xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision dfc66bef)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 #include <linux/cc_platform.h>
29 
30 #include <asm/apic.h>
31 #include <asm/perf_event.h>
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/debugreg.h>
35 #include <asm/kvm_para.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 #include <asm/traps.h>
40 #include <asm/fpu/api.h>
41 
42 #include <asm/virtext.h>
43 #include "trace.h"
44 
45 #include "svm.h"
46 #include "svm_ops.h"
47 
48 #include "kvm_onhyperv.h"
49 #include "svm_onhyperv.h"
50 
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53 
54 #ifdef MODULE
55 static const struct x86_cpu_id svm_cpu_id[] = {
56 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
57 	{}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
60 #endif
61 
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64 
65 #define SVM_FEATURE_LBRV           (1 <<  1)
66 #define SVM_FEATURE_SVML           (1 <<  2)
67 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
68 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
69 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
70 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
71 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
72 
73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
74 
75 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
76 #define TSC_RATIO_MIN		0x0000000000000001ULL
77 #define TSC_RATIO_MAX		0x000000ffffffffffULL
78 
79 static bool erratum_383_found __read_mostly;
80 
81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
82 
83 /*
84  * Set osvw_len to higher value when updated Revision Guides
85  * are published and we know what the new status bits are
86  */
87 static uint64_t osvw_len = 4, osvw_status;
88 
89 static DEFINE_PER_CPU(u64, current_tsc_ratio);
90 #define TSC_RATIO_DEFAULT	0x0100000000ULL
91 
92 static const struct svm_direct_access_msrs {
93 	u32 index;   /* Index of the MSR */
94 	bool always; /* True if intercept is initially cleared */
95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
96 	{ .index = MSR_STAR,				.always = true  },
97 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
98 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
99 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
100 #ifdef CONFIG_X86_64
101 	{ .index = MSR_GS_BASE,				.always = true  },
102 	{ .index = MSR_FS_BASE,				.always = true  },
103 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
104 	{ .index = MSR_LSTAR,				.always = true  },
105 	{ .index = MSR_CSTAR,				.always = true  },
106 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
107 #endif
108 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
109 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
110 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
111 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
112 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
113 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
114 	{ .index = MSR_EFER,				.always = false },
115 	{ .index = MSR_IA32_CR_PAT,			.always = false },
116 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
117 	{ .index = MSR_INVALID,				.always = false },
118 };
119 
120 /*
121  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
122  * pause_filter_count: On processors that support Pause filtering(indicated
123  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
124  *	count value. On VMRUN this value is loaded into an internal counter.
125  *	Each time a pause instruction is executed, this counter is decremented
126  *	until it reaches zero at which time a #VMEXIT is generated if pause
127  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
128  *	Intercept Filtering for more details.
129  *	This also indicate if ple logic enabled.
130  *
131  * pause_filter_thresh: In addition, some processor families support advanced
132  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
133  *	the amount of time a guest is allowed to execute in a pause loop.
134  *	In this mode, a 16-bit pause filter threshold field is added in the
135  *	VMCB. The threshold value is a cycle count that is used to reset the
136  *	pause counter. As with simple pause filtering, VMRUN loads the pause
137  *	count value from VMCB into an internal counter. Then, on each pause
138  *	instruction the hardware checks the elapsed number of cycles since
139  *	the most recent pause instruction against the pause filter threshold.
140  *	If the elapsed cycle count is greater than the pause filter threshold,
141  *	then the internal pause count is reloaded from the VMCB and execution
142  *	continues. If the elapsed cycle count is less than the pause filter
143  *	threshold, then the internal pause count is decremented. If the count
144  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
145  *	triggered. If advanced pause filtering is supported and pause filter
146  *	threshold field is set to zero, the filter will operate in the simpler,
147  *	count only mode.
148  */
149 
150 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
151 module_param(pause_filter_thresh, ushort, 0444);
152 
153 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
154 module_param(pause_filter_count, ushort, 0444);
155 
156 /* Default doubles per-vcpu window every exit. */
157 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
158 module_param(pause_filter_count_grow, ushort, 0444);
159 
160 /* Default resets per-vcpu window every exit to pause_filter_count. */
161 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
162 module_param(pause_filter_count_shrink, ushort, 0444);
163 
164 /* Default is to compute the maximum so we can never overflow. */
165 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
166 module_param(pause_filter_count_max, ushort, 0444);
167 
168 /*
169  * Use nested page tables by default.  Note, NPT may get forced off by
170  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
171  */
172 bool npt_enabled = true;
173 module_param_named(npt, npt_enabled, bool, 0444);
174 
175 /* allow nested virtualization in KVM/SVM */
176 static int nested = true;
177 module_param(nested, int, S_IRUGO);
178 
179 /* enable/disable Next RIP Save */
180 static int nrips = true;
181 module_param(nrips, int, 0444);
182 
183 /* enable/disable Virtual VMLOAD VMSAVE */
184 static int vls = true;
185 module_param(vls, int, 0444);
186 
187 /* enable/disable Virtual GIF */
188 static int vgif = true;
189 module_param(vgif, int, 0444);
190 
191 /* enable/disable LBR virtualization */
192 static int lbrv = true;
193 module_param(lbrv, int, 0444);
194 
195 static int tsc_scaling = true;
196 module_param(tsc_scaling, int, 0444);
197 
198 /*
199  * enable / disable AVIC.  Because the defaults differ for APICv
200  * support between VMX and SVM we cannot use module_param_named.
201  */
202 static bool avic;
203 module_param(avic, bool, 0444);
204 
205 bool __read_mostly dump_invalid_vmcb;
206 module_param(dump_invalid_vmcb, bool, 0644);
207 
208 
209 bool intercept_smi = true;
210 module_param(intercept_smi, bool, 0444);
211 
212 
213 static bool svm_gp_erratum_intercept = true;
214 
215 static u8 rsm_ins_bytes[] = "\x0f\xaa";
216 
217 static unsigned long iopm_base;
218 
219 struct kvm_ldttss_desc {
220 	u16 limit0;
221 	u16 base0;
222 	unsigned base1:8, type:5, dpl:2, p:1;
223 	unsigned limit1:4, zero0:3, g:1, base2:8;
224 	u32 base3;
225 	u32 zero1;
226 } __attribute__((packed));
227 
228 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
229 
230 /*
231  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
232  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
233  *
234  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
235  * defer the restoration of TSC_AUX until the CPU returns to userspace.
236  */
237 static int tsc_aux_uret_slot __read_mostly = -1;
238 
239 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
240 
241 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
242 #define MSRS_RANGE_SIZE 2048
243 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
244 
245 u32 svm_msrpm_offset(u32 msr)
246 {
247 	u32 offset;
248 	int i;
249 
250 	for (i = 0; i < NUM_MSR_MAPS; i++) {
251 		if (msr < msrpm_ranges[i] ||
252 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
253 			continue;
254 
255 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
256 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
257 
258 		/* Now we have the u8 offset - but need the u32 offset */
259 		return offset / 4;
260 	}
261 
262 	/* MSR not in any range */
263 	return MSR_INVALID;
264 }
265 
266 #define MAX_INST_SIZE 15
267 
268 static int get_max_npt_level(void)
269 {
270 #ifdef CONFIG_X86_64
271 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
272 #else
273 	return PT32E_ROOT_LEVEL;
274 #endif
275 }
276 
277 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
278 {
279 	struct vcpu_svm *svm = to_svm(vcpu);
280 	u64 old_efer = vcpu->arch.efer;
281 	vcpu->arch.efer = efer;
282 
283 	if (!npt_enabled) {
284 		/* Shadow paging assumes NX to be available.  */
285 		efer |= EFER_NX;
286 
287 		if (!(efer & EFER_LMA))
288 			efer &= ~EFER_LME;
289 	}
290 
291 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
292 		if (!(efer & EFER_SVME)) {
293 			svm_leave_nested(svm);
294 			svm_set_gif(svm, true);
295 			/* #GP intercept is still needed for vmware backdoor */
296 			if (!enable_vmware_backdoor)
297 				clr_exception_intercept(svm, GP_VECTOR);
298 
299 			/*
300 			 * Free the nested guest state, unless we are in SMM.
301 			 * In this case we will return to the nested guest
302 			 * as soon as we leave SMM.
303 			 */
304 			if (!is_smm(vcpu))
305 				svm_free_nested(svm);
306 
307 		} else {
308 			int ret = svm_allocate_nested(svm);
309 
310 			if (ret) {
311 				vcpu->arch.efer = old_efer;
312 				return ret;
313 			}
314 
315 			if (svm_gp_erratum_intercept)
316 				set_exception_intercept(svm, GP_VECTOR);
317 		}
318 	}
319 
320 	svm->vmcb->save.efer = efer | EFER_SVME;
321 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
322 	return 0;
323 }
324 
325 static int is_external_interrupt(u32 info)
326 {
327 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
328 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
329 }
330 
331 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
332 {
333 	struct vcpu_svm *svm = to_svm(vcpu);
334 	u32 ret = 0;
335 
336 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
337 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
338 	return ret;
339 }
340 
341 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
342 {
343 	struct vcpu_svm *svm = to_svm(vcpu);
344 
345 	if (mask == 0)
346 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
347 	else
348 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
349 
350 }
351 
352 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
353 {
354 	struct vcpu_svm *svm = to_svm(vcpu);
355 
356 	/*
357 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
358 	 * the type of exit and the #VC handler in the guest.
359 	 */
360 	if (sev_es_guest(vcpu->kvm))
361 		goto done;
362 
363 	if (nrips && svm->vmcb->control.next_rip != 0) {
364 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
365 		svm->next_rip = svm->vmcb->control.next_rip;
366 	}
367 
368 	if (!svm->next_rip) {
369 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
370 			return 0;
371 	} else {
372 		kvm_rip_write(vcpu, svm->next_rip);
373 	}
374 
375 done:
376 	svm_set_interrupt_shadow(vcpu, 0);
377 
378 	return 1;
379 }
380 
381 static void svm_queue_exception(struct kvm_vcpu *vcpu)
382 {
383 	struct vcpu_svm *svm = to_svm(vcpu);
384 	unsigned nr = vcpu->arch.exception.nr;
385 	bool has_error_code = vcpu->arch.exception.has_error_code;
386 	u32 error_code = vcpu->arch.exception.error_code;
387 
388 	kvm_deliver_exception_payload(vcpu);
389 
390 	if (nr == BP_VECTOR && !nrips) {
391 		unsigned long rip, old_rip = kvm_rip_read(vcpu);
392 
393 		/*
394 		 * For guest debugging where we have to reinject #BP if some
395 		 * INT3 is guest-owned:
396 		 * Emulate nRIP by moving RIP forward. Will fail if injection
397 		 * raises a fault that is not intercepted. Still better than
398 		 * failing in all cases.
399 		 */
400 		(void)skip_emulated_instruction(vcpu);
401 		rip = kvm_rip_read(vcpu);
402 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
403 		svm->int3_injected = rip - old_rip;
404 	}
405 
406 	svm->vmcb->control.event_inj = nr
407 		| SVM_EVTINJ_VALID
408 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
409 		| SVM_EVTINJ_TYPE_EXEPT;
410 	svm->vmcb->control.event_inj_err = error_code;
411 }
412 
413 static void svm_init_erratum_383(void)
414 {
415 	u32 low, high;
416 	int err;
417 	u64 val;
418 
419 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
420 		return;
421 
422 	/* Use _safe variants to not break nested virtualization */
423 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
424 	if (err)
425 		return;
426 
427 	val |= (1ULL << 47);
428 
429 	low  = lower_32_bits(val);
430 	high = upper_32_bits(val);
431 
432 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
433 
434 	erratum_383_found = true;
435 }
436 
437 static void svm_init_osvw(struct kvm_vcpu *vcpu)
438 {
439 	/*
440 	 * Guests should see errata 400 and 415 as fixed (assuming that
441 	 * HLT and IO instructions are intercepted).
442 	 */
443 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
444 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
445 
446 	/*
447 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
448 	 * all osvw.status bits inside that length, including bit 0 (which is
449 	 * reserved for erratum 298), are valid. However, if host processor's
450 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
451 	 * be conservative here and therefore we tell the guest that erratum 298
452 	 * is present (because we really don't know).
453 	 */
454 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
455 		vcpu->arch.osvw.status |= 1;
456 }
457 
458 static int has_svm(void)
459 {
460 	const char *msg;
461 
462 	if (!cpu_has_svm(&msg)) {
463 		printk(KERN_INFO "has_svm: %s\n", msg);
464 		return 0;
465 	}
466 
467 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
468 		pr_info("KVM is unsupported when running as an SEV guest\n");
469 		return 0;
470 	}
471 
472 	return 1;
473 }
474 
475 static void svm_hardware_disable(void)
476 {
477 	/* Make sure we clean up behind us */
478 	if (tsc_scaling)
479 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
480 
481 	cpu_svm_disable();
482 
483 	amd_pmu_disable_virt();
484 }
485 
486 static int svm_hardware_enable(void)
487 {
488 
489 	struct svm_cpu_data *sd;
490 	uint64_t efer;
491 	struct desc_struct *gdt;
492 	int me = raw_smp_processor_id();
493 
494 	rdmsrl(MSR_EFER, efer);
495 	if (efer & EFER_SVME)
496 		return -EBUSY;
497 
498 	if (!has_svm()) {
499 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
500 		return -EINVAL;
501 	}
502 	sd = per_cpu(svm_data, me);
503 	if (!sd) {
504 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
505 		return -EINVAL;
506 	}
507 
508 	sd->asid_generation = 1;
509 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
510 	sd->next_asid = sd->max_asid + 1;
511 	sd->min_asid = max_sev_asid + 1;
512 
513 	gdt = get_current_gdt_rw();
514 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
515 
516 	wrmsrl(MSR_EFER, efer | EFER_SVME);
517 
518 	wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
519 
520 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
521 		/*
522 		 * Set the default value, even if we don't use TSC scaling
523 		 * to avoid having stale value in the msr
524 		 */
525 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
526 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
527 	}
528 
529 
530 	/*
531 	 * Get OSVW bits.
532 	 *
533 	 * Note that it is possible to have a system with mixed processor
534 	 * revisions and therefore different OSVW bits. If bits are not the same
535 	 * on different processors then choose the worst case (i.e. if erratum
536 	 * is present on one processor and not on another then assume that the
537 	 * erratum is present everywhere).
538 	 */
539 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
540 		uint64_t len, status = 0;
541 		int err;
542 
543 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
544 		if (!err)
545 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
546 						      &err);
547 
548 		if (err)
549 			osvw_status = osvw_len = 0;
550 		else {
551 			if (len < osvw_len)
552 				osvw_len = len;
553 			osvw_status |= status;
554 			osvw_status &= (1ULL << osvw_len) - 1;
555 		}
556 	} else
557 		osvw_status = osvw_len = 0;
558 
559 	svm_init_erratum_383();
560 
561 	amd_pmu_enable_virt();
562 
563 	return 0;
564 }
565 
566 static void svm_cpu_uninit(int cpu)
567 {
568 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
569 
570 	if (!sd)
571 		return;
572 
573 	per_cpu(svm_data, cpu) = NULL;
574 	kfree(sd->sev_vmcbs);
575 	__free_page(sd->save_area);
576 	kfree(sd);
577 }
578 
579 static int svm_cpu_init(int cpu)
580 {
581 	struct svm_cpu_data *sd;
582 	int ret = -ENOMEM;
583 
584 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
585 	if (!sd)
586 		return ret;
587 	sd->cpu = cpu;
588 	sd->save_area = alloc_page(GFP_KERNEL);
589 	if (!sd->save_area)
590 		goto free_cpu_data;
591 
592 	clear_page(page_address(sd->save_area));
593 
594 	ret = sev_cpu_init(sd);
595 	if (ret)
596 		goto free_save_area;
597 
598 	per_cpu(svm_data, cpu) = sd;
599 
600 	return 0;
601 
602 free_save_area:
603 	__free_page(sd->save_area);
604 free_cpu_data:
605 	kfree(sd);
606 	return ret;
607 
608 }
609 
610 static int direct_access_msr_slot(u32 msr)
611 {
612 	u32 i;
613 
614 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
615 		if (direct_access_msrs[i].index == msr)
616 			return i;
617 
618 	return -ENOENT;
619 }
620 
621 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
622 				     int write)
623 {
624 	struct vcpu_svm *svm = to_svm(vcpu);
625 	int slot = direct_access_msr_slot(msr);
626 
627 	if (slot == -ENOENT)
628 		return;
629 
630 	/* Set the shadow bitmaps to the desired intercept states */
631 	if (read)
632 		set_bit(slot, svm->shadow_msr_intercept.read);
633 	else
634 		clear_bit(slot, svm->shadow_msr_intercept.read);
635 
636 	if (write)
637 		set_bit(slot, svm->shadow_msr_intercept.write);
638 	else
639 		clear_bit(slot, svm->shadow_msr_intercept.write);
640 }
641 
642 static bool valid_msr_intercept(u32 index)
643 {
644 	return direct_access_msr_slot(index) != -ENOENT;
645 }
646 
647 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
648 {
649 	u8 bit_write;
650 	unsigned long tmp;
651 	u32 offset;
652 	u32 *msrpm;
653 
654 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
655 				      to_svm(vcpu)->msrpm;
656 
657 	offset    = svm_msrpm_offset(msr);
658 	bit_write = 2 * (msr & 0x0f) + 1;
659 	tmp       = msrpm[offset];
660 
661 	BUG_ON(offset == MSR_INVALID);
662 
663 	return !!test_bit(bit_write,  &tmp);
664 }
665 
666 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
667 					u32 msr, int read, int write)
668 {
669 	u8 bit_read, bit_write;
670 	unsigned long tmp;
671 	u32 offset;
672 
673 	/*
674 	 * If this warning triggers extend the direct_access_msrs list at the
675 	 * beginning of the file
676 	 */
677 	WARN_ON(!valid_msr_intercept(msr));
678 
679 	/* Enforce non allowed MSRs to trap */
680 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
681 		read = 0;
682 
683 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
684 		write = 0;
685 
686 	offset    = svm_msrpm_offset(msr);
687 	bit_read  = 2 * (msr & 0x0f);
688 	bit_write = 2 * (msr & 0x0f) + 1;
689 	tmp       = msrpm[offset];
690 
691 	BUG_ON(offset == MSR_INVALID);
692 
693 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
694 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
695 
696 	msrpm[offset] = tmp;
697 
698 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
699 
700 }
701 
702 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
703 			  int read, int write)
704 {
705 	set_shadow_msr_intercept(vcpu, msr, read, write);
706 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
707 }
708 
709 u32 *svm_vcpu_alloc_msrpm(void)
710 {
711 	unsigned int order = get_order(MSRPM_SIZE);
712 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
713 	u32 *msrpm;
714 
715 	if (!pages)
716 		return NULL;
717 
718 	msrpm = page_address(pages);
719 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
720 
721 	return msrpm;
722 }
723 
724 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
725 {
726 	int i;
727 
728 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
729 		if (!direct_access_msrs[i].always)
730 			continue;
731 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
732 	}
733 }
734 
735 
736 void svm_vcpu_free_msrpm(u32 *msrpm)
737 {
738 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
739 }
740 
741 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
742 {
743 	struct vcpu_svm *svm = to_svm(vcpu);
744 	u32 i;
745 
746 	/*
747 	 * Set intercept permissions for all direct access MSRs again. They
748 	 * will automatically get filtered through the MSR filter, so we are
749 	 * back in sync after this.
