1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 29 #include <asm/apic.h> 30 #include <asm/perf_event.h> 31 #include <asm/tlbflush.h> 32 #include <asm/desc.h> 33 #include <asm/debugreg.h> 34 #include <asm/kvm_para.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/spec-ctrl.h> 37 #include <asm/cpu_device_id.h> 38 #include <asm/traps.h> 39 40 #include <asm/virtext.h> 41 #include "trace.h" 42 43 #include "svm.h" 44 #include "svm_ops.h" 45 46 #include "kvm_onhyperv.h" 47 #include "svm_onhyperv.h" 48 49 #define __ex(x) __kvm_handle_fault_on_reboot(x) 50 51 MODULE_AUTHOR("Qumranet"); 52 MODULE_LICENSE("GPL"); 53 54 #ifdef MODULE 55 static const struct x86_cpu_id svm_cpu_id[] = { 56 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 57 {} 58 }; 59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 60 #endif 61 62 #define SEG_TYPE_LDT 2 63 #define SEG_TYPE_BUSY_TSS16 3 64 65 #define SVM_FEATURE_LBRV (1 << 1) 66 #define SVM_FEATURE_SVML (1 << 2) 67 #define SVM_FEATURE_TSC_RATE (1 << 4) 68 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 69 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 70 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 71 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 72 73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 74 75 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 76 #define TSC_RATIO_MIN 0x0000000000000001ULL 77 #define TSC_RATIO_MAX 0x000000ffffffffffULL 78 79 static bool erratum_383_found __read_mostly; 80 81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 82 83 /* 84 * Set osvw_len to higher value when updated Revision Guides 85 * are published and we know what the new status bits are 86 */ 87 static uint64_t osvw_len = 4, osvw_status; 88 89 static DEFINE_PER_CPU(u64, current_tsc_ratio); 90 #define TSC_RATIO_DEFAULT 0x0100000000ULL 91 92 static const struct svm_direct_access_msrs { 93 u32 index; /* Index of the MSR */ 94 bool always; /* True if intercept is initially cleared */ 95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 96 { .index = MSR_STAR, .always = true }, 97 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 98 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 99 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 100 #ifdef CONFIG_X86_64 101 { .index = MSR_GS_BASE, .always = true }, 102 { .index = MSR_FS_BASE, .always = true }, 103 { .index = MSR_KERNEL_GS_BASE, .always = true }, 104 { .index = MSR_LSTAR, .always = true }, 105 { .index = MSR_CSTAR, .always = true }, 106 { .index = MSR_SYSCALL_MASK, .always = true }, 107 #endif 108 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 109 { .index = MSR_IA32_PRED_CMD, .always = false }, 110 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 111 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 112 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 113 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 114 { .index = MSR_EFER, .always = false }, 115 { .index = MSR_IA32_CR_PAT, .always = false }, 116 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 117 { .index = MSR_INVALID, .always = false }, 118 }; 119 120 /* 121 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 122 * pause_filter_count: On processors that support Pause filtering(indicated 123 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 124 * count value. On VMRUN this value is loaded into an internal counter. 125 * Each time a pause instruction is executed, this counter is decremented 126 * until it reaches zero at which time a #VMEXIT is generated if pause 127 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 128 * Intercept Filtering for more details. 129 * This also indicate if ple logic enabled. 130 * 131 * pause_filter_thresh: In addition, some processor families support advanced 132 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 133 * the amount of time a guest is allowed to execute in a pause loop. 134 * In this mode, a 16-bit pause filter threshold field is added in the 135 * VMCB. The threshold value is a cycle count that is used to reset the 136 * pause counter. As with simple pause filtering, VMRUN loads the pause 137 * count value from VMCB into an internal counter. Then, on each pause 138 * instruction the hardware checks the elapsed number of cycles since 139 * the most recent pause instruction against the pause filter threshold. 140 * If the elapsed cycle count is greater than the pause filter threshold, 141 * then the internal pause count is reloaded from the VMCB and execution 142 * continues. If the elapsed cycle count is less than the pause filter 143 * threshold, then the internal pause count is decremented. If the count 144 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 145 * triggered. If advanced pause filtering is supported and pause filter 146 * threshold field is set to zero, the filter will operate in the simpler, 147 * count only mode. 148 */ 149 150 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 151 module_param(pause_filter_thresh, ushort, 0444); 152 153 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 154 module_param(pause_filter_count, ushort, 0444); 155 156 /* Default doubles per-vcpu window every exit. */ 157 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 158 module_param(pause_filter_count_grow, ushort, 0444); 159 160 /* Default resets per-vcpu window every exit to pause_filter_count. */ 161 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 162 module_param(pause_filter_count_shrink, ushort, 0444); 163 164 /* Default is to compute the maximum so we can never overflow. */ 165 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 166 module_param(pause_filter_count_max, ushort, 0444); 167 168 /* 169 * Use nested page tables by default. Note, NPT may get forced off by 170 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 171 */ 172 bool npt_enabled = true; 173 module_param_named(npt, npt_enabled, bool, 0444); 174 175 /* allow nested virtualization in KVM/SVM */ 176 static int nested = true; 177 module_param(nested, int, S_IRUGO); 178 179 /* enable/disable Next RIP Save */ 180 static int nrips = true; 181 module_param(nrips, int, 0444); 182 183 /* enable/disable Virtual VMLOAD VMSAVE */ 184 static int vls = true; 185 module_param(vls, int, 0444); 186 187 /* enable/disable Virtual GIF */ 188 static int vgif = true; 189 module_param(vgif, int, 0444); 190 191 /* 192 * enable / disable AVIC. Because the defaults differ for APICv 193 * support between VMX and SVM we cannot use module_param_named. 194 */ 195 static bool avic; 196 module_param(avic, bool, 0444); 197 198 bool __read_mostly dump_invalid_vmcb; 199 module_param(dump_invalid_vmcb, bool, 0644); 200 201 static bool svm_gp_erratum_intercept = true; 202 203 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 204 205 static unsigned long iopm_base; 206 207 struct kvm_ldttss_desc { 208 u16 limit0; 209 u16 base0; 210 unsigned base1:8, type:5, dpl:2, p:1; 211 unsigned limit1:4, zero0:3, g:1, base2:8; 212 u32 base3; 213 u32 zero1; 214 } __attribute__((packed)); 215 216 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 217 218 /* 219 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 220 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 221 * 222 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 223 * defer the restoration of TSC_AUX until the CPU returns to userspace. 224 */ 225 static int tsc_aux_uret_slot __read_mostly = -1; 226 227 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 228 229 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 230 #define MSRS_RANGE_SIZE 2048 231 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 232 233 u32 svm_msrpm_offset(u32 msr) 234 { 235 u32 offset; 236 int i; 237 238 for (i = 0; i < NUM_MSR_MAPS; i++) { 239 if (msr < msrpm_ranges[i] || 240 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 241 continue; 242 243 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 244 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 245 246 /* Now we have the u8 offset - but need the u32 offset */ 247 return offset / 4; 248 } 249 250 /* MSR not in any range */ 251 return MSR_INVALID; 252 } 253 254 #define MAX_INST_SIZE 15 255 256 static int get_max_npt_level(void) 257 { 258 #ifdef CONFIG_X86_64 259 return PT64_ROOT_4LEVEL; 260 #else 261 return PT32E_ROOT_LEVEL; 262 #endif 263 } 264 265 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 266 { 267 struct vcpu_svm *svm = to_svm(vcpu); 268 u64 old_efer = vcpu->arch.efer; 269 vcpu->arch.efer = efer; 270 271 if (!npt_enabled) { 272 /* Shadow paging assumes NX to be available. */ 273 efer |= EFER_NX; 274 275 if (!(efer & EFER_LMA)) 276 efer &= ~EFER_LME; 277 } 278 279 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 280 if (!(efer & EFER_SVME)) { 281 svm_leave_nested(svm); 282 svm_set_gif(svm, true); 283 /* #GP intercept is still needed for vmware backdoor */ 284 if (!enable_vmware_backdoor) 285 clr_exception_intercept(svm, GP_VECTOR); 286 287 /* 288 * Free the nested guest state, unless we are in SMM. 289 * In this case we will return to the nested guest 290 * as soon as we leave SMM. 291 */ 292 if (!is_smm(vcpu)) 293 svm_free_nested(svm); 294 295 } else { 296 int ret = svm_allocate_nested(svm); 297 298 if (ret) { 299 vcpu->arch.efer = old_efer; 300 return ret; 301 } 302 303 if (svm_gp_erratum_intercept) 304 set_exception_intercept(svm, GP_VECTOR); 305 } 306 } 307 308 svm->vmcb->save.efer = efer | EFER_SVME; 309 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 310 return 0; 311 } 312 313 static int is_external_interrupt(u32 info) 314 { 315 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 316 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 317 } 318 319 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 320 { 321 struct vcpu_svm *svm = to_svm(vcpu); 322 u32 ret = 0; 323 324 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 325 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 326 return ret; 327 } 328 329 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 330 { 331 struct vcpu_svm *svm = to_svm(vcpu); 332 333 if (mask == 0) 334 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 335 else 336 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 337 338 } 339 340 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 341 { 342 struct vcpu_svm *svm = to_svm(vcpu); 343 344 /* 345 * SEV-ES does not expose the next RIP. The RIP update is controlled by 346 * the type of exit and the #VC handler in the guest. 347 */ 348 if (sev_es_guest(vcpu->kvm)) 349 goto done; 350 351 if (nrips && svm->vmcb->control.next_rip != 0) { 352 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 353 svm->next_rip = svm->vmcb->control.next_rip; 354 } 355 356 if (!svm->next_rip) { 357 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 358 return 0; 359 } else { 360 kvm_rip_write(vcpu, svm->next_rip); 361 } 362 363 done: 364 svm_set_interrupt_shadow(vcpu, 0); 365 366 return 1; 367 } 368 369 static void svm_queue_exception(struct kvm_vcpu *vcpu) 370 { 371 struct vcpu_svm *svm = to_svm(vcpu); 372 unsigned nr = vcpu->arch.exception.nr; 373 bool has_error_code = vcpu->arch.exception.has_error_code; 374 u32 error_code = vcpu->arch.exception.error_code; 375 376 kvm_deliver_exception_payload(vcpu); 377 378 if (nr == BP_VECTOR && !nrips) { 379 unsigned long rip, old_rip = kvm_rip_read(vcpu); 380 381 /* 382 * For guest debugging where we have to reinject #BP if some 383 * INT3 is guest-owned: 384 * Emulate nRIP by moving RIP forward. Will fail if injection 385 * raises a fault that is not intercepted. Still better than 386 * failing in all cases. 387 */ 388 (void)skip_emulated_instruction(vcpu); 389 rip = kvm_rip_read(vcpu); 390 svm->int3_rip = rip + svm->vmcb->save.cs.base; 391 svm->int3_injected = rip - old_rip; 392 } 393 394 svm->vmcb->control.event_inj = nr 395 | SVM_EVTINJ_VALID 396 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 397 | SVM_EVTINJ_TYPE_EXEPT; 398 svm->vmcb->control.event_inj_err = error_code; 399 } 400 401 static void svm_init_erratum_383(void) 402 { 403 u32 low, high; 404 int err; 405 u64 val; 406 407 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 408 return; 409 410 /* Use _safe variants to not break nested virtualization */ 411 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 412 if (err) 413 return; 414 415 val |= (1ULL << 47); 416 417 low = lower_32_bits(val); 418 high = upper_32_bits(val); 419 420 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 421 422 erratum_383_found = true; 423 } 424 425 static void svm_init_osvw(struct kvm_vcpu *vcpu) 426 { 427 /* 428 * Guests should see errata 400 and 415 as fixed (assuming that 429 * HLT and IO instructions are intercepted). 430 */ 431 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 432 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 433 434 /* 435 * By increasing VCPU's osvw.length to 3 we are telling the guest that 436 * all osvw.status bits inside that length, including bit 0 (which is 437 * reserved for erratum 298), are valid. However, if host processor's 438 * osvw_len is 0 then osvw_status[0] carries no information. We need to 439 * be conservative here and therefore we tell the guest that erratum 298 440 * is present (because we really don't know). 441 */ 442 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 443 vcpu->arch.osvw.status |= 1; 444 } 445 446 static int has_svm(void) 447 { 448 const char *msg; 449 450 if (!cpu_has_svm(&msg)) { 451 printk(KERN_INFO "has_svm: %s\n", msg); 452 return 0; 453 } 454 455 if (sev_active()) { 456 pr_info("KVM is unsupported when running as an SEV guest\n"); 457 return 0; 458 } 459 460 if (pgtable_l5_enabled()) { 461 pr_info("KVM doesn't yet support 5-level paging on AMD SVM\n"); 462 return 0; 463 } 464 465 return 1; 466 } 467 468 static void svm_hardware_disable(void) 469 { 470 /* Make sure we clean up behind us */ 471 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) 472 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 473 474 cpu_svm_disable(); 475 476 amd_pmu_disable_virt(); 477 } 478 479 static int svm_hardware_enable(void) 480 { 481 482 struct svm_cpu_data *sd; 483 uint64_t efer; 484 struct desc_struct *gdt; 485 int me = raw_smp_processor_id(); 486 487 rdmsrl(MSR_EFER, efer); 488 if (efer & EFER_SVME) 489 return -EBUSY; 490 491 if (!has_svm()) { 492 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 493 return -EINVAL; 494 } 495 sd = per_cpu(svm_data, me); 496 if (!sd) { 497 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 498 return -EINVAL; 499 } 500 501 sd->asid_generation = 1; 502 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 503 sd->next_asid = sd->max_asid + 1; 504 sd->min_asid = max_sev_asid + 1; 505 506 gdt = get_current_gdt_rw(); 507 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 508 509 wrmsrl(MSR_EFER, efer | EFER_SVME); 510 511 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); 512 513 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 514 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 515 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 516 } 517 518 519 /* 520 * Get OSVW bits. 521 * 522 * Note that it is possible to have a system with mixed processor 523 * revisions and therefore different OSVW bits. If bits are not the same 524 * on different processors then choose the worst case (i.e. if erratum 525 * is present on one processor and not on another then assume that the 526 * erratum is present everywhere). 