xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision d0676871)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/frame.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 
39 #include <asm/virtext.h>
40 #include "trace.h"
41 
42 #include "svm.h"
43 
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45 
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48 
49 #ifdef MODULE
50 static const struct x86_cpu_id svm_cpu_id[] = {
51 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
52 	{}
53 };
54 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
55 #endif
56 
57 #define IOPM_ALLOC_ORDER 2
58 #define MSRPM_ALLOC_ORDER 1
59 
60 #define SEG_TYPE_LDT 2
61 #define SEG_TYPE_BUSY_TSS16 3
62 
63 #define SVM_FEATURE_LBRV           (1 <<  1)
64 #define SVM_FEATURE_SVML           (1 <<  2)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70 
71 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
72 
73 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
74 #define TSC_RATIO_MIN		0x0000000000000001ULL
75 #define TSC_RATIO_MAX		0x000000ffffffffffULL
76 
77 static bool erratum_383_found __read_mostly;
78 
79 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
80 
81 /*
82  * Set osvw_len to higher value when updated Revision Guides
83  * are published and we know what the new status bits are
84  */
85 static uint64_t osvw_len = 4, osvw_status;
86 
87 static DEFINE_PER_CPU(u64, current_tsc_ratio);
88 #define TSC_RATIO_DEFAULT	0x0100000000ULL
89 
90 static const struct svm_direct_access_msrs {
91 	u32 index;   /* Index of the MSR */
92 	bool always; /* True if intercept is always on */
93 } direct_access_msrs[] = {
94 	{ .index = MSR_STAR,				.always = true  },
95 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
96 #ifdef CONFIG_X86_64
97 	{ .index = MSR_GS_BASE,				.always = true  },
98 	{ .index = MSR_FS_BASE,				.always = true  },
99 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
100 	{ .index = MSR_LSTAR,				.always = true  },
101 	{ .index = MSR_CSTAR,				.always = true  },
102 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
103 #endif
104 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
105 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
106 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
107 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
108 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
109 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
110 	{ .index = MSR_INVALID,				.always = false },
111 };
112 
113 /* enable NPT for AMD64 and X86 with PAE */
114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115 bool npt_enabled = true;
116 #else
117 bool npt_enabled;
118 #endif
119 
120 /*
121  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
122  * pause_filter_count: On processors that support Pause filtering(indicated
123  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
124  *	count value. On VMRUN this value is loaded into an internal counter.
125  *	Each time a pause instruction is executed, this counter is decremented
126  *	until it reaches zero at which time a #VMEXIT is generated if pause
127  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
128  *	Intercept Filtering for more details.
129  *	This also indicate if ple logic enabled.
130  *
131  * pause_filter_thresh: In addition, some processor families support advanced
132  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
133  *	the amount of time a guest is allowed to execute in a pause loop.
134  *	In this mode, a 16-bit pause filter threshold field is added in the
135  *	VMCB. The threshold value is a cycle count that is used to reset the
136  *	pause counter. As with simple pause filtering, VMRUN loads the pause
137  *	count value from VMCB into an internal counter. Then, on each pause
138  *	instruction the hardware checks the elapsed number of cycles since
139  *	the most recent pause instruction against the pause filter threshold.
140  *	If the elapsed cycle count is greater than the pause filter threshold,
141  *	then the internal pause count is reloaded from the VMCB and execution
142  *	continues. If the elapsed cycle count is less than the pause filter
143  *	threshold, then the internal pause count is decremented. If the count
144  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
145  *	triggered. If advanced pause filtering is supported and pause filter
146  *	threshold field is set to zero, the filter will operate in the simpler,
147  *	count only mode.
148  */
149 
150 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
151 module_param(pause_filter_thresh, ushort, 0444);
152 
153 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
154 module_param(pause_filter_count, ushort, 0444);
155 
156 /* Default doubles per-vcpu window every exit. */
157 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
158 module_param(pause_filter_count_grow, ushort, 0444);
159 
160 /* Default resets per-vcpu window every exit to pause_filter_count. */
161 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
162 module_param(pause_filter_count_shrink, ushort, 0444);
163 
164 /* Default is to compute the maximum so we can never overflow. */
165 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
166 module_param(pause_filter_count_max, ushort, 0444);
167 
168 /* allow nested paging (virtualized MMU) for all guests */
169 static int npt = true;
170 module_param(npt, int, S_IRUGO);
171 
172 /* allow nested virtualization in KVM/SVM */
173 static int nested = true;
174 module_param(nested, int, S_IRUGO);
175 
176 /* enable/disable Next RIP Save */
177 static int nrips = true;
178 module_param(nrips, int, 0444);
179 
180 /* enable/disable Virtual VMLOAD VMSAVE */
181 static int vls = true;
182 module_param(vls, int, 0444);
183 
184 /* enable/disable Virtual GIF */
185 static int vgif = true;
186 module_param(vgif, int, 0444);
187 
188 /* enable/disable SEV support */
189 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
190 module_param(sev, int, 0444);
191 
192 static bool __read_mostly dump_invalid_vmcb = 0;
193 module_param(dump_invalid_vmcb, bool, 0644);
194 
195 static u8 rsm_ins_bytes[] = "\x0f\xaa";
196 
197 static void svm_complete_interrupts(struct vcpu_svm *svm);
198 
199 static unsigned long iopm_base;
200 
201 struct kvm_ldttss_desc {
202 	u16 limit0;
203 	u16 base0;
204 	unsigned base1:8, type:5, dpl:2, p:1;
205 	unsigned limit1:4, zero0:3, g:1, base2:8;
206 	u32 base3;
207 	u32 zero1;
208 } __attribute__((packed));
209 
210 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
211 
212 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
213 
214 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
215 #define MSRS_RANGE_SIZE 2048
216 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
217 
218 u32 svm_msrpm_offset(u32 msr)
219 {
220 	u32 offset;
221 	int i;
222 
223 	for (i = 0; i < NUM_MSR_MAPS; i++) {
224 		if (msr < msrpm_ranges[i] ||
225 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
226 			continue;
227 
228 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
229 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
230 
231 		/* Now we have the u8 offset - but need the u32 offset */
232 		return offset / 4;
233 	}
234 
235 	/* MSR not in any range */
236 	return MSR_INVALID;
237 }
238 
239 #define MAX_INST_SIZE 15
240 
241 static inline void clgi(void)
242 {
243 	asm volatile (__ex("clgi"));
244 }
245 
246 static inline void stgi(void)
247 {
248 	asm volatile (__ex("stgi"));
249 }
250 
251 static inline void invlpga(unsigned long addr, u32 asid)
252 {
253 	asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
254 }
255 
256 static int get_npt_level(struct kvm_vcpu *vcpu)
257 {
258 #ifdef CONFIG_X86_64
259 	return PT64_ROOT_4LEVEL;
260 #else
261 	return PT32E_ROOT_LEVEL;
262 #endif
263 }
264 
265 void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
266 {
267 	vcpu->arch.efer = efer;
268 
269 	if (!npt_enabled) {
270 		/* Shadow paging assumes NX to be available.  */
271 		efer |= EFER_NX;
272 
273 		if (!(efer & EFER_LMA))
274 			efer &= ~EFER_LME;
275 	}
276 
277 	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
278 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
279 }
280 
281 static int is_external_interrupt(u32 info)
282 {
283 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
284 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
285 }
286 
287 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
288 {
289 	struct vcpu_svm *svm = to_svm(vcpu);
290 	u32 ret = 0;
291 
292 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
293 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
294 	return ret;
295 }
296 
297 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
298 {
299 	struct vcpu_svm *svm = to_svm(vcpu);
300 
301 	if (mask == 0)
302 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
303 	else
304 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
305 
306 }
307 
308 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
309 {
310 	struct vcpu_svm *svm = to_svm(vcpu);
311 
312 	if (nrips && svm->vmcb->control.next_rip != 0) {
313 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
314 		svm->next_rip = svm->vmcb->control.next_rip;
315 	}
316 
317 	if (!svm->next_rip) {
318 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
319 			return 0;
320 	} else {
321 		if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
322 			pr_err("%s: ip 0x%lx next 0x%llx\n",
323 			       __func__, kvm_rip_read(vcpu), svm->next_rip);
324 		kvm_rip_write(vcpu, svm->next_rip);
325 	}
326 	svm_set_interrupt_shadow(vcpu, 0);
327 
328 	return 1;
329 }
330 
331 static void svm_queue_exception(struct kvm_vcpu *vcpu)
332 {
333 	struct vcpu_svm *svm = to_svm(vcpu);
334 	unsigned nr = vcpu->arch.exception.nr;
335 	bool has_error_code = vcpu->arch.exception.has_error_code;
336 	bool reinject = vcpu->arch.exception.injected;
337 	u32 error_code = vcpu->arch.exception.error_code;
338 
339 	/*
340 	 * If we are within a nested VM we'd better #VMEXIT and let the guest
341 	 * handle the exception
342 	 */
343 	if (!reinject &&
344 	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
345 		return;
346 
347 	kvm_deliver_exception_payload(&svm->vcpu);
348 
349 	if (nr == BP_VECTOR && !nrips) {
350 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
351 
352 		/*
353 		 * For guest debugging where we have to reinject #BP if some
354 		 * INT3 is guest-owned:
355 		 * Emulate nRIP by moving RIP forward. Will fail if injection
356 		 * raises a fault that is not intercepted. Still better than
357 		 * failing in all cases.