750 	 */
751 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
752 		u32 msr = direct_access_msrs[i].index;
753 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
754 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
755 
756 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
757 	}
758 }
759 
760 static void add_msr_offset(u32 offset)
761 {
762 	int i;
763 
764 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
765 
766 		/* Offset already in list? */
767 		if (msrpm_offsets[i] == offset)
768 			return;
769 
770 		/* Slot used by another offset? */
771 		if (msrpm_offsets[i] != MSR_INVALID)
772 			continue;
773 
774 		/* Add offset to list */
775 		msrpm_offsets[i] = offset;
776 
777 		return;
778 	}
779 
780 	/*
781 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
782 	 * increase MSRPM_OFFSETS in this case.
783 	 */
784 	BUG();
785 }
786 
787 static void init_msrpm_offsets(void)
788 {
789 	int i;
790 
791 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
792 
793 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
794 		u32 offset;
795 
796 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
797 		BUG_ON(offset == MSR_INVALID);
798 
799 		add_msr_offset(offset);
800 	}
801 }
802 
803 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
804 {
805 	struct vcpu_svm *svm = to_svm(vcpu);
806 
807 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
808 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
809 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
810 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
811 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
812 }
813 
814 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
815 {
816 	struct vcpu_svm *svm = to_svm(vcpu);
817 
818 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
819 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
820 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
821 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
822 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
823 }
824 
825 void disable_nmi_singlestep(struct vcpu_svm *svm)
826 {
827 	svm->nmi_singlestep = false;
828 
829 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
830 		/* Clear our flags if they were not set by the guest */
831 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
832 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
833 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
834 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
835 	}
836 }
837 
838 static void grow_ple_window(struct kvm_vcpu *vcpu)
839 {
840 	struct vcpu_svm *svm = to_svm(vcpu);
841 	struct vmcb_control_area *control = &svm->vmcb->control;
842 	int old = control->pause_filter_count;
843 
844 	control->pause_filter_count = __grow_ple_window(old,
845 							pause_filter_count,
846 							pause_filter_count_grow,
847 							pause_filter_count_max);
848 
849 	if (control->pause_filter_count != old) {
850 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
851 		trace_kvm_ple_window_update(vcpu->vcpu_id,
852 					    control->pause_filter_count, old);
853 	}
854 }
855 
856 static void shrink_ple_window(struct kvm_vcpu *vcpu)
857 {
858 	struct vcpu_svm *svm = to_svm(vcpu);
859 	struct vmcb_control_area *control = &svm->vmcb->control;
860 	int old = control->pause_filter_count;
861 
862 	control->pause_filter_count =
863 				__shrink_ple_window(old,
864 						    pause_filter_count,
865 						    pause_filter_count_shrink,
866 						    pause_filter_count);
867 	if (control->pause_filter_count != old) {
868 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
869 		trace_kvm_ple_window_update(vcpu->vcpu_id,
870 					    control->pause_filter_count, old);
871 	}
872 }
873 
874 /*
875  * The default MMIO mask is a single bit (excluding the present bit),
876  * which could conflict with the memory encryption bit. Check for
877  * memory encryption support and override the default MMIO mask if
878  * memory encryption is enabled.
879  */
880 static __init void svm_adjust_mmio_mask(void)
881 {
882 	unsigned int enc_bit, mask_bit;
883 	u64 msr, mask;
884 
885 	/* If there is no memory encryption support, use existing mask */
886 	if (cpuid_eax(0x80000000) < 0x8000001f)
887 		return;
888 
889 	/* If memory encryption is not enabled, use existing mask */
890 	rdmsrl(MSR_AMD64_SYSCFG, msr);
891 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
892 		return;
893 
894 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
895 	mask_bit = boot_cpu_data.x86_phys_bits;
896 
897 	/* Increment the mask bit if it is the same as the encryption bit */
898 	if (enc_bit == mask_bit)
899 		mask_bit++;
900 
901 	/*
902 	 * If the mask bit location is below 52, then some bits above the
903 	 * physical addressing limit will always be reserved, so use the
904 	 * rsvd_bits() function to generate the mask. This mask, along with
905 	 * the present bit, will be used to generate a page fault with
906 	 * PFER.RSV = 1.
907 	 *
908 	 * If the mask bit location is 52 (or above), then clear the mask.
909 	 */
910 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
911 
912 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
913 }
914 
915 static void svm_hardware_teardown(void)
916 {
917 	int cpu;
918 
919 	sev_hardware_teardown();
920 
921 	for_each_possible_cpu(cpu)
922 		svm_cpu_uninit(cpu);
923 
924 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
925 	get_order(IOPM_SIZE));
926 	iopm_base = 0;
927 }
928 
929 static __init void svm_set_cpu_caps(void)
930 {
931 	kvm_set_cpu_caps();
932 
933 	supported_xss = 0;
934 
935 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
936 	if (nested) {
937 		kvm_cpu_cap_set(X86_FEATURE_SVM);
938 
939 		if (nrips)
940 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
941 
942 		if (npt_enabled)
943 			kvm_cpu_cap_set(X86_FEATURE_NPT);
944 
945 		if (tsc_scaling)
946 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
947 
948 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
949 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
950 	}
951 
952 	/* CPUID 0x80000008 */
953 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
954 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
955 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
956 
957 	/* CPUID 0x8000001F (SME/SEV features) */
958 	sev_set_cpu_caps();
959 }
960 
961 static __init int svm_hardware_setup(void)
962 {
963 	int cpu;
964 	struct page *iopm_pages;
965 	void *iopm_va;
966 	int r;
967 	unsigned int order = get_order(IOPM_SIZE);
968 
969 	/*
970 	 * NX is required for shadow paging and for NPT if the NX huge pages
971 	 * mitigation is enabled.
972 	 */
973 	if (!boot_cpu_has(X86_FEATURE_NX)) {
974 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
975 		return -EOPNOTSUPP;
976 	}
977 	kvm_enable_efer_bits(EFER_NX);
978 
979 	iopm_pages = alloc_pages(GFP_KERNEL, order);
980 
981 	if (!iopm_pages)
982 		return -ENOMEM;
983 
984 	iopm_va = page_address(iopm_pages);
985 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
986 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
987 
988 	init_msrpm_offsets();
989 
990 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
991 
992 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
993 		kvm_enable_efer_bits(EFER_FFXSR);
994 
995 	if (tsc_scaling) {
996 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
997 			tsc_scaling = false;
998 		} else {
999 			pr_info("TSC scaling supported\n");
1000 			kvm_has_tsc_control = true;
1001 			kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1002 			kvm_tsc_scaling_ratio_frac_bits = 32;
1003 		}
1004 	}
1005 
1006 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
1007 
1008 	/* Check for pause filtering support */
1009 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1010 		pause_filter_count = 0;
1011 		pause_filter_thresh = 0;
1012 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1013 		pause_filter_thresh = 0;
1014 	}
1015 
1016 	if (nested) {
1017 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1018 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1019 	}
1020 
1021 	/*
1022 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
1023 	 * NPT isn't supported if the host is using 2-level paging since host
1024 	 * CR4 is unchanged on VMRUN.
1025 	 */
1026 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
1027 		npt_enabled = false;
1028 
1029 	if (!boot_cpu_has(X86_FEATURE_NPT))
1030 		npt_enabled = false;
1031 
1032 	/* Force VM NPT level equal to the host's max NPT level */
1033 	kvm_configure_mmu(npt_enabled, get_max_npt_level(),
1034 			  get_max_npt_level(), PG_LEVEL_1G);
1035 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
1036 
1037 	/* Note, SEV setup consumes npt_enabled. */
1038 	sev_hardware_setup();
1039 
1040 	svm_hv_hardware_setup();
1041 
1042 	svm_adjust_mmio_mask();
1043 
1044 	for_each_possible_cpu(cpu) {
1045 		r = svm_cpu_init(cpu);
1046 		if (r)
1047 			goto err;
1048 	}
1049 
1050 	if (nrips) {
1051 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
1052 			nrips = false;
1053 	}
1054 
1055 	enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC);
1056 
1057 	if (enable_apicv) {
1058 		pr_info("AVIC enabled\n");
1059 
1060 		amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1061 	}
1062 
1063 	if (vls) {
1064 		if (!npt_enabled ||
1065 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1066 		    !IS_ENABLED(CONFIG_X86_64)) {
1067 			vls = false;
1068 		} else {
1069 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1070 		}
1071 	}
1072 
1073 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
1074 		svm_gp_erratum_intercept = false;
1075 
1076 	if (vgif) {
1077 		if (!boot_cpu_has(X86_FEATURE_VGIF))
1078 			vgif = false;
1079 		else
1080 			pr_info("Virtual GIF supported\n");
1081 	}
1082 
1083 	if (lbrv) {
1084 		if (!boot_cpu_has(X86_FEATURE_LBRV))
1085 			lbrv = false;
1086 		else
1087 			pr_info("LBR virtualization supported\n");
1088 	}
1089 
1090 	svm_set_cpu_caps();
1091 
1092 	/*
1093 	 * It seems that on AMD processors PTE's accessed bit is
1094 	 * being set by the CPU hardware before the NPF vmexit.
1095 	 * This is not expected behaviour and our tests fail because
1096 	 * of it.
1097 	 * A workaround here is to disable support for
1098 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1099 	 * In this case userspace can know if there is support using
1100 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1101 	 * it
1102 	 * If future AMD CPU models change the behaviour described above,
1103 	 * this variable can be changed accordingly
1104 	 */
1105 	allow_smaller_maxphyaddr = !npt_enabled;
1106 
1107 	return 0;
1108 
1109 err:
1110 	svm_hardware_teardown();
1111 	return r;
1112 }
1113 
1114 static void init_seg(struct vmcb_seg *seg)
1115 {
1116 	seg->selector = 0;
1117 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1118 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1119 	seg->limit = 0xffff;
1120 	seg->base = 0;
1121 }
1122 
1123 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1124 {
1125 	seg->selector = 0;
1126 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1127 	seg->limit = 0xffff;
1128 	seg->base = 0;
1129 }
1130 
1131 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1132 {
1133 	struct vcpu_svm *svm = to_svm(vcpu);
1134 
1135 	return svm->nested.ctl.tsc_offset;
1136 }
1137 
1138 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1139 {
1140 	struct vcpu_svm *svm = to_svm(vcpu);
1141 
1142 	return svm->tsc_ratio_msr;
1143 }
1144 
1145 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1146 {
1147 	struct vcpu_svm *svm = to_svm(vcpu);
1148 
1149 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1150 	svm->vmcb->control.tsc_offset = offset;
1151 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1152 }
1153 
1154 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1155 {
1156 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
1157 }
1158 
1159 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1160 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1161 					      struct vcpu_svm *svm)
1162 {
1163 	/*
1164 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1165 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1166 	 */
1167 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1168 		if (!npt_enabled ||
1169 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1170 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1171 		else
1172 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1173 	}
1174 
1175 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1176 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1177 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1178 		else
1179 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1180 	}
1181 }
1182 
1183 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1184 {
1185 	struct vcpu_svm *svm = to_svm(vcpu);
1186 
1187 	if (guest_cpuid_is_intel(vcpu)) {
1188 		/*
1189 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1190 		 * accesses because the processor only stores 32 bits.
1191 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1192 		 */
1193 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1194 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1195 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1196 
1197 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1198 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1199 	} else {
1200 		/*
1201 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1202 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1203 		 */
1204 		if (vls) {
1205 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1206 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1207 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1208 		}
1209 		/* No need to intercept these MSRs */
1210 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1211 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1212 	}
1213 }
1214 
1215 static void init_vmcb(struct kvm_vcpu *vcpu)
1216 {
1217 	struct vcpu_svm *svm = to_svm(vcpu);
1218 	struct vmcb_control_area *control = &svm->vmcb->control;
1219 	struct vmcb_save_area *save = &svm->vmcb->save;
1220 
1221 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1222 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1223 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1224 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1225 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1226 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1227 	if (!kvm_vcpu_apicv_active(vcpu))
1228 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1229 
1230 	set_dr_intercepts(svm);
1231 
1232 	set_exception_intercept(svm, PF_VECTOR);
1233 	set_exception_intercept(svm, UD_VECTOR);
1234 	set_exception_intercept(svm, MC_VECTOR);
1235 	set_exception_intercept(svm, AC_VECTOR);
1236 	set_exception_intercept(svm, DB_VECTOR);
1237 	/*
1238 	 * Guest access to VMware backdoor ports could legitimately
1239 	 * trigger #GP because of TSS I/O permission bitmap.
1240 	 * We intercept those #GP and allow access to them anyway
1241 	 * as VMware does.
1242 	 */
1243 	if (enable_vmware_backdoor)
1244 		set_exception_intercept(svm, GP_VECTOR);
1245 
1246 	svm_set_intercept(svm, INTERCEPT_INTR);
1247 	svm_set_intercept(svm, INTERCEPT_NMI);
1248 
1249 	if (intercept_smi)
1250 		svm_set_intercept(svm, INTERCEPT_SMI);
1251 
1252 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1253 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1254 	svm_set_intercept(svm, INTERCEPT_CPUID);
1255 	svm_set_intercept(svm, INTERCEPT_INVD);
1256 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1257 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1258 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1259 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1260 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1261 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1262 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1263 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1264 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1265 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1266 	svm_set_intercept(svm, INTERCEPT_STGI);
1267 	svm_set_intercept(svm, INTERCEPT_CLGI);
1268 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1269 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1270 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1271 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1272 	svm_set_intercept(svm, INTERCEPT_RSM);
1273 
1274 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1275 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1276 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1277 	}
1278 
1279 	if (!kvm_hlt_in_guest(vcpu->kvm))
1280 		svm_set_intercept(svm, INTERCEPT_HLT);
1281 
1282 	control->iopm_base_pa = __sme_set(iopm_base);
1283 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1284 	control->int_ctl = V_INTR_MASKING_MASK;
1285 
1286 	init_seg(&save->es);
1287 	init_seg(&save->ss);
1288 	init_seg(&save->ds);
1289 	init_seg(&save->fs);
1290 	init_seg(&save->gs);
1291 
1292 	save->cs.selector = 0xf000;
1293 	save->cs.base = 0xffff0000;
1294 	/* Executable/Readable Code Segment */
1295 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1296 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1297 	save->cs.limit = 0xffff;
1298 
1299 	save->gdtr.base = 0;
1300 	save->gdtr.limit = 0xffff;
1301 	save->idtr.base = 0;
1302 	save->idtr.limit = 0xffff;
1303 
1304 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1305 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1306 
1307 	if (npt_enabled) {
1308 		/* Setup VMCB for Nested Paging */
1309 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1310 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1311 		clr_exception_intercept(svm, PF_VECTOR);
1312 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1313 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1314 		save->g_pat = vcpu->arch.pat;
1315 		save->cr3 = 0;
1316 	}
1317 	svm->current_vmcb->asid_generation = 0;
1318 	svm->asid = 0;
1319 
1320 	svm->nested.vmcb12_gpa = INVALID_GPA;
1321 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1322 
1323 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1324 		control->pause_filter_count = pause_filter_count;
1325 		if (pause_filter_thresh)
1326 			control->pause_filter_thresh = pause_filter_thresh;
1327 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1328 	} else {
1329 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1330 	}
1331 
1332 	svm_recalc_instruction_intercepts(vcpu, svm);
1333 
1334 	/*
1335 	 * If the host supports V_SPEC_CTRL then disable the interception
1336 	 * of MSR_IA32_SPEC_CTRL.