527 */ 528 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 529 uint64_t len, status = 0; 530 int err; 531 532 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 533 if (!err) 534 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 535 &err); 536 537 if (err) 538 osvw_status = osvw_len = 0; 539 else { 540 if (len < osvw_len) 541 osvw_len = len; 542 osvw_status |= status; 543 osvw_status &= (1ULL << osvw_len) - 1; 544 } 545 } else 546 osvw_status = osvw_len = 0; 547 548 svm_init_erratum_383(); 549 550 amd_pmu_enable_virt(); 551 552 return 0; 553 } 554 555 static void svm_cpu_uninit(int cpu) 556 { 557 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 558 559 if (!sd) 560 return; 561 562 per_cpu(svm_data, cpu) = NULL; 563 kfree(sd->sev_vmcbs); 564 __free_page(sd->save_area); 565 kfree(sd); 566 } 567 568 static int svm_cpu_init(int cpu) 569 { 570 struct svm_cpu_data *sd; 571 int ret = -ENOMEM; 572 573 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 574 if (!sd) 575 return ret; 576 sd->cpu = cpu; 577 sd->save_area = alloc_page(GFP_KERNEL); 578 if (!sd->save_area) 579 goto free_cpu_data; 580 581 clear_page(page_address(sd->save_area)); 582 583 ret = sev_cpu_init(sd); 584 if (ret) 585 goto free_save_area; 586 587 per_cpu(svm_data, cpu) = sd; 588 589 return 0; 590 591 free_save_area: 592 __free_page(sd->save_area); 593 free_cpu_data: 594 kfree(sd); 595 return ret; 596 597 } 598 599 static int direct_access_msr_slot(u32 msr) 600 { 601 u32 i; 602 603 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 604 if (direct_access_msrs[i].index == msr) 605 return i; 606 607 return -ENOENT; 608 } 609 610 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 611 int write) 612 { 613 struct vcpu_svm *svm = to_svm(vcpu); 614 int slot = direct_access_msr_slot(msr); 615 616 if (slot == -ENOENT) 617 return; 618 619 /* Set the shadow bitmaps to the desired intercept states */ 620 if (read) 621 set_bit(slot, svm->shadow_msr_intercept.read); 622 else 623 clear_bit(slot, svm->shadow_msr_intercept.read); 624 625 if (write) 626 set_bit(slot, svm->shadow_msr_intercept.write); 627 else 628 clear_bit(slot, svm->shadow_msr_intercept.write); 629 } 630 631 static bool valid_msr_intercept(u32 index) 632 { 633 return direct_access_msr_slot(index) != -ENOENT; 634 } 635 636 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 637 { 638 u8 bit_write; 639 unsigned long tmp; 640 u32 offset; 641 u32 *msrpm; 642 643 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 644 to_svm(vcpu)->msrpm; 645 646 offset = svm_msrpm_offset(msr); 647 bit_write = 2 * (msr & 0x0f) + 1; 648 tmp = msrpm[offset]; 649 650 BUG_ON(offset == MSR_INVALID); 651 652 return !!test_bit(bit_write, &tmp); 653 } 654 655 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 656 u32 msr, int read, int write) 657 { 658 u8 bit_read, bit_write; 659 unsigned long tmp; 660 u32 offset; 661 662 /* 663 * If this warning triggers extend the direct_access_msrs list at the 664 * beginning of the file 665 */ 666 WARN_ON(!valid_msr_intercept(msr)); 667 668 /* Enforce non allowed MSRs to trap */ 669 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 670 read = 0; 671 672 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 673 write = 0; 674 675 offset = svm_msrpm_offset(msr); 676 bit_read = 2 * (msr & 0x0f); 677 bit_write = 2 * (msr & 0x0f) + 1; 678 tmp = msrpm[offset]; 679 680 BUG_ON(offset == MSR_INVALID); 681 682 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 683 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 684 685 msrpm[offset] = tmp; 686 687 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 688 689 } 690 691 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 692 int read, int write) 693 { 694 set_shadow_msr_intercept(vcpu, msr, read, write); 695 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 696 } 697 698 u32 *svm_vcpu_alloc_msrpm(void) 699 { 700 unsigned int order = get_order(MSRPM_SIZE); 701 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 702 u32 *msrpm; 703 704 if (!pages) 705 return NULL; 706 707 msrpm = page_address(pages); 708 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 709 710 return msrpm; 711 } 712 713 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 714 { 715 int i; 716 717 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 718 if (!direct_access_msrs[i].always) 719 continue; 720 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 721 } 722 } 723 724 725 void svm_vcpu_free_msrpm(u32 *msrpm) 726 { 727 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 728 } 729 730 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 731 { 732 struct vcpu_svm *svm = to_svm(vcpu); 733 u32 i; 734 735 /* 736 * Set intercept permissions for all direct access MSRs again. They 737 * will automatically get filtered through the MSR filter, so we are 738 * back in sync after this. 739 */ 740 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 741 u32 msr = direct_access_msrs[i].index; 742 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 743 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 744 745 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 746 } 747 } 748 749 static void add_msr_offset(u32 offset) 750 { 751 int i; 752 753 for (i = 0; i < MSRPM_OFFSETS; ++i) { 754 755 /* Offset already in list? */ 756 if (msrpm_offsets[i] == offset) 757 return; 758 759 /* Slot used by another offset? */ 760 if (msrpm_offsets[i] != MSR_INVALID) 761 continue; 762 763 /* Add offset to list */ 764 msrpm_offsets[i] = offset; 765 766 return; 767 } 768 769 /* 770 * If this BUG triggers the msrpm_offsets table has an overflow. Just 771 * increase MSRPM_OFFSETS in this case. 772 */ 773 BUG(); 774 } 775 776 static void init_msrpm_offsets(void) 777 { 778 int i; 779 780 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 781 782 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 783 u32 offset; 784 785 offset = svm_msrpm_offset(direct_access_msrs[i].index); 786 BUG_ON(offset == MSR_INVALID); 787 788 add_msr_offset(offset); 789 } 790 } 791 792 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 793 { 794 struct vcpu_svm *svm = to_svm(vcpu); 795 796 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 797 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 798 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 799 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 800 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 801 } 802 803 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 804 { 805 struct vcpu_svm *svm = to_svm(vcpu); 806 807 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 808 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 809 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 810 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 811 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 812 } 813 814 void disable_nmi_singlestep(struct vcpu_svm *svm) 815 { 816 svm->nmi_singlestep = false; 817 818 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 819 /* Clear our flags if they were not set by the guest */ 820 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 821 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 822 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 823 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 824 } 825 } 826 827 static void grow_ple_window(struct kvm_vcpu *vcpu) 828 { 829 struct vcpu_svm *svm = to_svm(vcpu); 830 struct vmcb_control_area *control = &svm->vmcb->control; 831 int old = control->pause_filter_count; 832 833 control->pause_filter_count = __grow_ple_window(old, 834 pause_filter_count, 835 pause_filter_count_grow, 836 pause_filter_count_max); 837 838 if (control->pause_filter_count != old) { 839 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 840 trace_kvm_ple_window_update(vcpu->vcpu_id, 841 control->pause_filter_count, old); 842 } 843 } 844 845 static void shrink_ple_window(struct kvm_vcpu *vcpu) 846 { 847 struct vcpu_svm *svm = to_svm(vcpu); 848 struct vmcb_control_area *control = &svm->vmcb->control; 849 int old = control->pause_filter_count; 850 851 control->pause_filter_count = 852 __shrink_ple_window(old, 853 pause_filter_count, 854 pause_filter_count_shrink, 855 pause_filter_count); 856 if (control->pause_filter_count != old) { 857 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 858 trace_kvm_ple_window_update(vcpu->vcpu_id, 859 control->pause_filter_count, old); 860 } 861 } 862 863 /* 864 * The default MMIO mask is a single bit (excluding the present bit), 865 * which could conflict with the memory encryption bit. Check for 866 * memory encryption support and override the default MMIO mask if 867 * memory encryption is enabled. 868 */ 869 static __init void svm_adjust_mmio_mask(void) 870 { 871 unsigned int enc_bit, mask_bit; 872 u64 msr, mask; 873 874 /* If there is no memory encryption support, use existing mask */ 875 if (cpuid_eax(0x80000000) < 0x8000001f) 876 return; 877 878 /* If memory encryption is not enabled, use existing mask */ 879 rdmsrl(MSR_AMD64_SYSCFG, msr); 880 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 881 return; 882 883 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 884 mask_bit = boot_cpu_data.x86_phys_bits; 885 886 /* Increment the mask bit if it is the same as the encryption bit */ 887 if (enc_bit == mask_bit) 888 mask_bit++; 889 890 /* 891 * If the mask bit location is below 52, then some bits above the 892 * physical addressing limit will always be reserved, so use the 893 * rsvd_bits() function to generate the mask. This mask, along with 894 * the present bit, will be used to generate a page fault with 895 * PFER.RSV = 1. 896 * 897 * If the mask bit location is 52 (or above), then clear the mask. 898 */ 899 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 900 901 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 902 } 903 904 static void svm_hardware_teardown(void) 905 { 906 int cpu; 907 908 sev_hardware_teardown(); 909 910 for_each_possible_cpu(cpu) 911 svm_cpu_uninit(cpu); 912 913 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 914 get_order(IOPM_SIZE)); 915 iopm_base = 0; 916 } 917 918 static __init void svm_set_cpu_caps(void) 919 { 920 kvm_set_cpu_caps(); 921 922 supported_xss = 0; 923 924 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 925 if (nested) { 926 kvm_cpu_cap_set(X86_FEATURE_SVM); 927 928 if (nrips) 929 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 930 931 if (npt_enabled) 932 kvm_cpu_cap_set(X86_FEATURE_NPT); 933 934 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 935 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 936 } 937 938 /* CPUID 0x80000008 */ 939 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 940 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 941 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 942 943 /* CPUID 0x8000001F (SME/SEV features) */ 944 sev_set_cpu_caps(); 945 } 946 947 static __init int svm_hardware_setup(void) 948 { 949 int cpu; 950 struct page *iopm_pages; 951 void *iopm_va; 952 int r; 953 unsigned int order = get_order(IOPM_SIZE); 954 955 /* 956 * NX is required for shadow paging and for NPT if the NX huge pages 957 * mitigation is enabled. 958 */ 959 if (!boot_cpu_has(X86_FEATURE_NX)) { 960 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 961 return -EOPNOTSUPP; 962 } 963 kvm_enable_efer_bits(EFER_NX); 964 965 iopm_pages = alloc_pages(GFP_KERNEL, order); 966 967 if (!iopm_pages) 968 return -ENOMEM; 969 970 iopm_va = page_address(iopm_pages); 971 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 972 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 973 974 init_msrpm_offsets(); 975 976 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 977 978 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 979 kvm_enable_efer_bits(EFER_FFXSR); 980 981 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 982 kvm_has_tsc_control = true; 983 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 984 kvm_tsc_scaling_ratio_frac_bits = 32; 985 } 986 987 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 988 989 /* Check for pause filtering support */ 990 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 991 pause_filter_count = 0; 992 pause_filter_thresh = 0; 993 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 994 pause_filter_thresh = 0; 995 } 996 997 if (nested) { 998 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 999 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 1000 } 1001 1002 /* 1003 * KVM's MMU doesn't support using 2-level paging for itself, and thus 1004 * NPT isn't supported if the host is using 2-level paging since host 1005 * CR4 is unchanged on VMRUN. 1006 */ 1007 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 1008 npt_enabled = false; 1009 1010 if (!boot_cpu_has(X86_FEATURE_NPT)) 1011 npt_enabled = false; 1012 1013 kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G); 1014 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 1015 1016 /* Note, SEV setup consumes npt_enabled. */ 1017 sev_hardware_setup(); 1018 1019 svm_hv_hardware_setup(); 1020 1021 svm_adjust_mmio_mask(); 1022 1023 for_each_possible_cpu(cpu) { 1024 r = svm_cpu_init(cpu); 1025 if (r) 1026 goto err; 1027 } 1028 1029 if (nrips) { 1030 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 1031 nrips = false; 1032 } 1033 1034 enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC); 1035 1036 if (enable_apicv) { 1037 pr_info("AVIC enabled\n"); 1038 1039 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 1040 } 1041 1042 if (vls) { 1043 if (!npt_enabled || 1044 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 1045 !IS_ENABLED(CONFIG_X86_64)) { 1046 vls = false; 1047 } else { 1048 pr_info("Virtual VMLOAD VMSAVE supported\n"); 1049 } 1050 } 1051 1052 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 1053 svm_gp_erratum_intercept = false; 1054 1055 if (vgif) { 1056 if (!boot_cpu_has(X86_FEATURE_VGIF)) 1057 vgif = false; 1058 else 1059 pr_info("Virtual GIF supported\n"); 1060 } 1061 1062 svm_set_cpu_caps(); 1063 1064 /* 1065 * It seems that on AMD processors PTE's accessed bit is 1066 * being set by the CPU hardware before the NPF vmexit. 1067 * This is not expected behaviour and our tests fail because 1068 * of it. 1069 * A workaround here is to disable support for 1070 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 1071 * In this case userspace can know if there is support using 1072 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 1073 * it 1074 * If future AMD CPU models change the behaviour described above, 1075 * this variable can be changed accordingly 1076 */ 1077 allow_smaller_maxphyaddr = !npt_enabled; 1078 1079 return 0; 1080 1081 err: 1082 svm_hardware_teardown(); 1083 return r; 1084 } 1085 1086 static void init_seg(struct vmcb_seg *seg) 1087 { 1088 seg->selector = 0; 1089 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1090 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1091 seg->limit = 0xffff; 1092 seg->base = 0; 1093 } 1094 1095 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1096 { 1097 seg->selector = 0; 1098 seg->attrib = SVM_SELECTOR_P_MASK | type; 1099 seg->limit = 0xffff; 1100 seg->base = 0; 1101 } 1102 1103 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1104 { 1105 struct vcpu_svm *svm = to_svm(vcpu); 1106 1107 return svm->nested.ctl.tsc_offset; 1108 } 1109 1110 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1111 { 1112 return kvm_default_tsc_scaling_ratio; 1113 } 1114 1115 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1116 { 1117 struct vcpu_svm *svm = to_svm(vcpu); 1118 1119 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1120 svm->vmcb->control.tsc_offset = offset; 1121 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1122 } 1123 1124 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1125 { 1126 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 1127 } 1128 1129 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1130 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1131 struct vcpu_svm *svm) 1132 { 1133 /* 1134 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1135 * roots, or if INVPCID is disabled in the guest to inject #UD. 1136 */ 1137 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1138 if (!npt_enabled || 1139 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1140 svm_set_intercept(svm, INTERCEPT_INVPCID); 1141 else 1142 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1143 } 1144 1145 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1146 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1147 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1148 else 1149 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1150 } 1151 } 1152 1153 static void init_vmcb(struct kvm_vcpu *vcpu) 1154 { 1155 struct vcpu_svm *svm = to_svm(vcpu); 1156 struct vmcb_control_area *control = &svm->vmcb->control; 1157 struct vmcb_save_area *save = &svm->vmcb->save; 1158 1159 vcpu->arch.hflags = 0; 1160 1161 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1162 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1163 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1164 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1165 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1166 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1167 if (!kvm_vcpu_apicv_active(vcpu)) 1168 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1169 1170 set_dr_intercepts(svm); 1171 1172 set_exception_intercept(svm, PF_VECTOR); 1173 set_exception_intercept(svm, UD_VECTOR); 1174 set_exception_intercept(svm, MC_VECTOR); 1175 set_exception_intercept(svm, AC_VECTOR); 1176 set_exception_intercept(svm, DB_VECTOR); 1177 /* 1178 * Guest access to VMware backdoor ports could legitimately 1179 * trigger #GP because of TSS I/O permission bitmap. 1180 * We intercept those #GP and allow access to them anyway 1181 * as VMware does. 1182 */ 1183 if (enable_vmware_backdoor) 1184 set_exception_intercept(svm, GP_VECTOR); 1185 1186 svm_set_intercept(svm, INTERCEPT_INTR); 1187 svm_set_intercept(svm, INTERCEPT_NMI); 1188 svm_set_intercept(svm, INTERCEPT_SMI); 1189 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1190 svm_set_intercept(svm, INTERCEPT_RDPMC); 1191 svm_set_intercept(svm, INTERCEPT_CPUID); 1192 svm_set_intercept(svm, INTERCEPT_INVD); 1193 svm_set_intercept(svm, INTERCEPT_INVLPG); 1194 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1195 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1196 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1197 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1198 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1199 svm_set_intercept(svm, INTERCEPT_VMRUN); 1200 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1201 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1202 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1203 svm_set_intercept(svm, INTERCEPT_STGI); 1204 svm_set_intercept(svm, INTERCEPT_CLGI); 1205 svm_set_intercept(svm, INTERCEPT_SKINIT); 1206 svm_set_intercept(svm, INTERCEPT_WBINVD); 1207 svm_set_intercept(svm, INTERCEPT_XSETBV); 1208 svm_set_intercept(svm, INTERCEPT_RDPRU); 1209 svm_set_intercept(svm, INTERCEPT_RSM); 1210 1211 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1212 svm_set_intercept(svm, INTERCEPT_MONITOR); 1213 svm_set_intercept(svm, INTERCEPT_MWAIT); 1214 } 1215 1216 if (!kvm_hlt_in_guest(vcpu->kvm)) 1217 svm_set_intercept(svm, INTERCEPT_HLT); 1218 1219 control->iopm_base_pa = __sme_set(iopm_base); 1220 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1221 control->int_ctl = V_INTR_MASKING_MASK; 1222 1223 init_seg(&save->es); 1224 init_seg(&save->ss); 1225 init_seg(&save->ds); 1226 init_seg(&save->fs); 1227 init_seg(&save->gs); 1228 1229 save->cs.selector = 0xf000; 1230 save->cs.base = 0xffff0000; 1231 /* Executable/Readable Code Segment */ 1232 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1233 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1234 save->cs.limit = 0xffff; 1235 1236 save->gdtr.limit = 0xffff; 1237 save->idtr.limit = 0xffff; 1238 1239 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1240 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1241 1242 svm_set_cr4(vcpu, 0); 1243 svm_set_efer(vcpu, 0); 1244 save->dr6 = 0xffff0ff0; 1245 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 1246 save->rip = 0x0000fff0; 1247 vcpu->arch.regs[VCPU_REGS_RIP] = save->rip; 1248 1249 /* 1250 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. 