358 		 */
359 		(void)skip_emulated_instruction(&svm->vcpu);
360 		rip = kvm_rip_read(&svm->vcpu);
361 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
362 		svm->int3_injected = rip - old_rip;
363 	}
364 
365 	svm->vmcb->control.event_inj = nr
366 		| SVM_EVTINJ_VALID
367 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
368 		| SVM_EVTINJ_TYPE_EXEPT;
369 	svm->vmcb->control.event_inj_err = error_code;
370 }
371 
372 static void svm_init_erratum_383(void)
373 {
374 	u32 low, high;
375 	int err;
376 	u64 val;
377 
378 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
379 		return;
380 
381 	/* Use _safe variants to not break nested virtualization */
382 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
383 	if (err)
384 		return;
385 
386 	val |= (1ULL << 47);
387 
388 	low  = lower_32_bits(val);
389 	high = upper_32_bits(val);
390 
391 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
392 
393 	erratum_383_found = true;
394 }
395 
396 static void svm_init_osvw(struct kvm_vcpu *vcpu)
397 {
398 	/*
399 	 * Guests should see errata 400 and 415 as fixed (assuming that
400 	 * HLT and IO instructions are intercepted).
401 	 */
402 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
403 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
404 
405 	/*
406 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
407 	 * all osvw.status bits inside that length, including bit 0 (which is
408 	 * reserved for erratum 298), are valid. However, if host processor's
409 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
410 	 * be conservative here and therefore we tell the guest that erratum 298
411 	 * is present (because we really don't know).
412 	 */
413 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
414 		vcpu->arch.osvw.status |= 1;
415 }
416 
417 static int has_svm(void)
418 {
419 	const char *msg;
420 
421 	if (!cpu_has_svm(&msg)) {
422 		printk(KERN_INFO "has_svm: %s\n", msg);
423 		return 0;
424 	}
425 
426 	return 1;
427 }
428 
429 static void svm_hardware_disable(void)
430 {
431 	/* Make sure we clean up behind us */
432 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
433 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
434 
435 	cpu_svm_disable();
436 
437 	amd_pmu_disable_virt();
438 }
439 
440 static int svm_hardware_enable(void)
441 {
442 
443 	struct svm_cpu_data *sd;
444 	uint64_t efer;
445 	struct desc_struct *gdt;
446 	int me = raw_smp_processor_id();
447 
448 	rdmsrl(MSR_EFER, efer);
449 	if (efer & EFER_SVME)
450 		return -EBUSY;
451 
452 	if (!has_svm()) {
453 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
454 		return -EINVAL;
455 	}
456 	sd = per_cpu(svm_data, me);
457 	if (!sd) {
458 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
459 		return -EINVAL;
460 	}
461 
462 	sd->asid_generation = 1;
463 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
464 	sd->next_asid = sd->max_asid + 1;
465 	sd->min_asid = max_sev_asid + 1;
466 
467 	gdt = get_current_gdt_rw();
468 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
469 
470 	wrmsrl(MSR_EFER, efer | EFER_SVME);
471 
472 	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
473 
474 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
475 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
476 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
477 	}
478 
479 
480 	/*
481 	 * Get OSVW bits.
482 	 *
483 	 * Note that it is possible to have a system with mixed processor
484 	 * revisions and therefore different OSVW bits. If bits are not the same
485 	 * on different processors then choose the worst case (i.e. if erratum
486 	 * is present on one processor and not on another then assume that the
487 	 * erratum is present everywhere).
488 	 */
489 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
490 		uint64_t len, status = 0;
491 		int err;
492 
493 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
494 		if (!err)
495 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
496 						      &err);
497 
498 		if (err)
499 			osvw_status = osvw_len = 0;
500 		else {
501 			if (len < osvw_len)
502 				osvw_len = len;
503 			osvw_status |= status;
504 			osvw_status &= (1ULL << osvw_len) - 1;
505 		}
506 	} else
507 		osvw_status = osvw_len = 0;
508 
509 	svm_init_erratum_383();
510 
511 	amd_pmu_enable_virt();
512 
513 	return 0;
514 }
515 
516 static void svm_cpu_uninit(int cpu)
517 {
518 	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
519 
520 	if (!sd)
521 		return;
522 
523 	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
524 	kfree(sd->sev_vmcbs);
525 	__free_page(sd->save_area);
526 	kfree(sd);
527 }
528 
529 static int svm_cpu_init(int cpu)
530 {
531 	struct svm_cpu_data *sd;
532 
533 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
534 	if (!sd)
535 		return -ENOMEM;
536 	sd->cpu = cpu;
537 	sd->save_area = alloc_page(GFP_KERNEL);
538 	if (!sd->save_area)
539 		goto free_cpu_data;
540 
541 	if (svm_sev_enabled()) {
542 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
543 					      sizeof(void *),
544 					      GFP_KERNEL);
545 		if (!sd->sev_vmcbs)
546 			goto free_save_area;
547 	}
548 
549 	per_cpu(svm_data, cpu) = sd;
550 
551 	return 0;
552 
553 free_save_area:
554 	__free_page(sd->save_area);
555 free_cpu_data:
556 	kfree(sd);
557 	return -ENOMEM;
558 
559 }
560 
561 static bool valid_msr_intercept(u32 index)
562 {
563 	int i;
564 
565 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
566 		if (direct_access_msrs[i].index == index)
567 			return true;
568 
569 	return false;
570 }
571 
572 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
573 {
574 	u8 bit_write;
575 	unsigned long tmp;
576 	u32 offset;
577 	u32 *msrpm;
578 
579 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
580 				      to_svm(vcpu)->msrpm;
581 
582 	offset    = svm_msrpm_offset(msr);
583 	bit_write = 2 * (msr & 0x0f) + 1;
584 	tmp       = msrpm[offset];
585 
586 	BUG_ON(offset == MSR_INVALID);
587 
588 	return !!test_bit(bit_write,  &tmp);
589 }
590 
591 static void set_msr_interception(u32 *msrpm, unsigned msr,
592 				 int read, int write)
593 {
594 	u8 bit_read, bit_write;
595 	unsigned long tmp;
596 	u32 offset;
597 
598 	/*
599 	 * If this warning triggers extend the direct_access_msrs list at the
600 	 * beginning of the file
601 	 */
602 	WARN_ON(!valid_msr_intercept(msr));
603 
604 	offset    = svm_msrpm_offset(msr);
605 	bit_read  = 2 * (msr & 0x0f);
606 	bit_write = 2 * (msr & 0x0f) + 1;
607 	tmp       = msrpm[offset];
608 
609 	BUG_ON(offset == MSR_INVALID);
610 
611 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
612 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
613 
614 	msrpm[offset] = tmp;
615 }
616 
617 static void svm_vcpu_init_msrpm(u32 *msrpm)
618 {
619 	int i;
620 
621 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
622 
623 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
624 		if (!direct_access_msrs[i].always)
625 			continue;
626 
627 		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
628 	}
629 }
630 
631 static void add_msr_offset(u32 offset)
632 {
633 	int i;
634 
635 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
636 
637 		/* Offset already in list? */
638 		if (msrpm_offsets[i] == offset)
639 			return;
640 
641 		/* Slot used by another offset? */
642 		if (msrpm_offsets[i] != MSR_INVALID)
643 			continue;
644 
645 		/* Add offset to list */
646 		msrpm_offsets[i] = offset;
647 
648 		return;
649 	}
650 
651 	/*
652 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
653 	 * increase MSRPM_OFFSETS in this case.
