xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision f2bb566f5c977ff010baaa9e5e14d9a75b06e5f2)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 #include <linux/cc_platform.h>
29 
30 #include <asm/apic.h>
31 #include <asm/perf_event.h>
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/debugreg.h>
35 #include <asm/kvm_para.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 #include <asm/traps.h>
40 #include <asm/fpu/api.h>
41 
42 #include <asm/virtext.h>
43 #include "trace.h"
44 
45 #include "svm.h"
46 #include "svm_ops.h"
47 
48 #include "kvm_onhyperv.h"
49 #include "svm_onhyperv.h"
50 
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53 
54 #ifdef MODULE
55 static const struct x86_cpu_id svm_cpu_id[] = {
56 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
57 	{}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
60 #endif
61 
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64 
65 static bool erratum_383_found __read_mostly;
66 
67 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
68 
69 /*
70  * Set osvw_len to higher value when updated Revision Guides
71  * are published and we know what the new status bits are
72  */
73 static uint64_t osvw_len = 4, osvw_status;
74 
75 static DEFINE_PER_CPU(u64, current_tsc_ratio);
76 
77 #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
78 
79 static const struct svm_direct_access_msrs {
80 	u32 index;   /* Index of the MSR */
81 	bool always; /* True if intercept is initially cleared */
82 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
83 	{ .index = MSR_STAR,				.always = true  },
84 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
85 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
86 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
87 #ifdef CONFIG_X86_64
88 	{ .index = MSR_GS_BASE,				.always = true  },
89 	{ .index = MSR_FS_BASE,				.always = true  },
90 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
91 	{ .index = MSR_LSTAR,				.always = true  },
92 	{ .index = MSR_CSTAR,				.always = true  },
93 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
94 #endif
95 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
96 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
97 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
98 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
99 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
100 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
101 	{ .index = MSR_EFER,				.always = false },
102 	{ .index = MSR_IA32_CR_PAT,			.always = false },
103 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
104 	{ .index = MSR_TSC_AUX,				.always = false },
105 	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
106 	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
107 	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
108 	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
109 	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
110 	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
111 	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
112 	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
113 	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
114 	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
115 	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
116 	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
117 	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
118 	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
119 	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
120 	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
121 
122 	/*
123 	 * Note:
124 	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
125 	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
126 	 * the AVIC hardware would generate GP fault. Therefore, always
127 	 * intercept the MSR 0x832, and do not setup direct_access_msr.
128 	 */
129 	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
130 	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
131 	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
132 	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
133 	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
134 	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
135 	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
136 	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
137 	{ .index = MSR_INVALID,				.always = false },
138 };
139 
140 /*
141  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
142  * pause_filter_count: On processors that support Pause filtering(indicated
143  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
144  *	count value. On VMRUN this value is loaded into an internal counter.
145  *	Each time a pause instruction is executed, this counter is decremented
146  *	until it reaches zero at which time a #VMEXIT is generated if pause
147  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
148  *	Intercept Filtering for more details.
149  *	This also indicate if ple logic enabled.
150  *
151  * pause_filter_thresh: In addition, some processor families support advanced
152  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
153  *	the amount of time a guest is allowed to execute in a pause loop.
154  *	In this mode, a 16-bit pause filter threshold field is added in the
155  *	VMCB. The threshold value is a cycle count that is used to reset the
156  *	pause counter. As with simple pause filtering, VMRUN loads the pause
157  *	count value from VMCB into an internal counter. Then, on each pause
158  *	instruction the hardware checks the elapsed number of cycles since
159  *	the most recent pause instruction against the pause filter threshold.
160  *	If the elapsed cycle count is greater than the pause filter threshold,
161  *	then the internal pause count is reloaded from the VMCB and execution
162  *	continues. If the elapsed cycle count is less than the pause filter
163  *	threshold, then the internal pause count is decremented. If the count
164  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
165  *	triggered. If advanced pause filtering is supported and pause filter
166  *	threshold field is set to zero, the filter will operate in the simpler,
167  *	count only mode.
168  */
169 
170 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
171 module_param(pause_filter_thresh, ushort, 0444);
172 
173 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
174 module_param(pause_filter_count, ushort, 0444);
175 
176 /* Default doubles per-vcpu window every exit. */
177 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
178 module_param(pause_filter_count_grow, ushort, 0444);
179 
180 /* Default resets per-vcpu window every exit to pause_filter_count. */
181 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
182 module_param(pause_filter_count_shrink, ushort, 0444);
183 
184 /* Default is to compute the maximum so we can never overflow. */
185 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
186 module_param(pause_filter_count_max, ushort, 0444);
187 
188 /*
189  * Use nested page tables by default.  Note, NPT may get forced off by
190  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
191  */
192 bool npt_enabled = true;
193 module_param_named(npt, npt_enabled, bool, 0444);
194 
195 /* allow nested virtualization in KVM/SVM */
196 static int nested = true;
197 module_param(nested, int, S_IRUGO);
198 
199 /* enable/disable Next RIP Save */
200 static int nrips = true;
201 module_param(nrips, int, 0444);
202 
203 /* enable/disable Virtual VMLOAD VMSAVE */
204 static int vls = true;
205 module_param(vls, int, 0444);
206 
207 /* enable/disable Virtual GIF */
208 int vgif = true;
209 module_param(vgif, int, 0444);
210 
211 /* enable/disable LBR virtualization */
212 static int lbrv = true;
213 module_param(lbrv, int, 0444);
214 
215 static int tsc_scaling = true;
216 module_param(tsc_scaling, int, 0444);
217 
218 /*
219  * enable / disable AVIC.  Because the defaults differ for APICv
220  * support between VMX and SVM we cannot use module_param_named.
221  */
222 static bool avic;
223 module_param(avic, bool, 0444);
224 
225 bool __read_mostly dump_invalid_vmcb;
226 module_param(dump_invalid_vmcb, bool, 0644);
227 
228 
229 bool intercept_smi = true;
230 module_param(intercept_smi, bool, 0444);
231 
232 
233 static bool svm_gp_erratum_intercept = true;
234 
235 static u8 rsm_ins_bytes[] = "\x0f\xaa";
236 
237 static unsigned long iopm_base;
238 
239 struct kvm_ldttss_desc {
240 	u16 limit0;
241 	u16 base0;
242 	unsigned base1:8, type:5, dpl:2, p:1;
243 	unsigned limit1:4, zero0:3, g:1, base2:8;
244 	u32 base3;
245 	u32 zero1;
246 } __attribute__((packed));
247 
248 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
249 
250 /*
251  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
252  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
253  *
254  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
255  * defer the restoration of TSC_AUX until the CPU returns to userspace.
256  */
257 static int tsc_aux_uret_slot __read_mostly = -1;
258 
259 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
260 
261 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
262 #define MSRS_RANGE_SIZE 2048
263 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
264 
265 u32 svm_msrpm_offset(u32 msr)
266 {
267 	u32 offset;
268 	int i;
269 
270 	for (i = 0; i < NUM_MSR_MAPS; i++) {
271 		if (msr < msrpm_ranges[i] ||
272 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
273 			continue;
274 
275 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
276 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
277 
278 		/* Now we have the u8 offset - but need the u32 offset */
279 		return offset / 4;
280 	}
281 
282 	/* MSR not in any range */
283 	return MSR_INVALID;
284 }
285 
286 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
287 
288 static int get_npt_level(void)
289 {
290 #ifdef CONFIG_X86_64
291 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
292 #else
293 	return PT32E_ROOT_LEVEL;
294 #endif
295 }
296 
297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
298 {
299 	struct vcpu_svm *svm = to_svm(vcpu);
300 	u64 old_efer = vcpu->arch.efer;
301 	vcpu->arch.efer = efer;
302 
303 	if (!npt_enabled) {
304 		/* Shadow paging assumes NX to be available.  */
305 		efer |= EFER_NX;
306 
307 		if (!(efer & EFER_LMA))
308 			efer &= ~EFER_LME;
309 	}
310 
311 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
312 		if (!(efer & EFER_SVME)) {
313 			svm_leave_nested(vcpu);
314 			svm_set_gif(svm, true);
315 			/* #GP intercept is still needed for vmware backdoor */
316 			if (!enable_vmware_backdoor)
317 				clr_exception_intercept(svm, GP_VECTOR);
318 
319 			/*
320 			 * Free the nested guest state, unless we are in SMM.
321 			 * In this case we will return to the nested guest
322 			 * as soon as we leave SMM.
323 			 */
324 			if (!is_smm(vcpu))
325 				svm_free_nested(svm);
326 
327 		} else {
328 			int ret = svm_allocate_nested(svm);
329 
330 			if (ret) {
331 				vcpu->arch.efer = old_efer;
332 				return ret;
333 			}
334 
335 			/*
336 			 * Never intercept #GP for SEV guests, KVM can't
337 			 * decrypt guest memory to workaround the erratum.
338 			 */
339 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
340 				set_exception_intercept(svm, GP_VECTOR);
341 		}
342 	}
343 
344 	svm->vmcb->save.efer = efer | EFER_SVME;
345 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
346 	return 0;
347 }
348 
349 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
350 {
351 	struct vcpu_svm *svm = to_svm(vcpu);
352 	u32 ret = 0;
353 
354 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
355 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
356 	return ret;
357 }
358 
359 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
360 {
361 	struct vcpu_svm *svm = to_svm(vcpu);
362 
363 	if (mask == 0)
364 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
365 	else
366 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
367 
368 }
369 
370 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
371 					   bool commit_side_effects)
372 {
373 	struct vcpu_svm *svm = to_svm(vcpu);
374 	unsigned long old_rflags;
375 
376 	/*
377 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
378 	 * the type of exit and the #VC handler in the guest.
379 	 */
380 	if (sev_es_guest(vcpu->kvm))
381 		goto done;
382 
383 	if (nrips && svm->vmcb->control.next_rip != 0) {
384 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
385 		svm->next_rip = svm->vmcb->control.next_rip;
386 	}
387 
388 	if (!svm->next_rip) {
389 		if (unlikely(!commit_side_effects))
390 			old_rflags = svm->vmcb->save.rflags;
391 
392 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
393 			return 0;
394 
395 		if (unlikely(!commit_side_effects))
396 			svm->vmcb->save.rflags = old_rflags;
397 	} else {
398 		kvm_rip_write(vcpu, svm->next_rip);
399 	}
400 
401 done:
402 	if (likely(commit_side_effects))
403 		svm_set_interrupt_shadow(vcpu, 0);
404 
405 	return 1;
406 }
407 
408 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
409 {
410 	return __svm_skip_emulated_instruction(vcpu, true);
411 }
412 
413 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
414 {
415 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
416 	struct vcpu_svm *svm = to_svm(vcpu);
417 
418 	/*
419 	 * Due to architectural shortcomings, the CPU doesn't always provide
420 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
421 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
422 	 * the instruction even if NextRIP is supported to acquire the next
423 	 * RIP so that it can be shoved into the NextRIP field, otherwise
424 	 * hardware will fail to advance guest RIP during event injection.
425 	 * Drop the exception/interrupt if emulation fails and effectively
426 	 * retry the instruction, it's the least awful option.  If NRIPS is
427 	 * in use, the skip must not commit any side effects such as clearing
428 	 * the interrupt shadow or RFLAGS.RF.
429 	 */
430 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
431 		return -EIO;
432 
433 	rip = kvm_rip_read(vcpu);
434 
435 	/*
436 	 * Save the injection information, even when using next_rip, as the
437 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
438 	 * doesn't complete due to a VM-Exit occurring while the CPU is
439 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
440 	 * work as there may be no backing instruction, e.g. if the event is
441 	 * being injected by L1 for L2, or if the guest is patching INT3 into
442 	 * a different instruction.
443 	 */
444 	svm->soft_int_injected = true;
445 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
446 	svm->soft_int_old_rip = old_rip;
447 	svm->soft_int_next_rip = rip;
448 
449 	if (nrips)
450 		kvm_rip_write(vcpu, old_rip);
451 
452 	if (static_cpu_has(X86_FEATURE_NRIPS))
453 		svm->vmcb->control.next_rip = rip;
454 
455 	return 0;
456 }
457 
458 static void svm_inject_exception(struct kvm_vcpu *vcpu)
459 {
460 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
461 	struct vcpu_svm *svm = to_svm(vcpu);
462 
463 	kvm_deliver_exception_payload(vcpu, ex);
464 
465 	if (kvm_exception_is_soft(ex->vector) &&
466 	    svm_update_soft_interrupt_rip(vcpu))
467 		return;
468 
469 	svm->vmcb->control.event_inj = ex->vector
470 		| SVM_EVTINJ_VALID
471 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
472 		| SVM_EVTINJ_TYPE_EXEPT;
473 	svm->vmcb->control.event_inj_err = ex->error_code;
474 }
475 
476 static void svm_init_erratum_383(void)
477 {
478 	u32 low, high;
479 	int err;
480 	u64 val;
481 
482 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
483 		return;
484 
485 	/* Use _safe variants to not break nested virtualization */
486 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
487 	if (err)
488 		return;
489 
490 	val |= (1ULL << 47);
491 
492 	low  = lower_32_bits(val);
493 	high = upper_32_bits(val);
494 
495 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
496 
497 	erratum_383_found = true;
498 }
499 
500 static void svm_init_osvw(struct kvm_vcpu *vcpu)
501 {
502 	/*
503 	 * Guests should see errata 400 and 415 as fixed (assuming that
504 	 * HLT and IO instructions are intercepted).
505 	 */
506 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
507 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
508 
509 	/*
510 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
511 	 * all osvw.status bits inside that length, including bit 0 (which is
512 	 * reserved for erratum 298), are valid. However, if host processor's
513 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
514 	 * be conservative here and therefore we tell the guest that erratum 298
515 	 * is present (because we really don't know).
516 	 */
517 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
518 		vcpu->arch.osvw.status |= 1;
519 }
520 
521 static int has_svm(void)
522 {
523 	const char *msg;
524 
525 	if (!cpu_has_svm(&msg)) {
526 		printk(KERN_INFO "has_svm: %s\n", msg);
527 		return 0;
528 	}
529 
530 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
531 		pr_info("KVM is unsupported when running as an SEV guest\n");
532 		return 0;
533 	}
534 
535 	return 1;
536 }
537 
538 void __svm_write_tsc_multiplier(u64 multiplier)
539 {
540 	preempt_disable();
541 
542 	if (multiplier == __this_cpu_read(current_tsc_ratio))
543 		goto out;
544 
545 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
546 	__this_cpu_write(current_tsc_ratio, multiplier);
547 out:
548 	preempt_enable();
549 }
550 
551 static void svm_hardware_disable(void)
552 {
553 	/* Make sure we clean up behind us */
554 	if (tsc_scaling)
555 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
556 
557 	cpu_svm_disable();
558 
559 	amd_pmu_disable_virt();
560 }
561 
562 static int svm_hardware_enable(void)
563 {
564 
565 	struct svm_cpu_data *sd;
566 	uint64_t efer;
567 	struct desc_struct *gdt;
568 	int me = raw_smp_processor_id();
569 
570 	rdmsrl(MSR_EFER, efer);
571 	if (efer & EFER_SVME)
572 		return -EBUSY;
573 
574 	if (!has_svm()) {
575 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
576 		return -EINVAL;
577 	}
578 	sd = per_cpu_ptr(&svm_data, me);
579 	sd->asid_generation = 1;
580 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
581 	sd->next_asid = sd->max_asid + 1;
582 	sd->min_asid = max_sev_asid + 1;
583 
584 	gdt = get_current_gdt_rw();
585 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
586 
587 	wrmsrl(MSR_EFER, efer | EFER_SVME);
588 
589 	wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
590 
591 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
592 		/*
593 		 * Set the default value, even if we don't use TSC scaling
594 		 * to avoid having stale value in the msr
595 		 */
596 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
597 	}
598 
599 
600 	/*
601 	 * Get OSVW bits.
602 	 *
603 	 * Note that it is possible to have a system with mixed processor
604 	 * revisions and therefore different OSVW bits. If bits are not the same
605 	 * on different processors then choose the worst case (i.e. if erratum
606 	 * is present on one processor and not on another then assume that the
607 	 * erratum is present everywhere).
608 	 */
609 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
610 		uint64_t len, status = 0;
611 		int err;
612 
613 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
614 		if (!err)
615 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
616 						      &err);
617 
618 		if (err)
619 			osvw_status = osvw_len = 0;
620 		else {
621 			if (len < osvw_len)
622 				osvw_len = len;
623 			osvw_status |= status;
624 			osvw_status &= (1ULL << osvw_len) - 1;
625 		}
626 	} else
627 		osvw_status = osvw_len = 0;
628 
629 	svm_init_erratum_383();
630 
631 	amd_pmu_enable_virt();
632 
633 	return 0;
634 }
635 
636 static void svm_cpu_uninit(int cpu)
637 {
638 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
639 
640 	if (!sd->save_area)
641 		return;
642 
643 	kfree(sd->sev_vmcbs);
644 	__free_page(sd->save_area);
645 	sd->save_area_pa = 0;
646 	sd->save_area = NULL;
647 }
648 
649 static int svm_cpu_init(int cpu)
650 {
651 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
652 	int ret = -ENOMEM;
653 
654 	memset(sd, 0, sizeof(struct svm_cpu_data));
655 	sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
656 	if (!sd->save_area)
657 		return ret;
658 
659 	ret = sev_cpu_init(sd);
660 	if (ret)
661 		goto free_save_area;
662 
663 	sd->save_area_pa = __sme_page_pa(sd->save_area);
664 	return 0;
665 
666 free_save_area:
667 	__free_page(sd->save_area);
668 	sd->save_area = NULL;
669 	return ret;
670 
671 }
672 
673 static int direct_access_msr_slot(u32 msr)
674 {
675 	u32 i;
676 
677 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
678 		if (direct_access_msrs[i].index == msr)
679 			return i;
680 
681 	return -ENOENT;
682 }
683 
684 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
685 				     int write)
686 {
687 	struct vcpu_svm *svm = to_svm(vcpu);
688 	int slot = direct_access_msr_slot(msr);
689 
690 	if (slot == -ENOENT)
691 		return;
692 
693 	/* Set the shadow bitmaps to the desired intercept states */
694 	if (read)
695 		set_bit(slot, svm->shadow_msr_intercept.read);
696 	else
697 		clear_bit(slot, svm->shadow_msr_intercept.read);
698 
699 	if (write)
700 		set_bit(slot, svm->shadow_msr_intercept.write);
701 	else
702 		clear_bit(slot, svm->shadow_msr_intercept.write);
703 }
704 
705 static bool valid_msr_intercept(u32 index)
706 {
707 	return direct_access_msr_slot(index) != -ENOENT;
708 }
709 
710 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
711 {
712 	u8 bit_write;
713 	unsigned long tmp;
714 	u32 offset;
715 	u32 *msrpm;
716 
717 	/*
718 	 * For non-nested case:
719 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
720 	 * save it.
