xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision dfc53baa)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/frame.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/mce.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 
40 #include <asm/virtext.h>
41 #include "trace.h"
42 
43 #include "svm.h"
44 
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49 
50 #ifdef MODULE
51 static const struct x86_cpu_id svm_cpu_id[] = {
52 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
53 	{}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56 #endif
57 
58 #define IOPM_ALLOC_ORDER 2
59 #define MSRPM_ALLOC_ORDER 1
60 
61 #define SEG_TYPE_LDT 2
62 #define SEG_TYPE_BUSY_TSS16 3
63 
64 #define SVM_FEATURE_LBRV           (1 <<  1)
65 #define SVM_FEATURE_SVML           (1 <<  2)
66 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
67 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
68 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
69 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
70 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
71 
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73 
74 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
75 #define TSC_RATIO_MIN		0x0000000000000001ULL
76 #define TSC_RATIO_MAX		0x000000ffffffffffULL
77 
78 static bool erratum_383_found __read_mostly;
79 
80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
81 
82 /*
83  * Set osvw_len to higher value when updated Revision Guides
84  * are published and we know what the new status bits are
85  */
86 static uint64_t osvw_len = 4, osvw_status;
87 
88 static DEFINE_PER_CPU(u64, current_tsc_ratio);
89 #define TSC_RATIO_DEFAULT	0x0100000000ULL
90 
91 static const struct svm_direct_access_msrs {
92 	u32 index;   /* Index of the MSR */
93 	bool always; /* True if intercept is always on */
94 } direct_access_msrs[] = {
95 	{ .index = MSR_STAR,				.always = true  },
96 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
97 #ifdef CONFIG_X86_64
98 	{ .index = MSR_GS_BASE,				.always = true  },
99 	{ .index = MSR_FS_BASE,				.always = true  },
100 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
101 	{ .index = MSR_LSTAR,				.always = true  },
102 	{ .index = MSR_CSTAR,				.always = true  },
103 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
104 #endif
105 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
106 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
107 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
108 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
109 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
110 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
111 	{ .index = MSR_INVALID,				.always = false },
112 };
113 
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 bool npt_enabled = true;
117 #else
118 bool npt_enabled;
119 #endif
120 
121 /*
122  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
123  * pause_filter_count: On processors that support Pause filtering(indicated
124  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
125  *	count value. On VMRUN this value is loaded into an internal counter.
126  *	Each time a pause instruction is executed, this counter is decremented
127  *	until it reaches zero at which time a #VMEXIT is generated if pause
128  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
129  *	Intercept Filtering for more details.
130  *	This also indicate if ple logic enabled.
131  *
132  * pause_filter_thresh: In addition, some processor families support advanced
133  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
134  *	the amount of time a guest is allowed to execute in a pause loop.
135  *	In this mode, a 16-bit pause filter threshold field is added in the
136  *	VMCB. The threshold value is a cycle count that is used to reset the
137  *	pause counter. As with simple pause filtering, VMRUN loads the pause
138  *	count value from VMCB into an internal counter. Then, on each pause
139  *	instruction the hardware checks the elapsed number of cycles since
140  *	the most recent pause instruction against the pause filter threshold.
141  *	If the elapsed cycle count is greater than the pause filter threshold,
142  *	then the internal pause count is reloaded from the VMCB and execution
143  *	continues. If the elapsed cycle count is less than the pause filter
144  *	threshold, then the internal pause count is decremented. If the count
145  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
146  *	triggered. If advanced pause filtering is supported and pause filter
147  *	threshold field is set to zero, the filter will operate in the simpler,
148  *	count only mode.
149  */
150 
151 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
152 module_param(pause_filter_thresh, ushort, 0444);
153 
154 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
155 module_param(pause_filter_count, ushort, 0444);
156 
157 /* Default doubles per-vcpu window every exit. */
158 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
159 module_param(pause_filter_count_grow, ushort, 0444);
160 
161 /* Default resets per-vcpu window every exit to pause_filter_count. */
162 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
163 module_param(pause_filter_count_shrink, ushort, 0444);
164 
165 /* Default is to compute the maximum so we can never overflow. */
166 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
167 module_param(pause_filter_count_max, ushort, 0444);
168 
169 /* allow nested paging (virtualized MMU) for all guests */
170 static int npt = true;
171 module_param(npt, int, S_IRUGO);
172 
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176 
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180 
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184 
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188 
189 /* enable/disable SEV support */
190 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
191 module_param(sev, int, 0444);
192 
193 static bool __read_mostly dump_invalid_vmcb = 0;
194 module_param(dump_invalid_vmcb, bool, 0644);
195 
196 static u8 rsm_ins_bytes[] = "\x0f\xaa";
197 
198 static void svm_complete_interrupts(struct vcpu_svm *svm);
199 
200 static unsigned long iopm_base;
201 
202 struct kvm_ldttss_desc {
203 	u16 limit0;
204 	u16 base0;
205 	unsigned base1:8, type:5, dpl:2, p:1;
206 	unsigned limit1:4, zero0:3, g:1, base2:8;
207 	u32 base3;
208 	u32 zero1;
209 } __attribute__((packed));
210 
211 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
212 
213 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
214 
215 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
216 #define MSRS_RANGE_SIZE 2048
217 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
218 
219 u32 svm_msrpm_offset(u32 msr)
220 {
221 	u32 offset;
222 	int i;
223 
224 	for (i = 0; i < NUM_MSR_MAPS; i++) {
225 		if (msr < msrpm_ranges[i] ||
226 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
227 			continue;
228 
229 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
230 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
231 
232 		/* Now we have the u8 offset - but need the u32 offset */
233 		return offset / 4;
234 	}
235 
236 	/* MSR not in any range */
237 	return MSR_INVALID;
238 }
239 
240 #define MAX_INST_SIZE 15
241 
242 static inline void clgi(void)
243 {
244 	asm volatile (__ex("clgi"));
245 }
246 
247 static inline void stgi(void)
248 {
249 	asm volatile (__ex("stgi"));
250 }
251 
252 static inline void invlpga(unsigned long addr, u32 asid)
253 {
254 	asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
255 }
256 
257 static int get_max_npt_level(void)
258 {
259 #ifdef CONFIG_X86_64
260 	return PT64_ROOT_4LEVEL;
261 #else
262 	return PT32E_ROOT_LEVEL;
263 #endif
264 }
265 
266 void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
267 {
268 	struct vcpu_svm *svm = to_svm(vcpu);
269 	vcpu->arch.efer = efer;
270 
271 	if (!npt_enabled) {
272 		/* Shadow paging assumes NX to be available.  */
273 		efer |= EFER_NX;
274 
275 		if (!(efer & EFER_LMA))
276 			efer &= ~EFER_LME;
277 	}
278 
279 	if (!(efer & EFER_SVME)) {
280 		svm_leave_nested(svm);
281 		svm_set_gif(svm, true);
282 	}
283 
284 	svm->vmcb->save.efer = efer | EFER_SVME;
285 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
286 }
287 
288 static int is_external_interrupt(u32 info)
289 {
290 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
291 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
292 }
293 
294 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
295 {
296 	struct vcpu_svm *svm = to_svm(vcpu);
297 	u32 ret = 0;
298 
299 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
300 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
301 	return ret;
302 }
303 
304 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
305 {
306 	struct vcpu_svm *svm = to_svm(vcpu);
307 
308 	if (mask == 0)
309 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
310 	else
311 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
312 
313 }
314 
315 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
316 {
317 	struct vcpu_svm *svm = to_svm(vcpu);
318 
319 	if (nrips && svm->vmcb->control.next_rip != 0) {
320 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
321 		svm->next_rip = svm->vmcb->control.next_rip;
322 	}
323 
324 	if (!svm->next_rip) {
325 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
326 			return 0;
327 	} else {
328 		kvm_rip_write(vcpu, svm->next_rip);
329 	}
330 	svm_set_interrupt_shadow(vcpu, 0);
331 
332 	return 1;
333 }
334 
335 static void svm_queue_exception(struct kvm_vcpu *vcpu)
336 {
337 	struct vcpu_svm *svm = to_svm(vcpu);
338 	unsigned nr = vcpu->arch.exception.nr;
339 	bool has_error_code = vcpu->arch.exception.has_error_code;
340 	u32 error_code = vcpu->arch.exception.error_code;
341 
342 	kvm_deliver_exception_payload(&svm->vcpu);
343 
344 	if (nr == BP_VECTOR && !nrips) {
345 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
346 
347 		/*
348 		 * For guest debugging where we have to reinject #BP if some
349 		 * INT3 is guest-owned:
350 		 * Emulate nRIP by moving RIP forward. Will fail if injection
351 		 * raises a fault that is not intercepted. Still better than
352 		 * failing in all cases.
353 		 */
354 		(void)skip_emulated_instruction(&svm->vcpu);
355 		rip = kvm_rip_read(&svm->vcpu);
356 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
357 		svm->int3_injected = rip - old_rip;
358 	}
359 
360 	svm->vmcb->control.event_inj = nr
361 		| SVM_EVTINJ_VALID
362 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
363 		| SVM_EVTINJ_TYPE_EXEPT;
364 	svm->vmcb->control.event_inj_err = error_code;
365 }
366 
367 static void svm_init_erratum_383(void)
368 {
369 	u32 low, high;
370 	int err;
371 	u64 val;
372 
373 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
374 		return;
375 
376 	/* Use _safe variants to not break nested virtualization */
377 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
378 	if (err)
379 		return;
380 
381 	val |= (1ULL << 47);
382 
383 	low  = lower_32_bits(val);
384 	high = upper_32_bits(val);
385 
386 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
387 
388 	erratum_383_found = true;
389 }
390 
391 static void svm_init_osvw(struct kvm_vcpu *vcpu)
392 {
393 	/*
394 	 * Guests should see errata 400 and 415 as fixed (assuming that
395 	 * HLT and IO instructions are intercepted).
396 	 */
397 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
398 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
399 
400 	/*
401 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
402 	 * all osvw.status bits inside that length, including bit 0 (which is
403 	 * reserved for erratum 298), are valid. However, if host processor's
404 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
405 	 * be conservative here and therefore we tell the guest that erratum 298
406 	 * is present (because we really don't know).
407 	 */
408 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
409 		vcpu->arch.osvw.status |= 1;
410 }
411 
412 static int has_svm(void)
413 {
414 	const char *msg;
415 
416 	if (!cpu_has_svm(&msg)) {
417 		printk(KERN_INFO "has_svm: %s\n", msg);
418 		return 0;
419 	}
420 
421 	return 1;
422 }
423 
424 static void svm_hardware_disable(void)
425 {
426 	/* Make sure we clean up behind us */
427 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
428 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
429 
430 	cpu_svm_disable();
431 
432 	amd_pmu_disable_virt();
433 }
434 
435 static int svm_hardware_enable(void)
436 {
437 
438 	struct svm_cpu_data *sd;
439 	uint64_t efer;
440 	struct desc_struct *gdt;
441 	int me = raw_smp_processor_id();
442 
443 	rdmsrl(MSR_EFER, efer);
444 	if (efer & EFER_SVME)
445 		return -EBUSY;
446 
447 	if (!has_svm()) {
448 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
449 		return -EINVAL;
450 	}
451 	sd = per_cpu(svm_data, me);
452 	if (!sd) {
453 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
454 		return -EINVAL;
455 	}
456 
457 	sd->asid_generation = 1;
458 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
459 	sd->next_asid = sd->max_asid + 1;
460 	sd->min_asid = max_sev_asid + 1;
461 
462 	gdt = get_current_gdt_rw();
463 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
464 
465 	wrmsrl(MSR_EFER, efer | EFER_SVME);
466 
467 	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
468 
469 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
470 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
471 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
472 	}
473 
474 
475 	/*
476 	 * Get OSVW bits.
477 	 *
478 	 * Note that it is possible to have a system with mixed processor
479 	 * revisions and therefore different OSVW bits. If bits are not the same
480 	 * on different processors then choose the worst case (i.e. if erratum
481 	 * is present on one processor and not on another then assume that the
482 	 * erratum is present everywhere).
483 	 */
484 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
485 		uint64_t len, status = 0;
486 		int err;
487 
488 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
489 		if (!err)
490 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
491 						      &err);
492 
493 		if (err)
494 			osvw_status = osvw_len = 0;
495 		else {
496 			if (len < osvw_len)
497 				osvw_len = len;
498 			osvw_status |= status;
499 			osvw_status &= (1ULL << osvw_len) - 1;
500 		}
501 	} else
502 		osvw_status = osvw_len = 0;
503 
504 	svm_init_erratum_383();
505 
506 	amd_pmu_enable_virt();
507 
508 	return 0;
509 }
510 
511 static void svm_cpu_uninit(int cpu)
512 {
513 	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
514 
515 	if (!sd)
516 		return;
517 
518 	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
519 	kfree(sd->sev_vmcbs);
520 	__free_page(sd->save_area);
521 	kfree(sd);
522 }
523 
524 static int svm_cpu_init(int cpu)
525 {
526 	struct svm_cpu_data *sd;
527 
528 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
529 	if (!sd)
530 		return -ENOMEM;
531 	sd->cpu = cpu;
532 	sd->save_area = alloc_page(GFP_KERNEL);
533 	if (!sd->save_area)
534 		goto free_cpu_data;
535 
536 	if (svm_sev_enabled()) {
537 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
538 					      sizeof(void *),
539 					      GFP_KERNEL);
540 		if (!sd->sev_vmcbs)
541 			goto free_save_area;
542 	}
543 
544 	per_cpu(svm_data, cpu) = sd;
545 
546 	return 0;
547 
548 free_save_area:
549 	__free_page(sd->save_area);
550 free_cpu_data:
551 	kfree(sd);
552 	return -ENOMEM;
553 
554 }
555 
556 static bool valid_msr_intercept(u32 index)
557 {
558 	int i;
559 
560 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
561 		if (direct_access_msrs[i].index == index)
562 			return true;
563 
564 	return false;
565 }
566 
567 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
568 {
569 	u8 bit_write;
570 	unsigned long tmp;
571 	u32 offset;
572 	u32 *msrpm;
573 
574 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
575 				      to_svm(vcpu)->msrpm;
576 
577 	offset    = svm_msrpm_offset(msr);
578 	bit_write = 2 * (msr & 0x0f) + 1;
579 	tmp       = msrpm[offset];
580 
581 	BUG_ON(offset == MSR_INVALID);
582 
583 	return !!test_bit(bit_write,  &tmp);
584 }
585 
586 static void set_msr_interception(u32 *msrpm, unsigned msr,
587 				 int read, int write)
588 {
589 	u8 bit_read, bit_write;
590 	unsigned long tmp;
591 	u32 offset;
592 
593 	/*
594 	 * If this warning triggers extend the direct_access_msrs list at the
595 	 * beginning of the file
596 	 */
597 	WARN_ON(!valid_msr_intercept(msr));
598 
599 	offset    = svm_msrpm_offset(msr);
600 	bit_read  = 2 * (msr & 0x0f);
601 	bit_write = 2 * (msr & 0x0f) + 1;
602 	tmp       = msrpm[offset];
603 
604 	BUG_ON(offset == MSR_INVALID);
605 
606 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
607 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
608 
609 	msrpm[offset] = tmp;
610 }
611 
612 static void svm_vcpu_init_msrpm(u32 *msrpm)
613 {
614 	int i;
615 
616 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
617 
618 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
619 		if (!direct_access_msrs[i].always)
620 			continue;
621 
622 		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
623 	}
624 }
625 
626 static void add_msr_offset(u32 offset)
627 {
628 	int i;
629 
630 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
631 
632 		/* Offset already in list? */
633 		if (msrpm_offsets[i] == offset)
634 			return;
635 
636 		/* Slot used by another offset? */
637 		if (msrpm_offsets[i] != MSR_INVALID)
638 			continue;
639 
640 		/* Add offset to list */
641 		msrpm_offsets[i] = offset;
642 
643 		return;
644 	}
645 
646 	/*
647 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
648 	 * increase MSRPM_OFFSETS in this case.