654 	 */
655 	BUG();
656 }
657 
658 static void init_msrpm_offsets(void)
659 {
660 	int i;
661 
662 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
663 
664 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
665 		u32 offset;
666 
667 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
668 		BUG_ON(offset == MSR_INVALID);
669 
670 		add_msr_offset(offset);
671 	}
672 }
673 
674 static void svm_enable_lbrv(struct vcpu_svm *svm)
675 {
676 	u32 *msrpm = svm->msrpm;
677 
678 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
679 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
680 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
681 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
682 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
683 }
684 
685 static void svm_disable_lbrv(struct vcpu_svm *svm)
686 {
687 	u32 *msrpm = svm->msrpm;
688 
689 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
690 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
691 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
692 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
693 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
694 }
695 
696 void disable_nmi_singlestep(struct vcpu_svm *svm)
697 {
698 	svm->nmi_singlestep = false;
699 
700 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
701 		/* Clear our flags if they were not set by the guest */
702 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
703 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
704 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
705 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
706 	}
707 }
708 
709 static void grow_ple_window(struct kvm_vcpu *vcpu)
710 {
711 	struct vcpu_svm *svm = to_svm(vcpu);
712 	struct vmcb_control_area *control = &svm->vmcb->control;
713 	int old = control->pause_filter_count;
714 
715 	control->pause_filter_count = __grow_ple_window(old,
716 							pause_filter_count,
717 							pause_filter_count_grow,
718 							pause_filter_count_max);
719 
720 	if (control->pause_filter_count != old) {
721 		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
722 		trace_kvm_ple_window_update(vcpu->vcpu_id,
723 					    control->pause_filter_count, old);
724 	}
725 }
726 
727 static void shrink_ple_window(struct kvm_vcpu *vcpu)
728 {
729 	struct vcpu_svm *svm = to_svm(vcpu);
730 	struct vmcb_control_area *control = &svm->vmcb->control;
731 	int old = control->pause_filter_count;
732 
733 	control->pause_filter_count =
734 				__shrink_ple_window(old,
735 						    pause_filter_count,
736 						    pause_filter_count_shrink,
737 						    pause_filter_count);
738 	if (control->pause_filter_count != old) {
739 		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
740 		trace_kvm_ple_window_update(vcpu->vcpu_id,
741 					    control->pause_filter_count, old);
742 	}
743 }
744 
745 /*
746  * The default MMIO mask is a single bit (excluding the present bit),
747  * which could conflict with the memory encryption bit. Check for
748  * memory encryption support and override the default MMIO mask if
749  * memory encryption is enabled.
750  */
751 static __init void svm_adjust_mmio_mask(void)
752 {
753 	unsigned int enc_bit, mask_bit;
754 	u64 msr, mask;
755 
756 	/* If there is no memory encryption support, use existing mask */
757 	if (cpuid_eax(0x80000000) < 0x8000001f)
758 		return;
759 
760 	/* If memory encryption is not enabled, use existing mask */
761 	rdmsrl(MSR_K8_SYSCFG, msr);
762 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
763 		return;
764 
765 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
766 	mask_bit = boot_cpu_data.x86_phys_bits;
767 
768 	/* Increment the mask bit if it is the same as the encryption bit */
769 	if (enc_bit == mask_bit)
770 		mask_bit++;
771 
772 	/*
773 	 * If the mask bit location is below 52, then some bits above the
774 	 * physical addressing limit will always be reserved, so use the
775 	 * rsvd_bits() function to generate the mask. This mask, along with
776 	 * the present bit, will be used to generate a page fault with
777 	 * PFER.RSV = 1.
778 	 *
779 	 * If the mask bit location is 52 (or above), then clear the mask.
780 	 */
781 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
782 
783 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
784 }
785 
786 static void svm_hardware_teardown(void)
787 {
788 	int cpu;
789 
790 	if (svm_sev_enabled())
791 		sev_hardware_teardown();
792 
793 	for_each_possible_cpu(cpu)
794 		svm_cpu_uninit(cpu);
795 
796 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
797 	iopm_base = 0;
798 }
799 
800 static __init void svm_set_cpu_caps(void)
801 {
802 	kvm_set_cpu_caps();
803 
804 	supported_xss = 0;
805 
806 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
807 	if (nested) {
808 		kvm_cpu_cap_set(X86_FEATURE_SVM);
809 
810 		if (nrips)
811 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
812 
813 		if (npt_enabled)
814 			kvm_cpu_cap_set(X86_FEATURE_NPT);
815 	}
816 
817 	/* CPUID 0x80000008 */
818 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
819 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
820 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
821 }
822 
823 static __init int svm_hardware_setup(void)
824 {
825 	int cpu;
826 	struct page *iopm_pages;
827 	void *iopm_va;
828 	int r;
829 
830 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
831 
832 	if (!iopm_pages)
833 		return -ENOMEM;
834 
835 	iopm_va = page_address(iopm_pages);
836 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
837 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
838 
839 	init_msrpm_offsets();
840 
841 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
842 
843 	if (boot_cpu_has(X86_FEATURE_NX))
844 		kvm_enable_efer_bits(EFER_NX);
845 
846 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
847 		kvm_enable_efer_bits(EFER_FFXSR);
848 
849 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
850 		kvm_has_tsc_control = true;
851 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
852 		kvm_tsc_scaling_ratio_frac_bits = 32;
853 	}
854 
855 	/* Check for pause filtering support */
856 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
857 		pause_filter_count = 0;
858 		pause_filter_thresh = 0;
859 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
860 		pause_filter_thresh = 0;
861 	}
862 
863 	if (nested) {
864 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
865 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
866 	}
867 
868 	if (sev) {
869 		if (boot_cpu_has(X86_FEATURE_SEV) &&
870 		    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
871 			r = sev_hardware_setup();
872 			if (r)
873 				sev = false;
874 		} else {
875 			sev = false;
876 		}
877 	}
878 
879 	svm_adjust_mmio_mask();
880 
881 	for_each_possible_cpu(cpu) {
882 		r = svm_cpu_init(cpu);
883 		if (r)
884 			goto err;
885 	}
886 
887 	if (!boot_cpu_has(X86_FEATURE_NPT))
888 		npt_enabled = false;
889 
890 	if (npt_enabled && !npt)
891 		npt_enabled = false;
892 
893 	kvm_configure_mmu(npt_enabled, PT_PDPE_LEVEL);
894 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
895 
896 	if (nrips) {
897 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
898 			nrips = false;
899 	}
900 
901 	if (avic) {
902 		if (!npt_enabled ||
903 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
904 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
905 			avic = false;
906 		} else {
907 			pr_info("AVIC enabled\n");
908 
909 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
910 		}
911 	}
912 
913 	if (vls) {
914 		if (!npt_enabled ||
915 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
916 		    !IS_ENABLED(CONFIG_X86_64)) {
917 			vls = false;
918 		} else {
919 			pr_info("Virtual VMLOAD VMSAVE supported\n");
920 		}
921 	}
922 
923 	if (vgif) {
924 		if (!boot_cpu_has(X86_FEATURE_VGIF))
925 			vgif = false;
926 		else
927 			pr_info("Virtual GIF supported\n");
928 	}
929 
930 	svm_set_cpu_caps();
931 
932 	return 0;
933 
934 err:
935 	svm_hardware_teardown();
936 	return r;
937 }
938 
939 static void init_seg(struct vmcb_seg *seg)
940 {
941 	seg->selector = 0;
942 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
943 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
944 	seg->limit = 0xffff;
945 	seg->base = 0;
946 }
947 
948 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
949 {
950 	seg->selector = 0;
951 	seg->attrib = SVM_SELECTOR_P_MASK | type;
952 	seg->limit = 0xffff;
953 	seg->base = 0;
954 }
955 
956 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
957 {
958 	struct vcpu_svm *svm = to_svm(vcpu);
959 
960 	if (is_guest_mode(vcpu))
961 		return svm->nested.hsave->control.tsc_offset;
962 
963 	return vcpu->arch.tsc_offset;
964 }
965 
966 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
967 {
968 	struct vcpu_svm *svm = to_svm(vcpu);
969 	u64 g_tsc_offset = 0;
970 
971 	if (is_guest_mode(vcpu)) {
972 		/* Write L1's TSC offset.  */
973 		g_tsc_offset = svm->vmcb->control.tsc_offset -
974 			       svm->nested.hsave->control.tsc_offset;
975 		svm->nested.hsave->control.tsc_offset = offset;
976 	}
977 
978 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
979 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
980 				   offset);
981 
982 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
983 
984 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
985 	return svm->vmcb->control.tsc_offset;
986 }
987 
988 static void init_vmcb(struct vcpu_svm *svm)
989 {
990 	struct vmcb_control_area *control = &svm->vmcb->control;
991 	struct vmcb_save_area *save = &svm->vmcb->save;
992 
993 	svm->vcpu.arch.hflags = 0;
994 
995 	set_cr_intercept(svm, INTERCEPT_CR0_READ);
996 	set_cr_intercept(svm, INTERCEPT_CR3_READ);
997 	set_cr_intercept(svm, INTERCEPT_CR4_READ);
998 	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
999 	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1000 	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1001 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1002 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1003 
1004 	set_dr_intercepts(svm);
1005 
1006 	set_exception_intercept(svm, PF_VECTOR);
1007 	set_exception_intercept(svm, UD_VECTOR);
1008 	set_exception_intercept(svm, MC_VECTOR);
1009 	set_exception_intercept(svm, AC_VECTOR);
1010 	set_exception_intercept(svm, DB_VECTOR);
1011 	/*
1012 	 * Guest access to VMware backdoor ports could legitimately
1013 	 * trigger #GP because of TSS I/O permission bitmap.
1014 	 * We intercept those #GP and allow access to them anyway
1015 	 * as VMware does.