721 	 *
722 	 * For nested case:
723 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
724 	 * save it.
725 	 */
726 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
727 				      to_svm(vcpu)->msrpm;
728 
729 	offset    = svm_msrpm_offset(msr);
730 	bit_write = 2 * (msr & 0x0f) + 1;
731 	tmp       = msrpm[offset];
732 
733 	BUG_ON(offset == MSR_INVALID);
734 
735 	return !!test_bit(bit_write,  &tmp);
736 }
737 
738 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
739 					u32 msr, int read, int write)
740 {
741 	struct vcpu_svm *svm = to_svm(vcpu);
742 	u8 bit_read, bit_write;
743 	unsigned long tmp;
744 	u32 offset;
745 
746 	/*
747 	 * If this warning triggers extend the direct_access_msrs list at the
748 	 * beginning of the file
749 	 */
750 	WARN_ON(!valid_msr_intercept(msr));
751 
752 	/* Enforce non allowed MSRs to trap */
753 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
754 		read = 0;
755 
756 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
757 		write = 0;
758 
759 	offset    = svm_msrpm_offset(msr);
760 	bit_read  = 2 * (msr & 0x0f);
761 	bit_write = 2 * (msr & 0x0f) + 1;
762 	tmp       = msrpm[offset];
763 
764 	BUG_ON(offset == MSR_INVALID);
765 
766 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
767 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
768 
769 	msrpm[offset] = tmp;
770 
771 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
772 	svm->nested.force_msr_bitmap_recalc = true;
773 }
774 
775 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
776 			  int read, int write)
777 {
778 	set_shadow_msr_intercept(vcpu, msr, read, write);
779 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
780 }
781 
782 u32 *svm_vcpu_alloc_msrpm(void)
783 {
784 	unsigned int order = get_order(MSRPM_SIZE);
785 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
786 	u32 *msrpm;
787 
788 	if (!pages)
789 		return NULL;
790 
791 	msrpm = page_address(pages);
792 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
793 
794 	return msrpm;
795 }
796 
797 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
798 {
799 	int i;
800 
801 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
802 		if (!direct_access_msrs[i].always)
803 			continue;
804 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
805 	}
806 }
807 
808 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
809 {
810 	int i;
811 
812 	if (intercept == svm->x2avic_msrs_intercepted)
813 		return;
814 
815 	if (avic_mode != AVIC_MODE_X2 ||
816 	    !apic_x2apic_mode(svm->vcpu.arch.apic))
817 		return;
818 
819 	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
820 		int index = direct_access_msrs[i].index;
821 
822 		if ((index < APIC_BASE_MSR) ||
823 		    (index > APIC_BASE_MSR + 0xff))
824 			continue;
825 		set_msr_interception(&svm->vcpu, svm->msrpm, index,
826 				     !intercept, !intercept);
827 	}
828 
829 	svm->x2avic_msrs_intercepted = intercept;
830 }
831 
832 void svm_vcpu_free_msrpm(u32 *msrpm)
833 {
834 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
835 }
836 
837 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
838 {
839 	struct vcpu_svm *svm = to_svm(vcpu);
840 	u32 i;
841 
842 	/*
843 	 * Set intercept permissions for all direct access MSRs again. They
844 	 * will automatically get filtered through the MSR filter, so we are
845 	 * back in sync after this.
846 	 */
847 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
848 		u32 msr = direct_access_msrs[i].index;
849 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
850 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
851 
852 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
853 	}
854 }
855 
856 static void add_msr_offset(u32 offset)
857 {
858 	int i;
859 
860 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
861 
862 		/* Offset already in list? */
863 		if (msrpm_offsets[i] == offset)
864 			return;
865 
866 		/* Slot used by another offset? */
867 		if (msrpm_offsets[i] != MSR_INVALID)
868 			continue;
869 
870 		/* Add offset to list */
871 		msrpm_offsets[i] = offset;
872 
873 		return;
874 	}
875 
876 	/*
877 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
878 	 * increase MSRPM_OFFSETS in this case.
879 	 */
880 	BUG();
881 }
882 
883 static void init_msrpm_offsets(void)
884 {
885 	int i;
886 
887 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
888 
889 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
890 		u32 offset;
891 
892 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
893 		BUG_ON(offset == MSR_INVALID);
894 
895 		add_msr_offset(offset);
896 	}
897 }
898 
899 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
900 {
901 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
902 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
903 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
904 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
905 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
906 
907 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
908 }
909 
910 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
911 {
912 	struct vcpu_svm *svm = to_svm(vcpu);
913 
914 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
915 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
916 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
917 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
918 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
919 
920 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
921 	if (is_guest_mode(vcpu))
922 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
923 }
924 
925 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
926 {
927 	struct vcpu_svm *svm = to_svm(vcpu);
928 
929 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
930 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
931 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
932 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
933 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
934 
935 	/*
936 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
937 	 * on nested guest entries.
938 	 */
939 	if (is_guest_mode(vcpu))
940 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
941 }
942 
943 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
944 {
945 	/*
946 	 * If the LBR virtualization is disabled, the LBR msrs are always
947 	 * kept in the vmcb01 to avoid copying them on nested guest entries.
948 	 *
949 	 * If nested, and the LBR virtualization is enabled/disabled, the msrs
950 	 * are moved between the vmcb01 and vmcb02 as needed.
951 	 */
952 	struct vmcb *vmcb =
953 		(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
954 			svm->vmcb : svm->vmcb01.ptr;
955 
956 	switch (index) {
957 	case MSR_IA32_DEBUGCTLMSR:
958 		return vmcb->save.dbgctl;
959 	case MSR_IA32_LASTBRANCHFROMIP:
960 		return vmcb->save.br_from;
961 	case MSR_IA32_LASTBRANCHTOIP:
962 		return vmcb->save.br_to;
963 	case MSR_IA32_LASTINTFROMIP:
964 		return vmcb->save.last_excp_from;
965 	case MSR_IA32_LASTINTTOIP:
966 		return vmcb->save.last_excp_to;
967 	default:
968 		KVM_BUG(false, svm->vcpu.kvm,
969 			"%s: Unknown MSR 0x%x", __func__, index);
970 		return 0;
971 	}
972 }
973 
974 void svm_update_lbrv(struct kvm_vcpu *vcpu)
975 {
976 	struct vcpu_svm *svm = to_svm(vcpu);
977 
978 	bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
979 					   DEBUGCTLMSR_LBR;
980 
981 	bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
982 				      LBR_CTL_ENABLE_MASK);
983 
984 	if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
985 		if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
986 			enable_lbrv = true;
987 
988 	if (enable_lbrv == current_enable_lbrv)
989 		return;
990 
991 	if (enable_lbrv)
992 		svm_enable_lbrv(vcpu);
993 	else
994 		svm_disable_lbrv(vcpu);
995 }
996 
997 void disable_nmi_singlestep(struct vcpu_svm *svm)
998 {
999 	svm->nmi_singlestep = false;
1000 
1001 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1002 		/* Clear our flags if they were not set by the guest */
1003 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1004 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1005 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1006 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1007 	}
1008 }
1009 
1010 static void grow_ple_window(struct kvm_vcpu *vcpu)
1011 {
1012 	struct vcpu_svm *svm = to_svm(vcpu);
1013 	struct vmcb_control_area *control = &svm->vmcb->control;
1014 	int old = control->pause_filter_count;
1015 
1016 	if (kvm_pause_in_guest(vcpu->kvm))
1017 		return;
1018 
1019 	control->pause_filter_count = __grow_ple_window(old,
1020 							pause_filter_count,
1021 							pause_filter_count_grow,
1022 							pause_filter_count_max);
1023 
1024 	if (control->pause_filter_count != old) {
1025 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1026 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1027 					    control->pause_filter_count, old);
1028 	}
1029 }
1030 
1031 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1032 {
1033 	struct vcpu_svm *svm = to_svm(vcpu);
1034 	struct vmcb_control_area *control = &svm->vmcb->control;
1035 	int old = control->pause_filter_count;
1036 
1037 	if (kvm_pause_in_guest(vcpu->kvm))
1038 		return;
1039 
1040 	control->pause_filter_count =
1041 				__shrink_ple_window(old,
1042 						    pause_filter_count,
1043 						    pause_filter_count_shrink,
1044 						    pause_filter_count);
1045 	if (control->pause_filter_count != old) {
1046 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1047 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1048 					    control->pause_filter_count, old);
1049 	}
1050 }
1051 
1052 static void svm_hardware_unsetup(void)
1053 {
1054 	int cpu;
1055 
1056 	sev_hardware_unsetup();
1057 
1058 	for_each_possible_cpu(cpu)
1059 		svm_cpu_uninit(cpu);
1060 
1061 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1062 	get_order(IOPM_SIZE));
1063 	iopm_base = 0;
1064 }
1065 
1066 static void init_seg(struct vmcb_seg *seg)
1067 {
1068 	seg->selector = 0;
1069 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1070 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1071 	seg->limit = 0xffff;
1072 	seg->base = 0;
1073 }
1074 
1075 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1076 {
1077 	seg->selector = 0;
1078 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1079 	seg->limit = 0xffff;
1080 	seg->base = 0;
1081 }
1082 
1083 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1084 {
1085 	struct vcpu_svm *svm = to_svm(vcpu);
1086 
1087 	return svm->nested.ctl.tsc_offset;
1088 }
1089 
1090 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1091 {
1092 	struct vcpu_svm *svm = to_svm(vcpu);
1093 
1094 	return svm->tsc_ratio_msr;
1095 }
1096 
1097 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1098 {
1099 	struct vcpu_svm *svm = to_svm(vcpu);
1100 
1101 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1102 	svm->vmcb->control.tsc_offset = offset;
1103 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1104 }
1105 
1106 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1107 {
1108 	__svm_write_tsc_multiplier(multiplier);
1109 }
1110 
1111 
1112 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1113 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1114 					      struct vcpu_svm *svm)
1115 {
1116 	/*
1117 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1118 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1119 	 */
1120 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1121 		if (!npt_enabled ||
1122 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1123 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1124 		else
1125 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1126 	}
1127 
1128 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1129 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1130 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1131 		else
1132 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1133 	}
1134 }
1135 
1136 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1137 {
1138 	struct vcpu_svm *svm = to_svm(vcpu);
1139 
1140 	if (guest_cpuid_is_intel(vcpu)) {
1141 		/*
1142 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1143 		 * accesses because the processor only stores 32 bits.
1144 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1145 		 */
1146 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1147 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1148 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1149 
1150 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1151 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1152 
1153 		svm->v_vmload_vmsave_enabled = false;
1154 	} else {
1155 		/*
1156 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1157 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1158 		 */
1159 		if (vls) {
1160 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1161 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1162 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1163 		}
1164 		/* No need to intercept these MSRs */
1165 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1166 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1167 	}
1168 }
1169 
1170 static void init_vmcb(struct kvm_vcpu *vcpu)
1171 {
1172 	struct vcpu_svm *svm = to_svm(vcpu);
1173 	struct vmcb *vmcb = svm->vmcb01.ptr;
1174 	struct vmcb_control_area *control = &vmcb->control;
1175 	struct vmcb_save_area *save = &vmcb->save;
1176 
1177 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1178 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1179 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1180 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1181 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1182 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1183 	if (!kvm_vcpu_apicv_active(vcpu))
1184 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1185 
1186 	set_dr_intercepts(svm);
1187 
1188 	set_exception_intercept(svm, PF_VECTOR);
1189 	set_exception_intercept(svm, UD_VECTOR);
1190 	set_exception_intercept(svm, MC_VECTOR);
1191 	set_exception_intercept(svm, AC_VECTOR);
1192 	set_exception_intercept(svm, DB_VECTOR);
1193 	/*
1194 	 * Guest access to VMware backdoor ports could legitimately
1195 	 * trigger #GP because of TSS I/O permission bitmap.
1196 	 * We intercept those #GP and allow access to them anyway
1197 	 * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
1198 	 * decrypt guest memory to decode the faulting instruction.
1199 	 */
1200 	if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1201 		set_exception_intercept(svm, GP_VECTOR);
1202 
1203 	svm_set_intercept(svm, INTERCEPT_INTR);
1204 	svm_set_intercept(svm, INTERCEPT_NMI);
1205 
1206 	if (intercept_smi)
1207 		svm_set_intercept(svm, INTERCEPT_SMI);
1208 
1209 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1210 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1211 	svm_set_intercept(svm, INTERCEPT_CPUID);
1212 	svm_set_intercept(svm, INTERCEPT_INVD);
1213 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1214 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1215 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1216 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1217 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1218 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1219 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1220 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1221 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1222 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1223 	svm_set_intercept(svm, INTERCEPT_STGI);
1224 	svm_set_intercept(svm, INTERCEPT_CLGI);
1225 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1226 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1227 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1228 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1229 	svm_set_intercept(svm, INTERCEPT_RSM);
1230 
1231 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1232 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1233 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1234 	}
1235 
1236 	if (!kvm_hlt_in_guest(vcpu->kvm))
1237 		svm_set_intercept(svm, INTERCEPT_HLT);
1238 
1239 	control->iopm_base_pa = __sme_set(iopm_base);
1240 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1241 	control->int_ctl = V_INTR_MASKING_MASK;
1242 
1243 	init_seg(&save->es);
1244 	init_seg(&save->ss);
1245 	init_seg(&save->ds);
1246 	init_seg(&save->fs);
1247 	init_seg(&save->gs);
1248 
1249 	save->cs.selector = 0xf000;
1250 	save->cs.base = 0xffff0000;
1251 	/* Executable/Readable Code Segment */
1252 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1253 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1254 	save->cs.limit = 0xffff;
1255 
1256 	save->gdtr.base = 0;
1257 	save->gdtr.limit = 0xffff;
1258 	save->idtr.base = 0;
1259 	save->idtr.limit = 0xffff;
1260 
1261 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1262 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1263 
1264 	if (npt_enabled) {
1265 		/* Setup VMCB for Nested Paging */
1266 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1267 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1268 		clr_exception_intercept(svm, PF_VECTOR);
1269 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1270 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1271 		save->g_pat = vcpu->arch.pat;
1272 		save->cr3 = 0;
1273 	}
1274 	svm->current_vmcb->asid_generation = 0;
1275 	svm->asid = 0;
1276 
1277 	svm->nested.vmcb12_gpa = INVALID_GPA;
1278 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1279 
1280 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1281 		control->pause_filter_count = pause_filter_count;
1282 		if (pause_filter_thresh)
1283 			control->pause_filter_thresh = pause_filter_thresh;
1284 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1285 	} else {
1286 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1287 	}
1288 
1289 	svm_recalc_instruction_intercepts(vcpu, svm);
1290 
1291 	/*
1292 	 * If the host supports V_SPEC_CTRL then disable the interception
1293 	 * of MSR_IA32_SPEC_CTRL.
1294 	 */
1295 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1296 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1297 
1298 	if (kvm_vcpu_apicv_active(vcpu))
1299 		avic_init_vmcb(svm, vmcb);
1300 
1301 	if (vgif) {
1302 		svm_clr_intercept(svm, INTERCEPT_STGI);
1303 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1304 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1305 	}
1306 
1307 	if (sev_guest(vcpu->kvm))
1308 		sev_init_vmcb(svm);
1309 
1310 	svm_hv_init_vmcb(vmcb);
1311 	init_vmcb_after_set_cpuid(vcpu);
1312 
1313 	vmcb_mark_all_dirty(vmcb);
1314 
1315 	enable_gif(svm);
1316 }
1317 
1318 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1319 {
1320 	struct vcpu_svm *svm = to_svm(vcpu);
1321 
1322 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1323 
1324 	svm_init_osvw(vcpu);
1325 	vcpu->arch.microcode_version = 0x01000065;
1326 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1327 
1328 	if (sev_es_guest(vcpu->kvm))
1329 		sev_es_vcpu_reset(svm);
1330 }
1331 
1332 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1333 {
1334 	struct vcpu_svm *svm = to_svm(vcpu);
1335 
1336 	svm->spec_ctrl = 0;
1337 	svm->virt_spec_ctrl = 0;
1338 
1339 	init_vmcb(vcpu);
1340 
1341 	if (!init_event)
1342 		__svm_vcpu_reset(vcpu);
1343 }
1344 
1345 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1346 {
1347 	svm->current_vmcb = target_vmcb;
1348 	svm->vmcb = target_vmcb->ptr;
1349 }
1350 
1351 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1352 {
1353 	struct vcpu_svm *svm;
1354 	struct page *vmcb01_page;
1355 	struct page *vmsa_page = NULL;
1356 	int err;
1357 
1358 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1359 	svm = to_svm(vcpu);
1360 
1361 	err = -ENOMEM;
1362 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1363 	if (!vmcb01_page)
1364 		goto out;
1365 
1366 	if (sev_es_guest(vcpu->kvm)) {
1367 		/*
1368 		 * SEV-ES guests require a separate VMSA page used to contain
1369 		 * the encrypted register state of the guest.
1370 		 */
1371 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1372 		if (!vmsa_page)
1373 			goto error_free_vmcb_page;
1374 
1375 		/*
1376 		 * SEV-ES guests maintain an encrypted version of their FPU
1377 		 * state which is restored and saved on VMRUN and VMEXIT.
1378 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1379 		 * do xsave/xrstor on it.