1251 * It also updates the guest-visible cr0 value. 1252 */ 1253 svm_set_cr0(vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); 1254 kvm_mmu_reset_context(vcpu); 1255 1256 save->cr4 = X86_CR4_PAE; 1257 /* rdx = ?? */ 1258 1259 if (npt_enabled) { 1260 /* Setup VMCB for Nested Paging */ 1261 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1262 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1263 clr_exception_intercept(svm, PF_VECTOR); 1264 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1265 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1266 save->g_pat = vcpu->arch.pat; 1267 save->cr3 = 0; 1268 save->cr4 = 0; 1269 } 1270 svm->current_vmcb->asid_generation = 0; 1271 svm->asid = 0; 1272 1273 svm->nested.vmcb12_gpa = INVALID_GPA; 1274 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1275 vcpu->arch.hflags = 0; 1276 1277 if (!kvm_pause_in_guest(vcpu->kvm)) { 1278 control->pause_filter_count = pause_filter_count; 1279 if (pause_filter_thresh) 1280 control->pause_filter_thresh = pause_filter_thresh; 1281 svm_set_intercept(svm, INTERCEPT_PAUSE); 1282 } else { 1283 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1284 } 1285 1286 svm_recalc_instruction_intercepts(vcpu, svm); 1287 1288 /* 1289 * If the host supports V_SPEC_CTRL then disable the interception 1290 * of MSR_IA32_SPEC_CTRL. 1291 */ 1292 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1293 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1294 1295 if (kvm_vcpu_apicv_active(vcpu)) 1296 avic_init_vmcb(svm); 1297 1298 if (vgif) { 1299 svm_clr_intercept(svm, INTERCEPT_STGI); 1300 svm_clr_intercept(svm, INTERCEPT_CLGI); 1301 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1302 } 1303 1304 if (sev_guest(vcpu->kvm)) { 1305 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1306 clr_exception_intercept(svm, UD_VECTOR); 1307 1308 if (sev_es_guest(vcpu->kvm)) { 1309 /* Perform SEV-ES specific VMCB updates */ 1310 sev_es_init_vmcb(svm); 1311 } 1312 } 1313 1314 svm_hv_init_vmcb(svm->vmcb); 1315 1316 vmcb_mark_all_dirty(svm->vmcb); 1317 1318 enable_gif(svm); 1319 1320 } 1321 1322 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1323 { 1324 struct vcpu_svm *svm = to_svm(vcpu); 1325 u32 dummy; 1326 u32 eax = 1; 1327 1328 svm->spec_ctrl = 0; 1329 svm->virt_spec_ctrl = 0; 1330 1331 if (!init_event) { 1332 vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE | 1333 MSR_IA32_APICBASE_ENABLE; 1334 if (kvm_vcpu_is_reset_bsp(vcpu)) 1335 vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP; 1336 } 1337 init_vmcb(vcpu); 1338 1339 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false); 1340 kvm_rdx_write(vcpu, eax); 1341 1342 if (kvm_vcpu_apicv_active(vcpu) && !init_event) 1343 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); 1344 } 1345 1346 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1347 { 1348 svm->current_vmcb = target_vmcb; 1349 svm->vmcb = target_vmcb->ptr; 1350 } 1351 1352 static int svm_create_vcpu(struct kvm_vcpu *vcpu) 1353 { 1354 struct vcpu_svm *svm; 1355 struct page *vmcb01_page; 1356 struct page *vmsa_page = NULL; 1357 int err; 1358 1359 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1360 svm = to_svm(vcpu); 1361 1362 err = -ENOMEM; 1363 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1364 if (!vmcb01_page) 1365 goto out; 1366 1367 if (sev_es_guest(vcpu->kvm)) { 1368 /* 1369 * SEV-ES guests require a separate VMSA page used to contain 1370 * the encrypted register state of the guest. 1371 */ 1372 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1373 if (!vmsa_page) 1374 goto error_free_vmcb_page; 1375 1376 /* 1377 * SEV-ES guests maintain an encrypted version of their FPU 1378 * state which is restored and saved on VMRUN and VMEXIT. 1379 * Free the fpu structure to prevent KVM from attempting to 1380 * access the FPU state. 1381 */ 1382 kvm_free_guest_fpu(vcpu); 1383 } 1384 1385 err = avic_init_vcpu(svm); 1386 if (err) 1387 goto error_free_vmsa_page; 1388 1389 /* We initialize this flag to true to make sure that the is_running 1390 * bit would be set the first time the vcpu is loaded. 1391 */ 1392 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) 1393 svm->avic_is_running = true; 1394 1395 svm->msrpm = svm_vcpu_alloc_msrpm(); 1396 if (!svm->msrpm) { 1397 err = -ENOMEM; 1398 goto error_free_vmsa_page; 1399 } 1400 1401 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1402 1403 svm->vmcb01.ptr = page_address(vmcb01_page); 1404 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1405 1406 if (vmsa_page) 1407 svm->vmsa = page_address(vmsa_page); 1408 1409 svm->guest_state_loaded = false; 1410 1411 svm_switch_vmcb(svm, &svm->vmcb01); 1412 init_vmcb(vcpu); 1413 1414 svm_init_osvw(vcpu); 1415 vcpu->arch.microcode_version = 0x01000065; 1416 1417 if (sev_es_guest(vcpu->kvm)) 1418 /* Perform SEV-ES specific VMCB creation updates */ 1419 sev_es_create_vcpu(svm); 1420 1421 return 0; 1422 1423 error_free_vmsa_page: 1424 if (vmsa_page) 1425 __free_page(vmsa_page); 1426 error_free_vmcb_page: 1427 __free_page(vmcb01_page); 1428 out: 1429 return err; 1430 } 1431 1432 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1433 { 1434 int i; 1435 1436 for_each_online_cpu(i) 1437 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1438 } 1439 1440 static void svm_free_vcpu(struct kvm_vcpu *vcpu) 1441 { 1442 struct vcpu_svm *svm = to_svm(vcpu); 1443 1444 /* 1445 * The vmcb page can be recycled, causing a false negative in 1446 * svm_vcpu_load(). So, ensure that no logical CPU has this 1447 * vmcb page recorded as its current vmcb. 1448 */ 1449 svm_clear_current_vmcb(svm->vmcb); 1450 1451 svm_free_nested(svm); 1452 1453 sev_free_vcpu(vcpu); 1454 1455 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1456 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1457 } 1458 1459 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) 1460 { 1461 struct vcpu_svm *svm = to_svm(vcpu); 1462 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 1463 1464 if (sev_es_guest(vcpu->kvm)) 1465 sev_es_unmap_ghcb(svm); 1466 1467 if (svm->guest_state_loaded) 1468 return; 1469 1470 /* 1471 * Save additional host state that will be restored on VMEXIT (sev-es) 1472 * or subsequent vmload of host save area. 1473 */ 1474 if (sev_es_guest(vcpu->kvm)) { 1475 sev_es_prepare_guest_switch(svm, vcpu->cpu); 1476 } else { 1477 vmsave(__sme_page_pa(sd->save_area)); 1478 } 1479 1480 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 1481 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1482 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1483 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1484 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1485 } 1486 } 1487 1488 if (likely(tsc_aux_uret_slot >= 0)) 1489 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1490 1491 svm->guest_state_loaded = true; 1492 } 1493 1494 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1495 { 1496 to_svm(vcpu)->guest_state_loaded = false; 1497 } 1498 1499 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1500 { 1501 struct vcpu_svm *svm = to_svm(vcpu); 1502 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1503 1504 if (sd->current_vmcb != svm->vmcb) { 1505 sd->current_vmcb = svm->vmcb; 1506 indirect_branch_prediction_barrier(); 1507 } 1508 avic_vcpu_load(vcpu, cpu); 1509 } 1510 1511 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1512 { 1513 avic_vcpu_put(vcpu); 1514 svm_prepare_host_switch(vcpu); 1515 1516 ++vcpu->stat.host_state_reload; 1517 } 1518 1519 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1520 { 1521 struct vcpu_svm *svm = to_svm(vcpu); 1522 unsigned long rflags = svm->vmcb->save.rflags; 1523 1524 if (svm->nmi_singlestep) { 1525 /* Hide our flags if they were not set by the guest */ 1526 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1527 rflags &= ~X86_EFLAGS_TF; 1528 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1529 rflags &= ~X86_EFLAGS_RF; 1530 } 1531 return rflags; 1532 } 1533 1534 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1535 { 1536 if (to_svm(vcpu)->nmi_singlestep) 1537 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1538 1539 /* 1540 * Any change of EFLAGS.VM is accompanied by a reload of SS 1541 * (caused by either a task switch or an inter-privilege IRET), 1542 * so we do not need to update the CPL here. 1543 */ 1544 to_svm(vcpu)->vmcb->save.rflags = rflags; 1545 } 1546 1547 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1548 { 1549 switch (reg) { 1550 case VCPU_EXREG_PDPTR: 1551 BUG_ON(!npt_enabled); 1552 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 1553 break; 1554 default: 1555 WARN_ON_ONCE(1); 1556 } 1557 } 1558 1559 static void svm_set_vintr(struct vcpu_svm *svm) 1560 { 1561 struct vmcb_control_area *control; 1562 1563 /* The following fields are ignored when AVIC is enabled */ 1564 WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu)); 1565 svm_set_intercept(svm, INTERCEPT_VINTR); 1566 1567 /* 1568 * This is just a dummy VINTR to actually cause a vmexit to happen. 1569 * Actual injection of virtual interrupts happens through EVENTINJ. 1570 */ 1571 control = &svm->vmcb->control; 1572 control->int_vector = 0x0; 1573 control->int_ctl &= ~V_INTR_PRIO_MASK; 1574 control->int_ctl |= V_IRQ_MASK | 1575 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1576 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1577 } 1578 1579 static void svm_clear_vintr(struct vcpu_svm *svm) 1580 { 1581 const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK; 1582 svm_clr_intercept(svm, INTERCEPT_VINTR); 1583 1584 /* Drop int_ctl fields related to VINTR injection. */ 1585 svm->vmcb->control.int_ctl &= mask; 1586 if (is_guest_mode(&svm->vcpu)) { 1587 svm->vmcb01.ptr->control.int_ctl &= mask; 1588 1589 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1590 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1591 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask; 1592 } 1593 1594 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1595 } 1596 1597 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1598 { 1599 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1600 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1601 1602 switch (seg) { 1603 case VCPU_SREG_CS: return &save->cs; 1604 case VCPU_SREG_DS: return &save->ds; 1605 case VCPU_SREG_ES: return &save->es; 1606 case VCPU_SREG_FS: return &save01->fs; 1607 case VCPU_SREG_GS: return &save01->gs; 1608 case VCPU_SREG_SS: return &save->ss; 1609 case VCPU_SREG_TR: return &save01->tr; 1610 case VCPU_SREG_LDTR: return &save01->ldtr; 1611 } 1612 BUG(); 1613 return NULL; 1614 } 1615 1616 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1617 { 1618 struct vmcb_seg *s = svm_seg(vcpu, seg); 1619 1620 return s->base; 1621 } 1622 1623 static void svm_get_segment(struct kvm_vcpu *vcpu, 1624 struct kvm_segment *var, int seg) 1625 { 1626 struct vmcb_seg *s = svm_seg(vcpu, seg); 1627 1628 var->base = s->base; 1629 var->limit = s->limit; 1630 var->selector = s->selector; 1631 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1632 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1633 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1634 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1635 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1636 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1637 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1638 1639 /* 1640 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1641 * However, the SVM spec states that the G bit is not observed by the 1642 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1643 * So let's synthesize a legal G bit for all segments, this helps 1644 * running KVM nested. It also helps cross-vendor migration, because 1645 * Intel's vmentry has a check on the 'G' bit. 1646 */ 1647 var->g = s->limit > 0xfffff; 1648 1649 /* 1650 * AMD's VMCB does not have an explicit unusable field, so emulate it 1651 * for cross vendor migration purposes by "not present" 1652 */ 1653 var->unusable = !var->present; 1654 1655 switch (seg) { 1656 case VCPU_SREG_TR: 1657 /* 1658 * Work around a bug where the busy flag in the tr selector 1659 * isn't exposed 1660 */ 1661 var->type |= 0x2; 1662 break; 1663 case VCPU_SREG_DS: 1664 case VCPU_SREG_ES: 1665 case VCPU_SREG_FS: 1666 case VCPU_SREG_GS: 1667 /* 1668 * The accessed bit must always be set in the segment 1669 * descriptor cache, although it can be cleared in the 1670 * descriptor, the cached bit always remains at 1. Since 1671 * Intel has a check on this, set it here to support 1672 * cross-vendor migration. 1673 */ 1674 if (!var->unusable) 1675 var->type |= 0x1; 1676 break; 1677 case VCPU_SREG_SS: 1678 /* 1679 * On AMD CPUs sometimes the DB bit in the segment 1680 * descriptor is left as 1, although the whole segment has 1681 * been made unusable. Clear it here to pass an Intel VMX 1682 * entry check when cross vendor migrating. 1683 */ 1684 if (var->unusable) 1685 var->db = 0; 1686 /* This is symmetric with svm_set_segment() */ 1687 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1688 break; 1689 } 1690 } 1691 1692 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1693 { 1694 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1695 1696 return save->cpl; 1697 } 1698 1699 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1700 { 1701 struct vcpu_svm *svm = to_svm(vcpu); 1702 1703 dt->size = svm->vmcb->save.idtr.limit; 1704 dt->address = svm->vmcb->save.idtr.base; 1705 } 1706 1707 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1708 { 1709 struct vcpu_svm *svm = to_svm(vcpu); 1710 1711 svm->vmcb->save.idtr.limit = dt->size; 1712 svm->vmcb->save.idtr.base = dt->address ; 1713 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1714 } 1715 1716 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1717 { 1718 struct vcpu_svm *svm = to_svm(vcpu); 1719 1720 dt->size = svm->vmcb->save.gdtr.limit; 1721 dt->address = svm->vmcb->save.gdtr.base; 1722 } 1723 1724 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1725 { 1726 struct vcpu_svm *svm = to_svm(vcpu); 1727 1728 svm->vmcb->save.gdtr.limit = dt->size; 1729 svm->vmcb->save.gdtr.base = dt->address ; 1730 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1731 } 1732 1733 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1734 { 1735 struct vcpu_svm *svm = to_svm(vcpu); 1736 u64 hcr0 = cr0; 1737 1738 #ifdef CONFIG_X86_64 1739 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1740 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1741 vcpu->arch.efer |= EFER_LMA; 1742 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1743 } 1744 1745 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1746 vcpu->arch.efer &= ~EFER_LMA; 1747 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1748 } 1749 } 1750 #endif 1751 vcpu->arch.cr0 = cr0; 1752 1753 if (!npt_enabled) 1754 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1755 1756 /* 1757 * re-enable caching here because the QEMU bios 1758 * does not do it - this results in some delay at 1759 * reboot 1760 */ 1761 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1762 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1763 1764 svm->vmcb->save.cr0 = hcr0; 1765 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1766 1767 /* 1768 * SEV-ES guests must always keep the CR intercepts cleared. CR 1769 * tracking is done using the CR write traps. 