1016 	 */
1017 	if (enable_vmware_backdoor)
1018 		set_exception_intercept(svm, GP_VECTOR);
1019 
1020 	set_intercept(svm, INTERCEPT_INTR);
1021 	set_intercept(svm, INTERCEPT_NMI);
1022 	set_intercept(svm, INTERCEPT_SMI);
1023 	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1024 	set_intercept(svm, INTERCEPT_RDPMC);
1025 	set_intercept(svm, INTERCEPT_CPUID);
1026 	set_intercept(svm, INTERCEPT_INVD);
1027 	set_intercept(svm, INTERCEPT_INVLPG);
1028 	set_intercept(svm, INTERCEPT_INVLPGA);
1029 	set_intercept(svm, INTERCEPT_IOIO_PROT);
1030 	set_intercept(svm, INTERCEPT_MSR_PROT);
1031 	set_intercept(svm, INTERCEPT_TASK_SWITCH);
1032 	set_intercept(svm, INTERCEPT_SHUTDOWN);
1033 	set_intercept(svm, INTERCEPT_VMRUN);
1034 	set_intercept(svm, INTERCEPT_VMMCALL);
1035 	set_intercept(svm, INTERCEPT_VMLOAD);
1036 	set_intercept(svm, INTERCEPT_VMSAVE);
1037 	set_intercept(svm, INTERCEPT_STGI);
1038 	set_intercept(svm, INTERCEPT_CLGI);
1039 	set_intercept(svm, INTERCEPT_SKINIT);
1040 	set_intercept(svm, INTERCEPT_WBINVD);
1041 	set_intercept(svm, INTERCEPT_XSETBV);
1042 	set_intercept(svm, INTERCEPT_RDPRU);
1043 	set_intercept(svm, INTERCEPT_RSM);
1044 
1045 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1046 		set_intercept(svm, INTERCEPT_MONITOR);
1047 		set_intercept(svm, INTERCEPT_MWAIT);
1048 	}
1049 
1050 	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1051 		set_intercept(svm, INTERCEPT_HLT);
1052 
1053 	control->iopm_base_pa = __sme_set(iopm_base);
1054 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1055 	control->int_ctl = V_INTR_MASKING_MASK;
1056 
1057 	init_seg(&save->es);
1058 	init_seg(&save->ss);
1059 	init_seg(&save->ds);
1060 	init_seg(&save->fs);
1061 	init_seg(&save->gs);
1062 
1063 	save->cs.selector = 0xf000;
1064 	save->cs.base = 0xffff0000;
1065 	/* Executable/Readable Code Segment */
1066 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1067 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1068 	save->cs.limit = 0xffff;
1069 
1070 	save->gdtr.limit = 0xffff;
1071 	save->idtr.limit = 0xffff;
1072 
1073 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1074 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1075 
1076 	svm_set_efer(&svm->vcpu, 0);
1077 	save->dr6 = 0xffff0ff0;
1078 	kvm_set_rflags(&svm->vcpu, 2);
1079 	save->rip = 0x0000fff0;
1080 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1081 
1082 	/*
1083 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1084 	 * It also updates the guest-visible cr0 value.
1085 	 */
1086 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1087 	kvm_mmu_reset_context(&svm->vcpu);
1088 
1089 	save->cr4 = X86_CR4_PAE;
1090 	/* rdx = ?? */
1091 
1092 	if (npt_enabled) {
1093 		/* Setup VMCB for Nested Paging */
1094 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1095 		clr_intercept(svm, INTERCEPT_INVLPG);
1096 		clr_exception_intercept(svm, PF_VECTOR);
1097 		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1098 		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1099 		save->g_pat = svm->vcpu.arch.pat;
1100 		save->cr3 = 0;
1101 		save->cr4 = 0;
1102 	}
1103 	svm->asid_generation = 0;
1104 
1105 	svm->nested.vmcb = 0;
1106 	svm->vcpu.arch.hflags = 0;
1107 
1108 	if (pause_filter_count) {
1109 		control->pause_filter_count = pause_filter_count;
1110 		if (pause_filter_thresh)
1111 			control->pause_filter_thresh = pause_filter_thresh;
1112 		set_intercept(svm, INTERCEPT_PAUSE);
1113 	} else {
1114 		clr_intercept(svm, INTERCEPT_PAUSE);
1115 	}
1116 
1117 	if (kvm_vcpu_apicv_active(&svm->vcpu))
1118 		avic_init_vmcb(svm);
1119 
1120 	/*
1121 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1122 	 * in VMCB and clear intercepts to avoid #VMEXIT.
1123 	 */
1124 	if (vls) {
1125 		clr_intercept(svm, INTERCEPT_VMLOAD);
1126 		clr_intercept(svm, INTERCEPT_VMSAVE);
1127 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1128 	}
1129 
1130 	if (vgif) {
1131 		clr_intercept(svm, INTERCEPT_STGI);
1132 		clr_intercept(svm, INTERCEPT_CLGI);
1133 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1134 	}
1135 
1136 	if (sev_guest(svm->vcpu.kvm)) {
1137 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1138 		clr_exception_intercept(svm, UD_VECTOR);
1139 	}
1140 
1141 	mark_all_dirty(svm->vmcb);
1142 
1143 	enable_gif(svm);
1144 
1145 }
1146 
1147 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1148 {
1149 	struct vcpu_svm *svm = to_svm(vcpu);
1150 	u32 dummy;
1151 	u32 eax = 1;
1152 
1153 	svm->spec_ctrl = 0;
1154 	svm->virt_spec_ctrl = 0;
1155 
1156 	if (!init_event) {
1157 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1158 					   MSR_IA32_APICBASE_ENABLE;
1159 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1160 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1161 	}
1162 	init_vmcb(svm);
1163 
1164 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1165 	kvm_rdx_write(vcpu, eax);
1166 
1167 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1168 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1169 }
1170 
1171 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1172 {
1173 	struct vcpu_svm *svm;
1174 	struct page *page;
1175 	struct page *msrpm_pages;
1176 	struct page *hsave_page;
1177 	struct page *nested_msrpm_pages;
1178 	int err;
1179 
1180 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1181 	svm = to_svm(vcpu);
1182 
1183 	err = -ENOMEM;
1184 	page = alloc_page(GFP_KERNEL_ACCOUNT);
1185 	if (!page)
1186 		goto out;
1187 
1188 	msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1189 	if (!msrpm_pages)
1190 		goto free_page1;
1191 
1192 	nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1193 	if (!nested_msrpm_pages)
1194 		goto free_page2;
1195 
1196 	hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
1197 	if (!hsave_page)
1198 		goto free_page3;
1199 
1200 	err = avic_init_vcpu(svm);
1201 	if (err)
1202 		goto free_page4;
1203 
1204 	/* We initialize this flag to true to make sure that the is_running
1205 	 * bit would be set the first time the vcpu is loaded.
1206 	 */
1207 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1208 		svm->avic_is_running = true;
1209 
1210 	svm->nested.hsave = page_address(hsave_page);
1211 
1212 	svm->msrpm = page_address(msrpm_pages);
1213 	svm_vcpu_init_msrpm(svm->msrpm);
1214 
1215 	svm->nested.msrpm = page_address(nested_msrpm_pages);
1216 	svm_vcpu_init_msrpm(svm->nested.msrpm);
1217 
1218 	svm->vmcb = page_address(page);
1219 	clear_page(svm->vmcb);
1220 	svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1221 	svm->asid_generation = 0;
1222 	init_vmcb(svm);
1223 
1224 	svm_init_osvw(vcpu);
1225 	vcpu->arch.microcode_version = 0x01000065;
1226 
1227 	return 0;
1228 
1229 free_page4:
1230 	__free_page(hsave_page);
1231 free_page3:
1232 	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1233 free_page2:
1234 	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1235 free_page1:
1236 	__free_page(page);
1237 out:
1238 	return err;
1239 }
1240 
1241 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1242 {
1243 	int i;
1244 
1245 	for_each_online_cpu(i)
1246 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1247 }
1248 
1249 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1250 {
1251 	struct vcpu_svm *svm = to_svm(vcpu);
1252 
1253 	/*
1254 	 * The vmcb page can be recycled, causing a false negative in
1255 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1256 	 * vmcb page recorded as its current vmcb.