1380 		 */
1381 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1382 	}
1383 
1384 	err = avic_init_vcpu(svm);
1385 	if (err)
1386 		goto error_free_vmsa_page;
1387 
1388 	svm->msrpm = svm_vcpu_alloc_msrpm();
1389 	if (!svm->msrpm) {
1390 		err = -ENOMEM;
1391 		goto error_free_vmsa_page;
1392 	}
1393 
1394 	svm->x2avic_msrs_intercepted = true;
1395 
1396 	svm->vmcb01.ptr = page_address(vmcb01_page);
1397 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1398 	svm_switch_vmcb(svm, &svm->vmcb01);
1399 
1400 	if (vmsa_page)
1401 		svm->sev_es.vmsa = page_address(vmsa_page);
1402 
1403 	svm->guest_state_loaded = false;
1404 
1405 	return 0;
1406 
1407 error_free_vmsa_page:
1408 	if (vmsa_page)
1409 		__free_page(vmsa_page);
1410 error_free_vmcb_page:
1411 	__free_page(vmcb01_page);
1412 out:
1413 	return err;
1414 }
1415 
1416 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1417 {
1418 	int i;
1419 
1420 	for_each_online_cpu(i)
1421 		cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1422 }
1423 
1424 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1425 {
1426 	struct vcpu_svm *svm = to_svm(vcpu);
1427 
1428 	/*
1429 	 * The vmcb page can be recycled, causing a false negative in
1430 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1431 	 * vmcb page recorded as its current vmcb.
1432 	 */
1433 	svm_clear_current_vmcb(svm->vmcb);
1434 
1435 	svm_leave_nested(vcpu);
1436 	svm_free_nested(svm);
1437 
1438 	sev_free_vcpu(vcpu);
1439 
1440 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1441 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1442 }
1443 
1444 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1445 {
1446 	struct vcpu_svm *svm = to_svm(vcpu);
1447 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1448 
1449 	if (sev_es_guest(vcpu->kvm))
1450 		sev_es_unmap_ghcb(svm);
1451 
1452 	if (svm->guest_state_loaded)
1453 		return;
1454 
1455 	/*
1456 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1457 	 * or subsequent vmload of host save area.
1458 	 */
1459 	vmsave(sd->save_area_pa);
1460 	if (sev_es_guest(vcpu->kvm)) {
1461 		struct sev_es_save_area *hostsa;
1462 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1463 
1464 		sev_es_prepare_switch_to_guest(hostsa);
1465 	}
1466 
1467 	if (tsc_scaling)
1468 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1469 
1470 	if (likely(tsc_aux_uret_slot >= 0))
1471 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1472 
1473 	svm->guest_state_loaded = true;
1474 }
1475 
1476 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1477 {
1478 	to_svm(vcpu)->guest_state_loaded = false;
1479 }
1480 
1481 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1482 {
1483 	struct vcpu_svm *svm = to_svm(vcpu);
1484 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1485 
1486 	if (sd->current_vmcb != svm->vmcb) {
1487 		sd->current_vmcb = svm->vmcb;
1488 		indirect_branch_prediction_barrier();
1489 	}
1490 	if (kvm_vcpu_apicv_active(vcpu))
1491 		avic_vcpu_load(vcpu, cpu);
1492 }
1493 
1494 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1495 {
1496 	if (kvm_vcpu_apicv_active(vcpu))
1497 		avic_vcpu_put(vcpu);
1498 
1499 	svm_prepare_host_switch(vcpu);
1500 
1501 	++vcpu->stat.host_state_reload;
1502 }
1503 
1504 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1505 {
1506 	struct vcpu_svm *svm = to_svm(vcpu);
1507 	unsigned long rflags = svm->vmcb->save.rflags;
1508 
1509 	if (svm->nmi_singlestep) {
1510 		/* Hide our flags if they were not set by the guest */
1511 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1512 			rflags &= ~X86_EFLAGS_TF;
1513 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1514 			rflags &= ~X86_EFLAGS_RF;
1515 	}
1516 	return rflags;
1517 }
1518 
1519 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1520 {
1521 	if (to_svm(vcpu)->nmi_singlestep)
1522 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1523 
1524        /*
1525         * Any change of EFLAGS.VM is accompanied by a reload of SS
1526         * (caused by either a task switch or an inter-privilege IRET),
1527         * so we do not need to update the CPL here.
1528         */
1529 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1530 }
1531 
1532 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1533 {
1534 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1535 
1536 	return sev_es_guest(vcpu->kvm)
1537 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1538 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1539 }
1540 
1541 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1542 {
1543 	kvm_register_mark_available(vcpu, reg);
1544 
1545 	switch (reg) {
1546 	case VCPU_EXREG_PDPTR:
1547 		/*
1548 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1549 		 * it is always updated per SDM when moving to CRs.
1550 		 */
1551 		if (npt_enabled)
1552 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1553 		break;
1554 	default:
1555 		KVM_BUG_ON(1, vcpu->kvm);
1556 	}
1557 }
1558 
1559 static void svm_set_vintr(struct vcpu_svm *svm)
1560 {
1561 	struct vmcb_control_area *control;
1562 
1563 	/*
1564 	 * The following fields are ignored when AVIC is enabled
1565 	 */
1566 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1567 
1568 	svm_set_intercept(svm, INTERCEPT_VINTR);
1569 
1570 	/*
1571 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1572 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1573 	 */
1574 	control = &svm->vmcb->control;
1575 	control->int_vector = 0x0;
1576 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1577 	control->int_ctl |= V_IRQ_MASK |
1578 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1579 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1580 }
1581 
1582 static void svm_clear_vintr(struct vcpu_svm *svm)
1583 {
1584 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1585 
1586 	/* Drop int_ctl fields related to VINTR injection.  */
1587 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1588 	if (is_guest_mode(&svm->vcpu)) {
1589 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1590 
1591 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1592 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1593 
1594 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1595 			V_IRQ_INJECTION_BITS_MASK;
1596 
1597 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1598 	}
1599 
1600 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1601 }
1602 
1603 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1604 {
1605 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1606 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1607 
1608 	switch (seg) {
1609 	case VCPU_SREG_CS: return &save->cs;
1610 	case VCPU_SREG_DS: return &save->ds;
1611 	case VCPU_SREG_ES: return &save->es;
1612 	case VCPU_SREG_FS: return &save01->fs;
1613 	case VCPU_SREG_GS: return &save01->gs;
1614 	case VCPU_SREG_SS: return &save->ss;
1615 	case VCPU_SREG_TR: return &save01->tr;
1616 	case VCPU_SREG_LDTR: return &save01->ldtr;
1617 	}
1618 	BUG();
1619 	return NULL;
1620 }
1621 
1622 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1623 {
1624 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1625 
1626 	return s->base;
1627 }
1628 
1629 static void svm_get_segment(struct kvm_vcpu *vcpu,
1630 			    struct kvm_segment *var, int seg)
1631 {
1632 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1633 
1634 	var->base = s->base;
1635 	var->limit = s->limit;
1636 	var->selector = s->selector;
1637 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1638 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1639 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1640 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1641 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1642 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1643 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1644 
1645 	/*
1646 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1647 	 * However, the SVM spec states that the G bit is not observed by the
1648 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1649 	 * So let's synthesize a legal G bit for all segments, this helps
1650 	 * running KVM nested. It also helps cross-vendor migration, because
1651 	 * Intel's vmentry has a check on the 'G' bit.
1652 	 */
1653 	var->g = s->limit > 0xfffff;
1654 
1655 	/*
1656 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1657 	 * for cross vendor migration purposes by "not present"
1658 	 */
1659 	var->unusable = !var->present;
1660 
1661 	switch (seg) {
1662 	case VCPU_SREG_TR:
1663 		/*
1664 		 * Work around a bug where the busy flag in the tr selector
1665 		 * isn't exposed
1666 		 */
1667 		var->type |= 0x2;
1668 		break;
1669 	case VCPU_SREG_DS:
1670 	case VCPU_SREG_ES:
1671 	case VCPU_SREG_FS:
1672 	case VCPU_SREG_GS:
1673 		/*
1674 		 * The accessed bit must always be set in the segment
1675 		 * descriptor cache, although it can be cleared in the
1676 		 * descriptor, the cached bit always remains at 1. Since
1677 		 * Intel has a check on this, set it here to support
1678 		 * cross-vendor migration.
1679 		 */
1680 		if (!var->unusable)
1681 			var->type |= 0x1;
1682 		break;
1683 	case VCPU_SREG_SS:
1684 		/*
1685 		 * On AMD CPUs sometimes the DB bit in the segment
1686 		 * descriptor is left as 1, although the whole segment has
1687 		 * been made unusable. Clear it here to pass an Intel VMX
1688 		 * entry check when cross vendor migrating.
1689 		 */
1690 		if (var->unusable)
1691 			var->db = 0;
1692 		/* This is symmetric with svm_set_segment() */
1693 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1694 		break;
1695 	}
1696 }
1697 
1698 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1699 {
1700 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1701 
1702 	return save->cpl;
1703 }
1704 
1705 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1706 {
1707 	struct kvm_segment cs;
1708 
1709 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1710 	*db = cs.db;
1711 	*l = cs.l;
1712 }
1713 
1714 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1715 {
1716 	struct vcpu_svm *svm = to_svm(vcpu);
1717 
1718 	dt->size = svm->vmcb->save.idtr.limit;
1719 	dt->address = svm->vmcb->save.idtr.base;
1720 }
1721 
1722 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1723 {
1724 	struct vcpu_svm *svm = to_svm(vcpu);
1725 
1726 	svm->vmcb->save.idtr.limit = dt->size;
1727 	svm->vmcb->save.idtr.base = dt->address ;
1728 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1729 }
1730 
1731 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1732 {
1733 	struct vcpu_svm *svm = to_svm(vcpu);
1734 
1735 	dt->size = svm->vmcb->save.gdtr.limit;
1736 	dt->address = svm->vmcb->save.gdtr.base;
1737 }
1738 
1739 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1740 {
1741 	struct vcpu_svm *svm = to_svm(vcpu);
1742 
1743 	svm->vmcb->save.gdtr.limit = dt->size;
1744 	svm->vmcb->save.gdtr.base = dt->address ;
1745 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1746 }
1747 
1748 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1749 {
1750 	struct vcpu_svm *svm = to_svm(vcpu);
1751 
1752 	/*
1753 	 * For guests that don't set guest_state_protected, the cr3 update is
1754 	 * handled via kvm_mmu_load() while entering the guest. For guests
1755 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1756 	 * VMCB save area now, since the save area will become the initial
1757 	 * contents of the VMSA, and future VMCB save area updates won't be
1758 	 * seen.
1759 	 */
1760 	if (sev_es_guest(vcpu->kvm)) {
1761 		svm->vmcb->save.cr3 = cr3;
1762 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1763 	}
1764 }
1765 
1766 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1767 {
1768 	struct vcpu_svm *svm = to_svm(vcpu);
1769 	u64 hcr0 = cr0;
1770 	bool old_paging = is_paging(vcpu);
1771 
1772 #ifdef CONFIG_X86_64
1773 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1774 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1775 			vcpu->arch.efer |= EFER_LMA;
1776 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1777 		}
1778 
1779 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1780 			vcpu->arch.efer &= ~EFER_LMA;
1781 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1782 		}
1783 	}
1784 #endif
1785 	vcpu->arch.cr0 = cr0;
1786 
1787 	if (!npt_enabled) {
1788 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1789 		if (old_paging != is_paging(vcpu))
1790 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1791 	}
1792 
1793 	/*
1794 	 * re-enable caching here because the QEMU bios
1795 	 * does not do it - this results in some delay at
1796 	 * reboot
1797 	 */
1798 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1799 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1800 
1801 	svm->vmcb->save.cr0 = hcr0;
1802 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1803 
1804 	/*
1805 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1806 	 * tracking is done using the CR write traps.
1807 	 */
1808 	if (sev_es_guest(vcpu->kvm))
1809 		return;
1810 
1811 	if (hcr0 == cr0) {
1812 		/* Selective CR0 write remains on.  */
1813 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1814 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1815 	} else {
1816 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1817 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1818 	}
1819 }
1820 
1821 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1822 {
1823 	return true;
1824 }
1825 
1826 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1827 {
1828 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1829 	unsigned long old_cr4 = vcpu->arch.cr4;
1830 
1831 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1832 		svm_flush_tlb_current(vcpu);
1833 
1834 	vcpu->arch.cr4 = cr4;
1835 	if (!npt_enabled) {
1836 		cr4 |= X86_CR4_PAE;
1837 
1838 		if (!is_paging(vcpu))
1839 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1840 	}
1841 	cr4 |= host_cr4_mce;
1842 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1843 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1844 
1845 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1846 		kvm_update_cpuid_runtime(vcpu);
1847 }
1848 
1849 static void svm_set_segment(struct kvm_vcpu *vcpu,
1850 			    struct kvm_segment *var, int seg)
1851 {
1852 	struct vcpu_svm *svm = to_svm(vcpu);
1853 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1854 
1855 	s->base = var->base;
1856 	s->limit = var->limit;
1857 	s->selector = var->selector;
1858 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1859 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1860 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1861 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1862 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1863 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1864 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1865 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1866 
1867 	/*
1868 	 * This is always accurate, except if SYSRET returned to a segment
1869 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1870 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1871 	 * would entail passing the CPL to userspace and back.
1872 	 */
1873 	if (seg == VCPU_SREG_SS)
1874 		/* This is symmetric with svm_get_segment() */
1875 		svm->vmcb->save.cpl = (var->dpl & 3);
1876 
1877 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1878 }
1879 
1880 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1881 {
1882 	struct vcpu_svm *svm = to_svm(vcpu);
1883 
1884 	clr_exception_intercept(svm, BP_VECTOR);
1885 
1886 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1887 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1888 			set_exception_intercept(svm, BP_VECTOR);
1889 	}
1890 }
1891 
1892 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1893 {
1894 	if (sd->next_asid > sd->max_asid) {
1895 		++sd->asid_generation;
1896 		sd->next_asid = sd->min_asid;
1897 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1898 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1899 	}
1900 
1901 	svm->current_vmcb->asid_generation = sd->asid_generation;
1902 	svm->asid = sd->next_asid++;
1903 }
1904 
1905 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1906 {
1907 	struct vmcb *vmcb = svm->vmcb;
1908 
1909 	if (svm->vcpu.arch.guest_state_protected)
1910 		return;
1911 
1912 	if (unlikely(value != vmcb->save.dr6)) {
1913 		vmcb->save.dr6 = value;
1914 		vmcb_mark_dirty(vmcb, VMCB_DR);
1915 	}
1916 }
1917 
1918 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1919 {
1920 	struct vcpu_svm *svm = to_svm(vcpu);
1921 
1922 	if (vcpu->arch.guest_state_protected)
1923 		return;
1924 
1925 	get_debugreg(vcpu->arch.db[0], 0);
1926 	get_debugreg(vcpu->arch.db[1], 1);
1927 	get_debugreg(vcpu->arch.db[2], 2);
1928 	get_debugreg(vcpu->arch.db[3], 3);
1929 	/*
1930 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1931 	 * because db_interception might need it.  We can do it before vmentry.
1932 	 */
1933 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1934 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1935 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1936 	set_dr_intercepts(svm);
1937 }
1938 
1939 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1940 {
1941 	struct vcpu_svm *svm = to_svm(vcpu);
1942 
1943 	if (vcpu->arch.guest_state_protected)
1944 		return;
1945 
1946 	svm->vmcb->save.dr7 = value;
1947 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1948 }
1949 
1950 static int pf_interception(struct kvm_vcpu *vcpu)
1951 {
1952 	struct vcpu_svm *svm = to_svm(vcpu);
1953 
1954 	u64 fault_address = svm->vmcb->control.exit_info_2;
1955 	u64 error_code = svm->vmcb->control.exit_info_1;
1956 
1957 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1958 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1959 			svm->vmcb->control.insn_bytes : NULL,
1960 			svm->vmcb->control.insn_len);
1961 }
1962 
1963 static int npf_interception(struct kvm_vcpu *vcpu)
1964 {
1965 	struct vcpu_svm *svm = to_svm(vcpu);
1966 
1967 	u64 fault_address = svm->vmcb->control.exit_info_2;
1968 	u64 error_code = svm->vmcb->control.exit_info_1;
1969 
1970 	trace_kvm_page_fault(vcpu, fault_address, error_code);
1971 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1972 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1973 			svm->vmcb->control.insn_bytes : NULL,
1974 			svm->vmcb->control.insn_len);
1975 }
1976 
1977 static int db_interception(struct kvm_vcpu *vcpu)
1978 {
1979 	struct kvm_run *kvm_run = vcpu->run;
1980 	struct vcpu_svm *svm = to_svm(vcpu);
1981 
1982 	if (!(vcpu->guest_debug &
1983 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1984 		!svm->nmi_singlestep) {
1985 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1986 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1987 		return 1;
1988 	}
1989 
1990 	if (svm->nmi_singlestep) {
1991 		disable_nmi_singlestep(svm);
1992 		/* Make sure we check for pending NMIs upon entry */
1993 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1994 	}
1995 
1996 	if (vcpu->guest_debug &
1997 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1998 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1999 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2000 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2001 		kvm_run->debug.arch.pc =
2002 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2003 		kvm_run->debug.arch.exception = DB_VECTOR;
2004 		return 0;
2005 	}
2006 
2007 	return 1;
2008 }
2009 
2010 static int bp_interception(struct kvm_vcpu *vcpu)
2011 {
2012 	struct vcpu_svm *svm = to_svm(vcpu);
2013 	struct kvm_run *kvm_run = vcpu->run;
2014 
2015 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2016 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2017 	kvm_run->debug.arch.exception = BP_VECTOR;
2018 	return 0;
2019 }
2020 
2021 static int ud_interception(struct kvm_vcpu *vcpu)
2022 {
2023 	return handle_ud(vcpu);
2024 }
2025 
2026 static int ac_interception(struct kvm_vcpu *vcpu)
2027 {
2028 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2029 	return 1;
2030 }
2031 
2032 static bool is_erratum_383(void)
2033 {
2034 	int err, i;
2035 	u64 value;
2036 
2037 	if (!erratum_383_found)
2038 		return false;
2039 
2040 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2041 	if (err)
2042 		return false;
2043 
2044 	/* Bit 62 may or may not be set for this mce */
2045 	value &= ~(1ULL << 62);
2046 
2047 	if (value != 0xb600000000010015ULL)
2048 		return false;
2049 
2050 	/* Clear MCi_STATUS registers */
2051 	for (i = 0; i < 6; ++i)
2052 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2053 
2054 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2055 	if (!err) {
2056 		u32 low, high;
2057 
2058 		value &= ~(1ULL << 2);
2059 		low    = lower_32_bits(value);
2060 		high   = upper_32_bits(value);
2061 
2062 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2063 	}
2064 
2065 	/* Flush tlb to evict multi-match entries */
2066 	__flush_tlb_all();
2067 
2068 	return true;
2069 }
2070 
2071 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2072 {
2073 	if (is_erratum_383()) {
2074 		/*
2075 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2076 		 * guest.
