsc_control = true;
5067 		}
5068 	}
5069 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5070 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5071 
5072 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5073 
5074 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5075 		kvm_enable_efer_bits(EFER_AUTOIBRS);
5076 
5077 	/* Check for pause filtering support */
5078 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5079 		pause_filter_count = 0;
5080 		pause_filter_thresh = 0;
5081 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5082 		pause_filter_thresh = 0;
5083 	}
5084 
5085 	if (nested) {
5086 		pr_info("Nested Virtualization enabled\n");
5087 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5088 	}
5089 
5090 	/*
5091 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5092 	 * NPT isn't supported if the host is using 2-level paging since host
5093 	 * CR4 is unchanged on VMRUN.
5094 	 */
5095 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5096 		npt_enabled = false;
5097 
5098 	if (!boot_cpu_has(X86_FEATURE_NPT))
5099 		npt_enabled = false;
5100 
5101 	/* Force VM NPT level equal to the host's paging level */
5102 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5103 			  get_npt_level(), PG_LEVEL_1G);
5104 	pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5105 
5106 	/* Setup shadow_me_value and shadow_me_mask */
5107 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5108 
5109 	svm_adjust_mmio_mask();
5110 
5111 	/*
5112 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5113 	 * may be modified by svm_adjust_mmio_mask()).
5114 	 */
5115 	sev_hardware_setup();
5116 
5117 	svm_hv_hardware_setup();
5118 
5119 	for_each_possible_cpu(cpu) {
5120 		r = svm_cpu_init(cpu);
5121 		if (r)
5122 			goto err;
5123 	}
5124 
5125 	if (nrips) {
5126 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
5127 			nrips = false;
5128 	}
5129 
5130 	enable_apicv = avic = avic && avic_hardware_setup();
5131 
5132 	if (!enable_apicv) {
5133 		svm_x86_ops.vcpu_blocking = NULL;
5134 		svm_x86_ops.vcpu_unblocking = NULL;
5135 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5136 	} else if (!x2avic_enabled) {
5137 		svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5138 	}
5139 
5140 	if (vls) {
5141 		if (!npt_enabled ||
5142 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5143 		    !IS_ENABLED(CONFIG_X86_64)) {
5144 			vls = false;
5145 		} else {
5146 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5147 		}
5148 	}
5149 
5150 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5151 		svm_gp_erratum_intercept = false;
5152 
5153 	if (vgif) {
5154 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5155 			vgif = false;
5156 		else
5157 			pr_info("Virtual GIF supported\n");
5158 	}
5159 
5160 	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5161 	if (vnmi)
5162 		pr_info("Virtual NMI enabled\n");
5163 
5164 	if (!vnmi) {
5165 		svm_x86_ops.is_vnmi_pending = NULL;
5166 		svm_x86_ops.set_vnmi_pending = NULL;
5167 	}
5168 
5169 
5170 	if (lbrv) {
5171 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5172 			lbrv = false;
5173 		else
5174 			pr_info("LBR virtualization supported\n");
5175 	}
5176 
5177 	if (!enable_pmu)
5178 		pr_info("PMU virtualization is disabled\n");
5179 
5180 	svm_set_cpu_caps();
5181 
5182 	/*
5183 	 * It seems that on AMD processors PTE's accessed bit is
5184 	 * being set by the CPU hardware before the NPF vmexit.
5185 	 * This is not expected behaviour and our tests fail because
5186 	 * of it.
5187 	 * A workaround here is to disable support for
5188 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5189 	 * In this case userspace can know if there is support using
5190 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5191 	 * it
5192 	 * If future AMD CPU models change the behaviour described above,
5193 	 * this variable can be changed accordingly
5194 	 */
5195 	allow_smaller_maxphyaddr = !npt_enabled;
5196 
5197 	return 0;
5198 
5199 err:
5200 	svm_hardware_unsetup();
5201 	return r;
5202 }
5203 
5204 
5205 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5206 	.hardware_setup = svm_hardware_setup,
5207 
5208 	.runtime_ops = &svm_x86_ops,
5209 	.pmu_ops = &amd_pmu_ops,
5210 };
5211 
5212 static int __init svm_init(void)
5213 {
5214 	int r;
5215 
5216 	__unused_size_checks();
5217 
5218 	if (!kvm_is_svm_supported())
5219 		return -EOPNOTSUPP;
5220 
5221 	r = kvm_x86_vendor_init(&svm_init_ops);
5222 	if (r)
5223 		return r;
5224 
5225 	/*
5226 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5227 	 * exposed to userspace!
5228 	 */
5229 	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5230 		     THIS_MODULE);
5231 	if (r)
5232 		goto err_kvm_init;
5233 
5234 	return 0;
5235 
5236 err_kvm_init:
5237 	kvm_x86_vendor_exit();
5238 	return r;
5239 }
5240 
5241 static void __exit svm_exit(void)
5242 {
5243 	kvm_exit();
5244 	kvm_x86_vendor_exit();
5245 }
5246 
5247 module_init(svm_init)
5248 module_exit(svm_exit)
5249