xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision e330fb14)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 #include <asm/traps.h>
39 
40 #include <asm/virtext.h>
41 #include "trace.h"
42 
43 #include "svm.h"
44 #include "svm_ops.h"
45 
46 #include "kvm_onhyperv.h"
47 #include "svm_onhyperv.h"
48 
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51 
52 #ifdef MODULE
53 static const struct x86_cpu_id svm_cpu_id[] = {
54 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
55 	{}
56 };
57 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
58 #endif
59 
60 #define SEG_TYPE_LDT 2
61 #define SEG_TYPE_BUSY_TSS16 3
62 
63 #define SVM_FEATURE_LBRV           (1 <<  1)
64 #define SVM_FEATURE_SVML           (1 <<  2)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70 
71 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
72 
73 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
74 #define TSC_RATIO_MIN		0x0000000000000001ULL
75 #define TSC_RATIO_MAX		0x000000ffffffffffULL
76 
77 static bool erratum_383_found __read_mostly;
78 
79 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
80 
81 /*
82  * Set osvw_len to higher value when updated Revision Guides
83  * are published and we know what the new status bits are
84  */
85 static uint64_t osvw_len = 4, osvw_status;
86 
87 static DEFINE_PER_CPU(u64, current_tsc_ratio);
88 #define TSC_RATIO_DEFAULT	0x0100000000ULL
89 
90 static const struct svm_direct_access_msrs {
91 	u32 index;   /* Index of the MSR */
92 	bool always; /* True if intercept is initially cleared */
93 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
94 	{ .index = MSR_STAR,				.always = true  },
95 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
96 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
97 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
98 #ifdef CONFIG_X86_64
99 	{ .index = MSR_GS_BASE,				.always = true  },
100 	{ .index = MSR_FS_BASE,				.always = true  },
101 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
102 	{ .index = MSR_LSTAR,				.always = true  },
103 	{ .index = MSR_CSTAR,				.always = true  },
104 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
105 #endif
106 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
107 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
108 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
109 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
110 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
111 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
112 	{ .index = MSR_EFER,				.always = false },
113 	{ .index = MSR_IA32_CR_PAT,			.always = false },
114 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
115 	{ .index = MSR_INVALID,				.always = false },
116 };
117 
118 /*
119  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
120  * pause_filter_count: On processors that support Pause filtering(indicated
121  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
122  *	count value. On VMRUN this value is loaded into an internal counter.
123  *	Each time a pause instruction is executed, this counter is decremented
124  *	until it reaches zero at which time a #VMEXIT is generated if pause
125  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
126  *	Intercept Filtering for more details.
127  *	This also indicate if ple logic enabled.
128  *
129  * pause_filter_thresh: In addition, some processor families support advanced
130  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
131  *	the amount of time a guest is allowed to execute in a pause loop.
132  *	In this mode, a 16-bit pause filter threshold field is added in the
133  *	VMCB. The threshold value is a cycle count that is used to reset the
134  *	pause counter. As with simple pause filtering, VMRUN loads the pause
135  *	count value from VMCB into an internal counter. Then, on each pause
136  *	instruction the hardware checks the elapsed number of cycles since
137  *	the most recent pause instruction against the pause filter threshold.
138  *	If the elapsed cycle count is greater than the pause filter threshold,
139  *	then the internal pause count is reloaded from the VMCB and execution
140  *	continues. If the elapsed cycle count is less than the pause filter
141  *	threshold, then the internal pause count is decremented. If the count
142  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
143  *	triggered. If advanced pause filtering is supported and pause filter
144  *	threshold field is set to zero, the filter will operate in the simpler,
145  *	count only mode.
146  */
147 
148 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
149 module_param(pause_filter_thresh, ushort, 0444);
150 
151 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
152 module_param(pause_filter_count, ushort, 0444);
153 
154 /* Default doubles per-vcpu window every exit. */
155 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
156 module_param(pause_filter_count_grow, ushort, 0444);
157 
158 /* Default resets per-vcpu window every exit to pause_filter_count. */
159 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
160 module_param(pause_filter_count_shrink, ushort, 0444);
161 
162 /* Default is to compute the maximum so we can never overflow. */
163 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
164 module_param(pause_filter_count_max, ushort, 0444);
165 
166 /*
167  * Use nested page tables by default.  Note, NPT may get forced off by
168  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
169  */
170 bool npt_enabled = true;
171 module_param_named(npt, npt_enabled, bool, 0444);
172 
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176 
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180 
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184 
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188 
189 /*
190  * enable / disable AVIC.  Because the defaults differ for APICv
191  * support between VMX and SVM we cannot use module_param_named.
192  */
193 static bool avic;
194 module_param(avic, bool, 0444);
195 
196 bool __read_mostly dump_invalid_vmcb;
197 module_param(dump_invalid_vmcb, bool, 0644);
198 
199 
200 bool intercept_smi = true;
201 module_param(intercept_smi, bool, 0444);
202 
203 
204 static bool svm_gp_erratum_intercept = true;
205 
206 static u8 rsm_ins_bytes[] = "\x0f\xaa";
207 
208 static unsigned long iopm_base;
209 
210 struct kvm_ldttss_desc {
211 	u16 limit0;
212 	u16 base0;
213 	unsigned base1:8, type:5, dpl:2, p:1;
214 	unsigned limit1:4, zero0:3, g:1, base2:8;
215 	u32 base3;
216 	u32 zero1;
217 } __attribute__((packed));
218 
219 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
220 
221 /*
222  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
223  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
224  *
225  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
226  * defer the restoration of TSC_AUX until the CPU returns to userspace.
227  */
228 static int tsc_aux_uret_slot __read_mostly = -1;
229 
230 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
231 
232 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
233 #define MSRS_RANGE_SIZE 2048
234 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
235 
236 u32 svm_msrpm_offset(u32 msr)
237 {
238 	u32 offset;
239 	int i;
240 
241 	for (i = 0; i < NUM_MSR_MAPS; i++) {
242 		if (msr < msrpm_ranges[i] ||
243 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
244 			continue;
245 
246 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
247 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
248 
249 		/* Now we have the u8 offset - but need the u32 offset */
250 		return offset / 4;
251 	}
252 
253 	/* MSR not in any range */
254 	return MSR_INVALID;
255 }
256 
257 #define MAX_INST_SIZE 15
258 
259 static int get_max_npt_level(void)
260 {
261 #ifdef CONFIG_X86_64
262 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
263 #else
264 	return PT32E_ROOT_LEVEL;
265 #endif
266 }
267 
268 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
269 {
270 	struct vcpu_svm *svm = to_svm(vcpu);
271 	u64 old_efer = vcpu->arch.efer;
272 	vcpu->arch.efer = efer;
273 
274 	if (!npt_enabled) {
275 		/* Shadow paging assumes NX to be available.  */
276 		efer |= EFER_NX;
277 
278 		if (!(efer & EFER_LMA))
279 			efer &= ~EFER_LME;
280 	}
281 
282 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
283 		if (!(efer & EFER_SVME)) {
284 			svm_leave_nested(svm);
285 			svm_set_gif(svm, true);
286 			/* #GP intercept is still needed for vmware backdoor */
287 			if (!enable_vmware_backdoor)
288 				clr_exception_intercept(svm, GP_VECTOR);
289 
290 			/*
291 			 * Free the nested guest state, unless we are in SMM.
292 			 * In this case we will return to the nested guest
293 			 * as soon as we leave SMM.
294 			 */
295 			if (!is_smm(vcpu))
296 				svm_free_nested(svm);
297 
298 		} else {
299 			int ret = svm_allocate_nested(svm);
300 
301 			if (ret) {
302 				vcpu->arch.efer = old_efer;
303 				return ret;
304 			}
305 
306 			if (svm_gp_erratum_intercept)
307 				set_exception_intercept(svm, GP_VECTOR);
308 		}
309 	}
310 
311 	svm->vmcb->save.efer = efer | EFER_SVME;
312 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
313 	return 0;
314 }
315 
316 static int is_external_interrupt(u32 info)
317 {
318 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
319 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
320 }
321 
322 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
323 {
324 	struct vcpu_svm *svm = to_svm(vcpu);
325 	u32 ret = 0;
326 
327 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
328 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
329 	return ret;
330 }
331 
332 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
333 {
334 	struct vcpu_svm *svm = to_svm(vcpu);
335 
336 	if (mask == 0)
337 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
338 	else
339 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
340 
341 }
342 
343 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
344 {
345 	struct vcpu_svm *svm = to_svm(vcpu);
346 
347 	/*
348 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
349 	 * the type of exit and the #VC handler in the guest.
350 	 */
351 	if (sev_es_guest(vcpu->kvm))
352 		goto done;
353 
354 	if (nrips && svm->vmcb->control.next_rip != 0) {
355 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
356 		svm->next_rip = svm->vmcb->control.next_rip;
357 	}
358 
359 	if (!svm->next_rip) {
360 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
361 			return 0;
362 	} else {
363 		kvm_rip_write(vcpu, svm->next_rip);
364 	}
365 
366 done:
367 	svm_set_interrupt_shadow(vcpu, 0);
368 
369 	return 1;
370 }
371 
372 static void svm_queue_exception(struct kvm_vcpu *vcpu)
373 {
374 	struct vcpu_svm *svm = to_svm(vcpu);
375 	unsigned nr = vcpu->arch.exception.nr;
376 	bool has_error_code = vcpu->arch.exception.has_error_code;
377 	u32 error_code = vcpu->arch.exception.error_code;
378 
379 	kvm_deliver_exception_payload(vcpu);
380 
381 	if (nr == BP_VECTOR && !nrips) {
382 		unsigned long rip, old_rip = kvm_rip_read(vcpu);
383 
384 		/*
385 		 * For guest debugging where we have to reinject #BP if some
386 		 * INT3 is guest-owned:
387 		 * Emulate nRIP by moving RIP forward. Will fail if injection
388 		 * raises a fault that is not intercepted. Still better than
389 		 * failing in all cases.
390 		 */
391 		(void)skip_emulated_instruction(vcpu);
392 		rip = kvm_rip_read(vcpu);
393 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
394 		svm->int3_injected = rip - old_rip;
395 	}
396 
397 	svm->vmcb->control.event_inj = nr
398 		| SVM_EVTINJ_VALID
399 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
400 		| SVM_EVTINJ_TYPE_EXEPT;
401 	svm->vmcb->control.event_inj_err = error_code;
402 }
403 
404 static void svm_init_erratum_383(void)
405 {
406 	u32 low, high;
407 	int err;
408 	u64 val;
409 
410 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
411 		return;
412 
413 	/* Use _safe variants to not break nested virtualization */
414 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
415 	if (err)
416 		return;
417 
418 	val |= (1ULL << 47);
419 
420 	low  = lower_32_bits(val);
421 	high = upper_32_bits(val);
422 
423 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
424 
425 	erratum_383_found = true;
426 }
427 
428 static void svm_init_osvw(struct kvm_vcpu *vcpu)
429 {
430 	/*
431 	 * Guests should see errata 400 and 415 as fixed (assuming that
432 	 * HLT and IO instructions are intercepted).
433 	 */
434 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
435 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
436 
437 	/*
438 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
439 	 * all osvw.status bits inside that length, including bit 0 (which is
440 	 * reserved for erratum 298), are valid. However, if host processor's
441 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
442 	 * be conservative here and therefore we tell the guest that erratum 298
443 	 * is present (because we really don't know).
444 	 */
445 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
446 		vcpu->arch.osvw.status |= 1;
447 }
448 
449 static int has_svm(void)
450 {
451 	const char *msg;
452 
453 	if (!cpu_has_svm(&msg)) {
454 		printk(KERN_INFO "has_svm: %s\n", msg);
455 		return 0;
456 	}
457 
458 	if (sev_active()) {
459 		pr_info("KVM is unsupported when running as an SEV guest\n");
460 		return 0;
461 	}
462 
463 	return 1;
464 }
465 
466 static void svm_hardware_disable(void)
467 {
468 	/* Make sure we clean up behind us */
469 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
470 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
471 
472 	cpu_svm_disable();
473 
474 	amd_pmu_disable_virt();
475 }
476 
477 static int svm_hardware_enable(void)
478 {
479 
480 	struct svm_cpu_data *sd;
481 	uint64_t efer;
482 	struct desc_struct *gdt;
483 	int me = raw_smp_processor_id();
484 
485 	rdmsrl(MSR_EFER, efer);
486 	if (efer & EFER_SVME)
487 		return -EBUSY;
488 
489 	if (!has_svm()) {
490 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
491 		return -EINVAL;
492 	}
493 	sd = per_cpu(svm_data, me);
494 	if (!sd) {
495 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
496 		return -EINVAL;
497 	}
498 
499 	sd->asid_generation = 1;
500 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
501 	sd->next_asid = sd->max_asid + 1;
502 	sd->min_asid = max_sev_asid + 1;
503 
504 	gdt = get_current_gdt_rw();
505 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
506 
507 	wrmsrl(MSR_EFER, efer | EFER_SVME);
508 
509 	wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
510 
511 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
512 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
513 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
514 	}
515 
516 
517 	/*
518 	 * Get OSVW bits.
519 	 *
520 	 * Note that it is possible to have a system with mixed processor
521 	 * revisions and therefore different OSVW bits. If bits are not the same
522 	 * on different processors then choose the worst case (i.e. if erratum
523 	 * is present on one processor and not on another then assume that the
524 	 * erratum is present everywhere).
525 	 */
526 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
527 		uint64_t len, status = 0;
528 		int err;
529 
530 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
531 		if (!err)
532 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
533 						      &err);
534 
535 		if (err)
536 			osvw_status = osvw_len = 0;
537 		else {
538 			if (len < osvw_len)
539 				osvw_len = len;
540 			osvw_status |= status;
541 			osvw_status &= (1ULL << osvw_len) - 1;
542 		}
543 	} else
544 		osvw_status = osvw_len = 0;
545 
546 	svm_init_erratum_383();
547 
548 	amd_pmu_enable_virt();
549 
550 	return 0;
551 }
552 
553 static void svm_cpu_uninit(int cpu)
554 {
555 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
556 
557 	if (!sd)
558 		return;
559 
560 	per_cpu(svm_data, cpu) = NULL;
561 	kfree(sd->sev_vmcbs);
562 	__free_page(sd->save_area);
563 	kfree(sd);
564 }
565 
566 static int svm_cpu_init(int cpu)
567 {
568 	struct svm_cpu_data *sd;
569 	int ret = -ENOMEM;
570 
571 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
572 	if (!sd)
573 		return ret;
574 	sd->cpu = cpu;
575 	sd->save_area = alloc_page(GFP_KERNEL);
576 	if (!sd->save_area)
577 		goto free_cpu_data;
578 
579 	clear_page(page_address(sd->save_area));
580 
581 	ret = sev_cpu_init(sd);
582 	if (ret)
583 		goto free_save_area;
584 
585 	per_cpu(svm_data, cpu) = sd;
586 
587 	return 0;
588 
589 free_save_area:
590 	__free_page(sd->save_area);
591 free_cpu_data:
592 	kfree(sd);
593 	return ret;
594 
595 }
596 
597 static int direct_access_msr_slot(u32 msr)
598 {
599 	u32 i;
600 
601 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
602 		if (direct_access_msrs[i].index == msr)
603 			return i;
604 
605 	return -ENOENT;
606 }
607 
608 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
609 				     int write)
610 {
611 	struct vcpu_svm *svm = to_svm(vcpu);
612 	int slot = direct_access_msr_slot(msr);
613 
614 	if (slot == -ENOENT)
615 		return;
616 
617 	/* Set the shadow bitmaps to the desired intercept states */
618 	if (read)
619 		set_bit(slot, svm->shadow_msr_intercept.read);
620 	else
621 		clear_bit(slot, svm->shadow_msr_intercept.read);
622 
623 	if (write)
624 		set_bit(slot, svm->shadow_msr_intercept.write);
625 	else
626 		clear_bit(slot, svm->shadow_msr_intercept.write);
627 }
628 
629 static bool valid_msr_intercept(u32 index)
630 {
631 	return direct_access_msr_slot(index) != -ENOENT;
632 }
633 
634 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
635 {
636 	u8 bit_write;
637 	unsigned long tmp;
638 	u32 offset;
639 	u32 *msrpm;
640 
641 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
642 				      to_svm(vcpu)->msrpm;
643 
644 	offset    = svm_msrpm_offset(msr);
645 	bit_write = 2 * (msr & 0x0f) + 1;
646 	tmp       = msrpm[offset];
647 
648 	BUG_ON(offset == MSR_INVALID);
649 
650 	return !!test_bit(bit_write,  &tmp);
651 }
652 
653 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
654 					u32 msr, int read, int write)
655 {
656 	u8 bit_read, bit_write;
657 	unsigned long tmp;
658 	u32 offset;
659 
660 	/*
661 	 * If this warning triggers extend the direct_access_msrs list at the
662 	 * beginning of the file
663 	 */
664 	WARN_ON(!valid_msr_intercept(msr));
665 
666 	/* Enforce non allowed MSRs to trap */
667 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
668 		read = 0;
669 
670 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
671 		write = 0;
672 
673 	offset    = svm_msrpm_offset(msr);
674 	bit_read  = 2 * (msr & 0x0f);
675 	bit_write = 2 * (msr & 0x0f) + 1;
676 	tmp       = msrpm[offset];
677 
678 	BUG_ON(offset == MSR_INVALID);
679 
680 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
681 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
682 
683 	msrpm[offset] = tmp;
684 
685 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
686 
687 }
688 
689 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
690 			  int read, int write)
691 {
692 	set_shadow_msr_intercept(vcpu, msr, read, write);
693 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
694 }
695 
696 u32 *svm_vcpu_alloc_msrpm(void)
697 {
698 	unsigned int order = get_order(MSRPM_SIZE);
699 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
700 	u32 *msrpm;
701 
702 	if (!pages)
703 		return NULL;
704 
705 	msrpm = page_address(pages);
706 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
707 
708 	return msrpm;
709 }
710 
711 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
712 {
713 	int i;
714 
715 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
716 		if (!direct_access_msrs[i].always)
717 			continue;
718 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
719 	}
720 }
721 
722 
723 void svm_vcpu_free_msrpm(u32 *msrpm)
724 {
725 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
726 }
727 
728 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
729 {
730 	struct vcpu_svm *svm = to_svm(vcpu);
731 	u32 i;
732 
733 	/*
734 	 * Set intercept permissions for all direct access MSRs again. They
735 	 * will automatically get filtered through the MSR filter, so we are
736 	 * back in sync after this.