2077 		 */
2078 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2079 
2080 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2081 
2082 		return;
2083 	}
2084 
2085 	/*
2086 	 * On an #MC intercept the MCE handler is not called automatically in
2087 	 * the host. So do it by hand here.
2088 	 */
2089 	kvm_machine_check();
2090 }
2091 
2092 static int mc_interception(struct kvm_vcpu *vcpu)
2093 {
2094 	return 1;
2095 }
2096 
2097 static int shutdown_interception(struct kvm_vcpu *vcpu)
2098 {
2099 	struct kvm_run *kvm_run = vcpu->run;
2100 	struct vcpu_svm *svm = to_svm(vcpu);
2101 
2102 	/*
2103 	 * The VM save area has already been encrypted so it
2104 	 * cannot be reinitialized - just terminate.
2105 	 */
2106 	if (sev_es_guest(vcpu->kvm))
2107 		return -EINVAL;
2108 
2109 	/*
2110 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2111 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2112 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2113 	 * userspace.  At a platform view, INIT is acceptable behavior as
2114 	 * there exist bare metal platforms that automatically INIT the CPU
2115 	 * in response to shutdown.
2116 	 */
2117 	clear_page(svm->vmcb);
2118 	kvm_vcpu_reset(vcpu, true);
2119 
2120 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2121 	return 0;
2122 }
2123 
2124 static int io_interception(struct kvm_vcpu *vcpu)
2125 {
2126 	struct vcpu_svm *svm = to_svm(vcpu);
2127 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2128 	int size, in, string;
2129 	unsigned port;
2130 
2131 	++vcpu->stat.io_exits;
2132 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2133 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2134 	port = io_info >> 16;
2135 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2136 
2137 	if (string) {
2138 		if (sev_es_guest(vcpu->kvm))
2139 			return sev_es_string_io(svm, size, port, in);
2140 		else
2141 			return kvm_emulate_instruction(vcpu, 0);
2142 	}
2143 
2144 	svm->next_rip = svm->vmcb->control.exit_info_2;
2145 
2146 	return kvm_fast_pio(vcpu, size, port, in);
2147 }
2148 
2149 static int nmi_interception(struct kvm_vcpu *vcpu)
2150 {
2151 	return 1;
2152 }
2153 
2154 static int smi_interception(struct kvm_vcpu *vcpu)
2155 {
2156 	return 1;
2157 }
2158 
2159 static int intr_interception(struct kvm_vcpu *vcpu)
2160 {
2161 	++vcpu->stat.irq_exits;
2162 	return 1;
2163 }
2164 
2165 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2166 {
2167 	struct vcpu_svm *svm = to_svm(vcpu);
2168 	struct vmcb *vmcb12;
2169 	struct kvm_host_map map;
2170 	int ret;
2171 
2172 	if (nested_svm_check_permissions(vcpu))
2173 		return 1;
2174 
2175 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2176 	if (ret) {
2177 		if (ret == -EINVAL)
2178 			kvm_inject_gp(vcpu, 0);
2179 		return 1;
2180 	}
2181 
2182 	vmcb12 = map.hva;
2183 
2184 	ret = kvm_skip_emulated_instruction(vcpu);
2185 
2186 	if (vmload) {
2187 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2188 		svm->sysenter_eip_hi = 0;
2189 		svm->sysenter_esp_hi = 0;
2190 	} else {
2191 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2192 	}
2193 
2194 	kvm_vcpu_unmap(vcpu, &map, true);
2195 
2196 	return ret;
2197 }
2198 
2199 static int vmload_interception(struct kvm_vcpu *vcpu)
2200 {
2201 	return vmload_vmsave_interception(vcpu, true);
2202 }
2203 
2204 static int vmsave_interception(struct kvm_vcpu *vcpu)
2205 {
2206 	return vmload_vmsave_interception(vcpu, false);
2207 }
2208 
2209 static int vmrun_interception(struct kvm_vcpu *vcpu)
2210 {
2211 	if (nested_svm_check_permissions(vcpu))
2212 		return 1;
2213 
2214 	return nested_svm_vmrun(vcpu);
2215 }
2216 
2217 enum {
2218 	NONE_SVM_INSTR,
2219 	SVM_INSTR_VMRUN,
2220 	SVM_INSTR_VMLOAD,
2221 	SVM_INSTR_VMSAVE,
2222 };
2223 
2224 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2225 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2226 {
2227 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2228 
2229 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2230 		return NONE_SVM_INSTR;
2231 
2232 	switch (ctxt->modrm) {
2233 	case 0xd8: /* VMRUN */
2234 		return SVM_INSTR_VMRUN;
2235 	case 0xda: /* VMLOAD */
2236 		return SVM_INSTR_VMLOAD;
2237 	case 0xdb: /* VMSAVE */
2238 		return SVM_INSTR_VMSAVE;
2239 	default:
2240 		break;
2241 	}
2242 
2243 	return NONE_SVM_INSTR;
2244 }
2245 
2246 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2247 {
2248 	const int guest_mode_exit_codes[] = {
2249 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2250 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2251 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2252 	};
2253 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2254 		[SVM_INSTR_VMRUN] = vmrun_interception,
2255 		[SVM_INSTR_VMLOAD] = vmload_interception,
2256 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2257 	};
2258 	struct vcpu_svm *svm = to_svm(vcpu);
2259 	int ret;
2260 
2261 	if (is_guest_mode(vcpu)) {
2262 		/* Returns '1' or -errno on failure, '0' on success. */
2263 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2264 		if (ret)
2265 			return ret;
2266 		return 1;
2267 	}
2268 	return svm_instr_handlers[opcode](vcpu);
2269 }
2270 
2271 /*
2272  * #GP handling code. Note that #GP can be triggered under the following two
2273  * cases:
2274  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2275  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2276  *      regions (e.g. SMM memory on host).
2277  *   2) VMware backdoor
2278  */
2279 static int gp_interception(struct kvm_vcpu *vcpu)
2280 {
2281 	struct vcpu_svm *svm = to_svm(vcpu);
2282 	u32 error_code = svm->vmcb->control.exit_info_1;
2283 	int opcode;
2284 
2285 	/* Both #GP cases have zero error_code */
2286 	if (error_code)
2287 		goto reinject;
2288 
2289 	/* Decode the instruction for usage later */
2290 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2291 		goto reinject;
2292 
2293 	opcode = svm_instr_opcode(vcpu);
2294 
2295 	if (opcode == NONE_SVM_INSTR) {
2296 		if (!enable_vmware_backdoor)
2297 			goto reinject;
2298 
2299 		/*
2300 		 * VMware backdoor emulation on #GP interception only handles
2301 		 * IN{S}, OUT{S}, and RDPMC.
2302 		 */
2303 		if (!is_guest_mode(vcpu))
2304 			return kvm_emulate_instruction(vcpu,
2305 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2306 	} else {
2307 		/* All SVM instructions expect page aligned RAX */
2308 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2309 			goto reinject;
2310 
2311 		return emulate_svm_instr(vcpu, opcode);
2312 	}
2313 
2314 reinject:
2315 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2316 	return 1;
2317 }
2318 
2319 void svm_set_gif(struct vcpu_svm *svm, bool value)
2320 {
2321 	if (value) {
2322 		/*
2323 		 * If VGIF is enabled, the STGI intercept is only added to
2324 		 * detect the opening of the SMI/NMI window; remove it now.
2325 		 * Likewise, clear the VINTR intercept, we will set it
2326 		 * again while processing KVM_REQ_EVENT if needed.
2327 		 */
2328 		if (vgif)
2329 			svm_clr_intercept(svm, INTERCEPT_STGI);
2330 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2331 			svm_clear_vintr(svm);
2332 
2333 		enable_gif(svm);
2334 		if (svm->vcpu.arch.smi_pending ||
2335 		    svm->vcpu.arch.nmi_pending ||
2336 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2337 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2338 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2339 	} else {
2340 		disable_gif(svm);
2341 
2342 		/*
2343 		 * After a CLGI no interrupts should come.  But if vGIF is
2344 		 * in use, we still rely on the VINTR intercept (rather than
2345 		 * STGI) to detect an open interrupt window.
2346 		*/
2347 		if (!vgif)
2348 			svm_clear_vintr(svm);
2349 	}
2350 }
2351 
2352 static int stgi_interception(struct kvm_vcpu *vcpu)
2353 {
2354 	int ret;
2355 
2356 	if (nested_svm_check_permissions(vcpu))
2357 		return 1;
2358 
2359 	ret = kvm_skip_emulated_instruction(vcpu);
2360 	svm_set_gif(to_svm(vcpu), true);
2361 	return ret;
2362 }
2363 
2364 static int clgi_interception(struct kvm_vcpu *vcpu)
2365 {
2366 	int ret;
2367 
2368 	if (nested_svm_check_permissions(vcpu))
2369 		return 1;
2370 
2371 	ret = kvm_skip_emulated_instruction(vcpu);
2372 	svm_set_gif(to_svm(vcpu), false);
2373 	return ret;
2374 }
2375 
2376 static int invlpga_interception(struct kvm_vcpu *vcpu)
2377 {
2378 	gva_t gva = kvm_rax_read(vcpu);
2379 	u32 asid = kvm_rcx_read(vcpu);
2380 
2381 	/* FIXME: Handle an address size prefix. */
2382 	if (!is_long_mode(vcpu))
2383 		gva = (u32)gva;
2384 
2385 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2386 
2387 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2388 	kvm_mmu_invlpg(vcpu, gva);
2389 
2390 	return kvm_skip_emulated_instruction(vcpu);
2391 }
2392 
2393 static int skinit_interception(struct kvm_vcpu *vcpu)
2394 {
2395 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2396 
2397 	kvm_queue_exception(vcpu, UD_VECTOR);
2398 	return 1;
2399 }
2400 
2401 static int task_switch_interception(struct kvm_vcpu *vcpu)
2402 {
2403 	struct vcpu_svm *svm = to_svm(vcpu);
2404 	u16 tss_selector;
2405 	int reason;
2406 	int int_type = svm->vmcb->control.exit_int_info &
2407 		SVM_EXITINTINFO_TYPE_MASK;
2408 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2409 	uint32_t type =
2410 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2411 	uint32_t idt_v =
2412 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2413 	bool has_error_code = false;
2414 	u32 error_code = 0;
2415 
2416 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2417 
2418 	if (svm->vmcb->control.exit_info_2 &
2419 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2420 		reason = TASK_SWITCH_IRET;
2421 	else if (svm->vmcb->control.exit_info_2 &
2422 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2423 		reason = TASK_SWITCH_JMP;
2424 	else if (idt_v)
2425 		reason = TASK_SWITCH_GATE;
2426 	else
2427 		reason = TASK_SWITCH_CALL;
2428 
2429 	if (reason == TASK_SWITCH_GATE) {
2430 		switch (type) {
2431 		case SVM_EXITINTINFO_TYPE_NMI:
2432 			vcpu->arch.nmi_injected = false;
2433 			break;
2434 		case SVM_EXITINTINFO_TYPE_EXEPT:
2435 			if (svm->vmcb->control.exit_info_2 &
2436 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2437 				has_error_code = true;
2438 				error_code =
2439 					(u32)svm->vmcb->control.exit_info_2;
2440 			}
2441 			kvm_clear_exception_queue(vcpu);
2442 			break;
2443 		case SVM_EXITINTINFO_TYPE_INTR:
2444 		case SVM_EXITINTINFO_TYPE_SOFT:
2445 			kvm_clear_interrupt_queue(vcpu);
2446 			break;
2447 		default:
2448 			break;
2449 		}
2450 	}
2451 
2452 	if (reason != TASK_SWITCH_GATE ||
2453 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2454 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2455 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2456 		if (!svm_skip_emulated_instruction(vcpu))
2457 			return 0;
2458 	}
2459 
2460 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2461 		int_vec = -1;
2462 
2463 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2464 			       has_error_code, error_code);
2465 }
2466 
2467 static int iret_interception(struct kvm_vcpu *vcpu)
2468 {
2469 	struct vcpu_svm *svm = to_svm(vcpu);
2470 
2471 	++vcpu->stat.nmi_window_exits;
2472 	vcpu->arch.hflags |= HF_IRET_MASK;
2473 	if (!sev_es_guest(vcpu->kvm)) {
2474 		svm_clr_intercept(svm, INTERCEPT_IRET);
2475 		svm->nmi_iret_rip = kvm_rip_read(vcpu);
2476 	}
2477 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2478 	return 1;
2479 }
2480 
2481 static int invlpg_interception(struct kvm_vcpu *vcpu)
2482 {
2483 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2484 		return kvm_emulate_instruction(vcpu, 0);
2485 
2486 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2487 	return kvm_skip_emulated_instruction(vcpu);
2488 }
2489 
2490 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2491 {
2492 	return kvm_emulate_instruction(vcpu, 0);
2493 }
2494 
2495 static int rsm_interception(struct kvm_vcpu *vcpu)
2496 {
2497 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2498 }
2499 
2500 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2501 					    unsigned long val)
2502 {
2503 	struct vcpu_svm *svm = to_svm(vcpu);
2504 	unsigned long cr0 = vcpu->arch.cr0;
2505 	bool ret = false;
2506 
2507 	if (!is_guest_mode(vcpu) ||
2508 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2509 		return false;
2510 
2511 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2512 	val &= ~SVM_CR0_SELECTIVE_MASK;
2513 
2514 	if (cr0 ^ val) {
2515 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2516 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2517 	}
2518 
2519 	return ret;
2520 }
2521 
2522 #define CR_VALID (1ULL << 63)
2523 
2524 static int cr_interception(struct kvm_vcpu *vcpu)
2525 {
2526 	struct vcpu_svm *svm = to_svm(vcpu);
2527 	int reg, cr;
2528 	unsigned long val;
2529 	int err;
2530 
2531 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2532 		return emulate_on_interception(vcpu);
2533 
2534 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2535 		return emulate_on_interception(vcpu);
2536 
2537 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2538 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2539 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2540 	else
2541 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2542 
2543 	err = 0;
2544 	if (cr >= 16) { /* mov to cr */
2545 		cr -= 16;
2546 		val = kvm_register_read(vcpu, reg);
2547 		trace_kvm_cr_write(cr, val);
2548 		switch (cr) {
2549 		case 0:
2550 			if (!check_selective_cr0_intercepted(vcpu, val))
2551 				err = kvm_set_cr0(vcpu, val);
2552 			else
2553 				return 1;
2554 
2555 			break;
2556 		case 3:
2557 			err = kvm_set_cr3(vcpu, val);
2558 			break;
2559 		case 4:
2560 			err = kvm_set_cr4(vcpu, val);
2561 			break;
2562 		case 8:
2563 			err = kvm_set_cr8(vcpu, val);
2564 			break;
2565 		default:
2566 			WARN(1, "unhandled write to CR%d", cr);
2567 			kvm_queue_exception(vcpu, UD_VECTOR);
2568 			return 1;
2569 		}
2570 	} else { /* mov from cr */
2571 		switch (cr) {
2572 		case 0:
2573 			val = kvm_read_cr0(vcpu);
2574 			break;
2575 		case 2:
2576 			val = vcpu->arch.cr2;
2577 			break;
2578 		case 3:
2579 			val = kvm_read_cr3(vcpu);
2580 			break;
2581 		case 4:
2582 			val = kvm_read_cr4(vcpu);
2583 			break;
2584 		case 8:
2585 			val = kvm_get_cr8(vcpu);
2586 			break;
2587 		default:
2588 			WARN(1, "unhandled read from CR%d", cr);
2589 			kvm_queue_exception(vcpu, UD_VECTOR);
2590 			return 1;
2591 		}
2592 		kvm_register_write(vcpu, reg, val);
2593 		trace_kvm_cr_read(cr, val);
2594 	}
2595 	return kvm_complete_insn_gp(vcpu, err);
2596 }
2597 
2598 static int cr_trap(struct kvm_vcpu *vcpu)
2599 {
2600 	struct vcpu_svm *svm = to_svm(vcpu);
2601 	unsigned long old_value, new_value;
2602 	unsigned int cr;
2603 	int ret = 0;
2604 
2605 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2606 
2607 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2608 	switch (cr) {
2609 	case 0:
2610 		old_value = kvm_read_cr0(vcpu);
2611 		svm_set_cr0(vcpu, new_value);
2612 
2613 		kvm_post_set_cr0(vcpu, old_value, new_value);
2614 		break;
2615 	case 4:
2616 		old_value = kvm_read_cr4(vcpu);
2617 		svm_set_cr4(vcpu, new_value);
2618 
2619 		kvm_post_set_cr4(vcpu, old_value, new_value);
2620 		break;
2621 	case 8:
2622 		ret = kvm_set_cr8(vcpu, new_value);
2623 		break;
2624 	default:
2625 		WARN(1, "unhandled CR%d write trap", cr);
2626 		kvm_queue_exception(vcpu, UD_VECTOR);
2627 		return 1;
2628 	}
2629 
2630 	return kvm_complete_insn_gp(vcpu, ret);
2631 }
2632 
2633 static int dr_interception(struct kvm_vcpu *vcpu)
2634 {
2635 	struct vcpu_svm *svm = to_svm(vcpu);
2636 	int reg, dr;
2637 	unsigned long val;
2638 	int err = 0;
2639 
2640 	if (vcpu->guest_debug == 0) {
2641 		/*
2642 		 * No more DR vmexits; force a reload of the debug registers
2643 		 * and reenter on this instruction.  The next vmexit will
2644 		 * retrieve the full state of the debug registers.