1337 	 */
1338 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1339 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1340 
1341 	if (kvm_vcpu_apicv_active(vcpu))
1342 		avic_init_vmcb(svm);
1343 
1344 	if (vgif) {
1345 		svm_clr_intercept(svm, INTERCEPT_STGI);
1346 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1347 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1348 	}
1349 
1350 	if (sev_guest(vcpu->kvm)) {
1351 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1352 		clr_exception_intercept(svm, UD_VECTOR);
1353 
1354 		if (sev_es_guest(vcpu->kvm)) {
1355 			/* Perform SEV-ES specific VMCB updates */
1356 			sev_es_init_vmcb(svm);
1357 		}
1358 	}
1359 
1360 	svm_hv_init_vmcb(svm->vmcb);
1361 	init_vmcb_after_set_cpuid(vcpu);
1362 
1363 	vmcb_mark_all_dirty(svm->vmcb);
1364 
1365 	enable_gif(svm);
1366 }
1367 
1368 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1369 {
1370 	struct vcpu_svm *svm = to_svm(vcpu);
1371 
1372 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1373 
1374 	svm_init_osvw(vcpu);
1375 	vcpu->arch.microcode_version = 0x01000065;
1376 	svm->tsc_ratio_msr = kvm_default_tsc_scaling_ratio;
1377 
1378 	if (sev_es_guest(vcpu->kvm))
1379 		sev_es_vcpu_reset(svm);
1380 }
1381 
1382 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1383 {
1384 	struct vcpu_svm *svm = to_svm(vcpu);
1385 
1386 	svm->spec_ctrl = 0;
1387 	svm->virt_spec_ctrl = 0;
1388 
1389 	init_vmcb(vcpu);
1390 
1391 	if (!init_event)
1392 		__svm_vcpu_reset(vcpu);
1393 }
1394 
1395 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1396 {
1397 	svm->current_vmcb = target_vmcb;
1398 	svm->vmcb = target_vmcb->ptr;
1399 }
1400 
1401 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1402 {
1403 	struct vcpu_svm *svm;
1404 	struct page *vmcb01_page;
1405 	struct page *vmsa_page = NULL;
1406 	int err;
1407 
1408 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1409 	svm = to_svm(vcpu);
1410 
1411 	err = -ENOMEM;
1412 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1413 	if (!vmcb01_page)
1414 		goto out;
1415 
1416 	if (sev_es_guest(vcpu->kvm)) {
1417 		/*
1418 		 * SEV-ES guests require a separate VMSA page used to contain
1419 		 * the encrypted register state of the guest.
1420 		 */
1421 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1422 		if (!vmsa_page)
1423 			goto error_free_vmcb_page;
1424 
1425 		/*
1426 		 * SEV-ES guests maintain an encrypted version of their FPU
1427 		 * state which is restored and saved on VMRUN and VMEXIT.
1428 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1429 		 * do xsave/xrstor on it.
1430 		 */
1431 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1432 	}
1433 
1434 	err = avic_init_vcpu(svm);
1435 	if (err)
1436 		goto error_free_vmsa_page;
1437 
1438 	/* We initialize this flag to true to make sure that the is_running
1439 	 * bit would be set the first time the vcpu is loaded.
1440 	 */
1441 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1442 		svm->avic_is_running = true;
1443 
1444 	svm->msrpm = svm_vcpu_alloc_msrpm();
1445 	if (!svm->msrpm) {
1446 		err = -ENOMEM;
1447 		goto error_free_vmsa_page;
1448 	}
1449 
1450 	svm->vmcb01.ptr = page_address(vmcb01_page);
1451 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1452 	svm_switch_vmcb(svm, &svm->vmcb01);
1453 
1454 	if (vmsa_page)
1455 		svm->sev_es.vmsa = page_address(vmsa_page);
1456 
1457 	svm->guest_state_loaded = false;
1458 
1459 	return 0;
1460 
1461 error_free_vmsa_page:
1462 	if (vmsa_page)
1463 		__free_page(vmsa_page);
1464 error_free_vmcb_page:
1465 	__free_page(vmcb01_page);
1466 out:
1467 	return err;
1468 }
1469 
1470 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1471 {
1472 	int i;
1473 
1474 	for_each_online_cpu(i)
1475 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1476 }
1477 
1478 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1479 {
1480 	struct vcpu_svm *svm = to_svm(vcpu);
1481 
1482 	/*
1483 	 * The vmcb page can be recycled, causing a false negative in
1484 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1485 	 * vmcb page recorded as its current vmcb.
1486 	 */
1487 	svm_clear_current_vmcb(svm->vmcb);
1488 
1489 	svm_free_nested(svm);
1490 
1491 	sev_free_vcpu(vcpu);
1492 
1493 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1494 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1495 }
1496 
1497 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1498 {
1499 	struct vcpu_svm *svm = to_svm(vcpu);
1500 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1501 
1502 	if (sev_es_guest(vcpu->kvm))
1503 		sev_es_unmap_ghcb(svm);
1504 
1505 	if (svm->guest_state_loaded)
1506 		return;
1507 
1508 	/*
1509 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1510 	 * or subsequent vmload of host save area.
1511 	 */
1512 	if (sev_es_guest(vcpu->kvm)) {
1513 		sev_es_prepare_guest_switch(svm, vcpu->cpu);
1514 	} else {
1515 		vmsave(__sme_page_pa(sd->save_area));
1516 	}
1517 
1518 	if (tsc_scaling) {
1519 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1520 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1521 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1522 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1523 		}
1524 	}
1525 
1526 	if (likely(tsc_aux_uret_slot >= 0))
1527 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1528 
1529 	svm->guest_state_loaded = true;
1530 }
1531 
1532 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1533 {
1534 	to_svm(vcpu)->guest_state_loaded = false;
1535 }
1536 
1537 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1538 {
1539 	struct vcpu_svm *svm = to_svm(vcpu);
1540 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1541 
1542 	if (sd->current_vmcb != svm->vmcb) {
1543 		sd->current_vmcb = svm->vmcb;
1544 		indirect_branch_prediction_barrier();
1545 	}
1546 	if (kvm_vcpu_apicv_active(vcpu))
1547 		avic_vcpu_load(vcpu, cpu);
1548 }
1549 
1550 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1551 {
1552 	if (kvm_vcpu_apicv_active(vcpu))
1553 		avic_vcpu_put(vcpu);
1554 
1555 	svm_prepare_host_switch(vcpu);
1556 
1557 	++vcpu->stat.host_state_reload;
1558 }
1559 
1560 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1561 {
1562 	struct vcpu_svm *svm = to_svm(vcpu);
1563 	unsigned long rflags = svm->vmcb->save.rflags;
1564 
1565 	if (svm->nmi_singlestep) {
1566 		/* Hide our flags if they were not set by the guest */
1567 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1568 			rflags &= ~X86_EFLAGS_TF;
1569 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1570 			rflags &= ~X86_EFLAGS_RF;
1571 	}
1572 	return rflags;
1573 }
1574 
1575 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1576 {
1577 	if (to_svm(vcpu)->nmi_singlestep)
1578 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1579 
1580        /*
1581         * Any change of EFLAGS.VM is accompanied by a reload of SS
1582         * (caused by either a task switch or an inter-privilege IRET),
1583         * so we do not need to update the CPL here.
1584         */
1585 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1586 }
1587 
1588 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1589 {
1590 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1591 
1592 	return sev_es_guest(vcpu->kvm)
1593 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1594 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1595 }
1596 
1597 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1598 {
1599 	switch (reg) {
1600 	case VCPU_EXREG_PDPTR:
1601 		BUG_ON(!npt_enabled);
1602 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1603 		break;
1604 	default:
1605 		KVM_BUG_ON(1, vcpu->kvm);
1606 	}
1607 }
1608 
1609 static void svm_set_vintr(struct vcpu_svm *svm)
1610 {
1611 	struct vmcb_control_area *control;
1612 
1613 	/*
1614 	 * The following fields are ignored when AVIC is enabled
1615 	 */
1616 	WARN_ON(kvm_apicv_activated(svm->vcpu.kvm));
1617 
1618 	svm_set_intercept(svm, INTERCEPT_VINTR);
1619 
1620 	/*
1621 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1622 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1623 	 */
1624 	control = &svm->vmcb->control;
1625 	control->int_vector = 0x0;
1626 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1627 	control->int_ctl |= V_IRQ_MASK |
1628 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1629 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1630 }
1631 
1632 static void svm_clear_vintr(struct vcpu_svm *svm)
1633 {
1634 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1635 
1636 	/* Drop int_ctl fields related to VINTR injection.  */
1637 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1638 	if (is_guest_mode(&svm->vcpu)) {
1639 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1640 
1641 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1642 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1643 
1644 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1645 			V_IRQ_INJECTION_BITS_MASK;
1646 
1647 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1648 	}
1649 
1650 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1651 }
1652 
1653 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1654 {
1655 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1656 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1657 
1658 	switch (seg) {
1659 	case VCPU_SREG_CS: return &save->cs;
1660 	case VCPU_SREG_DS: return &save->ds;
1661 	case VCPU_SREG_ES: return &save->es;
1662 	case VCPU_SREG_FS: return &save01->fs;
1663 	case VCPU_SREG_GS: return &save01->gs;
1664 	case VCPU_SREG_SS: return &save->ss;
1665 	case VCPU_SREG_TR: return &save01->tr;
1666 	case VCPU_SREG_LDTR: return &save01->ldtr;
1667 	}
1668 	BUG();
1669 	return NULL;
1670 }
1671 
1672 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1673 {
1674 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1675 
1676 	return s->base;
1677 }
1678 
1679 static void svm_get_segment(struct kvm_vcpu *vcpu,
1680 			    struct kvm_segment *var, int seg)
1681 {
1682 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1683 
1684 	var->base = s->base;
1685 	var->limit = s->limit;
1686 	var->selector = s->selector;
1687 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1688 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1689 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1690 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1691 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1692 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1693 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1694 
1695 	/*
1696 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1697 	 * However, the SVM spec states that the G bit is not observed by the
1698 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1699 	 * So let's synthesize a legal G bit for all segments, this helps
1700 	 * running KVM nested. It also helps cross-vendor migration, because
1701 	 * Intel's vmentry has a check on the 'G' bit.
1702 	 */
1703 	var->g = s->limit > 0xfffff;
1704 
1705 	/*
1706 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1707 	 * for cross vendor migration purposes by "not present"
1708 	 */
1709 	var->unusable = !var->present;
1710 
1711 	switch (seg) {
1712 	case VCPU_SREG_TR:
1713 		/*
1714 		 * Work around a bug where the busy flag in the tr selector
1715 		 * isn't exposed
1716 		 */
1717 		var->type |= 0x2;
1718 		break;
1719 	case VCPU_SREG_DS:
1720 	case VCPU_SREG_ES:
1721 	case VCPU_SREG_FS:
1722 	case VCPU_SREG_GS:
1723 		/*
1724 		 * The accessed bit must always be set in the segment
1725 		 * descriptor cache, although it can be cleared in the
1726 		 * descriptor, the cached bit always remains at 1. Since
1727 		 * Intel has a check on this, set it here to support
1728 		 * cross-vendor migration.
1729 		 */
1730 		if (!var->unusable)
1731 			var->type |= 0x1;
1732 		break;
1733 	case VCPU_SREG_SS:
1734 		/*
1735 		 * On AMD CPUs sometimes the DB bit in the segment
1736 		 * descriptor is left as 1, although the whole segment has
1737 		 * been made unusable. Clear it here to pass an Intel VMX
1738 		 * entry check when cross vendor migrating.
1739 		 */
1740 		if (var->unusable)
1741 			var->db = 0;
1742 		/* This is symmetric with svm_set_segment() */
1743 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1744 		break;
1745 	}
1746 }
1747 
1748 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1749 {
1750 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1751 
1752 	return save->cpl;
1753 }
1754 
1755 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1756 {
1757 	struct vcpu_svm *svm = to_svm(vcpu);
1758 
1759 	dt->size = svm->vmcb->save.idtr.limit;
1760 	dt->address = svm->vmcb->save.idtr.base;
1761 }
1762 
1763 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1764 {
1765 	struct vcpu_svm *svm = to_svm(vcpu);
1766 
1767 	svm->vmcb->save.idtr.limit = dt->size;
1768 	svm->vmcb->save.idtr.base = dt->address ;
1769 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1770 }
1771 
1772 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1773 {
1774 	struct vcpu_svm *svm = to_svm(vcpu);
1775 
1776 	dt->size = svm->vmcb->save.gdtr.limit;
1777 	dt->address = svm->vmcb->save.gdtr.base;
1778 }
1779 
1780 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1781 {
1782 	struct vcpu_svm *svm = to_svm(vcpu);
1783 
1784 	svm->vmcb->save.gdtr.limit = dt->size;
1785 	svm->vmcb->save.gdtr.base = dt->address ;
1786 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1787 }
1788 
1789 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1790 {
1791 	struct vcpu_svm *svm = to_svm(vcpu);
1792 	u64 hcr0 = cr0;
1793 
1794 #ifdef CONFIG_X86_64
1795 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1796 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1797 			vcpu->arch.efer |= EFER_LMA;
1798 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1799 		}
1800 
1801 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1802 			vcpu->arch.efer &= ~EFER_LMA;
1803 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1804 		}
1805 	}
1806 #endif
1807 	vcpu->arch.cr0 = cr0;
1808 
1809 	if (!npt_enabled)
1810 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1811 
1812 	/*
1813 	 * re-enable caching here because the QEMU bios
1814 	 * does not do it - this results in some delay at
1815 	 * reboot
1816 	 */
1817 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1818 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1819 
1820 	svm->vmcb->save.cr0 = hcr0;
1821 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1822 
1823 	/*
1824 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1825 	 * tracking is done using the CR write traps.
1826 	 */
1827 	if (sev_es_guest(vcpu->kvm))
1828 		return;
1829 
1830 	if (hcr0 == cr0) {
1831 		/* Selective CR0 write remains on.  */
1832 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1833 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1834 	} else {
1835 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1836 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1837 	}
1838 }
1839 
1840 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1841 {
1842 	return true;
1843 }
1844 
1845 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1846 {
1847 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1848 	unsigned long old_cr4 = vcpu->arch.cr4;
1849 
1850 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1851 		svm_flush_tlb(vcpu);
1852 
1853 	vcpu->arch.cr4 = cr4;
1854 	if (!npt_enabled)
1855 		cr4 |= X86_CR4_PAE;
1856 	cr4 |= host_cr4_mce;
1857 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1858 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1859 
1860 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1861 		kvm_update_cpuid_runtime(vcpu);
1862 }
1863 
1864 static void svm_set_segment(struct kvm_vcpu *vcpu,
1865 			    struct kvm_segment *var, int seg)
1866 {
1867 	struct vcpu_svm *svm = to_svm(vcpu);
1868 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1869 
1870 	s->base = var->base;
1871 	s->limit = var->limit;
1872 	s->selector = var->selector;
1873 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1874 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1875 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1876 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1877 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1878 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1879 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1880 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1881 
1882 	/*
1883 	 * This is always accurate, except if SYSRET returned to a segment
1884 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1885 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1886 	 * would entail passing the CPL to userspace and back.
1887 	 */
1888 	if (seg == VCPU_SREG_SS)
1889 		/* This is symmetric with svm_get_segment() */
1890 		svm->vmcb->save.cpl = (var->dpl & 3);
1891 
1892 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1893 }
1894 
1895 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1896 {
1897 	struct vcpu_svm *svm = to_svm(vcpu);
1898 
1899 	clr_exception_intercept(svm, BP_VECTOR);
1900 
1901 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1902 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1903 			set_exception_intercept(svm, BP_VECTOR);
1904 	}
1905 }
1906 
1907 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1908 {
1909 	if (sd->next_asid > sd->max_asid) {
1910 		++sd->asid_generation;
1911 		sd->next_asid = sd->min_asid;
1912 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1913 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1914 	}
1915 
1916 	svm->current_vmcb->asid_generation = sd->asid_generation;
1917 	svm->asid = sd->next_asid++;
1918 }
1919 
1920 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1921 {
1922 	struct vmcb *vmcb = svm->vmcb;
1923 
1924 	if (svm->vcpu.arch.guest_state_protected)
1925 		return;
1926 
1927 	if (unlikely(value != vmcb->save.dr6)) {
1928 		vmcb->save.dr6 = value;
1929 		vmcb_mark_dirty(vmcb, VMCB_DR);
1930 	}
1931 }
1932 
1933 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1934 {
1935 	struct vcpu_svm *svm = to_svm(vcpu);
1936 
1937 	if (vcpu->arch.guest_state_protected)
1938 		return;
1939 
1940 	get_debugreg(vcpu->arch.db[0], 0);
1941 	get_debugreg(vcpu->arch.db[1], 1);
1942 	get_debugreg(vcpu->arch.db[2], 2);
1943 	get_debugreg(vcpu->arch.db[3], 3);
1944 	/*
1945 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1946 	 * because db_interception might need it.  We can do it before vmentry.