737 	 */
738 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
739 		u32 msr = direct_access_msrs[i].index;
740 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
741 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
742 
743 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
744 	}
745 }
746 
747 static void add_msr_offset(u32 offset)
748 {
749 	int i;
750 
751 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
752 
753 		/* Offset already in list? */
754 		if (msrpm_offsets[i] == offset)
755 			return;
756 
757 		/* Slot used by another offset? */
758 		if (msrpm_offsets[i] != MSR_INVALID)
759 			continue;
760 
761 		/* Add offset to list */
762 		msrpm_offsets[i] = offset;
763 
764 		return;
765 	}
766 
767 	/*
768 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
769 	 * increase MSRPM_OFFSETS in this case.
770 	 */
771 	BUG();
772 }
773 
774 static void init_msrpm_offsets(void)
775 {
776 	int i;
777 
778 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
779 
780 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
781 		u32 offset;
782 
783 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
784 		BUG_ON(offset == MSR_INVALID);
785 
786 		add_msr_offset(offset);
787 	}
788 }
789 
790 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
791 {
792 	struct vcpu_svm *svm = to_svm(vcpu);
793 
794 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
795 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
796 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
797 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
798 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
799 }
800 
801 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
802 {
803 	struct vcpu_svm *svm = to_svm(vcpu);
804 
805 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
806 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
807 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
808 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
809 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
810 }
811 
812 void disable_nmi_singlestep(struct vcpu_svm *svm)
813 {
814 	svm->nmi_singlestep = false;
815 
816 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
817 		/* Clear our flags if they were not set by the guest */
818 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
819 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
820 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
821 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
822 	}
823 }
824 
825 static void grow_ple_window(struct kvm_vcpu *vcpu)
826 {
827 	struct vcpu_svm *svm = to_svm(vcpu);
828 	struct vmcb_control_area *control = &svm->vmcb->control;
829 	int old = control->pause_filter_count;
830 
831 	control->pause_filter_count = __grow_ple_window(old,
832 							pause_filter_count,
833 							pause_filter_count_grow,
834 							pause_filter_count_max);
835 
836 	if (control->pause_filter_count != old) {
837 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
838 		trace_kvm_ple_window_update(vcpu->vcpu_id,
839 					    control->pause_filter_count, old);
840 	}
841 }
842 
843 static void shrink_ple_window(struct kvm_vcpu *vcpu)
844 {
845 	struct vcpu_svm *svm = to_svm(vcpu);
846 	struct vmcb_control_area *control = &svm->vmcb->control;
847 	int old = control->pause_filter_count;
848 
849 	control->pause_filter_count =
850 				__shrink_ple_window(old,
851 						    pause_filter_count,
852 						    pause_filter_count_shrink,
853 						    pause_filter_count);
854 	if (control->pause_filter_count != old) {
855 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
856 		trace_kvm_ple_window_update(vcpu->vcpu_id,
857 					    control->pause_filter_count, old);
858 	}
859 }
860 
861 /*
862  * The default MMIO mask is a single bit (excluding the present bit),
863  * which could conflict with the memory encryption bit. Check for
864  * memory encryption support and override the default MMIO mask if
865  * memory encryption is enabled.
866  */
867 static __init void svm_adjust_mmio_mask(void)
868 {
869 	unsigned int enc_bit, mask_bit;
870 	u64 msr, mask;
871 
872 	/* If there is no memory encryption support, use existing mask */
873 	if (cpuid_eax(0x80000000) < 0x8000001f)
874 		return;
875 
876 	/* If memory encryption is not enabled, use existing mask */
877 	rdmsrl(MSR_AMD64_SYSCFG, msr);
878 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
879 		return;
880 
881 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
882 	mask_bit = boot_cpu_data.x86_phys_bits;
883 
884 	/* Increment the mask bit if it is the same as the encryption bit */
885 	if (enc_bit == mask_bit)
886 		mask_bit++;
887 
888 	/*
889 	 * If the mask bit location is below 52, then some bits above the
890 	 * physical addressing limit will always be reserved, so use the
891 	 * rsvd_bits() function to generate the mask. This mask, along with
892 	 * the present bit, will be used to generate a page fault with
893 	 * PFER.RSV = 1.
894 	 *
895 	 * If the mask bit location is 52 (or above), then clear the mask.
896 	 */
897 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
898 
899 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
900 }
901 
902 static void svm_hardware_teardown(void)
903 {
904 	int cpu;
905 
906 	sev_hardware_teardown();
907 
908 	for_each_possible_cpu(cpu)
909 		svm_cpu_uninit(cpu);
910 
911 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
912 	get_order(IOPM_SIZE));
913 	iopm_base = 0;
914 }
915 
916 static __init void svm_set_cpu_caps(void)
917 {
918 	kvm_set_cpu_caps();
919 
920 	supported_xss = 0;
921 
922 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
923 	if (nested) {
924 		kvm_cpu_cap_set(X86_FEATURE_SVM);
925 
926 		if (nrips)
927 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
928 
929 		if (npt_enabled)
930 			kvm_cpu_cap_set(X86_FEATURE_NPT);
931 
932 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
933 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
934 	}
935 
936 	/* CPUID 0x80000008 */
937 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
938 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
939 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
940 
941 	/* CPUID 0x8000001F (SME/SEV features) */
942 	sev_set_cpu_caps();
943 }
944 
945 static __init int svm_hardware_setup(void)
946 {
947 	int cpu;
948 	struct page *iopm_pages;
949 	void *iopm_va;
950 	int r;
951 	unsigned int order = get_order(IOPM_SIZE);
952 
953 	/*
954 	 * NX is required for shadow paging and for NPT if the NX huge pages
955 	 * mitigation is enabled.
956 	 */
957 	if (!boot_cpu_has(X86_FEATURE_NX)) {
958 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
959 		return -EOPNOTSUPP;
960 	}
961 	kvm_enable_efer_bits(EFER_NX);
962 
963 	iopm_pages = alloc_pages(GFP_KERNEL, order);
964 
965 	if (!iopm_pages)
966 		return -ENOMEM;
967 
968 	iopm_va = page_address(iopm_pages);
969 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
970 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
971 
972 	init_msrpm_offsets();
973 
974 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
975 
976 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
977 		kvm_enable_efer_bits(EFER_FFXSR);
978 
979 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
980 		kvm_has_tsc_control = true;
981 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
982 		kvm_tsc_scaling_ratio_frac_bits = 32;
983 	}
984 
985 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
986 
987 	/* Check for pause filtering support */
988 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
989 		pause_filter_count = 0;
990 		pause_filter_thresh = 0;
991 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
992 		pause_filter_thresh = 0;
993 	}
994 
995 	if (nested) {
996 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
997 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
998 	}
999 
1000 	/*
1001 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
1002 	 * NPT isn't supported if the host is using 2-level paging since host
1003 	 * CR4 is unchanged on VMRUN.
1004 	 */
1005 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
1006 		npt_enabled = false;
1007 
1008 	if (!boot_cpu_has(X86_FEATURE_NPT))
1009 		npt_enabled = false;
1010 
1011 	/* Force VM NPT level equal to the host's max NPT level */
1012 	kvm_configure_mmu(npt_enabled, get_max_npt_level(),
1013 			  get_max_npt_level(), PG_LEVEL_1G);
1014 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
1015 
1016 	/* Note, SEV setup consumes npt_enabled. */
1017 	sev_hardware_setup();
1018 
1019 	svm_hv_hardware_setup();
1020 
1021 	svm_adjust_mmio_mask();
1022 
1023 	for_each_possible_cpu(cpu) {
1024 		r = svm_cpu_init(cpu);
1025 		if (r)
1026 			goto err;
1027 	}
1028 
1029 	if (nrips) {
1030 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
1031 			nrips = false;
1032 	}
1033 
1034 	enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC);
1035 
1036 	if (enable_apicv) {
1037 		pr_info("AVIC enabled\n");
1038 
1039 		amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1040 	}
1041 
1042 	if (vls) {
1043 		if (!npt_enabled ||
1044 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1045 		    !IS_ENABLED(CONFIG_X86_64)) {
1046 			vls = false;
1047 		} else {
1048 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1049 		}
1050 	}
1051 
1052 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
1053 		svm_gp_erratum_intercept = false;
1054 
1055 	if (vgif) {
1056 		if (!boot_cpu_has(X86_FEATURE_VGIF))
1057 			vgif = false;
1058 		else
1059 			pr_info("Virtual GIF supported\n");
1060 	}
1061 
1062 	svm_set_cpu_caps();
1063 
1064 	/*
1065 	 * It seems that on AMD processors PTE's accessed bit is
1066 	 * being set by the CPU hardware before the NPF vmexit.
1067 	 * This is not expected behaviour and our tests fail because
1068 	 * of it.
1069 	 * A workaround here is to disable support for
1070 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1071 	 * In this case userspace can know if there is support using
1072 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1073 	 * it
1074 	 * If future AMD CPU models change the behaviour described above,
1075 	 * this variable can be changed accordingly
1076 	 */
1077 	allow_smaller_maxphyaddr = !npt_enabled;
1078 
1079 	return 0;
1080 
1081 err:
1082 	svm_hardware_teardown();
1083 	return r;
1084 }
1085 
1086 static void init_seg(struct vmcb_seg *seg)
1087 {
1088 	seg->selector = 0;
1089 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1090 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1091 	seg->limit = 0xffff;
1092 	seg->base = 0;
1093 }
1094 
1095 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1096 {
1097 	seg->selector = 0;
1098 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1099 	seg->limit = 0xffff;
1100 	seg->base = 0;
1101 }
1102 
1103 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1104 {
1105 	struct vcpu_svm *svm = to_svm(vcpu);
1106 
1107 	return svm->nested.ctl.tsc_offset;
1108 }
1109 
1110 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1111 {
1112 	return kvm_default_tsc_scaling_ratio;
1113 }
1114 
1115 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1116 {
1117 	struct vcpu_svm *svm = to_svm(vcpu);
1118 
1119 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1120 	svm->vmcb->control.tsc_offset = offset;
1121 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1122 }
1123 
1124 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1125 {
1126 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
1127 }
1128 
1129 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1130 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1131 					      struct vcpu_svm *svm)
1132 {
1133 	/*
1134 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1135 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1136 	 */
1137 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1138 		if (!npt_enabled ||
1139 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1140 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1141 		else
1142 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1143 	}
1144 
1145 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1146 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1147 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1148 		else
1149 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1150 	}
1151 }
1152 
1153 static void init_vmcb(struct kvm_vcpu *vcpu)
1154 {
1155 	struct vcpu_svm *svm = to_svm(vcpu);
1156 	struct vmcb_control_area *control = &svm->vmcb->control;
1157 	struct vmcb_save_area *save = &svm->vmcb->save;
1158 
1159 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1160 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1161 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1162 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1163 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1164 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1165 	if (!kvm_vcpu_apicv_active(vcpu))
1166 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1167 
1168 	set_dr_intercepts(svm);
1169 
1170 	set_exception_intercept(svm, PF_VECTOR);
1171 	set_exception_intercept(svm, UD_VECTOR);
1172 	set_exception_intercept(svm, MC_VECTOR);
1173 	set_exception_intercept(svm, AC_VECTOR);
1174 	set_exception_intercept(svm, DB_VECTOR);
1175 	/*
1176 	 * Guest access to VMware backdoor ports could legitimately
1177 	 * trigger #GP because of TSS I/O permission bitmap.
1178 	 * We intercept those #GP and allow access to them anyway
1179 	 * as VMware does.
1180 	 */
1181 	if (enable_vmware_backdoor)
1182 		set_exception_intercept(svm, GP_VECTOR);
1183 
1184 	svm_set_intercept(svm, INTERCEPT_INTR);
1185 	svm_set_intercept(svm, INTERCEPT_NMI);
1186 
1187 	if (intercept_smi)
1188 		svm_set_intercept(svm, INTERCEPT_SMI);
1189 
1190 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1191 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1192 	svm_set_intercept(svm, INTERCEPT_CPUID);
1193 	svm_set_intercept(svm, INTERCEPT_INVD);
1194 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1195 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1196 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1197 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1198 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1199 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1200 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1201 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1202 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1203 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1204 	svm_set_intercept(svm, INTERCEPT_STGI);
1205 	svm_set_intercept(svm, INTERCEPT_CLGI);
1206 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1207 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1208 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1209 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1210 	svm_set_intercept(svm, INTERCEPT_RSM);
1211 
1212 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1213 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1214 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1215 	}
1216 
1217 	if (!kvm_hlt_in_guest(vcpu->kvm))
1218 		svm_set_intercept(svm, INTERCEPT_HLT);
1219 
1220 	control->iopm_base_pa = __sme_set(iopm_base);
1221 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1222 	control->int_ctl = V_INTR_MASKING_MASK;
1223 
1224 	init_seg(&save->es);
1225 	init_seg(&save->ss);
1226 	init_seg(&save->ds);
1227 	init_seg(&save->fs);
1228 	init_seg(&save->gs);
1229 
1230 	save->cs.selector = 0xf000;
1231 	save->cs.base = 0xffff0000;
1232 	/* Executable/Readable Code Segment */
1233 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1234 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1235 	save->cs.limit = 0xffff;
1236 
1237 	save->gdtr.base = 0;
1238 	save->gdtr.limit = 0xffff;
1239 	save->idtr.base = 0;
1240 	save->idtr.limit = 0xffff;
1241 
1242 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1243 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1244 
1245 	if (npt_enabled) {
1246 		/* Setup VMCB for Nested Paging */
1247 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1248 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1249 		clr_exception_intercept(svm, PF_VECTOR);
1250 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1251 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1252 		save->g_pat = vcpu->arch.pat;
1253 		save->cr3 = 0;
1254 	}
1255 	svm->current_vmcb->asid_generation = 0;
1256 	svm->asid = 0;
1257 
1258 	svm->nested.vmcb12_gpa = INVALID_GPA;
1259 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1260 
1261 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1262 		control->pause_filter_count = pause_filter_count;
1263 		if (pause_filter_thresh)
1264 			control->pause_filter_thresh = pause_filter_thresh;
1265 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1266 	} else {
1267 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1268 	}
1269 
1270 	svm_recalc_instruction_intercepts(vcpu, svm);
1271 
1272 	/*
1273 	 * If the host supports V_SPEC_CTRL then disable the interception
1274 	 * of MSR_IA32_SPEC_CTRL.
1275 	 */
1276 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1277 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1278 
1279 	if (kvm_vcpu_apicv_active(vcpu))
1280 		avic_init_vmcb(svm);
1281 
1282 	if (vgif) {
1283 		svm_clr_intercept(svm, INTERCEPT_STGI);
1284 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1285 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1286 	}
1287 
1288 	if (sev_guest(vcpu->kvm)) {
1289 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1290 		clr_exception_intercept(svm, UD_VECTOR);
1291 
1292 		if (sev_es_guest(vcpu->kvm)) {
1293 			/* Perform SEV-ES specific VMCB updates */
1294 			sev_es_init_vmcb(svm);
1295 		}
1296 	}
1297 
1298 	svm_hv_init_vmcb(svm->vmcb);
1299 
1300 	vmcb_mark_all_dirty(svm->vmcb);
1301 
1302 	enable_gif(svm);
1303 
1304 }
1305 
1306 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1307 {
1308 	struct vcpu_svm *svm = to_svm(vcpu);
1309 
1310 	svm->spec_ctrl = 0;
1311 	svm->virt_spec_ctrl = 0;
1312 
1313 	init_vmcb(vcpu);
1314 }
1315 
1316 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1317 {
1318 	svm->current_vmcb = target_vmcb;
1319 	svm->vmcb = target_vmcb->ptr;
1320 }
1321 
1322 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1323 {
1324 	struct vcpu_svm *svm;
1325 	struct page *vmcb01_page;
1326 	struct page *vmsa_page = NULL;
1327 	int err;
1328 
1329 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1330 	svm = to_svm(vcpu);
1331 
1332 	err = -ENOMEM;
1333 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1334 	if (!vmcb01_page)
1335 		goto out;
1336 
1337 	if (sev_es_guest(vcpu->kvm)) {
1338 		/*
1339 		 * SEV-ES guests require a separate VMSA page used to contain
1340 		 * the encrypted register state of the guest.