2645 		 */
2646 		clr_dr_intercepts(svm);
2647 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2648 		return 1;
2649 	}
2650 
2651 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2652 		return emulate_on_interception(vcpu);
2653 
2654 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2655 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2656 	if (dr >= 16) { /* mov to DRn  */
2657 		dr -= 16;
2658 		val = kvm_register_read(vcpu, reg);
2659 		err = kvm_set_dr(vcpu, dr, val);
2660 	} else {
2661 		kvm_get_dr(vcpu, dr, &val);
2662 		kvm_register_write(vcpu, reg, val);
2663 	}
2664 
2665 	return kvm_complete_insn_gp(vcpu, err);
2666 }
2667 
2668 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2669 {
2670 	int r;
2671 
2672 	u8 cr8_prev = kvm_get_cr8(vcpu);
2673 	/* instruction emulation calls kvm_set_cr8() */
2674 	r = cr_interception(vcpu);
2675 	if (lapic_in_kernel(vcpu))
2676 		return r;
2677 	if (cr8_prev <= kvm_get_cr8(vcpu))
2678 		return r;
2679 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2680 	return 0;
2681 }
2682 
2683 static int efer_trap(struct kvm_vcpu *vcpu)
2684 {
2685 	struct msr_data msr_info;
2686 	int ret;
2687 
2688 	/*
2689 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2690 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2691 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2692 	 * the guest doesn't have X86_FEATURE_SVM.
2693 	 */
2694 	msr_info.host_initiated = false;
2695 	msr_info.index = MSR_EFER;
2696 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2697 	ret = kvm_set_msr_common(vcpu, &msr_info);
2698 
2699 	return kvm_complete_insn_gp(vcpu, ret);
2700 }
2701 
2702 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2703 {
2704 	msr->data = 0;
2705 
2706 	switch (msr->index) {
2707 	case MSR_AMD64_DE_CFG:
2708 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2709 			msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2710 		break;
2711 	case MSR_IA32_PERF_CAPABILITIES:
2712 		return 0;
2713 	default:
2714 		return KVM_MSR_RET_INVALID;
2715 	}
2716 
2717 	return 0;
2718 }
2719 
2720 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2721 {
2722 	struct vcpu_svm *svm = to_svm(vcpu);
2723 
2724 	switch (msr_info->index) {
2725 	case MSR_AMD64_TSC_RATIO:
2726 		if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2727 			return 1;
2728 		msr_info->data = svm->tsc_ratio_msr;
2729 		break;
2730 	case MSR_STAR:
2731 		msr_info->data = svm->vmcb01.ptr->save.star;
2732 		break;
2733 #ifdef CONFIG_X86_64
2734 	case MSR_LSTAR:
2735 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2736 		break;
2737 	case MSR_CSTAR:
2738 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2739 		break;
2740 	case MSR_KERNEL_GS_BASE:
2741 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2742 		break;
2743 	case MSR_SYSCALL_MASK:
2744 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2745 		break;
2746 #endif
2747 	case MSR_IA32_SYSENTER_CS:
2748 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2749 		break;
2750 	case MSR_IA32_SYSENTER_EIP:
2751 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2752 		if (guest_cpuid_is_intel(vcpu))
2753 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2754 		break;
2755 	case MSR_IA32_SYSENTER_ESP:
2756 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2757 		if (guest_cpuid_is_intel(vcpu))
2758 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2759 		break;
2760 	case MSR_TSC_AUX:
2761 		msr_info->data = svm->tsc_aux;
2762 		break;
2763 	case MSR_IA32_DEBUGCTLMSR:
2764 	case MSR_IA32_LASTBRANCHFROMIP:
2765 	case MSR_IA32_LASTBRANCHTOIP:
2766 	case MSR_IA32_LASTINTFROMIP:
2767 	case MSR_IA32_LASTINTTOIP:
2768 		msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
2769 		break;
2770 	case MSR_VM_HSAVE_PA:
2771 		msr_info->data = svm->nested.hsave_msr;
2772 		break;
2773 	case MSR_VM_CR:
2774 		msr_info->data = svm->nested.vm_cr_msr;
2775 		break;
2776 	case MSR_IA32_SPEC_CTRL:
2777 		if (!msr_info->host_initiated &&
2778 		    !guest_has_spec_ctrl_msr(vcpu))
2779 			return 1;
2780 
2781 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2782 			msr_info->data = svm->vmcb->save.spec_ctrl;
2783 		else
2784 			msr_info->data = svm->spec_ctrl;
2785 		break;
2786 	case MSR_AMD64_VIRT_SPEC_CTRL:
2787 		if (!msr_info->host_initiated &&
2788 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2789 			return 1;
2790 
2791 		msr_info->data = svm->virt_spec_ctrl;
2792 		break;
2793 	case MSR_F15H_IC_CFG: {
2794 
2795 		int family, model;
2796 
2797 		family = guest_cpuid_family(vcpu);
2798 		model  = guest_cpuid_model(vcpu);
2799 
2800 		if (family < 0 || model < 0)
2801 			return kvm_get_msr_common(vcpu, msr_info);
2802 
2803 		msr_info->data = 0;
2804 
2805 		if (family == 0x15 &&
2806 		    (model >= 0x2 && model < 0x20))
2807 			msr_info->data = 0x1E;
2808 		}
2809 		break;
2810 	case MSR_AMD64_DE_CFG:
2811 		msr_info->data = svm->msr_decfg;
2812 		break;
2813 	default:
2814 		return kvm_get_msr_common(vcpu, msr_info);
2815 	}
2816 	return 0;
2817 }
2818 
2819 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2820 {
2821 	struct vcpu_svm *svm = to_svm(vcpu);
2822 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2823 		return kvm_complete_insn_gp(vcpu, err);
2824 
2825 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2826 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2827 				X86_TRAP_GP |
2828 				SVM_EVTINJ_TYPE_EXEPT |
2829 				SVM_EVTINJ_VALID);
2830 	return 1;
2831 }
2832 
2833 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2834 {
2835 	struct vcpu_svm *svm = to_svm(vcpu);
2836 	int svm_dis, chg_mask;
2837 
2838 	if (data & ~SVM_VM_CR_VALID_MASK)
2839 		return 1;
2840 
2841 	chg_mask = SVM_VM_CR_VALID_MASK;
2842 
2843 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2844 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2845 
2846 	svm->nested.vm_cr_msr &= ~chg_mask;
2847 	svm->nested.vm_cr_msr |= (data & chg_mask);
2848 
2849 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2850 
2851 	/* check for svm_disable while efer.svme is set */
2852 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2853 		return 1;
2854 
2855 	return 0;
2856 }
2857 
2858 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2859 {
2860 	struct vcpu_svm *svm = to_svm(vcpu);
2861 	int r;
2862 
2863 	u32 ecx = msr->index;
2864 	u64 data = msr->data;
2865 	switch (ecx) {
2866 	case MSR_AMD64_TSC_RATIO:
2867 
2868 		if (!svm->tsc_scaling_enabled) {
2869 
2870 			if (!msr->host_initiated)
2871 				return 1;
2872 			/*
2873 			 * In case TSC scaling is not enabled, always
2874 			 * leave this MSR at the default value.
2875 			 *
2876 			 * Due to bug in qemu 6.2.0, it would try to set
2877 			 * this msr to 0 if tsc scaling is not enabled.
2878 			 * Ignore this value as well.
2879 			 */
2880 			if (data != 0 && data != svm->tsc_ratio_msr)
2881 				return 1;
2882 			break;
2883 		}
2884 
2885 		if (data & SVM_TSC_RATIO_RSVD)
2886 			return 1;
2887 
2888 		svm->tsc_ratio_msr = data;
2889 
2890 		if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2891 			nested_svm_update_tsc_ratio_msr(vcpu);
2892 
2893 		break;
2894 	case MSR_IA32_CR_PAT:
2895 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2896 			return 1;
2897 		vcpu->arch.pat = data;
2898 		svm->vmcb01.ptr->save.g_pat = data;
2899 		if (is_guest_mode(vcpu))
2900 			nested_vmcb02_compute_g_pat(svm);
2901 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2902 		break;
2903 	case MSR_IA32_SPEC_CTRL:
2904 		if (!msr->host_initiated &&
2905 		    !guest_has_spec_ctrl_msr(vcpu))
2906 			return 1;
2907 
2908 		if (kvm_spec_ctrl_test_value(data))
2909 			return 1;
2910 
2911 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2912 			svm->vmcb->save.spec_ctrl = data;
2913 		else
2914 			svm->spec_ctrl = data;
2915 		if (!data)
2916 			break;
2917 
2918 		/*
2919 		 * For non-nested:
2920 		 * When it's written (to non-zero) for the first time, pass
2921 		 * it through.
2922 		 *
2923 		 * For nested:
2924 		 * The handling of the MSR bitmap for L2 guests is done in
2925 		 * nested_svm_vmrun_msrpm.
2926 		 * We update the L1 MSR bit as well since it will end up
2927 		 * touching the MSR anyway now.
2928 		 */
2929 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2930 		break;
2931 	case MSR_IA32_PRED_CMD:
2932 		if (!msr->host_initiated &&
2933 		    !guest_has_pred_cmd_msr(vcpu))
2934 			return 1;
2935 
2936 		if (data & ~PRED_CMD_IBPB)
2937 			return 1;
2938 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2939 			return 1;
2940 		if (!data)
2941 			break;
2942 
2943 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2944 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2945 		break;
2946 	case MSR_AMD64_VIRT_SPEC_CTRL:
2947 		if (!msr->host_initiated &&
2948 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2949 			return 1;
2950 
2951 		if (data & ~SPEC_CTRL_SSBD)
2952 			return 1;
2953 
2954 		svm->virt_spec_ctrl = data;
2955 		break;
2956 	case MSR_STAR:
2957 		svm->vmcb01.ptr->save.star = data;
2958 		break;
2959 #ifdef CONFIG_X86_64
2960 	case MSR_LSTAR:
2961 		svm->vmcb01.ptr->save.lstar = data;
2962 		break;
2963 	case MSR_CSTAR:
2964 		svm->vmcb01.ptr->save.cstar = data;
2965 		break;
2966 	case MSR_KERNEL_GS_BASE:
2967 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2968 		break;
2969 	case MSR_SYSCALL_MASK:
2970 		svm->vmcb01.ptr->save.sfmask = data;
2971 		break;
2972 #endif
2973 	case MSR_IA32_SYSENTER_CS:
2974 		svm->vmcb01.ptr->save.sysenter_cs = data;
2975 		break;
2976 	case MSR_IA32_SYSENTER_EIP:
2977 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2978 		/*
2979 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2980 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2981 		 * In this case we use this intercept to track the high
2982 		 * 32 bit part of these msrs to support Intel's
2983 		 * implementation of SYSENTER/SYSEXIT.
2984 		 */
2985 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2986 		break;
2987 	case MSR_IA32_SYSENTER_ESP:
2988 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2989 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2990 		break;
2991 	case MSR_TSC_AUX:
2992 		/*
2993 		 * TSC_AUX is usually changed only during boot and never read
2994 		 * directly.  Intercept TSC_AUX instead of exposing it to the
2995 		 * guest via direct_access_msrs, and switch it via user return.
2996 		 */
2997 		preempt_disable();
2998 		r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2999 		preempt_enable();
3000 		if (r)
3001 			return 1;
3002 
3003 		svm->tsc_aux = data;
3004 		break;
3005 	case MSR_IA32_DEBUGCTLMSR:
3006 		if (!lbrv) {
3007 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3008 				    __func__, data);
3009 			break;
3010 		}
3011 		if (data & DEBUGCTL_RESERVED_BITS)
3012 			return 1;
3013 
3014 		if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
3015 			svm->vmcb->save.dbgctl = data;
3016 		else
3017 			svm->vmcb01.ptr->save.dbgctl = data;
3018 
3019 		svm_update_lbrv(vcpu);
3020 
3021 		break;
3022 	case MSR_VM_HSAVE_PA:
3023 		/*
3024 		 * Old kernels did not validate the value written to
3025 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3026 		 * value to allow live migrating buggy or malicious guests
3027 		 * originating from those kernels.
3028 		 */
3029 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3030 			return 1;
3031 
3032 		svm->nested.hsave_msr = data & PAGE_MASK;
3033 		break;
3034 	case MSR_VM_CR:
3035 		return svm_set_vm_cr(vcpu, data);
3036 	case MSR_VM_IGNNE:
3037 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3038 		break;
3039 	case MSR_AMD64_DE_CFG: {
3040 		struct kvm_msr_entry msr_entry;
3041 
3042 		msr_entry.index = msr->index;
3043 		if (svm_get_msr_feature(&msr_entry))
3044 			return 1;
3045 
3046 		/* Check the supported bits */
3047 		if (data & ~msr_entry.data)
3048 			return 1;
3049 
3050 		/* Don't allow the guest to change a bit, #GP */
3051 		if (!msr->host_initiated && (data ^ msr_entry.data))
3052 			return 1;
3053 
3054 		svm->msr_decfg = data;
3055 		break;
3056 	}
3057 	default:
3058 		return kvm_set_msr_common(vcpu, msr);
3059 	}
3060 	return 0;
3061 }
3062 
3063 static int msr_interception(struct kvm_vcpu *vcpu)
3064 {
3065 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3066 		return kvm_emulate_wrmsr(vcpu);
3067 	else
3068 		return kvm_emulate_rdmsr(vcpu);
3069 }
3070 
3071 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3072 {
3073 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3074 	svm_clear_vintr(to_svm(vcpu));
3075 
3076 	/*
3077 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3078 	 * In this case AVIC was temporarily disabled for
3079 	 * requesting the IRQ window and we have to re-enable it.
3080 	 *
3081 	 * If running nested, still remove the VM wide AVIC inhibit to
3082 	 * support case in which the interrupt window was requested when the
3083 	 * vCPU was not running nested.
3084 
3085 	 * All vCPUs which run still run nested, will remain to have their
3086 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3087 	 */
3088 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3089 
3090 	++vcpu->stat.irq_window_exits;
3091 	return 1;
3092 }
3093 
3094 static int pause_interception(struct kvm_vcpu *vcpu)
3095 {
3096 	bool in_kernel;
3097 	/*
3098 	 * CPL is not made available for an SEV-ES guest, therefore
3099 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3100 	 * set in_kernel to false as well.
3101 	 */
3102 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3103 
3104 	grow_ple_window(vcpu);
3105 
3106 	kvm_vcpu_on_spin(vcpu, in_kernel);
3107 	return kvm_skip_emulated_instruction(vcpu);
3108 }
3109 
3110 static int invpcid_interception(struct kvm_vcpu *vcpu)
3111 {
3112 	struct vcpu_svm *svm = to_svm(vcpu);
3113 	unsigned long type;
3114 	gva_t gva;
3115 
3116 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3117 		kvm_queue_exception(vcpu, UD_VECTOR);
3118 		return 1;
3119 	}
3120 
3121 	/*
3122 	 * For an INVPCID intercept:
3123 	 * EXITINFO1 provides the linear address of the memory operand.
3124 	 * EXITINFO2 provides the contents of the register operand.