649 	 */
650 	BUG();
651 }
652 
653 static void init_msrpm_offsets(void)
654 {
655 	int i;
656 
657 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
658 
659 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
660 		u32 offset;
661 
662 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
663 		BUG_ON(offset == MSR_INVALID);
664 
665 		add_msr_offset(offset);
666 	}
667 }
668 
669 static void svm_enable_lbrv(struct vcpu_svm *svm)
670 {
671 	u32 *msrpm = svm->msrpm;
672 
673 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
674 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
675 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
676 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
677 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
678 }
679 
680 static void svm_disable_lbrv(struct vcpu_svm *svm)
681 {
682 	u32 *msrpm = svm->msrpm;
683 
684 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
685 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
686 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
687 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
688 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
689 }
690 
691 void disable_nmi_singlestep(struct vcpu_svm *svm)
692 {
693 	svm->nmi_singlestep = false;
694 
695 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
696 		/* Clear our flags if they were not set by the guest */
697 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
698 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
699 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
700 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
701 	}
702 }
703 
704 static void grow_ple_window(struct kvm_vcpu *vcpu)
705 {
706 	struct vcpu_svm *svm = to_svm(vcpu);
707 	struct vmcb_control_area *control = &svm->vmcb->control;
708 	int old = control->pause_filter_count;
709 
710 	control->pause_filter_count = __grow_ple_window(old,
711 							pause_filter_count,
712 							pause_filter_count_grow,
713 							pause_filter_count_max);
714 
715 	if (control->pause_filter_count != old) {
716 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
717 		trace_kvm_ple_window_update(vcpu->vcpu_id,
718 					    control->pause_filter_count, old);
719 	}
720 }
721 
722 static void shrink_ple_window(struct kvm_vcpu *vcpu)
723 {
724 	struct vcpu_svm *svm = to_svm(vcpu);
725 	struct vmcb_control_area *control = &svm->vmcb->control;
726 	int old = control->pause_filter_count;
727 
728 	control->pause_filter_count =
729 				__shrink_ple_window(old,
730 						    pause_filter_count,
731 						    pause_filter_count_shrink,
732 						    pause_filter_count);
733 	if (control->pause_filter_count != old) {
734 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
735 		trace_kvm_ple_window_update(vcpu->vcpu_id,
736 					    control->pause_filter_count, old);
737 	}
738 }
739 
740 /*
741  * The default MMIO mask is a single bit (excluding the present bit),
742  * which could conflict with the memory encryption bit. Check for
743  * memory encryption support and override the default MMIO mask if
744  * memory encryption is enabled.
745  */
746 static __init void svm_adjust_mmio_mask(void)
747 {
748 	unsigned int enc_bit, mask_bit;
749 	u64 msr, mask;
750 
751 	/* If there is no memory encryption support, use existing mask */
752 	if (cpuid_eax(0x80000000) < 0x8000001f)
753 		return;
754 
755 	/* If memory encryption is not enabled, use existing mask */
756 	rdmsrl(MSR_K8_SYSCFG, msr);
757 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
758 		return;
759 
760 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
761 	mask_bit = boot_cpu_data.x86_phys_bits;
762 
763 	/* Increment the mask bit if it is the same as the encryption bit */
764 	if (enc_bit == mask_bit)
765 		mask_bit++;
766 
767 	/*
768 	 * If the mask bit location is below 52, then some bits above the
769 	 * physical addressing limit will always be reserved, so use the
770 	 * rsvd_bits() function to generate the mask. This mask, along with
771 	 * the present bit, will be used to generate a page fault with
772 	 * PFER.RSV = 1.
773 	 *
774 	 * If the mask bit location is 52 (or above), then clear the mask.
775 	 */
776 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
777 
778 	kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
779 }
780 
781 static void svm_hardware_teardown(void)
782 {
783 	int cpu;
784 
785 	if (svm_sev_enabled())
786 		sev_hardware_teardown();
787 
788 	for_each_possible_cpu(cpu)
789 		svm_cpu_uninit(cpu);
790 
791 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
792 	iopm_base = 0;
793 }
794 
795 static __init void svm_set_cpu_caps(void)
796 {
797 	kvm_set_cpu_caps();
798 
799 	supported_xss = 0;
800 
801 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
802 	if (nested) {
803 		kvm_cpu_cap_set(X86_FEATURE_SVM);
804 
805 		if (nrips)
806 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
807 
808 		if (npt_enabled)
809 			kvm_cpu_cap_set(X86_FEATURE_NPT);
810 	}
811 
812 	/* CPUID 0x80000008 */
813 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
814 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
815 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
816 }
817 
818 static __init int svm_hardware_setup(void)
819 {
820 	int cpu;
821 	struct page *iopm_pages;
822 	void *iopm_va;
823 	int r;
824 
825 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
826 
827 	if (!iopm_pages)
828 		return -ENOMEM;
829 
830 	iopm_va = page_address(iopm_pages);
831 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
832 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
833 
834 	init_msrpm_offsets();
835 
836 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
837 
838 	if (boot_cpu_has(X86_FEATURE_NX))
839 		kvm_enable_efer_bits(EFER_NX);
840 
841 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
842 		kvm_enable_efer_bits(EFER_FFXSR);
843 
844 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
845 		kvm_has_tsc_control = true;
846 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
847 		kvm_tsc_scaling_ratio_frac_bits = 32;
848 	}
849 
850 	/* Check for pause filtering support */
851 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
852 		pause_filter_count = 0;
853 		pause_filter_thresh = 0;
854 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
855 		pause_filter_thresh = 0;
856 	}
857 
858 	if (nested) {
859 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
860 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
861 	}
862 
863 	if (sev) {
864 		if (boot_cpu_has(X86_FEATURE_SEV) &&
865 		    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
866 			r = sev_hardware_setup();
867 			if (r)
868 				sev = false;
869 		} else {
870 			sev = false;
871 		}
872 	}
873 
874 	svm_adjust_mmio_mask();
875 
876 	for_each_possible_cpu(cpu) {
877 		r = svm_cpu_init(cpu);
878 		if (r)
879 			goto err;
880 	}
881 
882 	if (!boot_cpu_has(X86_FEATURE_NPT))
883 		npt_enabled = false;
884 
885 	if (npt_enabled && !npt)
886 		npt_enabled = false;
887 
888 	kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
889 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
890 
891 	if (nrips) {
892 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
893 			nrips = false;
894 	}
895 
896 	if (avic) {
897 		if (!npt_enabled ||
898 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
899 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
900 			avic = false;
901 		} else {
902 			pr_info("AVIC enabled\n");
903 
904 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
905 		}
906 	}
907 
908 	if (vls) {
909 		if (!npt_enabled ||
910 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
911 		    !IS_ENABLED(CONFIG_X86_64)) {
912 			vls = false;
913 		} else {
914 			pr_info("Virtual VMLOAD VMSAVE supported\n");
915 		}
916 	}
917 
918 	if (vgif) {
919 		if (!boot_cpu_has(X86_FEATURE_VGIF))
920 			vgif = false;
921 		else
922 			pr_info("Virtual GIF supported\n");
923 	}
924 
925 	svm_set_cpu_caps();
926 
927 	/*
928 	 * It seems that on AMD processors PTE's accessed bit is
929 	 * being set by the CPU hardware before the NPF vmexit.
930 	 * This is not expected behaviour and our tests fail because
931 	 * of it.
932 	 * A workaround here is to disable support for
933 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
934 	 * In this case userspace can know if there is support using
935 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
936 	 * it
937 	 * If future AMD CPU models change the behaviour described above,
938 	 * this variable can be changed accordingly
939 	 */
940 	allow_smaller_maxphyaddr = !npt_enabled;
941 
942 	return 0;
943 
944 err:
945 	svm_hardware_teardown();
946 	return r;
947 }
948 
949 static void init_seg(struct vmcb_seg *seg)
950 {
951 	seg->selector = 0;
952 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
953 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
954 	seg->limit = 0xffff;
955 	seg->base = 0;
956 }
957 
958 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
959 {
960 	seg->selector = 0;
961 	seg->attrib = SVM_SELECTOR_P_MASK | type;
962 	seg->limit = 0xffff;
963 	seg->base = 0;
964 }
965 
966 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
967 {
968 	struct vcpu_svm *svm = to_svm(vcpu);
969 	u64 g_tsc_offset = 0;
970 
971 	if (is_guest_mode(vcpu)) {
972 		/* Write L1's TSC offset.  */
973 		g_tsc_offset = svm->vmcb->control.tsc_offset -
974 			       svm->nested.hsave->control.tsc_offset;
975 		svm->nested.hsave->control.tsc_offset = offset;
976 	}
977 
978 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
979 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
980 				   offset);
981 
982 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
983 
984 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
985 	return svm->vmcb->control.tsc_offset;
986 }
987 
988 static void init_vmcb(struct vcpu_svm *svm)
989 {
990 	struct vmcb_control_area *control = &svm->vmcb->control;
991 	struct vmcb_save_area *save = &svm->vmcb->save;
992 
993 	svm->vcpu.arch.hflags = 0;
994 
995 	set_cr_intercept(svm, INTERCEPT_CR0_READ);
996 	set_cr_intercept(svm, INTERCEPT_CR3_READ);
997 	set_cr_intercept(svm, INTERCEPT_CR4_READ);
998 	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
999 	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1000 	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1001 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1002 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1003 
1004 	set_dr_intercepts(svm);
1005 
1006 	set_exception_intercept(svm, PF_VECTOR);
1007 	set_exception_intercept(svm, UD_VECTOR);
1008 	set_exception_intercept(svm, MC_VECTOR);
1009 	set_exception_intercept(svm, AC_VECTOR);
1010 	set_exception_intercept(svm, DB_VECTOR);
1011 	/*
1012 	 * Guest access to VMware backdoor ports could legitimately
1013 	 * trigger #GP because of TSS I/O permission bitmap.
1014 	 * We intercept those #GP and allow access to them anyway
1015 	 * as VMware does.
1016 	 */
1017 	if (enable_vmware_backdoor)
1018 		set_exception_intercept(svm, GP_VECTOR);
1019 
1020 	svm_set_intercept(svm, INTERCEPT_INTR);
1021 	svm_set_intercept(svm, INTERCEPT_NMI);
1022 	svm_set_intercept(svm, INTERCEPT_SMI);
1023 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1024 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1025 	svm_set_intercept(svm, INTERCEPT_CPUID);
1026 	svm_set_intercept(svm, INTERCEPT_INVD);
1027 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1028 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1029 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1030 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1031 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1032 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1033 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1034 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1035 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1036 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1037 	svm_set_intercept(svm, INTERCEPT_STGI);
1038 	svm_set_intercept(svm, INTERCEPT_CLGI);
1039 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1040 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1041 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1042 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1043 	svm_set_intercept(svm, INTERCEPT_RSM);
1044 
1045 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1046 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1047 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1048 	}
1049 
1050 	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1051 		svm_set_intercept(svm, INTERCEPT_HLT);
1052 
1053 	control->iopm_base_pa = __sme_set(iopm_base);
1054 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1055 	control->int_ctl = V_INTR_MASKING_MASK;
1056 
1057 	init_seg(&save->es);
1058 	init_seg(&save->ss);
1059 	init_seg(&save->ds);
1060 	init_seg(&save->fs);
1061 	init_seg(&save->gs);
1062 
1063 	save->cs.selector = 0xf000;
1064 	save->cs.base = 0xffff0000;
1065 	/* Executable/Readable Code Segment */
1066 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1067 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1068 	save->cs.limit = 0xffff;
1069 
1070 	save->gdtr.limit = 0xffff;
1071 	save->idtr.limit = 0xffff;
1072 
1073 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1074 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1075 
1076 	svm_set_efer(&svm->vcpu, 0);
1077 	save->dr6 = 0xffff0ff0;
1078 	kvm_set_rflags(&svm->vcpu, 2);
1079 	save->rip = 0x0000fff0;
1080 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1081 
1082 	/*
1083 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1084 	 * It also updates the guest-visible cr0 value.
1085 	 */
1086 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1087 	kvm_mmu_reset_context(&svm->vcpu);
1088 
1089 	save->cr4 = X86_CR4_PAE;
1090 	/* rdx = ?? */
1091 
1092 	if (npt_enabled) {
1093 		/* Setup VMCB for Nested Paging */
1094 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1095 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1096 		clr_exception_intercept(svm, PF_VECTOR);
1097 		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1098 		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1099 		save->g_pat = svm->vcpu.arch.pat;
1100 		save->cr3 = 0;
1101 		save->cr4 = 0;
1102 	}
1103 	svm->asid_generation = 0;
1104 
1105 	svm->nested.vmcb = 0;
1106 	svm->vcpu.arch.hflags = 0;
1107 
1108 	if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1109 		control->pause_filter_count = pause_filter_count;
1110 		if (pause_filter_thresh)
1111 			control->pause_filter_thresh = pause_filter_thresh;
1112 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1113 	} else {
1114 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1115 	}
1116 
1117 	if (kvm_vcpu_apicv_active(&svm->vcpu))
1118 		avic_init_vmcb(svm);
1119 
1120 	/*
1121 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1122 	 * in VMCB and clear intercepts to avoid #VMEXIT.
1123 	 */
1124 	if (vls) {
1125 		svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1126 		svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1127 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1128 	}
1129 
1130 	if (vgif) {
1131 		svm_clr_intercept(svm, INTERCEPT_STGI);
1132 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1133 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1134 	}
1135 
1136 	if (sev_guest(svm->vcpu.kvm)) {
1137 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1138 		clr_exception_intercept(svm, UD_VECTOR);
1139 	}
1140 
1141 	vmcb_mark_all_dirty(svm->vmcb);
1142 
1143 	enable_gif(svm);
1144 
1145 }
1146 
1147 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1148 {
1149 	struct vcpu_svm *svm = to_svm(vcpu);
1150 	u32 dummy;
1151 	u32 eax = 1;
1152 
1153 	svm->spec_ctrl = 0;
1154 	svm->virt_spec_ctrl = 0;
1155 
1156 	if (!init_event) {
1157 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1158 					   MSR_IA32_APICBASE_ENABLE;
1159 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1160 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1161 	}
1162 	init_vmcb(svm);
1163 
1164 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1165 	kvm_rdx_write(vcpu, eax);
1166 
1167 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1168 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1169 }
1170 
1171 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1172 {
1173 	struct vcpu_svm *svm;
1174 	struct page *page;
1175 	struct page *msrpm_pages;
1176 	struct page *hsave_page;
1177 	struct page *nested_msrpm_pages;
1178 	int err;
1179 
1180 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1181 	svm = to_svm(vcpu);
1182 
1183 	err = -ENOMEM;
1184 	page = alloc_page(GFP_KERNEL_ACCOUNT);
1185 	if (!page)
1186 		goto out;
1187 
1188 	msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1189 	if (!msrpm_pages)
1190 		goto free_page1;
1191 
1192 	nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1193 	if (!nested_msrpm_pages)
1194 		goto free_page2;
1195 
1196 	hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
1197 	if (!hsave_page)
1198 		goto free_page3;
1199 
1200 	err = avic_init_vcpu(svm);
1201 	if (err)
1202 		goto free_page4;
1203 
1204 	/* We initialize this flag to true to make sure that the is_running
1205 	 * bit would be set the first time the vcpu is loaded.