1341 		 */
1342 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1343 		if (!vmsa_page)
1344 			goto error_free_vmcb_page;
1345 
1346 		/*
1347 		 * SEV-ES guests maintain an encrypted version of their FPU
1348 		 * state which is restored and saved on VMRUN and VMEXIT.
1349 		 * Free the fpu structure to prevent KVM from attempting to
1350 		 * access the FPU state.
1351 		 */
1352 		kvm_free_guest_fpu(vcpu);
1353 	}
1354 
1355 	err = avic_init_vcpu(svm);
1356 	if (err)
1357 		goto error_free_vmsa_page;
1358 
1359 	/* We initialize this flag to true to make sure that the is_running
1360 	 * bit would be set the first time the vcpu is loaded.
1361 	 */
1362 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1363 		svm->avic_is_running = true;
1364 
1365 	svm->msrpm = svm_vcpu_alloc_msrpm();
1366 	if (!svm->msrpm) {
1367 		err = -ENOMEM;
1368 		goto error_free_vmsa_page;
1369 	}
1370 
1371 	svm->vmcb01.ptr = page_address(vmcb01_page);
1372 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1373 
1374 	if (vmsa_page)
1375 		svm->vmsa = page_address(vmsa_page);
1376 
1377 	svm->guest_state_loaded = false;
1378 
1379 	svm_switch_vmcb(svm, &svm->vmcb01);
1380 	init_vmcb(vcpu);
1381 
1382 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1383 
1384 	svm_init_osvw(vcpu);
1385 	vcpu->arch.microcode_version = 0x01000065;
1386 
1387 	if (sev_es_guest(vcpu->kvm))
1388 		/* Perform SEV-ES specific VMCB creation updates */
1389 		sev_es_create_vcpu(svm);
1390 
1391 	return 0;
1392 
1393 error_free_vmsa_page:
1394 	if (vmsa_page)
1395 		__free_page(vmsa_page);
1396 error_free_vmcb_page:
1397 	__free_page(vmcb01_page);
1398 out:
1399 	return err;
1400 }
1401 
1402 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1403 {
1404 	int i;
1405 
1406 	for_each_online_cpu(i)
1407 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1408 }
1409 
1410 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1411 {
1412 	struct vcpu_svm *svm = to_svm(vcpu);
1413 
1414 	/*
1415 	 * The vmcb page can be recycled, causing a false negative in
1416 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1417 	 * vmcb page recorded as its current vmcb.
1418 	 */
1419 	svm_clear_current_vmcb(svm->vmcb);
1420 
1421 	svm_free_nested(svm);
1422 
1423 	sev_free_vcpu(vcpu);
1424 
1425 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1426 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1427 }
1428 
1429 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1430 {
1431 	struct vcpu_svm *svm = to_svm(vcpu);
1432 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1433 
1434 	if (sev_es_guest(vcpu->kvm))
1435 		sev_es_unmap_ghcb(svm);
1436 
1437 	if (svm->guest_state_loaded)
1438 		return;
1439 
1440 	/*
1441 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1442 	 * or subsequent vmload of host save area.
1443 	 */
1444 	if (sev_es_guest(vcpu->kvm)) {
1445 		sev_es_prepare_guest_switch(svm, vcpu->cpu);
1446 	} else {
1447 		vmsave(__sme_page_pa(sd->save_area));
1448 	}
1449 
1450 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1451 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1452 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1453 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1454 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1455 		}
1456 	}
1457 
1458 	if (likely(tsc_aux_uret_slot >= 0))
1459 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1460 
1461 	svm->guest_state_loaded = true;
1462 }
1463 
1464 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1465 {
1466 	to_svm(vcpu)->guest_state_loaded = false;
1467 }
1468 
1469 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1470 {
1471 	struct vcpu_svm *svm = to_svm(vcpu);
1472 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1473 
1474 	if (sd->current_vmcb != svm->vmcb) {
1475 		sd->current_vmcb = svm->vmcb;
1476 		indirect_branch_prediction_barrier();
1477 	}
1478 	if (kvm_vcpu_apicv_active(vcpu))
1479 		avic_vcpu_load(vcpu, cpu);
1480 }
1481 
1482 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1483 {
1484 	if (kvm_vcpu_apicv_active(vcpu))
1485 		avic_vcpu_put(vcpu);
1486 
1487 	svm_prepare_host_switch(vcpu);
1488 
1489 	++vcpu->stat.host_state_reload;
1490 }
1491 
1492 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1493 {
1494 	struct vcpu_svm *svm = to_svm(vcpu);
1495 	unsigned long rflags = svm->vmcb->save.rflags;
1496 
1497 	if (svm->nmi_singlestep) {
1498 		/* Hide our flags if they were not set by the guest */
1499 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1500 			rflags &= ~X86_EFLAGS_TF;
1501 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1502 			rflags &= ~X86_EFLAGS_RF;
1503 	}
1504 	return rflags;
1505 }
1506 
1507 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1508 {
1509 	if (to_svm(vcpu)->nmi_singlestep)
1510 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1511 
1512        /*
1513         * Any change of EFLAGS.VM is accompanied by a reload of SS
1514         * (caused by either a task switch or an inter-privilege IRET),
1515         * so we do not need to update the CPL here.
1516         */
1517 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1518 }
1519 
1520 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1521 {
1522 	switch (reg) {
1523 	case VCPU_EXREG_PDPTR:
1524 		BUG_ON(!npt_enabled);
1525 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1526 		break;
1527 	default:
1528 		KVM_BUG_ON(1, vcpu->kvm);
1529 	}
1530 }
1531 
1532 static void svm_set_vintr(struct vcpu_svm *svm)
1533 {
1534 	struct vmcb_control_area *control;
1535 
1536 	/*
1537 	 * The following fields are ignored when AVIC is enabled
1538 	 */
1539 	WARN_ON(kvm_apicv_activated(svm->vcpu.kvm));
1540 
1541 	svm_set_intercept(svm, INTERCEPT_VINTR);
1542 
1543 	/*
1544 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1545 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1546 	 */
1547 	control = &svm->vmcb->control;
1548 	control->int_vector = 0x0;
1549 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1550 	control->int_ctl |= V_IRQ_MASK |
1551 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1552 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1553 }
1554 
1555 static void svm_clear_vintr(struct vcpu_svm *svm)
1556 {
1557 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1558 
1559 	/* Drop int_ctl fields related to VINTR injection.  */
1560 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1561 	if (is_guest_mode(&svm->vcpu)) {
1562 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1563 
1564 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1565 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1566 
1567 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1568 			V_IRQ_INJECTION_BITS_MASK;
1569 
1570 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1571 	}
1572 
1573 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1574 }
1575 
1576 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1577 {
1578 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1579 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1580 
1581 	switch (seg) {
1582 	case VCPU_SREG_CS: return &save->cs;
1583 	case VCPU_SREG_DS: return &save->ds;
1584 	case VCPU_SREG_ES: return &save->es;
1585 	case VCPU_SREG_FS: return &save01->fs;
1586 	case VCPU_SREG_GS: return &save01->gs;
1587 	case VCPU_SREG_SS: return &save->ss;
1588 	case VCPU_SREG_TR: return &save01->tr;
1589 	case VCPU_SREG_LDTR: return &save01->ldtr;
1590 	}
1591 	BUG();
1592 	return NULL;
1593 }
1594 
1595 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1596 {
1597 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1598 
1599 	return s->base;
1600 }
1601 
1602 static void svm_get_segment(struct kvm_vcpu *vcpu,
1603 			    struct kvm_segment *var, int seg)
1604 {
1605 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1606 
1607 	var->base = s->base;
1608 	var->limit = s->limit;
1609 	var->selector = s->selector;
1610 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1611 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1612 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1613 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1614 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1615 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1616 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1617 
1618 	/*
1619 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1620 	 * However, the SVM spec states that the G bit is not observed by the
1621 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1622 	 * So let's synthesize a legal G bit for all segments, this helps
1623 	 * running KVM nested. It also helps cross-vendor migration, because
1624 	 * Intel's vmentry has a check on the 'G' bit.
1625 	 */
1626 	var->g = s->limit > 0xfffff;
1627 
1628 	/*
1629 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1630 	 * for cross vendor migration purposes by "not present"
1631 	 */
1632 	var->unusable = !var->present;
1633 
1634 	switch (seg) {
1635 	case VCPU_SREG_TR:
1636 		/*
1637 		 * Work around a bug where the busy flag in the tr selector
1638 		 * isn't exposed
1639 		 */
1640 		var->type |= 0x2;
1641 		break;
1642 	case VCPU_SREG_DS:
1643 	case VCPU_SREG_ES:
1644 	case VCPU_SREG_FS:
1645 	case VCPU_SREG_GS:
1646 		/*
1647 		 * The accessed bit must always be set in the segment
1648 		 * descriptor cache, although it can be cleared in the
1649 		 * descriptor, the cached bit always remains at 1. Since
1650 		 * Intel has a check on this, set it here to support
1651 		 * cross-vendor migration.
1652 		 */
1653 		if (!var->unusable)
1654 			var->type |= 0x1;
1655 		break;
1656 	case VCPU_SREG_SS:
1657 		/*
1658 		 * On AMD CPUs sometimes the DB bit in the segment
1659 		 * descriptor is left as 1, although the whole segment has
1660 		 * been made unusable. Clear it here to pass an Intel VMX
1661 		 * entry check when cross vendor migrating.
1662 		 */
1663 		if (var->unusable)
1664 			var->db = 0;
1665 		/* This is symmetric with svm_set_segment() */
1666 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1667 		break;
1668 	}
1669 }
1670 
1671 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1672 {
1673 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1674 
1675 	return save->cpl;
1676 }
1677 
1678 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1679 {
1680 	struct vcpu_svm *svm = to_svm(vcpu);
1681 
1682 	dt->size = svm->vmcb->save.idtr.limit;
1683 	dt->address = svm->vmcb->save.idtr.base;
1684 }
1685 
1686 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1687 {
1688 	struct vcpu_svm *svm = to_svm(vcpu);
1689 
1690 	svm->vmcb->save.idtr.limit = dt->size;
1691 	svm->vmcb->save.idtr.base = dt->address ;
1692 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1693 }
1694 
1695 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1696 {
1697 	struct vcpu_svm *svm = to_svm(vcpu);
1698 
1699 	dt->size = svm->vmcb->save.gdtr.limit;
1700 	dt->address = svm->vmcb->save.gdtr.base;
1701 }
1702 
1703 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1704 {
1705 	struct vcpu_svm *svm = to_svm(vcpu);
1706 
1707 	svm->vmcb->save.gdtr.limit = dt->size;
1708 	svm->vmcb->save.gdtr.base = dt->address ;
1709 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1710 }
1711 
1712 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1713 {
1714 	struct vcpu_svm *svm = to_svm(vcpu);
1715 	u64 hcr0 = cr0;
1716 
1717 #ifdef CONFIG_X86_64
1718 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1719 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1720 			vcpu->arch.efer |= EFER_LMA;
1721 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1722 		}
1723 
1724 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1725 			vcpu->arch.efer &= ~EFER_LMA;
1726 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1727 		}
1728 	}
1729 #endif
1730 	vcpu->arch.cr0 = cr0;
1731 
1732 	if (!npt_enabled)
1733 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1734 
1735 	/*
1736 	 * re-enable caching here because the QEMU bios
1737 	 * does not do it - this results in some delay at
1738 	 * reboot
1739 	 */
1740 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1741 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1742 
1743 	svm->vmcb->save.cr0 = hcr0;
1744 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1745 
1746 	/*
1747 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1748 	 * tracking is done using the CR write traps.
1749 	 */
1750 	if (sev_es_guest(vcpu->kvm))
1751 		return;
1752 
1753 	if (hcr0 == cr0) {
1754 		/* Selective CR0 write remains on.  */
1755 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1756 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1757 	} else {
1758 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1759 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1760 	}
1761 }
1762 
1763 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1764 {
1765 	return true;
1766 }
1767 
1768 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1769 {
1770 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1771 	unsigned long old_cr4 = vcpu->arch.cr4;
1772 
1773 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1774 		svm_flush_tlb(vcpu);
1775 
1776 	vcpu->arch.cr4 = cr4;
1777 	if (!npt_enabled)
1778 		cr4 |= X86_CR4_PAE;
1779 	cr4 |= host_cr4_mce;
1780 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1781 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1782 
1783 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1784 		kvm_update_cpuid_runtime(vcpu);
1785 }
1786 
1787 static void svm_set_segment(struct kvm_vcpu *vcpu,
1788 			    struct kvm_segment *var, int seg)
1789 {
1790 	struct vcpu_svm *svm = to_svm(vcpu);
1791 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1792 
1793 	s->base = var->base;
1794 	s->limit = var->limit;
1795 	s->selector = var->selector;
1796 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1797 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1798 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1799 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1800 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1801 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1802 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1803 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1804 
1805 	/*
1806 	 * This is always accurate, except if SYSRET returned to a segment
1807 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1808 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1809 	 * would entail passing the CPL to userspace and back.
1810 	 */
1811 	if (seg == VCPU_SREG_SS)
1812 		/* This is symmetric with svm_get_segment() */
1813 		svm->vmcb->save.cpl = (var->dpl & 3);
1814 
1815 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1816 }
1817 
1818 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1819 {
1820 	struct vcpu_svm *svm = to_svm(vcpu);
1821 
1822 	clr_exception_intercept(svm, BP_VECTOR);
1823 
1824 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1825 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1826 			set_exception_intercept(svm, BP_VECTOR);
1827 	}
1828 }
1829 
1830 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1831 {
1832 	if (sd->next_asid > sd->max_asid) {
1833 		++sd->asid_generation;
1834 		sd->next_asid = sd->min_asid;
1835 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1836 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1837 	}
1838 
1839 	svm->current_vmcb->asid_generation = sd->asid_generation;
1840 	svm->asid = sd->next_asid++;
1841 }
1842 
1843 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1844 {
1845 	struct vmcb *vmcb = svm->vmcb;
1846 
1847 	if (svm->vcpu.arch.guest_state_protected)
1848 		return;
1849 
1850 	if (unlikely(value != vmcb->save.dr6)) {
1851 		vmcb->save.dr6 = value;
1852 		vmcb_mark_dirty(vmcb, VMCB_DR);
1853 	}
1854 }
1855 
1856 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1857 {
1858 	struct vcpu_svm *svm = to_svm(vcpu);
1859 
1860 	if (vcpu->arch.guest_state_protected)
1861 		return;
1862 
1863 	get_debugreg(vcpu->arch.db[0], 0);
1864 	get_debugreg(vcpu->arch.db[1], 1);
1865 	get_debugreg(vcpu->arch.db[2], 2);
1866 	get_debugreg(vcpu->arch.db[3], 3);
1867 	/*
1868 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1869 	 * because db_interception might need it.  We can do it before vmentry.