3125 	 */
3126 	type = svm->vmcb->control.exit_info_2;
3127 	gva = svm->vmcb->control.exit_info_1;
3128 
3129 	return kvm_handle_invpcid(vcpu, type, gva);
3130 }
3131 
3132 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3133 	[SVM_EXIT_READ_CR0]			= cr_interception,
3134 	[SVM_EXIT_READ_CR3]			= cr_interception,
3135 	[SVM_EXIT_READ_CR4]			= cr_interception,
3136 	[SVM_EXIT_READ_CR8]			= cr_interception,
3137 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3138 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3139 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3140 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3141 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3142 	[SVM_EXIT_READ_DR0]			= dr_interception,
3143 	[SVM_EXIT_READ_DR1]			= dr_interception,
3144 	[SVM_EXIT_READ_DR2]			= dr_interception,
3145 	[SVM_EXIT_READ_DR3]			= dr_interception,
3146 	[SVM_EXIT_READ_DR4]			= dr_interception,
3147 	[SVM_EXIT_READ_DR5]			= dr_interception,
3148 	[SVM_EXIT_READ_DR6]			= dr_interception,
3149 	[SVM_EXIT_READ_DR7]			= dr_interception,
3150 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3151 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3152 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3153 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3154 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3155 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3156 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3157 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3158 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3159 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3160 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3161 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3162 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3163 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3164 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3165 	[SVM_EXIT_INTR]				= intr_interception,
3166 	[SVM_EXIT_NMI]				= nmi_interception,
3167 	[SVM_EXIT_SMI]				= smi_interception,
3168 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3169 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3170 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3171 	[SVM_EXIT_IRET]                         = iret_interception,
3172 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3173 	[SVM_EXIT_PAUSE]			= pause_interception,
3174 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3175 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3176 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3177 	[SVM_EXIT_IOIO]				= io_interception,
3178 	[SVM_EXIT_MSR]				= msr_interception,
3179 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3180 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3181 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3182 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3183 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3184 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3185 	[SVM_EXIT_STGI]				= stgi_interception,
3186 	[SVM_EXIT_CLGI]				= clgi_interception,
3187 	[SVM_EXIT_SKINIT]			= skinit_interception,
3188 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3189 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3190 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3191 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3192 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3193 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3194 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3195 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3196 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3197 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3198 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3199 	[SVM_EXIT_NPF]				= npf_interception,
3200 	[SVM_EXIT_RSM]                          = rsm_interception,
3201 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3202 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3203 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3204 };
3205 
3206 static void dump_vmcb(struct kvm_vcpu *vcpu)
3207 {
3208 	struct vcpu_svm *svm = to_svm(vcpu);
3209 	struct vmcb_control_area *control = &svm->vmcb->control;
3210 	struct vmcb_save_area *save = &svm->vmcb->save;
3211 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3212 
3213 	if (!dump_invalid_vmcb) {
3214 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3215 		return;
3216 	}
3217 
3218 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3219 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3220 	pr_err("VMCB Control Area:\n");
3221 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3222 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3223 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3224 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3225 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3226 	pr_err("%-20s%08x %08x\n", "intercepts:",
3227               control->intercepts[INTERCEPT_WORD3],
3228 	       control->intercepts[INTERCEPT_WORD4]);
3229 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3230 	pr_err("%-20s%d\n", "pause filter threshold:",
3231 	       control->pause_filter_thresh);
3232 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3233 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3234 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3235 	pr_err("%-20s%d\n", "asid:", control->asid);
3236 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3237 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3238 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3239 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3240 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3241 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3242 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3243 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3244 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3245 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3246 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3247 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3248 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3249 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3250 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3251 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3252 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3253 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3254 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3255 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3256 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3257 	pr_err("VMCB State Save Area:\n");
3258 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3259 	       "es:",
3260 	       save->es.selector, save->es.attrib,
3261 	       save->es.limit, save->es.base);
3262 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3263 	       "cs:",
3264 	       save->cs.selector, save->cs.attrib,
3265 	       save->cs.limit, save->cs.base);
3266 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3267 	       "ss:",
3268 	       save->ss.selector, save->ss.attrib,
3269 	       save->ss.limit, save->ss.base);
3270 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3271 	       "ds:",
3272 	       save->ds.selector, save->ds.attrib,
3273 	       save->ds.limit, save->ds.base);
3274 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3275 	       "fs:",
3276 	       save01->fs.selector, save01->fs.attrib,
3277 	       save01->fs.limit, save01->fs.base);
3278 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3279 	       "gs:",
3280 	       save01->gs.selector, save01->gs.attrib,
3281 	       save01->gs.limit, save01->gs.base);
3282 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3283 	       "gdtr:",
3284 	       save->gdtr.selector, save->gdtr.attrib,
3285 	       save->gdtr.limit, save->gdtr.base);
3286 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3287 	       "ldtr:",
3288 	       save01->ldtr.selector, save01->ldtr.attrib,
3289 	       save01->ldtr.limit, save01->ldtr.base);
3290 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3291 	       "idtr:",
3292 	       save->idtr.selector, save->idtr.attrib,
3293 	       save->idtr.limit, save->idtr.base);
3294 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3295 	       "tr:",
3296 	       save01->tr.selector, save01->tr.attrib,
3297 	       save01->tr.limit, save01->tr.base);
3298 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3299 	       save->vmpl, save->cpl, save->efer);
3300 	pr_err("%-15s %016llx %-13s %016llx\n",
3301 	       "cr0:", save->cr0, "cr2:", save->cr2);
3302 	pr_err("%-15s %016llx %-13s %016llx\n",
3303 	       "cr3:", save->cr3, "cr4:", save->cr4);
3304 	pr_err("%-15s %016llx %-13s %016llx\n",
3305 	       "dr6:", save->dr6, "dr7:", save->dr7);
3306 	pr_err("%-15s %016llx %-13s %016llx\n",
3307 	       "rip:", save->rip, "rflags:", save->rflags);
3308 	pr_err("%-15s %016llx %-13s %016llx\n",
3309 	       "rsp:", save->rsp, "rax:", save->rax);
3310 	pr_err("%-15s %016llx %-13s %016llx\n",
3311 	       "star:", save01->star, "lstar:", save01->lstar);
3312 	pr_err("%-15s %016llx %-13s %016llx\n",
3313 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3314 	pr_err("%-15s %016llx %-13s %016llx\n",
3315 	       "kernel_gs_base:", save01->kernel_gs_base,
3316 	       "sysenter_cs:", save01->sysenter_cs);
3317 	pr_err("%-15s %016llx %-13s %016llx\n",
3318 	       "sysenter_esp:", save01->sysenter_esp,
3319 	       "sysenter_eip:", save01->sysenter_eip);
3320 	pr_err("%-15s %016llx %-13s %016llx\n",
3321 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3322 	pr_err("%-15s %016llx %-13s %016llx\n",
3323 	       "br_from:", save->br_from, "br_to:", save->br_to);
3324 	pr_err("%-15s %016llx %-13s %016llx\n",
3325 	       "excp_from:", save->last_excp_from,
3326 	       "excp_to:", save->last_excp_to);
3327 }
3328 
3329 static bool svm_check_exit_valid(u64 exit_code)
3330 {
3331 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3332 		svm_exit_handlers[exit_code]);
3333 }
3334 
3335 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3336 {
3337 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3338 	dump_vmcb(vcpu);
3339 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3340 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3341 	vcpu->run->internal.ndata = 2;
3342 	vcpu->run->internal.data[0] = exit_code;
3343 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3344 	return 0;
3345 }
3346 
3347 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3348 {
3349 	if (!svm_check_exit_valid(exit_code))
3350 		return svm_handle_invalid_exit(vcpu, exit_code);
3351 
3352 #ifdef CONFIG_RETPOLINE
3353 	if (exit_code == SVM_EXIT_MSR)
3354 		return msr_interception(vcpu);
3355 	else if (exit_code == SVM_EXIT_VINTR)
3356 		return interrupt_window_interception(vcpu);
3357 	else if (exit_code == SVM_EXIT_INTR)
3358 		return intr_interception(vcpu);
3359 	else if (exit_code == SVM_EXIT_HLT)
3360 		return kvm_emulate_halt(vcpu);
3361 	else if (exit_code == SVM_EXIT_NPF)
3362 		return npf_interception(vcpu);
3363 #endif
3364 	return svm_exit_handlers[exit_code](vcpu);
3365 }
3366 
3367 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3368 			      u64 *info1, u64 *info2,
3369 			      u32 *intr_info, u32 *error_code)
3370 {
3371 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3372 
3373 	*reason = control->exit_code;
3374 	*info1 = control->exit_info_1;
3375 	*info2 = control->exit_info_2;
3376 	*intr_info = control->exit_int_info;
3377 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3378 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3379 		*error_code = control->exit_int_info_err;
3380 	else
3381 		*error_code = 0;
3382 }
3383 
3384 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3385 {
3386 	struct vcpu_svm *svm = to_svm(vcpu);
3387 	struct kvm_run *kvm_run = vcpu->run;
3388 	u32 exit_code = svm->vmcb->control.exit_code;
3389 
3390 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
3391 
3392 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3393 	if (!sev_es_guest(vcpu->kvm)) {
3394 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3395 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3396 		if (npt_enabled)
3397 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3398 	}
3399 
3400 	if (is_guest_mode(vcpu)) {
3401 		int vmexit;
3402 
3403 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3404 
3405 		vmexit = nested_svm_exit_special(svm);
3406 
3407 		if (vmexit == NESTED_EXIT_CONTINUE)
3408 			vmexit = nested_svm_exit_handled(svm);
3409 
3410 		if (vmexit == NESTED_EXIT_DONE)
3411 			return 1;
3412 	}
3413 
3414 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3415 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3416 		kvm_run->fail_entry.hardware_entry_failure_reason
3417 			= svm->vmcb->control.exit_code;
3418 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3419 		dump_vmcb(vcpu);
3420 		return 0;
3421 	}
3422 
3423 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3424 		return 1;
3425 
3426 	return svm_invoke_exit_handler(vcpu, exit_code);
3427 }
3428 
3429 static void reload_tss(struct kvm_vcpu *vcpu)
3430 {
3431 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3432 
3433 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3434 	load_TR_desc();
3435 }
3436 
3437 static void pre_svm_run(struct kvm_vcpu *vcpu)
3438 {
3439 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3440 	struct vcpu_svm *svm = to_svm(vcpu);
3441 
3442 	/*
3443 	 * If the previous vmrun of the vmcb occurred on a different physical
3444 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3445 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3446 	 */
3447 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3448 		svm->current_vmcb->asid_generation = 0;
3449 		vmcb_mark_all_dirty(svm->vmcb);
3450 		svm->current_vmcb->cpu = vcpu->cpu;
3451         }
3452 
3453 	if (sev_guest(vcpu->kvm))
3454 		return pre_sev_run(svm, vcpu->cpu);
3455 
3456 	/* FIXME: handle wraparound of asid_generation */
3457 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3458 		new_asid(svm, sd);
3459 }
3460 
3461 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3462 {
3463 	struct vcpu_svm *svm = to_svm(vcpu);
3464 
3465 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3466 
3467 	if (svm->nmi_l1_to_l2)
3468 		return;
3469 
3470 	vcpu->arch.hflags |= HF_NMI_MASK;
3471 	if (!sev_es_guest(vcpu->kvm))
3472 		svm_set_intercept(svm, INTERCEPT_IRET);
3473 	++vcpu->stat.nmi_injections;
3474 }
3475 
3476 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3477 {
3478 	struct vcpu_svm *svm = to_svm(vcpu);
3479 	u32 type;
3480 
3481 	if (vcpu->arch.interrupt.soft) {
3482 		if (svm_update_soft_interrupt_rip(vcpu))
3483 			return;
3484 
3485 		type = SVM_EVTINJ_TYPE_SOFT;
3486 	} else {
3487 		type = SVM_EVTINJ_TYPE_INTR;
3488 	}
3489 
3490 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3491 			   vcpu->arch.interrupt.soft, reinjected);
3492 	++vcpu->stat.irq_injections;
3493 
3494 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3495 				       SVM_EVTINJ_VALID | type;
3496 }
3497 
3498 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3499 				     int trig_mode, int vector)
3500 {
3501 	/*
3502 	 * apic->apicv_active must be read after vcpu->mode.
3503 	 * Pairs with smp_store_release in vcpu_enter_guest.
3504 	 */
3505 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3506 
3507 	/* Note, this is called iff the local APIC is in-kernel. */
3508 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3509 		/* Process the interrupt via kvm_check_and_inject_events(). */
3510 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3511 		kvm_vcpu_kick(vcpu);
3512 		return;
3513 	}
3514 
3515 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3516 	if (in_guest_mode) {
3517 		/*
3518 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3519 		 * the vCPU exits the guest before the doorbell chimes, hardware
3520 		 * will automatically process AVIC interrupts at the next VMRUN.
3521 		 */
3522 		avic_ring_doorbell(vcpu);
3523 	} else {
3524 		/*
3525 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3526 		 * pending IRQ when checking if the vCPU has a wake event.
3527 		 */
3528 		kvm_vcpu_wake_up(vcpu);
3529 	}
3530 }
3531 
3532 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3533 				  int trig_mode, int vector)
3534 {
3535 	kvm_lapic_set_irr(vector, apic);
3536 
3537 	/*
3538 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3539 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3540 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3541 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3542 	 * will signal the doorbell if the CPU has already entered the guest.
3543 	 */
3544 	smp_mb__after_atomic();
3545 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3546 }
3547 
3548 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3549 {
3550 	struct vcpu_svm *svm = to_svm(vcpu);
3551 
3552 	/*
3553 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3554 	 * tracking is done using the CR write traps.
3555 	 */
3556 	if (sev_es_guest(vcpu->kvm))
3557 		return;
3558 
3559 	if (nested_svm_virtualize_tpr(vcpu))
3560 		return;
3561 
3562 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3563 
3564 	if (irr == -1)
3565 		return;
3566 
3567 	if (tpr >= irr)
3568 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3569 }
3570 
3571 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3572 {
3573 	struct vcpu_svm *svm = to_svm(vcpu);
3574 	struct vmcb *vmcb = svm->vmcb;
3575 	bool ret;
3576 
3577 	if (!gif_set(svm))
3578 		return true;
3579 
3580 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3581 		return false;
3582 
3583 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3584 	      (vcpu->arch.hflags & HF_NMI_MASK);
3585 
3586 	return ret;
3587 }
3588 
3589 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3590 {
3591 	struct vcpu_svm *svm = to_svm(vcpu);
3592 	if (svm->nested.nested_run_pending)
3593 		return -EBUSY;
3594 
3595 	if (svm_nmi_blocked(vcpu))
3596 		return 0;
3597 
3598 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3599 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3600 		return -EBUSY;
3601 	return 1;
3602 }
3603 
3604 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3605 {
3606 	return !!(vcpu->arch.hflags & HF_NMI_MASK);
3607 }
3608 
3609 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3610 {
3611 	struct vcpu_svm *svm = to_svm(vcpu);
3612 
3613 	if (masked) {
3614 		vcpu->arch.hflags |= HF_NMI_MASK;
3615 		if (!sev_es_guest(vcpu->kvm))
3616 			svm_set_intercept(svm, INTERCEPT_IRET);
3617 	} else {
3618 		vcpu->arch.hflags &= ~HF_NMI_MASK;
3619 		if (!sev_es_guest(vcpu->kvm))
3620 			svm_clr_intercept(svm, INTERCEPT_IRET);
3621 	}
3622 }
3623 
3624 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3625 {
3626 	struct vcpu_svm *svm = to_svm(vcpu);
3627 	struct vmcb *vmcb = svm->vmcb;
3628 
3629 	if (!gif_set(svm))
3630 		return true;
3631 
3632 	if (is_guest_mode(vcpu)) {
3633 		/* As long as interrupts are being delivered...  */
3634 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3635 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3636 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3637 			return true;
3638 
3639 		/* ... vmexits aren't blocked by the interrupt shadow  */
3640 		if (nested_exit_on_intr(svm))
3641 			return false;
3642 	} else {
3643 		if (!svm_get_if_flag(vcpu))
3644 			return true;
3645 	}
3646 
3647 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3648 }
3649 
3650 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3651 {
3652 	struct vcpu_svm *svm = to_svm(vcpu);
3653 
3654 	if (svm->nested.nested_run_pending)
3655 		return -EBUSY;
3656 
3657 	if (svm_interrupt_blocked(vcpu))
3658 		return 0;
3659 
3660 	/*
3661 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3662 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3663 	 */
3664 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3665 		return -EBUSY;
3666 
3667 	return 1;
3668 }
3669 
3670 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3671 {
3672 	struct vcpu_svm *svm = to_svm(vcpu);
3673 
3674 	/*
3675 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3676 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3677 	 * get that intercept, this function will be called again though and
3678 	 * we'll get the vintr intercept. However, if the vGIF feature is
3679 	 * enabled, the STGI interception will not occur. Enable the irq
3680 	 * window under the assumption that the hardware will set the GIF.
3681 	 */
3682 	if (vgif || gif_set(svm)) {
3683 		/*
3684 		 * IRQ window is not needed when AVIC is enabled,
3685 		 * unless we have pending ExtINT since it cannot be injected
3686 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3687 		 * and fallback to injecting IRQ via V_IRQ.
3688 		 *
3689 		 * If running nested, AVIC is already locally inhibited
3690 		 * on this vCPU, therefore there is no need to request
3691 		 * the VM wide AVIC inhibition.
3692 		 */
3693 		if (!is_guest_mode(vcpu))
3694 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3695 
3696 		svm_set_vintr(svm);
3697 	}
3698 }
3699 
3700 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3701 {
3702 	struct vcpu_svm *svm = to_svm(vcpu);
3703 
3704 	if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3705 		return; /* IRET will cause a vm exit */
3706 
3707 	if (!gif_set(svm)) {
3708 		if (vgif)
3709 			svm_set_intercept(svm, INTERCEPT_STGI);
3710 		return; /* STGI will cause a vm exit */
3711 	}
3712 
3713 	/*
3714 	 * Something prevents NMI from been injected. Single step over possible
3715 	 * problem (IRET or exception injection or interrupt shadow)
3716 	 */
3717 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3718 	svm->nmi_singlestep = true;
3719 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3720 }
3721 
3722 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3723 {
3724 	struct vcpu_svm *svm = to_svm(vcpu);
3725 
3726 	/*
3727 	 * Flush only the current ASID even if the TLB flush was invoked via
3728 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3729 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3730 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3731 	 * VM-Exit (via kvm_mmu_reset_context()).
3732 	 */
3733 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3734 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3735 	else
3736 		svm->current_vmcb->asid_generation--;
3737 }
3738 
3739 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3740 {
3741 	struct vcpu_svm *svm = to_svm(vcpu);
3742 
3743 	invlpga(gva, svm->vmcb->control.asid);
3744 }
3745 
3746 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3747 {
3748 	struct vcpu_svm *svm = to_svm(vcpu);
3749 
3750 	if (nested_svm_virtualize_tpr(vcpu))
3751 		return;
3752 
3753 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3754 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3755 		kvm_set_cr8(vcpu, cr8);
3756 	}
3757 }
3758 
3759 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3760 {
3761 	struct vcpu_svm *svm = to_svm(vcpu);
3762 	u64 cr8;
3763 
3764 	if (nested_svm_virtualize_tpr(vcpu) ||
3765 	    kvm_vcpu_apicv_active(vcpu))
3766 		return;
3767 
3768 	cr8 = kvm_get_cr8(vcpu);
3769 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3770 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3771 }
3772 
3773 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3774 					int type)
3775 {
3776 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3777 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3778 	struct vcpu_svm *svm = to_svm(vcpu);
3779 
3780 	/*
3781 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3782 	 * associated with the original soft exception/interrupt.  next_rip is
3783 	 * cleared on all exits that can occur while vectoring an event, so KVM
3784 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
3785 	 * case below, this needs to be done if and only if KVM is re-injecting
3786 	 * the same event, i.e. if the event is a soft exception/interrupt,
3787 	 * otherwise next_rip is unused on VMRUN.
3788 	 */
3789 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3790 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3791 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3792 	/*
3793 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3794 	 * injecting the soft exception/interrupt.  That advancement needs to
3795 	 * be unwound if vectoring didn't complete.  Note, the new event may
3796 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
3797 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3798 	 * be the reported vectored event, but RIP still needs to be unwound.
3799 	 */
3800 	else if (!nrips && (is_soft || is_exception) &&
3801 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3802 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
3803 }
3804 
3805 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3806 {
3807 	struct vcpu_svm *svm = to_svm(vcpu);
3808 	u8 vector;
3809 	int type;
3810 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3811 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
3812 	bool soft_int_injected = svm->soft_int_injected;
3813 
3814 	svm->nmi_l1_to_l2 = false;
3815 	svm->soft_int_injected = false;
3816 
3817 	/*
3818 	 * If we've made progress since setting HF_IRET_MASK, we've
3819 	 * executed an IRET and can allow NMI injection.
3820 	 */
3821 	if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3822 	    (sev_es_guest(vcpu->kvm) ||
3823 	     kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3824 		vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3825 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3826 	}
3827 
3828 	vcpu->arch.nmi_injected = false;
3829 	kvm_clear_exception_queue(vcpu);
3830 	kvm_clear_interrupt_queue(vcpu);
3831 
3832 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3833 		return;
3834 
3835 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3836 
3837 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3838 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3839 
3840 	if (soft_int_injected)
3841 		svm_complete_soft_interrupt(vcpu, vector, type);
3842 
3843 	switch (type) {
3844 	case SVM_EXITINTINFO_TYPE_NMI:
3845 		vcpu->arch.nmi_injected = true;
3846 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
3847 		break;
3848 	case SVM_EXITINTINFO_TYPE_EXEPT:
3849 		/*
3850 		 * Never re-inject a #VC exception.