1947 	 */
1948 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1949 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1950 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1951 	set_dr_intercepts(svm);
1952 }
1953 
1954 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1955 {
1956 	struct vcpu_svm *svm = to_svm(vcpu);
1957 
1958 	if (vcpu->arch.guest_state_protected)
1959 		return;
1960 
1961 	svm->vmcb->save.dr7 = value;
1962 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1963 }
1964 
1965 static int pf_interception(struct kvm_vcpu *vcpu)
1966 {
1967 	struct vcpu_svm *svm = to_svm(vcpu);
1968 
1969 	u64 fault_address = svm->vmcb->control.exit_info_2;
1970 	u64 error_code = svm->vmcb->control.exit_info_1;
1971 
1972 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1973 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1974 			svm->vmcb->control.insn_bytes : NULL,
1975 			svm->vmcb->control.insn_len);
1976 }
1977 
1978 static int npf_interception(struct kvm_vcpu *vcpu)
1979 {
1980 	struct vcpu_svm *svm = to_svm(vcpu);
1981 
1982 	u64 fault_address = svm->vmcb->control.exit_info_2;
1983 	u64 error_code = svm->vmcb->control.exit_info_1;
1984 
1985 	trace_kvm_page_fault(fault_address, error_code);
1986 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1987 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1988 			svm->vmcb->control.insn_bytes : NULL,
1989 			svm->vmcb->control.insn_len);
1990 }
1991 
1992 static int db_interception(struct kvm_vcpu *vcpu)
1993 {
1994 	struct kvm_run *kvm_run = vcpu->run;
1995 	struct vcpu_svm *svm = to_svm(vcpu);
1996 
1997 	if (!(vcpu->guest_debug &
1998 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1999 		!svm->nmi_singlestep) {
2000 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2001 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2002 		return 1;
2003 	}
2004 
2005 	if (svm->nmi_singlestep) {
2006 		disable_nmi_singlestep(svm);
2007 		/* Make sure we check for pending NMIs upon entry */
2008 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2009 	}
2010 
2011 	if (vcpu->guest_debug &
2012 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2013 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2014 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2015 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2016 		kvm_run->debug.arch.pc =
2017 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2018 		kvm_run->debug.arch.exception = DB_VECTOR;
2019 		return 0;
2020 	}
2021 
2022 	return 1;
2023 }
2024 
2025 static int bp_interception(struct kvm_vcpu *vcpu)
2026 {
2027 	struct vcpu_svm *svm = to_svm(vcpu);
2028 	struct kvm_run *kvm_run = vcpu->run;
2029 
2030 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2031 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2032 	kvm_run->debug.arch.exception = BP_VECTOR;
2033 	return 0;
2034 }
2035 
2036 static int ud_interception(struct kvm_vcpu *vcpu)
2037 {
2038 	return handle_ud(vcpu);
2039 }
2040 
2041 static int ac_interception(struct kvm_vcpu *vcpu)
2042 {
2043 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2044 	return 1;
2045 }
2046 
2047 static bool is_erratum_383(void)
2048 {
2049 	int err, i;
2050 	u64 value;
2051 
2052 	if (!erratum_383_found)
2053 		return false;
2054 
2055 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2056 	if (err)
2057 		return false;
2058 
2059 	/* Bit 62 may or may not be set for this mce */
2060 	value &= ~(1ULL << 62);
2061 
2062 	if (value != 0xb600000000010015ULL)
2063 		return false;
2064 
2065 	/* Clear MCi_STATUS registers */
2066 	for (i = 0; i < 6; ++i)
2067 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2068 
2069 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2070 	if (!err) {
2071 		u32 low, high;
2072 
2073 		value &= ~(1ULL << 2);
2074 		low    = lower_32_bits(value);
2075 		high   = upper_32_bits(value);
2076 
2077 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2078 	}
2079 
2080 	/* Flush tlb to evict multi-match entries */
2081 	__flush_tlb_all();
2082 
2083 	return true;
2084 }
2085 
2086 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2087 {
2088 	if (is_erratum_383()) {
2089 		/*
2090 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2091 		 * guest.
2092 		 */
2093 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2094 
2095 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2096 
2097 		return;
2098 	}
2099 
2100 	/*
2101 	 * On an #MC intercept the MCE handler is not called automatically in
2102 	 * the host. So do it by hand here.
2103 	 */
2104 	kvm_machine_check();
2105 }
2106 
2107 static int mc_interception(struct kvm_vcpu *vcpu)
2108 {
2109 	return 1;
2110 }
2111 
2112 static int shutdown_interception(struct kvm_vcpu *vcpu)
2113 {
2114 	struct kvm_run *kvm_run = vcpu->run;
2115 	struct vcpu_svm *svm = to_svm(vcpu);
2116 
2117 	/*
2118 	 * The VM save area has already been encrypted so it
2119 	 * cannot be reinitialized - just terminate.
2120 	 */
2121 	if (sev_es_guest(vcpu->kvm))
2122 		return -EINVAL;
2123 
2124 	/*
2125 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2126 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2127 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2128 	 * userspace.  At a platform view, INIT is acceptable behavior as
2129 	 * there exist bare metal platforms that automatically INIT the CPU
2130 	 * in response to shutdown.
2131 	 */
2132 	clear_page(svm->vmcb);
2133 	kvm_vcpu_reset(vcpu, true);
2134 
2135 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2136 	return 0;
2137 }
2138 
2139 static int io_interception(struct kvm_vcpu *vcpu)
2140 {
2141 	struct vcpu_svm *svm = to_svm(vcpu);
2142 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2143 	int size, in, string;
2144 	unsigned port;
2145 
2146 	++vcpu->stat.io_exits;
2147 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2148 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2149 	port = io_info >> 16;
2150 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2151 
2152 	if (string) {
2153 		if (sev_es_guest(vcpu->kvm))
2154 			return sev_es_string_io(svm, size, port, in);
2155 		else
2156 			return kvm_emulate_instruction(vcpu, 0);
2157 	}
2158 
2159 	svm->next_rip = svm->vmcb->control.exit_info_2;
2160 
2161 	return kvm_fast_pio(vcpu, size, port, in);
2162 }
2163 
2164 static int nmi_interception(struct kvm_vcpu *vcpu)
2165 {
2166 	return 1;
2167 }
2168 
2169 static int smi_interception(struct kvm_vcpu *vcpu)
2170 {
2171 	return 1;
2172 }
2173 
2174 static int intr_interception(struct kvm_vcpu *vcpu)
2175 {
2176 	++vcpu->stat.irq_exits;
2177 	return 1;
2178 }
2179 
2180 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2181 {
2182 	struct vcpu_svm *svm = to_svm(vcpu);
2183 	struct vmcb *vmcb12;
2184 	struct kvm_host_map map;
2185 	int ret;
2186 
2187 	if (nested_svm_check_permissions(vcpu))
2188 		return 1;
2189 
2190 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2191 	if (ret) {
2192 		if (ret == -EINVAL)
2193 			kvm_inject_gp(vcpu, 0);
2194 		return 1;
2195 	}
2196 
2197 	vmcb12 = map.hva;
2198 
2199 	ret = kvm_skip_emulated_instruction(vcpu);
2200 
2201 	if (vmload) {
2202 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2203 		svm->sysenter_eip_hi = 0;
2204 		svm->sysenter_esp_hi = 0;
2205 	} else {
2206 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2207 	}
2208 
2209 	kvm_vcpu_unmap(vcpu, &map, true);
2210 
2211 	return ret;
2212 }
2213 
2214 static int vmload_interception(struct kvm_vcpu *vcpu)
2215 {
2216 	return vmload_vmsave_interception(vcpu, true);
2217 }
2218 
2219 static int vmsave_interception(struct kvm_vcpu *vcpu)
2220 {
2221 	return vmload_vmsave_interception(vcpu, false);
2222 }
2223 
2224 static int vmrun_interception(struct kvm_vcpu *vcpu)
2225 {
2226 	if (nested_svm_check_permissions(vcpu))
2227 		return 1;
2228 
2229 	return nested_svm_vmrun(vcpu);
2230 }
2231 
2232 enum {
2233 	NONE_SVM_INSTR,
2234 	SVM_INSTR_VMRUN,
2235 	SVM_INSTR_VMLOAD,
2236 	SVM_INSTR_VMSAVE,
2237 };
2238 
2239 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2240 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2241 {
2242 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2243 
2244 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2245 		return NONE_SVM_INSTR;
2246 
2247 	switch (ctxt->modrm) {
2248 	case 0xd8: /* VMRUN */
2249 		return SVM_INSTR_VMRUN;
2250 	case 0xda: /* VMLOAD */
2251 		return SVM_INSTR_VMLOAD;
2252 	case 0xdb: /* VMSAVE */
2253 		return SVM_INSTR_VMSAVE;
2254 	default:
2255 		break;
2256 	}
2257 
2258 	return NONE_SVM_INSTR;
2259 }
2260 
2261 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2262 {
2263 	const int guest_mode_exit_codes[] = {
2264 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2265 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2266 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2267 	};
2268 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2269 		[SVM_INSTR_VMRUN] = vmrun_interception,
2270 		[SVM_INSTR_VMLOAD] = vmload_interception,
2271 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2272 	};
2273 	struct vcpu_svm *svm = to_svm(vcpu);
2274 	int ret;
2275 
2276 	if (is_guest_mode(vcpu)) {
2277 		/* Returns '1' or -errno on failure, '0' on success. */
2278 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2279 		if (ret)
2280 			return ret;
2281 		return 1;
2282 	}
2283 	return svm_instr_handlers[opcode](vcpu);
2284 }
2285 
2286 /*
2287  * #GP handling code. Note that #GP can be triggered under the following two
2288  * cases:
2289  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2290  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2291  *      regions (e.g. SMM memory on host).
2292  *   2) VMware backdoor
2293  */
2294 static int gp_interception(struct kvm_vcpu *vcpu)
2295 {
2296 	struct vcpu_svm *svm = to_svm(vcpu);
2297 	u32 error_code = svm->vmcb->control.exit_info_1;
2298 	int opcode;
2299 
2300 	/* Both #GP cases have zero error_code */
2301 	if (error_code)
2302 		goto reinject;
2303 
2304 	/* All SVM instructions expect page aligned RAX */
2305 	if (svm->vmcb->save.rax & ~PAGE_MASK)
2306 		goto reinject;
2307 
2308 	/* Decode the instruction for usage later */
2309 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2310 		goto reinject;
2311 
2312 	opcode = svm_instr_opcode(vcpu);
2313 
2314 	if (opcode == NONE_SVM_INSTR) {
2315 		if (!enable_vmware_backdoor)
2316 			goto reinject;
2317 
2318 		/*
2319 		 * VMware backdoor emulation on #GP interception only handles
2320 		 * IN{S}, OUT{S}, and RDPMC.
2321 		 */
2322 		if (!is_guest_mode(vcpu))
2323 			return kvm_emulate_instruction(vcpu,
2324 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2325 	} else
2326 		return emulate_svm_instr(vcpu, opcode);
2327 
2328 reinject:
2329 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2330 	return 1;
2331 }
2332 
2333 void svm_set_gif(struct vcpu_svm *svm, bool value)
2334 {
2335 	if (value) {
2336 		/*
2337 		 * If VGIF is enabled, the STGI intercept is only added to
2338 		 * detect the opening of the SMI/NMI window; remove it now.
2339 		 * Likewise, clear the VINTR intercept, we will set it
2340 		 * again while processing KVM_REQ_EVENT if needed.
2341 		 */
2342 		if (vgif_enabled(svm))
2343 			svm_clr_intercept(svm, INTERCEPT_STGI);
2344 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2345 			svm_clear_vintr(svm);
2346 
2347 		enable_gif(svm);
2348 		if (svm->vcpu.arch.smi_pending ||
2349 		    svm->vcpu.arch.nmi_pending ||
2350 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2351 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2352 	} else {
2353 		disable_gif(svm);
2354 
2355 		/*
2356 		 * After a CLGI no interrupts should come.  But if vGIF is
2357 		 * in use, we still rely on the VINTR intercept (rather than
2358 		 * STGI) to detect an open interrupt window.
2359 		*/
2360 		if (!vgif_enabled(svm))
2361 			svm_clear_vintr(svm);
2362 	}
2363 }
2364 
2365 static int stgi_interception(struct kvm_vcpu *vcpu)
2366 {
2367 	int ret;
2368 
2369 	if (nested_svm_check_permissions(vcpu))
2370 		return 1;
2371 
2372 	ret = kvm_skip_emulated_instruction(vcpu);
2373 	svm_set_gif(to_svm(vcpu), true);
2374 	return ret;
2375 }
2376 
2377 static int clgi_interception(struct kvm_vcpu *vcpu)
2378 {
2379 	int ret;
2380 
2381 	if (nested_svm_check_permissions(vcpu))
2382 		return 1;
2383 
2384 	ret = kvm_skip_emulated_instruction(vcpu);
2385 	svm_set_gif(to_svm(vcpu), false);
2386 	return ret;
2387 }
2388 
2389 static int invlpga_interception(struct kvm_vcpu *vcpu)
2390 {
2391 	gva_t gva = kvm_rax_read(vcpu);
2392 	u32 asid = kvm_rcx_read(vcpu);
2393 
2394 	/* FIXME: Handle an address size prefix. */
2395 	if (!is_long_mode(vcpu))
2396 		gva = (u32)gva;
2397 
2398 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2399 
2400 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2401 	kvm_mmu_invlpg(vcpu, gva);
2402 
2403 	return kvm_skip_emulated_instruction(vcpu);
2404 }
2405 
2406 static int skinit_interception(struct kvm_vcpu *vcpu)
2407 {
2408 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2409 
2410 	kvm_queue_exception(vcpu, UD_VECTOR);
2411 	return 1;
2412 }
2413 
2414 static int task_switch_interception(struct kvm_vcpu *vcpu)
2415 {
2416 	struct vcpu_svm *svm = to_svm(vcpu);
2417 	u16 tss_selector;
2418 	int reason;
2419 	int int_type = svm->vmcb->control.exit_int_info &
2420 		SVM_EXITINTINFO_TYPE_MASK;
2421 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2422 	uint32_t type =
2423 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2424 	uint32_t idt_v =
2425 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2426 	bool has_error_code = false;
2427 	u32 error_code = 0;
2428 
2429 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2430 
2431 	if (svm->vmcb->control.exit_info_2 &
2432 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2433 		reason = TASK_SWITCH_IRET;
2434 	else if (svm->vmcb->control.exit_info_2 &
2435 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2436 		reason = TASK_SWITCH_JMP;
2437 	else if (idt_v)
2438 		reason = TASK_SWITCH_GATE;
2439 	else
2440 		reason = TASK_SWITCH_CALL;
2441 
2442 	if (reason == TASK_SWITCH_GATE) {
2443 		switch (type) {
2444 		case SVM_EXITINTINFO_TYPE_NMI:
2445 			vcpu->arch.nmi_injected = false;
2446 			break;
2447 		case SVM_EXITINTINFO_TYPE_EXEPT:
2448 			if (svm->vmcb->control.exit_info_2 &
2449 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2450 				has_error_code = true;
2451 				error_code =
2452 					(u32)svm->vmcb->control.exit_info_2;
2453 			}
2454 			kvm_clear_exception_queue(vcpu);
2455 			break;
2456 		case SVM_EXITINTINFO_TYPE_INTR:
2457 			kvm_clear_interrupt_queue(vcpu);
2458 			break;
2459 		default:
2460 			break;
2461 		}
2462 	}
2463 
2464 	if (reason != TASK_SWITCH_GATE ||
2465 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2466 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2467 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2468 		if (!skip_emulated_instruction(vcpu))
2469 			return 0;
2470 	}
2471 
2472 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2473 		int_vec = -1;
2474 
2475 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2476 			       has_error_code, error_code);
2477 }
2478 
2479 static int iret_interception(struct kvm_vcpu *vcpu)
2480 {
2481 	struct vcpu_svm *svm = to_svm(vcpu);
2482 
2483 	++vcpu->stat.nmi_window_exits;
2484 	vcpu->arch.hflags |= HF_IRET_MASK;
2485 	if (!sev_es_guest(vcpu->kvm)) {
2486 		svm_clr_intercept(svm, INTERCEPT_IRET);
2487 		svm->nmi_iret_rip = kvm_rip_read(vcpu);
2488 	}
2489 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2490 	return 1;
2491 }
2492 
2493 static int invlpg_interception(struct kvm_vcpu *vcpu)
2494 {
2495 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2496 		return kvm_emulate_instruction(vcpu, 0);
2497 
2498 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2499 	return kvm_skip_emulated_instruction(vcpu);
2500 }
2501 
2502 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2503 {
2504 	return kvm_emulate_instruction(vcpu, 0);
2505 }
2506 
2507 static int rsm_interception(struct kvm_vcpu *vcpu)
2508 {
2509 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2510 }
2511 
2512 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2513 					    unsigned long val)
2514 {
2515 	struct vcpu_svm *svm = to_svm(vcpu);
2516 	unsigned long cr0 = vcpu->arch.cr0;
2517 	bool ret = false;
2518 
2519 	if (!is_guest_mode(vcpu) ||
2520 	    (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2521 		return false;
2522 
2523 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2524 	val &= ~SVM_CR0_SELECTIVE_MASK;
2525 
2526 	if (cr0 ^ val) {
2527 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2528 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2529 	}
2530 
2531 	return ret;
2532 }
2533 
2534 #define CR_VALID (1ULL << 63)
2535 
2536 static int cr_interception(struct kvm_vcpu *vcpu)
2537 {
2538 	struct vcpu_svm *svm = to_svm(vcpu);
2539 	int reg, cr;
2540 	unsigned long val;
2541 	int err;
2542 
2543 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2544 		return emulate_on_interception(vcpu);
2545 
2546 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2547 		return emulate_on_interception(vcpu);
2548 
2549 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2550 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2551 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2552 	else
2553 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2554 
2555 	err = 0;
2556 	if (cr >= 16) { /* mov to cr */
2557 		cr -= 16;
2558 		val = kvm_register_read(vcpu, reg);
2559 		trace_kvm_cr_write(cr, val);
2560 		switch (cr) {
2561 		case 0:
2562 			if (!check_selective_cr0_intercepted(vcpu, val))
2563 				err = kvm_set_cr0(vcpu, val);
2564 			else
2565 				return 1;
2566 
2567 			break;
2568 		case 3:
2569 			err = kvm_set_cr3(vcpu, val);
2570 			break;
2571 		case 4:
2572 			err = kvm_set_cr4(vcpu, val);
2573 			break;
2574 		case 8:
2575 			err = kvm_set_cr8(vcpu, val);
2576 			break;
2577 		default:
2578 			WARN(1, "unhandled write to CR%d", cr);
2579 			kvm_queue_exception(vcpu, UD_VECTOR);
2580 			return 1;
2581 		}
2582 	} else { /* mov from cr */
2583 		switch (cr) {
2584 		case 0:
2585 			val = kvm_read_cr0(vcpu);
2586 			break;
2587 		case 2:
2588 			val = vcpu->arch.cr2;
2589 			break;
2590 		case 3:
2591 			val = kvm_read_cr3(vcpu);
2592 			break;
2593 		case 4:
2594 			val = kvm_read_cr4(vcpu);
2595 			break;
2596 		case 8:
2597 			val = kvm_get_cr8(vcpu);
2598 			break;
2599 		default:
2600 			WARN(1, "unhandled read from CR%d", cr);
2601 			kvm_queue_exception(vcpu, UD_VECTOR);
2602 			return 1;
2603 		}
2604 		kvm_register_write(vcpu, reg, val);
2605 		trace_kvm_cr_read(cr, val);
2606 	}
2607 	return kvm_complete_insn_gp(vcpu, err);
2608 }
2609 
2610 static int cr_trap(struct kvm_vcpu *vcpu)
2611 {
2612 	struct vcpu_svm *svm = to_svm(vcpu);
2613 	unsigned long old_value, new_value;
2614 	unsigned int cr;
2615 	int ret = 0;
2616 
2617 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2618 
2619 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2620 	switch (cr) {
2621 	case 0:
2622 		old_value = kvm_read_cr0(vcpu);
2623 		svm_set_cr0(vcpu, new_value);
2624 
2625 		kvm_post_set_cr0(vcpu, old_value, new_value);
2626 		break;
2627 	case 4:
2628 		old_value = kvm_read_cr4(vcpu);
2629 		svm_set_cr4(vcpu, new_value);
2630 
2631 		kvm_post_set_cr4(vcpu, old_value, new_value);
2632 		break;
2633 	case 8:
2634 		ret = kvm_set_cr8(vcpu, new_value);
2635 		break;
2636 	default:
2637 		WARN(1, "unhandled CR%d write trap", cr);
2638 		kvm_queue_exception(vcpu, UD_VECTOR);
2639 		return 1;
2640 	}
2641 
2642 	return kvm_complete_insn_gp(vcpu, ret);
2643 }
2644 
2645 static int dr_interception(struct kvm_vcpu *vcpu)
2646 {
2647 	struct vcpu_svm *svm = to_svm(vcpu);
2648 	int reg, dr;
2649 	unsigned long val;
2650 	int err = 0;
2651 
2652 	if (vcpu->guest_debug == 0) {
2653 		/*
2654 		 * No more DR vmexits; force a reload of the debug registers
2655 		 * and reenter on this instruction.  The next vmexit will
2656 		 * retrieve the full state of the debug registers.