1870 	 */
1871 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1872 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1873 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1874 	set_dr_intercepts(svm);
1875 }
1876 
1877 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1878 {
1879 	struct vcpu_svm *svm = to_svm(vcpu);
1880 
1881 	if (vcpu->arch.guest_state_protected)
1882 		return;
1883 
1884 	svm->vmcb->save.dr7 = value;
1885 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1886 }
1887 
1888 static int pf_interception(struct kvm_vcpu *vcpu)
1889 {
1890 	struct vcpu_svm *svm = to_svm(vcpu);
1891 
1892 	u64 fault_address = svm->vmcb->control.exit_info_2;
1893 	u64 error_code = svm->vmcb->control.exit_info_1;
1894 
1895 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1896 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1897 			svm->vmcb->control.insn_bytes : NULL,
1898 			svm->vmcb->control.insn_len);
1899 }
1900 
1901 static int npf_interception(struct kvm_vcpu *vcpu)
1902 {
1903 	struct vcpu_svm *svm = to_svm(vcpu);
1904 
1905 	u64 fault_address = svm->vmcb->control.exit_info_2;
1906 	u64 error_code = svm->vmcb->control.exit_info_1;
1907 
1908 	trace_kvm_page_fault(fault_address, error_code);
1909 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1910 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1911 			svm->vmcb->control.insn_bytes : NULL,
1912 			svm->vmcb->control.insn_len);
1913 }
1914 
1915 static int db_interception(struct kvm_vcpu *vcpu)
1916 {
1917 	struct kvm_run *kvm_run = vcpu->run;
1918 	struct vcpu_svm *svm = to_svm(vcpu);
1919 
1920 	if (!(vcpu->guest_debug &
1921 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1922 		!svm->nmi_singlestep) {
1923 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1924 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1925 		return 1;
1926 	}
1927 
1928 	if (svm->nmi_singlestep) {
1929 		disable_nmi_singlestep(svm);
1930 		/* Make sure we check for pending NMIs upon entry */
1931 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1932 	}
1933 
1934 	if (vcpu->guest_debug &
1935 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1936 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1937 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1938 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1939 		kvm_run->debug.arch.pc =
1940 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1941 		kvm_run->debug.arch.exception = DB_VECTOR;
1942 		return 0;
1943 	}
1944 
1945 	return 1;
1946 }
1947 
1948 static int bp_interception(struct kvm_vcpu *vcpu)
1949 {
1950 	struct vcpu_svm *svm = to_svm(vcpu);
1951 	struct kvm_run *kvm_run = vcpu->run;
1952 
1953 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1954 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1955 	kvm_run->debug.arch.exception = BP_VECTOR;
1956 	return 0;
1957 }
1958 
1959 static int ud_interception(struct kvm_vcpu *vcpu)
1960 {
1961 	return handle_ud(vcpu);
1962 }
1963 
1964 static int ac_interception(struct kvm_vcpu *vcpu)
1965 {
1966 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1967 	return 1;
1968 }
1969 
1970 static bool is_erratum_383(void)
1971 {
1972 	int err, i;
1973 	u64 value;
1974 
1975 	if (!erratum_383_found)
1976 		return false;
1977 
1978 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1979 	if (err)
1980 		return false;
1981 
1982 	/* Bit 62 may or may not be set for this mce */
1983 	value &= ~(1ULL << 62);
1984 
1985 	if (value != 0xb600000000010015ULL)
1986 		return false;
1987 
1988 	/* Clear MCi_STATUS registers */
1989 	for (i = 0; i < 6; ++i)
1990 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1991 
1992 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1993 	if (!err) {
1994 		u32 low, high;
1995 
1996 		value &= ~(1ULL << 2);
1997 		low    = lower_32_bits(value);
1998 		high   = upper_32_bits(value);
1999 
2000 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2001 	}
2002 
2003 	/* Flush tlb to evict multi-match entries */
2004 	__flush_tlb_all();
2005 
2006 	return true;
2007 }
2008 
2009 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2010 {
2011 	if (is_erratum_383()) {
2012 		/*
2013 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2014 		 * guest.
2015 		 */
2016 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2017 
2018 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2019 
2020 		return;
2021 	}
2022 
2023 	/*
2024 	 * On an #MC intercept the MCE handler is not called automatically in
2025 	 * the host. So do it by hand here.
2026 	 */
2027 	kvm_machine_check();
2028 }
2029 
2030 static int mc_interception(struct kvm_vcpu *vcpu)
2031 {
2032 	return 1;
2033 }
2034 
2035 static int shutdown_interception(struct kvm_vcpu *vcpu)
2036 {
2037 	struct kvm_run *kvm_run = vcpu->run;
2038 	struct vcpu_svm *svm = to_svm(vcpu);
2039 
2040 	/*
2041 	 * The VM save area has already been encrypted so it
2042 	 * cannot be reinitialized - just terminate.
2043 	 */
2044 	if (sev_es_guest(vcpu->kvm))
2045 		return -EINVAL;
2046 
2047 	/*
2048 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2049 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2050 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2051 	 * userspace.  At a platform view, INIT is acceptable behavior as
2052 	 * there exist bare metal platforms that automatically INIT the CPU
2053 	 * in response to shutdown.
2054 	 */
2055 	clear_page(svm->vmcb);
2056 	kvm_vcpu_reset(vcpu, true);
2057 
2058 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2059 	return 0;
2060 }
2061 
2062 static int io_interception(struct kvm_vcpu *vcpu)
2063 {
2064 	struct vcpu_svm *svm = to_svm(vcpu);
2065 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2066 	int size, in, string;
2067 	unsigned port;
2068 
2069 	++vcpu->stat.io_exits;
2070 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2071 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2072 	port = io_info >> 16;
2073 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2074 
2075 	if (string) {
2076 		if (sev_es_guest(vcpu->kvm))
2077 			return sev_es_string_io(svm, size, port, in);
2078 		else
2079 			return kvm_emulate_instruction(vcpu, 0);
2080 	}
2081 
2082 	svm->next_rip = svm->vmcb->control.exit_info_2;
2083 
2084 	return kvm_fast_pio(vcpu, size, port, in);
2085 }
2086 
2087 static int nmi_interception(struct kvm_vcpu *vcpu)
2088 {
2089 	return 1;
2090 }
2091 
2092 static int smi_interception(struct kvm_vcpu *vcpu)
2093 {
2094 	return 1;
2095 }
2096 
2097 static int intr_interception(struct kvm_vcpu *vcpu)
2098 {
2099 	++vcpu->stat.irq_exits;
2100 	return 1;
2101 }
2102 
2103 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2104 {
2105 	struct vcpu_svm *svm = to_svm(vcpu);
2106 	struct vmcb *vmcb12;
2107 	struct kvm_host_map map;
2108 	int ret;
2109 
2110 	if (nested_svm_check_permissions(vcpu))
2111 		return 1;
2112 
2113 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2114 	if (ret) {
2115 		if (ret == -EINVAL)
2116 			kvm_inject_gp(vcpu, 0);
2117 		return 1;
2118 	}
2119 
2120 	vmcb12 = map.hva;
2121 
2122 	ret = kvm_skip_emulated_instruction(vcpu);
2123 
2124 	if (vmload) {
2125 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2126 		svm->sysenter_eip_hi = 0;
2127 		svm->sysenter_esp_hi = 0;
2128 	} else {
2129 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2130 	}
2131 
2132 	kvm_vcpu_unmap(vcpu, &map, true);
2133 
2134 	return ret;
2135 }
2136 
2137 static int vmload_interception(struct kvm_vcpu *vcpu)
2138 {
2139 	return vmload_vmsave_interception(vcpu, true);
2140 }
2141 
2142 static int vmsave_interception(struct kvm_vcpu *vcpu)
2143 {
2144 	return vmload_vmsave_interception(vcpu, false);
2145 }
2146 
2147 static int vmrun_interception(struct kvm_vcpu *vcpu)
2148 {
2149 	if (nested_svm_check_permissions(vcpu))
2150 		return 1;
2151 
2152 	return nested_svm_vmrun(vcpu);
2153 }
2154 
2155 enum {
2156 	NONE_SVM_INSTR,
2157 	SVM_INSTR_VMRUN,
2158 	SVM_INSTR_VMLOAD,
2159 	SVM_INSTR_VMSAVE,
2160 };
2161 
2162 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2163 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2164 {
2165 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2166 
2167 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2168 		return NONE_SVM_INSTR;
2169 
2170 	switch (ctxt->modrm) {
2171 	case 0xd8: /* VMRUN */
2172 		return SVM_INSTR_VMRUN;
2173 	case 0xda: /* VMLOAD */
2174 		return SVM_INSTR_VMLOAD;
2175 	case 0xdb: /* VMSAVE */
2176 		return SVM_INSTR_VMSAVE;
2177 	default:
2178 		break;
2179 	}
2180 
2181 	return NONE_SVM_INSTR;
2182 }
2183 
2184 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2185 {
2186 	const int guest_mode_exit_codes[] = {
2187 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2188 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2189 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2190 	};
2191 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2192 		[SVM_INSTR_VMRUN] = vmrun_interception,
2193 		[SVM_INSTR_VMLOAD] = vmload_interception,
2194 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2195 	};
2196 	struct vcpu_svm *svm = to_svm(vcpu);
2197 	int ret;
2198 
2199 	if (is_guest_mode(vcpu)) {
2200 		/* Returns '1' or -errno on failure, '0' on success. */
2201 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2202 		if (ret)
2203 			return ret;
2204 		return 1;
2205 	}
2206 	return svm_instr_handlers[opcode](vcpu);
2207 }
2208 
2209 /*
2210  * #GP handling code. Note that #GP can be triggered under the following two
2211  * cases:
2212  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2213  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2214  *      regions (e.g. SMM memory on host).
2215  *   2) VMware backdoor
2216  */
2217 static int gp_interception(struct kvm_vcpu *vcpu)
2218 {
2219 	struct vcpu_svm *svm = to_svm(vcpu);
2220 	u32 error_code = svm->vmcb->control.exit_info_1;
2221 	int opcode;
2222 
2223 	/* Both #GP cases have zero error_code */
2224 	if (error_code)
2225 		goto reinject;
2226 
2227 	/* All SVM instructions expect page aligned RAX */
2228 	if (svm->vmcb->save.rax & ~PAGE_MASK)
2229 		goto reinject;
2230 
2231 	/* Decode the instruction for usage later */
2232 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2233 		goto reinject;
2234 
2235 	opcode = svm_instr_opcode(vcpu);
2236 
2237 	if (opcode == NONE_SVM_INSTR) {
2238 		if (!enable_vmware_backdoor)
2239 			goto reinject;
2240 
2241 		/*
2242 		 * VMware backdoor emulation on #GP interception only handles
2243 		 * IN{S}, OUT{S}, and RDPMC.
2244 		 */
2245 		if (!is_guest_mode(vcpu))
2246 			return kvm_emulate_instruction(vcpu,
2247 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2248 	} else
2249 		return emulate_svm_instr(vcpu, opcode);
2250 
2251 reinject:
2252 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2253 	return 1;
2254 }
2255 
2256 void svm_set_gif(struct vcpu_svm *svm, bool value)
2257 {
2258 	if (value) {
2259 		/*
2260 		 * If VGIF is enabled, the STGI intercept is only added to
2261 		 * detect the opening of the SMI/NMI window; remove it now.
2262 		 * Likewise, clear the VINTR intercept, we will set it
2263 		 * again while processing KVM_REQ_EVENT if needed.
2264 		 */
2265 		if (vgif_enabled(svm))
2266 			svm_clr_intercept(svm, INTERCEPT_STGI);
2267 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2268 			svm_clear_vintr(svm);
2269 
2270 		enable_gif(svm);
2271 		if (svm->vcpu.arch.smi_pending ||
2272 		    svm->vcpu.arch.nmi_pending ||
2273 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2274 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2275 	} else {
2276 		disable_gif(svm);
2277 
2278 		/*
2279 		 * After a CLGI no interrupts should come.  But if vGIF is
2280 		 * in use, we still rely on the VINTR intercept (rather than
2281 		 * STGI) to detect an open interrupt window.
2282 		*/
2283 		if (!vgif_enabled(svm))
2284 			svm_clear_vintr(svm);
2285 	}
2286 }
2287 
2288 static int stgi_interception(struct kvm_vcpu *vcpu)
2289 {
2290 	int ret;
2291 
2292 	if (nested_svm_check_permissions(vcpu))
2293 		return 1;
2294 
2295 	ret = kvm_skip_emulated_instruction(vcpu);
2296 	svm_set_gif(to_svm(vcpu), true);
2297 	return ret;
2298 }
2299 
2300 static int clgi_interception(struct kvm_vcpu *vcpu)
2301 {
2302 	int ret;
2303 
2304 	if (nested_svm_check_permissions(vcpu))
2305 		return 1;
2306 
2307 	ret = kvm_skip_emulated_instruction(vcpu);
2308 	svm_set_gif(to_svm(vcpu), false);
2309 	return ret;
2310 }
2311 
2312 static int invlpga_interception(struct kvm_vcpu *vcpu)
2313 {
2314 	gva_t gva = kvm_rax_read(vcpu);
2315 	u32 asid = kvm_rcx_read(vcpu);
2316 
2317 	/* FIXME: Handle an address size prefix. */
2318 	if (!is_long_mode(vcpu))
2319 		gva = (u32)gva;
2320 
2321 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2322 
2323 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2324 	kvm_mmu_invlpg(vcpu, gva);
2325 
2326 	return kvm_skip_emulated_instruction(vcpu);
2327 }
2328 
2329 static int skinit_interception(struct kvm_vcpu *vcpu)
2330 {
2331 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2332 
2333 	kvm_queue_exception(vcpu, UD_VECTOR);
2334 	return 1;
2335 }
2336 
2337 static int task_switch_interception(struct kvm_vcpu *vcpu)
2338 {
2339 	struct vcpu_svm *svm = to_svm(vcpu);
2340 	u16 tss_selector;
2341 	int reason;
2342 	int int_type = svm->vmcb->control.exit_int_info &
2343 		SVM_EXITINTINFO_TYPE_MASK;
2344 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2345 	uint32_t type =
2346 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2347 	uint32_t idt_v =
2348 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2349 	bool has_error_code = false;
2350 	u32 error_code = 0;
2351 
2352 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2353 
2354 	if (svm->vmcb->control.exit_info_2 &
2355 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2356 		reason = TASK_SWITCH_IRET;
2357 	else if (svm->vmcb->control.exit_info_2 &
2358 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2359 		reason = TASK_SWITCH_JMP;
2360 	else if (idt_v)
2361 		reason = TASK_SWITCH_GATE;
2362 	else
2363 		reason = TASK_SWITCH_CALL;
2364 
2365 	if (reason == TASK_SWITCH_GATE) {
2366 		switch (type) {
2367 		case SVM_EXITINTINFO_TYPE_NMI:
2368 			vcpu->arch.nmi_injected = false;
2369 			break;
2370 		case SVM_EXITINTINFO_TYPE_EXEPT:
2371 			if (svm->vmcb->control.exit_info_2 &
2372 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2373 				has_error_code = true;
2374 				error_code =
2375 					(u32)svm->vmcb->control.exit_info_2;
2376 			}
2377 			kvm_clear_exception_queue(vcpu);
2378 			break;
2379 		case SVM_EXITINTINFO_TYPE_INTR:
2380 			kvm_clear_interrupt_queue(vcpu);
2381 			break;
2382 		default:
2383 			break;
2384 		}
2385 	}
2386 
2387 	if (reason != TASK_SWITCH_GATE ||
2388 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2389 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2390 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2391 		if (!skip_emulated_instruction(vcpu))
2392 			return 0;
2393 	}
2394 
2395 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2396 		int_vec = -1;
2397 
2398 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2399 			       has_error_code, error_code);
2400 }
2401 
2402 static int iret_interception(struct kvm_vcpu *vcpu)
2403 {
2404 	struct vcpu_svm *svm = to_svm(vcpu);
2405 
2406 	++vcpu->stat.nmi_window_exits;
2407 	vcpu->arch.hflags |= HF_IRET_MASK;
2408 	if (!sev_es_guest(vcpu->kvm)) {
2409 		svm_clr_intercept(svm, INTERCEPT_IRET);
2410 		svm->nmi_iret_rip = kvm_rip_read(vcpu);
2411 	}
2412 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2413 	return 1;
2414 }
2415 
2416 static int invlpg_interception(struct kvm_vcpu *vcpu)
2417 {
2418 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2419 		return kvm_emulate_instruction(vcpu, 0);
2420 
2421 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2422 	return kvm_skip_emulated_instruction(vcpu);
2423 }
2424 
2425 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2426 {
2427 	return kvm_emulate_instruction(vcpu, 0);
2428 }
2429 
2430 static int rsm_interception(struct kvm_vcpu *vcpu)
2431 {
2432 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2433 }
2434 
2435 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2436 					    unsigned long val)
2437 {
2438 	struct vcpu_svm *svm = to_svm(vcpu);
2439 	unsigned long cr0 = vcpu->arch.cr0;
2440 	bool ret = false;
2441 
2442 	if (!is_guest_mode(vcpu) ||
2443 	    (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2444 		return false;
2445 
2446 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2447 	val &= ~SVM_CR0_SELECTIVE_MASK;
2448 
2449 	if (cr0 ^ val) {
2450 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2451 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2452 	}
2453 
2454 	return ret;
2455 }
2456 
2457 #define CR_VALID (1ULL << 63)
2458 
2459 static int cr_interception(struct kvm_vcpu *vcpu)
2460 {
2461 	struct vcpu_svm *svm = to_svm(vcpu);
2462 	int reg, cr;
2463 	unsigned long val;
2464 	int err;
2465 
2466 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2467 		return emulate_on_interception(vcpu);
2468 
2469 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2470 		return emulate_on_interception(vcpu);
2471 
2472 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2473 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2474 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2475 	else
2476 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2477 
2478 	err = 0;
2479 	if (cr >= 16) { /* mov to cr */
2480 		cr -= 16;
2481 		val = kvm_register_read(vcpu, reg);
2482 		trace_kvm_cr_write(cr, val);
2483 		switch (cr) {
2484 		case 0:
2485 			if (!check_selective_cr0_intercepted(vcpu, val))
2486 				err = kvm_set_cr0(vcpu, val);
2487 			else
2488 				return 1;
2489 
2490 			break;
2491 		case 3:
2492 			err = kvm_set_cr3(vcpu, val);
2493 			break;
2494 		case 4:
2495 			err = kvm_set_cr4(vcpu, val);
2496 			break;
2497 		case 8:
2498 			err = kvm_set_cr8(vcpu, val);
2499 			break;
2500 		default:
2501 			WARN(1, "unhandled write to CR%d", cr);
2502 			kvm_queue_exception(vcpu, UD_VECTOR);
2503 			return 1;
2504 		}
2505 	} else { /* mov from cr */
2506 		switch (cr) {
2507 		case 0:
2508 			val = kvm_read_cr0(vcpu);
2509 			break;
2510 		case 2:
2511 			val = vcpu->arch.cr2;
2512 			break;
2513 		case 3:
2514 			val = kvm_read_cr3(vcpu);
2515 			break;
2516 		case 4:
2517 			val = kvm_read_cr4(vcpu);
2518 			break;
2519 		case 8:
2520 			val = kvm_get_cr8(vcpu);
2521 			break;
2522 		default:
2523 			WARN(1, "unhandled read from CR%d", cr);
2524 			kvm_queue_exception(vcpu, UD_VECTOR);
2525 			return 1;
2526 		}
2527 		kvm_register_write(vcpu, reg, val);
2528 		trace_kvm_cr_read(cr, val);
2529 	}
2530 	return kvm_complete_insn_gp(vcpu, err);
2531 }
2532 
2533 static int cr_trap(struct kvm_vcpu *vcpu)
2534 {
2535 	struct vcpu_svm *svm = to_svm(vcpu);
2536 	unsigned long old_value, new_value;
2537 	unsigned int cr;
2538 	int ret = 0;
2539 
2540 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2541 
2542 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2543 	switch (cr) {
2544 	case 0:
2545 		old_value = kvm_read_cr0(vcpu);
2546 		svm_set_cr0(vcpu, new_value);
2547 
2548 		kvm_post_set_cr0(vcpu, old_value, new_value);
2549 		break;
2550 	case 4:
2551 		old_value = kvm_read_cr4(vcpu);
2552 		svm_set_cr4(vcpu, new_value);
2553 
2554 		kvm_post_set_cr4(vcpu, old_value, new_value);
2555 		break;
2556 	case 8:
2557 		ret = kvm_set_cr8(vcpu, new_value);
2558 		break;
2559 	default:
2560 		WARN(1, "unhandled CR%d write trap", cr);
2561 		kvm_queue_exception(vcpu, UD_VECTOR);
2562 		return 1;
2563 	}
2564 
2565 	return kvm_complete_insn_gp(vcpu, ret);
2566 }
2567 
2568 static int dr_interception(struct kvm_vcpu *vcpu)
2569 {
2570 	struct vcpu_svm *svm = to_svm(vcpu);
2571 	int reg, dr;
2572 	unsigned long val;
2573 	int err = 0;
2574 
2575 	if (vcpu->guest_debug == 0) {
2576 		/*
2577 		 * No more DR vmexits; force a reload of the debug registers
2578 		 * and reenter on this instruction.  The next vmexit will
2579 		 * retrieve the full state of the debug registers.