1257 	 */
1258 	svm_clear_current_vmcb(svm->vmcb);
1259 
1260 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1261 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1262 	__free_page(virt_to_page(svm->nested.hsave));
1263 	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1264 }
1265 
1266 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1267 {
1268 	struct vcpu_svm *svm = to_svm(vcpu);
1269 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1270 	int i;
1271 
1272 	if (unlikely(cpu != vcpu->cpu)) {
1273 		svm->asid_generation = 0;
1274 		mark_all_dirty(svm->vmcb);
1275 	}
1276 
1277 #ifdef CONFIG_X86_64
1278 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1279 #endif
1280 	savesegment(fs, svm->host.fs);
1281 	savesegment(gs, svm->host.gs);
1282 	svm->host.ldt = kvm_read_ldt();
1283 
1284 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1285 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1286 
1287 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1288 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1289 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1290 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1291 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1292 		}
1293 	}
1294 	/* This assumes that the kernel never uses MSR_TSC_AUX */
1295 	if (static_cpu_has(X86_FEATURE_RDTSCP))
1296 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1297 
1298 	if (sd->current_vmcb != svm->vmcb) {
1299 		sd->current_vmcb = svm->vmcb;
1300 		indirect_branch_prediction_barrier();
1301 	}
1302 	avic_vcpu_load(vcpu, cpu);
1303 }
1304 
1305 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1306 {
1307 	struct vcpu_svm *svm = to_svm(vcpu);
1308 	int i;
1309 
1310 	avic_vcpu_put(vcpu);
1311 
1312 	++vcpu->stat.host_state_reload;
1313 	kvm_load_ldt(svm->host.ldt);
1314 #ifdef CONFIG_X86_64
1315 	loadsegment(fs, svm->host.fs);
1316 	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1317 	load_gs_index(svm->host.gs);
1318 #else
1319 #ifdef CONFIG_X86_32_LAZY_GS
1320 	loadsegment(gs, svm->host.gs);
1321 #endif
1322 #endif
1323 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1324 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1325 }
1326 
1327 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1328 {
1329 	struct vcpu_svm *svm = to_svm(vcpu);
1330 	unsigned long rflags = svm->vmcb->save.rflags;
1331 
1332 	if (svm->nmi_singlestep) {
1333 		/* Hide our flags if they were not set by the guest */
1334 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1335 			rflags &= ~X86_EFLAGS_TF;
1336 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1337 			rflags &= ~X86_EFLAGS_RF;
1338 	}
1339 	return rflags;
1340 }
1341 
1342 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1343 {
1344 	if (to_svm(vcpu)->nmi_singlestep)
1345 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1346 
1347        /*
1348         * Any change of EFLAGS.VM is accompanied by a reload of SS
1349         * (caused by either a task switch or an inter-privilege IRET),
1350         * so we do not need to update the CPL here.
1351         */
1352 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1353 }
1354 
1355 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1356 {
1357 	switch (reg) {
1358 	case VCPU_EXREG_PDPTR:
1359 		BUG_ON(!npt_enabled);
1360 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1361 		break;
1362 	default:
1363 		WARN_ON_ONCE(1);
1364 	}
1365 }
1366 
1367 static inline void svm_enable_vintr(struct vcpu_svm *svm)
1368 {
1369 	struct vmcb_control_area *control;
1370 
1371 	/* The following fields are ignored when AVIC is enabled */
1372 	WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1373 
1374 	/*
1375 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1376 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1377 	 */
1378 	control = &svm->vmcb->control;
1379 	control->int_vector = 0x0;
1380 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1381 	control->int_ctl |= V_IRQ_MASK |
1382 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1383 	mark_dirty(svm->vmcb, VMCB_INTR);
1384 }
1385 
1386 static void svm_set_vintr(struct vcpu_svm *svm)
1387 {
1388 	set_intercept(svm, INTERCEPT_VINTR);
1389 	if (is_intercept(svm, INTERCEPT_VINTR))
1390 		svm_enable_vintr(svm);
1391 }
1392 
1393 static void svm_clear_vintr(struct vcpu_svm *svm)
1394 {
1395 	clr_intercept(svm, INTERCEPT_VINTR);
1396 
1397 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1398 	mark_dirty(svm->vmcb, VMCB_INTR);
1399 }
1400 
1401 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1402 {
1403 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1404 
1405 	switch (seg) {
1406 	case VCPU_SREG_CS: return &save->cs;
1407 	case VCPU_SREG_DS: return &save->ds;
1408 	case VCPU_SREG_ES: return &save->es;
1409 	case VCPU_SREG_FS: return &save->fs;
1410 	case VCPU_SREG_GS: return &save->gs;
1411 	case VCPU_SREG_SS: return &save->ss;
1412 	case VCPU_SREG_TR: return &save->tr;
1413 	case VCPU_SREG_LDTR: return &save->ldtr;
1414 	}
1415 	BUG();
1416 	return NULL;
1417 }
1418 
1419 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1420 {
1421 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1422 
1423 	return s->base;
1424 }
1425 
1426 static void svm_get_segment(struct kvm_vcpu *vcpu,
1427 			    struct kvm_segment *var, int seg)
1428 {
1429 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1430 
1431 	var->base = s->base;
1432 	var->limit = s->limit;
1433 	var->selector = s->selector;
1434 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1435 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1436 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1437 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1438 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1439 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1440 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1441 
1442 	/*
1443 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1444 	 * However, the SVM spec states that the G bit is not observed by the
1445 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1446 	 * So let's synthesize a legal G bit for all segments, this helps
1447 	 * running KVM nested. It also helps cross-vendor migration, because
1448 	 * Intel's vmentry has a check on the 'G' bit.
1449 	 */
1450 	var->g = s->limit > 0xfffff;
1451 
1452 	/*
1453 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1454 	 * for cross vendor migration purposes by "not present"
1455 	 */
1456 	var->unusable = !var->present;
1457 
1458 	switch (seg) {
1459 	case VCPU_SREG_TR:
1460 		/*
1461 		 * Work around a bug where the busy flag in the tr selector
1462 		 * isn't exposed
1463 		 */
1464 		var->type |= 0x2;
1465 		break;
1466 	case VCPU_SREG_DS:
1467 	case VCPU_SREG_ES:
1468 	case VCPU_SREG_FS:
1469 	case VCPU_SREG_GS:
1470 		/*
1471 		 * The accessed bit must always be set in the segment
1472 		 * descriptor cache, although it can be cleared in the
1473 		 * descriptor, the cached bit always remains at 1. Since
1474 		 * Intel has a check on this, set it here to support
1475 		 * cross-vendor migration.
1476 		 */
1477 		if (!var->unusable)
1478 			var->type |= 0x1;
1479 		break;
1480 	case VCPU_SREG_SS:
1481 		/*
1482 		 * On AMD CPUs sometimes the DB bit in the segment
1483 		 * descriptor is left as 1, although the whole segment has
1484 		 * been made unusable. Clear it here to pass an Intel VMX
1485 		 * entry check when cross vendor migrating.
1486 		 */
1487 		if (var->unusable)
1488 			var->db = 0;
1489 		/* This is symmetric with svm_set_segment() */
1490 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1491 		break;
1492 	}
1493 }
1494 
1495 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1496 {
1497 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1498 
1499 	return save->cpl;
1500 }
1501 
1502 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1503 {
1504 	struct vcpu_svm *svm = to_svm(vcpu);
1505 
1506 	dt->size = svm->vmcb->save.idtr.limit;
1507 	dt->address = svm->vmcb->save.idtr.base;
1508 }
1509 
1510 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1511 {
1512 	struct vcpu_svm *svm = to_svm(vcpu);
1513 
1514 	svm->vmcb->save.idtr.limit = dt->size;
1515 	svm->vmcb->save.idtr.base = dt->address ;
1516 	mark_dirty(svm->vmcb, VMCB_DT);
1517 }
1518 
1519 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1520 {
1521 	struct vcpu_svm *svm = to_svm(vcpu);
1522 
1523 	dt->size = svm->vmcb->save.gdtr.limit;
1524 	dt->address = svm->vmcb->save.gdtr.base;
1525 }
1526 
1527 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1528 {
1529 	struct vcpu_svm *svm = to_svm(vcpu);
1530 
1531 	svm->vmcb->save.gdtr.limit = dt->size;
1532 	svm->vmcb->save.gdtr.base = dt->address ;
1533 	mark_dirty(svm->vmcb, VMCB_DT);
1534 }
1535 
1536 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1537 {
1538 }
1539 
1540 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1541 {
1542 }
1543 
1544 static void update_cr0_intercept(struct vcpu_svm *svm)
1545 {
1546 	ulong gcr0 = svm->vcpu.arch.cr0;
1547 	u64 *hcr0 = &svm->vmcb->save.cr0;
1548 
1549 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1550 		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1551 
1552 	mark_dirty(svm->vmcb, VMCB_CR);
1553 
1554 	if (gcr0 == *hcr0) {
1555 		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1556 		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1557 	} else {
1558 		set_cr_intercept(svm, INTERCEPT_CR0_READ);
1559 		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1560 	}
1561 }
1562 
1563 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1564 {
1565 	struct vcpu_svm *svm = to_svm(vcpu);
1566 
1567 #ifdef CONFIG_X86_64
1568 	if (vcpu->arch.efer & EFER_LME) {
1569 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1570 			vcpu->arch.efer |= EFER_LMA;
1571 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1572 		}
1573 
1574 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1575 			vcpu->arch.efer &= ~EFER_LMA;
1576 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1577 		}
1578 	}
1579 #endif
1580 	vcpu->arch.cr0 = cr0;
1581 
1582 	if (!npt_enabled)
1583 		cr0 |= X86_CR0_PG | X86_CR0_WP;
1584 
1585 	/*
1586 	 * re-enable caching here because the QEMU bios
1587 	 * does not do it - this results in some delay at
1588 	 * reboot
1589 	 */
1590 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1591 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1592 	svm->vmcb->save.cr0 = cr0;
1593 	mark_dirty(svm->vmcb, VMCB_CR);
1594 	update_cr0_intercept(svm);
1595 }
1596 
1597 int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1598 {
1599 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1600 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1601 
1602 	if (cr4 & X86_CR4_VMXE)
1603 		return 1;
1604 
1605 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1606 		svm_flush_tlb(vcpu, true);
1607 
1608 	vcpu->arch.cr4 = cr4;
1609 	if (!npt_enabled)
1610 		cr4 |= X86_CR4_PAE;
1611 	cr4 |= host_cr4_mce;
1612 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1613 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1614 	return 0;
1615 }
1616 
1617 static void svm_set_segment(struct kvm_vcpu *vcpu,
1618 			    struct kvm_segment *var, int seg)
1619 {
1620 	struct vcpu_svm *svm = to_svm(vcpu);
1621 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1622 
1623 	s->base = var->base;
1624 	s->limit = var->limit;
1625 	s->selector = var->selector;
1626 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1627 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1628 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1629 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1630 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1631 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1632 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1633 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1634 
1635 	/*
1636 	 * This is always accurate, except if SYSRET returned to a segment
1637 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1638 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1639 	 * would entail passing the CPL to userspace and back.