1206 	 */
1207 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1208 		svm->avic_is_running = true;
1209 
1210 	svm->nested.hsave = page_address(hsave_page);
1211 	clear_page(svm->nested.hsave);
1212 
1213 	svm->msrpm = page_address(msrpm_pages);
1214 	svm_vcpu_init_msrpm(svm->msrpm);
1215 
1216 	svm->nested.msrpm = page_address(nested_msrpm_pages);
1217 	svm_vcpu_init_msrpm(svm->nested.msrpm);
1218 
1219 	svm->vmcb = page_address(page);
1220 	clear_page(svm->vmcb);
1221 	svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1222 	svm->asid_generation = 0;
1223 	init_vmcb(svm);
1224 
1225 	svm_init_osvw(vcpu);
1226 	vcpu->arch.microcode_version = 0x01000065;
1227 
1228 	return 0;
1229 
1230 free_page4:
1231 	__free_page(hsave_page);
1232 free_page3:
1233 	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1234 free_page2:
1235 	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1236 free_page1:
1237 	__free_page(page);
1238 out:
1239 	return err;
1240 }
1241 
1242 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1243 {
1244 	int i;
1245 
1246 	for_each_online_cpu(i)
1247 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1248 }
1249 
1250 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1251 {
1252 	struct vcpu_svm *svm = to_svm(vcpu);
1253 
1254 	/*
1255 	 * The vmcb page can be recycled, causing a false negative in
1256 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1257 	 * vmcb page recorded as its current vmcb.
1258 	 */
1259 	svm_clear_current_vmcb(svm->vmcb);
1260 
1261 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1262 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1263 	__free_page(virt_to_page(svm->nested.hsave));
1264 	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1265 }
1266 
1267 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1268 {
1269 	struct vcpu_svm *svm = to_svm(vcpu);
1270 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1271 	int i;
1272 
1273 	if (unlikely(cpu != vcpu->cpu)) {
1274 		svm->asid_generation = 0;
1275 		vmcb_mark_all_dirty(svm->vmcb);
1276 	}
1277 
1278 #ifdef CONFIG_X86_64
1279 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1280 #endif
1281 	savesegment(fs, svm->host.fs);
1282 	savesegment(gs, svm->host.gs);
1283 	svm->host.ldt = kvm_read_ldt();
1284 
1285 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1286 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1287 
1288 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1289 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1290 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1291 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1292 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1293 		}
1294 	}
1295 	/* This assumes that the kernel never uses MSR_TSC_AUX */
1296 	if (static_cpu_has(X86_FEATURE_RDTSCP))
1297 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1298 
1299 	if (sd->current_vmcb != svm->vmcb) {
1300 		sd->current_vmcb = svm->vmcb;
1301 		indirect_branch_prediction_barrier();
1302 	}
1303 	avic_vcpu_load(vcpu, cpu);
1304 }
1305 
1306 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1307 {
1308 	struct vcpu_svm *svm = to_svm(vcpu);
1309 	int i;
1310 
1311 	avic_vcpu_put(vcpu);
1312 
1313 	++vcpu->stat.host_state_reload;
1314 	kvm_load_ldt(svm->host.ldt);
1315 #ifdef CONFIG_X86_64
1316 	loadsegment(fs, svm->host.fs);
1317 	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1318 	load_gs_index(svm->host.gs);
1319 #else
1320 #ifdef CONFIG_X86_32_LAZY_GS
1321 	loadsegment(gs, svm->host.gs);
1322 #endif
1323 #endif
1324 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1325 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1326 }
1327 
1328 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1329 {
1330 	struct vcpu_svm *svm = to_svm(vcpu);
1331 	unsigned long rflags = svm->vmcb->save.rflags;
1332 
1333 	if (svm->nmi_singlestep) {
1334 		/* Hide our flags if they were not set by the guest */
1335 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1336 			rflags &= ~X86_EFLAGS_TF;
1337 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1338 			rflags &= ~X86_EFLAGS_RF;
1339 	}
1340 	return rflags;
1341 }
1342 
1343 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1344 {
1345 	if (to_svm(vcpu)->nmi_singlestep)
1346 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1347 
1348        /*
1349         * Any change of EFLAGS.VM is accompanied by a reload of SS
1350         * (caused by either a task switch or an inter-privilege IRET),
1351         * so we do not need to update the CPL here.
1352         */
1353 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1354 }
1355 
1356 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1357 {
1358 	switch (reg) {
1359 	case VCPU_EXREG_PDPTR:
1360 		BUG_ON(!npt_enabled);
1361 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1362 		break;
1363 	default:
1364 		WARN_ON_ONCE(1);
1365 	}
1366 }
1367 
1368 static void svm_set_vintr(struct vcpu_svm *svm)
1369 {
1370 	struct vmcb_control_area *control;
1371 
1372 	/* The following fields are ignored when AVIC is enabled */
1373 	WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1374 	svm_set_intercept(svm, INTERCEPT_VINTR);
1375 
1376 	/*
1377 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1378 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1379 	 */
1380 	control = &svm->vmcb->control;
1381 	control->int_vector = 0x0;
1382 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1383 	control->int_ctl |= V_IRQ_MASK |
1384 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1385 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1386 }
1387 
1388 static void svm_clear_vintr(struct vcpu_svm *svm)
1389 {
1390 	const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1391 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1392 
1393 	/* Drop int_ctl fields related to VINTR injection.  */
1394 	svm->vmcb->control.int_ctl &= mask;
1395 	if (is_guest_mode(&svm->vcpu)) {
1396 		svm->nested.hsave->control.int_ctl &= mask;
1397 
1398 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1399 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1400 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1401 	}
1402 
1403 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1404 }
1405 
1406 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1407 {
1408 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1409 
1410 	switch (seg) {
1411 	case VCPU_SREG_CS: return &save->cs;
1412 	case VCPU_SREG_DS: return &save->ds;
1413 	case VCPU_SREG_ES: return &save->es;
1414 	case VCPU_SREG_FS: return &save->fs;
1415 	case VCPU_SREG_GS: return &save->gs;
1416 	case VCPU_SREG_SS: return &save->ss;
1417 	case VCPU_SREG_TR: return &save->tr;
1418 	case VCPU_SREG_LDTR: return &save->ldtr;
1419 	}
1420 	BUG();
1421 	return NULL;
1422 }
1423 
1424 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1425 {
1426 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1427 
1428 	return s->base;
1429 }
1430 
1431 static void svm_get_segment(struct kvm_vcpu *vcpu,
1432 			    struct kvm_segment *var, int seg)
1433 {
1434 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1435 
1436 	var->base = s->base;
1437 	var->limit = s->limit;
1438 	var->selector = s->selector;
1439 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1440 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1441 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1442 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1443 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1444 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1445 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1446 
1447 	/*
1448 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1449 	 * However, the SVM spec states that the G bit is not observed by the
1450 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1451 	 * So let's synthesize a legal G bit for all segments, this helps
1452 	 * running KVM nested. It also helps cross-vendor migration, because
1453 	 * Intel's vmentry has a check on the 'G' bit.
1454 	 */
1455 	var->g = s->limit > 0xfffff;
1456 
1457 	/*
1458 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1459 	 * for cross vendor migration purposes by "not present"
1460 	 */
1461 	var->unusable = !var->present;
1462 
1463 	switch (seg) {
1464 	case VCPU_SREG_TR:
1465 		/*
1466 		 * Work around a bug where the busy flag in the tr selector
1467 		 * isn't exposed
1468 		 */
1469 		var->type |= 0x2;
1470 		break;
1471 	case VCPU_SREG_DS:
1472 	case VCPU_SREG_ES:
1473 	case VCPU_SREG_FS:
1474 	case VCPU_SREG_GS:
1475 		/*
1476 		 * The accessed bit must always be set in the segment
1477 		 * descriptor cache, although it can be cleared in the
1478 		 * descriptor, the cached bit always remains at 1. Since
1479 		 * Intel has a check on this, set it here to support
1480 		 * cross-vendor migration.
1481 		 */
1482 		if (!var->unusable)
1483 			var->type |= 0x1;
1484 		break;
1485 	case VCPU_SREG_SS:
1486 		/*
1487 		 * On AMD CPUs sometimes the DB bit in the segment
1488 		 * descriptor is left as 1, although the whole segment has
1489 		 * been made unusable. Clear it here to pass an Intel VMX
1490 		 * entry check when cross vendor migrating.
1491 		 */
1492 		if (var->unusable)
1493 			var->db = 0;
1494 		/* This is symmetric with svm_set_segment() */
1495 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1496 		break;
1497 	}
1498 }
1499 
1500 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1501 {
1502 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1503 
1504 	return save->cpl;
1505 }
1506 
1507 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1508 {
1509 	struct vcpu_svm *svm = to_svm(vcpu);
1510 
1511 	dt->size = svm->vmcb->save.idtr.limit;
1512 	dt->address = svm->vmcb->save.idtr.base;
1513 }
1514 
1515 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1516 {
1517 	struct vcpu_svm *svm = to_svm(vcpu);
1518 
1519 	svm->vmcb->save.idtr.limit = dt->size;
1520 	svm->vmcb->save.idtr.base = dt->address ;
1521 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1522 }
1523 
1524 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1525 {
1526 	struct vcpu_svm *svm = to_svm(vcpu);
1527 
1528 	dt->size = svm->vmcb->save.gdtr.limit;
1529 	dt->address = svm->vmcb->save.gdtr.base;
1530 }
1531 
1532 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1533 {
1534 	struct vcpu_svm *svm = to_svm(vcpu);
1535 
1536 	svm->vmcb->save.gdtr.limit = dt->size;
1537 	svm->vmcb->save.gdtr.base = dt->address ;
1538 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1539 }
1540 
1541 static void update_cr0_intercept(struct vcpu_svm *svm)
1542 {
1543 	ulong gcr0 = svm->vcpu.arch.cr0;
1544 	u64 *hcr0 = &svm->vmcb->save.cr0;
1545 
1546 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1547 		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1548 
1549 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1550 
1551 	if (gcr0 == *hcr0) {
1552 		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1553 		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1554 	} else {
1555 		set_cr_intercept(svm, INTERCEPT_CR0_READ);
1556 		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1557 	}
1558 }
1559 
1560 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1561 {
1562 	struct vcpu_svm *svm = to_svm(vcpu);
1563 
1564 #ifdef CONFIG_X86_64
1565 	if (vcpu->arch.efer & EFER_LME) {
1566 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1567 			vcpu->arch.efer |= EFER_LMA;
1568 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1569 		}
1570 
1571 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1572 			vcpu->arch.efer &= ~EFER_LMA;
1573 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1574 		}
1575 	}
1576 #endif
1577 	vcpu->arch.cr0 = cr0;
1578 
1579 	if (!npt_enabled)
1580 		cr0 |= X86_CR0_PG | X86_CR0_WP;
1581 
1582 	/*
1583 	 * re-enable caching here because the QEMU bios
1584 	 * does not do it - this results in some delay at
1585 	 * reboot
1586 	 */
1587 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1588 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1589 	svm->vmcb->save.cr0 = cr0;
1590 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1591 	update_cr0_intercept(svm);
1592 }
1593 
1594 int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1595 {
1596 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1597 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1598 
1599 	if (cr4 & X86_CR4_VMXE)
1600 		return 1;
1601 
1602 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1603 		svm_flush_tlb(vcpu);
1604 
1605 	vcpu->arch.cr4 = cr4;
1606 	if (!npt_enabled)
1607 		cr4 |= X86_CR4_PAE;
1608 	cr4 |= host_cr4_mce;
1609 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1610 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1611 	return 0;
1612 }
1613 
1614 static void svm_set_segment(struct kvm_vcpu *vcpu,
1615 			    struct kvm_segment *var, int seg)
1616 {
1617 	struct vcpu_svm *svm = to_svm(vcpu);
1618 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1619 
1620 	s->base = var->base;
1621 	s->limit = var->limit;
1622 	s->selector = var->selector;
1623 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1624 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1625 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1626 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1627 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1628 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1629 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1630 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1631 
1632 	/*
1633 	 * This is always accurate, except if SYSRET returned to a segment
1634 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1635 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1636 	 * would entail passing the CPL to userspace and back.
1637 	 */
1638 	if (seg == VCPU_SREG_SS)
1639 		/* This is symmetric with svm_get_segment() */
1640 		svm->vmcb->save.cpl = (var->dpl & 3);
1641 
1642 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1643 }
1644 
1645 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1646 {
1647 	struct vcpu_svm *svm = to_svm(vcpu);
1648 
1649 	clr_exception_intercept(svm, BP_VECTOR);
1650 
1651 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1652 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1653 			set_exception_intercept(svm, BP_VECTOR);
1654 	}
1655 }
1656 
1657 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1658 {
1659 	if (sd->next_asid > sd->max_asid) {
1660 		++sd->asid_generation;
1661 		sd->next_asid = sd->min_asid;
1662 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1663 	}
1664 
1665 	svm->asid_generation = sd->asid_generation;
1666 	svm->vmcb->control.asid = sd->next_asid++;
1667 
1668 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1669 }
1670 
1671 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1672 {
1673 	struct vmcb *vmcb = svm->vmcb;
1674 
1675 	if (unlikely(value != vmcb->save.dr6)) {
1676 		vmcb->save.dr6 = value;
1677 		vmcb_mark_dirty(vmcb, VMCB_DR);
1678 	}
1679 }
1680 
1681 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1682 {
1683 	struct vcpu_svm *svm = to_svm(vcpu);
1684 
1685 	get_debugreg(vcpu->arch.db[0], 0);
1686 	get_debugreg(vcpu->arch.db[1], 1);
1687 	get_debugreg(vcpu->arch.db[2], 2);
1688 	get_debugreg(vcpu->arch.db[3], 3);
1689 	/*
1690 	 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1691 	 * because db_interception might need it.  We can do it before vmentry.