2657 		 */
2658 		clr_dr_intercepts(svm);
2659 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2660 		return 1;
2661 	}
2662 
2663 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2664 		return emulate_on_interception(vcpu);
2665 
2666 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2667 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2668 	if (dr >= 16) { /* mov to DRn  */
2669 		dr -= 16;
2670 		val = kvm_register_read(vcpu, reg);
2671 		err = kvm_set_dr(vcpu, dr, val);
2672 	} else {
2673 		kvm_get_dr(vcpu, dr, &val);
2674 		kvm_register_write(vcpu, reg, val);
2675 	}
2676 
2677 	return kvm_complete_insn_gp(vcpu, err);
2678 }
2679 
2680 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2681 {
2682 	int r;
2683 
2684 	u8 cr8_prev = kvm_get_cr8(vcpu);
2685 	/* instruction emulation calls kvm_set_cr8() */
2686 	r = cr_interception(vcpu);
2687 	if (lapic_in_kernel(vcpu))
2688 		return r;
2689 	if (cr8_prev <= kvm_get_cr8(vcpu))
2690 		return r;
2691 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2692 	return 0;
2693 }
2694 
2695 static int efer_trap(struct kvm_vcpu *vcpu)
2696 {
2697 	struct msr_data msr_info;
2698 	int ret;
2699 
2700 	/*
2701 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2702 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2703 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2704 	 * the guest doesn't have X86_FEATURE_SVM.
2705 	 */
2706 	msr_info.host_initiated = false;
2707 	msr_info.index = MSR_EFER;
2708 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2709 	ret = kvm_set_msr_common(vcpu, &msr_info);
2710 
2711 	return kvm_complete_insn_gp(vcpu, ret);
2712 }
2713 
2714 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2715 {
2716 	msr->data = 0;
2717 
2718 	switch (msr->index) {
2719 	case MSR_F10H_DECFG:
2720 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2721 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2722 		break;
2723 	case MSR_IA32_PERF_CAPABILITIES:
2724 		return 0;
2725 	default:
2726 		return KVM_MSR_RET_INVALID;
2727 	}
2728 
2729 	return 0;
2730 }
2731 
2732 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2733 {
2734 	struct vcpu_svm *svm = to_svm(vcpu);
2735 
2736 	switch (msr_info->index) {
2737 	case MSR_AMD64_TSC_RATIO:
2738 		if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2739 			return 1;
2740 		msr_info->data = svm->tsc_ratio_msr;
2741 		break;
2742 	case MSR_STAR:
2743 		msr_info->data = svm->vmcb01.ptr->save.star;
2744 		break;
2745 #ifdef CONFIG_X86_64
2746 	case MSR_LSTAR:
2747 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2748 		break;
2749 	case MSR_CSTAR:
2750 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2751 		break;
2752 	case MSR_KERNEL_GS_BASE:
2753 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2754 		break;
2755 	case MSR_SYSCALL_MASK:
2756 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2757 		break;
2758 #endif
2759 	case MSR_IA32_SYSENTER_CS:
2760 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2761 		break;
2762 	case MSR_IA32_SYSENTER_EIP:
2763 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2764 		if (guest_cpuid_is_intel(vcpu))
2765 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2766 		break;
2767 	case MSR_IA32_SYSENTER_ESP:
2768 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2769 		if (guest_cpuid_is_intel(vcpu))
2770 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2771 		break;
2772 	case MSR_TSC_AUX:
2773 		msr_info->data = svm->tsc_aux;
2774 		break;
2775 	/*
2776 	 * Nobody will change the following 5 values in the VMCB so we can
2777 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2778 	 * implemented.
2779 	 */
2780 	case MSR_IA32_DEBUGCTLMSR:
2781 		msr_info->data = svm->vmcb->save.dbgctl;
2782 		break;
2783 	case MSR_IA32_LASTBRANCHFROMIP:
2784 		msr_info->data = svm->vmcb->save.br_from;
2785 		break;
2786 	case MSR_IA32_LASTBRANCHTOIP:
2787 		msr_info->data = svm->vmcb->save.br_to;
2788 		break;
2789 	case MSR_IA32_LASTINTFROMIP:
2790 		msr_info->data = svm->vmcb->save.last_excp_from;
2791 		break;
2792 	case MSR_IA32_LASTINTTOIP:
2793 		msr_info->data = svm->vmcb->save.last_excp_to;
2794 		break;
2795 	case MSR_VM_HSAVE_PA:
2796 		msr_info->data = svm->nested.hsave_msr;
2797 		break;
2798 	case MSR_VM_CR:
2799 		msr_info->data = svm->nested.vm_cr_msr;
2800 		break;
2801 	case MSR_IA32_SPEC_CTRL:
2802 		if (!msr_info->host_initiated &&
2803 		    !guest_has_spec_ctrl_msr(vcpu))
2804 			return 1;
2805 
2806 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2807 			msr_info->data = svm->vmcb->save.spec_ctrl;
2808 		else
2809 			msr_info->data = svm->spec_ctrl;
2810 		break;
2811 	case MSR_AMD64_VIRT_SPEC_CTRL:
2812 		if (!msr_info->host_initiated &&
2813 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2814 			return 1;
2815 
2816 		msr_info->data = svm->virt_spec_ctrl;
2817 		break;
2818 	case MSR_F15H_IC_CFG: {
2819 
2820 		int family, model;
2821 
2822 		family = guest_cpuid_family(vcpu);
2823 		model  = guest_cpuid_model(vcpu);
2824 
2825 		if (family < 0 || model < 0)
2826 			return kvm_get_msr_common(vcpu, msr_info);
2827 
2828 		msr_info->data = 0;
2829 
2830 		if (family == 0x15 &&
2831 		    (model >= 0x2 && model < 0x20))
2832 			msr_info->data = 0x1E;
2833 		}
2834 		break;
2835 	case MSR_F10H_DECFG:
2836 		msr_info->data = svm->msr_decfg;
2837 		break;
2838 	default:
2839 		return kvm_get_msr_common(vcpu, msr_info);
2840 	}
2841 	return 0;
2842 }
2843 
2844 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2845 {
2846 	struct vcpu_svm *svm = to_svm(vcpu);
2847 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2848 		return kvm_complete_insn_gp(vcpu, err);
2849 
2850 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2851 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2852 				X86_TRAP_GP |
2853 				SVM_EVTINJ_TYPE_EXEPT |
2854 				SVM_EVTINJ_VALID);
2855 	return 1;
2856 }
2857 
2858 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2859 {
2860 	struct vcpu_svm *svm = to_svm(vcpu);
2861 	int svm_dis, chg_mask;
2862 
2863 	if (data & ~SVM_VM_CR_VALID_MASK)
2864 		return 1;
2865 
2866 	chg_mask = SVM_VM_CR_VALID_MASK;
2867 
2868 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2869 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2870 
2871 	svm->nested.vm_cr_msr &= ~chg_mask;
2872 	svm->nested.vm_cr_msr |= (data & chg_mask);
2873 
2874 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2875 
2876 	/* check for svm_disable while efer.svme is set */
2877 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2878 		return 1;
2879 
2880 	return 0;
2881 }
2882 
2883 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2884 {
2885 	struct vcpu_svm *svm = to_svm(vcpu);
2886 	int r;
2887 
2888 	u32 ecx = msr->index;
2889 	u64 data = msr->data;
2890 	switch (ecx) {
2891 	case MSR_AMD64_TSC_RATIO:
2892 		if (!msr->host_initiated && !svm->tsc_scaling_enabled)
2893 			return 1;
2894 
2895 		if (data & TSC_RATIO_RSVD)
2896 			return 1;
2897 
2898 		svm->tsc_ratio_msr = data;
2899 
2900 		if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2901 			nested_svm_update_tsc_ratio_msr(vcpu);
2902 
2903 		break;
2904 	case MSR_IA32_CR_PAT:
2905 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2906 			return 1;
2907 		vcpu->arch.pat = data;
2908 		svm->vmcb01.ptr->save.g_pat = data;
2909 		if (is_guest_mode(vcpu))
2910 			nested_vmcb02_compute_g_pat(svm);
2911 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2912 		break;
2913 	case MSR_IA32_SPEC_CTRL:
2914 		if (!msr->host_initiated &&
2915 		    !guest_has_spec_ctrl_msr(vcpu))
2916 			return 1;
2917 
2918 		if (kvm_spec_ctrl_test_value(data))
2919 			return 1;
2920 
2921 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2922 			svm->vmcb->save.spec_ctrl = data;
2923 		else
2924 			svm->spec_ctrl = data;
2925 		if (!data)
2926 			break;
2927 
2928 		/*
2929 		 * For non-nested:
2930 		 * When it's written (to non-zero) for the first time, pass
2931 		 * it through.
2932 		 *
2933 		 * For nested:
2934 		 * The handling of the MSR bitmap for L2 guests is done in
2935 		 * nested_svm_vmrun_msrpm.
2936 		 * We update the L1 MSR bit as well since it will end up
2937 		 * touching the MSR anyway now.
2938 		 */
2939 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2940 		break;
2941 	case MSR_IA32_PRED_CMD:
2942 		if (!msr->host_initiated &&
2943 		    !guest_has_pred_cmd_msr(vcpu))
2944 			return 1;
2945 
2946 		if (data & ~PRED_CMD_IBPB)
2947 			return 1;
2948 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2949 			return 1;
2950 		if (!data)
2951 			break;
2952 
2953 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2954 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2955 		break;
2956 	case MSR_AMD64_VIRT_SPEC_CTRL:
2957 		if (!msr->host_initiated &&
2958 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2959 			return 1;
2960 
2961 		if (data & ~SPEC_CTRL_SSBD)
2962 			return 1;
2963 
2964 		svm->virt_spec_ctrl = data;
2965 		break;
2966 	case MSR_STAR:
2967 		svm->vmcb01.ptr->save.star = data;
2968 		break;
2969 #ifdef CONFIG_X86_64
2970 	case MSR_LSTAR:
2971 		svm->vmcb01.ptr->save.lstar = data;
2972 		break;
2973 	case MSR_CSTAR:
2974 		svm->vmcb01.ptr->save.cstar = data;
2975 		break;
2976 	case MSR_KERNEL_GS_BASE:
2977 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2978 		break;
2979 	case MSR_SYSCALL_MASK:
2980 		svm->vmcb01.ptr->save.sfmask = data;
2981 		break;
2982 #endif
2983 	case MSR_IA32_SYSENTER_CS:
2984 		svm->vmcb01.ptr->save.sysenter_cs = data;
2985 		break;
2986 	case MSR_IA32_SYSENTER_EIP:
2987 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2988 		/*
2989 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2990 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2991 		 * In this case we use this intercept to track the high
2992 		 * 32 bit part of these msrs to support Intel's
2993 		 * implementation of SYSENTER/SYSEXIT.
2994 		 */
2995 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2996 		break;
2997 	case MSR_IA32_SYSENTER_ESP:
2998 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2999 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3000 		break;
3001 	case MSR_TSC_AUX:
3002 		/*
3003 		 * TSC_AUX is usually changed only during boot and never read
3004 		 * directly.  Intercept TSC_AUX instead of exposing it to the
3005 		 * guest via direct_access_msrs, and switch it via user return.
3006 		 */
3007 		preempt_disable();
3008 		r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3009 		preempt_enable();
3010 		if (r)
3011 			return 1;
3012 
3013 		svm->tsc_aux = data;
3014 		break;
3015 	case MSR_IA32_DEBUGCTLMSR:
3016 		if (!lbrv) {
3017 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3018 				    __func__, data);
3019 			break;
3020 		}
3021 		if (data & DEBUGCTL_RESERVED_BITS)
3022 			return 1;
3023 
3024 		svm->vmcb->save.dbgctl = data;
3025 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
3026 		if (data & (1ULL<<0))
3027 			svm_enable_lbrv(vcpu);
3028 		else
3029 			svm_disable_lbrv(vcpu);
3030 		break;
3031 	case MSR_VM_HSAVE_PA:
3032 		/*
3033 		 * Old kernels did not validate the value written to
3034 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3035 		 * value to allow live migrating buggy or malicious guests
3036 		 * originating from those kernels.