1640 	 */
1641 	if (seg == VCPU_SREG_SS)
1642 		/* This is symmetric with svm_get_segment() */
1643 		svm->vmcb->save.cpl = (var->dpl & 3);
1644 
1645 	mark_dirty(svm->vmcb, VMCB_SEG);
1646 }
1647 
1648 static void update_bp_intercept(struct kvm_vcpu *vcpu)
1649 {
1650 	struct vcpu_svm *svm = to_svm(vcpu);
1651 
1652 	clr_exception_intercept(svm, BP_VECTOR);
1653 
1654 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1655 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1656 			set_exception_intercept(svm, BP_VECTOR);
1657 	} else
1658 		vcpu->guest_debug = 0;
1659 }
1660 
1661 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1662 {
1663 	if (sd->next_asid > sd->max_asid) {
1664 		++sd->asid_generation;
1665 		sd->next_asid = sd->min_asid;
1666 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1667 	}
1668 
1669 	svm->asid_generation = sd->asid_generation;
1670 	svm->vmcb->control.asid = sd->next_asid++;
1671 
1672 	mark_dirty(svm->vmcb, VMCB_ASID);
1673 }
1674 
1675 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1676 {
1677 	return to_svm(vcpu)->vmcb->save.dr6;
1678 }
1679 
1680 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1681 {
1682 	struct vcpu_svm *svm = to_svm(vcpu);
1683 
1684 	svm->vmcb->save.dr6 = value;
1685 	mark_dirty(svm->vmcb, VMCB_DR);
1686 }
1687 
1688 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1689 {
1690 	struct vcpu_svm *svm = to_svm(vcpu);
1691 
1692 	get_debugreg(vcpu->arch.db[0], 0);
1693 	get_debugreg(vcpu->arch.db[1], 1);
1694 	get_debugreg(vcpu->arch.db[2], 2);
1695 	get_debugreg(vcpu->arch.db[3], 3);
1696 	vcpu->arch.dr6 = svm_get_dr6(vcpu);
1697 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1698 
1699 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1700 	set_dr_intercepts(svm);
1701 }
1702 
1703 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1704 {
1705 	struct vcpu_svm *svm = to_svm(vcpu);
1706 
1707 	svm->vmcb->save.dr7 = value;
1708 	mark_dirty(svm->vmcb, VMCB_DR);
1709 }
1710 
1711 static int pf_interception(struct vcpu_svm *svm)
1712 {
1713 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1714 	u64 error_code = svm->vmcb->control.exit_info_1;
1715 
1716 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1717 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1718 			svm->vmcb->control.insn_bytes : NULL,
1719 			svm->vmcb->control.insn_len);
1720 }
1721 
1722 static int npf_interception(struct vcpu_svm *svm)
1723 {
1724 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1725 	u64 error_code = svm->vmcb->control.exit_info_1;
1726 
1727 	trace_kvm_page_fault(fault_address, error_code);
1728 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1729 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1730 			svm->vmcb->control.insn_bytes : NULL,
1731 			svm->vmcb->control.insn_len);
1732 }
1733 
1734 static int db_interception(struct vcpu_svm *svm)
1735 {
1736 	struct kvm_run *kvm_run = svm->vcpu.run;
1737 	struct kvm_vcpu *vcpu = &svm->vcpu;
1738 
1739 	if (!(svm->vcpu.guest_debug &
1740 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1741 		!svm->nmi_singlestep) {
1742 		kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1743 		return 1;
1744 	}
1745 
1746 	if (svm->nmi_singlestep) {
1747 		disable_nmi_singlestep(svm);
1748 		/* Make sure we check for pending NMIs upon entry */
1749 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1750 	}
1751 
1752 	if (svm->vcpu.guest_debug &
1753 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1754 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1755 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1756 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1757 		kvm_run->debug.arch.pc =
1758 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1759 		kvm_run->debug.arch.exception = DB_VECTOR;
1760 		return 0;
1761 	}
1762 
1763 	return 1;
1764 }
1765 
1766 static int bp_interception(struct vcpu_svm *svm)
1767 {
1768 	struct kvm_run *kvm_run = svm->vcpu.run;
1769 
1770 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1771 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1772 	kvm_run->debug.arch.exception = BP_VECTOR;
1773 	return 0;
1774 }
1775 
1776 static int ud_interception(struct vcpu_svm *svm)
1777 {
1778 	return handle_ud(&svm->vcpu);
1779 }
1780 
1781 static int ac_interception(struct vcpu_svm *svm)
1782 {
1783 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1784 	return 1;
1785 }
1786 
1787 static int gp_interception(struct vcpu_svm *svm)
1788 {
1789 	struct kvm_vcpu *vcpu = &svm->vcpu;
1790 	u32 error_code = svm->vmcb->control.exit_info_1;
1791 
1792 	WARN_ON_ONCE(!enable_vmware_backdoor);
1793 
1794 	/*
1795 	 * VMware backdoor emulation on #GP interception only handles IN{S},
1796 	 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1797 	 */
1798 	if (error_code) {
1799 		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1800 		return 1;
1801 	}
1802 	return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1803 }
1804 
1805 static bool is_erratum_383(void)
1806 {
1807 	int err, i;
1808 	u64 value;
1809 
1810 	if (!erratum_383_found)
1811 		return false;
1812 
1813 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1814 	if (err)
1815 		return false;
1816 
1817 	/* Bit 62 may or may not be set for this mce */
1818 	value &= ~(1ULL << 62);
1819 
1820 	if (value != 0xb600000000010015ULL)
1821 		return false;
1822 
1823 	/* Clear MCi_STATUS registers */
1824 	for (i = 0; i < 6; ++i)
1825 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1826 
1827 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1828 	if (!err) {
1829 		u32 low, high;
1830 
1831 		value &= ~(1ULL << 2);
1832 		low    = lower_32_bits(value);
1833 		high   = upper_32_bits(value);
1834 
1835 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1836 	}
1837 
1838 	/* Flush tlb to evict multi-match entries */
1839 	__flush_tlb_all();
1840 
1841 	return true;
1842 }
1843 
1844 static void svm_handle_mce(struct vcpu_svm *svm)
1845 {
1846 	if (is_erratum_383()) {
1847 		/*
1848 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1849 		 * guest.
1850 		 */
1851 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
1852 
1853 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1854 
1855 		return;
1856 	}
1857 
1858 	/*
1859 	 * On an #MC intercept the MCE handler is not called automatically in
1860 	 * the host. So do it by hand here.
1861 	 */
1862 	asm volatile (
1863 		"int $0x12\n");
1864 	/* not sure if we ever come back to this point */
1865 
1866 	return;
1867 }
1868 
1869 static int mc_interception(struct vcpu_svm *svm)
1870 {
1871 	return 1;
1872 }
1873 
1874 static int shutdown_interception(struct vcpu_svm *svm)
1875 {
1876 	struct kvm_run *kvm_run = svm->vcpu.run;
1877 
1878 	/*
1879 	 * VMCB is undefined after a SHUTDOWN intercept
1880 	 * so reinitialize it.