1692 	 */
1693 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1694 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1695 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1696 	set_dr_intercepts(svm);
1697 }
1698 
1699 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1700 {
1701 	struct vcpu_svm *svm = to_svm(vcpu);
1702 
1703 	svm->vmcb->save.dr7 = value;
1704 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1705 }
1706 
1707 static int pf_interception(struct vcpu_svm *svm)
1708 {
1709 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1710 	u64 error_code = svm->vmcb->control.exit_info_1;
1711 
1712 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1713 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1714 			svm->vmcb->control.insn_bytes : NULL,
1715 			svm->vmcb->control.insn_len);
1716 }
1717 
1718 static int npf_interception(struct vcpu_svm *svm)
1719 {
1720 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1721 	u64 error_code = svm->vmcb->control.exit_info_1;
1722 
1723 	trace_kvm_page_fault(fault_address, error_code);
1724 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1725 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1726 			svm->vmcb->control.insn_bytes : NULL,
1727 			svm->vmcb->control.insn_len);
1728 }
1729 
1730 static int db_interception(struct vcpu_svm *svm)
1731 {
1732 	struct kvm_run *kvm_run = svm->vcpu.run;
1733 	struct kvm_vcpu *vcpu = &svm->vcpu;
1734 
1735 	if (!(svm->vcpu.guest_debug &
1736 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1737 		!svm->nmi_singlestep) {
1738 		u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1739 		kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1740 		return 1;
1741 	}
1742 
1743 	if (svm->nmi_singlestep) {
1744 		disable_nmi_singlestep(svm);
1745 		/* Make sure we check for pending NMIs upon entry */
1746 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1747 	}
1748 
1749 	if (svm->vcpu.guest_debug &
1750 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1751 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1752 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1753 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1754 		kvm_run->debug.arch.pc =
1755 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1756 		kvm_run->debug.arch.exception = DB_VECTOR;
1757 		return 0;
1758 	}
1759 
1760 	return 1;
1761 }
1762 
1763 static int bp_interception(struct vcpu_svm *svm)
1764 {
1765 	struct kvm_run *kvm_run = svm->vcpu.run;
1766 
1767 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1768 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1769 	kvm_run->debug.arch.exception = BP_VECTOR;
1770 	return 0;
1771 }
1772 
1773 static int ud_interception(struct vcpu_svm *svm)
1774 {
1775 	return handle_ud(&svm->vcpu);
1776 }
1777 
1778 static int ac_interception(struct vcpu_svm *svm)
1779 {
1780 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1781 	return 1;
1782 }
1783 
1784 static int gp_interception(struct vcpu_svm *svm)
1785 {
1786 	struct kvm_vcpu *vcpu = &svm->vcpu;
1787 	u32 error_code = svm->vmcb->control.exit_info_1;
1788 
1789 	WARN_ON_ONCE(!enable_vmware_backdoor);
1790 
1791 	/*
1792 	 * VMware backdoor emulation on #GP interception only handles IN{S},
1793 	 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1794 	 */
1795 	if (error_code) {
1796 		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1797 		return 1;
1798 	}
1799 	return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1800 }
1801 
1802 static bool is_erratum_383(void)
1803 {
1804 	int err, i;
1805 	u64 value;
1806 
1807 	if (!erratum_383_found)
1808 		return false;
1809 
1810 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1811 	if (err)
1812 		return false;
1813 
1814 	/* Bit 62 may or may not be set for this mce */
1815 	value &= ~(1ULL << 62);
1816 
1817 	if (value != 0xb600000000010015ULL)
1818 		return false;
1819 
1820 	/* Clear MCi_STATUS registers */
1821 	for (i = 0; i < 6; ++i)
1822 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1823 
1824 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1825 	if (!err) {
1826 		u32 low, high;
1827 
1828 		value &= ~(1ULL << 2);
1829 		low    = lower_32_bits(value);
1830 		high   = upper_32_bits(value);
1831 
1832 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1833 	}
1834 
1835 	/* Flush tlb to evict multi-match entries */
1836 	__flush_tlb_all();
1837 
1838 	return true;
1839 }
1840 
1841 /*
1842  * Trigger machine check on the host. We assume all the MSRs are already set up
1843  * by the CPU and that we still run on the same CPU as the MCE occurred on.
1844  * We pass a fake environment to the machine check handler because we want
1845  * the guest to be always treated like user space, no matter what context
1846  * it used internally.
1847  */
1848 static void kvm_machine_check(void)
1849 {
1850 #if defined(CONFIG_X86_MCE)
1851 	struct pt_regs regs = {
1852 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
1853 		.flags = X86_EFLAGS_IF,
1854 	};
1855 
1856 	do_machine_check(&regs);
1857 #endif
1858 }
1859 
1860 static void svm_handle_mce(struct vcpu_svm *svm)
1861 {
1862 	if (is_erratum_383()) {
1863 		/*
1864 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1865 		 * guest.
1866 		 */
1867 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
1868 
1869 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1870 
1871 		return;
1872 	}
1873 
1874 	/*
1875 	 * On an #MC intercept the MCE handler is not called automatically in
1876 	 * the host. So do it by hand here.
1877 	 */
1878 	kvm_machine_check();
1879 }
1880 
1881 static int mc_interception(struct vcpu_svm *svm)
1882 {
1883 	return 1;
1884 }
1885 
1886 static int shutdown_interception(struct vcpu_svm *svm)
1887 {
1888 	struct kvm_run *kvm_run = svm->vcpu.run;
1889 
1890 	/*
1891 	 * VMCB is undefined after a SHUTDOWN intercept
1892 	 * so reinitialize it.
1893 	 */
1894 	clear_page(svm->vmcb);
1895 	init_vmcb(svm);
1896 
1897 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1898 	return 0;
1899 }
1900 
1901 static int io_interception(struct vcpu_svm *svm)
1902 {
1903 	struct kvm_vcpu *vcpu = &svm->vcpu;
1904 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1905 	int size, in, string;
1906 	unsigned port;
1907 
1908 	++svm->vcpu.stat.io_exits;
1909 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
1910 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1911 	if (string)
1912 		return kvm_emulate_instruction(vcpu, 0);
1913 
1914 	port = io_info >> 16;
1915 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1916 	svm->next_rip = svm->vmcb->control.exit_info_2;
1917 
1918 	return kvm_fast_pio(&svm->vcpu, size, port, in);
1919 }
1920 
1921 static int nmi_interception(struct vcpu_svm *svm)
1922 {
1923 	return 1;
1924 }
1925 
1926 static int intr_interception(struct vcpu_svm *svm)
1927 {
1928 	++svm->vcpu.stat.irq_exits;
1929 	return 1;
1930 }
1931 
1932 static int nop_on_interception(struct vcpu_svm *svm)
1933 {
1934 	return 1;
1935 }
1936 
1937 static int halt_interception(struct vcpu_svm *svm)
1938 {
1939 	return kvm_emulate_halt(&svm->vcpu);
1940 }
1941 
1942 static int vmmcall_interception(struct vcpu_svm *svm)
1943 {
1944 	return kvm_emulate_hypercall(&svm->vcpu);
1945 }
1946 
1947 static int vmload_interception(struct vcpu_svm *svm)
1948 {
1949 	struct vmcb *nested_vmcb;
1950 	struct kvm_host_map map;
1951 	int ret;
1952 
1953 	if (nested_svm_check_permissions(svm))
1954 		return 1;
1955 
1956 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1957 	if (ret) {
1958 		if (ret == -EINVAL)
1959 			kvm_inject_gp(&svm->vcpu, 0);
1960 		return 1;
1961 	}
1962 
1963 	nested_vmcb = map.hva;
1964 
1965 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
1966 
1967 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1968 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
1969 
1970 	return ret;
1971 }
1972 
1973 static int vmsave_interception(struct vcpu_svm *svm)
1974 {
1975 	struct vmcb *nested_vmcb;
1976 	struct kvm_host_map map;
1977 	int ret;
1978 
1979 	if (nested_svm_check_permissions(svm))
1980 		return 1;
1981 
1982 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1983 	if (ret) {
1984 		if (ret == -EINVAL)
1985 			kvm_inject_gp(&svm->vcpu, 0);
1986 		return 1;
1987 	}
1988 
1989 	nested_vmcb = map.hva;
1990 
1991 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
1992 
1993 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1994 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
1995 
1996 	return ret;
1997 }
1998 
1999 static int vmrun_interception(struct vcpu_svm *svm)
2000 {
2001 	if (nested_svm_check_permissions(svm))
2002 		return 1;
2003 
2004 	return nested_svm_vmrun(svm);
2005 }
2006 
2007 void svm_set_gif(struct vcpu_svm *svm, bool value)
2008 {
2009 	if (value) {
2010 		/*
2011 		 * If VGIF is enabled, the STGI intercept is only added to
2012 		 * detect the opening of the SMI/NMI window; remove it now.
2013 		 * Likewise, clear the VINTR intercept, we will set it
2014 		 * again while processing KVM_REQ_EVENT if needed.
2015 		 */
2016 		if (vgif_enabled(svm))
2017 			svm_clr_intercept(svm, INTERCEPT_STGI);
2018 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2019 			svm_clear_vintr(svm);
2020 
2021 		enable_gif(svm);
2022 		if (svm->vcpu.arch.smi_pending ||
2023 		    svm->vcpu.arch.nmi_pending ||
2024 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2025 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2026 	} else {
2027 		disable_gif(svm);
2028 
2029 		/*
2030 		 * After a CLGI no interrupts should come.  But if vGIF is
2031 		 * in use, we still rely on the VINTR intercept (rather than
2032 		 * STGI) to detect an open interrupt window.
2033 		*/
2034 		if (!vgif_enabled(svm))
2035 			svm_clear_vintr(svm);
2036 	}
2037 }
2038 
2039 static int stgi_interception(struct vcpu_svm *svm)
2040 {
2041 	int ret;
2042 
2043 	if (nested_svm_check_permissions(svm))
2044 		return 1;
2045 
2046 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2047 	svm_set_gif(svm, true);
2048 	return ret;
2049 }
2050 
2051 static int clgi_interception(struct vcpu_svm *svm)
2052 {
2053 	int ret;
2054 
2055 	if (nested_svm_check_permissions(svm))
2056 		return 1;
2057 
2058 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2059 	svm_set_gif(svm, false);
2060 	return ret;
2061 }
2062 
2063 static int invlpga_interception(struct vcpu_svm *svm)
2064 {
2065 	struct kvm_vcpu *vcpu = &svm->vcpu;
2066 
2067 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2068 			  kvm_rax_read(&svm->vcpu));
2069 
2070 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2071 	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2072 
2073 	return kvm_skip_emulated_instruction(&svm->vcpu);
2074 }
2075 
2076 static int skinit_interception(struct vcpu_svm *svm)
2077 {
2078 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2079 
2080 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2081 	return 1;
2082 }
2083 
2084 static int wbinvd_interception(struct vcpu_svm *svm)
2085 {
2086 	return kvm_emulate_wbinvd(&svm->vcpu);
2087 }
2088 
2089 static int xsetbv_interception(struct vcpu_svm *svm)
2090 {
2091 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2092 	u32 index = kvm_rcx_read(&svm->vcpu);
2093 
2094 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2095 		return kvm_skip_emulated_instruction(&svm->vcpu);
2096 	}
2097 
2098 	return 1;
2099 }
2100 
2101 static int rdpru_interception(struct vcpu_svm *svm)
2102 {
2103 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2104 	return 1;
2105 }
2106 
2107 static int task_switch_interception(struct vcpu_svm *svm)
2108 {
2109 	u16 tss_selector;
2110 	int reason;
2111 	int int_type = svm->vmcb->control.exit_int_info &
2112 		SVM_EXITINTINFO_TYPE_MASK;
2113 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2114 	uint32_t type =
2115 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2116 	uint32_t idt_v =
2117 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2118 	bool has_error_code = false;
2119 	u32 error_code = 0;
2120 
2121 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2122 
2123 	if (svm->vmcb->control.exit_info_2 &
2124 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2125 		reason = TASK_SWITCH_IRET;
2126 	else if (svm->vmcb->control.exit_info_2 &
2127 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2128 		reason = TASK_SWITCH_JMP;
2129 	else if (idt_v)
2130 		reason = TASK_SWITCH_GATE;
2131 	else
2132 		reason = TASK_SWITCH_CALL;
2133 
2134 	if (reason == TASK_SWITCH_GATE) {
2135 		switch (type) {
2136 		case SVM_EXITINTINFO_TYPE_NMI:
2137 			svm->vcpu.arch.nmi_injected = false;
2138 			break;
2139 		case SVM_EXITINTINFO_TYPE_EXEPT:
2140 			if (svm->vmcb->control.exit_info_2 &
2141 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2142 				has_error_code = true;
2143 				error_code =
2144 					(u32)svm->vmcb->control.exit_info_2;
2145 			}
2146 			kvm_clear_exception_queue(&svm->vcpu);
2147 			break;
2148 		case SVM_EXITINTINFO_TYPE_INTR:
2149 			kvm_clear_interrupt_queue(&svm->vcpu);
2150 			break;
2151 		default:
2152 			break;
2153 		}
2154 	}
2155 
2156 	if (reason != TASK_SWITCH_GATE ||
2157 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2158 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2159 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2160 		if (!skip_emulated_instruction(&svm->vcpu))
2161 			return 0;
2162 	}
2163 
2164 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2165 		int_vec = -1;
2166 
2167 	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2168 			       has_error_code, error_code);
2169 }
2170 
2171 static int cpuid_interception(struct vcpu_svm *svm)
2172 {
2173 	return kvm_emulate_cpuid(&svm->vcpu);
2174 }
2175 
2176 static int iret_interception(struct vcpu_svm *svm)
2177 {
2178 	++svm->vcpu.stat.nmi_window_exits;
2179 	svm_clr_intercept(svm, INTERCEPT_IRET);
2180 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2181 	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2182 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2183 	return 1;
2184 }
2185 
2186 static int invlpg_interception(struct vcpu_svm *svm)
2187 {
2188 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2189 		return kvm_emulate_instruction(&svm->vcpu, 0);
2190 
2191 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2192 	return kvm_skip_emulated_instruction(&svm->vcpu);
2193 }
2194 
2195 static int emulate_on_interception(struct vcpu_svm *svm)
2196 {
2197 	return kvm_emulate_instruction(&svm->vcpu, 0);
2198 }
2199 
2200 static int rsm_interception(struct vcpu_svm *svm)
2201 {
2202 	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2203 }
2204 
2205 static int rdpmc_interception(struct vcpu_svm *svm)
2206 {
2207 	int err;
2208 
2209 	if (!nrips)
2210 		return emulate_on_interception(svm);
2211 
2212 	err = kvm_rdpmc(&svm->vcpu);
2213 	return kvm_complete_insn_gp(&svm->vcpu, err);
2214 }
2215 
2216 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2217 					    unsigned long val)
2218 {
2219 	unsigned long cr0 = svm->vcpu.arch.cr0;
2220 	bool ret = false;
2221 	u64 intercept;
2222 
2223 	intercept = svm->nested.ctl.intercept;
2224 
2225 	if (!is_guest_mode(&svm->vcpu) ||
2226 	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2227 		return false;
2228 
2229 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2230 	val &= ~SVM_CR0_SELECTIVE_MASK;
2231 
2232 	if (cr0 ^ val) {
2233 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2234 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2235 	}
2236 
2237 	return ret;
2238 }
2239 
2240 #define CR_VALID (1ULL << 63)
2241 
2242 static int cr_interception(struct vcpu_svm *svm)
2243 {
2244 	int reg, cr;
2245 	unsigned long val;
2246 	int err;
2247 
2248 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2249 		return emulate_on_interception(svm);
2250 
2251 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2252 		return emulate_on_interception(svm);
2253 
2254 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2255 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2256 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2257 	else
2258 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2259 
2260 	err = 0;
2261 	if (cr >= 16) { /* mov to cr */
2262 		cr -= 16;
2263 		val = kvm_register_read(&svm->vcpu, reg);
2264 		switch (cr) {
2265 		case 0:
2266 			if (!check_selective_cr0_intercepted(svm, val))
2267 				err = kvm_set_cr0(&svm->vcpu, val);
2268 			else
2269 				return 1;
2270 
2271 			break;
2272 		case 3:
2273 			err = kvm_set_cr3(&svm->vcpu, val);
2274 			break;
2275 		case 4:
2276 			err = kvm_set_cr4(&svm->vcpu, val);
2277 			break;
2278 		case 8:
2279 			err = kvm_set_cr8(&svm->vcpu, val);
2280 			break;
2281 		default:
2282 			WARN(1, "unhandled write to CR%d", cr);
2283 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2284 			return 1;
2285 		}
2286 	} else { /* mov from cr */
2287 		switch (cr) {
2288 		case 0:
2289 			val = kvm_read_cr0(&svm->vcpu);
2290 			break;
2291 		case 2:
2292 			val = svm->vcpu.arch.cr2;
2293 			break;
2294 		case 3:
2295 			val = kvm_read_cr3(&svm->vcpu);
2296 			break;
2297 		case 4:
2298 			val = kvm_read_cr4(&svm->vcpu);
2299 			break;
2300 		case 8:
2301 			val = kvm_get_cr8(&svm->vcpu);
2302 			break;
2303 		default:
2304 			WARN(1, "unhandled read from CR%d", cr);
2305 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2306 			return 1;
2307 		}
2308 		kvm_register_write(&svm->vcpu, reg, val);
2309 	}
2310 	return kvm_complete_insn_gp(&svm->vcpu, err);
2311 }
2312 
2313 static int dr_interception(struct vcpu_svm *svm)
2314 {
2315 	int reg, dr;
2316 	unsigned long val;
2317 
2318 	if (svm->vcpu.guest_debug == 0) {
2319 		/*
2320 		 * No more DR vmexits; force a reload of the debug registers
2321 		 * and reenter on this instruction.  The next vmexit will
2322 		 * retrieve the full state of the debug registers.