1770 */ 1771 if (sev_es_guest(vcpu->kvm)) 1772 return; 1773 1774 if (hcr0 == cr0) { 1775 /* Selective CR0 write remains on. */ 1776 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1777 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1778 } else { 1779 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1780 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1781 } 1782 } 1783 1784 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1785 { 1786 return true; 1787 } 1788 1789 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1790 { 1791 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1792 unsigned long old_cr4 = vcpu->arch.cr4; 1793 1794 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1795 svm_flush_tlb(vcpu); 1796 1797 vcpu->arch.cr4 = cr4; 1798 if (!npt_enabled) 1799 cr4 |= X86_CR4_PAE; 1800 cr4 |= host_cr4_mce; 1801 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1802 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1803 1804 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1805 kvm_update_cpuid_runtime(vcpu); 1806 } 1807 1808 static void svm_set_segment(struct kvm_vcpu *vcpu, 1809 struct kvm_segment *var, int seg) 1810 { 1811 struct vcpu_svm *svm = to_svm(vcpu); 1812 struct vmcb_seg *s = svm_seg(vcpu, seg); 1813 1814 s->base = var->base; 1815 s->limit = var->limit; 1816 s->selector = var->selector; 1817 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1818 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1819 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1820 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1821 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1822 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1823 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1824 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1825 1826 /* 1827 * This is always accurate, except if SYSRET returned to a segment 1828 * with SS.DPL != 3. Intel does not have this quirk, and always 1829 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1830 * would entail passing the CPL to userspace and back. 1831 */ 1832 if (seg == VCPU_SREG_SS) 1833 /* This is symmetric with svm_get_segment() */ 1834 svm->vmcb->save.cpl = (var->dpl & 3); 1835 1836 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1837 } 1838 1839 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1840 { 1841 struct vcpu_svm *svm = to_svm(vcpu); 1842 1843 clr_exception_intercept(svm, BP_VECTOR); 1844 1845 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1846 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1847 set_exception_intercept(svm, BP_VECTOR); 1848 } 1849 } 1850 1851 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1852 { 1853 if (sd->next_asid > sd->max_asid) { 1854 ++sd->asid_generation; 1855 sd->next_asid = sd->min_asid; 1856 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1857 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1858 } 1859 1860 svm->current_vmcb->asid_generation = sd->asid_generation; 1861 svm->asid = sd->next_asid++; 1862 } 1863 1864 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1865 { 1866 struct vmcb *vmcb = svm->vmcb; 1867 1868 if (svm->vcpu.arch.guest_state_protected) 1869 return; 1870 1871 if (unlikely(value != vmcb->save.dr6)) { 1872 vmcb->save.dr6 = value; 1873 vmcb_mark_dirty(vmcb, VMCB_DR); 1874 } 1875 } 1876 1877 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1878 { 1879 struct vcpu_svm *svm = to_svm(vcpu); 1880 1881 if (vcpu->arch.guest_state_protected) 1882 return; 1883 1884 get_debugreg(vcpu->arch.db[0], 0); 1885 get_debugreg(vcpu->arch.db[1], 1); 1886 get_debugreg(vcpu->arch.db[2], 2); 1887 get_debugreg(vcpu->arch.db[3], 3); 1888 /* 1889 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1890 * because db_interception might need it. We can do it before vmentry. 1891 */ 1892 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1893 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1894 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1895 set_dr_intercepts(svm); 1896 } 1897 1898 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1899 { 1900 struct vcpu_svm *svm = to_svm(vcpu); 1901 1902 if (vcpu->arch.guest_state_protected) 1903 return; 1904 1905 svm->vmcb->save.dr7 = value; 1906 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1907 } 1908 1909 static int pf_interception(struct kvm_vcpu *vcpu) 1910 { 1911 struct vcpu_svm *svm = to_svm(vcpu); 1912 1913 u64 fault_address = svm->vmcb->control.exit_info_2; 1914 u64 error_code = svm->vmcb->control.exit_info_1; 1915 1916 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1917 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1918 svm->vmcb->control.insn_bytes : NULL, 1919 svm->vmcb->control.insn_len); 1920 } 1921 1922 static int npf_interception(struct kvm_vcpu *vcpu) 1923 { 1924 struct vcpu_svm *svm = to_svm(vcpu); 1925 1926 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1927 u64 error_code = svm->vmcb->control.exit_info_1; 1928 1929 trace_kvm_page_fault(fault_address, error_code); 1930 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 1931 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1932 svm->vmcb->control.insn_bytes : NULL, 1933 svm->vmcb->control.insn_len); 1934 } 1935 1936 static int db_interception(struct kvm_vcpu *vcpu) 1937 { 1938 struct kvm_run *kvm_run = vcpu->run; 1939 struct vcpu_svm *svm = to_svm(vcpu); 1940 1941 if (!(vcpu->guest_debug & 1942 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1943 !svm->nmi_singlestep) { 1944 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1945 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1946 return 1; 1947 } 1948 1949 if (svm->nmi_singlestep) { 1950 disable_nmi_singlestep(svm); 1951 /* Make sure we check for pending NMIs upon entry */ 1952 kvm_make_request(KVM_REQ_EVENT, vcpu); 1953 } 1954 1955 if (vcpu->guest_debug & 1956 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1957 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1958 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1959 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1960 kvm_run->debug.arch.pc = 1961 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1962 kvm_run->debug.arch.exception = DB_VECTOR; 1963 return 0; 1964 } 1965 1966 return 1; 1967 } 1968 1969 static int bp_interception(struct kvm_vcpu *vcpu) 1970 { 1971 struct vcpu_svm *svm = to_svm(vcpu); 1972 struct kvm_run *kvm_run = vcpu->run; 1973 1974 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1975 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1976 kvm_run->debug.arch.exception = BP_VECTOR; 1977 return 0; 1978 } 1979 1980 static int ud_interception(struct kvm_vcpu *vcpu) 1981 { 1982 return handle_ud(vcpu); 1983 } 1984 1985 static int ac_interception(struct kvm_vcpu *vcpu) 1986 { 1987 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 1988 return 1; 1989 } 1990 1991 static bool is_erratum_383(void) 1992 { 1993 int err, i; 1994 u64 value; 1995 1996 if (!erratum_383_found) 1997 return false; 1998 1999 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2000 if (err) 2001 return false; 2002 2003 /* Bit 62 may or may not be set for this mce */ 2004 value &= ~(1ULL << 62); 2005 2006 if (value != 0xb600000000010015ULL) 2007 return false; 2008 2009 /* Clear MCi_STATUS registers */ 2010 for (i = 0; i < 6; ++i) 2011 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2012 2013 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2014 if (!err) { 2015 u32 low, high; 2016 2017 value &= ~(1ULL << 2); 2018 low = lower_32_bits(value); 2019 high = upper_32_bits(value); 2020 2021 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2022 } 2023 2024 /* Flush tlb to evict multi-match entries */ 2025 __flush_tlb_all(); 2026 2027 return true; 2028 } 2029 2030 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2031 { 2032 if (is_erratum_383()) { 2033 /* 2034 * Erratum 383 triggered. Guest state is corrupt so kill the 2035 * guest. 2036 */ 2037 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 2038 2039 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2040 2041 return; 2042 } 2043 2044 /* 2045 * On an #MC intercept the MCE handler is not called automatically in 2046 * the host. So do it by hand here. 2047 */ 2048 kvm_machine_check(); 2049 } 2050 2051 static int mc_interception(struct kvm_vcpu *vcpu) 2052 { 2053 return 1; 2054 } 2055 2056 static int shutdown_interception(struct kvm_vcpu *vcpu) 2057 { 2058 struct kvm_run *kvm_run = vcpu->run; 2059 struct vcpu_svm *svm = to_svm(vcpu); 2060 2061 /* 2062 * The VM save area has already been encrypted so it 2063 * cannot be reinitialized - just terminate. 2064 */ 2065 if (sev_es_guest(vcpu->kvm)) 2066 return -EINVAL; 2067 2068 /* 2069 * VMCB is undefined after a SHUTDOWN intercept 2070 * so reinitialize it. 2071 */ 2072 clear_page(svm->vmcb); 2073 init_vmcb(vcpu); 2074 2075 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2076 return 0; 2077 } 2078 2079 static int io_interception(struct kvm_vcpu *vcpu) 2080 { 2081 struct vcpu_svm *svm = to_svm(vcpu); 2082 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2083 int size, in, string; 2084 unsigned port; 2085 2086 ++vcpu->stat.io_exits; 2087 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2088 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2089 port = io_info >> 16; 2090 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2091 2092 if (string) { 2093 if (sev_es_guest(vcpu->kvm)) 2094 return sev_es_string_io(svm, size, port, in); 2095 else 2096 return kvm_emulate_instruction(vcpu, 0); 2097 } 2098 2099 svm->next_rip = svm->vmcb->control.exit_info_2; 2100 2101 return kvm_fast_pio(vcpu, size, port, in); 2102 } 2103 2104 static int nmi_interception(struct kvm_vcpu *vcpu) 2105 { 2106 return 1; 2107 } 2108 2109 static int intr_interception(struct kvm_vcpu *vcpu) 2110 { 2111 ++vcpu->stat.irq_exits; 2112 return 1; 2113 } 2114 2115 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2116 { 2117 struct vcpu_svm *svm = to_svm(vcpu); 2118 struct vmcb *vmcb12; 2119 struct kvm_host_map map; 2120 int ret; 2121 2122 if (nested_svm_check_permissions(vcpu)) 2123 return 1; 2124 2125 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2126 if (ret) { 2127 if (ret == -EINVAL) 2128 kvm_inject_gp(vcpu, 0); 2129 return 1; 2130 } 2131 2132 vmcb12 = map.hva; 2133 2134 ret = kvm_skip_emulated_instruction(vcpu); 2135 2136 if (vmload) { 2137 nested_svm_vmloadsave(vmcb12, svm->vmcb); 2138 svm->sysenter_eip_hi = 0; 2139 svm->sysenter_esp_hi = 0; 2140 } else 2141 nested_svm_vmloadsave(svm->vmcb, vmcb12); 2142 2143 kvm_vcpu_unmap(vcpu, &map, true); 2144 2145 return ret; 2146 } 2147 2148 static int vmload_interception(struct kvm_vcpu *vcpu) 2149 { 2150 return vmload_vmsave_interception(vcpu, true); 2151 } 2152 2153 static int vmsave_interception(struct kvm_vcpu *vcpu) 2154 { 2155 return vmload_vmsave_interception(vcpu, false); 2156 } 2157 2158 static int vmrun_interception(struct kvm_vcpu *vcpu) 2159 { 2160 if (nested_svm_check_permissions(vcpu)) 2161 return 1; 2162 2163 return nested_svm_vmrun(vcpu); 2164 } 2165 2166 enum { 2167 NONE_SVM_INSTR, 2168 SVM_INSTR_VMRUN, 2169 SVM_INSTR_VMLOAD, 2170 SVM_INSTR_VMSAVE, 2171 }; 2172 2173 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2174 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2175 { 2176 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2177 2178 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2179 return NONE_SVM_INSTR; 2180 2181 switch (ctxt->modrm) { 2182 case 0xd8: /* VMRUN */ 2183 return SVM_INSTR_VMRUN; 2184 case 0xda: /* VMLOAD */ 2185 return SVM_INSTR_VMLOAD; 2186 case 0xdb: /* VMSAVE */ 2187 return SVM_INSTR_VMSAVE; 2188 default: 2189 break; 2190 } 2191 2192 return NONE_SVM_INSTR; 2193 } 2194 2195 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2196 { 2197 const int guest_mode_exit_codes[] = { 2198 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2199 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2200 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2201 }; 2202 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2203 [SVM_INSTR_VMRUN] = vmrun_interception, 2204 [SVM_INSTR_VMLOAD] = vmload_interception, 2205 [SVM_INSTR_VMSAVE] = vmsave_interception, 2206 }; 2207 struct vcpu_svm *svm = to_svm(vcpu); 2208 int ret; 2209 2210 if (is_guest_mode(vcpu)) { 2211 /* Returns '1' or -errno on failure, '0' on success. */ 2212 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2213 if (ret) 2214 return ret; 2215 return 1; 2216 } 2217 return svm_instr_handlers[opcode](vcpu); 2218 } 2219 2220 /* 2221 * #GP handling code. Note that #GP can be triggered under the following two 2222 * cases: 2223 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2224 * some AMD CPUs when EAX of these instructions are in the reserved memory 2225 * regions (e.g. SMM memory on host). 2226 * 2) VMware backdoor 2227 */ 2228 static int gp_interception(struct kvm_vcpu *vcpu) 2229 { 2230 struct vcpu_svm *svm = to_svm(vcpu); 2231 u32 error_code = svm->vmcb->control.exit_info_1; 2232 int opcode; 2233 2234 /* Both #GP cases have zero error_code */ 2235 if (error_code) 2236 goto reinject; 2237 2238 /* Decode the instruction for usage later */ 2239 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2240 goto reinject; 2241 2242 opcode = svm_instr_opcode(vcpu); 2243 2244 if (opcode == NONE_SVM_INSTR) { 2245 if (!enable_vmware_backdoor) 2246 goto reinject; 2247 2248 /* 2249 * VMware backdoor emulation on #GP interception only handles 2250 * IN{S}, OUT{S}, and RDPMC. 2251 */ 2252 if (!is_guest_mode(vcpu)) 2253 return kvm_emulate_instruction(vcpu, 2254 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2255 } else 2256 return emulate_svm_instr(vcpu, opcode); 2257 2258 reinject: 2259 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2260 return 1; 2261 } 2262 2263 void svm_set_gif(struct vcpu_svm *svm, bool value) 2264 { 2265 if (value) { 2266 /* 2267 * If VGIF is enabled, the STGI intercept is only added to 2268 * detect the opening of the SMI/NMI window; remove it now. 2269 * Likewise, clear the VINTR intercept, we will set it 2270 * again while processing KVM_REQ_EVENT if needed. 2271 */ 2272 if (vgif_enabled(svm)) 2273 svm_clr_intercept(svm, INTERCEPT_STGI); 2274 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2275 svm_clear_vintr(svm); 2276 2277 enable_gif(svm); 2278 if (svm->vcpu.arch.smi_pending || 2279 svm->vcpu.arch.nmi_pending || 2280 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2281 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2282 } else { 2283 disable_gif(svm); 2284 2285 /* 2286 * After a CLGI no interrupts should come. But if vGIF is 2287 * in use, we still rely on the VINTR intercept (rather than 2288 * STGI) to detect an open interrupt window. 2289 */ 2290 if (!vgif_enabled(svm)) 2291 svm_clear_vintr(svm); 2292 } 2293 } 2294 2295 static int stgi_interception(struct kvm_vcpu *vcpu) 2296 { 2297 int ret; 2298 2299 if (nested_svm_check_permissions(vcpu)) 2300 return 1; 2301 2302 ret = kvm_skip_emulated_instruction(vcpu); 2303 svm_set_gif(to_svm(vcpu), true); 2304 return ret; 2305 } 2306 2307 static int clgi_interception(struct kvm_vcpu *vcpu) 2308 { 2309 int ret; 2310 2311 if (nested_svm_check_permissions(vcpu)) 2312 return 1; 2313 2314 ret = kvm_skip_emulated_instruction(vcpu); 2315 svm_set_gif(to_svm(vcpu), false); 2316 return ret; 2317 } 2318 2319 static int invlpga_interception(struct kvm_vcpu *vcpu) 2320 { 2321 gva_t gva = kvm_rax_read(vcpu); 2322 u32 asid = kvm_rcx_read(vcpu); 2323 2324 /* FIXME: Handle an address size prefix. */ 2325 if (!is_long_mode(vcpu)) 2326 gva = (u32)gva; 2327 2328 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2329 2330 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2331 kvm_mmu_invlpg(vcpu, gva); 2332 2333 return kvm_skip_emulated_instruction(vcpu); 2334 } 2335 2336 static int skinit_interception(struct kvm_vcpu *vcpu) 2337 { 2338 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2339 2340 kvm_queue_exception(vcpu, UD_VECTOR); 2341 return 1; 2342 } 2343 2344 static int task_switch_interception(struct kvm_vcpu *vcpu) 2345 { 2346 struct vcpu_svm *svm = to_svm(vcpu); 2347 u16 tss_selector; 2348 int reason; 2349 int int_type = svm->vmcb->control.exit_int_info & 2350 SVM_EXITINTINFO_TYPE_MASK; 2351 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2352 uint32_t type = 2353 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2354 uint32_t idt_v = 2355 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2356 bool has_error_code = false; 2357 u32 error_code = 0; 2358 2359 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2360 2361 if (svm->vmcb->control.exit_info_2 & 2362 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2363 reason = TASK_SWITCH_IRET; 2364 else if (svm->vmcb->control.exit_info_2 & 2365 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2366 reason = TASK_SWITCH_JMP; 2367 else if (idt_v) 2368 reason = TASK_SWITCH_GATE; 2369 else 2370 reason = TASK_SWITCH_CALL; 2371 2372 if (reason == TASK_SWITCH_GATE) { 2373 switch (type) { 2374 case SVM_EXITINTINFO_TYPE_NMI: 2375 vcpu->arch.nmi_injected = false; 2376 break; 2377 case SVM_EXITINTINFO_TYPE_EXEPT: 2378 if (svm->vmcb->control.exit_info_2 & 2379 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2380 has_error_code = true; 2381 error_code = 2382 (u32)svm->vmcb->control.exit_info_2; 2383 } 2384 kvm_clear_exception_queue(vcpu); 2385 break; 2386 case SVM_EXITINTINFO_TYPE_INTR: 2387 kvm_clear_interrupt_queue(vcpu); 2388 break; 2389 default: 2390 break; 2391 } 2392 } 2393 2394 if (reason != TASK_SWITCH_GATE || 2395 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2396 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2397 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2398 if (!skip_emulated_instruction(vcpu)) 2399 return 0; 2400 } 2401 2402 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2403 int_vec = -1; 2404 2405 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2406 has_error_code, error_code); 2407 } 2408 2409 static int iret_interception(struct kvm_vcpu *vcpu) 2410 { 2411 struct vcpu_svm *svm = to_svm(vcpu); 2412 2413 ++vcpu->stat.nmi_window_exits; 2414 vcpu->arch.hflags |= HF_IRET_MASK; 2415 if (!sev_es_guest(vcpu->kvm)) { 2416 