3037 		 */
3038 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3039 			return 1;
3040 
3041 		svm->nested.hsave_msr = data & PAGE_MASK;
3042 		break;
3043 	case MSR_VM_CR:
3044 		return svm_set_vm_cr(vcpu, data);
3045 	case MSR_VM_IGNNE:
3046 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3047 		break;
3048 	case MSR_F10H_DECFG: {
3049 		struct kvm_msr_entry msr_entry;
3050 
3051 		msr_entry.index = msr->index;
3052 		if (svm_get_msr_feature(&msr_entry))
3053 			return 1;
3054 
3055 		/* Check the supported bits */
3056 		if (data & ~msr_entry.data)
3057 			return 1;
3058 
3059 		/* Don't allow the guest to change a bit, #GP */
3060 		if (!msr->host_initiated && (data ^ msr_entry.data))
3061 			return 1;
3062 
3063 		svm->msr_decfg = data;
3064 		break;
3065 	}
3066 	default:
3067 		return kvm_set_msr_common(vcpu, msr);
3068 	}
3069 	return 0;
3070 }
3071 
3072 static int msr_interception(struct kvm_vcpu *vcpu)
3073 {
3074 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3075 		return kvm_emulate_wrmsr(vcpu);
3076 	else
3077 		return kvm_emulate_rdmsr(vcpu);
3078 }
3079 
3080 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3081 {
3082 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3083 	svm_clear_vintr(to_svm(vcpu));
3084 
3085 	/*
3086 	 * For AVIC, the only reason to end up here is ExtINTs.
3087 	 * In this case AVIC was temporarily disabled for
3088 	 * requesting the IRQ window and we have to re-enable it.
3089 	 */
3090 	kvm_request_apicv_update(vcpu->kvm, true, APICV_INHIBIT_REASON_IRQWIN);
3091 
3092 	++vcpu->stat.irq_window_exits;
3093 	return 1;
3094 }
3095 
3096 static int pause_interception(struct kvm_vcpu *vcpu)
3097 {
3098 	bool in_kernel;
3099 
3100 	/*
3101 	 * CPL is not made available for an SEV-ES guest, therefore
3102 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3103 	 * set in_kernel to false as well.
3104 	 */
3105 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3106 
3107 	if (!kvm_pause_in_guest(vcpu->kvm))
3108 		grow_ple_window(vcpu);
3109 
3110 	kvm_vcpu_on_spin(vcpu, in_kernel);
3111 	return kvm_skip_emulated_instruction(vcpu);
3112 }
3113 
3114 static int invpcid_interception(struct kvm_vcpu *vcpu)
3115 {
3116 	struct vcpu_svm *svm = to_svm(vcpu);
3117 	unsigned long type;
3118 	gva_t gva;
3119 
3120 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3121 		kvm_queue_exception(vcpu, UD_VECTOR);
3122 		return 1;
3123 	}
3124 
3125 	/*
3126 	 * For an INVPCID intercept:
3127 	 * EXITINFO1 provides the linear address of the memory operand.
3128 	 * EXITINFO2 provides the contents of the register operand.
3129 	 */
3130 	type = svm->vmcb->control.exit_info_2;
3131 	gva = svm->vmcb->control.exit_info_1;
3132 
3133 	return kvm_handle_invpcid(vcpu, type, gva);
3134 }
3135 
3136 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3137 	[SVM_EXIT_READ_CR0]			= cr_interception,
3138 	[SVM_EXIT_READ_CR3]			= cr_interception,
3139 	[SVM_EXIT_READ_CR4]			= cr_interception,
3140 	[SVM_EXIT_READ_CR8]			= cr_interception,
3141 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3142 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3143 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3144 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3145 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3146 	[SVM_EXIT_READ_DR0]			= dr_interception,
3147 	[SVM_EXIT_READ_DR1]			= dr_interception,
3148 	[SVM_EXIT_READ_DR2]			= dr_interception,
3149 	[SVM_EXIT_READ_DR3]			= dr_interception,
3150 	[SVM_EXIT_READ_DR4]			= dr_interception,
3151 	[SVM_EXIT_READ_DR5]			= dr_interception,
3152 	[SVM_EXIT_READ_DR6]			= dr_interception,
3153 	[SVM_EXIT_READ_DR7]			= dr_interception,
3154 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3155 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3156 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3157 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3158 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3159 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3160 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3161 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3162 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3163 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3164 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3165 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3166 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3167 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3168 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3169 	[SVM_EXIT_INTR]				= intr_interception,
3170 	[SVM_EXIT_NMI]				= nmi_interception,
3171 	[SVM_EXIT_SMI]				= smi_interception,
3172 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3173 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3174 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3175 	[SVM_EXIT_IRET]                         = iret_interception,
3176 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3177 	[SVM_EXIT_PAUSE]			= pause_interception,
3178 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3179 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3180 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3181 	[SVM_EXIT_IOIO]				= io_interception,
3182 	[SVM_EXIT_MSR]				= msr_interception,
3183 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3184 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3185 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3186 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3187 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3188 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3189 	[SVM_EXIT_STGI]				= stgi_interception,
3190 	[SVM_EXIT_CLGI]				= clgi_interception,
3191 	[SVM_EXIT_SKINIT]			= skinit_interception,
3192 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3193 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3194 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3195 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3196 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3197 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3198 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3199 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3200 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3201 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3202 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3203 	[SVM_EXIT_NPF]				= npf_interception,
3204 	[SVM_EXIT_RSM]                          = rsm_interception,
3205 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3206 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3207 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3208 };
3209 
3210 static void dump_vmcb(struct kvm_vcpu *vcpu)
3211 {
3212 	struct vcpu_svm *svm = to_svm(vcpu);
3213 	struct vmcb_control_area *control = &svm->vmcb->control;
3214 	struct vmcb_save_area *save = &svm->vmcb->save;
3215 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3216 
3217 	if (!dump_invalid_vmcb) {
3218 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3219 		return;
3220 	}
3221 
3222 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3223 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3224 	pr_err("VMCB Control Area:\n");
3225 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3226 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3227 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3228 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3229 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3230 	pr_err("%-20s%08x %08x\n", "intercepts:",
3231               control->intercepts[INTERCEPT_WORD3],
3232 	       control->intercepts[INTERCEPT_WORD4]);
3233 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3234 	pr_err("%-20s%d\n", "pause filter threshold:",
3235 	       control->pause_filter_thresh);
3236 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3237 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3238 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3239 	pr_err("%-20s%d\n", "asid:", control->asid);
3240 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3241 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3242 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3243 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3244 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3245 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3246 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3247 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3248 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3249 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3250 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3251 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3252 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3253 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3254 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3255 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3256 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3257 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3258 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3259 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3260 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3261 	pr_err("VMCB State Save Area:\n");
3262 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3263 	       "es:",
3264 	       save->es.selector, save->es.attrib,
3265 	       save->es.limit, save->es.base);
3266 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3267 	       "cs:",
3268 	       save->cs.selector, save->cs.attrib,
3269 	       save->cs.limit, save->cs.base);
3270 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3271 	       "ss:",
3272 	       save->ss.selector, save->ss.attrib,
3273 	       save->ss.limit, save->ss.base);
3274 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3275 	       "ds:",
3276 	       save->ds.selector, save->ds.attrib,
3277 	       save->ds.limit, save->ds.base);
3278 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3279 	       "fs:",
3280 	       save01->fs.selector, save01->fs.attrib,
3281 	       save01->fs.limit, save01->fs.base);
3282 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3283 	       "gs:",
3284 	       save01->gs.selector, save01->gs.attrib,
3285 	       save01->gs.limit, save01->gs.base);
3286 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3287 	       "gdtr:",
3288 	       save->gdtr.selector, save->gdtr.attrib,
3289 	       save->gdtr.limit, save->gdtr.base);
3290 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3291 	       "ldtr:",
3292 	       save01->ldtr.selector, save01->ldtr.attrib,
3293 	       save01->ldtr.limit, save01->ldtr.base);
3294 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3295 	       "idtr:",
3296 	       save->idtr.selector, save->idtr.attrib,
3297 	       save->idtr.limit, save->idtr.base);
3298 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3299 	       "tr:",
3300 	       save01->tr.selector, save01->tr.attrib,
3301 	       save01->tr.limit, save01->tr.base);
3302 	pr_err("cpl:            %d                efer:         %016llx\n",
3303 		save->cpl, save->efer);
3304 	pr_err("%-15s %016llx %-13s %016llx\n",
3305 	       "cr0:", save->cr0, "cr2:", save->cr2);
3306 	pr_err("%-15s %016llx %-13s %016llx\n",
3307 	       "cr3:", save->cr3, "cr4:", save->cr4);
3308 	pr_err("%-15s %016llx %-13s %016llx\n",
3309 	       "dr6:", save->dr6, "dr7:", save->dr7);
3310 	pr_err("%-15s %016llx %-13s %016llx\n",
3311 	       "rip:", save->rip, "rflags:", save->rflags);
3312 	pr_err("%-15s %016llx %-13s %016llx\n",
3313 	       "rsp:", save->rsp, "rax:", save->rax);
3314 	pr_err("%-15s %016llx %-13s %016llx\n",
3315 	       "star:", save01->star, "lstar:", save01->lstar);
3316 	pr_err("%-15s %016llx %-13s %016llx\n",
3317 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3318 	pr_err("%-15s %016llx %-13s %016llx\n",
3319 	       "kernel_gs_base:", save01->kernel_gs_base,
3320 	       "sysenter_cs:", save01->sysenter_cs);
3321 	pr_err("%-15s %016llx %-13s %016llx\n",
3322 	       "sysenter_esp:", save01->sysenter_esp,
3323 	       "sysenter_eip:", save01->sysenter_eip);
3324 	pr_err("%-15s %016llx %-13s %016llx\n",
3325 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3326 	pr_err("%-15s %016llx %-13s %016llx\n",
3327 	       "br_from:", save->br_from, "br_to:", save->br_to);
3328 	pr_err("%-15s %016llx %-13s %016llx\n",
3329 	       "excp_from:", save->last_excp_from,
3330 	       "excp_to:", save->last_excp_to);
3331 }
3332 
3333 static bool svm_check_exit_valid(struct kvm_vcpu *vcpu, u64 exit_code)
3334 {
3335 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3336 		svm_exit_handlers[exit_code]);
3337 }
3338 
3339 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3340 {
3341 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3342 	dump_vmcb(vcpu);
3343 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3344 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3345 	vcpu->run->internal.ndata = 2;
3346 	vcpu->run->internal.data[0] = exit_code;
3347 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3348 	return 0;
3349 }
3350 
3351 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3352 {
3353 	if (!svm_check_exit_valid(vcpu, exit_code))
3354 		return svm_handle_invalid_exit(vcpu, exit_code);
3355 
3356 #ifdef CONFIG_RETPOLINE
3357 	if (exit_code == SVM_EXIT_MSR)
3358 		return msr_interception(vcpu);
3359 	else if (exit_code == SVM_EXIT_VINTR)
3360 		return interrupt_window_interception(vcpu);
3361 	else if (exit_code == SVM_EXIT_INTR)
3362 		return intr_interception(vcpu);
3363 	else if (exit_code == SVM_EXIT_HLT)
3364 		return kvm_emulate_halt(vcpu);
3365 	else if (exit_code == SVM_EXIT_NPF)
3366 		return npf_interception(vcpu);
3367 #endif
3368 	return svm_exit_handlers[exit_code](vcpu);
3369 }
3370 
3371 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3372 			      u64 *info1, u64 *info2,
3373 			      u32 *intr_info, u32 *error_code)
3374 {
3375 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3376 
3377 	*reason = control->exit_code;
3378 	*info1 = control->exit_info_1;
3379 	*info2 = control->exit_info_2;
3380 	*intr_info = control->exit_int_info;
3381 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3382 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3383 		*error_code = control->exit_int_info_err;
3384 	else
3385 		*error_code = 0;
3386 }
3387 
3388 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3389 {
3390 	struct vcpu_svm *svm = to_svm(vcpu);
3391 	struct kvm_run *kvm_run = vcpu->run;
3392 	u32 exit_code = svm->vmcb->control.exit_code;
3393 
3394 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
3395 
3396 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3397 	if (!sev_es_guest(vcpu->kvm)) {
3398 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3399 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3400 		if (npt_enabled)
3401 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3402 	}
3403 
3404 	if (is_guest_mode(vcpu)) {
3405 		int vmexit;
3406 
3407 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3408 
3409 		vmexit = nested_svm_exit_special(svm);
3410 
3411 		if (vmexit == NESTED_EXIT_CONTINUE)
3412 			vmexit = nested_svm_exit_handled(svm);
3413 
3414 		if (vmexit == NESTED_EXIT_DONE)
3415 			return 1;
3416 	}
3417 
3418 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3419 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3420 		kvm_run->fail_entry.hardware_entry_failure_reason
3421 			= svm->vmcb->control.exit_code;
3422 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3423 		dump_vmcb(vcpu);
3424 		return 0;
3425 	}
3426 
3427 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3428 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3429 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3430 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3431 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3432 		       "exit_code 0x%x\n",
3433 		       __func__, svm->vmcb->control.exit_int_info,
3434 		       exit_code);
3435 
3436 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3437 		return 1;
3438 
3439 	return svm_invoke_exit_handler(vcpu, exit_code);
3440 }
3441 
3442 static void reload_tss(struct kvm_vcpu *vcpu)
3443 {
3444 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3445 
3446 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3447 	load_TR_desc();
3448 }
3449 
3450 static void pre_svm_run(struct kvm_vcpu *vcpu)
3451 {
3452 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3453 	struct vcpu_svm *svm = to_svm(vcpu);
3454 
3455 	/*
3456 	 * If the previous vmrun of the vmcb occurred on a different physical
3457 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3458 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3459 	 */
3460 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3461 		svm->current_vmcb->asid_generation = 0;
3462 		vmcb_mark_all_dirty(svm->vmcb);
3463 		svm->current_vmcb->cpu = vcpu->cpu;
3464         }
3465 
3466 	if (sev_guest(vcpu->kvm))
3467 		return pre_sev_run(svm, vcpu->cpu);
3468 
3469 	/* FIXME: handle wraparound of asid_generation */
3470 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3471 		new_asid(svm, sd);
3472 }
3473 
3474 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3475 {
3476 	struct vcpu_svm *svm = to_svm(vcpu);
3477 
3478 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3479 	vcpu->arch.hflags |= HF_NMI_MASK;
3480 	if (!sev_es_guest(vcpu->kvm))
3481 		svm_set_intercept(svm, INTERCEPT_IRET);
3482 	++vcpu->stat.nmi_injections;
3483 }
3484 
3485 static void svm_set_irq(struct kvm_vcpu *vcpu)
3486 {
3487 	struct vcpu_svm *svm = to_svm(vcpu);
3488 
3489 	BUG_ON(!(gif_set(svm)));
3490 
3491 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3492 	++vcpu->stat.irq_injections;
3493 
3494 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3495 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3496 }
3497 
3498 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3499 {
3500 	struct vcpu_svm *svm = to_svm(vcpu);
3501 
3502 	/*
3503 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3504 	 * tracking is done using the CR write traps.
3505 	 */
3506 	if (sev_es_guest(vcpu->kvm))
3507 		return;
3508 
3509 	if (nested_svm_virtualize_tpr(vcpu))
3510 		return;
3511 
3512 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3513 
3514 	if (irr == -1)
3515 		return;
3516 
3517 	if (tpr >= irr)
3518 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3519 }
3520 
3521 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3522 {
3523 	struct vcpu_svm *svm = to_svm(vcpu);
3524 	struct vmcb *vmcb = svm->vmcb;
3525 	bool ret;
3526 
3527 	if (!gif_set(svm))
3528 		return true;
3529 
3530 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3531 		return false;
3532 
3533 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3534 	      (vcpu->arch.hflags & HF_NMI_MASK);
3535 
3536 	return ret;
3537 }
3538 
3539 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3540 {
3541 	struct vcpu_svm *svm = to_svm(vcpu);
3542 	if (svm->nested.nested_run_pending)
3543 		return -EBUSY;
3544 
3545 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3546 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3547 		return -EBUSY;
3548 
3549 	return !svm_nmi_blocked(vcpu);
3550 }
3551 
3552 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3553 {
3554 	return !!(vcpu->arch.hflags & HF_NMI_MASK);
3555 }
3556 
3557 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3558 {
3559 	struct vcpu_svm *svm = to_svm(vcpu);
3560 
3561 	if (masked) {
3562 		vcpu->arch.hflags |= HF_NMI_MASK;
3563 		if (!sev_es_guest(vcpu->kvm))
3564 			svm_set_intercept(svm, INTERCEPT_IRET);
3565 	} else {
3566 		vcpu->arch.hflags &= ~HF_NMI_MASK;
3567 		if (!sev_es_guest(vcpu->kvm))
3568 			svm_clr_intercept(svm, INTERCEPT_IRET);
3569 	}
3570 }
3571 
3572 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3573 {
3574 	struct vcpu_svm *svm = to_svm(vcpu);
3575 	struct vmcb *vmcb = svm->vmcb;
3576 
3577 	if (!gif_set(svm))
3578 		return true;
3579 
3580 	if (is_guest_mode(vcpu)) {
3581 		/* As long as interrupts are being delivered...  */
3582 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3583 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3584 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3585 			return true;
3586 
3587 		/* ... vmexits aren't blocked by the interrupt shadow  */
3588 		if (nested_exit_on_intr(svm))
3589 			return false;
3590 	} else {
3591 		if (!svm_get_if_flag(vcpu))
3592 			return true;
3593 	}
3594 
3595 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3596 }
3597 
3598 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3599 {
3600 	struct vcpu_svm *svm = to_svm(vcpu);
3601 	if (svm->nested.nested_run_pending)
3602 		return -EBUSY;
3603 
3604 	/*
3605 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3606 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3607 	 */
3608 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3609 		return -EBUSY;
3610 
3611 	return !svm_interrupt_blocked(vcpu);
3612 }
3613 
3614 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3615 {
3616 	struct vcpu_svm *svm = to_svm(vcpu);
3617 
3618 	/*
3619 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3620 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3621 	 * get that intercept, this function will be called again though and
3622 	 * we'll get the vintr intercept. However, if the vGIF feature is
3623 	 * enabled, the STGI interception will not occur. Enable the irq
3624 	 * window under the assumption that the hardware will set the GIF.