3851 		 */
3852 		if (vector == X86_TRAP_VC)
3853 			break;
3854 
3855 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3856 			u32 err = svm->vmcb->control.exit_int_info_err;
3857 			kvm_requeue_exception_e(vcpu, vector, err);
3858 
3859 		} else
3860 			kvm_requeue_exception(vcpu, vector);
3861 		break;
3862 	case SVM_EXITINTINFO_TYPE_INTR:
3863 		kvm_queue_interrupt(vcpu, vector, false);
3864 		break;
3865 	case SVM_EXITINTINFO_TYPE_SOFT:
3866 		kvm_queue_interrupt(vcpu, vector, true);
3867 		break;
3868 	default:
3869 		break;
3870 	}
3871 
3872 }
3873 
3874 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3875 {
3876 	struct vcpu_svm *svm = to_svm(vcpu);
3877 	struct vmcb_control_area *control = &svm->vmcb->control;
3878 
3879 	control->exit_int_info = control->event_inj;
3880 	control->exit_int_info_err = control->event_inj_err;
3881 	control->event_inj = 0;
3882 	svm_complete_interrupts(vcpu);
3883 }
3884 
3885 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3886 {
3887 	return 1;
3888 }
3889 
3890 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3891 {
3892 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3893 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3894 		return handle_fastpath_set_msr_irqoff(vcpu);
3895 
3896 	return EXIT_FASTPATH_NONE;
3897 }
3898 
3899 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
3900 {
3901 	struct vcpu_svm *svm = to_svm(vcpu);
3902 
3903 	guest_state_enter_irqoff();
3904 
3905 	if (sev_es_guest(vcpu->kvm))
3906 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
3907 	else
3908 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
3909 
3910 	guest_state_exit_irqoff();
3911 }
3912 
3913 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3914 {
3915 	struct vcpu_svm *svm = to_svm(vcpu);
3916 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
3917 
3918 	trace_kvm_entry(vcpu);
3919 
3920 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3921 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3922 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3923 
3924 	/*
3925 	 * Disable singlestep if we're injecting an interrupt/exception.
3926 	 * We don't want our modified rflags to be pushed on the stack where
3927 	 * we might not be able to easily reset them if we disabled NMI
3928 	 * singlestep later.
3929 	 */
3930 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3931 		/*
3932 		 * Event injection happens before external interrupts cause a
3933 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3934 		 * is enough to force an immediate vmexit.
3935 		 */
3936 		disable_nmi_singlestep(svm);
3937 		smp_send_reschedule(vcpu->cpu);
3938 	}
3939 
3940 	pre_svm_run(vcpu);
3941 
3942 	sync_lapic_to_cr8(vcpu);
3943 
3944 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3945 		svm->vmcb->control.asid = svm->asid;
3946 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3947 	}
3948 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3949 
3950 	svm_hv_update_vp_id(svm->vmcb, vcpu);
3951 
3952 	/*
3953 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3954 	 * of a #DB.
3955 	 */
3956 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3957 		svm_set_dr6(svm, vcpu->arch.dr6);
3958 	else
3959 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
3960 
3961 	clgi();
3962 	kvm_load_guest_xsave_state(vcpu);
3963 
3964 	kvm_wait_lapic_expire(vcpu);
3965 
3966 	/*
3967 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3968 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3969 	 * is no need to worry about the conditional branch over the wrmsr
3970 	 * being speculatively taken.
3971 	 */
3972 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3973 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
3974 
3975 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
3976 
3977 	if (!sev_es_guest(vcpu->kvm))
3978 		reload_tss(vcpu);
3979 
3980 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3981 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
3982 
3983 	if (!sev_es_guest(vcpu->kvm)) {
3984 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
3985 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3986 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3987 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3988 	}
3989 	vcpu->arch.regs_dirty = 0;
3990 
3991 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3992 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
3993 
3994 	kvm_load_host_xsave_state(vcpu);
3995 	stgi();
3996 
3997 	/* Any pending NMI will happen here */
3998 
3999 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4000 		kvm_after_interrupt(vcpu);
4001 
4002 	sync_cr8_to_lapic(vcpu);
4003 
4004 	svm->next_rip = 0;
4005 	if (is_guest_mode(vcpu)) {
4006 		nested_sync_control_from_vmcb02(svm);
4007 
4008 		/* Track VMRUNs that have made past consistency checking */
4009 		if (svm->nested.nested_run_pending &&
4010 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4011                         ++vcpu->stat.nested_run;
4012 
4013 		svm->nested.nested_run_pending = 0;
4014 	}
4015 
4016 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4017 	vmcb_mark_all_clean(svm->vmcb);
4018 
4019 	/* if exit due to PF check for async PF */
4020 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4021 		vcpu->arch.apf.host_apf_flags =
4022 			kvm_read_and_reset_apf_flags();
4023 
4024 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4025 
4026 	/*
4027 	 * We need to handle MC intercepts here before the vcpu has a chance to
4028 	 * change the physical cpu
4029 	 */
4030 	if (unlikely(svm->vmcb->control.exit_code ==
4031 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4032 		svm_handle_mce(vcpu);
4033 
4034 	svm_complete_interrupts(vcpu);
4035 
4036 	if (is_guest_mode(vcpu))
4037 		return EXIT_FASTPATH_NONE;
4038 
4039 	return svm_exit_handlers_fastpath(vcpu);
4040 }
4041 
4042 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4043 			     int root_level)
4044 {
4045 	struct vcpu_svm *svm = to_svm(vcpu);
4046 	unsigned long cr3;
4047 
4048 	if (npt_enabled) {
4049 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4050 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4051 
4052 		hv_track_root_tdp(vcpu, root_hpa);
4053 
4054 		cr3 = vcpu->arch.cr3;
4055 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4056 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4057 	} else {
4058 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4059 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4060 		cr3 = root_hpa;
4061 	}
4062 
4063 	svm->vmcb->save.cr3 = cr3;
4064 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4065 }
4066 
4067 static int is_disabled(void)
4068 {
4069 	u64 vm_cr;
4070 
4071 	rdmsrl(MSR_VM_CR, vm_cr);
4072 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4073 		return 1;
4074 
4075 	return 0;
4076 }
4077 
4078 static void
4079 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4080 {
4081 	/*
4082 	 * Patch in the VMMCALL instruction:
4083 	 */
4084 	hypercall[0] = 0x0f;
4085 	hypercall[1] = 0x01;
4086 	hypercall[2] = 0xd9;
4087 }
4088 
4089 static int __init svm_check_processor_compat(void)
4090 {
4091 	return 0;
4092 }
4093 
4094 /*
4095  * The kvm parameter can be NULL (module initialization, or invocation before
4096  * VM creation). Be sure to check the kvm parameter before using it.
4097  */
4098 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4099 {
4100 	switch (index) {
4101 	case MSR_IA32_MCG_EXT_CTL:
4102 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4103 		return false;
4104 	case MSR_IA32_SMBASE:
4105 		/* SEV-ES guests do not support SMM, so report false */
4106 		if (kvm && sev_es_guest(kvm))
4107 			return false;
4108 		break;
4109 	default:
4110 		break;
4111 	}
4112 
4113 	return true;
4114 }
4115 
4116 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4117 {
4118 	struct vcpu_svm *svm = to_svm(vcpu);
4119 	struct kvm_cpuid_entry2 *best;
4120 
4121 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4122 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
4123 				    boot_cpu_has(X86_FEATURE_XSAVES);
4124 
4125 	/* Update nrips enabled cache */
4126 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4127 			     guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4128 
4129 	svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4130 	svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
4131 
4132 	svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4133 
4134 	svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
4135 			guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
4136 
4137 	svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
4138 			guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
4139 
4140 	svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF);
4141 
4142 	svm_recalc_instruction_intercepts(vcpu, svm);
4143 
4144 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4145 	if (sev_guest(vcpu->kvm)) {
4146 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4147 		if (best)
4148 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4149 	}
4150 
4151 	init_vmcb_after_set_cpuid(vcpu);
4152 }
4153 
4154 static bool svm_has_wbinvd_exit(void)
4155 {
4156 	return true;
4157 }
4158 
4159 #define PRE_EX(exit)  { .exit_code = (exit), \
4160 			.stage = X86_ICPT_PRE_EXCEPT, }
4161 #define POST_EX(exit) { .exit_code = (exit), \
4162 			.stage = X86_ICPT_POST_EXCEPT, }
4163 #define POST_MEM(exit) { .exit_code = (exit), \
4164 			.stage = X86_ICPT_POST_MEMACCESS, }
4165 
4166 static const struct __x86_intercept {
4167 	u32 exit_code;
4168 	enum x86_intercept_stage stage;
4169 } x86_intercept_map[] = {
4170 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4171 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4172 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4173 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4174 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4175 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4176 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4177 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4178 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4179 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4180 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4181 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4182 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4183 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4184 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4185 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4186 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4187 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4188 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4189 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4190 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4191 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4192 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4193 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4194 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4195 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4196 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4197 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4198 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4199 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4200 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4201 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4202 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4203 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4204 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4205 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4206 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4207 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4208 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4209 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4210 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4211 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4212 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4213 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4214 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4215 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4216 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4217 };
4218 
4219 #undef PRE_EX
4220 #undef POST_EX
4221 #undef POST_MEM
4222 
4223 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4224 			       struct x86_instruction_info *info,
4225 			       enum x86_intercept_stage stage,
4226 			       struct x86_exception *exception)
4227 {
4228 	struct vcpu_svm *svm = to_svm(vcpu);
4229 	int vmexit, ret = X86EMUL_CONTINUE;
4230 	struct __x86_intercept icpt_info;
4231 	struct vmcb *vmcb = svm->vmcb;
4232 
4233 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4234 		goto out;
4235 
4236 	icpt_info = x86_intercept_map[info->intercept];
4237 
4238 	if (stage != icpt_info.stage)
4239 		goto out;
4240 
4241 	switch (icpt_info.exit_code) {
4242 	case SVM_EXIT_READ_CR0:
4243 		if (info->intercept == x86_intercept_cr_read)
4244 			icpt_info.exit_code += info->modrm_reg;
4245 		break;
4246 	case SVM_EXIT_WRITE_CR0: {
4247 		unsigned long cr0, val;
4248 
4249 		if (info->intercept == x86_intercept_cr_write)
4250 			icpt_info.exit_code += info->modrm_reg;
4251 
4252 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4253 		    info->intercept == x86_intercept_clts)
4254 			break;
4255 
4256 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4257 					INTERCEPT_SELECTIVE_CR0)))
4258 			break;
4259 
4260 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4261 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4262 
4263 		if (info->intercept == x86_intercept_lmsw) {
4264 			cr0 &= 0xfUL;
4265 			val &= 0xfUL;
4266 			/* lmsw can't clear PE - catch this here */
4267 			if (cr0 & X86_CR0_PE)
4268 				val |= X86_CR0_PE;
4269 		}
4270 
4271 		if (cr0 ^ val)
4272 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4273 
4274 		break;
4275 	}
4276 	case SVM_EXIT_READ_DR0:
4277 	case SVM_EXIT_WRITE_DR0:
4278 		icpt_info.exit_code += info->modrm_reg;
4279 		break;
4280 	case SVM_EXIT_MSR:
4281 		if (info->intercept == x86_intercept_wrmsr)
4282 			vmcb->control.exit_info_1 = 1;
4283 		else
4284 			vmcb->control.exit_info_1 = 0;
4285 		break;
4286 	case SVM_EXIT_PAUSE:
4287 		/*
4288 		 * We get this for NOP only, but pause
4289 		 * is rep not, check this here
4290 		 */
4291 		if (info->rep_prefix != REPE_PREFIX)
4292 			goto out;
4293 		break;
4294 	case SVM_EXIT_IOIO: {
4295 		u64 exit_info;
4296 		u32 bytes;
4297 
4298 		if (info->intercept == x86_intercept_in ||
4299 		    info->intercept == x86_intercept_ins) {
4300 			exit_info = ((info->src_val & 0xffff) << 16) |
4301 				SVM_IOIO_TYPE_MASK;
4302 			bytes = info->dst_bytes;
4303 		} else {
4304 			exit_info = (info->dst_val & 0xffff) << 16;
4305 			bytes = info->src_bytes;
4306 		}
4307 
4308 		if (info->intercept == x86_intercept_outs ||
4309 		    info->intercept == x86_intercept_ins)
4310 			exit_info |= SVM_IOIO_STR_MASK;
4311 
4312 		if (info->rep_prefix)
4313 			exit_info |= SVM_IOIO_REP_MASK;
4314 
4315 		bytes = min(bytes, 4u);
4316 
4317 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4318 
4319 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4320 
4321 		vmcb->control.exit_info_1 = exit_info;
4322 		vmcb->control.exit_info_2 = info->next_rip;
4323 
4324 		break;
4325 	}
4326 	default:
4327 		break;
4328 	}
4329 
4330 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4331 	if (static_cpu_has(X86_FEATURE_NRIPS))
4332 		vmcb->control.next_rip  = info->next_rip;
4333 	vmcb->control.exit_code = icpt_info.exit_code;
4334 	vmexit = nested_svm_exit_handled(svm);
4335 
4336 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4337 					   : X86EMUL_CONTINUE;
4338 
4339 out:
4340 	return ret;
4341 }
4342 
4343 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4344 {
4345 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4346 		vcpu->arch.at_instruction_boundary = true;
4347 }
4348 
4349 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4350 {
4351 	if (!kvm_pause_in_guest(vcpu->kvm))
4352 		shrink_ple_window(vcpu);
4353 }
4354 
4355 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4356 {
4357 	/* [63:9] are reserved. */
4358 	vcpu->arch.mcg_cap &= 0x1ff;
4359 }
4360 
4361 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4362 {
4363 	struct vcpu_svm *svm = to_svm(vcpu);
4364 
4365 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4366 	if (!gif_set(svm))
4367 		return true;
4368 
4369 	return is_smm(vcpu);
4370 }
4371 
4372 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4373 {
4374 	struct vcpu_svm *svm = to_svm(vcpu);
4375 	if (svm->nested.nested_run_pending)
4376 		return -EBUSY;
4377 
4378 	if (svm_smi_blocked(vcpu))
4379 		return 0;
4380 
4381 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4382 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4383 		return -EBUSY;
4384 
4385 	return 1;
4386 }
4387 
4388 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4389 {
4390 	struct vcpu_svm *svm = to_svm(vcpu);
4391 	struct kvm_host_map map_save;
4392 	int ret;
4393 
4394 	if (!is_guest_mode(vcpu))
4395 		return 0;
4396 
4397 	/* FED8h - SVM Guest */
4398 	put_smstate(u64, smstate, 0x7ed8, 1);
4399 	/* FEE0h - SVM Guest VMCB Physical Address */
4400 	put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4401 
4402 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4403 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4404 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4405 
4406 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4407 	if (ret)
4408 		return ret;
4409 
4410 	/*
4411 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4412 	 * VMCB01 is going to be used during SMM and thus the state will
4413 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4414 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4415 	 * format of the area is identical to guest save area offsetted
4416 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4417 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4418 	 * L1 hypervisor to save additional host context (e.g. KVM does
4419 	 * that, see svm_prepare_switch_to_guest()) which must be
4420 	 * preserved.
4421 	 */
4422 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4423 			 &map_save) == -EINVAL)
4424 		return 1;
4425 
4426 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4427 
4428 	svm_copy_vmrun_state(map_save.hva + 0x400,
4429 			     &svm->vmcb01.ptr->save);
4430 
4431 	kvm_vcpu_unmap(vcpu, &map_save, true);
4432 	return 0;
4433 }
4434 
4435 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4436 {
4437 	struct vcpu_svm *svm = to_svm(vcpu);
4438 	struct kvm_host_map map, map_save;
4439 	u64 saved_efer, vmcb12_gpa;
4440 	struct vmcb *vmcb12;
4441 	int ret;
4442 
4443 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4444 		return 0;
4445 
4446 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4447 	if (!GET_SMSTATE(u64, smstate, 0x7ed8))
4448 		return 0;
4449 
4450 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4451 		return 1;
4452 
4453 	saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4454 	if (!(saved_efer & EFER_SVME))
4455 		return 1;
4456 
4457 	vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4458 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4459 		return 1;
4460 
4461 	ret = 1;
4462 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL)
4463 		goto unmap_map;
4464 
4465 	if (svm_allocate_nested(svm))
4466 		goto unmap_save;
4467 
4468 	/*
4469 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4470 	 * used during SMM (see svm_enter_smm())
4471 	 */
4472 
4473 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4474 
4475 	/*
4476 	 * Enter the nested guest now
4477 	 */
4478 
4479 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4480 
4481 	vmcb12 = map.hva;
4482 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4483 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4484 	ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false);
4485 
4486 	if (ret)
4487 		goto unmap_save;
4488 
4489 	svm->nested.nested_run_pending = 1;
4490 
4491 unmap_save:
4492 	kvm_vcpu_unmap(vcpu, &map_save, true);
4493 unmap_map:
4494 	kvm_vcpu_unmap(vcpu, &map, true);
4495 	return ret;
4496 }
4497 
4498 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4499 {
4500 	struct vcpu_svm *svm = to_svm(vcpu);
4501 
4502 	if (!gif_set(svm)) {
4503 		if (vgif)
4504 			svm_set_intercept(svm, INTERCEPT_STGI);
4505 		/* STGI will cause a vm exit */
4506 	} else {
4507 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4508 	}
4509 }
4510 
4511 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4512 					void *insn, int insn_len)
4513 {
4514 	bool smep, smap, is_user;
4515 	unsigned long cr4;
4516 	u64 error_code;
4517 
4518 	/* Emulation is always possible when KVM has access to all guest state. */
4519 	if (!sev_guest(vcpu->kvm))
4520 		return true;
4521 
4522 	/* #UD and #GP should never be intercepted for SEV guests. */
4523 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4524 				  EMULTYPE_TRAP_UD_FORCED |
4525 				  EMULTYPE_VMWARE_GP));
4526 
4527 	/*
4528 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4529 	 * to guest register state.