svm_clr_intercept(svm, INTERCEPT_IRET); 2417 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2418 } 2419 kvm_make_request(KVM_REQ_EVENT, vcpu); 2420 return 1; 2421 } 2422 2423 static int invlpg_interception(struct kvm_vcpu *vcpu) 2424 { 2425 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2426 return kvm_emulate_instruction(vcpu, 0); 2427 2428 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2429 return kvm_skip_emulated_instruction(vcpu); 2430 } 2431 2432 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2433 { 2434 return kvm_emulate_instruction(vcpu, 0); 2435 } 2436 2437 static int rsm_interception(struct kvm_vcpu *vcpu) 2438 { 2439 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2440 } 2441 2442 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2443 unsigned long val) 2444 { 2445 struct vcpu_svm *svm = to_svm(vcpu); 2446 unsigned long cr0 = vcpu->arch.cr0; 2447 bool ret = false; 2448 2449 if (!is_guest_mode(vcpu) || 2450 (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2451 return false; 2452 2453 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2454 val &= ~SVM_CR0_SELECTIVE_MASK; 2455 2456 if (cr0 ^ val) { 2457 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2458 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2459 } 2460 2461 return ret; 2462 } 2463 2464 #define CR_VALID (1ULL << 63) 2465 2466 static int cr_interception(struct kvm_vcpu *vcpu) 2467 { 2468 struct vcpu_svm *svm = to_svm(vcpu); 2469 int reg, cr; 2470 unsigned long val; 2471 int err; 2472 2473 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2474 return emulate_on_interception(vcpu); 2475 2476 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2477 return emulate_on_interception(vcpu); 2478 2479 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2480 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2481 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2482 else 2483 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2484 2485 err = 0; 2486 if (cr >= 16) { /* mov to cr */ 2487 cr -= 16; 2488 val = kvm_register_read(vcpu, reg); 2489 trace_kvm_cr_write(cr, val); 2490 switch (cr) { 2491 case 0: 2492 if (!check_selective_cr0_intercepted(vcpu, val)) 2493 err = kvm_set_cr0(vcpu, val); 2494 else 2495 return 1; 2496 2497 break; 2498 case 3: 2499 err = kvm_set_cr3(vcpu, val); 2500 break; 2501 case 4: 2502 err = kvm_set_cr4(vcpu, val); 2503 break; 2504 case 8: 2505 err = kvm_set_cr8(vcpu, val); 2506 break; 2507 default: 2508 WARN(1, "unhandled write to CR%d", cr); 2509 kvm_queue_exception(vcpu, UD_VECTOR); 2510 return 1; 2511 } 2512 } else { /* mov from cr */ 2513 switch (cr) { 2514 case 0: 2515 val = kvm_read_cr0(vcpu); 2516 break; 2517 case 2: 2518 val = vcpu->arch.cr2; 2519 break; 2520 case 3: 2521 val = kvm_read_cr3(vcpu); 2522 break; 2523 case 4: 2524 val = kvm_read_cr4(vcpu); 2525 break; 2526 case 8: 2527 val = kvm_get_cr8(vcpu); 2528 break; 2529 default: 2530 WARN(1, "unhandled read from CR%d", cr); 2531 kvm_queue_exception(vcpu, UD_VECTOR); 2532 return 1; 2533 } 2534 kvm_register_write(vcpu, reg, val); 2535 trace_kvm_cr_read(cr, val); 2536 } 2537 return kvm_complete_insn_gp(vcpu, err); 2538 } 2539 2540 static int cr_trap(struct kvm_vcpu *vcpu) 2541 { 2542 struct vcpu_svm *svm = to_svm(vcpu); 2543 unsigned long old_value, new_value; 2544 unsigned int cr; 2545 int ret = 0; 2546 2547 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2548 2549 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2550 switch (cr) { 2551 case 0: 2552 old_value = kvm_read_cr0(vcpu); 2553 svm_set_cr0(vcpu, new_value); 2554 2555 kvm_post_set_cr0(vcpu, old_value, new_value); 2556 break; 2557 case 4: 2558 old_value = kvm_read_cr4(vcpu); 2559 svm_set_cr4(vcpu, new_value); 2560 2561 kvm_post_set_cr4(vcpu, old_value, new_value); 2562 break; 2563 case 8: 2564 ret = kvm_set_cr8(vcpu, new_value); 2565 break; 2566 default: 2567 WARN(1, "unhandled CR%d write trap", cr); 2568 kvm_queue_exception(vcpu, UD_VECTOR); 2569 return 1; 2570 } 2571 2572 return kvm_complete_insn_gp(vcpu, ret); 2573 } 2574 2575 static int dr_interception(struct kvm_vcpu *vcpu) 2576 { 2577 struct vcpu_svm *svm = to_svm(vcpu); 2578 int reg, dr; 2579 unsigned long val; 2580 int err = 0; 2581 2582 if (vcpu->guest_debug == 0) { 2583 /* 2584 * No more DR vmexits; force a reload of the debug registers 2585 * and reenter on this instruction. The next vmexit will 2586 * retrieve the full state of the debug registers. 2587 */ 2588 clr_dr_intercepts(svm); 2589 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2590 return 1; 2591 } 2592 2593 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2594 return emulate_on_interception(vcpu); 2595 2596 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2597 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2598 if (dr >= 16) { /* mov to DRn */ 2599 dr -= 16; 2600 val = kvm_register_read(vcpu, reg); 2601 err = kvm_set_dr(vcpu, dr, val); 2602 } else { 2603 kvm_get_dr(vcpu, dr, &val); 2604 kvm_register_write(vcpu, reg, val); 2605 } 2606 2607 return kvm_complete_insn_gp(vcpu, err); 2608 } 2609 2610 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2611 { 2612 int r; 2613 2614 u8 cr8_prev = kvm_get_cr8(vcpu); 2615 /* instruction emulation calls kvm_set_cr8() */ 2616 r = cr_interception(vcpu); 2617 if (lapic_in_kernel(vcpu)) 2618 return r; 2619 if (cr8_prev <= kvm_get_cr8(vcpu)) 2620 return r; 2621 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2622 return 0; 2623 } 2624 2625 static int efer_trap(struct kvm_vcpu *vcpu) 2626 { 2627 struct msr_data msr_info; 2628 int ret; 2629 2630 /* 2631 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2632 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2633 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2634 * the guest doesn't have X86_FEATURE_SVM. 2635 */ 2636 msr_info.host_initiated = false; 2637 msr_info.index = MSR_EFER; 2638 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2639 ret = kvm_set_msr_common(vcpu, &msr_info); 2640 2641 return kvm_complete_insn_gp(vcpu, ret); 2642 } 2643 2644 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2645 { 2646 msr->data = 0; 2647 2648 switch (msr->index) { 2649 case MSR_F10H_DECFG: 2650 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2651 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2652 break; 2653 case MSR_IA32_PERF_CAPABILITIES: 2654 return 0; 2655 default: 2656 return KVM_MSR_RET_INVALID; 2657 } 2658 2659 return 0; 2660 } 2661 2662 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2663 { 2664 struct vcpu_svm *svm = to_svm(vcpu); 2665 2666 switch (msr_info->index) { 2667 case MSR_STAR: 2668 msr_info->data = svm->vmcb01.ptr->save.star; 2669 break; 2670 #ifdef CONFIG_X86_64 2671 case MSR_LSTAR: 2672 msr_info->data = svm->vmcb01.ptr->save.lstar; 2673 break; 2674 case MSR_CSTAR: 2675 msr_info->data = svm->vmcb01.ptr->save.cstar; 2676 break; 2677 case MSR_KERNEL_GS_BASE: 2678 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2679 break; 2680 case MSR_SYSCALL_MASK: 2681 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2682 break; 2683 #endif 2684 case MSR_IA32_SYSENTER_CS: 2685 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2686 break; 2687 case MSR_IA32_SYSENTER_EIP: 2688 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2689 if (guest_cpuid_is_intel(vcpu)) 2690 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2691 break; 2692 case MSR_IA32_SYSENTER_ESP: 2693 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2694 if (guest_cpuid_is_intel(vcpu)) 2695 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2696 break; 2697 case MSR_TSC_AUX: 2698 msr_info->data = svm->tsc_aux; 2699 break; 2700 /* 2701 * Nobody will change the following 5 values in the VMCB so we can 2702 * safely return them on rdmsr. They will always be 0 until LBRV is 2703 * implemented. 2704 */ 2705 case MSR_IA32_DEBUGCTLMSR: 2706 msr_info->data = svm->vmcb->save.dbgctl; 2707 break; 2708 case MSR_IA32_LASTBRANCHFROMIP: 2709 msr_info->data = svm->vmcb->save.br_from; 2710 break; 2711 case MSR_IA32_LASTBRANCHTOIP: 2712 msr_info->data = svm->vmcb->save.br_to; 2713 break; 2714 case MSR_IA32_LASTINTFROMIP: 2715 msr_info->data = svm->vmcb->save.last_excp_from; 2716 break; 2717 case MSR_IA32_LASTINTTOIP: 2718 msr_info->data = svm->vmcb->save.last_excp_to; 2719 break; 2720 case MSR_VM_HSAVE_PA: 2721 msr_info->data = svm->nested.hsave_msr; 2722 break; 2723 case MSR_VM_CR: 2724 msr_info->data = svm->nested.vm_cr_msr; 2725 break; 2726 case MSR_IA32_SPEC_CTRL: 2727 if (!msr_info->host_initiated && 2728 !guest_has_spec_ctrl_msr(vcpu)) 2729 return 1; 2730 2731 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2732 msr_info->data = svm->vmcb->save.spec_ctrl; 2733 else 2734 msr_info->data = svm->spec_ctrl; 2735 break; 2736 case MSR_AMD64_VIRT_SPEC_CTRL: 2737 if (!msr_info->host_initiated && 2738 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2739 return 1; 2740 2741 msr_info->data = svm->virt_spec_ctrl; 2742 break; 2743 case MSR_F15H_IC_CFG: { 2744 2745 int family, model; 2746 2747 family = guest_cpuid_family(vcpu); 2748 model = guest_cpuid_model(vcpu); 2749 2750 if (family < 0 || model < 0) 2751 return kvm_get_msr_common(vcpu, msr_info); 2752 2753 msr_info->data = 0; 2754 2755 if (family == 0x15 && 2756 (model >= 0x2 && model < 0x20)) 2757 msr_info->data = 0x1E; 2758 } 2759 break; 2760 case MSR_F10H_DECFG: 2761 msr_info->data = svm->msr_decfg; 2762 break; 2763 default: 2764 return kvm_get_msr_common(vcpu, msr_info); 2765 } 2766 return 0; 2767 } 2768 2769 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2770 { 2771 struct vcpu_svm *svm = to_svm(vcpu); 2772 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->ghcb)) 2773 return kvm_complete_insn_gp(vcpu, err); 2774 2775 ghcb_set_sw_exit_info_1(svm->ghcb, 1); 2776 ghcb_set_sw_exit_info_2(svm->ghcb, 2777 X86_TRAP_GP | 2778 SVM_EVTINJ_TYPE_EXEPT | 2779 SVM_EVTINJ_VALID); 2780 return 1; 2781 } 2782 2783 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2784 { 2785 struct vcpu_svm *svm = to_svm(vcpu); 2786 int svm_dis, chg_mask; 2787 2788 if (data & ~SVM_VM_CR_VALID_MASK) 2789 return 1; 2790 2791 chg_mask = SVM_VM_CR_VALID_MASK; 2792 2793 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2794 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2795 2796 svm->nested.vm_cr_msr &= ~chg_mask; 2797 svm->nested.vm_cr_msr |= (data & chg_mask); 2798 2799 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2800 2801 /* check for svm_disable while efer.svme is set */ 2802 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2803 return 1; 2804 2805 return 0; 2806 } 2807 2808 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2809 { 2810 struct vcpu_svm *svm = to_svm(vcpu); 2811 int r; 2812 2813 u32 ecx = msr->index; 2814 u64 data = msr->data; 2815 switch (ecx) { 2816 case MSR_IA32_CR_PAT: 2817 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2818 return 1; 2819 vcpu->arch.pat = data; 2820 svm->vmcb01.ptr->save.g_pat = data; 2821 if (is_guest_mode(vcpu)) 2822 nested_vmcb02_compute_g_pat(svm); 2823 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2824 break; 2825 case MSR_IA32_SPEC_CTRL: 2826 if (!msr->host_initiated && 2827 !guest_has_spec_ctrl_msr(vcpu)) 2828 return 1; 2829 2830 if (kvm_spec_ctrl_test_value(data)) 2831 return 1; 2832 2833 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2834 svm->vmcb->save.spec_ctrl = data; 2835 else 2836 svm->spec_ctrl = data; 2837 if (!data) 2838 break; 2839 2840 /* 2841 * For non-nested: 2842 * When it's written (to non-zero) for the first time, pass 2843 * it through. 2844 * 2845 * For nested: 2846 * The handling of the MSR bitmap for L2 guests is done in 2847 * nested_svm_vmrun_msrpm. 2848 * We update the L1 MSR bit as well since it will end up 2849 * touching the MSR anyway now. 2850 */ 2851 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2852 break; 2853 case MSR_IA32_PRED_CMD: 2854 if (!msr->host_initiated && 2855 !guest_has_pred_cmd_msr(vcpu)) 2856 return 1; 2857 2858 if (data & ~PRED_CMD_IBPB) 2859 return 1; 2860 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2861 return 1; 2862 if (!data) 2863 break; 2864 2865 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2866 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2867 break; 2868 case MSR_AMD64_VIRT_SPEC_CTRL: 2869 if (!msr->host_initiated && 2870 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2871 return 1; 2872 2873 if (data & ~SPEC_CTRL_SSBD) 2874 return 1; 2875 2876 svm->virt_spec_ctrl = data; 2877 break; 2878 case MSR_STAR: 2879 svm->vmcb01.ptr->save.star = data; 2880 break; 2881 #ifdef CONFIG_X86_64 2882 case MSR_LSTAR: 2883 svm->vmcb01.ptr->save.lstar = data; 2884 break; 2885 case MSR_CSTAR: 2886 svm->vmcb01.ptr->save.cstar = data; 2887 break; 2888 case MSR_KERNEL_GS_BASE: 2889 svm->vmcb01.ptr->save.kernel_gs_base = data; 2890 break; 2891 case MSR_SYSCALL_MASK: 2892 svm->vmcb01.ptr->save.sfmask = data; 2893 break; 2894 #endif 2895 case MSR_IA32_SYSENTER_CS: 2896 svm->vmcb01.ptr->save.sysenter_cs = data; 2897 break; 2898 case MSR_IA32_SYSENTER_EIP: 2899 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2900 /* 2901 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2902 * when we spoof an Intel vendor ID (for cross vendor migration). 2903 * In this case we use this intercept to track the high 2904 * 32 bit part of these msrs to support Intel's 2905 * implementation of SYSENTER/SYSEXIT. 2906 */ 2907 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2908 break; 2909 case MSR_IA32_SYSENTER_ESP: 2910 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 2911 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2912 break; 2913 case MSR_TSC_AUX: 2914 /* 2915 * TSC_AUX is usually changed only during boot and never read 2916 * directly. Intercept TSC_AUX instead of exposing it to the 2917 * guest via direct_access_msrs, and switch it via user return. 2918 */ 2919 preempt_disable(); 2920 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 2921 preempt_enable(); 2922 if (r) 2923 return 1; 2924 2925 svm->tsc_aux = data; 2926 break; 2927 case MSR_IA32_DEBUGCTLMSR: 2928 if (!boot_cpu_has(X86_FEATURE_LBRV)) { 2929 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2930 __func__, data); 2931 break; 2932 } 2933 if (data & DEBUGCTL_RESERVED_BITS) 2934 return 1; 2935 2936 svm->vmcb->save.dbgctl = data; 2937 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 2938 if (data & (1ULL<<0)) 2939 svm_enable_lbrv(vcpu); 2940 else 2941 svm_disable_lbrv(vcpu); 2942 break; 2943 case MSR_VM_HSAVE_PA: 2944 svm->nested.hsave_msr = data; 2945 break; 2946 case MSR_VM_CR: 2947 return svm_set_vm_cr(vcpu, data); 2948 case MSR_VM_IGNNE: 2949 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2950 break; 2951 case MSR_F10H_DECFG: { 2952 struct kvm_msr_entry msr_entry; 2953 2954 msr_entry.index = msr->index; 2955 if (svm_get_msr_feature(&msr_entry)) 2956 return 1; 2957 2958 /* Check the supported bits */ 2959 if (data & ~msr_entry.data) 2960 return 1; 2961 2962 /* Don't allow the guest to change a bit, #GP */ 2963 if (!msr->host_initiated && (data ^ msr_entry.data)) 2964 return 1; 2965 2966 svm->msr_decfg = data; 2967 break; 2968 } 2969 case MSR_IA32_APICBASE: 2970 if (kvm_vcpu_apicv_active(vcpu)) 2971 avic_update_vapic_bar(to_svm(vcpu), data); 2972 fallthrough; 2973 default: 2974 return kvm_set_msr_common(vcpu, msr); 2975 } 2976 return 0; 2977 } 2978 2979 static int msr_interception(struct kvm_vcpu *vcpu) 2980 { 2981 if (to_svm(vcpu)->vmcb->control.exit_info_1) 2982 return kvm_emulate_wrmsr(vcpu); 2983 else 2984 return kvm_emulate_rdmsr(vcpu); 2985 } 2986 2987 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 2988 { 2989 kvm_make_request(KVM_REQ_EVENT, vcpu); 2990 svm_clear_vintr(to_svm(vcpu)); 2991 2992 /* 2993 * For AVIC, the only reason to end up here is ExtINTs. 2994 * In this case AVIC was temporarily disabled for 2995 * requesting the IRQ window and we have to re-enable it. 2996 */ 2997 svm_toggle_avic_for_irq_window(vcpu, true); 2998 2999 ++vcpu->stat.irq_window_exits; 3000 return 1; 3001 } 3002 3003 static int pause_interception(struct kvm_vcpu *vcpu) 3004 { 3005 bool in_kernel; 3006 3007 /* 3008 * CPL is not made available for an SEV-ES guest, therefore 3009 * vcpu->arch.preempted_in_kernel can never be true. Just 3010 * set in_kernel to false as well. 3011 */ 3012 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3013 3014 if (!kvm_pause_in_guest(vcpu->kvm)) 3015 grow_ple_window(vcpu); 3016 3017 kvm_vcpu_on_spin(vcpu, in_kernel); 3018 return kvm_skip_emulated_instruction(vcpu); 3019 } 3020 3021 static int invpcid_interception(struct kvm_vcpu *vcpu) 3022 { 3023 struct vcpu_svm *svm = to_svm(vcpu); 3024 unsigned long type; 3025 gva_t gva; 3026 3027 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3028 kvm_queue_exception(vcpu, UD_VECTOR); 3029 return 1; 3030 } 3031 3032 /* 3033 * For an INVPCID intercept: 3034 * EXITINFO1 provides the linear address of the memory operand. 3035 * EXITINFO2 provides the contents of the register operand. 