2580 		 */
2581 		clr_dr_intercepts(svm);
2582 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2583 		return 1;
2584 	}
2585 
2586 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2587 		return emulate_on_interception(vcpu);
2588 
2589 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2590 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2591 	if (dr >= 16) { /* mov to DRn  */
2592 		dr -= 16;
2593 		val = kvm_register_read(vcpu, reg);
2594 		err = kvm_set_dr(vcpu, dr, val);
2595 	} else {
2596 		kvm_get_dr(vcpu, dr, &val);
2597 		kvm_register_write(vcpu, reg, val);
2598 	}
2599 
2600 	return kvm_complete_insn_gp(vcpu, err);
2601 }
2602 
2603 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2604 {
2605 	int r;
2606 
2607 	u8 cr8_prev = kvm_get_cr8(vcpu);
2608 	/* instruction emulation calls kvm_set_cr8() */
2609 	r = cr_interception(vcpu);
2610 	if (lapic_in_kernel(vcpu))
2611 		return r;
2612 	if (cr8_prev <= kvm_get_cr8(vcpu))
2613 		return r;
2614 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2615 	return 0;
2616 }
2617 
2618 static int efer_trap(struct kvm_vcpu *vcpu)
2619 {
2620 	struct msr_data msr_info;
2621 	int ret;
2622 
2623 	/*
2624 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2625 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2626 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2627 	 * the guest doesn't have X86_FEATURE_SVM.
2628 	 */
2629 	msr_info.host_initiated = false;
2630 	msr_info.index = MSR_EFER;
2631 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2632 	ret = kvm_set_msr_common(vcpu, &msr_info);
2633 
2634 	return kvm_complete_insn_gp(vcpu, ret);
2635 }
2636 
2637 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2638 {
2639 	msr->data = 0;
2640 
2641 	switch (msr->index) {
2642 	case MSR_F10H_DECFG:
2643 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2644 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2645 		break;
2646 	case MSR_IA32_PERF_CAPABILITIES:
2647 		return 0;
2648 	default:
2649 		return KVM_MSR_RET_INVALID;
2650 	}
2651 
2652 	return 0;
2653 }
2654 
2655 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2656 {
2657 	struct vcpu_svm *svm = to_svm(vcpu);
2658 
2659 	switch (msr_info->index) {
2660 	case MSR_STAR:
2661 		msr_info->data = svm->vmcb01.ptr->save.star;
2662 		break;
2663 #ifdef CONFIG_X86_64
2664 	case MSR_LSTAR:
2665 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2666 		break;
2667 	case MSR_CSTAR:
2668 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2669 		break;
2670 	case MSR_KERNEL_GS_BASE:
2671 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2672 		break;
2673 	case MSR_SYSCALL_MASK:
2674 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2675 		break;
2676 #endif
2677 	case MSR_IA32_SYSENTER_CS:
2678 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2679 		break;
2680 	case MSR_IA32_SYSENTER_EIP:
2681 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2682 		if (guest_cpuid_is_intel(vcpu))
2683 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2684 		break;
2685 	case MSR_IA32_SYSENTER_ESP:
2686 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2687 		if (guest_cpuid_is_intel(vcpu))
2688 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2689 		break;
2690 	case MSR_TSC_AUX:
2691 		msr_info->data = svm->tsc_aux;
2692 		break;
2693 	/*
2694 	 * Nobody will change the following 5 values in the VMCB so we can
2695 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2696 	 * implemented.
2697 	 */
2698 	case MSR_IA32_DEBUGCTLMSR:
2699 		msr_info->data = svm->vmcb->save.dbgctl;
2700 		break;
2701 	case MSR_IA32_LASTBRANCHFROMIP:
2702 		msr_info->data = svm->vmcb->save.br_from;
2703 		break;
2704 	case MSR_IA32_LASTBRANCHTOIP:
2705 		msr_info->data = svm->vmcb->save.br_to;
2706 		break;
2707 	case MSR_IA32_LASTINTFROMIP:
2708 		msr_info->data = svm->vmcb->save.last_excp_from;
2709 		break;
2710 	case MSR_IA32_LASTINTTOIP:
2711 		msr_info->data = svm->vmcb->save.last_excp_to;
2712 		break;
2713 	case MSR_VM_HSAVE_PA:
2714 		msr_info->data = svm->nested.hsave_msr;
2715 		break;
2716 	case MSR_VM_CR:
2717 		msr_info->data = svm->nested.vm_cr_msr;
2718 		break;
2719 	case MSR_IA32_SPEC_CTRL:
2720 		if (!msr_info->host_initiated &&
2721 		    !guest_has_spec_ctrl_msr(vcpu))
2722 			return 1;
2723 
2724 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2725 			msr_info->data = svm->vmcb->save.spec_ctrl;
2726 		else
2727 			msr_info->data = svm->spec_ctrl;
2728 		break;
2729 	case MSR_AMD64_VIRT_SPEC_CTRL:
2730 		if (!msr_info->host_initiated &&
2731 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2732 			return 1;
2733 
2734 		msr_info->data = svm->virt_spec_ctrl;
2735 		break;
2736 	case MSR_F15H_IC_CFG: {
2737 
2738 		int family, model;
2739 
2740 		family = guest_cpuid_family(vcpu);
2741 		model  = guest_cpuid_model(vcpu);
2742 
2743 		if (family < 0 || model < 0)
2744 			return kvm_get_msr_common(vcpu, msr_info);
2745 
2746 		msr_info->data = 0;
2747 
2748 		if (family == 0x15 &&
2749 		    (model >= 0x2 && model < 0x20))
2750 			msr_info->data = 0x1E;
2751 		}
2752 		break;
2753 	case MSR_F10H_DECFG:
2754 		msr_info->data = svm->msr_decfg;
2755 		break;
2756 	default:
2757 		return kvm_get_msr_common(vcpu, msr_info);
2758 	}
2759 	return 0;
2760 }
2761 
2762 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2763 {
2764 	struct vcpu_svm *svm = to_svm(vcpu);
2765 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->ghcb))
2766 		return kvm_complete_insn_gp(vcpu, err);
2767 
2768 	ghcb_set_sw_exit_info_1(svm->ghcb, 1);
2769 	ghcb_set_sw_exit_info_2(svm->ghcb,
2770 				X86_TRAP_GP |
2771 				SVM_EVTINJ_TYPE_EXEPT |
2772 				SVM_EVTINJ_VALID);
2773 	return 1;
2774 }
2775 
2776 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2777 {
2778 	struct vcpu_svm *svm = to_svm(vcpu);
2779 	int svm_dis, chg_mask;
2780 
2781 	if (data & ~SVM_VM_CR_VALID_MASK)
2782 		return 1;
2783 
2784 	chg_mask = SVM_VM_CR_VALID_MASK;
2785 
2786 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2787 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2788 
2789 	svm->nested.vm_cr_msr &= ~chg_mask;
2790 	svm->nested.vm_cr_msr |= (data & chg_mask);
2791 
2792 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2793 
2794 	/* check for svm_disable while efer.svme is set */
2795 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2796 		return 1;
2797 
2798 	return 0;
2799 }
2800 
2801 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2802 {
2803 	struct vcpu_svm *svm = to_svm(vcpu);
2804 	int r;
2805 
2806 	u32 ecx = msr->index;
2807 	u64 data = msr->data;
2808 	switch (ecx) {
2809 	case MSR_IA32_CR_PAT:
2810 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2811 			return 1;
2812 		vcpu->arch.pat = data;
2813 		svm->vmcb01.ptr->save.g_pat = data;
2814 		if (is_guest_mode(vcpu))
2815 			nested_vmcb02_compute_g_pat(svm);
2816 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2817 		break;
2818 	case MSR_IA32_SPEC_CTRL:
2819 		if (!msr->host_initiated &&
2820 		    !guest_has_spec_ctrl_msr(vcpu))
2821 			return 1;
2822 
2823 		if (kvm_spec_ctrl_test_value(data))
2824 			return 1;
2825 
2826 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2827 			svm->vmcb->save.spec_ctrl = data;
2828 		else
2829 			svm->spec_ctrl = data;
2830 		if (!data)
2831 			break;
2832 
2833 		/*
2834 		 * For non-nested:
2835 		 * When it's written (to non-zero) for the first time, pass
2836 		 * it through.
2837 		 *
2838 		 * For nested:
2839 		 * The handling of the MSR bitmap for L2 guests is done in
2840 		 * nested_svm_vmrun_msrpm.
2841 		 * We update the L1 MSR bit as well since it will end up
2842 		 * touching the MSR anyway now.
2843 		 */
2844 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2845 		break;
2846 	case MSR_IA32_PRED_CMD:
2847 		if (!msr->host_initiated &&
2848 		    !guest_has_pred_cmd_msr(vcpu))
2849 			return 1;
2850 
2851 		if (data & ~PRED_CMD_IBPB)
2852 			return 1;
2853 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2854 			return 1;
2855 		if (!data)
2856 			break;
2857 
2858 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2859 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2860 		break;
2861 	case MSR_AMD64_VIRT_SPEC_CTRL:
2862 		if (!msr->host_initiated &&
2863 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2864 			return 1;
2865 
2866 		if (data & ~SPEC_CTRL_SSBD)
2867 			return 1;
2868 
2869 		svm->virt_spec_ctrl = data;
2870 		break;
2871 	case MSR_STAR:
2872 		svm->vmcb01.ptr->save.star = data;
2873 		break;
2874 #ifdef CONFIG_X86_64
2875 	case MSR_LSTAR:
2876 		svm->vmcb01.ptr->save.lstar = data;
2877 		break;
2878 	case MSR_CSTAR:
2879 		svm->vmcb01.ptr->save.cstar = data;
2880 		break;
2881 	case MSR_KERNEL_GS_BASE:
2882 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2883 		break;
2884 	case MSR_SYSCALL_MASK:
2885 		svm->vmcb01.ptr->save.sfmask = data;
2886 		break;
2887 #endif
2888 	case MSR_IA32_SYSENTER_CS:
2889 		svm->vmcb01.ptr->save.sysenter_cs = data;
2890 		break;
2891 	case MSR_IA32_SYSENTER_EIP:
2892 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2893 		/*
2894 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2895 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2896 		 * In this case we use this intercept to track the high
2897 		 * 32 bit part of these msrs to support Intel's
2898 		 * implementation of SYSENTER/SYSEXIT.
2899 		 */
2900 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2901 		break;
2902 	case MSR_IA32_SYSENTER_ESP:
2903 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2904 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2905 		break;
2906 	case MSR_TSC_AUX:
2907 		/*
2908 		 * TSC_AUX is usually changed only during boot and never read
2909 		 * directly.  Intercept TSC_AUX instead of exposing it to the
2910 		 * guest via direct_access_msrs, and switch it via user return.
2911 		 */
2912 		preempt_disable();
2913 		r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2914 		preempt_enable();
2915 		if (r)
2916 			return 1;
2917 
2918 		svm->tsc_aux = data;
2919 		break;
2920 	case MSR_IA32_DEBUGCTLMSR:
2921 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2922 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2923 				    __func__, data);
2924 			break;
2925 		}
2926 		if (data & DEBUGCTL_RESERVED_BITS)
2927 			return 1;
2928 
2929 		svm->vmcb->save.dbgctl = data;
2930 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2931 		if (data & (1ULL<<0))
2932 			svm_enable_lbrv(vcpu);
2933 		else
2934 			svm_disable_lbrv(vcpu);
2935 		break;
2936 	case MSR_VM_HSAVE_PA:
2937 		/*
2938 		 * Old kernels did not validate the value written to
2939 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
2940 		 * value to allow live migrating buggy or malicious guests
2941 		 * originating from those kernels.
2942 		 */
2943 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
2944 			return 1;
2945 
2946 		svm->nested.hsave_msr = data & PAGE_MASK;
2947 		break;
2948 	case MSR_VM_CR:
2949 		return svm_set_vm_cr(vcpu, data);
2950 	case MSR_VM_IGNNE:
2951 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2952 		break;
2953 	case MSR_F10H_DECFG: {
2954 		struct kvm_msr_entry msr_entry;
2955 
2956 		msr_entry.index = msr->index;
2957 		if (svm_get_msr_feature(&msr_entry))
2958 			return 1;
2959 
2960 		/* Check the supported bits */
2961 		if (data & ~msr_entry.data)
2962 			return 1;
2963 
2964 		/* Don't allow the guest to change a bit, #GP */
2965 		if (!msr->host_initiated && (data ^ msr_entry.data))
2966 			return 1;
2967 
2968 		svm->msr_decfg = data;
2969 		break;
2970 	}
2971 	default:
2972 		return kvm_set_msr_common(vcpu, msr);
2973 	}
2974 	return 0;
2975 }
2976 
2977 static int msr_interception(struct kvm_vcpu *vcpu)
2978 {
2979 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
2980 		return kvm_emulate_wrmsr(vcpu);
2981 	else
2982 		return kvm_emulate_rdmsr(vcpu);
2983 }
2984 
2985 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
2986 {
2987 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2988 	svm_clear_vintr(to_svm(vcpu));
2989 
2990 	/*
2991 	 * For AVIC, the only reason to end up here is ExtINTs.
2992 	 * In this case AVIC was temporarily disabled for
2993 	 * requesting the IRQ window and we have to re-enable it.
2994 	 */
2995 	kvm_request_apicv_update(vcpu->kvm, true, APICV_INHIBIT_REASON_IRQWIN);
2996 
2997 	++vcpu->stat.irq_window_exits;
2998 	return 1;
2999 }
3000 
3001 static int pause_interception(struct kvm_vcpu *vcpu)
3002 {
3003 	bool in_kernel;
3004 
3005 	/*
3006 	 * CPL is not made available for an SEV-ES guest, therefore
3007 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3008 	 * set in_kernel to false as well.