1881 	 */
1882 	clear_page(svm->vmcb);
1883 	init_vmcb(svm);
1884 
1885 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1886 	return 0;
1887 }
1888 
1889 static int io_interception(struct vcpu_svm *svm)
1890 {
1891 	struct kvm_vcpu *vcpu = &svm->vcpu;
1892 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1893 	int size, in, string;
1894 	unsigned port;
1895 
1896 	++svm->vcpu.stat.io_exits;
1897 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
1898 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1899 	if (string)
1900 		return kvm_emulate_instruction(vcpu, 0);
1901 
1902 	port = io_info >> 16;
1903 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1904 	svm->next_rip = svm->vmcb->control.exit_info_2;
1905 
1906 	return kvm_fast_pio(&svm->vcpu, size, port, in);
1907 }
1908 
1909 static int nmi_interception(struct vcpu_svm *svm)
1910 {
1911 	return 1;
1912 }
1913 
1914 static int intr_interception(struct vcpu_svm *svm)
1915 {
1916 	++svm->vcpu.stat.irq_exits;
1917 	return 1;
1918 }
1919 
1920 static int nop_on_interception(struct vcpu_svm *svm)
1921 {
1922 	return 1;
1923 }
1924 
1925 static int halt_interception(struct vcpu_svm *svm)
1926 {
1927 	return kvm_emulate_halt(&svm->vcpu);
1928 }
1929 
1930 static int vmmcall_interception(struct vcpu_svm *svm)
1931 {
1932 	return kvm_emulate_hypercall(&svm->vcpu);
1933 }
1934 
1935 static int vmload_interception(struct vcpu_svm *svm)
1936 {
1937 	struct vmcb *nested_vmcb;
1938 	struct kvm_host_map map;
1939 	int ret;
1940 
1941 	if (nested_svm_check_permissions(svm))
1942 		return 1;
1943 
1944 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1945 	if (ret) {
1946 		if (ret == -EINVAL)
1947 			kvm_inject_gp(&svm->vcpu, 0);
1948 		return 1;
1949 	}
1950 
1951 	nested_vmcb = map.hva;
1952 
1953 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
1954 
1955 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1956 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
1957 
1958 	return ret;
1959 }
1960 
1961 static int vmsave_interception(struct vcpu_svm *svm)
1962 {
1963 	struct vmcb *nested_vmcb;
1964 	struct kvm_host_map map;
1965 	int ret;
1966 
1967 	if (nested_svm_check_permissions(svm))
1968 		return 1;
1969 
1970 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1971 	if (ret) {
1972 		if (ret == -EINVAL)
1973 			kvm_inject_gp(&svm->vcpu, 0);
1974 		return 1;
1975 	}
1976 
1977 	nested_vmcb = map.hva;
1978 
1979 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
1980 
1981 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1982 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
1983 
1984 	return ret;
1985 }
1986 
1987 static int vmrun_interception(struct vcpu_svm *svm)
1988 {
1989 	if (nested_svm_check_permissions(svm))
1990 		return 1;
1991 
1992 	return nested_svm_vmrun(svm);
1993 }
1994 
1995 static int stgi_interception(struct vcpu_svm *svm)
1996 {
1997 	int ret;
1998 
1999 	if (nested_svm_check_permissions(svm))
2000 		return 1;
2001 
2002 	/*
2003 	 * If VGIF is enabled, the STGI intercept is only added to
2004 	 * detect the opening of the SMI/NMI window; remove it now.
2005 	 */
2006 	if (vgif_enabled(svm))
2007 		clr_intercept(svm, INTERCEPT_STGI);
2008 
2009 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2010 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2011 
2012 	enable_gif(svm);
2013 
2014 	return ret;
2015 }
2016 
2017 static int clgi_interception(struct vcpu_svm *svm)
2018 {
2019 	int ret;
2020 
2021 	if (nested_svm_check_permissions(svm))
2022 		return 1;
2023 
2024 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2025 
2026 	disable_gif(svm);
2027 
2028 	/* After a CLGI no interrupts should come */
2029 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
2030 		svm_clear_vintr(svm);
2031 
2032 	return ret;
2033 }
2034 
2035 static int invlpga_interception(struct vcpu_svm *svm)
2036 {
2037 	struct kvm_vcpu *vcpu = &svm->vcpu;
2038 
2039 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2040 			  kvm_rax_read(&svm->vcpu));
2041 
2042 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2043 	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2044 
2045 	return kvm_skip_emulated_instruction(&svm->vcpu);
2046 }
2047 
2048 static int skinit_interception(struct vcpu_svm *svm)
2049 {
2050 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2051 
2052 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2053 	return 1;
2054 }
2055 
2056 static int wbinvd_interception(struct vcpu_svm *svm)
2057 {
2058 	return kvm_emulate_wbinvd(&svm->vcpu);
2059 }
2060 
2061 static int xsetbv_interception(struct vcpu_svm *svm)
2062 {
2063 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2064 	u32 index = kvm_rcx_read(&svm->vcpu);
2065 
2066 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2067 		return kvm_skip_emulated_instruction(&svm->vcpu);
2068 	}
2069 
2070 	return 1;
2071 }
2072 
2073 static int rdpru_interception(struct vcpu_svm *svm)
2074 {
2075 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2076 	return 1;
2077 }
2078 
2079 static int task_switch_interception(struct vcpu_svm *svm)
2080 {
2081 	u16 tss_selector;
2082 	int reason;
2083 	int int_type = svm->vmcb->control.exit_int_info &
2084 		SVM_EXITINTINFO_TYPE_MASK;
2085 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2086 	uint32_t type =
2087 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2088 	uint32_t idt_v =
2089 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2090 	bool has_error_code = false;
2091 	u32 error_code = 0;
2092 
2093 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2094 
2095 	if (svm->vmcb->control.exit_info_2 &
2096 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2097 		reason = TASK_SWITCH_IRET;
2098 	else if (svm->vmcb->control.exit_info_2 &
2099 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2100 		reason = TASK_SWITCH_JMP;
2101 	else if (idt_v)
2102 		reason = TASK_SWITCH_GATE;
2103 	else
2104 		reason = TASK_SWITCH_CALL;
2105 
2106 	if (reason == TASK_SWITCH_GATE) {
2107 		switch (type) {
2108 		case SVM_EXITINTINFO_TYPE_NMI:
2109 			svm->vcpu.arch.nmi_injected = false;
2110 			break;
2111 		case SVM_EXITINTINFO_TYPE_EXEPT:
2112 			if (svm->vmcb->control.exit_info_2 &
2113 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2114 				has_error_code = true;
2115 				error_code =
2116 					(u32)svm->vmcb->control.exit_info_2;
2117 			}
2118 			kvm_clear_exception_queue(&svm->vcpu);
2119 			break;
2120 		case SVM_EXITINTINFO_TYPE_INTR:
2121 			kvm_clear_interrupt_queue(&svm->vcpu);
2122 			break;
2123 		default:
2124 			break;
2125 		}
2126 	}
2127 
2128 	if (reason != TASK_SWITCH_GATE ||
2129 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2130 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2131 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2132 		if (!skip_emulated_instruction(&svm->vcpu))
2133 			return 0;
2134 	}
2135 
2136 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2137 		int_vec = -1;
2138 
2139 	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2140 			       has_error_code, error_code);
2141 }
2142 
2143 static int cpuid_interception(struct vcpu_svm *svm)
2144 {
2145 	return kvm_emulate_cpuid(&svm->vcpu);
2146 }
2147 
2148 static int iret_interception(struct vcpu_svm *svm)
2149 {
2150 	++svm->vcpu.stat.nmi_window_exits;
2151 	clr_intercept(svm, INTERCEPT_IRET);
2152 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2153 	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2154 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2155 	return 1;
2156 }
2157 
2158 static int invlpg_interception(struct vcpu_svm *svm)
2159 {
2160 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2161 		return kvm_emulate_instruction(&svm->vcpu, 0);
2162 
2163 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2164 	return kvm_skip_emulated_instruction(&svm->vcpu);
2165 }
2166 
2167 static int emulate_on_interception(struct vcpu_svm *svm)
2168 {
2169 	return kvm_emulate_instruction(&svm->vcpu, 0);
2170 }
2171 
2172 static int rsm_interception(struct vcpu_svm *svm)
2173 {
2174 	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2175 }
2176 
2177 static int rdpmc_interception(struct vcpu_svm *svm)
2178 {
2179 	int err;
2180 
2181 	if (!nrips)
2182 		return emulate_on_interception(svm);
2183 
2184 	err = kvm_rdpmc(&svm->vcpu);
2185 	return kvm_complete_insn_gp(&svm->vcpu, err);
2186 }
2187 
2188 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2189 					    unsigned long val)
2190 {
2191 	unsigned long cr0 = svm->vcpu.arch.cr0;
2192 	bool ret = false;
2193 	u64 intercept;
2194 
2195 	intercept = svm->nested.intercept;
2196 
2197 	if (!is_guest_mode(&svm->vcpu) ||
2198 	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2199 		return false;
2200 
2201 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2202 	val &= ~SVM_CR0_SELECTIVE_MASK;
2203 
2204 	if (cr0 ^ val) {
2205 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2206 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2207 	}
2208 
2209 	return ret;
2210 }
2211 
2212 #define CR_VALID (1ULL << 63)
2213 
2214 static int cr_interception(struct vcpu_svm *svm)
2215 {
2216 	int reg, cr;
2217 	unsigned long val;
2218 	int err;
2219 
2220 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2221 		return emulate_on_interception(svm);
2222 
2223 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2224 		return emulate_on_interception(svm);
2225 
2226 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2227 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2228 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2229 	else
2230 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2231 
2232 	err = 0;
2233 	if (cr >= 16) { /* mov to cr */
2234 		cr -= 16;
2235 		val = kvm_register_read(&svm->vcpu, reg);
2236 		switch (cr) {
2237 		case 0:
2238 			if (!check_selective_cr0_intercepted(svm, val))
2239 				err = kvm_set_cr0(&svm->vcpu, val);
2240 			else
2241 				return 1;
2242 
2243 			break;
2244 		case 3:
2245 			err = kvm_set_cr3(&svm->vcpu, val);
2246 			break;
2247 		case 4:
2248 			err = kvm_set_cr4(&svm->vcpu, val);
2249 			break;
2250 		case 8:
2251 			err = kvm_set_cr8(&svm->vcpu, val);
2252 			break;
2253 		default:
2254 			WARN(1, "unhandled write to CR%d", cr);
2255 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2256 			return 1;
2257 		}
2258 	} else { /* mov from cr */
2259 		switch (cr) {
2260 		case 0:
2261 			val = kvm_read_cr0(&svm->vcpu);
2262 			break;
2263 		case 2:
2264 			val = svm->vcpu.arch.cr2;
2265 			break;
2266 		case 3:
2267 			val = kvm_read_cr3(&svm->vcpu);
2268 			break;
2269 		case 4:
2270 			val = kvm_read_cr4(&svm->vcpu);
2271 			break;
2272 		case 8:
2273 			val = kvm_get_cr8(&svm->vcpu);
2274 			break;
2275 		default:
2276 			WARN(1, "unhandled read from CR%d", cr);
2277 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2278 			return 1;
2279 		}
2280 		kvm_register_write(&svm->vcpu, reg, val);
2281 	}
2282 	return kvm_complete_insn_gp(&svm->vcpu, err);
2283 }
2284 
2285 static int dr_interception(struct vcpu_svm *svm)
2286 {
2287 	int reg, dr;
2288 	unsigned long val;
2289 
2290 	if (svm->vcpu.guest_debug == 0) {
2291 		/*
2292 		 * No more DR vmexits; force a reload of the debug registers
2293 		 * and reenter on this instruction.  The next vmexit will
2294 		 * retrieve the full state of the debug registers.