3625 	 */
3626 	if (vgif_enabled(svm) || gif_set(svm)) {
3627 		/*
3628 		 * IRQ window is not needed when AVIC is enabled,
3629 		 * unless we have pending ExtINT since it cannot be injected
3630 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3631 		 * and fallback to injecting IRQ via V_IRQ.
3632 		 */
3633 		kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_IRQWIN);
3634 		svm_set_vintr(svm);
3635 	}
3636 }
3637 
3638 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3639 {
3640 	struct vcpu_svm *svm = to_svm(vcpu);
3641 
3642 	if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3643 		return; /* IRET will cause a vm exit */
3644 
3645 	if (!gif_set(svm)) {
3646 		if (vgif_enabled(svm))
3647 			svm_set_intercept(svm, INTERCEPT_STGI);
3648 		return; /* STGI will cause a vm exit */
3649 	}
3650 
3651 	/*
3652 	 * Something prevents NMI from been injected. Single step over possible
3653 	 * problem (IRET or exception injection or interrupt shadow)
3654 	 */
3655 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3656 	svm->nmi_singlestep = true;
3657 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3658 }
3659 
3660 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3661 {
3662 	return 0;
3663 }
3664 
3665 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3666 {
3667 	return 0;
3668 }
3669 
3670 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3671 {
3672 	struct vcpu_svm *svm = to_svm(vcpu);
3673 
3674 	/*
3675 	 * Flush only the current ASID even if the TLB flush was invoked via
3676 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3677 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3678 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3679 	 * VM-Exit (via kvm_mmu_reset_context()).
3680 	 */
3681 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3682 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3683 	else
3684 		svm->current_vmcb->asid_generation--;
3685 }
3686 
3687 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3688 {
3689 	struct vcpu_svm *svm = to_svm(vcpu);
3690 
3691 	invlpga(gva, svm->vmcb->control.asid);
3692 }
3693 
3694 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3695 {
3696 	struct vcpu_svm *svm = to_svm(vcpu);
3697 
3698 	if (nested_svm_virtualize_tpr(vcpu))
3699 		return;
3700 
3701 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3702 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3703 		kvm_set_cr8(vcpu, cr8);
3704 	}
3705 }
3706 
3707 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3708 {
3709 	struct vcpu_svm *svm = to_svm(vcpu);
3710 	u64 cr8;
3711 
3712 	if (nested_svm_virtualize_tpr(vcpu) ||
3713 	    kvm_vcpu_apicv_active(vcpu))
3714 		return;
3715 
3716 	cr8 = kvm_get_cr8(vcpu);
3717 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3718 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3719 }
3720 
3721 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3722 {
3723 	struct vcpu_svm *svm = to_svm(vcpu);
3724 	u8 vector;
3725 	int type;
3726 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3727 	unsigned int3_injected = svm->int3_injected;
3728 
3729 	svm->int3_injected = 0;
3730 
3731 	/*
3732 	 * If we've made progress since setting HF_IRET_MASK, we've
3733 	 * executed an IRET and can allow NMI injection.
3734 	 */
3735 	if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3736 	    (sev_es_guest(vcpu->kvm) ||
3737 	     kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3738 		vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3739 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3740 	}
3741 
3742 	vcpu->arch.nmi_injected = false;
3743 	kvm_clear_exception_queue(vcpu);
3744 	kvm_clear_interrupt_queue(vcpu);
3745 
3746 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3747 		return;
3748 
3749 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3750 
3751 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3752 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3753 
3754 	switch (type) {
3755 	case SVM_EXITINTINFO_TYPE_NMI:
3756 		vcpu->arch.nmi_injected = true;
3757 		break;
3758 	case SVM_EXITINTINFO_TYPE_EXEPT:
3759 		/*
3760 		 * Never re-inject a #VC exception.
3761 		 */
3762 		if (vector == X86_TRAP_VC)
3763 			break;
3764 
3765 		/*
3766 		 * In case of software exceptions, do not reinject the vector,
3767 		 * but re-execute the instruction instead. Rewind RIP first
3768 		 * if we emulated INT3 before.
3769 		 */
3770 		if (kvm_exception_is_soft(vector)) {
3771 			if (vector == BP_VECTOR && int3_injected &&
3772 			    kvm_is_linear_rip(vcpu, svm->int3_rip))
3773 				kvm_rip_write(vcpu,
3774 					      kvm_rip_read(vcpu) - int3_injected);
3775 			break;
3776 		}
3777 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3778 			u32 err = svm->vmcb->control.exit_int_info_err;
3779 			kvm_requeue_exception_e(vcpu, vector, err);
3780 
3781 		} else
3782 			kvm_requeue_exception(vcpu, vector);
3783 		break;
3784 	case SVM_EXITINTINFO_TYPE_INTR:
3785 		kvm_queue_interrupt(vcpu, vector, false);
3786 		break;
3787 	default:
3788 		break;
3789 	}
3790 }
3791 
3792 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3793 {
3794 	struct vcpu_svm *svm = to_svm(vcpu);
3795 	struct vmcb_control_area *control = &svm->vmcb->control;
3796 
3797 	control->exit_int_info = control->event_inj;
3798 	control->exit_int_info_err = control->event_inj_err;
3799 	control->event_inj = 0;
3800 	svm_complete_interrupts(vcpu);
3801 }
3802 
3803 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3804 {
3805 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3806 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3807 		return handle_fastpath_set_msr_irqoff(vcpu);
3808 
3809 	return EXIT_FASTPATH_NONE;
3810 }
3811 
3812 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3813 {
3814 	struct vcpu_svm *svm = to_svm(vcpu);
3815 	unsigned long vmcb_pa = svm->current_vmcb->pa;
3816 
3817 	kvm_guest_enter_irqoff();
3818 
3819 	if (sev_es_guest(vcpu->kvm)) {
3820 		__svm_sev_es_vcpu_run(vmcb_pa);
3821 	} else {
3822 		struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3823 
3824 		/*
3825 		 * Use a single vmcb (vmcb01 because it's always valid) for
3826 		 * context switching guest state via VMLOAD/VMSAVE, that way
3827 		 * the state doesn't need to be copied between vmcb01 and
3828 		 * vmcb02 when switching vmcbs for nested virtualization.
3829 		 */
3830 		vmload(svm->vmcb01.pa);
3831 		__svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3832 		vmsave(svm->vmcb01.pa);
3833 
3834 		vmload(__sme_page_pa(sd->save_area));
3835 	}
3836 
3837 	kvm_guest_exit_irqoff();
3838 }
3839 
3840 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3841 {
3842 	struct vcpu_svm *svm = to_svm(vcpu);
3843 
3844 	trace_kvm_entry(vcpu);
3845 
3846 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3847 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3848 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3849 
3850 	/*
3851 	 * Disable singlestep if we're injecting an interrupt/exception.
3852 	 * We don't want our modified rflags to be pushed on the stack where
3853 	 * we might not be able to easily reset them if we disabled NMI
3854 	 * singlestep later.
3855 	 */
3856 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3857 		/*
3858 		 * Event injection happens before external interrupts cause a
3859 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3860 		 * is enough to force an immediate vmexit.
3861 		 */
3862 		disable_nmi_singlestep(svm);
3863 		smp_send_reschedule(vcpu->cpu);
3864 	}
3865 
3866 	pre_svm_run(vcpu);
3867 
3868 	sync_lapic_to_cr8(vcpu);
3869 
3870 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3871 		svm->vmcb->control.asid = svm->asid;
3872 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3873 	}
3874 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3875 
3876 	svm_hv_update_vp_id(svm->vmcb, vcpu);
3877 
3878 	/*
3879 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3880 	 * of a #DB.
3881 	 */
3882 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3883 		svm_set_dr6(svm, vcpu->arch.dr6);
3884 	else
3885 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
3886 
3887 	clgi();
3888 	kvm_load_guest_xsave_state(vcpu);
3889 
3890 	kvm_wait_lapic_expire(vcpu);
3891 
3892 	/*
3893 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3894 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3895 	 * is no need to worry about the conditional branch over the wrmsr
3896 	 * being speculatively taken.
3897 	 */
3898 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3899 		x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3900 
3901 	svm_vcpu_enter_exit(vcpu);
3902 
3903 	/*
3904 	 * We do not use IBRS in the kernel. If this vCPU has used the
3905 	 * SPEC_CTRL MSR it may have left it on; save the value and
3906 	 * turn it off. This is much more efficient than blindly adding
3907 	 * it to the atomic save/restore list. Especially as the former
3908 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3909 	 *
3910 	 * For non-nested case:
3911 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3912 	 * save it.
3913 	 *
3914 	 * For nested case:
3915 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3916 	 * save it.
3917 	 */
3918 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
3919 	    unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3920 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3921 
3922 	if (!sev_es_guest(vcpu->kvm))
3923 		reload_tss(vcpu);
3924 
3925 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3926 		x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3927 
3928 	if (!sev_es_guest(vcpu->kvm)) {
3929 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
3930 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3931 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3932 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3933 	}
3934 
3935 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3936 		kvm_before_interrupt(vcpu);
3937 
3938 	kvm_load_host_xsave_state(vcpu);
3939 	stgi();
3940 
3941 	/* Any pending NMI will happen here */
3942 
3943 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3944 		kvm_after_interrupt(vcpu);
3945 
3946 	sync_cr8_to_lapic(vcpu);
3947 
3948 	svm->next_rip = 0;
3949 	if (is_guest_mode(vcpu)) {
3950 		nested_sync_control_from_vmcb02(svm);
3951 
3952 		/* Track VMRUNs that have made past consistency checking */
3953 		if (svm->nested.nested_run_pending &&
3954 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
3955                         ++vcpu->stat.nested_run;
3956 
3957 		svm->nested.nested_run_pending = 0;
3958 	}
3959 
3960 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3961 	vmcb_mark_all_clean(svm->vmcb);
3962 
3963 	/* if exit due to PF check for async PF */
3964 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3965 		vcpu->arch.apf.host_apf_flags =
3966 			kvm_read_and_reset_apf_flags();
3967 
3968 	if (npt_enabled)
3969 		kvm_register_clear_available(vcpu, VCPU_EXREG_PDPTR);
3970 
3971 	/*
3972 	 * We need to handle MC intercepts here before the vcpu has a chance to
3973 	 * change the physical cpu
3974 	 */
3975 	if (unlikely(svm->vmcb->control.exit_code ==
3976 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3977 		svm_handle_mce(vcpu);
3978 
3979 	svm_complete_interrupts(vcpu);
3980 
3981 	if (is_guest_mode(vcpu))
3982 		return EXIT_FASTPATH_NONE;
3983 
3984 	return svm_exit_handlers_fastpath(vcpu);
3985 }
3986 
3987 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3988 			     int root_level)
3989 {
3990 	struct vcpu_svm *svm = to_svm(vcpu);
3991 	unsigned long cr3;
3992 
3993 	if (npt_enabled) {
3994 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
3995 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3996 
3997 		hv_track_root_tdp(vcpu, root_hpa);
3998 
3999 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
4000 		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4001 			return;
4002 		cr3 = vcpu->arch.cr3;
4003 	} else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
4004 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4005 	} else {
4006 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4007 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4008 		cr3 = root_hpa;
4009 	}
4010 
4011 	svm->vmcb->save.cr3 = cr3;
4012 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4013 }
4014 
4015 static int is_disabled(void)
4016 {
4017 	u64 vm_cr;
4018 
4019 	rdmsrl(MSR_VM_CR, vm_cr);
4020 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4021 		return 1;
4022 
4023 	return 0;
4024 }
4025 
4026 static void
4027 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4028 {
4029 	/*
4030 	 * Patch in the VMMCALL instruction:
4031 	 */
4032 	hypercall[0] = 0x0f;
4033 	hypercall[1] = 0x01;
4034 	hypercall[2] = 0xd9;
4035 }
4036 
4037 static int __init svm_check_processor_compat(void)
4038 {
4039 	return 0;
4040 }
4041 
4042 static bool svm_cpu_has_accelerated_tpr(void)
4043 {
4044 	return false;
4045 }
4046 
4047 /*
4048  * The kvm parameter can be NULL (module initialization, or invocation before
4049  * VM creation). Be sure to check the kvm parameter before using it.
4050  */
4051 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4052 {
4053 	switch (index) {
4054 	case MSR_IA32_MCG_EXT_CTL:
4055 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4056 		return false;
4057 	case MSR_IA32_SMBASE:
4058 		/* SEV-ES guests do not support SMM, so report false */
4059 		if (kvm && sev_es_guest(kvm))
4060 			return false;
4061 		break;
4062 	default:
4063 		break;
4064 	}
4065 
4066 	return true;
4067 }
4068 
4069 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4070 {
4071 	return 0;
4072 }
4073 
4074 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4075 {
4076 	struct vcpu_svm *svm = to_svm(vcpu);
4077 	struct kvm_cpuid_entry2 *best;
4078 
4079 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4080 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
4081 				    boot_cpu_has(X86_FEATURE_XSAVES);
4082 
4083 	/* Update nrips enabled cache */
4084 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4085 			     guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4086 
4087 	svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4088 
4089 	svm_recalc_instruction_intercepts(vcpu, svm);
4090 
4091 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4092 	if (sev_guest(vcpu->kvm)) {
4093 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
4094 		if (best)
4095 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4096 	}
4097 
4098 	if (kvm_vcpu_apicv_active(vcpu)) {
4099 		/*
4100 		 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
4101 		 * is exposed to the guest, disable AVIC.
4102 		 */
4103 		if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
4104 			kvm_request_apicv_update(vcpu->kvm, false,
4105 						 APICV_INHIBIT_REASON_X2APIC);
4106 
4107 		/*
4108 		 * Currently, AVIC does not work with nested virtualization.