3009 	 */
3010 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3011 
3012 	if (!kvm_pause_in_guest(vcpu->kvm))
3013 		grow_ple_window(vcpu);
3014 
3015 	kvm_vcpu_on_spin(vcpu, in_kernel);
3016 	return kvm_skip_emulated_instruction(vcpu);
3017 }
3018 
3019 static int invpcid_interception(struct kvm_vcpu *vcpu)
3020 {
3021 	struct vcpu_svm *svm = to_svm(vcpu);
3022 	unsigned long type;
3023 	gva_t gva;
3024 
3025 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3026 		kvm_queue_exception(vcpu, UD_VECTOR);
3027 		return 1;
3028 	}
3029 
3030 	/*
3031 	 * For an INVPCID intercept:
3032 	 * EXITINFO1 provides the linear address of the memory operand.
3033 	 * EXITINFO2 provides the contents of the register operand.
3034 	 */
3035 	type = svm->vmcb->control.exit_info_2;
3036 	gva = svm->vmcb->control.exit_info_1;
3037 
3038 	if (type > 3) {
3039 		kvm_inject_gp(vcpu, 0);
3040 		return 1;
3041 	}
3042 
3043 	return kvm_handle_invpcid(vcpu, type, gva);
3044 }
3045 
3046 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3047 	[SVM_EXIT_READ_CR0]			= cr_interception,
3048 	[SVM_EXIT_READ_CR3]			= cr_interception,
3049 	[SVM_EXIT_READ_CR4]			= cr_interception,
3050 	[SVM_EXIT_READ_CR8]			= cr_interception,
3051 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3052 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3053 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3054 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3055 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3056 	[SVM_EXIT_READ_DR0]			= dr_interception,
3057 	[SVM_EXIT_READ_DR1]			= dr_interception,
3058 	[SVM_EXIT_READ_DR2]			= dr_interception,
3059 	[SVM_EXIT_READ_DR3]			= dr_interception,
3060 	[SVM_EXIT_READ_DR4]			= dr_interception,
3061 	[SVM_EXIT_READ_DR5]			= dr_interception,
3062 	[SVM_EXIT_READ_DR6]			= dr_interception,
3063 	[SVM_EXIT_READ_DR7]			= dr_interception,
3064 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3065 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3066 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3067 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3068 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3069 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3070 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3071 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3072 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3073 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3074 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3075 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3076 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3077 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3078 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3079 	[SVM_EXIT_INTR]				= intr_interception,
3080 	[SVM_EXIT_NMI]				= nmi_interception,
3081 	[SVM_EXIT_SMI]				= smi_interception,
3082 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3083 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3084 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3085 	[SVM_EXIT_IRET]                         = iret_interception,
3086 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3087 	[SVM_EXIT_PAUSE]			= pause_interception,
3088 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3089 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3090 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3091 	[SVM_EXIT_IOIO]				= io_interception,
3092 	[SVM_EXIT_MSR]				= msr_interception,
3093 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3094 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3095 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3096 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3097 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3098 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3099 	[SVM_EXIT_STGI]				= stgi_interception,
3100 	[SVM_EXIT_CLGI]				= clgi_interception,
3101 	[SVM_EXIT_SKINIT]			= skinit_interception,
3102 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3103 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3104 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3105 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3106 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3107 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3108 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3109 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3110 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3111 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3112 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3113 	[SVM_EXIT_NPF]				= npf_interception,
3114 	[SVM_EXIT_RSM]                          = rsm_interception,
3115 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3116 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3117 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3118 };
3119 
3120 static void dump_vmcb(struct kvm_vcpu *vcpu)
3121 {
3122 	struct vcpu_svm *svm = to_svm(vcpu);
3123 	struct vmcb_control_area *control = &svm->vmcb->control;
3124 	struct vmcb_save_area *save = &svm->vmcb->save;
3125 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3126 
3127 	if (!dump_invalid_vmcb) {
3128 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3129 		return;
3130 	}
3131 
3132 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3133 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3134 	pr_err("VMCB Control Area:\n");
3135 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3136 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3137 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3138 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3139 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3140 	pr_err("%-20s%08x %08x\n", "intercepts:",
3141               control->intercepts[INTERCEPT_WORD3],
3142 	       control->intercepts[INTERCEPT_WORD4]);
3143 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3144 	pr_err("%-20s%d\n", "pause filter threshold:",
3145 	       control->pause_filter_thresh);
3146 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3147 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3148 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3149 	pr_err("%-20s%d\n", "asid:", control->asid);
3150 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3151 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3152 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3153 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3154 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3155 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3156 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3157 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3158 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3159 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3160 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3161 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3162 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3163 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3164 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3165 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3166 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3167 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3168 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3169 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3170 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3171 	pr_err("VMCB State Save Area:\n");
3172 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3173 	       "es:",
3174 	       save->es.selector, save->es.attrib,
3175 	       save->es.limit, save->es.base);
3176 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3177 	       "cs:",
3178 	       save->cs.selector, save->cs.attrib,
3179 	       save->cs.limit, save->cs.base);
3180 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3181 	       "ss:",
3182 	       save->ss.selector, save->ss.attrib,
3183 	       save->ss.limit, save->ss.base);
3184 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3185 	       "ds:",
3186 	       save->ds.selector, save->ds.attrib,
3187 	       save->ds.limit, save->ds.base);
3188 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3189 	       "fs:",
3190 	       save01->fs.selector, save01->fs.attrib,
3191 	       save01->fs.limit, save01->fs.base);
3192 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3193 	       "gs:",
3194 	       save01->gs.selector, save01->gs.attrib,
3195 	       save01->gs.limit, save01->gs.base);
3196 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3197 	       "gdtr:",
3198 	       save->gdtr.selector, save->gdtr.attrib,
3199 	       save->gdtr.limit, save->gdtr.base);
3200 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3201 	       "ldtr:",
3202 	       save01->ldtr.selector, save01->ldtr.attrib,
3203 	       save01->ldtr.limit, save01->ldtr.base);
3204 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3205 	       "idtr:",
3206 	       save->idtr.selector, save->idtr.attrib,
3207 	       save->idtr.limit, save->idtr.base);
3208 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3209 	       "tr:",
3210 	       save01->tr.selector, save01->tr.attrib,
3211 	       save01->tr.limit, save01->tr.base);
3212 	pr_err("cpl:            %d                efer:         %016llx\n",
3213 		save->cpl, save->efer);
3214 	pr_err("%-15s %016llx %-13s %016llx\n",
3215 	       "cr0:", save->cr0, "cr2:", save->cr2);
3216 	pr_err("%-15s %016llx %-13s %016llx\n",
3217 	       "cr3:", save->cr3, "cr4:", save->cr4);
3218 	pr_err("%-15s %016llx %-13s %016llx\n",
3219 	       "dr6:", save->dr6, "dr7:", save->dr7);
3220 	pr_err("%-15s %016llx %-13s %016llx\n",
3221 	       "rip:", save->rip, "rflags:", save->rflags);
3222 	pr_err("%-15s %016llx %-13s %016llx\n",
3223 	       "rsp:", save->rsp, "rax:", save->rax);
3224 	pr_err("%-15s %016llx %-13s %016llx\n",
3225 	       "star:", save01->star, "lstar:", save01->lstar);
3226 	pr_err("%-15s %016llx %-13s %016llx\n",
3227 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3228 	pr_err("%-15s %016llx %-13s %016llx\n",
3229 	       "kernel_gs_base:", save01->kernel_gs_base,
3230 	       "sysenter_cs:", save01->sysenter_cs);
3231 	pr_err("%-15s %016llx %-13s %016llx\n",
3232 	       "sysenter_esp:", save01->sysenter_esp,
3233 	       "sysenter_eip:", save01->sysenter_eip);
3234 	pr_err("%-15s %016llx %-13s %016llx\n",
3235 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3236 	pr_err("%-15s %016llx %-13s %016llx\n",
3237 	       "br_from:", save->br_from, "br_to:", save->br_to);
3238 	pr_err("%-15s %016llx %-13s %016llx\n",
3239 	       "excp_from:", save->last_excp_from,
3240 	       "excp_to:", save->last_excp_to);
3241 }
3242 
3243 static bool svm_check_exit_valid(struct kvm_vcpu *vcpu, u64 exit_code)
3244 {
3245 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3246 		svm_exit_handlers[exit_code]);
3247 }
3248 
3249 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3250 {
3251 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3252 	dump_vmcb(vcpu);
3253 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3254 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3255 	vcpu->run->internal.ndata = 2;
3256 	vcpu->run->internal.data[0] = exit_code;
3257 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3258 	return 0;
3259 }
3260 
3261 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3262 {
3263 	if (!svm_check_exit_valid(vcpu, exit_code))
3264 		return svm_handle_invalid_exit(vcpu, exit_code);
3265 
3266 #ifdef CONFIG_RETPOLINE
3267 	if (exit_code == SVM_EXIT_MSR)
3268 		return msr_interception(vcpu);
3269 	else if (exit_code == SVM_EXIT_VINTR)
3270 		return interrupt_window_interception(vcpu);
3271 	else if (exit_code == SVM_EXIT_INTR)
3272 		return intr_interception(vcpu);
3273 	else if (exit_code == SVM_EXIT_HLT)
3274 		return kvm_emulate_halt(vcpu);
3275 	else if (exit_code == SVM_EXIT_NPF)
3276 		return npf_interception(vcpu);
3277 #endif
3278 	return svm_exit_handlers[exit_code](vcpu);
3279 }
3280 
3281 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3282 			      u32 *intr_info, u32 *error_code)
3283 {
3284 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3285 
3286 	*info1 = control->exit_info_1;
3287 	*info2 = control->exit_info_2;
3288 	*intr_info = control->exit_int_info;
3289 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3290 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3291 		*error_code = control->exit_int_info_err;
3292 	else
3293 		*error_code = 0;
3294 }
3295 
3296 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3297 {
3298 	struct vcpu_svm *svm = to_svm(vcpu);
3299 	struct kvm_run *kvm_run = vcpu->run;
3300 	u32 exit_code = svm->vmcb->control.exit_code;
3301 
3302 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3303 
3304 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3305 	if (!sev_es_guest(vcpu->kvm)) {
3306 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3307 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3308 		if (npt_enabled)
3309 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3310 	}
3311 
3312 	if (is_guest_mode(vcpu)) {
3313 		int vmexit;
3314 
3315 		trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3316 
3317 		vmexit = nested_svm_exit_special(svm);
3318 
3319 		if (vmexit == NESTED_EXIT_CONTINUE)
3320 			vmexit = nested_svm_exit_handled(svm);
3321 
3322 		if (vmexit == NESTED_EXIT_DONE)
3323 			return 1;
3324 	}
3325 
3326 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3327 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3328 		kvm_run->fail_entry.hardware_entry_failure_reason
3329 			= svm->vmcb->control.exit_code;
3330 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3331 		dump_vmcb(vcpu);
3332 		return 0;
3333 	}
3334 
3335 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3336 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3337 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3338 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3339 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3340 		       "exit_code 0x%x\n",
3341 		       __func__, svm->vmcb->control.exit_int_info,
3342 		       exit_code);
3343 
3344 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3345 		return 1;
3346 
3347 	return svm_invoke_exit_handler(vcpu, exit_code);
3348 }
3349 
3350 static void reload_tss(struct kvm_vcpu *vcpu)
3351 {
3352 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3353 
3354 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3355 	load_TR_desc();
3356 }
3357 
3358 static void pre_svm_run(struct kvm_vcpu *vcpu)
3359 {
3360 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3361 	struct vcpu_svm *svm = to_svm(vcpu);
3362 
3363 	/*
3364 	 * If the previous vmrun of the vmcb occurred on a different physical
3365 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3366 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3367 	 */
3368 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3369 		svm->current_vmcb->asid_generation = 0;
3370 		vmcb_mark_all_dirty(svm->vmcb);
3371 		svm->current_vmcb->cpu = vcpu->cpu;
3372         }
3373 
3374 	if (sev_guest(vcpu->kvm))
3375 		return pre_sev_run(svm, vcpu->cpu);
3376 
3377 	/* FIXME: handle wraparound of asid_generation */
3378 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3379 		new_asid(svm, sd);
3380 }
3381 
3382 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3383 {
3384 	struct vcpu_svm *svm = to_svm(vcpu);
3385 
3386 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3387 	vcpu->arch.hflags |= HF_NMI_MASK;
3388 	if (!sev_es_guest(vcpu->kvm))
3389 		svm_set_intercept(svm, INTERCEPT_IRET);
3390 	++vcpu->stat.nmi_injections;
3391 }
3392 
3393 static void svm_set_irq(struct kvm_vcpu *vcpu)
3394 {
3395 	struct vcpu_svm *svm = to_svm(vcpu);
3396 
3397 	BUG_ON(!(gif_set(svm)));
3398 
3399 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3400 	++vcpu->stat.irq_injections;
3401 
3402 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3403 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3404 }
3405 
3406 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3407 {
3408 	struct vcpu_svm *svm = to_svm(vcpu);
3409 
3410 	/*
3411 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3412 	 * tracking is done using the CR write traps.
3413 	 */
3414 	if (sev_es_guest(vcpu->kvm))
3415 		return;
3416 
3417 	if (nested_svm_virtualize_tpr(vcpu))
3418 		return;
3419 
3420 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3421 
3422 	if (irr == -1)
3423 		return;
3424 
3425 	if (tpr >= irr)
3426 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3427 }
3428 
3429 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3430 {
3431 	struct vcpu_svm *svm = to_svm(vcpu);
3432 	struct vmcb *vmcb = svm->vmcb;
3433 	bool ret;
3434 
3435 	if (!gif_set(svm))
3436 		return true;
3437 
3438 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3439 		return false;
3440 
3441 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3442 	      (vcpu->arch.hflags & HF_NMI_MASK);
3443 
3444 	return ret;
3445 }
3446 
3447 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3448 {
3449 	struct vcpu_svm *svm = to_svm(vcpu);
3450 	if (svm->nested.nested_run_pending)
3451 		return -EBUSY;
3452 
3453 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3454 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3455 		return -EBUSY;
3456 
3457 	return !svm_nmi_blocked(vcpu);
3458 }
3459 
3460 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3461 {
3462 	return !!(vcpu->arch.hflags & HF_NMI_MASK);
3463 }
3464 
3465 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3466 {
3467 	struct vcpu_svm *svm = to_svm(vcpu);
3468 
3469 	if (masked) {
3470 		vcpu->arch.hflags |= HF_NMI_MASK;
3471 		if (!sev_es_guest(vcpu->kvm))
3472 			svm_set_intercept(svm, INTERCEPT_IRET);
3473 	} else {
3474 		vcpu->arch.hflags &= ~HF_NMI_MASK;
3475 		if (!sev_es_guest(vcpu->kvm))
3476 			svm_clr_intercept(svm, INTERCEPT_IRET);
3477 	}
3478 }
3479 
3480 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3481 {
3482 	struct vcpu_svm *svm = to_svm(vcpu);
3483 	struct vmcb *vmcb = svm->vmcb;
3484 
3485 	if (!gif_set(svm))
3486 		return true;
3487 
3488 	if (sev_es_guest(vcpu->kvm)) {
3489 		/*
3490 		 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask
3491 		 * bit to determine the state of the IF flag.
3492 		 */
3493 		if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK))
3494 			return true;
3495 	} else if (is_guest_mode(vcpu)) {
3496 		/* As long as interrupts are being delivered...  */
3497 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3498 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3499 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3500 			return true;
3501 
3502 		/* ... vmexits aren't blocked by the interrupt shadow  */
3503 		if (nested_exit_on_intr(svm))
3504 			return false;
3505 	} else {
3506 		if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3507 			return true;
3508 	}
3509 
3510 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3511 }
3512 
3513 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3514 {
3515 	struct vcpu_svm *svm = to_svm(vcpu);
3516 	if (svm->nested.nested_run_pending)
3517 		return -EBUSY;
3518 
3519 	/*
3520 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3521 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3522 	 */
3523 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3524 		return -EBUSY;
3525 
3526 	return !svm_interrupt_blocked(vcpu);
3527 }
3528 
3529 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3530 {
3531 	struct vcpu_svm *svm = to_svm(vcpu);
3532 
3533 	/*
3534 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3535 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3536 	 * get that intercept, this function will be called again though and
3537 	 * we'll get the vintr intercept. However, if the vGIF feature is
3538 	 * enabled, the STGI interception will not occur. Enable the irq
3539 	 * window under the assumption that the hardware will set the GIF.
3540 	 */
3541 	if (vgif_enabled(svm) || gif_set(svm)) {
3542 		/*
3543 		 * IRQ window is not needed when AVIC is enabled,
3544 		 * unless we have pending ExtINT since it cannot be injected
3545 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3546 		 * and fallback to injecting IRQ via V_IRQ.