3036 */ 3037 type = svm->vmcb->control.exit_info_2; 3038 gva = svm->vmcb->control.exit_info_1; 3039 3040 if (type > 3) { 3041 kvm_inject_gp(vcpu, 0); 3042 return 1; 3043 } 3044 3045 return kvm_handle_invpcid(vcpu, type, gva); 3046 } 3047 3048 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3049 [SVM_EXIT_READ_CR0] = cr_interception, 3050 [SVM_EXIT_READ_CR3] = cr_interception, 3051 [SVM_EXIT_READ_CR4] = cr_interception, 3052 [SVM_EXIT_READ_CR8] = cr_interception, 3053 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3054 [SVM_EXIT_WRITE_CR0] = cr_interception, 3055 [SVM_EXIT_WRITE_CR3] = cr_interception, 3056 [SVM_EXIT_WRITE_CR4] = cr_interception, 3057 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3058 [SVM_EXIT_READ_DR0] = dr_interception, 3059 [SVM_EXIT_READ_DR1] = dr_interception, 3060 [SVM_EXIT_READ_DR2] = dr_interception, 3061 [SVM_EXIT_READ_DR3] = dr_interception, 3062 [SVM_EXIT_READ_DR4] = dr_interception, 3063 [SVM_EXIT_READ_DR5] = dr_interception, 3064 [SVM_EXIT_READ_DR6] = dr_interception, 3065 [SVM_EXIT_READ_DR7] = dr_interception, 3066 [SVM_EXIT_WRITE_DR0] = dr_interception, 3067 [SVM_EXIT_WRITE_DR1] = dr_interception, 3068 [SVM_EXIT_WRITE_DR2] = dr_interception, 3069 [SVM_EXIT_WRITE_DR3] = dr_interception, 3070 [SVM_EXIT_WRITE_DR4] = dr_interception, 3071 [SVM_EXIT_WRITE_DR5] = dr_interception, 3072 [SVM_EXIT_WRITE_DR6] = dr_interception, 3073 [SVM_EXIT_WRITE_DR7] = dr_interception, 3074 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3075 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3076 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3077 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3078 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3079 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3080 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3081 [SVM_EXIT_INTR] = intr_interception, 3082 [SVM_EXIT_NMI] = nmi_interception, 3083 [SVM_EXIT_SMI] = kvm_emulate_as_nop, 3084 [SVM_EXIT_INIT] = kvm_emulate_as_nop, 3085 [SVM_EXIT_VINTR] = interrupt_window_interception, 3086 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3087 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3088 [SVM_EXIT_IRET] = iret_interception, 3089 [SVM_EXIT_INVD] = kvm_emulate_invd, 3090 [SVM_EXIT_PAUSE] = pause_interception, 3091 [SVM_EXIT_HLT] = kvm_emulate_halt, 3092 [SVM_EXIT_INVLPG] = invlpg_interception, 3093 [SVM_EXIT_INVLPGA] = invlpga_interception, 3094 [SVM_EXIT_IOIO] = io_interception, 3095 [SVM_EXIT_MSR] = msr_interception, 3096 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3097 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3098 [SVM_EXIT_VMRUN] = vmrun_interception, 3099 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3100 [SVM_EXIT_VMLOAD] = vmload_interception, 3101 [SVM_EXIT_VMSAVE] = vmsave_interception, 3102 [SVM_EXIT_STGI] = stgi_interception, 3103 [SVM_EXIT_CLGI] = clgi_interception, 3104 [SVM_EXIT_SKINIT] = skinit_interception, 3105 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3106 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3107 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3108 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3109 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3110 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3111 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3112 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3113 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3114 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3115 [SVM_EXIT_INVPCID] = invpcid_interception, 3116 [SVM_EXIT_NPF] = npf_interception, 3117 [SVM_EXIT_RSM] = rsm_interception, 3118 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3119 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3120 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3121 }; 3122 3123 static void dump_vmcb(struct kvm_vcpu *vcpu) 3124 { 3125 struct vcpu_svm *svm = to_svm(vcpu); 3126 struct vmcb_control_area *control = &svm->vmcb->control; 3127 struct vmcb_save_area *save = &svm->vmcb->save; 3128 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3129 3130 if (!dump_invalid_vmcb) { 3131 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3132 return; 3133 } 3134 3135 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3136 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3137 pr_err("VMCB Control Area:\n"); 3138 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3139 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3140 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3141 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3142 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3143 pr_err("%-20s%08x %08x\n", "intercepts:", 3144 control->intercepts[INTERCEPT_WORD3], 3145 control->intercepts[INTERCEPT_WORD4]); 3146 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3147 pr_err("%-20s%d\n", "pause filter threshold:", 3148 control->pause_filter_thresh); 3149 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3150 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3151 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3152 pr_err("%-20s%d\n", "asid:", control->asid); 3153 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3154 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3155 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3156 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3157 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3158 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3159 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3160 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3161 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3162 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3163 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3164 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3165 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3166 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3167 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3168 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3169 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3170 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3171 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3172 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3173 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3174 pr_err("VMCB State Save Area:\n"); 3175 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3176 "es:", 3177 save->es.selector, save->es.attrib, 3178 save->es.limit, save->es.base); 3179 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3180 "cs:", 3181 save->cs.selector, save->cs.attrib, 3182 save->cs.limit, save->cs.base); 3183 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3184 "ss:", 3185 save->ss.selector, save->ss.attrib, 3186 save->ss.limit, save->ss.base); 3187 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3188 "ds:", 3189 save->ds.selector, save->ds.attrib, 3190 save->ds.limit, save->ds.base); 3191 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3192 "fs:", 3193 save01->fs.selector, save01->fs.attrib, 3194 save01->fs.limit, save01->fs.base); 3195 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3196 "gs:", 3197 save01->gs.selector, save01->gs.attrib, 3198 save01->gs.limit, save01->gs.base); 3199 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3200 "gdtr:", 3201 save->gdtr.selector, save->gdtr.attrib, 3202 save->gdtr.limit, save->gdtr.base); 3203 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3204 "ldtr:", 3205 save01->ldtr.selector, save01->ldtr.attrib, 3206 save01->ldtr.limit, save01->ldtr.base); 3207 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3208 "idtr:", 3209 save->idtr.selector, save->idtr.attrib, 3210 save->idtr.limit, save->idtr.base); 3211 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3212 "tr:", 3213 save01->tr.selector, save01->tr.attrib, 3214 save01->tr.limit, save01->tr.base); 3215 pr_err("cpl: %d efer: %016llx\n", 3216 save->cpl, save->efer); 3217 pr_err("%-15s %016llx %-13s %016llx\n", 3218 "cr0:", save->cr0, "cr2:", save->cr2); 3219 pr_err("%-15s %016llx %-13s %016llx\n", 3220 "cr3:", save->cr3, "cr4:", save->cr4); 3221 pr_err("%-15s %016llx %-13s %016llx\n", 3222 "dr6:", save->dr6, "dr7:", save->dr7); 3223 pr_err("%-15s %016llx %-13s %016llx\n", 3224 "rip:", save->rip, "rflags:", save->rflags); 3225 pr_err("%-15s %016llx %-13s %016llx\n", 3226 "rsp:", save->rsp, "rax:", save->rax); 3227 pr_err("%-15s %016llx %-13s %016llx\n", 3228 "star:", save01->star, "lstar:", save01->lstar); 3229 pr_err("%-15s %016llx %-13s %016llx\n", 3230 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3231 pr_err("%-15s %016llx %-13s %016llx\n", 3232 "kernel_gs_base:", save01->kernel_gs_base, 3233 "sysenter_cs:", save01->sysenter_cs); 3234 pr_err("%-15s %016llx %-13s %016llx\n", 3235 "sysenter_esp:", save01->sysenter_esp, 3236 "sysenter_eip:", save01->sysenter_eip); 3237 pr_err("%-15s %016llx %-13s %016llx\n", 3238 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3239 pr_err("%-15s %016llx %-13s %016llx\n", 3240 "br_from:", save->br_from, "br_to:", save->br_to); 3241 pr_err("%-15s %016llx %-13s %016llx\n", 3242 "excp_from:", save->last_excp_from, 3243 "excp_to:", save->last_excp_to); 3244 } 3245 3246 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3247 { 3248 if (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3249 svm_exit_handlers[exit_code]) 3250 return 0; 3251 3252 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3253 dump_vmcb(vcpu); 3254 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3255 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3256 vcpu->run->internal.ndata = 2; 3257 vcpu->run->internal.data[0] = exit_code; 3258 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3259 3260 return -EINVAL; 3261 } 3262 3263 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3264 { 3265 if (svm_handle_invalid_exit(vcpu, exit_code)) 3266 return 0; 3267 3268 #ifdef CONFIG_RETPOLINE 3269 if (exit_code == SVM_EXIT_MSR) 3270 return msr_interception(vcpu); 3271 else if (exit_code == SVM_EXIT_VINTR) 3272 return interrupt_window_interception(vcpu); 3273 else if (exit_code == SVM_EXIT_INTR) 3274 return intr_interception(vcpu); 3275 else if (exit_code == SVM_EXIT_HLT) 3276 return kvm_emulate_halt(vcpu); 3277 else if (exit_code == SVM_EXIT_NPF) 3278 return npf_interception(vcpu); 3279 #endif 3280 return svm_exit_handlers[exit_code](vcpu); 3281 } 3282 3283 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 3284 u32 *intr_info, u32 *error_code) 3285 { 3286 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3287 3288 *info1 = control->exit_info_1; 3289 *info2 = control->exit_info_2; 3290 *intr_info = control->exit_int_info; 3291 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3292 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3293 *error_code = control->exit_int_info_err; 3294 else 3295 *error_code = 0; 3296 } 3297 3298 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3299 { 3300 struct vcpu_svm *svm = to_svm(vcpu); 3301 struct kvm_run *kvm_run = vcpu->run; 3302 u32 exit_code = svm->vmcb->control.exit_code; 3303 3304 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); 3305 3306 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3307 if (!sev_es_guest(vcpu->kvm)) { 3308 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3309 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3310 if (npt_enabled) 3311 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3312 } 3313 3314 if (is_guest_mode(vcpu)) { 3315 int vmexit; 3316 3317 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM); 3318 3319 vmexit = nested_svm_exit_special(svm); 3320 3321 if (vmexit == NESTED_EXIT_CONTINUE) 3322 vmexit = nested_svm_exit_handled(svm); 3323 3324 if (vmexit == NESTED_EXIT_DONE) 3325 return 1; 3326 } 3327 3328 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3329 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3330 kvm_run->fail_entry.hardware_entry_failure_reason 3331 = svm->vmcb->control.exit_code; 3332 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3333 dump_vmcb(vcpu); 3334 return 0; 3335 } 3336 3337 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3338 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3339 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3340 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3341 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3342 "exit_code 0x%x\n", 3343 __func__, svm->vmcb->control.exit_int_info, 3344 exit_code); 3345 3346 if (exit_fastpath != EXIT_FASTPATH_NONE) 3347 return 1; 3348 3349 return svm_invoke_exit_handler(vcpu, exit_code); 3350 } 3351 3352 static void reload_tss(struct kvm_vcpu *vcpu) 3353 { 3354 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3355 3356 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3357 load_TR_desc(); 3358 } 3359 3360 static void pre_svm_run(struct kvm_vcpu *vcpu) 3361 { 3362 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3363 struct vcpu_svm *svm = to_svm(vcpu); 3364 3365 /* 3366 * If the previous vmrun of the vmcb occurred on a different physical 3367 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3368 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3369 */ 3370 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3371 svm->current_vmcb->asid_generation = 0; 3372 vmcb_mark_all_dirty(svm->vmcb); 3373 svm->current_vmcb->cpu = vcpu->cpu; 3374 } 3375 3376 if (sev_guest(vcpu->kvm)) 3377 return pre_sev_run(svm, vcpu->cpu); 3378 3379 /* FIXME: handle wraparound of asid_generation */ 3380 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3381 new_asid(svm, sd); 3382 } 3383 3384 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3385 { 3386 struct vcpu_svm *svm = to_svm(vcpu); 3387 3388 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3389 vcpu->arch.hflags |= HF_NMI_MASK; 3390 if (!sev_es_guest(vcpu->kvm)) 3391 svm_set_intercept(svm, INTERCEPT_IRET); 3392 ++vcpu->stat.nmi_injections; 3393 } 3394 3395 static void svm_set_irq(struct kvm_vcpu *vcpu) 3396 { 3397 struct vcpu_svm *svm = to_svm(vcpu); 3398 3399 BUG_ON(!(gif_set(svm))); 3400 3401 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3402 ++vcpu->stat.irq_injections; 3403 3404 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3405 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3406 } 3407 3408 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3409 { 3410 struct vcpu_svm *svm = to_svm(vcpu); 3411 3412 /* 3413 * SEV-ES guests must always keep the CR intercepts cleared. CR 3414 * tracking is done using the CR write traps. 3415 */ 3416 if (sev_es_guest(vcpu->kvm)) 3417 return; 3418 3419 if (nested_svm_virtualize_tpr(vcpu)) 3420 return; 3421 3422 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3423 3424 if (irr == -1) 3425 return; 3426 3427 if (tpr >= irr) 3428 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3429 } 3430 3431 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3432 { 3433 struct vcpu_svm *svm = to_svm(vcpu); 3434 struct vmcb *vmcb = svm->vmcb; 3435 bool ret; 3436 3437 if (!gif_set(svm)) 3438 return true; 3439 3440 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3441 return false; 3442 3443 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3444 (vcpu->arch.hflags & HF_NMI_MASK); 3445 3446 return ret; 3447 } 3448 3449 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3450 { 3451 struct vcpu_svm *svm = to_svm(vcpu); 3452 if (svm->nested.nested_run_pending) 3453 return -EBUSY; 3454 3455 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3456 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3457 return -EBUSY; 3458 3459 return !svm_nmi_blocked(vcpu); 3460 } 3461 3462 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3463 { 3464 return !!(vcpu->arch.hflags & HF_NMI_MASK); 3465 } 3466 3467 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3468 { 3469 struct vcpu_svm *svm = to_svm(vcpu); 3470 3471 if (masked) { 3472 vcpu->arch.hflags |= HF_NMI_MASK; 3473 if (!sev_es_guest(vcpu->kvm)) 3474 svm_set_intercept(svm, INTERCEPT_IRET); 3475 } else { 3476 vcpu->arch.hflags &= ~HF_NMI_MASK; 3477 if (!sev_es_guest(vcpu->kvm)) 3478 svm_clr_intercept(svm, INTERCEPT_IRET); 3479 } 3480 } 3481 3482 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3483 { 3484 struct vcpu_svm *svm = to_svm(vcpu); 3485 struct vmcb *vmcb = svm->vmcb; 3486 3487 if (!gif_set(svm)) 3488 return true; 3489 3490 if (sev_es_guest(vcpu->kvm)) { 3491 /* 3492 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask 3493 * bit to determine the state of the IF flag. 3494 */ 3495 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK)) 3496 return true; 3497 } else if (is_guest_mode(vcpu)) { 3498 /* As long as interrupts are being delivered... */ 3499 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3500 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3501 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3502 return true; 3503 3504 /* ... vmexits aren't blocked by the interrupt shadow */ 3505 if (nested_exit_on_intr(svm)) 3506 return false; 3507 } else { 3508 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3509 return true; 3510 } 3511 3512 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3513 } 3514 3515 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3516 { 3517 struct vcpu_svm *svm = to_svm(vcpu); 3518 if (svm->nested.nested_run_pending) 3519 return -EBUSY; 3520 3521 /* 3522 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3523 * e.g. if the IRQ arrived asynchronously after checking nested events. 