4109 		 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
4110 		 */
4111 		if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4112 			kvm_request_apicv_update(vcpu->kvm, false,
4113 						 APICV_INHIBIT_REASON_NESTED);
4114 	}
4115 	init_vmcb_after_set_cpuid(vcpu);
4116 }
4117 
4118 static bool svm_has_wbinvd_exit(void)
4119 {
4120 	return true;
4121 }
4122 
4123 #define PRE_EX(exit)  { .exit_code = (exit), \
4124 			.stage = X86_ICPT_PRE_EXCEPT, }
4125 #define POST_EX(exit) { .exit_code = (exit), \
4126 			.stage = X86_ICPT_POST_EXCEPT, }
4127 #define POST_MEM(exit) { .exit_code = (exit), \
4128 			.stage = X86_ICPT_POST_MEMACCESS, }
4129 
4130 static const struct __x86_intercept {
4131 	u32 exit_code;
4132 	enum x86_intercept_stage stage;
4133 } x86_intercept_map[] = {
4134 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4135 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4136 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4137 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4138 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4139 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4140 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4141 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4142 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4143 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4144 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4145 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4146 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4147 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4148 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4149 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4150 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4151 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4152 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4153 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4154 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4155 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4156 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4157 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4158 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4159 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4160 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4161 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4162 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4163 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4164 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4165 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4166 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4167 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4168 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4169 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4170 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4171 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4172 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4173 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4174 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4175 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4176 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4177 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4178 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4179 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4180 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4181 };
4182 
4183 #undef PRE_EX
4184 #undef POST_EX
4185 #undef POST_MEM
4186 
4187 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4188 			       struct x86_instruction_info *info,
4189 			       enum x86_intercept_stage stage,
4190 			       struct x86_exception *exception)
4191 {
4192 	struct vcpu_svm *svm = to_svm(vcpu);
4193 	int vmexit, ret = X86EMUL_CONTINUE;
4194 	struct __x86_intercept icpt_info;
4195 	struct vmcb *vmcb = svm->vmcb;
4196 
4197 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4198 		goto out;
4199 
4200 	icpt_info = x86_intercept_map[info->intercept];
4201 
4202 	if (stage != icpt_info.stage)
4203 		goto out;
4204 
4205 	switch (icpt_info.exit_code) {
4206 	case SVM_EXIT_READ_CR0:
4207 		if (info->intercept == x86_intercept_cr_read)
4208 			icpt_info.exit_code += info->modrm_reg;
4209 		break;
4210 	case SVM_EXIT_WRITE_CR0: {
4211 		unsigned long cr0, val;
4212 
4213 		if (info->intercept == x86_intercept_cr_write)
4214 			icpt_info.exit_code += info->modrm_reg;
4215 
4216 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4217 		    info->intercept == x86_intercept_clts)
4218 			break;
4219 
4220 		if (!(vmcb_is_intercept(&svm->nested.ctl,
4221 					INTERCEPT_SELECTIVE_CR0)))
4222 			break;
4223 
4224 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4225 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4226 
4227 		if (info->intercept == x86_intercept_lmsw) {
4228 			cr0 &= 0xfUL;
4229 			val &= 0xfUL;
4230 			/* lmsw can't clear PE - catch this here */
4231 			if (cr0 & X86_CR0_PE)
4232 				val |= X86_CR0_PE;
4233 		}
4234 
4235 		if (cr0 ^ val)
4236 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4237 
4238 		break;
4239 	}
4240 	case SVM_EXIT_READ_DR0:
4241 	case SVM_EXIT_WRITE_DR0:
4242 		icpt_info.exit_code += info->modrm_reg;
4243 		break;
4244 	case SVM_EXIT_MSR:
4245 		if (info->intercept == x86_intercept_wrmsr)
4246 			vmcb->control.exit_info_1 = 1;
4247 		else
4248 			vmcb->control.exit_info_1 = 0;
4249 		break;
4250 	case SVM_EXIT_PAUSE:
4251 		/*
4252 		 * We get this for NOP only, but pause
4253 		 * is rep not, check this here
4254 		 */
4255 		if (info->rep_prefix != REPE_PREFIX)
4256 			goto out;
4257 		break;
4258 	case SVM_EXIT_IOIO: {
4259 		u64 exit_info;
4260 		u32 bytes;
4261 
4262 		if (info->intercept == x86_intercept_in ||
4263 		    info->intercept == x86_intercept_ins) {
4264 			exit_info = ((info->src_val & 0xffff) << 16) |
4265 				SVM_IOIO_TYPE_MASK;
4266 			bytes = info->dst_bytes;
4267 		} else {
4268 			exit_info = (info->dst_val & 0xffff) << 16;
4269 			bytes = info->src_bytes;
4270 		}
4271 
4272 		if (info->intercept == x86_intercept_outs ||
4273 		    info->intercept == x86_intercept_ins)
4274 			exit_info |= SVM_IOIO_STR_MASK;
4275 
4276 		if (info->rep_prefix)
4277 			exit_info |= SVM_IOIO_REP_MASK;
4278 
4279 		bytes = min(bytes, 4u);
4280 
4281 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4282 
4283 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4284 
4285 		vmcb->control.exit_info_1 = exit_info;
4286 		vmcb->control.exit_info_2 = info->next_rip;
4287 
4288 		break;
4289 	}
4290 	default:
4291 		break;
4292 	}
4293 
4294 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4295 	if (static_cpu_has(X86_FEATURE_NRIPS))
4296 		vmcb->control.next_rip  = info->next_rip;
4297 	vmcb->control.exit_code = icpt_info.exit_code;
4298 	vmexit = nested_svm_exit_handled(svm);
4299 
4300 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4301 					   : X86EMUL_CONTINUE;
4302 
4303 out:
4304 	return ret;
4305 }
4306 
4307 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4308 {
4309 }
4310 
4311 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4312 {
4313 	if (!kvm_pause_in_guest(vcpu->kvm))
4314 		shrink_ple_window(vcpu);
4315 }
4316 
4317 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4318 {
4319 	/* [63:9] are reserved. */
4320 	vcpu->arch.mcg_cap &= 0x1ff;
4321 }
4322 
4323 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4324 {
4325 	struct vcpu_svm *svm = to_svm(vcpu);
4326 
4327 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4328 	if (!gif_set(svm))
4329 		return true;
4330 
4331 	return is_smm(vcpu);
4332 }
4333 
4334 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4335 {
4336 	struct vcpu_svm *svm = to_svm(vcpu);
4337 	if (svm->nested.nested_run_pending)
4338 		return -EBUSY;
4339 
4340 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4341 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4342 		return -EBUSY;
4343 
4344 	return !svm_smi_blocked(vcpu);
4345 }
4346 
4347 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4348 {
4349 	struct vcpu_svm *svm = to_svm(vcpu);
4350 	struct kvm_host_map map_save;
4351 	int ret;
4352 
4353 	if (!is_guest_mode(vcpu))
4354 		return 0;
4355 
4356 	/* FED8h - SVM Guest */
4357 	put_smstate(u64, smstate, 0x7ed8, 1);
4358 	/* FEE0h - SVM Guest VMCB Physical Address */
4359 	put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4360 
4361 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4362 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4363 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4364 
4365 	ret = nested_svm_vmexit(svm);
4366 	if (ret)
4367 		return ret;
4368 
4369 	/*
4370 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4371 	 * VMCB01 is going to be used during SMM and thus the state will
4372 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4373 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4374 	 * format of the area is identical to guest save area offsetted
4375 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4376 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4377 	 * L1 hypervisor to save additional host context (e.g. KVM does
4378 	 * that, see svm_prepare_guest_switch()) which must be
4379 	 * preserved.
4380 	 */
4381 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4382 			 &map_save) == -EINVAL)
4383 		return 1;
4384 
4385 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4386 
4387 	svm_copy_vmrun_state(map_save.hva + 0x400,
4388 			     &svm->vmcb01.ptr->save);
4389 
4390 	kvm_vcpu_unmap(vcpu, &map_save, true);
4391 	return 0;
4392 }
4393 
4394 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4395 {
4396 	struct vcpu_svm *svm = to_svm(vcpu);
4397 	struct kvm_host_map map, map_save;
4398 	u64 saved_efer, vmcb12_gpa;
4399 	struct vmcb *vmcb12;
4400 	int ret;
4401 
4402 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4403 		return 0;
4404 
4405 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4406 	if (!GET_SMSTATE(u64, smstate, 0x7ed8))
4407 		return 0;
4408 
4409 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4410 		return 1;
4411 
4412 	saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4413 	if (!(saved_efer & EFER_SVME))
4414 		return 1;
4415 
4416 	vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4417 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4418 		return 1;
4419 
4420 	ret = 1;
4421 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL)
4422 		goto unmap_map;
4423 
4424 	if (svm_allocate_nested(svm))
4425 		goto unmap_save;
4426 
4427 	/*
4428 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4429 	 * used during SMM (see svm_enter_smm())
4430 	 */
4431 
4432 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4433 
4434 	/*
4435 	 * Enter the nested guest now
4436 	 */
4437 
4438 	vmcb12 = map.hva;
4439 	nested_load_control_from_vmcb12(svm, &vmcb12->control);
4440 	ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false);
4441 
4442 unmap_save:
4443 	kvm_vcpu_unmap(vcpu, &map_save, true);
4444 unmap_map:
4445 	kvm_vcpu_unmap(vcpu, &map, true);
4446 	return ret;
4447 }
4448 
4449 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4450 {
4451 	struct vcpu_svm *svm = to_svm(vcpu);
4452 
4453 	if (!gif_set(svm)) {
4454 		if (vgif_enabled(svm))
4455 			svm_set_intercept(svm, INTERCEPT_STGI);
4456 		/* STGI will cause a vm exit */
4457 	} else {
4458 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4459 	}
4460 }
4461 
4462 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4463 {
4464 	bool smep, smap, is_user;
4465 	unsigned long cr4;
4466 
4467 	/*
4468 	 * When the guest is an SEV-ES guest, emulation is not possible.
4469 	 */
4470 	if (sev_es_guest(vcpu->kvm))
4471 		return false;
4472 
4473 	/*
4474 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4475 	 *
4476 	 * Errata:
4477 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4478 	 * possible that CPU microcode implementing DecodeAssist will fail
4479 	 * to read bytes of instruction which caused #NPF. In this case,
4480 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4481 	 * return 0 instead of the correct guest instruction bytes.
4482 	 *
4483 	 * This happens because CPU microcode reading instruction bytes
4484 	 * uses a special opcode which attempts to read data using CPL=0
4485 	 * privileges. The microcode reads CS:RIP and if it hits a SMAP
4486 	 * fault, it gives up and returns no instruction bytes.
4487 	 *
4488 	 * Detection:
4489 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4490 	 * returned 0 in GuestIntrBytes field of the VMCB.
4491 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4492 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4493 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4494 	 * a SMEP fault instead of #NPF).
4495 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4496 	 * As most guests enable SMAP if they have also enabled SMEP, use above
4497 	 * logic in order to attempt minimize false-positive of detecting errata
4498 	 * while still preserving all cases semantic correctness.
4499 	 *
4500 	 * Workaround:
4501 	 * To determine what instruction the guest was executing, the hypervisor
4502 	 * will have to decode the instruction at the instruction pointer.
4503 	 *
4504 	 * In non SEV guest, hypervisor will be able to read the guest
4505 	 * memory to decode the instruction pointer when insn_len is zero
4506 	 * so we return true to indicate that decoding is possible.
4507 	 *
4508 	 * But in the SEV guest, the guest memory is encrypted with the
4509 	 * guest specific key and hypervisor will not be able to decode the
4510 	 * instruction pointer so we will not able to workaround it. Lets
4511 	 * print the error and request to kill the guest.
4512 	 */
4513 	if (likely(!insn || insn_len))
4514 		return true;
4515 
4516 	/*
4517 	 * If RIP is invalid, go ahead with emulation which will cause an
4518 	 * internal error exit.
4519 	 */
4520 	if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4521 		return true;
4522 
4523 	cr4 = kvm_read_cr4(vcpu);
4524 	smep = cr4 & X86_CR4_SMEP;
4525 	smap = cr4 & X86_CR4_SMAP;
4526 	is_user = svm_get_cpl(vcpu) == 3;
4527 	if (smap && (!smep || is_user)) {
4528 		if (!sev_guest(vcpu->kvm))
4529 			return true;
4530 
4531 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4532 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4533 	}
4534 
4535 	return false;
4536 }
4537 
4538 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4539 {
4540 	struct vcpu_svm *svm = to_svm(vcpu);
4541 
4542 	/*
4543 	 * TODO: Last condition latch INIT signals on vCPU when
4544 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4545 	 * To properly emulate the INIT intercept,
4546 	 * svm_check_nested_events() should call nested_svm_vmexit()
4547 	 * if an INIT signal is pending.
4548 	 */
4549 	return !gif_set(svm) ||
4550 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4551 }
4552 
4553 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4554 {
4555 	if (!sev_es_guest(vcpu->kvm))
4556 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4557 
4558 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4559 }
4560 
4561 static void svm_vm_destroy(struct kvm *kvm)
4562 {
4563 	avic_vm_destroy(kvm);
4564 	sev_vm_destroy(kvm);
4565 }
4566 
4567 static int svm_vm_init(struct kvm *kvm)
4568 {
4569 	if (!pause_filter_count || !pause_filter_thresh)
4570 		kvm->arch.pause_in_guest = true;
4571 
4572 	if (enable_apicv) {
4573 		int ret = avic_vm_init(kvm);
4574 		if (ret)
4575 			return ret;
4576 	}
4577 
4578 	return 0;
4579 }
4580 
4581 static struct kvm_x86_ops svm_x86_ops __initdata = {
4582 	.name = "kvm_amd",
4583 
4584 	.hardware_unsetup = svm_hardware_teardown,
4585 	.hardware_enable = svm_hardware_enable,
4586 	.hardware_disable = svm_hardware_disable,
4587 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4588 	.has_emulated_msr = svm_has_emulated_msr,
4589 
4590 	.vcpu_create = svm_create_vcpu,
4591 	.vcpu_free = svm_free_vcpu,
4592 	.vcpu_reset = svm_vcpu_reset,
4593 
4594 	.vm_size = sizeof(struct kvm_svm),
4595 	.vm_init = svm_vm_init,
4596 	.vm_destroy = svm_vm_destroy,
4597 
4598 	.prepare_guest_switch = svm_prepare_guest_switch,
4599 	.vcpu_load = svm_vcpu_load,
4600 	.vcpu_put = svm_vcpu_put,
4601 	.vcpu_blocking = svm_vcpu_blocking,
4602 	.vcpu_unblocking = svm_vcpu_unblocking,
4603 
4604 	.update_exception_bitmap = svm_update_exception_bitmap,
4605 	.get_msr_feature = svm_get_msr_feature,
4606 	.get_msr = svm_get_msr,
4607 	.set_msr = svm_set_msr,
4608 	.get_segment_base = svm_get_segment_base,
4609 	.get_segment = svm_get_segment,
4610 	.set_segment = svm_set_segment,
4611 	.get_cpl = svm_get_cpl,
4612 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4613 	.set_cr0 = svm_set_cr0,
4614 	.is_valid_cr4 = svm_is_valid_cr4,
4615 	.set_cr4 = svm_set_cr4,
4616 	.set_efer = svm_set_efer,
4617 	.get_idt = svm_get_idt,
4618 	.set_idt = svm_set_idt,
4619 	.get_gdt = svm_get_gdt,
4620 	.set_gdt = svm_set_gdt,
4621 	.set_dr7 = svm_set_dr7,
4622 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4623 	.cache_reg = svm_cache_reg,
4624 	.get_rflags = svm_get_rflags,
4625 	.set_rflags = svm_set_rflags,
4626 	.get_if_flag = svm_get_if_flag,
4627 
4628 	.tlb_flush_all = svm_flush_tlb,
4629 	.tlb_flush_current = svm_flush_tlb,
4630 	.tlb_flush_gva = svm_flush_tlb_gva,
4631 	.tlb_flush_guest = svm_flush_tlb,
4632 
4633 	.run = svm_vcpu_run,
4634 	.handle_exit = handle_exit,
4635 	.skip_emulated_instruction = skip_emulated_instruction,
4636 	.update_emulated_instruction = NULL,
4637 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4638 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4639 	.patch_hypercall = svm_patch_hypercall,
4640 	.set_irq = svm_set_irq,
4641 	.set_nmi = svm_inject_nmi,
4642 	.queue_exception = svm_queue_exception,
4643 	.cancel_injection = svm_cancel_injection,
4644 	.interrupt_allowed = svm_interrupt_allowed,
4645 	.nmi_allowed = svm_nmi_allowed,
4646 	.get_nmi_mask = svm_get_nmi_mask,
4647 	.set_nmi_mask = svm_set_nmi_mask,
4648 	.enable_nmi_window = svm_enable_nmi_window,
4649 	.enable_irq_window = svm_enable_irq_window,
4650 	.update_cr8_intercept = svm_update_cr8_intercept,
4651 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
4652 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4653 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4654 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4655 	.hwapic_irr_update = svm_hwapic_irr_update,
4656 	.hwapic_isr_update = svm_hwapic_isr_update,
4657 	.apicv_post_state_restore = avic_post_state_restore,
4658 
4659 	.set_tss_addr = svm_set_tss_addr,
4660 	.set_identity_map_addr = svm_set_identity_map_addr,
4661 	.get_mt_mask = svm_get_mt_mask,
4662 
4663 	.get_exit_info = svm_get_exit_info,
4664 
4665 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4666 
4667 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4668 
4669 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
4670 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4671 	.write_tsc_offset = svm_write_tsc_offset,
4672 	.write_tsc_multiplier = svm_write_tsc_multiplier,
4673 
4674 	.load_mmu_pgd = svm_load_mmu_pgd,
4675 
4676 	.check_intercept = svm_check_intercept,
4677 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4678 
4679 	.request_immediate_exit = __kvm_request_immediate_exit,
4680 
4681 	.sched_in = svm_sched_in,
4682 
4683 	.pmu_ops = &amd_pmu_ops,
4684 	.nested_ops = &svm_nested_ops,
4685 
4686 	.deliver_posted_interrupt = svm_deliver_avic_intr,
4687 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4688 	.update_pi_irte = svm_update_pi_irte,
4689 	.setup_mce = svm_setup_mce,
4690 
4691 	.smi_allowed = svm_smi_allowed,
4692 	.enter_smm = svm_enter_smm,
4693 	.leave_smm = svm_leave_smm,
4694 	.enable_smi_window = svm_enable_smi_window,
4695 
4696 	.mem_enc_op = svm_mem_enc_op,
4697 	.mem_enc_reg_region = svm_register_enc_region,
4698 	.mem_enc_unreg_region = svm_unregister_enc_region,
4699 
4700 	.vm_copy_enc_context_from = svm_vm_copy_asid_from,
4701 	.vm_move_enc_context_from = svm_vm_migrate_from,
4702 
4703 	.can_emulate_instruction = svm_can_emulate_instruction,
4704 
4705 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4706 
4707 	.msr_filter_changed = svm_msr_filter_changed,
4708 	.complete_emulated_msr = svm_complete_emulated_msr,
4709 
4710 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4711 };
4712 
4713 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4714 	.cpu_has_kvm_support = has_svm,
4715 	.disabled_by_bios = is_disabled,
4716 	.hardware_setup = svm_hardware_setup,
4717 	.check_processor_compatibility = svm_check_processor_compat,
4718 
4719 	.runtime_ops = &svm_x86_ops,
4720 };
4721 
4722 static int __init svm_init(void)
4723 {
4724 	__unused_size_checks();
4725 
4726 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4727 			__alignof__(struct vcpu_svm), THIS_MODULE);
4728 }
4729 
4730 static void __exit svm_exit(void)
4731 {
4732 	kvm_exit();
4733 }
4734 
4735 module_init(svm_init)
4736 module_exit(svm_exit)
4737