4530 	 */
4531 	if (sev_es_guest(vcpu->kvm))
4532 		return false;
4533 
4534 	/*
4535 	 * Emulation is possible if the instruction is already decoded, e.g.
4536 	 * when completing I/O after returning from userspace.
4537 	 */
4538 	if (emul_type & EMULTYPE_NO_DECODE)
4539 		return true;
4540 
4541 	/*
4542 	 * Emulation is possible for SEV guests if and only if a prefilled
4543 	 * buffer containing the bytes of the intercepted instruction is
4544 	 * available. SEV guest memory is encrypted with a guest specific key
4545 	 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4546 	 * decode garbage.
4547 	 *
4548 	 * Inject #UD if KVM reached this point without an instruction buffer.
4549 	 * In practice, this path should never be hit by a well-behaved guest,
4550 	 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4551 	 * is still theoretically reachable, e.g. via unaccelerated fault-like
4552 	 * AVIC access, and needs to be handled by KVM to avoid putting the
4553 	 * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
4554 	 * but its the least awful option given lack of insight into the guest.
4555 	 */
4556 	if (unlikely(!insn)) {
4557 		kvm_queue_exception(vcpu, UD_VECTOR);
4558 		return false;
4559 	}
4560 
4561 	/*
4562 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4563 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4564 	 * the faulting instruction because the code fetch itself faulted, e.g.
4565 	 * the guest attempted to fetch from emulated MMIO or a guest page
4566 	 * table used to translate CS:RIP resides in emulated MMIO.
4567 	 */
4568 	if (likely(insn_len))
4569 		return true;
4570 
4571 	/*
4572 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4573 	 *
4574 	 * Errata:
4575 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4576 	 * possible that CPU microcode implementing DecodeAssist will fail to
4577 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4578 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4579 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4580 	 * gives up and does not fill the instruction bytes buffer.
4581 	 *
4582 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4583 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4584 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4585 	 * GuestIntrBytes field of the VMCB.
4586 	 *
4587 	 * This does _not_ mean that the erratum has been encountered, as the
4588 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4589 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4590 	 * encountered a reserved/not-present #PF.
4591 	 *
4592 	 * To hit the erratum, the following conditions must be true:
4593 	 *    1. CR4.SMAP=1 (obviously).
4594 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4595 	 *       have been hit as the guest would have encountered a SMEP
4596 	 *       violation #PF, not a #NPF.
4597 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4598 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4599 	 *
4600 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4601 	 * while translating guest page tables (see below).
4602 	 */
4603 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4604 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4605 		goto resume_guest;
4606 
4607 	cr4 = kvm_read_cr4(vcpu);
4608 	smep = cr4 & X86_CR4_SMEP;
4609 	smap = cr4 & X86_CR4_SMAP;
4610 	is_user = svm_get_cpl(vcpu) == 3;
4611 	if (smap && (!smep || is_user)) {
4612 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4613 
4614 		/*
4615 		 * If the fault occurred in userspace, arbitrarily inject #GP
4616 		 * to avoid killing the guest and to hopefully avoid confusing
4617 		 * the guest kernel too much, e.g. injecting #PF would not be
4618 		 * coherent with respect to the guest's page tables.  Request
4619 		 * triple fault if the fault occurred in the kernel as there's
4620 		 * no fault that KVM can inject without confusing the guest.
4621 		 * In practice, the triple fault is moot as no sane SEV kernel
4622 		 * will execute from user memory while also running with SMAP=1.
4623 		 */
4624 		if (is_user)
4625 			kvm_inject_gp(vcpu, 0);
4626 		else
4627 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4628 	}
4629 
4630 resume_guest:
4631 	/*
4632 	 * If the erratum was not hit, simply resume the guest and let it fault
4633 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4634 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4635 	 * userspace will kill the guest, and letting the emulator read garbage
4636 	 * will yield random behavior and potentially corrupt the guest.
4637 	 *
4638 	 * Simply resuming the guest is technically not a violation of the SEV
4639 	 * architecture.  AMD's APM states that all code fetches and page table
4640 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4641 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4642 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4643 	 * the guest spin is technically "ignoring" the access.
4644 	 */
4645 	return false;
4646 }
4647 
4648 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4649 {
4650 	struct vcpu_svm *svm = to_svm(vcpu);
4651 
4652 	return !gif_set(svm);
4653 }
4654 
4655 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4656 {
4657 	if (!sev_es_guest(vcpu->kvm))
4658 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4659 
4660 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4661 }
4662 
4663 static void svm_vm_destroy(struct kvm *kvm)
4664 {
4665 	avic_vm_destroy(kvm);
4666 	sev_vm_destroy(kvm);
4667 }
4668 
4669 static int svm_vm_init(struct kvm *kvm)
4670 {
4671 	if (!pause_filter_count || !pause_filter_thresh)
4672 		kvm->arch.pause_in_guest = true;
4673 
4674 	if (enable_apicv) {
4675 		int ret = avic_vm_init(kvm);
4676 		if (ret)
4677 			return ret;
4678 	}
4679 
4680 	return 0;
4681 }
4682 
4683 static struct kvm_x86_ops svm_x86_ops __initdata = {
4684 	.name = "kvm_amd",
4685 
4686 	.hardware_unsetup = svm_hardware_unsetup,
4687 	.hardware_enable = svm_hardware_enable,
4688 	.hardware_disable = svm_hardware_disable,
4689 	.has_emulated_msr = svm_has_emulated_msr,
4690 
4691 	.vcpu_create = svm_vcpu_create,
4692 	.vcpu_free = svm_vcpu_free,
4693 	.vcpu_reset = svm_vcpu_reset,
4694 
4695 	.vm_size = sizeof(struct kvm_svm),
4696 	.vm_init = svm_vm_init,
4697 	.vm_destroy = svm_vm_destroy,
4698 
4699 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4700 	.vcpu_load = svm_vcpu_load,
4701 	.vcpu_put = svm_vcpu_put,
4702 	.vcpu_blocking = avic_vcpu_blocking,
4703 	.vcpu_unblocking = avic_vcpu_unblocking,
4704 
4705 	.update_exception_bitmap = svm_update_exception_bitmap,
4706 	.get_msr_feature = svm_get_msr_feature,
4707 	.get_msr = svm_get_msr,
4708 	.set_msr = svm_set_msr,
4709 	.get_segment_base = svm_get_segment_base,
4710 	.get_segment = svm_get_segment,
4711 	.set_segment = svm_set_segment,
4712 	.get_cpl = svm_get_cpl,
4713 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4714 	.set_cr0 = svm_set_cr0,
4715 	.post_set_cr3 = sev_post_set_cr3,
4716 	.is_valid_cr4 = svm_is_valid_cr4,
4717 	.set_cr4 = svm_set_cr4,
4718 	.set_efer = svm_set_efer,
4719 	.get_idt = svm_get_idt,
4720 	.set_idt = svm_set_idt,
4721 	.get_gdt = svm_get_gdt,
4722 	.set_gdt = svm_set_gdt,
4723 	.set_dr7 = svm_set_dr7,
4724 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4725 	.cache_reg = svm_cache_reg,
4726 	.get_rflags = svm_get_rflags,
4727 	.set_rflags = svm_set_rflags,
4728 	.get_if_flag = svm_get_if_flag,
4729 
4730 	.flush_tlb_all = svm_flush_tlb_current,
4731 	.flush_tlb_current = svm_flush_tlb_current,
4732 	.flush_tlb_gva = svm_flush_tlb_gva,
4733 	.flush_tlb_guest = svm_flush_tlb_current,
4734 
4735 	.vcpu_pre_run = svm_vcpu_pre_run,
4736 	.vcpu_run = svm_vcpu_run,
4737 	.handle_exit = svm_handle_exit,
4738 	.skip_emulated_instruction = svm_skip_emulated_instruction,
4739 	.update_emulated_instruction = NULL,
4740 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4741 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4742 	.patch_hypercall = svm_patch_hypercall,
4743 	.inject_irq = svm_inject_irq,
4744 	.inject_nmi = svm_inject_nmi,
4745 	.inject_exception = svm_inject_exception,
4746 	.cancel_injection = svm_cancel_injection,
4747 	.interrupt_allowed = svm_interrupt_allowed,
4748 	.nmi_allowed = svm_nmi_allowed,
4749 	.get_nmi_mask = svm_get_nmi_mask,
4750 	.set_nmi_mask = svm_set_nmi_mask,
4751 	.enable_nmi_window = svm_enable_nmi_window,
4752 	.enable_irq_window = svm_enable_irq_window,
4753 	.update_cr8_intercept = svm_update_cr8_intercept,
4754 	.set_virtual_apic_mode = avic_set_virtual_apic_mode,
4755 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4756 	.check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons,
4757 	.apicv_post_state_restore = avic_apicv_post_state_restore,
4758 
4759 	.get_exit_info = svm_get_exit_info,
4760 
4761 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4762 
4763 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4764 
4765 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
4766 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4767 	.write_tsc_offset = svm_write_tsc_offset,
4768 	.write_tsc_multiplier = svm_write_tsc_multiplier,
4769 
4770 	.load_mmu_pgd = svm_load_mmu_pgd,
4771 
4772 	.check_intercept = svm_check_intercept,
4773 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4774 
4775 	.request_immediate_exit = __kvm_request_immediate_exit,
4776 
4777 	.sched_in = svm_sched_in,
4778 
4779 	.nested_ops = &svm_nested_ops,
4780 
4781 	.deliver_interrupt = svm_deliver_interrupt,
4782 	.pi_update_irte = avic_pi_update_irte,
4783 	.setup_mce = svm_setup_mce,
4784 
4785 	.smi_allowed = svm_smi_allowed,
4786 	.enter_smm = svm_enter_smm,
4787 	.leave_smm = svm_leave_smm,
4788 	.enable_smi_window = svm_enable_smi_window,
4789 
4790 	.mem_enc_ioctl = sev_mem_enc_ioctl,
4791 	.mem_enc_register_region = sev_mem_enc_register_region,
4792 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
4793 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
4794 
4795 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4796 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
4797 
4798 	.can_emulate_instruction = svm_can_emulate_instruction,
4799 
4800 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4801 
4802 	.msr_filter_changed = svm_msr_filter_changed,
4803 	.complete_emulated_msr = svm_complete_emulated_msr,
4804 
4805 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4806 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
4807 };
4808 
4809 /*
4810  * The default MMIO mask is a single bit (excluding the present bit),
4811  * which could conflict with the memory encryption bit. Check for
4812  * memory encryption support and override the default MMIO mask if
4813  * memory encryption is enabled.
4814  */
4815 static __init void svm_adjust_mmio_mask(void)
4816 {
4817 	unsigned int enc_bit, mask_bit;
4818 	u64 msr, mask;
4819 
4820 	/* If there is no memory encryption support, use existing mask */
4821 	if (cpuid_eax(0x80000000) < 0x8000001f)
4822 		return;
4823 
4824 	/* If memory encryption is not enabled, use existing mask */
4825 	rdmsrl(MSR_AMD64_SYSCFG, msr);
4826 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4827 		return;
4828 
4829 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4830 	mask_bit = boot_cpu_data.x86_phys_bits;
4831 
4832 	/* Increment the mask bit if it is the same as the encryption bit */
4833 	if (enc_bit == mask_bit)
4834 		mask_bit++;
4835 
4836 	/*
4837 	 * If the mask bit location is below 52, then some bits above the
4838 	 * physical addressing limit will always be reserved, so use the
4839 	 * rsvd_bits() function to generate the mask. This mask, along with
4840 	 * the present bit, will be used to generate a page fault with
4841 	 * PFER.RSV = 1.
4842 	 *
4843 	 * If the mask bit location is 52 (or above), then clear the mask.
4844 	 */
4845 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4846 
4847 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4848 }
4849 
4850 static __init void svm_set_cpu_caps(void)
4851 {
4852 	kvm_set_cpu_caps();
4853 
4854 	kvm_caps.supported_xss = 0;
4855 
4856 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
4857 	if (nested) {
4858 		kvm_cpu_cap_set(X86_FEATURE_SVM);
4859 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4860 
4861 		if (nrips)
4862 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4863 
4864 		if (npt_enabled)
4865 			kvm_cpu_cap_set(X86_FEATURE_NPT);
4866 
4867 		if (tsc_scaling)
4868 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4869 
4870 		if (vls)
4871 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
4872 		if (lbrv)
4873 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
4874 
4875 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
4876 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
4877 
4878 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
4879 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
4880 
4881 		if (vgif)
4882 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
4883 
4884 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
4885 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4886 	}
4887 
4888 	/* CPUID 0x80000008 */
4889 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
4890 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
4891 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
4892 
4893 	/* AMD PMU PERFCTR_CORE CPUID */
4894 	if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4895 		kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
4896 
4897 	/* CPUID 0x8000001F (SME/SEV features) */
4898 	sev_set_cpu_caps();
4899 }
4900 
4901 static __init int svm_hardware_setup(void)
4902 {
4903 	int cpu;
4904 	struct page *iopm_pages;
4905 	void *iopm_va;
4906 	int r;
4907 	unsigned int order = get_order(IOPM_SIZE);
4908 
4909 	/*
4910 	 * NX is required for shadow paging and for NPT if the NX huge pages
4911 	 * mitigation is enabled.
4912 	 */
4913 	if (!boot_cpu_has(X86_FEATURE_NX)) {
4914 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
4915 		return -EOPNOTSUPP;
4916 	}
4917 	kvm_enable_efer_bits(EFER_NX);
4918 
4919 	iopm_pages = alloc_pages(GFP_KERNEL, order);
4920 
4921 	if (!iopm_pages)
4922 		return -ENOMEM;
4923 
4924 	iopm_va = page_address(iopm_pages);
4925 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
4926 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
4927 
4928 	init_msrpm_offsets();
4929 
4930 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
4931 				     XFEATURE_MASK_BNDCSR);
4932 
4933 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
4934 		kvm_enable_efer_bits(EFER_FFXSR);
4935 
4936 	if (tsc_scaling) {
4937 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
4938 			tsc_scaling = false;
4939 		} else {
4940 			pr_info("TSC scaling supported\n");
4941 			kvm_caps.has_tsc_control = true;
4942 		}
4943 	}
4944 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
4945 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
4946 
4947 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
4948 
4949 	/* Check for pause filtering support */
4950 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
4951 		pause_filter_count = 0;
4952 		pause_filter_thresh = 0;
4953 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
4954 		pause_filter_thresh = 0;
4955 	}
4956 
4957 	if (nested) {
4958 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
4959 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
4960 	}
4961 
4962 	/*
4963 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
4964 	 * NPT isn't supported if the host is using 2-level paging since host
4965 	 * CR4 is unchanged on VMRUN.
4966 	 */
4967 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
4968 		npt_enabled = false;
4969 
4970 	if (!boot_cpu_has(X86_FEATURE_NPT))
4971 		npt_enabled = false;
4972 
4973 	/* Force VM NPT level equal to the host's paging level */
4974 	kvm_configure_mmu(npt_enabled, get_npt_level(),
4975 			  get_npt_level(), PG_LEVEL_1G);
4976 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
4977 
4978 	/* Setup shadow_me_value and shadow_me_mask */
4979 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
4980 
4981 	svm_adjust_mmio_mask();
4982 
4983 	/*
4984 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
4985 	 * may be modified by svm_adjust_mmio_mask()).
4986 	 */
4987 	sev_hardware_setup();
4988 
4989 	svm_hv_hardware_setup();
4990 
4991 	for_each_possible_cpu(cpu) {
4992 		r = svm_cpu_init(cpu);
4993 		if (r)
4994 			goto err;
4995 	}
4996 
4997 	if (nrips) {
4998 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
4999 			nrips = false;
5000 	}
5001 
5002 	enable_apicv = avic = avic && avic_hardware_setup(&svm_x86_ops);
5003 
5004 	if (!enable_apicv) {
5005 		svm_x86_ops.vcpu_blocking = NULL;
5006 		svm_x86_ops.vcpu_unblocking = NULL;
5007 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5008 	}
5009 
5010 	if (vls) {
5011 		if (!npt_enabled ||
5012 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5013 		    !IS_ENABLED(CONFIG_X86_64)) {
5014 			vls = false;
5015 		} else {
5016 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5017 		}
5018 	}
5019 
5020 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5021 		svm_gp_erratum_intercept = false;
5022 
5023 	if (vgif) {
5024 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5025 			vgif = false;
5026 		else
5027 			pr_info("Virtual GIF supported\n");
5028 	}
5029 
5030 	if (lbrv) {
5031 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5032 			lbrv = false;
5033 		else
5034 			pr_info("LBR virtualization supported\n");
5035 	}
5036 
5037 	if (!enable_pmu)
5038 		pr_info("PMU virtualization is disabled\n");
5039 
5040 	svm_set_cpu_caps();
5041 
5042 	/*
5043 	 * It seems that on AMD processors PTE's accessed bit is
5044 	 * being set by the CPU hardware before the NPF vmexit.
5045 	 * This is not expected behaviour and our tests fail because
5046 	 * of it.
5047 	 * A workaround here is to disable support for
5048 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5049 	 * In this case userspace can know if there is support using
5050 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5051 	 * it
5052 	 * If future AMD CPU models change the behaviour described above,
5053 	 * this variable can be changed accordingly
5054 	 */
5055 	allow_smaller_maxphyaddr = !npt_enabled;
5056 
5057 	return 0;
5058 
5059 err:
5060 	svm_hardware_unsetup();
5061 	return r;
5062 }
5063 
5064 
5065 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5066 	.cpu_has_kvm_support = has_svm,
5067 	.disabled_by_bios = is_disabled,
5068 	.hardware_setup = svm_hardware_setup,
5069 	.check_processor_compatibility = svm_check_processor_compat,
5070 
5071 	.runtime_ops = &svm_x86_ops,
5072 	.pmu_ops = &amd_pmu_ops,
5073 };
5074 
5075 static int __init svm_init(void)
5076 {
5077 	__unused_size_checks();
5078 
5079 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
5080 			__alignof__(struct vcpu_svm), THIS_MODULE);
5081 }
5082 
5083 static void __exit svm_exit(void)
5084 {
5085 	kvm_exit();
5086 }
5087 
5088 module_init(svm_init)
5089 module_exit(svm_exit)
5090