3524 */ 3525 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3526 return -EBUSY; 3527 3528 return !svm_interrupt_blocked(vcpu); 3529 } 3530 3531 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3532 { 3533 struct vcpu_svm *svm = to_svm(vcpu); 3534 3535 /* 3536 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3537 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3538 * get that intercept, this function will be called again though and 3539 * we'll get the vintr intercept. However, if the vGIF feature is 3540 * enabled, the STGI interception will not occur. Enable the irq 3541 * window under the assumption that the hardware will set the GIF. 3542 */ 3543 if (vgif_enabled(svm) || gif_set(svm)) { 3544 /* 3545 * IRQ window is not needed when AVIC is enabled, 3546 * unless we have pending ExtINT since it cannot be injected 3547 * via AVIC. In such case, we need to temporarily disable AVIC, 3548 * and fallback to injecting IRQ via V_IRQ. 3549 */ 3550 svm_toggle_avic_for_irq_window(vcpu, false); 3551 svm_set_vintr(svm); 3552 } 3553 } 3554 3555 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3556 { 3557 struct vcpu_svm *svm = to_svm(vcpu); 3558 3559 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) 3560 return; /* IRET will cause a vm exit */ 3561 3562 if (!gif_set(svm)) { 3563 if (vgif_enabled(svm)) 3564 svm_set_intercept(svm, INTERCEPT_STGI); 3565 return; /* STGI will cause a vm exit */ 3566 } 3567 3568 /* 3569 * Something prevents NMI from been injected. Single step over possible 3570 * problem (IRET or exception injection or interrupt shadow) 3571 */ 3572 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3573 svm->nmi_singlestep = true; 3574 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3575 } 3576 3577 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) 3578 { 3579 return 0; 3580 } 3581 3582 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 3583 { 3584 return 0; 3585 } 3586 3587 void svm_flush_tlb(struct kvm_vcpu *vcpu) 3588 { 3589 struct vcpu_svm *svm = to_svm(vcpu); 3590 3591 /* 3592 * Flush only the current ASID even if the TLB flush was invoked via 3593 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3594 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3595 * unconditionally does a TLB flush on both nested VM-Enter and nested 3596 * VM-Exit (via kvm_mmu_reset_context()). 3597 */ 3598 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3599 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3600 else 3601 svm->current_vmcb->asid_generation--; 3602 } 3603 3604 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3605 { 3606 struct vcpu_svm *svm = to_svm(vcpu); 3607 3608 invlpga(gva, svm->vmcb->control.asid); 3609 } 3610 3611 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3612 { 3613 struct vcpu_svm *svm = to_svm(vcpu); 3614 3615 if (nested_svm_virtualize_tpr(vcpu)) 3616 return; 3617 3618 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3619 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3620 kvm_set_cr8(vcpu, cr8); 3621 } 3622 } 3623 3624 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3625 { 3626 struct vcpu_svm *svm = to_svm(vcpu); 3627 u64 cr8; 3628 3629 if (nested_svm_virtualize_tpr(vcpu) || 3630 kvm_vcpu_apicv_active(vcpu)) 3631 return; 3632 3633 cr8 = kvm_get_cr8(vcpu); 3634 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3635 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3636 } 3637 3638 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3639 { 3640 struct vcpu_svm *svm = to_svm(vcpu); 3641 u8 vector; 3642 int type; 3643 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3644 unsigned int3_injected = svm->int3_injected; 3645 3646 svm->int3_injected = 0; 3647 3648 /* 3649 * If we've made progress since setting HF_IRET_MASK, we've 3650 * executed an IRET and can allow NMI injection. 3651 */ 3652 if ((vcpu->arch.hflags & HF_IRET_MASK) && 3653 (sev_es_guest(vcpu->kvm) || 3654 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { 3655 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3656 kvm_make_request(KVM_REQ_EVENT, vcpu); 3657 } 3658 3659 vcpu->arch.nmi_injected = false; 3660 kvm_clear_exception_queue(vcpu); 3661 kvm_clear_interrupt_queue(vcpu); 3662 3663 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3664 return; 3665 3666 kvm_make_request(KVM_REQ_EVENT, vcpu); 3667 3668 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3669 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3670 3671 switch (type) { 3672 case SVM_EXITINTINFO_TYPE_NMI: 3673 vcpu->arch.nmi_injected = true; 3674 break; 3675 case SVM_EXITINTINFO_TYPE_EXEPT: 3676 /* 3677 * Never re-inject a #VC exception. 3678 */ 3679 if (vector == X86_TRAP_VC) 3680 break; 3681 3682 /* 3683 * In case of software exceptions, do not reinject the vector, 3684 * but re-execute the instruction instead. Rewind RIP first 3685 * if we emulated INT3 before. 3686 */ 3687 if (kvm_exception_is_soft(vector)) { 3688 if (vector == BP_VECTOR && int3_injected && 3689 kvm_is_linear_rip(vcpu, svm->int3_rip)) 3690 kvm_rip_write(vcpu, 3691 kvm_rip_read(vcpu) - int3_injected); 3692 break; 3693 } 3694 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3695 u32 err = svm->vmcb->control.exit_int_info_err; 3696 kvm_requeue_exception_e(vcpu, vector, err); 3697 3698 } else 3699 kvm_requeue_exception(vcpu, vector); 3700 break; 3701 case SVM_EXITINTINFO_TYPE_INTR: 3702 kvm_queue_interrupt(vcpu, vector, false); 3703 break; 3704 default: 3705 break; 3706 } 3707 } 3708 3709 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3710 { 3711 struct vcpu_svm *svm = to_svm(vcpu); 3712 struct vmcb_control_area *control = &svm->vmcb->control; 3713 3714 control->exit_int_info = control->event_inj; 3715 control->exit_int_info_err = control->event_inj_err; 3716 control->event_inj = 0; 3717 svm_complete_interrupts(vcpu); 3718 } 3719 3720 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3721 { 3722 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3723 to_svm(vcpu)->vmcb->control.exit_info_1) 3724 return handle_fastpath_set_msr_irqoff(vcpu); 3725 3726 return EXIT_FASTPATH_NONE; 3727 } 3728 3729 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 3730 { 3731 struct vcpu_svm *svm = to_svm(vcpu); 3732 unsigned long vmcb_pa = svm->current_vmcb->pa; 3733 3734 kvm_guest_enter_irqoff(); 3735 3736 if (sev_es_guest(vcpu->kvm)) { 3737 __svm_sev_es_vcpu_run(vmcb_pa); 3738 } else { 3739 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3740 3741 /* 3742 * Use a single vmcb (vmcb01 because it's always valid) for 3743 * context switching guest state via VMLOAD/VMSAVE, that way 3744 * the state doesn't need to be copied between vmcb01 and 3745 * vmcb02 when switching vmcbs for nested virtualization. 3746 */ 3747 vmload(svm->vmcb01.pa); 3748 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs); 3749 vmsave(svm->vmcb01.pa); 3750 3751 vmload(__sme_page_pa(sd->save_area)); 3752 } 3753 3754 kvm_guest_exit_irqoff(); 3755 } 3756 3757 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3758 { 3759 struct vcpu_svm *svm = to_svm(vcpu); 3760 3761 trace_kvm_entry(vcpu); 3762 3763 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3764 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3765 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3766 3767 /* 3768 * Disable singlestep if we're injecting an interrupt/exception. 3769 * We don't want our modified rflags to be pushed on the stack where 3770 * we might not be able to easily reset them if we disabled NMI 3771 * singlestep later. 3772 */ 3773 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3774 /* 3775 * Event injection happens before external interrupts cause a 3776 * vmexit and interrupts are disabled here, so smp_send_reschedule 3777 * is enough to force an immediate vmexit. 3778 */ 3779 disable_nmi_singlestep(svm); 3780 smp_send_reschedule(vcpu->cpu); 3781 } 3782 3783 pre_svm_run(vcpu); 3784 3785 sync_lapic_to_cr8(vcpu); 3786 3787 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3788 svm->vmcb->control.asid = svm->asid; 3789 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3790 } 3791 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3792 3793 svm_hv_update_vp_id(svm->vmcb, vcpu); 3794 3795 /* 3796 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3797 * of a #DB. 3798 */ 3799 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3800 svm_set_dr6(svm, vcpu->arch.dr6); 3801 else 3802 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3803 3804 clgi(); 3805 kvm_load_guest_xsave_state(vcpu); 3806 3807 kvm_wait_lapic_expire(vcpu); 3808 3809 /* 3810 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3811 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3812 * is no need to worry about the conditional branch over the wrmsr 3813 * being speculatively taken. 3814 */ 3815 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3816 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3817 3818 svm_vcpu_enter_exit(vcpu); 3819 3820 /* 3821 * We do not use IBRS in the kernel. If this vCPU has used the 3822 * SPEC_CTRL MSR it may have left it on; save the value and 3823 * turn it off. This is much more efficient than blindly adding 3824 * it to the atomic save/restore list. Especially as the former 3825 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3826 * 3827 * For non-nested case: 3828 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3829 * save it. 3830 * 3831 * For nested case: 3832 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3833 * save it. 3834 */ 3835 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) && 3836 unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3837 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3838 3839 if (!sev_es_guest(vcpu->kvm)) 3840 reload_tss(vcpu); 3841 3842 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3843 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3844 3845 if (!sev_es_guest(vcpu->kvm)) { 3846 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3847 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3848 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3849 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3850 } 3851 3852 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3853 kvm_before_interrupt(vcpu); 3854 3855 kvm_load_host_xsave_state(vcpu); 3856 stgi(); 3857 3858 /* Any pending NMI will happen here */ 3859 3860 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3861 kvm_after_interrupt(vcpu); 3862 3863 sync_cr8_to_lapic(vcpu); 3864 3865 svm->next_rip = 0; 3866 if (is_guest_mode(vcpu)) { 3867 nested_sync_control_from_vmcb02(svm); 3868 3869 /* Track VMRUNs that have made past consistency checking */ 3870 if (svm->nested.nested_run_pending && 3871 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 3872 ++vcpu->stat.nested_run; 3873 3874 svm->nested.nested_run_pending = 0; 3875 } 3876 3877 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3878 vmcb_mark_all_clean(svm->vmcb); 3879 3880 /* if exit due to PF check for async PF */ 3881 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3882 vcpu->arch.apf.host_apf_flags = 3883 kvm_read_and_reset_apf_flags(); 3884 3885 if (npt_enabled) 3886 kvm_register_clear_available(vcpu, VCPU_EXREG_PDPTR); 3887 3888 /* 3889 * We need to handle MC intercepts here before the vcpu has a chance to 3890 * change the physical cpu 3891 */ 3892 if (unlikely(svm->vmcb->control.exit_code == 3893 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3894 svm_handle_mce(vcpu); 3895 3896 svm_complete_interrupts(vcpu); 3897 3898 if (is_guest_mode(vcpu)) 3899 return EXIT_FASTPATH_NONE; 3900 3901 return svm_exit_handlers_fastpath(vcpu); 3902 } 3903 3904 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3905 int root_level) 3906 { 3907 struct vcpu_svm *svm = to_svm(vcpu); 3908 unsigned long cr3; 3909 3910 if (npt_enabled) { 3911 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 3912 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3913 3914 hv_track_root_tdp(vcpu, root_hpa); 3915 3916 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ 3917 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3918 return; 3919 cr3 = vcpu->arch.cr3; 3920 } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3921 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 3922 } else { 3923 /* PCID in the guest should be impossible with a 32-bit MMU. */ 3924 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 3925 cr3 = root_hpa; 3926 } 3927 3928 svm->vmcb->save.cr3 = cr3; 3929 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 3930 } 3931 3932 static int is_disabled(void) 3933 { 3934 u64 vm_cr; 3935 3936 rdmsrl(MSR_VM_CR, vm_cr); 3937 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3938 return 1; 3939 3940 return 0; 3941 } 3942 3943 static void 3944 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3945 { 3946 /* 3947 * Patch in the VMMCALL instruction: 3948 */ 3949 hypercall[0] = 0x0f; 3950 hypercall[1] = 0x01; 3951 hypercall[2] = 0xd9; 3952 } 3953 3954 static int __init svm_check_processor_compat(void) 3955 { 3956 return 0; 3957 } 3958 3959 static bool svm_cpu_has_accelerated_tpr(void) 3960 { 3961 return false; 3962 } 3963 3964 /* 3965 * The kvm parameter can be NULL (module initialization, or invocation before 3966 * VM creation). Be sure to check the kvm parameter before using it. 3967 */ 3968 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 3969 { 3970 switch (index) { 3971 case MSR_IA32_MCG_EXT_CTL: 3972 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 3973 return false; 3974 case MSR_IA32_SMBASE: 3975 /* SEV-ES guests do not support SMM, so report false */ 3976 if (kvm && sev_es_guest(kvm)) 3977 return false; 3978 break; 3979 default: 3980 break; 3981 } 3982 3983 return true; 3984 } 3985 3986 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 3987 { 3988 return 0; 3989 } 3990 3991 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 3992 { 3993 struct vcpu_svm *svm = to_svm(vcpu); 3994 struct kvm_cpuid_entry2 *best; 3995 3996 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3997 boot_cpu_has(X86_FEATURE_XSAVE) && 3998 boot_cpu_has(X86_FEATURE_XSAVES); 3999 4000 /* Update nrips enabled cache */ 4001 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 4002 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); 4003 4004 svm_recalc_instruction_intercepts(vcpu, svm); 4005 4006 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4007 if (sev_guest(vcpu->kvm)) { 4008 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); 4009 if (best) 4010 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4011 } 4012 4013 if (kvm_vcpu_apicv_active(vcpu)) { 4014 /* 4015 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 4016 * is exposed to the guest, disable AVIC. 4017 */ 4018 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 4019 kvm_request_apicv_update(vcpu->kvm, false, 4020 APICV_INHIBIT_REASON_X2APIC); 4021 4022 /* 4023 * Currently, AVIC does not work with nested virtualization. 4024 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 4025 */ 4026 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4027 kvm_request_apicv_update(vcpu->kvm, false, 4028 APICV_INHIBIT_REASON_NESTED); 4029 } 4030 4031 if (guest_cpuid_is_intel(vcpu)) { 4032 /* 4033 * We must intercept SYSENTER_EIP and SYSENTER_ESP 4034 * accesses because the processor only stores 32 bits. 4035 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 4036 */ 4037 svm_set_intercept(svm, INTERCEPT_VMLOAD); 4038 svm_set_intercept(svm, INTERCEPT_VMSAVE); 4039 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 4040 4041 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 4042 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 4043 } else { 4044 /* 4045 * If hardware supports Virtual VMLOAD VMSAVE then enable it 4046 * in VMCB and clear intercepts to avoid #VMEXIT. 