2323 		 */
2324 		clr_dr_intercepts(svm);
2325 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2326 		return 1;
2327 	}
2328 
2329 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2330 		return emulate_on_interception(svm);
2331 
2332 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2333 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2334 
2335 	if (dr >= 16) { /* mov to DRn */
2336 		if (!kvm_require_dr(&svm->vcpu, dr - 16))
2337 			return 1;
2338 		val = kvm_register_read(&svm->vcpu, reg);
2339 		kvm_set_dr(&svm->vcpu, dr - 16, val);
2340 	} else {
2341 		if (!kvm_require_dr(&svm->vcpu, dr))
2342 			return 1;
2343 		kvm_get_dr(&svm->vcpu, dr, &val);
2344 		kvm_register_write(&svm->vcpu, reg, val);
2345 	}
2346 
2347 	return kvm_skip_emulated_instruction(&svm->vcpu);
2348 }
2349 
2350 static int cr8_write_interception(struct vcpu_svm *svm)
2351 {
2352 	struct kvm_run *kvm_run = svm->vcpu.run;
2353 	int r;
2354 
2355 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2356 	/* instruction emulation calls kvm_set_cr8() */
2357 	r = cr_interception(svm);
2358 	if (lapic_in_kernel(&svm->vcpu))
2359 		return r;
2360 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2361 		return r;
2362 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2363 	return 0;
2364 }
2365 
2366 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2367 {
2368 	msr->data = 0;
2369 
2370 	switch (msr->index) {
2371 	case MSR_F10H_DECFG:
2372 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2373 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2374 		break;
2375 	case MSR_IA32_PERF_CAPABILITIES:
2376 		return 0;
2377 	default:
2378 		return KVM_MSR_RET_INVALID;
2379 	}
2380 
2381 	return 0;
2382 }
2383 
2384 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2385 {
2386 	struct vcpu_svm *svm = to_svm(vcpu);
2387 
2388 	switch (msr_info->index) {
2389 	case MSR_STAR:
2390 		msr_info->data = svm->vmcb->save.star;
2391 		break;
2392 #ifdef CONFIG_X86_64
2393 	case MSR_LSTAR:
2394 		msr_info->data = svm->vmcb->save.lstar;
2395 		break;
2396 	case MSR_CSTAR:
2397 		msr_info->data = svm->vmcb->save.cstar;
2398 		break;
2399 	case MSR_KERNEL_GS_BASE:
2400 		msr_info->data = svm->vmcb->save.kernel_gs_base;
2401 		break;
2402 	case MSR_SYSCALL_MASK:
2403 		msr_info->data = svm->vmcb->save.sfmask;
2404 		break;
2405 #endif
2406 	case MSR_IA32_SYSENTER_CS:
2407 		msr_info->data = svm->vmcb->save.sysenter_cs;
2408 		break;
2409 	case MSR_IA32_SYSENTER_EIP:
2410 		msr_info->data = svm->sysenter_eip;
2411 		break;
2412 	case MSR_IA32_SYSENTER_ESP:
2413 		msr_info->data = svm->sysenter_esp;
2414 		break;
2415 	case MSR_TSC_AUX:
2416 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2417 			return 1;
2418 		msr_info->data = svm->tsc_aux;
2419 		break;
2420 	/*
2421 	 * Nobody will change the following 5 values in the VMCB so we can
2422 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2423 	 * implemented.
2424 	 */
2425 	case MSR_IA32_DEBUGCTLMSR:
2426 		msr_info->data = svm->vmcb->save.dbgctl;
2427 		break;
2428 	case MSR_IA32_LASTBRANCHFROMIP:
2429 		msr_info->data = svm->vmcb->save.br_from;
2430 		break;
2431 	case MSR_IA32_LASTBRANCHTOIP:
2432 		msr_info->data = svm->vmcb->save.br_to;
2433 		break;
2434 	case MSR_IA32_LASTINTFROMIP:
2435 		msr_info->data = svm->vmcb->save.last_excp_from;
2436 		break;
2437 	case MSR_IA32_LASTINTTOIP:
2438 		msr_info->data = svm->vmcb->save.last_excp_to;
2439 		break;
2440 	case MSR_VM_HSAVE_PA:
2441 		msr_info->data = svm->nested.hsave_msr;
2442 		break;
2443 	case MSR_VM_CR:
2444 		msr_info->data = svm->nested.vm_cr_msr;
2445 		break;
2446 	case MSR_IA32_SPEC_CTRL:
2447 		if (!msr_info->host_initiated &&
2448 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2449 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2450 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2451 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2452 			return 1;
2453 
2454 		msr_info->data = svm->spec_ctrl;
2455 		break;
2456 	case MSR_AMD64_VIRT_SPEC_CTRL:
2457 		if (!msr_info->host_initiated &&
2458 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2459 			return 1;
2460 
2461 		msr_info->data = svm->virt_spec_ctrl;
2462 		break;
2463 	case MSR_F15H_IC_CFG: {
2464 
2465 		int family, model;
2466 
2467 		family = guest_cpuid_family(vcpu);
2468 		model  = guest_cpuid_model(vcpu);
2469 
2470 		if (family < 0 || model < 0)
2471 			return kvm_get_msr_common(vcpu, msr_info);
2472 
2473 		msr_info->data = 0;
2474 
2475 		if (family == 0x15 &&
2476 		    (model >= 0x2 && model < 0x20))
2477 			msr_info->data = 0x1E;
2478 		}
2479 		break;
2480 	case MSR_F10H_DECFG:
2481 		msr_info->data = svm->msr_decfg;
2482 		break;
2483 	default:
2484 		return kvm_get_msr_common(vcpu, msr_info);
2485 	}
2486 	return 0;
2487 }
2488 
2489 static int rdmsr_interception(struct vcpu_svm *svm)
2490 {
2491 	return kvm_emulate_rdmsr(&svm->vcpu);
2492 }
2493 
2494 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2495 {
2496 	struct vcpu_svm *svm = to_svm(vcpu);
2497 	int svm_dis, chg_mask;
2498 
2499 	if (data & ~SVM_VM_CR_VALID_MASK)
2500 		return 1;
2501 
2502 	chg_mask = SVM_VM_CR_VALID_MASK;
2503 
2504 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2505 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2506 
2507 	svm->nested.vm_cr_msr &= ~chg_mask;
2508 	svm->nested.vm_cr_msr |= (data & chg_mask);
2509 
2510 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2511 
2512 	/* check for svm_disable while efer.svme is set */
2513 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2514 		return 1;
2515 
2516 	return 0;
2517 }
2518 
2519 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2520 {
2521 	struct vcpu_svm *svm = to_svm(vcpu);
2522 
2523 	u32 ecx = msr->index;
2524 	u64 data = msr->data;
2525 	switch (ecx) {
2526 	case MSR_IA32_CR_PAT:
2527 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2528 			return 1;
2529 		vcpu->arch.pat = data;
2530 		svm->vmcb->save.g_pat = data;
2531 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2532 		break;
2533 	case MSR_IA32_SPEC_CTRL:
2534 		if (!msr->host_initiated &&
2535 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2536 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2537 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2538 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2539 			return 1;
2540 
2541 		if (kvm_spec_ctrl_test_value(data))
2542 			return 1;
2543 
2544 		svm->spec_ctrl = data;
2545 		if (!data)
2546 			break;
2547 
2548 		/*
2549 		 * For non-nested:
2550 		 * When it's written (to non-zero) for the first time, pass
2551 		 * it through.
2552 		 *
2553 		 * For nested:
2554 		 * The handling of the MSR bitmap for L2 guests is done in
2555 		 * nested_svm_vmrun_msrpm.
2556 		 * We update the L1 MSR bit as well since it will end up
2557 		 * touching the MSR anyway now.
2558 		 */
2559 		set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2560 		break;
2561 	case MSR_IA32_PRED_CMD:
2562 		if (!msr->host_initiated &&
2563 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
2564 			return 1;
2565 
2566 		if (data & ~PRED_CMD_IBPB)
2567 			return 1;
2568 		if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
2569 			return 1;
2570 		if (!data)
2571 			break;
2572 
2573 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2574 		set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2575 		break;
2576 	case MSR_AMD64_VIRT_SPEC_CTRL:
2577 		if (!msr->host_initiated &&
2578 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2579 			return 1;
2580 
2581 		if (data & ~SPEC_CTRL_SSBD)
2582 			return 1;
2583 
2584 		svm->virt_spec_ctrl = data;
2585 		break;
2586 	case MSR_STAR:
2587 		svm->vmcb->save.star = data;
2588 		break;
2589 #ifdef CONFIG_X86_64
2590 	case MSR_LSTAR:
2591 		svm->vmcb->save.lstar = data;
2592 		break;
2593 	case MSR_CSTAR:
2594 		svm->vmcb->save.cstar = data;
2595 		break;
2596 	case MSR_KERNEL_GS_BASE:
2597 		svm->vmcb->save.kernel_gs_base = data;
2598 		break;
2599 	case MSR_SYSCALL_MASK:
2600 		svm->vmcb->save.sfmask = data;
2601 		break;
2602 #endif
2603 	case MSR_IA32_SYSENTER_CS:
2604 		svm->vmcb->save.sysenter_cs = data;
2605 		break;
2606 	case MSR_IA32_SYSENTER_EIP:
2607 		svm->sysenter_eip = data;
2608 		svm->vmcb->save.sysenter_eip = data;
2609 		break;
2610 	case MSR_IA32_SYSENTER_ESP:
2611 		svm->sysenter_esp = data;
2612 		svm->vmcb->save.sysenter_esp = data;
2613 		break;
2614 	case MSR_TSC_AUX:
2615 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2616 			return 1;
2617 
2618 		/*
2619 		 * This is rare, so we update the MSR here instead of using
2620 		 * direct_access_msrs.  Doing that would require a rdmsr in
2621 		 * svm_vcpu_put.
2622 		 */
2623 		svm->tsc_aux = data;
2624 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2625 		break;
2626 	case MSR_IA32_DEBUGCTLMSR:
2627 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2628 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2629 				    __func__, data);
2630 			break;
2631 		}
2632 		if (data & DEBUGCTL_RESERVED_BITS)
2633 			return 1;
2634 
2635 		svm->vmcb->save.dbgctl = data;
2636 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2637 		if (data & (1ULL<<0))
2638 			svm_enable_lbrv(svm);
2639 		else
2640 			svm_disable_lbrv(svm);
2641 		break;
2642 	case MSR_VM_HSAVE_PA:
2643 		svm->nested.hsave_msr = data;
2644 		break;
2645 	case MSR_VM_CR:
2646 		return svm_set_vm_cr(vcpu, data);
2647 	case MSR_VM_IGNNE:
2648 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2649 		break;
2650 	case MSR_F10H_DECFG: {
2651 		struct kvm_msr_entry msr_entry;
2652 
2653 		msr_entry.index = msr->index;
2654 		if (svm_get_msr_feature(&msr_entry))
2655 			return 1;
2656 
2657 		/* Check the supported bits */
2658 		if (data & ~msr_entry.data)
2659 			return 1;
2660 
2661 		/* Don't allow the guest to change a bit, #GP */
2662 		if (!msr->host_initiated && (data ^ msr_entry.data))
2663 			return 1;
2664 
2665 		svm->msr_decfg = data;
2666 		break;
2667 	}
2668 	case MSR_IA32_APICBASE:
2669 		if (kvm_vcpu_apicv_active(vcpu))
2670 			avic_update_vapic_bar(to_svm(vcpu), data);
2671 		fallthrough;
2672 	default:
2673 		return kvm_set_msr_common(vcpu, msr);
2674 	}
2675 	return 0;
2676 }
2677 
2678 static int wrmsr_interception(struct vcpu_svm *svm)
2679 {
2680 	return kvm_emulate_wrmsr(&svm->vcpu);
2681 }
2682 
2683 static int msr_interception(struct vcpu_svm *svm)
2684 {
2685 	if (svm->vmcb->control.exit_info_1)
2686 		return wrmsr_interception(svm);
2687 	else
2688 		return rdmsr_interception(svm);
2689 }
2690 
2691 static int interrupt_window_interception(struct vcpu_svm *svm)
2692 {
2693 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2694 	svm_clear_vintr(svm);
2695 
2696 	/*
2697 	 * For AVIC, the only reason to end up here is ExtINTs.
2698 	 * In this case AVIC was temporarily disabled for
2699 	 * requesting the IRQ window and we have to re-enable it.