3547 		 */
3548 		kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_IRQWIN);
3549 		svm_set_vintr(svm);
3550 	}
3551 }
3552 
3553 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3554 {
3555 	struct vcpu_svm *svm = to_svm(vcpu);
3556 
3557 	if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3558 		return; /* IRET will cause a vm exit */
3559 
3560 	if (!gif_set(svm)) {
3561 		if (vgif_enabled(svm))
3562 			svm_set_intercept(svm, INTERCEPT_STGI);
3563 		return; /* STGI will cause a vm exit */
3564 	}
3565 
3566 	/*
3567 	 * Something prevents NMI from been injected. Single step over possible
3568 	 * problem (IRET or exception injection or interrupt shadow)
3569 	 */
3570 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3571 	svm->nmi_singlestep = true;
3572 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3573 }
3574 
3575 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3576 {
3577 	return 0;
3578 }
3579 
3580 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3581 {
3582 	return 0;
3583 }
3584 
3585 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3586 {
3587 	struct vcpu_svm *svm = to_svm(vcpu);
3588 
3589 	/*
3590 	 * Flush only the current ASID even if the TLB flush was invoked via
3591 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3592 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3593 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3594 	 * VM-Exit (via kvm_mmu_reset_context()).
3595 	 */
3596 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3597 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3598 	else
3599 		svm->current_vmcb->asid_generation--;
3600 }
3601 
3602 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3603 {
3604 	struct vcpu_svm *svm = to_svm(vcpu);
3605 
3606 	invlpga(gva, svm->vmcb->control.asid);
3607 }
3608 
3609 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3610 {
3611 	struct vcpu_svm *svm = to_svm(vcpu);
3612 
3613 	if (nested_svm_virtualize_tpr(vcpu))
3614 		return;
3615 
3616 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3617 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3618 		kvm_set_cr8(vcpu, cr8);
3619 	}
3620 }
3621 
3622 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3623 {
3624 	struct vcpu_svm *svm = to_svm(vcpu);
3625 	u64 cr8;
3626 
3627 	if (nested_svm_virtualize_tpr(vcpu) ||
3628 	    kvm_vcpu_apicv_active(vcpu))
3629 		return;
3630 
3631 	cr8 = kvm_get_cr8(vcpu);
3632 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3633 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3634 }
3635 
3636 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3637 {
3638 	struct vcpu_svm *svm = to_svm(vcpu);
3639 	u8 vector;
3640 	int type;
3641 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3642 	unsigned int3_injected = svm->int3_injected;
3643 
3644 	svm->int3_injected = 0;
3645 
3646 	/*
3647 	 * If we've made progress since setting HF_IRET_MASK, we've
3648 	 * executed an IRET and can allow NMI injection.
3649 	 */
3650 	if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3651 	    (sev_es_guest(vcpu->kvm) ||
3652 	     kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3653 		vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3654 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3655 	}
3656 
3657 	vcpu->arch.nmi_injected = false;
3658 	kvm_clear_exception_queue(vcpu);
3659 	kvm_clear_interrupt_queue(vcpu);
3660 
3661 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3662 		return;
3663 
3664 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3665 
3666 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3667 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3668 
3669 	switch (type) {
3670 	case SVM_EXITINTINFO_TYPE_NMI:
3671 		vcpu->arch.nmi_injected = true;
3672 		break;
3673 	case SVM_EXITINTINFO_TYPE_EXEPT:
3674 		/*
3675 		 * Never re-inject a #VC exception.
3676 		 */
3677 		if (vector == X86_TRAP_VC)
3678 			break;
3679 
3680 		/*
3681 		 * In case of software exceptions, do not reinject the vector,
3682 		 * but re-execute the instruction instead. Rewind RIP first
3683 		 * if we emulated INT3 before.
3684 		 */
3685 		if (kvm_exception_is_soft(vector)) {
3686 			if (vector == BP_VECTOR && int3_injected &&
3687 			    kvm_is_linear_rip(vcpu, svm->int3_rip))
3688 				kvm_rip_write(vcpu,
3689 					      kvm_rip_read(vcpu) - int3_injected);
3690 			break;
3691 		}
3692 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3693 			u32 err = svm->vmcb->control.exit_int_info_err;
3694 			kvm_requeue_exception_e(vcpu, vector, err);
3695 
3696 		} else
3697 			kvm_requeue_exception(vcpu, vector);
3698 		break;
3699 	case SVM_EXITINTINFO_TYPE_INTR:
3700 		kvm_queue_interrupt(vcpu, vector, false);
3701 		break;
3702 	default:
3703 		break;
3704 	}
3705 }
3706 
3707 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3708 {
3709 	struct vcpu_svm *svm = to_svm(vcpu);
3710 	struct vmcb_control_area *control = &svm->vmcb->control;
3711 
3712 	control->exit_int_info = control->event_inj;
3713 	control->exit_int_info_err = control->event_inj_err;
3714 	control->event_inj = 0;
3715 	svm_complete_interrupts(vcpu);
3716 }
3717 
3718 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3719 {
3720 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3721 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3722 		return handle_fastpath_set_msr_irqoff(vcpu);
3723 
3724 	return EXIT_FASTPATH_NONE;
3725 }
3726 
3727 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3728 {
3729 	struct vcpu_svm *svm = to_svm(vcpu);
3730 	unsigned long vmcb_pa = svm->current_vmcb->pa;
3731 
3732 	kvm_guest_enter_irqoff();
3733 
3734 	if (sev_es_guest(vcpu->kvm)) {
3735 		__svm_sev_es_vcpu_run(vmcb_pa);
3736 	} else {
3737 		struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3738 
3739 		/*
3740 		 * Use a single vmcb (vmcb01 because it's always valid) for
3741 		 * context switching guest state via VMLOAD/VMSAVE, that way
3742 		 * the state doesn't need to be copied between vmcb01 and
3743 		 * vmcb02 when switching vmcbs for nested virtualization.
3744 		 */
3745 		vmload(svm->vmcb01.pa);
3746 		__svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3747 		vmsave(svm->vmcb01.pa);
3748 
3749 		vmload(__sme_page_pa(sd->save_area));
3750 	}
3751 
3752 	kvm_guest_exit_irqoff();
3753 }
3754 
3755 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3756 {
3757 	struct vcpu_svm *svm = to_svm(vcpu);
3758 
3759 	trace_kvm_entry(vcpu);
3760 
3761 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3762 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3763 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3764 
3765 	/*
3766 	 * Disable singlestep if we're injecting an interrupt/exception.
3767 	 * We don't want our modified rflags to be pushed on the stack where
3768 	 * we might not be able to easily reset them if we disabled NMI
3769 	 * singlestep later.
3770 	 */
3771 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3772 		/*
3773 		 * Event injection happens before external interrupts cause a
3774 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3775 		 * is enough to force an immediate vmexit.
3776 		 */
3777 		disable_nmi_singlestep(svm);
3778 		smp_send_reschedule(vcpu->cpu);
3779 	}
3780 
3781 	pre_svm_run(vcpu);
3782 
3783 	WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
3784 
3785 	sync_lapic_to_cr8(vcpu);
3786 
3787 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3788 		svm->vmcb->control.asid = svm->asid;
3789 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3790 	}
3791 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3792 
3793 	svm_hv_update_vp_id(svm->vmcb, vcpu);
3794 
3795 	/*
3796 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3797 	 * of a #DB.
3798 	 */
3799 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3800 		svm_set_dr6(svm, vcpu->arch.dr6);
3801 	else
3802 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
3803 
3804 	clgi();
3805 	kvm_load_guest_xsave_state(vcpu);
3806 
3807 	kvm_wait_lapic_expire(vcpu);
3808 
3809 	/*
3810 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3811 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3812 	 * is no need to worry about the conditional branch over the wrmsr
3813 	 * being speculatively taken.
3814 	 */
3815 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3816 		x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3817 
3818 	svm_vcpu_enter_exit(vcpu);
3819 
3820 	/*
3821 	 * We do not use IBRS in the kernel. If this vCPU has used the
3822 	 * SPEC_CTRL MSR it may have left it on; save the value and
3823 	 * turn it off. This is much more efficient than blindly adding
3824 	 * it to the atomic save/restore list. Especially as the former
3825 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3826 	 *
3827 	 * For non-nested case:
3828 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3829 	 * save it.
3830 	 *
3831 	 * For nested case:
3832 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3833 	 * save it.
3834 	 */
3835 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
3836 	    unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3837 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3838 
3839 	if (!sev_es_guest(vcpu->kvm))
3840 		reload_tss(vcpu);
3841 
3842 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3843 		x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3844 
3845 	if (!sev_es_guest(vcpu->kvm)) {
3846 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
3847 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3848 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3849 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3850 	}
3851 
3852 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3853 		kvm_before_interrupt(vcpu);
3854 
3855 	kvm_load_host_xsave_state(vcpu);
3856 	stgi();
3857 
3858 	/* Any pending NMI will happen here */
3859 
3860 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3861 		kvm_after_interrupt(vcpu);
3862 
3863 	sync_cr8_to_lapic(vcpu);
3864 
3865 	svm->next_rip = 0;
3866 	if (is_guest_mode(vcpu)) {
3867 		nested_sync_control_from_vmcb02(svm);
3868 
3869 		/* Track VMRUNs that have made past consistency checking */
3870 		if (svm->nested.nested_run_pending &&
3871 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
3872                         ++vcpu->stat.nested_run;
3873 
3874 		svm->nested.nested_run_pending = 0;
3875 	}
3876 
3877 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3878 	vmcb_mark_all_clean(svm->vmcb);
3879 
3880 	/* if exit due to PF check for async PF */
3881 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3882 		vcpu->arch.apf.host_apf_flags =
3883 			kvm_read_and_reset_apf_flags();
3884 
3885 	if (npt_enabled)
3886 		kvm_register_clear_available(vcpu, VCPU_EXREG_PDPTR);
3887 
3888 	/*
3889 	 * We need to handle MC intercepts here before the vcpu has a chance to
3890 	 * change the physical cpu
3891 	 */
3892 	if (unlikely(svm->vmcb->control.exit_code ==
3893 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3894 		svm_handle_mce(vcpu);
3895 
3896 	svm_complete_interrupts(vcpu);
3897 
3898 	if (is_guest_mode(vcpu))
3899 		return EXIT_FASTPATH_NONE;
3900 
3901 	return svm_exit_handlers_fastpath(vcpu);
3902 }
3903 
3904 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3905 			     int root_level)
3906 {
3907 	struct vcpu_svm *svm = to_svm(vcpu);
3908 	unsigned long cr3;
3909 
3910 	if (npt_enabled) {
3911 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
3912 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3913 
3914 		hv_track_root_tdp(vcpu, root_hpa);
3915 
3916 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3917 		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3918 			return;
3919 		cr3 = vcpu->arch.cr3;
3920 	} else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3921 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
3922 	} else {
3923 		/* PCID in the guest should be impossible with a 32-bit MMU. */
3924 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
3925 		cr3 = root_hpa;
3926 	}
3927 
3928 	svm->vmcb->save.cr3 = cr3;
3929 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3930 }
3931 
3932 static int is_disabled(void)
3933 {
3934 	u64 vm_cr;
3935 
3936 	rdmsrl(MSR_VM_CR, vm_cr);
3937 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3938 		return 1;
3939 
3940 	return 0;
3941 }
3942 
3943 static void
3944 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3945 {
3946 	/*
3947 	 * Patch in the VMMCALL instruction:
3948 	 */
3949 	hypercall[0] = 0x0f;
3950 	hypercall[1] = 0x01;
3951 	hypercall[2] = 0xd9;
3952 }
3953 
3954 static int __init svm_check_processor_compat(void)
3955 {
3956 	return 0;
3957 }
3958 
3959 static bool svm_cpu_has_accelerated_tpr(void)
3960 {
3961 	return false;
3962 }
3963 
3964 /*
3965  * The kvm parameter can be NULL (module initialization, or invocation before
3966  * VM creation). Be sure to check the kvm parameter before using it.
3967  */
3968 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3969 {
3970 	switch (index) {
3971 	case MSR_IA32_MCG_EXT_CTL:
3972 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3973 		return false;
3974 	case MSR_IA32_SMBASE:
3975 		/* SEV-ES guests do not support SMM, so report false */
3976 		if (kvm && sev_es_guest(kvm))
3977 			return false;
3978 		break;
3979 	default:
3980 		break;
3981 	}
3982 
3983 	return true;
3984 }
3985 
3986 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3987 {
3988 	return 0;
3989 }
3990 
3991 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3992 {
3993 	struct vcpu_svm *svm = to_svm(vcpu);
3994 	struct kvm_cpuid_entry2 *best;
3995 
3996 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3997 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
3998 				    boot_cpu_has(X86_FEATURE_XSAVES);
3999 
4000 	/* Update nrips enabled cache */
4001 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4002 			     guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4003 
4004 	svm_recalc_instruction_intercepts(vcpu, svm);
4005 
4006 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4007 	if (sev_guest(vcpu->kvm)) {
4008 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
4009 		if (best)
4010 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4011 	}
4012 
4013 	if (kvm_vcpu_apicv_active(vcpu)) {
4014 		/*
4015 		 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
4016 		 * is exposed to the guest, disable AVIC.
4017 		 */
4018 		if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
4019 			kvm_request_apicv_update(vcpu->kvm, false,
4020 						 APICV_INHIBIT_REASON_X2APIC);
4021 
4022 		/*
4023 		 * Currently, AVIC does not work with nested virtualization.
4024 		 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
4025 		 */
4026 		if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4027 			kvm_request_apicv_update(vcpu->kvm, false,
4028 						 APICV_INHIBIT_REASON_NESTED);
4029 	}
4030 
4031 	if (guest_cpuid_is_intel(vcpu)) {
4032 		/*
4033 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
4034 		 * accesses because the processor only stores 32 bits.
4035 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
4036 		 */
4037 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
4038 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
4039 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4040 
4041 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
4042 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
4043 	} else {
4044 		/*
4045 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
4046 		 * in VMCB and clear intercepts to avoid #VMEXIT.