4047 */ 4048 if (vls) { 4049 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 4050 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 4051 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 4052 } 4053 /* No need to intercept these MSRs */ 4054 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 4055 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 4056 } 4057 } 4058 4059 static bool svm_has_wbinvd_exit(void) 4060 { 4061 return true; 4062 } 4063 4064 #define PRE_EX(exit) { .exit_code = (exit), \ 4065 .stage = X86_ICPT_PRE_EXCEPT, } 4066 #define POST_EX(exit) { .exit_code = (exit), \ 4067 .stage = X86_ICPT_POST_EXCEPT, } 4068 #define POST_MEM(exit) { .exit_code = (exit), \ 4069 .stage = X86_ICPT_POST_MEMACCESS, } 4070 4071 static const struct __x86_intercept { 4072 u32 exit_code; 4073 enum x86_intercept_stage stage; 4074 } x86_intercept_map[] = { 4075 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4076 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4077 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4078 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4079 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4080 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4081 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4082 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4083 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4084 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4085 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4086 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4087 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4088 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4089 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4090 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4091 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4092 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4093 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4094 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4095 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4096 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4097 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4098 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4099 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4100 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4101 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4102 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4103 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4104 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4105 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4106 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4107 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4108 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4109 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4110 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4111 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4112 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4113 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4114 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4115 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4116 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4117 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4118 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4119 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4120 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4121 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4122 }; 4123 4124 #undef PRE_EX 4125 #undef POST_EX 4126 #undef POST_MEM 4127 4128 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4129 struct x86_instruction_info *info, 4130 enum x86_intercept_stage stage, 4131 struct x86_exception *exception) 4132 { 4133 struct vcpu_svm *svm = to_svm(vcpu); 4134 int vmexit, ret = X86EMUL_CONTINUE; 4135 struct __x86_intercept icpt_info; 4136 struct vmcb *vmcb = svm->vmcb; 4137 4138 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4139 goto out; 4140 4141 icpt_info = x86_intercept_map[info->intercept]; 4142 4143 if (stage != icpt_info.stage) 4144 goto out; 4145 4146 switch (icpt_info.exit_code) { 4147 case SVM_EXIT_READ_CR0: 4148 if (info->intercept == x86_intercept_cr_read) 4149 icpt_info.exit_code += info->modrm_reg; 4150 break; 4151 case SVM_EXIT_WRITE_CR0: { 4152 unsigned long cr0, val; 4153 4154 if (info->intercept == x86_intercept_cr_write) 4155 icpt_info.exit_code += info->modrm_reg; 4156 4157 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4158 info->intercept == x86_intercept_clts) 4159 break; 4160 4161 if (!(vmcb_is_intercept(&svm->nested.ctl, 4162 INTERCEPT_SELECTIVE_CR0))) 4163 break; 4164 4165 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4166 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4167 4168 if (info->intercept == x86_intercept_lmsw) { 4169 cr0 &= 0xfUL; 4170 val &= 0xfUL; 4171 /* lmsw can't clear PE - catch this here */ 4172 if (cr0 & X86_CR0_PE) 4173 val |= X86_CR0_PE; 4174 } 4175 4176 if (cr0 ^ val) 4177 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4178 4179 break; 4180 } 4181 case SVM_EXIT_READ_DR0: 4182 case SVM_EXIT_WRITE_DR0: 4183 icpt_info.exit_code += info->modrm_reg; 4184 break; 4185 case SVM_EXIT_MSR: 4186 if (info->intercept == x86_intercept_wrmsr) 4187 vmcb->control.exit_info_1 = 1; 4188 else 4189 vmcb->control.exit_info_1 = 0; 4190 break; 4191 case SVM_EXIT_PAUSE: 4192 /* 4193 * We get this for NOP only, but pause 4194 * is rep not, check this here 4195 */ 4196 if (info->rep_prefix != REPE_PREFIX) 4197 goto out; 4198 break; 4199 case SVM_EXIT_IOIO: { 4200 u64 exit_info; 4201 u32 bytes; 4202 4203 if (info->intercept == x86_intercept_in || 4204 info->intercept == x86_intercept_ins) { 4205 exit_info = ((info->src_val & 0xffff) << 16) | 4206 SVM_IOIO_TYPE_MASK; 4207 bytes = info->dst_bytes; 4208 } else { 4209 exit_info = (info->dst_val & 0xffff) << 16; 4210 bytes = info->src_bytes; 4211 } 4212 4213 if (info->intercept == x86_intercept_outs || 4214 info->intercept == x86_intercept_ins) 4215 exit_info |= SVM_IOIO_STR_MASK; 4216 4217 if (info->rep_prefix) 4218 exit_info |= SVM_IOIO_REP_MASK; 4219 4220 bytes = min(bytes, 4u); 4221 4222 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4223 4224 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4225 4226 vmcb->control.exit_info_1 = exit_info; 4227 vmcb->control.exit_info_2 = info->next_rip; 4228 4229 break; 4230 } 4231 default: 4232 break; 4233 } 4234 4235 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4236 if (static_cpu_has(X86_FEATURE_NRIPS)) 4237 vmcb->control.next_rip = info->next_rip; 4238 vmcb->control.exit_code = icpt_info.exit_code; 4239 vmexit = nested_svm_exit_handled(svm); 4240 4241 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4242 : X86EMUL_CONTINUE; 4243 4244 out: 4245 return ret; 4246 } 4247 4248 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4249 { 4250 } 4251 4252 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4253 { 4254 if (!kvm_pause_in_guest(vcpu->kvm)) 4255 shrink_ple_window(vcpu); 4256 } 4257 4258 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4259 { 4260 /* [63:9] are reserved. */ 4261 vcpu->arch.mcg_cap &= 0x1ff; 4262 } 4263 4264 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4265 { 4266 struct vcpu_svm *svm = to_svm(vcpu); 4267 4268 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4269 if (!gif_set(svm)) 4270 return true; 4271 4272 return is_smm(vcpu); 4273 } 4274 4275 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4276 { 4277 struct vcpu_svm *svm = to_svm(vcpu); 4278 if (svm->nested.nested_run_pending) 4279 return -EBUSY; 4280 4281 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4282 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4283 return -EBUSY; 4284 4285 return !svm_smi_blocked(vcpu); 4286 } 4287 4288 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4289 { 4290 struct vcpu_svm *svm = to_svm(vcpu); 4291 int ret; 4292 4293 if (is_guest_mode(vcpu)) { 4294 /* FED8h - SVM Guest */ 4295 put_smstate(u64, smstate, 0x7ed8, 1); 4296 /* FEE0h - SVM Guest VMCB Physical Address */ 4297 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4298 4299 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4300 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4301 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4302 4303 ret = nested_svm_vmexit(svm); 4304 if (ret) 4305 return ret; 4306 } 4307 return 0; 4308 } 4309 4310 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4311 { 4312 struct vcpu_svm *svm = to_svm(vcpu); 4313 struct kvm_host_map map; 4314 int ret = 0; 4315 4316 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) { 4317 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4318 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8); 4319 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4320 4321 if (guest) { 4322 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4323 return 1; 4324 4325 if (!(saved_efer & EFER_SVME)) 4326 return 1; 4327 4328 if (kvm_vcpu_map(vcpu, 4329 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4330 return 1; 4331 4332 if (svm_allocate_nested(svm)) 4333 return 1; 4334 4335 ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, map.hva); 4336 kvm_vcpu_unmap(vcpu, &map, true); 4337 } 4338 } 4339 4340 return ret; 4341 } 4342 4343 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4344 { 4345 struct vcpu_svm *svm = to_svm(vcpu); 4346 4347 if (!gif_set(svm)) { 4348 if (vgif_enabled(svm)) 4349 svm_set_intercept(svm, INTERCEPT_STGI); 4350 /* STGI will cause a vm exit */ 4351 } else { 4352 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4353 } 4354 } 4355 4356 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 4357 { 4358 bool smep, smap, is_user; 4359 unsigned long cr4; 4360 4361 /* 4362 * When the guest is an SEV-ES guest, emulation is not possible. 4363 */ 4364 if (sev_es_guest(vcpu->kvm)) 4365 return false; 4366 4367 /* 4368 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4369 * 4370 * Errata: 4371 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is 4372 * possible that CPU microcode implementing DecodeAssist will fail 4373 * to read bytes of instruction which caused #NPF. In this case, 4374 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly 4375 * return 0 instead of the correct guest instruction bytes. 4376 * 4377 * This happens because CPU microcode reading instruction bytes 4378 * uses a special opcode which attempts to read data using CPL=0 4379 * privileges. The microcode reads CS:RIP and if it hits a SMAP 4380 * fault, it gives up and returns no instruction bytes. 4381 * 4382 * Detection: 4383 * We reach here in case CPU supports DecodeAssist, raised #NPF and 4384 * returned 0 in GuestIntrBytes field of the VMCB. 4385 * First, errata can only be triggered in case vCPU CR4.SMAP=1. 4386 * Second, if vCPU CR4.SMEP=1, errata could only be triggered 4387 * in case vCPU CPL==3 (Because otherwise guest would have triggered 4388 * a SMEP fault instead of #NPF). 4389 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. 4390 * As most guests enable SMAP if they have also enabled SMEP, use above 4391 * logic in order to attempt minimize false-positive of detecting errata 4392 * while still preserving all cases semantic correctness. 4393 * 4394 * Workaround: 4395 * To determine what instruction the guest was executing, the hypervisor 4396 * will have to decode the instruction at the instruction pointer. 4397 * 4398 * In non SEV guest, hypervisor will be able to read the guest 4399 * memory to decode the instruction pointer when insn_len is zero 4400 * so we return true to indicate that decoding is possible. 4401 * 4402 * But in the SEV guest, the guest memory is encrypted with the 4403 * guest specific key and hypervisor will not be able to decode the 4404 * instruction pointer so we will not able to workaround it. Lets 4405 * print the error and request to kill the guest. 4406 */ 4407 if (likely(!insn || insn_len)) 4408 return true; 4409 4410 /* 4411 * If RIP is invalid, go ahead with emulation which will cause an 4412 * internal error exit. 4413 */ 4414 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT)) 4415 return true; 4416 4417 cr4 = kvm_read_cr4(vcpu); 4418 smep = cr4 & X86_CR4_SMEP; 4419 smap = cr4 & X86_CR4_SMAP; 4420 is_user = svm_get_cpl(vcpu) == 3; 4421 if (smap && (!smep || is_user)) { 4422 if (!sev_guest(vcpu->kvm)) 4423 return true; 4424 4425 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4426 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4427 } 4428 4429 return false; 4430 } 4431 4432 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4433 { 4434 struct vcpu_svm *svm = to_svm(vcpu); 4435 4436 /* 4437 * TODO: Last condition latch INIT signals on vCPU when 4438 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4439 * To properly emulate the INIT intercept, 4440 * svm_check_nested_events() should call nested_svm_vmexit() 4441 * if an INIT signal is pending. 4442 */ 4443 return !gif_set(svm) || 4444 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); 4445 } 4446 4447 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4448 { 4449 if (!sev_es_guest(vcpu->kvm)) 4450 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4451 4452 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4453 } 4454 4455 static void svm_vm_destroy(struct kvm *kvm) 4456 { 4457 avic_vm_destroy(kvm); 4458 sev_vm_destroy(kvm); 4459 } 4460 4461 static int svm_vm_init(struct kvm *kvm) 4462 { 4463 if (!pause_filter_count || !pause_filter_thresh) 4464 kvm->arch.pause_in_guest = true; 4465 4466 if (enable_apicv) { 4467 int ret = avic_vm_init(kvm); 4468 if (ret) 4469 return ret; 4470 } 4471 4472 return 0; 4473 } 4474 4475 static struct kvm_x86_ops svm_x86_ops __initdata = { 4476 .hardware_unsetup = svm_hardware_teardown, 4477 .hardware_enable = svm_hardware_enable, 4478 .hardware_disable = svm_hardware_disable, 4479 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, 4480 .has_emulated_msr = svm_has_emulated_msr, 4481 4482 .vcpu_create = svm_create_vcpu, 4483 .vcpu_free = svm_free_vcpu, 4484 .vcpu_reset = svm_vcpu_reset, 4485 4486 .vm_size = sizeof(struct kvm_svm), 4487 .vm_init = svm_vm_init, 4488 .vm_destroy = svm_vm_destroy, 4489 4490 .prepare_guest_switch = svm_prepare_guest_switch, 4491 .vcpu_load = svm_vcpu_load, 4492 .vcpu_put = svm_vcpu_put, 4493 .vcpu_blocking = svm_vcpu_blocking, 4494 .vcpu_unblocking = svm_vcpu_unblocking, 4495 4496 .update_exception_bitmap = svm_update_exception_bitmap, 4497 .get_msr_feature = svm_get_msr_feature, 4498 .get_msr = svm_get_msr, 4499 .set_msr = svm_set_msr, 4500 .get_segment_base = svm_get_segment_base, 4501 .get_segment = svm_get_segment, 4502 .set_segment = svm_set_segment, 4503 .get_cpl = svm_get_cpl, 4504 .get_cs_db_l_bits = kvm_get_cs_db_l_bits, 4505 .set_cr0 = svm_set_cr0, 4506 .is_valid_cr4 = svm_is_valid_cr4, 4507 .set_cr4 = svm_set_cr4, 4508 .set_efer = svm_set_efer, 4509 .get_idt = svm_get_idt, 4510 .set_idt = svm_set_idt, 4511 .get_gdt = svm_get_gdt, 4512 .set_gdt = svm_set_gdt, 4513 .set_dr7 = svm_set_dr7, 4514 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4515 .cache_reg = svm_cache_reg, 4516 .get_rflags = svm_get_rflags, 4517 .set_rflags = svm_set_rflags, 4518 4519 .tlb_flush_all = svm_flush_tlb, 4520 .tlb_flush_current = svm_flush_tlb, 4521 .tlb_flush_gva = svm_flush_tlb_gva, 4522 .tlb_flush_guest = svm_flush_tlb, 4523 4524 .run = svm_vcpu_run, 4525 .handle_exit = handle_exit, 4526 .skip_emulated_instruction = skip_emulated_instruction, 4527 .update_emulated_instruction = NULL, 4528 .set_interrupt_shadow = svm_set_interrupt_shadow, 4529 .get_interrupt_shadow = svm_get_interrupt_shadow, 4530 .patch_hypercall = svm_patch_hypercall, 4531 .set_irq = svm_set_irq, 4532 .set_nmi = svm_inject_nmi, 4533 .queue_exception = svm_queue_exception, 4534 .cancel_injection = svm_cancel_injection, 4535 .interrupt_allowed = svm_interrupt_allowed, 4536 .nmi_allowed = svm_nmi_allowed, 4537 .get_nmi_mask = svm_get_nmi_mask, 4538 .set_nmi_mask = svm_set_nmi_mask, 4539 .enable_nmi_window = svm_enable_nmi_window, 4540 .enable_irq_window = svm_enable_irq_window, 4541 .update_cr8_intercept = svm_update_cr8_intercept, 4542 .set_virtual_apic_mode = svm_set_virtual_apic_mode, 4543 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, 4544 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, 4545 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl, 4546 .load_eoi_exitmap = svm_load_eoi_exitmap, 4547 .hwapic_irr_update = svm_hwapic_irr_update, 4548 .hwapic_isr_update = svm_hwapic_isr_update, 4549 .sync_pir_to_irr = kvm_lapic_find_highest_irr, 4550 .apicv_post_state_restore = avic_post_state_restore, 4551 4552 .set_tss_addr = svm_set_tss_addr, 4553 .set_identity_map_addr = svm_set_identity_map_addr, 4554 .get_mt_mask = svm_get_mt_mask, 4555 4556 .get_exit_info = svm_get_exit_info, 4557 4558 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4559 4560 .has_wbinvd_exit = svm_has_wbinvd_exit, 4561 4562 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4563 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4564 .write_tsc_offset = svm_write_tsc_offset, 4565 .write_tsc_multiplier = svm_write_tsc_multiplier, 4566 4567 .load_mmu_pgd = svm_load_mmu_pgd, 4568 4569 .check_intercept = svm_check_intercept, 4570 .handle_exit_irqoff = svm_handle_exit_irqoff, 4571 4572 .request_immediate_exit = __kvm_request_immediate_exit, 4573 4574 .sched_in = svm_sched_in, 4575 4576 .pmu_ops = &amd_pmu_ops, 4577 .nested_ops = &svm_nested_ops, 4578 4579 .deliver_posted_interrupt = svm_deliver_avic_intr, 4580 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, 4581 .update_pi_irte = svm_update_pi_irte, 4582 .setup_mce = svm_setup_mce, 4583 4584 .smi_allowed = svm_smi_allowed, 4585 .enter_smm = svm_enter_smm, 4586 .leave_smm = svm_leave_smm, 4587 .enable_smi_window = svm_enable_smi_window, 4588 4589 .mem_enc_op = svm_mem_enc_op, 4590 .mem_enc_reg_region = svm_register_enc_region, 4591 .mem_enc_unreg_region = svm_unregister_enc_region, 4592 4593 .vm_copy_enc_context_from = svm_vm_copy_asid_from, 4594 4595 .can_emulate_instruction = svm_can_emulate_instruction, 4596 4597 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4598 4599 .msr_filter_changed = svm_msr_filter_changed, 4600 .complete_emulated_msr = svm_complete_emulated_msr, 4601 4602 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4603 }; 4604 4605 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4606 .cpu_has_kvm_support = has_svm, 4607 .disabled_by_bios = is_disabled, 4608 .hardware_setup = svm_hardware_setup, 4609 .check_processor_compatibility = svm_check_processor_compat, 4610 4611 .runtime_ops = &svm_x86_ops, 4612 }; 4613 4614 static int __init svm_init(void) 4615 { 4616 __unused_size_checks(); 4617 4618 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4619 __alignof__(struct vcpu_svm), THIS_MODULE); 4620 } 4621 4622 static void __exit svm_exit(void) 4623 { 4624 kvm_exit(); 4625 } 4626 4627 module_init(svm_init) 4628 module_exit(svm_exit) 4629