2700 	 */
2701 	svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2702 
2703 	++svm->vcpu.stat.irq_window_exits;
2704 	return 1;
2705 }
2706 
2707 static int pause_interception(struct vcpu_svm *svm)
2708 {
2709 	struct kvm_vcpu *vcpu = &svm->vcpu;
2710 	bool in_kernel = (svm_get_cpl(vcpu) == 0);
2711 
2712 	if (!kvm_pause_in_guest(vcpu->kvm))
2713 		grow_ple_window(vcpu);
2714 
2715 	kvm_vcpu_on_spin(vcpu, in_kernel);
2716 	return 1;
2717 }
2718 
2719 static int nop_interception(struct vcpu_svm *svm)
2720 {
2721 	return kvm_skip_emulated_instruction(&(svm->vcpu));
2722 }
2723 
2724 static int monitor_interception(struct vcpu_svm *svm)
2725 {
2726 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2727 	return nop_interception(svm);
2728 }
2729 
2730 static int mwait_interception(struct vcpu_svm *svm)
2731 {
2732 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2733 	return nop_interception(svm);
2734 }
2735 
2736 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2737 	[SVM_EXIT_READ_CR0]			= cr_interception,
2738 	[SVM_EXIT_READ_CR3]			= cr_interception,
2739 	[SVM_EXIT_READ_CR4]			= cr_interception,
2740 	[SVM_EXIT_READ_CR8]			= cr_interception,
2741 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
2742 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
2743 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
2744 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
2745 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
2746 	[SVM_EXIT_READ_DR0]			= dr_interception,
2747 	[SVM_EXIT_READ_DR1]			= dr_interception,
2748 	[SVM_EXIT_READ_DR2]			= dr_interception,
2749 	[SVM_EXIT_READ_DR3]			= dr_interception,
2750 	[SVM_EXIT_READ_DR4]			= dr_interception,
2751 	[SVM_EXIT_READ_DR5]			= dr_interception,
2752 	[SVM_EXIT_READ_DR6]			= dr_interception,
2753 	[SVM_EXIT_READ_DR7]			= dr_interception,
2754 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
2755 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
2756 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
2757 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
2758 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
2759 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
2760 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
2761 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
2762 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
2763 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
2764 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
2765 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
2766 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
2767 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
2768 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
2769 	[SVM_EXIT_INTR]				= intr_interception,
2770 	[SVM_EXIT_NMI]				= nmi_interception,
2771 	[SVM_EXIT_SMI]				= nop_on_interception,
2772 	[SVM_EXIT_INIT]				= nop_on_interception,
2773 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
2774 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
2775 	[SVM_EXIT_CPUID]			= cpuid_interception,
2776 	[SVM_EXIT_IRET]                         = iret_interception,
2777 	[SVM_EXIT_INVD]                         = emulate_on_interception,
2778 	[SVM_EXIT_PAUSE]			= pause_interception,
2779 	[SVM_EXIT_HLT]				= halt_interception,
2780 	[SVM_EXIT_INVLPG]			= invlpg_interception,
2781 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
2782 	[SVM_EXIT_IOIO]				= io_interception,
2783 	[SVM_EXIT_MSR]				= msr_interception,
2784 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
2785 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
2786 	[SVM_EXIT_VMRUN]			= vmrun_interception,
2787 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
2788 	[SVM_EXIT_VMLOAD]			= vmload_interception,
2789 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
2790 	[SVM_EXIT_STGI]				= stgi_interception,
2791 	[SVM_EXIT_CLGI]				= clgi_interception,
2792 	[SVM_EXIT_SKINIT]			= skinit_interception,
2793 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
2794 	[SVM_EXIT_MONITOR]			= monitor_interception,
2795 	[SVM_EXIT_MWAIT]			= mwait_interception,
2796 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
2797 	[SVM_EXIT_RDPRU]			= rdpru_interception,
2798 	[SVM_EXIT_NPF]				= npf_interception,
2799 	[SVM_EXIT_RSM]                          = rsm_interception,
2800 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
2801 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
2802 };
2803 
2804 static void dump_vmcb(struct kvm_vcpu *vcpu)
2805 {
2806 	struct vcpu_svm *svm = to_svm(vcpu);
2807 	struct vmcb_control_area *control = &svm->vmcb->control;
2808 	struct vmcb_save_area *save = &svm->vmcb->save;
2809 
2810 	if (!dump_invalid_vmcb) {
2811 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2812 		return;
2813 	}
2814 
2815 	pr_err("VMCB Control Area:\n");
2816 	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
2817 	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
2818 	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
2819 	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
2820 	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
2821 	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
2822 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2823 	pr_err("%-20s%d\n", "pause filter threshold:",
2824 	       control->pause_filter_thresh);
2825 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2826 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
2827 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
2828 	pr_err("%-20s%d\n", "asid:", control->asid);
2829 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
2830 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
2831 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
2832 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
2833 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
2834 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
2835 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
2836 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
2837 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
2838 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
2839 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
2840 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
2841 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
2842 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
2843 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
2844 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
2845 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
2846 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
2847 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
2848 	pr_err("VMCB State Save Area:\n");
2849 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2850 	       "es:",
2851 	       save->es.selector, save->es.attrib,
2852 	       save->es.limit, save->es.base);
2853 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2854 	       "cs:",
2855 	       save->cs.selector, save->cs.attrib,
2856 	       save->cs.limit, save->cs.base);
2857 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2858 	       "ss:",
2859 	       save->ss.selector, save->ss.attrib,
2860 	       save->ss.limit, save->ss.base);
2861 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2862 	       "ds:",
2863 	       save->ds.selector, save->ds.attrib,
2864 	       save->ds.limit, save->ds.base);
2865 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2866 	       "fs:",
2867 	       save->fs.selector, save->fs.attrib,
2868 	       save->fs.limit, save->fs.base);
2869 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2870 	       "gs:",
2871 	       save->gs.selector, save->gs.attrib,
2872 	       save->gs.limit, save->gs.base);
2873 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2874 	       "gdtr:",
2875 	       save->gdtr.selector, save->gdtr.attrib,
2876 	       save->gdtr.limit, save->gdtr.base);
2877 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2878 	       "ldtr:",
2879 	       save->ldtr.selector, save->ldtr.attrib,
2880 	       save->ldtr.limit, save->ldtr.base);
2881 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2882 	       "idtr:",
2883 	       save->idtr.selector, save->idtr.attrib,
2884 	       save->idtr.limit, save->idtr.base);
2885 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2886 	       "tr:",
2887 	       save->tr.selector, save->tr.attrib,
2888 	       save->tr.limit, save->tr.base);
2889 	pr_err("cpl:            %d                efer:         %016llx\n",
2890 		save->cpl, save->efer);
2891 	pr_err("%-15s %016llx %-13s %016llx\n",
2892 	       "cr0:", save->cr0, "cr2:", save->cr2);
2893 	pr_err("%-15s %016llx %-13s %016llx\n",
2894 	       "cr3:", save->cr3, "cr4:", save->cr4);
2895 	pr_err("%-15s %016llx %-13s %016llx\n",
2896 	       "dr6:", save->dr6, "dr7:", save->dr7);
2897 	pr_err("%-15s %016llx %-13s %016llx\n",
2898 	       "rip:", save->rip, "rflags:", save->rflags);
2899 	pr_err("%-15s %016llx %-13s %016llx\n",
2900 	       "rsp:", save->rsp, "rax:", save->rax);
2901 	pr_err("%-15s %016llx %-13s %016llx\n",
2902 	       "star:", save->star, "lstar:", save->lstar);
2903 	pr_err("%-15s %016llx %-13s %016llx\n",
2904 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
2905 	pr_err("%-15s %016llx %-13s %016llx\n",
2906 	       "kernel_gs_base:", save->kernel_gs_base,
2907 	       "sysenter_cs:", save->sysenter_cs);
2908 	pr_err("%-15s %016llx %-13s %016llx\n",
2909 	       "sysenter_esp:", save->sysenter_esp,
2910 	       "sysenter_eip:", save->sysenter_eip);
2911 	pr_err("%-15s %016llx %-13s %016llx\n",
2912 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
2913 	pr_err("%-15s %016llx %-13s %016llx\n",
2914 	       "br_from:", save->br_from, "br_to:", save->br_to);
2915 	pr_err("%-15s %016llx %-13s %016llx\n",
2916 	       "excp_from:", save->last_excp_from,
2917 	       "excp_to:", save->last_excp_to);
2918 }
2919 
2920 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
2921 {
2922 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
2923 
2924 	*info1 = control->exit_info_1;
2925 	*info2 = control->exit_info_2;
2926 }
2927 
2928 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
2929 {
2930 	struct vcpu_svm *svm = to_svm(vcpu);
2931 	struct kvm_run *kvm_run = vcpu->run;
2932 	u32 exit_code = svm->vmcb->control.exit_code;
2933 
2934 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
2935 
2936 	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
2937 		vcpu->arch.cr0 = svm->vmcb->save.cr0;
2938 	if (npt_enabled)
2939 		vcpu->arch.cr3 = svm->vmcb->save.cr3;
2940 
2941 	if (is_guest_mode(vcpu)) {
2942 		int vmexit;
2943 
2944 		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2945 					svm->vmcb->control.exit_info_1,
2946 					svm->vmcb->control.exit_info_2,
2947 					svm->vmcb->control.exit_int_info,
2948 					svm->vmcb->control.exit_int_info_err,
2949 					KVM_ISA_SVM);
2950 
2951 		vmexit = nested_svm_exit_special(svm);
2952 
2953 		if (vmexit == NESTED_EXIT_CONTINUE)
2954 			vmexit = nested_svm_exit_handled(svm);
2955 
2956 		if (vmexit == NESTED_EXIT_DONE)
2957 			return 1;
2958 	}
2959 
2960 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2961 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2962 		kvm_run->fail_entry.hardware_entry_failure_reason
2963 			= svm->vmcb->control.exit_code;
2964 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
2965 		dump_vmcb(vcpu);
2966 		return 0;
2967 	}
2968 
2969 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2970 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2971 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
2972 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
2973 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
2974 		       "exit_code 0x%x\n",
2975 		       __func__, svm->vmcb->control.exit_int_info,
2976 		       exit_code);
2977 
2978 	if (exit_fastpath != EXIT_FASTPATH_NONE)
2979 		return 1;
2980 
2981 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2982 	    || !svm_exit_handlers[exit_code]) {
2983 		vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
2984 		dump_vmcb(vcpu);
2985 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2986 		vcpu->run->internal.suberror =
2987 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2988 		vcpu->run->internal.ndata = 2;
2989 		vcpu->run->internal.data[0] = exit_code;
2990 		vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2991 		return 0;
2992 	}
2993 
2994 #ifdef CONFIG_RETPOLINE
2995 	if (exit_code == SVM_EXIT_MSR)
2996 		return msr_interception(svm);
2997 	else if (exit_code == SVM_EXIT_VINTR)
2998 		return interrupt_window_interception(svm);
2999 	else if (exit_code == SVM_EXIT_INTR)
3000 		return intr_interception(svm);
3001 	else if (exit_code == SVM_EXIT_HLT)
3002 		return halt_interception(svm);
3003 	else if (exit_code == SVM_EXIT_NPF)
3004 		return npf_interception(svm);
3005 #endif
3006 	return svm_exit_handlers[exit_code](svm);
3007 }
3008 
3009 static void reload_tss(struct kvm_vcpu *vcpu)
3010 {
3011 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3012 
3013 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3014 	load_TR_desc();
3015 }
3016 
3017 static void pre_svm_run(struct vcpu_svm *svm)
3018 {
3019 	struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3020 
3021 	if (sev_guest(svm->vcpu.kvm))
3022 		return pre_sev_run(svm, svm->vcpu.cpu);
3023 
3024 	/* FIXME: handle wraparound of asid_generation */
3025 	if (svm->asid_generation != sd->asid_generation)
3026 		new_asid(svm, sd);
3027 }
3028 
3029 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3030 {
3031 	struct vcpu_svm *svm = to_svm(vcpu);
3032 
3033 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3034 	vcpu->arch.hflags |= HF_NMI_MASK;
3035 	svm_set_intercept(svm, INTERCEPT_IRET);
3036 	++vcpu->stat.nmi_injections;
3037 }
3038 
3039 static void svm_set_irq(struct kvm_vcpu *vcpu)
3040 {
3041 	struct vcpu_svm *svm = to_svm(vcpu);
3042 
3043 	BUG_ON(!(gif_set(svm)));
3044 
3045 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3046 	++vcpu->stat.irq_injections;
3047 
3048 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3049 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3050 }
3051 
3052 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3053 {
3054 	struct vcpu_svm *svm = to_svm(vcpu);
3055 
3056 	if (nested_svm_virtualize_tpr(vcpu))
3057 		return;
3058 
3059 	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3060 
3061 	if (irr == -1)
3062 		return;
3063 
3064 	if (tpr >= irr)
3065 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3066 }
3067 
3068 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3069 {
3070 	struct vcpu_svm *svm = to_svm(vcpu);
3071 	struct vmcb *vmcb = svm->vmcb;
3072 	bool ret;
3073 
3074 	if (!gif_set(svm))
3075 		return true;
3076 
3077 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3078 		return false;
3079 
3080 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3081 	      (svm->vcpu.arch.hflags & HF_NMI_MASK);
3082 
3083 	return ret;
3084 }
3085 
3086 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3087 {
3088 	struct vcpu_svm *svm = to_svm(vcpu);
3089 	if (svm->nested.nested_run_pending)
3090 		return -EBUSY;
3091 
3092 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3093 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3094 		return -EBUSY;
3095 
3096 	return !svm_nmi_blocked(vcpu);
3097 }
3098 
3099 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3100 {
3101 	struct vcpu_svm *svm = to_svm(vcpu);
3102 
3103 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3104 }
3105 
3106 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3107 {
3108 	struct vcpu_svm *svm = to_svm(vcpu);
3109 
3110 	if (masked) {
3111 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3112 		svm_set_intercept(svm, INTERCEPT_IRET);
3113 	} else {
3114 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3115 		svm_clr_intercept(svm, INTERCEPT_IRET);
3116 	}
3117 }
3118 
3119 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3120 {
3121 	struct vcpu_svm *svm = to_svm(vcpu);
3122 	struct vmcb *vmcb = svm->vmcb;
3123 
3124 	if (!gif_set(svm))
3125 		return true;
3126 
3127 	if (is_guest_mode(vcpu)) {
3128 		/* As long as interrupts are being delivered...  */
3129 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3130 		    ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3131 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3132 			return true;
3133 
3134 		/* ... vmexits aren't blocked by the interrupt shadow  */
3135 		if (nested_exit_on_intr(svm))
3136 			return false;
3137 	} else {
3138 		if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3139 			return true;
3140 	}
3141 
3142 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3143 }
3144 
3145 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3146 {
3147 	struct vcpu_svm *svm = to_svm(vcpu);
3148 	if (svm->nested.nested_run_pending)
3149 		return -EBUSY;
3150 
3151 	/*
3152 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3153 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3154 	 */
3155 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3156 		return -EBUSY;
3157 
3158 	return !svm_interrupt_blocked(vcpu);
3159 }
3160 
3161 static void enable_irq_window(struct kvm_vcpu *vcpu)
3162 {
3163 	struct vcpu_svm *svm = to_svm(vcpu);
3164 
3165 	/*
3166 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3167 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3168 	 * get that intercept, this function will be called again though and
3169 	 * we'll get the vintr intercept. However, if the vGIF feature is
3170 	 * enabled, the STGI interception will not occur. Enable the irq
3171 	 * window under the assumption that the hardware will set the GIF.
3172 	 */
3173 	if (vgif_enabled(svm) || gif_set(svm)) {
3174 		/*
3175 		 * IRQ window is not needed when AVIC is enabled,
3176 		 * unless we have pending ExtINT since it cannot be injected
3177 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3178 		 * and fallback to injecting IRQ via V_IRQ.