4047 		 */
4048 		if (vls) {
4049 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
4050 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
4051 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4052 		}
4053 		/* No need to intercept these MSRs */
4054 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
4055 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
4056 	}
4057 }
4058 
4059 static bool svm_has_wbinvd_exit(void)
4060 {
4061 	return true;
4062 }
4063 
4064 #define PRE_EX(exit)  { .exit_code = (exit), \
4065 			.stage = X86_ICPT_PRE_EXCEPT, }
4066 #define POST_EX(exit) { .exit_code = (exit), \
4067 			.stage = X86_ICPT_POST_EXCEPT, }
4068 #define POST_MEM(exit) { .exit_code = (exit), \
4069 			.stage = X86_ICPT_POST_MEMACCESS, }
4070 
4071 static const struct __x86_intercept {
4072 	u32 exit_code;
4073 	enum x86_intercept_stage stage;
4074 } x86_intercept_map[] = {
4075 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4076 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4077 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4078 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4079 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4080 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4081 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4082 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4083 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4084 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4085 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4086 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4087 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4088 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4089 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4090 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4091 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4092 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4093 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4094 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4095 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4096 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4097 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4098 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4099 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4100 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4101 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4102 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4103 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4104 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4105 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4106 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4107 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4108 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4109 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4110 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4111 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4112 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4113 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4114 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4115 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4116 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4117 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4118 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4119 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4120 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4121 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4122 };
4123 
4124 #undef PRE_EX
4125 #undef POST_EX
4126 #undef POST_MEM
4127 
4128 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4129 			       struct x86_instruction_info *info,
4130 			       enum x86_intercept_stage stage,
4131 			       struct x86_exception *exception)
4132 {
4133 	struct vcpu_svm *svm = to_svm(vcpu);
4134 	int vmexit, ret = X86EMUL_CONTINUE;
4135 	struct __x86_intercept icpt_info;
4136 	struct vmcb *vmcb = svm->vmcb;
4137 
4138 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4139 		goto out;
4140 
4141 	icpt_info = x86_intercept_map[info->intercept];
4142 
4143 	if (stage != icpt_info.stage)
4144 		goto out;
4145 
4146 	switch (icpt_info.exit_code) {
4147 	case SVM_EXIT_READ_CR0:
4148 		if (info->intercept == x86_intercept_cr_read)
4149 			icpt_info.exit_code += info->modrm_reg;
4150 		break;
4151 	case SVM_EXIT_WRITE_CR0: {
4152 		unsigned long cr0, val;
4153 
4154 		if (info->intercept == x86_intercept_cr_write)
4155 			icpt_info.exit_code += info->modrm_reg;
4156 
4157 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4158 		    info->intercept == x86_intercept_clts)
4159 			break;
4160 
4161 		if (!(vmcb_is_intercept(&svm->nested.ctl,
4162 					INTERCEPT_SELECTIVE_CR0)))
4163 			break;
4164 
4165 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4166 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4167 
4168 		if (info->intercept == x86_intercept_lmsw) {
4169 			cr0 &= 0xfUL;
4170 			val &= 0xfUL;
4171 			/* lmsw can't clear PE - catch this here */
4172 			if (cr0 & X86_CR0_PE)
4173 				val |= X86_CR0_PE;
4174 		}
4175 
4176 		if (cr0 ^ val)
4177 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4178 
4179 		break;
4180 	}
4181 	case SVM_EXIT_READ_DR0:
4182 	case SVM_EXIT_WRITE_DR0:
4183 		icpt_info.exit_code += info->modrm_reg;
4184 		break;
4185 	case SVM_EXIT_MSR:
4186 		if (info->intercept == x86_intercept_wrmsr)
4187 			vmcb->control.exit_info_1 = 1;
4188 		else
4189 			vmcb->control.exit_info_1 = 0;
4190 		break;
4191 	case SVM_EXIT_PAUSE:
4192 		/*
4193 		 * We get this for NOP only, but pause
4194 		 * is rep not, check this here
4195 		 */
4196 		if (info->rep_prefix != REPE_PREFIX)
4197 			goto out;
4198 		break;
4199 	case SVM_EXIT_IOIO: {
4200 		u64 exit_info;
4201 		u32 bytes;
4202 
4203 		if (info->intercept == x86_intercept_in ||
4204 		    info->intercept == x86_intercept_ins) {
4205 			exit_info = ((info->src_val & 0xffff) << 16) |
4206 				SVM_IOIO_TYPE_MASK;
4207 			bytes = info->dst_bytes;
4208 		} else {
4209 			exit_info = (info->dst_val & 0xffff) << 16;
4210 			bytes = info->src_bytes;
4211 		}
4212 
4213 		if (info->intercept == x86_intercept_outs ||
4214 		    info->intercept == x86_intercept_ins)
4215 			exit_info |= SVM_IOIO_STR_MASK;
4216 
4217 		if (info->rep_prefix)
4218 			exit_info |= SVM_IOIO_REP_MASK;
4219 
4220 		bytes = min(bytes, 4u);
4221 
4222 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4223 
4224 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4225 
4226 		vmcb->control.exit_info_1 = exit_info;
4227 		vmcb->control.exit_info_2 = info->next_rip;
4228 
4229 		break;
4230 	}
4231 	default:
4232 		break;
4233 	}
4234 
4235 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4236 	if (static_cpu_has(X86_FEATURE_NRIPS))
4237 		vmcb->control.next_rip  = info->next_rip;
4238 	vmcb->control.exit_code = icpt_info.exit_code;
4239 	vmexit = nested_svm_exit_handled(svm);
4240 
4241 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4242 					   : X86EMUL_CONTINUE;
4243 
4244 out:
4245 	return ret;
4246 }
4247 
4248 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4249 {
4250 }
4251 
4252 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4253 {
4254 	if (!kvm_pause_in_guest(vcpu->kvm))
4255 		shrink_ple_window(vcpu);
4256 }
4257 
4258 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4259 {
4260 	/* [63:9] are reserved. */
4261 	vcpu->arch.mcg_cap &= 0x1ff;
4262 }
4263 
4264 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4265 {
4266 	struct vcpu_svm *svm = to_svm(vcpu);
4267 
4268 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4269 	if (!gif_set(svm))
4270 		return true;
4271 
4272 	return is_smm(vcpu);
4273 }
4274 
4275 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4276 {
4277 	struct vcpu_svm *svm = to_svm(vcpu);
4278 	if (svm->nested.nested_run_pending)
4279 		return -EBUSY;
4280 
4281 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4282 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4283 		return -EBUSY;
4284 
4285 	return !svm_smi_blocked(vcpu);
4286 }
4287 
4288 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4289 {
4290 	struct vcpu_svm *svm = to_svm(vcpu);
4291 	struct kvm_host_map map_save;
4292 	int ret;
4293 
4294 	if (!is_guest_mode(vcpu))
4295 		return 0;
4296 
4297 	/* FED8h - SVM Guest */
4298 	put_smstate(u64, smstate, 0x7ed8, 1);
4299 	/* FEE0h - SVM Guest VMCB Physical Address */
4300 	put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4301 
4302 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4303 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4304 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4305 
4306 	ret = nested_svm_vmexit(svm);
4307 	if (ret)
4308 		return ret;
4309 
4310 	/*
4311 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4312 	 * VMCB01 is going to be used during SMM and thus the state will
4313 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4314 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4315 	 * format of the area is identical to guest save area offsetted
4316 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4317 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4318 	 * L1 hypervisor to save additional host context (e.g. KVM does
4319 	 * that, see svm_prepare_guest_switch()) which must be
4320 	 * preserved.
4321 	 */
4322 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4323 			 &map_save) == -EINVAL)
4324 		return 1;
4325 
4326 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4327 
4328 	svm_copy_vmrun_state(map_save.hva + 0x400,
4329 			     &svm->vmcb01.ptr->save);
4330 
4331 	kvm_vcpu_unmap(vcpu, &map_save, true);
4332 	return 0;
4333 }
4334 
4335 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4336 {
4337 	struct vcpu_svm *svm = to_svm(vcpu);
4338 	struct kvm_host_map map, map_save;
4339 	u64 saved_efer, vmcb12_gpa;
4340 	struct vmcb *vmcb12;
4341 	int ret;
4342 
4343 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4344 		return 0;
4345 
4346 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4347 	if (!GET_SMSTATE(u64, smstate, 0x7ed8))
4348 		return 0;
4349 
4350 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4351 		return 1;
4352 
4353 	saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4354 	if (!(saved_efer & EFER_SVME))
4355 		return 1;
4356 
4357 	vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4358 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4359 		return 1;
4360 
4361 	ret = 1;
4362 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL)
4363 		goto unmap_map;
4364 
4365 	if (svm_allocate_nested(svm))
4366 		goto unmap_save;
4367 
4368 	/*
4369 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4370 	 * used during SMM (see svm_enter_smm())
4371 	 */
4372 
4373 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4374 
4375 	/*
4376 	 * Enter the nested guest now
4377 	 */
4378 
4379 	vmcb12 = map.hva;
4380 	nested_load_control_from_vmcb12(svm, &vmcb12->control);
4381 	ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false);
4382 
4383 unmap_save:
4384 	kvm_vcpu_unmap(vcpu, &map_save, true);
4385 unmap_map:
4386 	kvm_vcpu_unmap(vcpu, &map, true);
4387 	return ret;
4388 }
4389 
4390 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4391 {
4392 	struct vcpu_svm *svm = to_svm(vcpu);
4393 
4394 	if (!gif_set(svm)) {
4395 		if (vgif_enabled(svm))
4396 			svm_set_intercept(svm, INTERCEPT_STGI);
4397 		/* STGI will cause a vm exit */
4398 	} else {
4399 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4400 	}
4401 }
4402 
4403 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4404 {
4405 	bool smep, smap, is_user;
4406 	unsigned long cr4;
4407 
4408 	/*
4409 	 * When the guest is an SEV-ES guest, emulation is not possible.
4410 	 */
4411 	if (sev_es_guest(vcpu->kvm))
4412 		return false;
4413 
4414 	/*
4415 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4416 	 *
4417 	 * Errata:
4418 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4419 	 * possible that CPU microcode implementing DecodeAssist will fail
4420 	 * to read bytes of instruction which caused #NPF. In this case,
4421 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4422 	 * return 0 instead of the correct guest instruction bytes.
4423 	 *
4424 	 * This happens because CPU microcode reading instruction bytes
4425 	 * uses a special opcode which attempts to read data using CPL=0
4426 	 * privileges. The microcode reads CS:RIP and if it hits a SMAP
4427 	 * fault, it gives up and returns no instruction bytes.
4428 	 *
4429 	 * Detection:
4430 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4431 	 * returned 0 in GuestIntrBytes field of the VMCB.
4432 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4433 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4434 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4435 	 * a SMEP fault instead of #NPF).
4436 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4437 	 * As most guests enable SMAP if they have also enabled SMEP, use above
4438 	 * logic in order to attempt minimize false-positive of detecting errata
4439 	 * while still preserving all cases semantic correctness.
4440 	 *
4441 	 * Workaround:
4442 	 * To determine what instruction the guest was executing, the hypervisor
4443 	 * will have to decode the instruction at the instruction pointer.
4444 	 *
4445 	 * In non SEV guest, hypervisor will be able to read the guest
4446 	 * memory to decode the instruction pointer when insn_len is zero
4447 	 * so we return true to indicate that decoding is possible.
4448 	 *
4449 	 * But in the SEV guest, the guest memory is encrypted with the
4450 	 * guest specific key and hypervisor will not be able to decode the
4451 	 * instruction pointer so we will not able to workaround it. Lets
4452 	 * print the error and request to kill the guest.
4453 	 */
4454 	if (likely(!insn || insn_len))
4455 		return true;
4456 
4457 	/*
4458 	 * If RIP is invalid, go ahead with emulation which will cause an
4459 	 * internal error exit.
4460 	 */
4461 	if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4462 		return true;
4463 
4464 	cr4 = kvm_read_cr4(vcpu);
4465 	smep = cr4 & X86_CR4_SMEP;
4466 	smap = cr4 & X86_CR4_SMAP;
4467 	is_user = svm_get_cpl(vcpu) == 3;
4468 	if (smap && (!smep || is_user)) {
4469 		if (!sev_guest(vcpu->kvm))
4470 			return true;
4471 
4472 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4473 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4474 	}
4475 
4476 	return false;
4477 }
4478 
4479 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4480 {
4481 	struct vcpu_svm *svm = to_svm(vcpu);
4482 
4483 	/*
4484 	 * TODO: Last condition latch INIT signals on vCPU when
4485 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4486 	 * To properly emulate the INIT intercept,
4487 	 * svm_check_nested_events() should call nested_svm_vmexit()
4488 	 * if an INIT signal is pending.
4489 	 */
4490 	return !gif_set(svm) ||
4491 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4492 }
4493 
4494 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4495 {
4496 	if (!sev_es_guest(vcpu->kvm))
4497 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4498 
4499 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4500 }
4501 
4502 static void svm_vm_destroy(struct kvm *kvm)
4503 {
4504 	avic_vm_destroy(kvm);
4505 	sev_vm_destroy(kvm);
4506 }
4507 
4508 static int svm_vm_init(struct kvm *kvm)
4509 {
4510 	if (!pause_filter_count || !pause_filter_thresh)
4511 		kvm->arch.pause_in_guest = true;
4512 
4513 	if (enable_apicv) {
4514 		int ret = avic_vm_init(kvm);
4515 		if (ret)
4516 			return ret;
4517 	}
4518 
4519 	return 0;
4520 }
4521 
4522 static struct kvm_x86_ops svm_x86_ops __initdata = {
4523 	.hardware_unsetup = svm_hardware_teardown,
4524 	.hardware_enable = svm_hardware_enable,
4525 	.hardware_disable = svm_hardware_disable,
4526 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4527 	.has_emulated_msr = svm_has_emulated_msr,
4528 
4529 	.vcpu_create = svm_create_vcpu,
4530 	.vcpu_free = svm_free_vcpu,
4531 	.vcpu_reset = svm_vcpu_reset,
4532 
4533 	.vm_size = sizeof(struct kvm_svm),
4534 	.vm_init = svm_vm_init,
4535 	.vm_destroy = svm_vm_destroy,
4536 
4537 	.prepare_guest_switch = svm_prepare_guest_switch,
4538 	.vcpu_load = svm_vcpu_load,
4539 	.vcpu_put = svm_vcpu_put,
4540 	.vcpu_blocking = svm_vcpu_blocking,
4541 	.vcpu_unblocking = svm_vcpu_unblocking,
4542 
4543 	.update_exception_bitmap = svm_update_exception_bitmap,
4544 	.get_msr_feature = svm_get_msr_feature,
4545 	.get_msr = svm_get_msr,
4546 	.set_msr = svm_set_msr,
4547 	.get_segment_base = svm_get_segment_base,
4548 	.get_segment = svm_get_segment,
4549 	.set_segment = svm_set_segment,
4550 	.get_cpl = svm_get_cpl,
4551 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4552 	.set_cr0 = svm_set_cr0,
4553 	.is_valid_cr4 = svm_is_valid_cr4,
4554 	.set_cr4 = svm_set_cr4,
4555 	.set_efer = svm_set_efer,
4556 	.get_idt = svm_get_idt,
4557 	.set_idt = svm_set_idt,
4558 	.get_gdt = svm_get_gdt,
4559 	.set_gdt = svm_set_gdt,
4560 	.set_dr7 = svm_set_dr7,
4561 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4562 	.cache_reg = svm_cache_reg,
4563 	.get_rflags = svm_get_rflags,
4564 	.set_rflags = svm_set_rflags,
4565 
4566 	.tlb_flush_all = svm_flush_tlb,
4567 	.tlb_flush_current = svm_flush_tlb,
4568 	.tlb_flush_gva = svm_flush_tlb_gva,
4569 	.tlb_flush_guest = svm_flush_tlb,
4570 
4571 	.run = svm_vcpu_run,
4572 	.handle_exit = handle_exit,
4573 	.skip_emulated_instruction = skip_emulated_instruction,
4574 	.update_emulated_instruction = NULL,
4575 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4576 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4577 	.patch_hypercall = svm_patch_hypercall,
4578 	.set_irq = svm_set_irq,
4579 	.set_nmi = svm_inject_nmi,
4580 	.queue_exception = svm_queue_exception,
4581 	.cancel_injection = svm_cancel_injection,
4582 	.interrupt_allowed = svm_interrupt_allowed,
4583 	.nmi_allowed = svm_nmi_allowed,
4584 	.get_nmi_mask = svm_get_nmi_mask,
4585 	.set_nmi_mask = svm_set_nmi_mask,
4586 	.enable_nmi_window = svm_enable_nmi_window,
4587 	.enable_irq_window = svm_enable_irq_window,
4588 	.update_cr8_intercept = svm_update_cr8_intercept,
4589 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
4590 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4591 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4592 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4593 	.hwapic_irr_update = svm_hwapic_irr_update,
4594 	.hwapic_isr_update = svm_hwapic_isr_update,
4595 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
4596 	.apicv_post_state_restore = avic_post_state_restore,
4597 
4598 	.set_tss_addr = svm_set_tss_addr,
4599 	.set_identity_map_addr = svm_set_identity_map_addr,
4600 	.get_mt_mask = svm_get_mt_mask,
4601 
4602 	.get_exit_info = svm_get_exit_info,
4603 
4604 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4605 
4606 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4607 
4608 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
4609 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4610 	.write_tsc_offset = svm_write_tsc_offset,
4611 	.write_tsc_multiplier = svm_write_tsc_multiplier,
4612 
4613 	.load_mmu_pgd = svm_load_mmu_pgd,
4614 
4615 	.check_intercept = svm_check_intercept,
4616 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4617 
4618 	.request_immediate_exit = __kvm_request_immediate_exit,
4619 
4620 	.sched_in = svm_sched_in,
4621 
4622 	.pmu_ops = &amd_pmu_ops,
4623 	.nested_ops = &svm_nested_ops,
4624 
4625 	.deliver_posted_interrupt = svm_deliver_avic_intr,
4626 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4627 	.update_pi_irte = svm_update_pi_irte,
4628 	.setup_mce = svm_setup_mce,
4629 
4630 	.smi_allowed = svm_smi_allowed,
4631 	.enter_smm = svm_enter_smm,
4632 	.leave_smm = svm_leave_smm,
4633 	.enable_smi_window = svm_enable_smi_window,
4634 
4635 	.mem_enc_op = svm_mem_enc_op,
4636 	.mem_enc_reg_region = svm_register_enc_region,
4637 	.mem_enc_unreg_region = svm_unregister_enc_region,
4638 
4639 	.vm_copy_enc_context_from = svm_vm_copy_asid_from,
4640 
4641 	.can_emulate_instruction = svm_can_emulate_instruction,
4642 
4643 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4644 
4645 	.msr_filter_changed = svm_msr_filter_changed,
4646 	.complete_emulated_msr = svm_complete_emulated_msr,
4647 
4648 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4649 };
4650 
4651 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4652 	.cpu_has_kvm_support = has_svm,
4653 	.disabled_by_bios = is_disabled,
4654 	.hardware_setup = svm_hardware_setup,
4655 	.check_processor_compatibility = svm_check_processor_compat,
4656 
4657 	.runtime_ops = &svm_x86_ops,
4658 };
4659 
4660 static int __init svm_init(void)
4661 {
4662 	__unused_size_checks();
4663 
4664 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4665 			__alignof__(struct vcpu_svm), THIS_MODULE);
4666 }
4667 
4668 static void __exit svm_exit(void)
4669 {
4670 	kvm_exit();
4671 }
4672 
4673 module_init(svm_init)
4674 module_exit(svm_exit)
4675