3179 		 */
3180 		svm_toggle_avic_for_irq_window(vcpu, false);
3181 		svm_set_vintr(svm);
3182 	}
3183 }
3184 
3185 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3186 {
3187 	struct vcpu_svm *svm = to_svm(vcpu);
3188 
3189 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3190 	    == HF_NMI_MASK)
3191 		return; /* IRET will cause a vm exit */
3192 
3193 	if (!gif_set(svm)) {
3194 		if (vgif_enabled(svm))
3195 			svm_set_intercept(svm, INTERCEPT_STGI);
3196 		return; /* STGI will cause a vm exit */
3197 	}
3198 
3199 	/*
3200 	 * Something prevents NMI from been injected. Single step over possible
3201 	 * problem (IRET or exception injection or interrupt shadow)
3202 	 */
3203 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3204 	svm->nmi_singlestep = true;
3205 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3206 }
3207 
3208 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3209 {
3210 	return 0;
3211 }
3212 
3213 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3214 {
3215 	return 0;
3216 }
3217 
3218 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3219 {
3220 	struct vcpu_svm *svm = to_svm(vcpu);
3221 
3222 	/*
3223 	 * Flush only the current ASID even if the TLB flush was invoked via
3224 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3225 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3226 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3227 	 * VM-Exit (via kvm_mmu_reset_context()).
3228 	 */
3229 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3230 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3231 	else
3232 		svm->asid_generation--;
3233 }
3234 
3235 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3236 {
3237 	struct vcpu_svm *svm = to_svm(vcpu);
3238 
3239 	invlpga(gva, svm->vmcb->control.asid);
3240 }
3241 
3242 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3243 {
3244 }
3245 
3246 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3247 {
3248 	struct vcpu_svm *svm = to_svm(vcpu);
3249 
3250 	if (nested_svm_virtualize_tpr(vcpu))
3251 		return;
3252 
3253 	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3254 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3255 		kvm_set_cr8(vcpu, cr8);
3256 	}
3257 }
3258 
3259 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3260 {
3261 	struct vcpu_svm *svm = to_svm(vcpu);
3262 	u64 cr8;
3263 
3264 	if (nested_svm_virtualize_tpr(vcpu) ||
3265 	    kvm_vcpu_apicv_active(vcpu))
3266 		return;
3267 
3268 	cr8 = kvm_get_cr8(vcpu);
3269 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3270 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3271 }
3272 
3273 static void svm_complete_interrupts(struct vcpu_svm *svm)
3274 {
3275 	u8 vector;
3276 	int type;
3277 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3278 	unsigned int3_injected = svm->int3_injected;
3279 
3280 	svm->int3_injected = 0;
3281 
3282 	/*
3283 	 * If we've made progress since setting HF_IRET_MASK, we've
3284 	 * executed an IRET and can allow NMI injection.
3285 	 */
3286 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3287 	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3288 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3289 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3290 	}
3291 
3292 	svm->vcpu.arch.nmi_injected = false;
3293 	kvm_clear_exception_queue(&svm->vcpu);
3294 	kvm_clear_interrupt_queue(&svm->vcpu);
3295 
3296 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3297 		return;
3298 
3299 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3300 
3301 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3302 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3303 
3304 	switch (type) {
3305 	case SVM_EXITINTINFO_TYPE_NMI:
3306 		svm->vcpu.arch.nmi_injected = true;
3307 		break;
3308 	case SVM_EXITINTINFO_TYPE_EXEPT:
3309 		/*
3310 		 * In case of software exceptions, do not reinject the vector,
3311 		 * but re-execute the instruction instead. Rewind RIP first
3312 		 * if we emulated INT3 before.
3313 		 */
3314 		if (kvm_exception_is_soft(vector)) {
3315 			if (vector == BP_VECTOR && int3_injected &&
3316 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3317 				kvm_rip_write(&svm->vcpu,
3318 					      kvm_rip_read(&svm->vcpu) -
3319 					      int3_injected);
3320 			break;
3321 		}
3322 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3323 			u32 err = svm->vmcb->control.exit_int_info_err;
3324 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3325 
3326 		} else
3327 			kvm_requeue_exception(&svm->vcpu, vector);
3328 		break;
3329 	case SVM_EXITINTINFO_TYPE_INTR:
3330 		kvm_queue_interrupt(&svm->vcpu, vector, false);
3331 		break;
3332 	default:
3333 		break;
3334 	}
3335 }
3336 
3337 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3338 {
3339 	struct vcpu_svm *svm = to_svm(vcpu);
3340 	struct vmcb_control_area *control = &svm->vmcb->control;
3341 
3342 	control->exit_int_info = control->event_inj;
3343 	control->exit_int_info_err = control->event_inj_err;
3344 	control->event_inj = 0;
3345 	svm_complete_interrupts(svm);
3346 }
3347 
3348 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3349 {
3350 	if (!is_guest_mode(vcpu) &&
3351 	    to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3352 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3353 		return handle_fastpath_set_msr_irqoff(vcpu);
3354 
3355 	return EXIT_FASTPATH_NONE;
3356 }
3357 
3358 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3359 
3360 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3361 					struct vcpu_svm *svm)
3362 {
3363 	/*
3364 	 * VMENTER enables interrupts (host state), but the kernel state is
3365 	 * interrupts disabled when this is invoked. Also tell RCU about
3366 	 * it. This is the same logic as for exit_to_user_mode().
3367 	 *
3368 	 * This ensures that e.g. latency analysis on the host observes
3369 	 * guest mode as interrupt enabled.
3370 	 *
3371 	 * guest_enter_irqoff() informs context tracking about the
3372 	 * transition to guest mode and if enabled adjusts RCU state
3373 	 * accordingly.
3374 	 */
3375 	instrumentation_begin();
3376 	trace_hardirqs_on_prepare();
3377 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3378 	instrumentation_end();
3379 
3380 	guest_enter_irqoff();
3381 	lockdep_hardirqs_on(CALLER_ADDR0);
3382 
3383 	__svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3384 
3385 #ifdef CONFIG_X86_64
3386 	native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3387 #else
3388 	loadsegment(fs, svm->host.fs);
3389 #ifndef CONFIG_X86_32_LAZY_GS
3390 	loadsegment(gs, svm->host.gs);
3391 #endif
3392 #endif
3393 
3394 	/*
3395 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
3396 	 * have them in state 'on' as recorded before entering guest mode.
3397 	 * Same as enter_from_user_mode().
3398 	 *
3399 	 * guest_exit_irqoff() restores host context and reinstates RCU if
3400 	 * enabled and required.
3401 	 *
3402 	 * This needs to be done before the below as native_read_msr()
3403 	 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3404 	 * into world and some more.
3405 	 */
3406 	lockdep_hardirqs_off(CALLER_ADDR0);
3407 	guest_exit_irqoff();
3408 
3409 	instrumentation_begin();
3410 	trace_hardirqs_off_finish();
3411 	instrumentation_end();
3412 }
3413 
3414 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3415 {
3416 	fastpath_t exit_fastpath;
3417 	struct vcpu_svm *svm = to_svm(vcpu);
3418 
3419 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3420 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3421 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3422 
3423 	/*
3424 	 * Disable singlestep if we're injecting an interrupt/exception.
3425 	 * We don't want our modified rflags to be pushed on the stack where
3426 	 * we might not be able to easily reset them if we disabled NMI
3427 	 * singlestep later.
3428 	 */
3429 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3430 		/*
3431 		 * Event injection happens before external interrupts cause a
3432 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3433 		 * is enough to force an immediate vmexit.
3434 		 */
3435 		disable_nmi_singlestep(svm);
3436 		smp_send_reschedule(vcpu->cpu);
3437 	}
3438 
3439 	pre_svm_run(svm);
3440 
3441 	sync_lapic_to_cr8(vcpu);
3442 
3443 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3444 
3445 	/*
3446 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3447 	 * of a #DB.
3448 	 */
3449 	if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3450 		svm_set_dr6(svm, vcpu->arch.dr6);
3451 	else
3452 		svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3453 
3454 	clgi();
3455 	kvm_load_guest_xsave_state(vcpu);
3456 
3457 	if (lapic_in_kernel(vcpu) &&
3458 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
3459 		kvm_wait_lapic_expire(vcpu);
3460 
3461 	/*
3462 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3463 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3464 	 * is no need to worry about the conditional branch over the wrmsr
3465 	 * being speculatively taken.
3466 	 */
3467 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3468 
3469 	svm_vcpu_enter_exit(vcpu, svm);
3470 
3471 	/*
3472 	 * We do not use IBRS in the kernel. If this vCPU has used the
3473 	 * SPEC_CTRL MSR it may have left it on; save the value and
3474 	 * turn it off. This is much more efficient than blindly adding
3475 	 * it to the atomic save/restore list. Especially as the former
3476 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3477 	 *
3478 	 * For non-nested case:
3479 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3480 	 * save it.
3481 	 *
3482 	 * For nested case:
3483 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3484 	 * save it.
3485 	 */
3486 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3487 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3488 
3489 	reload_tss(vcpu);
3490 
3491 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3492 
3493 	vcpu->arch.cr2 = svm->vmcb->save.cr2;
3494 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3495 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3496 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3497 
3498 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3499 		kvm_before_interrupt(&svm->vcpu);
3500 
3501 	kvm_load_host_xsave_state(vcpu);
3502 	stgi();
3503 
3504 	/* Any pending NMI will happen here */
3505 
3506 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3507 		kvm_after_interrupt(&svm->vcpu);
3508 
3509 	sync_cr8_to_lapic(vcpu);
3510 
3511 	svm->next_rip = 0;
3512 	if (is_guest_mode(&svm->vcpu)) {
3513 		sync_nested_vmcb_control(svm);
3514 		svm->nested.nested_run_pending = 0;
3515 	}
3516 
3517 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3518 	vmcb_mark_all_clean(svm->vmcb);
3519 
3520 	/* if exit due to PF check for async PF */
3521 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3522 		svm->vcpu.arch.apf.host_apf_flags =
3523 			kvm_read_and_reset_apf_flags();
3524 
3525 	if (npt_enabled) {
3526 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3527 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3528 	}
3529 
3530 	/*
3531 	 * We need to handle MC intercepts here before the vcpu has a chance to
3532 	 * change the physical cpu
3533 	 */
3534 	if (unlikely(svm->vmcb->control.exit_code ==
3535 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3536 		svm_handle_mce(svm);
3537 
3538 	svm_complete_interrupts(svm);
3539 	exit_fastpath = svm_exit_handlers_fastpath(vcpu);
3540 	return exit_fastpath;
3541 }
3542 
3543 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3544 			     int root_level)
3545 {
3546 	struct vcpu_svm *svm = to_svm(vcpu);
3547 	unsigned long cr3;
3548 
3549 	cr3 = __sme_set(root);
3550 	if (npt_enabled) {
3551 		svm->vmcb->control.nested_cr3 = cr3;
3552 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3553 
3554 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3555 		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3556 			return;
3557 		cr3 = vcpu->arch.cr3;
3558 	}
3559 
3560 	svm->vmcb->save.cr3 = cr3;
3561 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3562 }
3563 
3564 static int is_disabled(void)
3565 {
3566 	u64 vm_cr;
3567 
3568 	rdmsrl(MSR_VM_CR, vm_cr);
3569 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3570 		return 1;
3571 
3572 	return 0;
3573 }
3574 
3575 static void
3576 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3577 {
3578 	/*
3579 	 * Patch in the VMMCALL instruction:
3580 	 */
3581 	hypercall[0] = 0x0f;
3582 	hypercall[1] = 0x01;
3583 	hypercall[2] = 0xd9;
3584 }
3585 
3586 static int __init svm_check_processor_compat(void)
3587 {
3588 	return 0;
3589 }
3590 
3591 static bool svm_cpu_has_accelerated_tpr(void)
3592 {
3593 	return false;
3594 }
3595 
3596 static bool svm_has_emulated_msr(u32 index)
3597 {
3598 	switch (index) {
3599 	case MSR_IA32_MCG_EXT_CTL:
3600 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3601 		return false;
3602 	default:
3603 		break;
3604 	}
3605 
3606 	return true;
3607 }
3608 
3609 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3610 {
3611 	return 0;
3612 }
3613 
3614 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3615 {
3616 	struct vcpu_svm *svm = to_svm(vcpu);
3617 
3618 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3619 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
3620 				    boot_cpu_has(X86_FEATURE_XSAVES);
3621 
3622 	/* Update nrips enabled cache */
3623 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3624 			     guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3625 
3626 	if (!kvm_vcpu_apicv_active(vcpu))
3627 		return;
3628 
3629 	/*
3630 	 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3631 	 * is exposed to the guest, disable AVIC.
3632 	 */
3633 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3634 		kvm_request_apicv_update(vcpu->kvm, false,
3635 					 APICV_INHIBIT_REASON_X2APIC);
3636 
3637 	/*
3638 	 * Currently, AVIC does not work with nested virtualization.
3639 	 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3640 	 */
3641 	if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3642 		kvm_request_apicv_update(vcpu->kvm, false,
3643 					 APICV_INHIBIT_REASON_NESTED);
3644 }
3645 
3646 static bool svm_has_wbinvd_exit(void)
3647 {
3648 	return true;
3649 }
3650 
3651 #define PRE_EX(exit)  { .exit_code = (exit), \
3652 			.stage = X86_ICPT_PRE_EXCEPT, }
3653 #define POST_EX(exit) { .exit_code = (exit), \
3654 			.stage = X86_ICPT_POST_EXCEPT, }
3655 #define POST_MEM(exit) { .exit_code = (exit), \
3656 			.stage = X86_ICPT_POST_MEMACCESS, }
3657 
3658 static const struct __x86_intercept {
3659 	u32 exit_code;
3660 	enum x86_intercept_stage stage;
3661 } x86_intercept_map[] = {
3662 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
3663 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
3664 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
3665 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
3666 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
3667 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
3668 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
3669 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
3670 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
3671 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
3672 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
3673 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
3674 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
3675 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
3676 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
3677 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
3678 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
3679 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
3680 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
3681 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
3682 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
3683 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
3684 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
3685 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
3686 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
3687 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
3688 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
3689 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
3690 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
3691 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
3692 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
3693 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
3694 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
3695 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
3696 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
3697 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
3698 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
3699 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
3700 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
3701 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
3702 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
3703 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
3704 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
3705 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
3706 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
3707 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
3708 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
3709 };
3710 
3711 #undef PRE_EX
3712 #undef POST_EX
3713 #undef POST_MEM
3714 
3715 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3716 			       struct x86_instruction_info *info,
3717 			       enum x86_intercept_stage stage,
3718 			       struct x86_exception *exception)
3719 {
3720 	struct vcpu_svm *svm = to_svm(vcpu);
3721 	int vmexit, ret = X86EMUL_CONTINUE;
3722 	struct __x86_intercept icpt_info;
3723 	struct vmcb *vmcb = svm->vmcb;
3724 
3725 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3726 		goto out;
3727 
3728 	icpt_info = x86_intercept_map[info->intercept];
3729 
3730 	if (stage != icpt_info.stage)
3731 		goto out;
3732 
3733 	switch (icpt_info.exit_code) {
3734 	case SVM_EXIT_READ_CR0:
3735 		if (info->intercept == x86_intercept_cr_read)
3736 			icpt_info.exit_code += info->modrm_reg;
3737 		break;
3738 	case SVM_EXIT_WRITE_CR0: {
3739 		unsigned long cr0, val;
3740 		u64 intercept;
3741 
3742 		if (info->intercept == x86_intercept_cr_write)
3743 			icpt_info.exit_code += info->modrm_reg;
3744 
3745 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3746 		    info->intercept == x86_intercept_clts)
3747 			break;
3748 
3749 		intercept = svm->nested.ctl.intercept;
3750 
3751 		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
3752 			break;
3753 
3754 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3755 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
3756 
3757 		if (info->intercept == x86_intercept_lmsw) {
3758 			cr0 &= 0xfUL;
3759 			val &= 0xfUL;
3760 			/* lmsw can't clear PE - catch this here */
3761 			if (cr0 & X86_CR0_PE)
3762 				val |= X86_CR0_PE;
3763 		}
3764 
3765 		if (cr0 ^ val)
3766 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3767 
3768 		break;
3769 	}
3770 	case SVM_EXIT_READ_DR0:
3771 	case SVM_EXIT_WRITE_DR0:
3772 		icpt_info.exit_code += info->modrm_reg;
3773 		break;
3774 	case SVM_EXIT_MSR:
3775 		if (info->intercept == x86_intercept_wrmsr)
3776 			vmcb->control.exit_info_1 = 1;
3777 		else
3778 			vmcb->control.exit_info_1 = 0;
3779 		break;
3780 	case SVM_EXIT_PAUSE:
3781 		/*
3782 		 * We get this for NOP only, but pause
3783 		 * is rep not, check this here
3784 		 */
3785 		if (info->rep_prefix != REPE_PREFIX)
3786 			goto out;
3787 		break;
3788 	case SVM_EXIT_IOIO: {
3789 		u64 exit_info;
3790 		u32 bytes;
3791 
3792 		if (info->intercept == x86_intercept_in ||
3793 		    info->intercept == x86_intercept_ins) {
3794 			exit_info = ((info->src_val & 0xffff) << 16) |
3795 				SVM_IOIO_TYPE_MASK;
3796 			bytes = info->dst_bytes;
3797 		} else {
3798 			exit_info = (info->dst_val & 0xffff) << 16;
3799 			bytes = info->src_bytes;
3800 		}
3801 
3802 		if (info->intercept == x86_intercept_outs ||
3803 		    info->intercept == x86_intercept_ins)
3804 			exit_info |= SVM_IOIO_STR_MASK;
3805 
3806 		if (info->rep_prefix)
3807 			exit_info |= SVM_IOIO_REP_MASK;
3808 
3809 		bytes = min(bytes, 4u);
3810 
3811 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
3812 
3813 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
3814 
3815 		vmcb->control.exit_info_1 = exit_info;
3816 		vmcb->control.exit_info_2 = info->next_rip;
3817 
3818 		break;
3819 	}
3820 	default:
3821 		break;
3822 	}
3823 
3824 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3825 	if (static_cpu_has(X86_FEATURE_NRIPS))
3826 		vmcb->control.next_rip  = info->next_rip;
3827 	vmcb->control.exit_code = icpt_info.exit_code;
3828 	vmexit = nested_svm_exit_handled(svm);
3829 
3830 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
3831 					   : X86EMUL_CONTINUE;
3832 
3833 out:
3834 	return ret;
3835 }
3836 
3837 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
3838 {
3839 }
3840 
3841 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
3842 {
3843 	if (!kvm_pause_in_guest(vcpu->kvm))
3844 		shrink_ple_window(vcpu);
3845 }
3846 
3847 static void svm_setup_mce(struct kvm_vcpu *vcpu)
3848 {
3849 	/* [63:9] are reserved. */
3850 	vcpu->arch.mcg_cap &= 0x1ff;
3851 }
3852 
3853 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
3854 {
3855 	struct vcpu_svm *svm = to_svm(vcpu);
3856 
3857 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
3858 	if (!gif_set(svm))
3859 		return true;
3860 
3861 	return is_smm(vcpu);
3862 }
3863 
3864 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3865 {
3866 	struct vcpu_svm *svm = to_svm(vcpu);
3867 	if (svm->nested.nested_run_pending)
3868 		return -EBUSY;
3869 
3870 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
3871 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
3872 		return -EBUSY;
3873 
3874 	return !svm_smi_blocked(vcpu);
3875 }
3876 
3877 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
3878 {
3879 	struct vcpu_svm *svm = to_svm(vcpu);
3880 	int ret;
3881 
3882 	if (is_guest_mode(vcpu)) {
3883 		/* FED8h - SVM Guest */
3884 		put_smstate(u64, smstate, 0x7ed8, 1);
3885 		/* FEE0h - SVM Guest VMCB Physical Address */
3886 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
3887 
3888 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3889 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3890 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3891 
3892 		ret = nested_svm_vmexit(svm);
3893 		if (ret)
3894 			return ret;
3895 	}
3896 	return 0;
3897 }
3898 
3899 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
3900 {
3901 	struct vcpu_svm *svm = to_svm(vcpu);
3902 	struct kvm_host_map map;
3903 	int ret = 0;
3904 
3905 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
3906 		u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
3907 		u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
3908 		u64 vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
3909 
3910 		if (guest) {
3911 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3912 				return 1;
3913 
3914 			if (!(saved_efer & EFER_SVME))
3915 				return 1;
3916 
3917 			if (kvm_vcpu_map(&svm->vcpu,
3918 					 gpa_to_gfn(vmcb), &map) == -EINVAL)
3919 				return 1;
3920 
3921 			ret = enter_svm_guest_mode(svm, vmcb, map.hva);
3922 			kvm_vcpu_unmap(&svm->vcpu, &map, true);
3923 		}
3924 	}
3925 
3926 	return ret;
3927 }
3928 
3929 static void enable_smi_window(struct kvm_vcpu *vcpu)
3930 {
3931 	struct vcpu_svm *svm = to_svm(vcpu);
3932 
3933 	if (!gif_set(svm)) {
3934 		if (vgif_enabled(svm))
3935 			svm_set_intercept(svm, INTERCEPT_STGI);
3936 		/* STGI will cause a vm exit */
3937 	} else {
3938 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
3939 	}
3940 }
3941 
3942 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
3943 {
3944 	unsigned long cr4 = kvm_read_cr4(vcpu);
3945 	bool smep = cr4 & X86_CR4_SMEP;
3946 	bool smap = cr4 & X86_CR4_SMAP;
3947 	bool is_user = svm_get_cpl(vcpu) == 3;
3948 
3949 	/*
3950 	 * If RIP is invalid, go ahead with emulation which will cause an
3951 	 * internal error exit.
3952 	 */
3953 	if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
3954 		return true;
3955 
3956 	/*
3957 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
3958 	 *
3959 	 * Errata:
3960 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
3961 	 * possible that CPU microcode implementing DecodeAssist will fail
3962 	 * to read bytes of instruction which caused #NPF. In this case,
3963 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
3964 	 * return 0 instead of the correct guest instruction bytes.
3965 	 *
3966 	 * This happens because CPU microcode reading instruction bytes
3967 	 * uses a special opcode which attempts to read data using CPL=0
3968 	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
3969 	 * fault, it gives up and returns no instruction bytes.
3970 	 *
3971 	 * Detection:
3972 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
3973 	 * returned 0 in GuestIntrBytes field of the VMCB.
3974 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
3975 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
3976 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
3977 	 * a SMEP fault instead of #NPF).
3978 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
3979 	 * As most guests enable SMAP if they have also enabled SMEP, use above
3980 	 * logic in order to attempt minimize false-positive of detecting errata
3981 	 * while still preserving all cases semantic correctness.
3982 	 *
3983 	 * Workaround:
3984 	 * To determine what instruction the guest was executing, the hypervisor
3985 	 * will have to decode the instruction at the instruction pointer.
3986 	 *
3987 	 * In non SEV guest, hypervisor will be able to read the guest
3988 	 * memory to decode the instruction pointer when insn_len is zero
3989 	 * so we return true to indicate that decoding is possible.
3990 	 *
3991 	 * But in the SEV guest, the guest memory is encrypted with the
3992 	 * guest specific key and hypervisor will not be able to decode the
3993 	 * instruction pointer so we will not able to workaround it. Lets
3994 	 * print the error and request to kill the guest.
3995 	 */
3996 	if (smap && (!smep || is_user)) {
3997 		if (!sev_guest(vcpu->kvm))
3998 			return true;
3999 
4000 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4001 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4002 	}
4003 
4004 	return false;
4005 }
4006 
4007 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4008 {
4009 	struct vcpu_svm *svm = to_svm(vcpu);
4010 
4011 	/*
4012 	 * TODO: Last condition latch INIT signals on vCPU when
4013 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4014 	 * To properly emulate the INIT intercept,
4015 	 * svm_check_nested_events() should call nested_svm_vmexit()
4016 	 * if an INIT signal is pending.
4017 	 */
4018 	return !gif_set(svm) ||
4019 		   (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
4020 }
4021 
4022 static void svm_vm_destroy(struct kvm *kvm)
4023 {
4024 	avic_vm_destroy(kvm);
4025 	sev_vm_destroy(kvm);
4026 }
4027 
4028 static int svm_vm_init(struct kvm *kvm)
4029 {
4030 	if (!pause_filter_count || !pause_filter_thresh)
4031 		kvm->arch.pause_in_guest = true;
4032 
4033 	if (avic) {
4034 		int ret = avic_vm_init(kvm);
4035 		if (ret)
4036 			return ret;
4037 	}
4038 
4039 	kvm_apicv_init(kvm, avic);
4040 	return 0;
4041 }
4042 
4043 static struct kvm_x86_ops svm_x86_ops __initdata = {
4044 	.hardware_unsetup = svm_hardware_teardown,
4045 	.hardware_enable = svm_hardware_enable,
4046 	.hardware_disable = svm_hardware_disable,
4047 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4048 	.has_emulated_msr = svm_has_emulated_msr,
4049 
4050 	.vcpu_create = svm_create_vcpu,
4051 	.vcpu_free = svm_free_vcpu,
4052 	.vcpu_reset = svm_vcpu_reset,
4053 
4054 	.vm_size = sizeof(struct kvm_svm),
4055 	.vm_init = svm_vm_init,
4056 	.vm_destroy = svm_vm_destroy,
4057 
4058 	.prepare_guest_switch = svm_prepare_guest_switch,
4059 	.vcpu_load = svm_vcpu_load,
4060 	.vcpu_put = svm_vcpu_put,
4061 	.vcpu_blocking = svm_vcpu_blocking,
4062 	.vcpu_unblocking = svm_vcpu_unblocking,
4063 
4064 	.update_exception_bitmap = update_exception_bitmap,
4065 	.get_msr_feature = svm_get_msr_feature,
4066 	.get_msr = svm_get_msr,
4067 	.set_msr = svm_set_msr,
4068 	.get_segment_base = svm_get_segment_base,
4069 	.get_segment = svm_get_segment,
4070 	.set_segment = svm_set_segment,
4071 	.get_cpl = svm_get_cpl,
4072 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4073 	.set_cr0 = svm_set_cr0,
4074 	.set_cr4 = svm_set_cr4,
4075 	.set_efer = svm_set_efer,
4076 	.get_idt = svm_get_idt,
4077 	.set_idt = svm_set_idt,
4078 	.get_gdt = svm_get_gdt,
4079 	.set_gdt = svm_set_gdt,
4080 	.set_dr7 = svm_set_dr7,
4081 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4082 	.cache_reg = svm_cache_reg,
4083 	.get_rflags = svm_get_rflags,
4084 	.set_rflags = svm_set_rflags,
4085 
4086 	.tlb_flush_all = svm_flush_tlb,
4087 	.tlb_flush_current = svm_flush_tlb,
4088 	.tlb_flush_gva = svm_flush_tlb_gva,
4089 	.tlb_flush_guest = svm_flush_tlb,
4090 
4091 	.run = svm_vcpu_run,
4092 	.handle_exit = handle_exit,
4093 	.skip_emulated_instruction = skip_emulated_instruction,
4094 	.update_emulated_instruction = NULL,
4095 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4096 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4097 	.patch_hypercall = svm_patch_hypercall,
4098 	.set_irq = svm_set_irq,
4099 	.set_nmi = svm_inject_nmi,
4100 	.queue_exception = svm_queue_exception,
4101 	.cancel_injection = svm_cancel_injection,
4102 	.interrupt_allowed = svm_interrupt_allowed,
4103 	.nmi_allowed = svm_nmi_allowed,
4104 	.get_nmi_mask = svm_get_nmi_mask,
4105 	.set_nmi_mask = svm_set_nmi_mask,
4106 	.enable_nmi_window = enable_nmi_window,
4107 	.enable_irq_window = enable_irq_window,
4108 	.update_cr8_intercept = update_cr8_intercept,
4109 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
4110 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4111 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4112 	.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4113 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4114 	.hwapic_irr_update = svm_hwapic_irr_update,
4115 	.hwapic_isr_update = svm_hwapic_isr_update,
4116 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
4117 	.apicv_post_state_restore = avic_post_state_restore,
4118 
4119 	.set_tss_addr = svm_set_tss_addr,
4120 	.set_identity_map_addr = svm_set_identity_map_addr,
4121 	.get_mt_mask = svm_get_mt_mask,
4122 
4123 	.get_exit_info = svm_get_exit_info,
4124 
4125 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4126 
4127 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4128 
4129 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
4130 
4131 	.load_mmu_pgd = svm_load_mmu_pgd,
4132 
4133 	.check_intercept = svm_check_intercept,
4134 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4135 
4136 	.request_immediate_exit = __kvm_request_immediate_exit,
4137 
4138 	.sched_in = svm_sched_in,
4139 
4140 	.pmu_ops = &amd_pmu_ops,
4141 	.nested_ops = &svm_nested_ops,
4142 
4143 	.deliver_posted_interrupt = svm_deliver_avic_intr,
4144 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4145 	.update_pi_irte = svm_update_pi_irte,
4146 	.setup_mce = svm_setup_mce,
4147 
4148 	.smi_allowed = svm_smi_allowed,
4149 	.pre_enter_smm = svm_pre_enter_smm,
4150 	.pre_leave_smm = svm_pre_leave_smm,
4151 	.enable_smi_window = enable_smi_window,
4152 
4153 	.mem_enc_op = svm_mem_enc_op,
4154 	.mem_enc_reg_region = svm_register_enc_region,
4155 	.mem_enc_unreg_region = svm_unregister_enc_region,
4156 
4157 	.need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
4158 
4159 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4160 };
4161 
4162 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4163 	.cpu_has_kvm_support = has_svm,
4164 	.disabled_by_bios = is_disabled,
4165 	.hardware_setup = svm_hardware_setup,
4166 	.check_processor_compatibility = svm_check_processor_compat,
4167 
4168 	.runtime_ops = &svm_x86_ops,
4169 };
4170 
4171 static int __init svm_init(void)
4172 {
4173 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4174 			__alignof__(struct vcpu_svm), THIS_MODULE);
4175 }
4176 
4177 static void __exit svm_exit(void)
4178 {
4179 	kvm_exit();
4180 }
4181 
4182 module_init(svm_init)
4183 module_exit(svm_exit)
4184