2295 		 */
2296 		clr_dr_intercepts(svm);
2297 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2298 		return 1;
2299 	}
2300 
2301 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2302 		return emulate_on_interception(svm);
2303 
2304 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2305 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2306 
2307 	if (dr >= 16) { /* mov to DRn */
2308 		if (!kvm_require_dr(&svm->vcpu, dr - 16))
2309 			return 1;
2310 		val = kvm_register_read(&svm->vcpu, reg);
2311 		kvm_set_dr(&svm->vcpu, dr - 16, val);
2312 	} else {
2313 		if (!kvm_require_dr(&svm->vcpu, dr))
2314 			return 1;
2315 		kvm_get_dr(&svm->vcpu, dr, &val);
2316 		kvm_register_write(&svm->vcpu, reg, val);
2317 	}
2318 
2319 	return kvm_skip_emulated_instruction(&svm->vcpu);
2320 }
2321 
2322 static int cr8_write_interception(struct vcpu_svm *svm)
2323 {
2324 	struct kvm_run *kvm_run = svm->vcpu.run;
2325 	int r;
2326 
2327 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2328 	/* instruction emulation calls kvm_set_cr8() */
2329 	r = cr_interception(svm);
2330 	if (lapic_in_kernel(&svm->vcpu))
2331 		return r;
2332 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2333 		return r;
2334 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2335 	return 0;
2336 }
2337 
2338 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2339 {
2340 	msr->data = 0;
2341 
2342 	switch (msr->index) {
2343 	case MSR_F10H_DECFG:
2344 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2345 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2346 		break;
2347 	default:
2348 		return 1;
2349 	}
2350 
2351 	return 0;
2352 }
2353 
2354 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2355 {
2356 	struct vcpu_svm *svm = to_svm(vcpu);
2357 
2358 	switch (msr_info->index) {
2359 	case MSR_STAR:
2360 		msr_info->data = svm->vmcb->save.star;
2361 		break;
2362 #ifdef CONFIG_X86_64
2363 	case MSR_LSTAR:
2364 		msr_info->data = svm->vmcb->save.lstar;
2365 		break;
2366 	case MSR_CSTAR:
2367 		msr_info->data = svm->vmcb->save.cstar;
2368 		break;
2369 	case MSR_KERNEL_GS_BASE:
2370 		msr_info->data = svm->vmcb->save.kernel_gs_base;
2371 		break;
2372 	case MSR_SYSCALL_MASK:
2373 		msr_info->data = svm->vmcb->save.sfmask;
2374 		break;
2375 #endif
2376 	case MSR_IA32_SYSENTER_CS:
2377 		msr_info->data = svm->vmcb->save.sysenter_cs;
2378 		break;
2379 	case MSR_IA32_SYSENTER_EIP:
2380 		msr_info->data = svm->sysenter_eip;
2381 		break;
2382 	case MSR_IA32_SYSENTER_ESP:
2383 		msr_info->data = svm->sysenter_esp;
2384 		break;
2385 	case MSR_TSC_AUX:
2386 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2387 			return 1;
2388 		msr_info->data = svm->tsc_aux;
2389 		break;
2390 	/*
2391 	 * Nobody will change the following 5 values in the VMCB so we can
2392 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2393 	 * implemented.
2394 	 */
2395 	case MSR_IA32_DEBUGCTLMSR:
2396 		msr_info->data = svm->vmcb->save.dbgctl;
2397 		break;
2398 	case MSR_IA32_LASTBRANCHFROMIP:
2399 		msr_info->data = svm->vmcb->save.br_from;
2400 		break;
2401 	case MSR_IA32_LASTBRANCHTOIP:
2402 		msr_info->data = svm->vmcb->save.br_to;
2403 		break;
2404 	case MSR_IA32_LASTINTFROMIP:
2405 		msr_info->data = svm->vmcb->save.last_excp_from;
2406 		break;
2407 	case MSR_IA32_LASTINTTOIP:
2408 		msr_info->data = svm->vmcb->save.last_excp_to;
2409 		break;
2410 	case MSR_VM_HSAVE_PA:
2411 		msr_info->data = svm->nested.hsave_msr;
2412 		break;
2413 	case MSR_VM_CR:
2414 		msr_info->data = svm->nested.vm_cr_msr;
2415 		break;
2416 	case MSR_IA32_SPEC_CTRL:
2417 		if (!msr_info->host_initiated &&
2418 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2419 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2420 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2421 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2422 			return 1;
2423 
2424 		msr_info->data = svm->spec_ctrl;
2425 		break;
2426 	case MSR_AMD64_VIRT_SPEC_CTRL:
2427 		if (!msr_info->host_initiated &&
2428 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2429 			return 1;
2430 
2431 		msr_info->data = svm->virt_spec_ctrl;
2432 		break;
2433 	case MSR_F15H_IC_CFG: {
2434 
2435 		int family, model;
2436 
2437 		family = guest_cpuid_family(vcpu);
2438 		model  = guest_cpuid_model(vcpu);
2439 
2440 		if (family < 0 || model < 0)
2441 			return kvm_get_msr_common(vcpu, msr_info);
2442 
2443 		msr_info->data = 0;
2444 
2445 		if (family == 0x15 &&
2446 		    (model >= 0x2 && model < 0x20))
2447 			msr_info->data = 0x1E;
2448 		}
2449 		break;
2450 	case MSR_F10H_DECFG:
2451 		msr_info->data = svm->msr_decfg;
2452 		break;
2453 	default:
2454 		return kvm_get_msr_common(vcpu, msr_info);
2455 	}
2456 	return 0;
2457 }
2458 
2459 static int rdmsr_interception(struct vcpu_svm *svm)
2460 {
2461 	return kvm_emulate_rdmsr(&svm->vcpu);
2462 }
2463 
2464 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2465 {
2466 	struct vcpu_svm *svm = to_svm(vcpu);
2467 	int svm_dis, chg_mask;
2468 
2469 	if (data & ~SVM_VM_CR_VALID_MASK)
2470 		return 1;
2471 
2472 	chg_mask = SVM_VM_CR_VALID_MASK;
2473 
2474 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2475 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2476 
2477 	svm->nested.vm_cr_msr &= ~chg_mask;
2478 	svm->nested.vm_cr_msr |= (data & chg_mask);
2479 
2480 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2481 
2482 	/* check for svm_disable while efer.svme is set */
2483 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2484 		return 1;
2485 
2486 	return 0;
2487 }
2488 
2489 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2490 {
2491 	struct vcpu_svm *svm = to_svm(vcpu);
2492 
2493 	u32 ecx = msr->index;
2494 	u64 data = msr->data;
2495 	switch (ecx) {
2496 	case MSR_IA32_CR_PAT:
2497 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2498 			return 1;
2499 		vcpu->arch.pat = data;
2500 		svm->vmcb->save.g_pat = data;
2501 		mark_dirty(svm->vmcb, VMCB_NPT);
2502 		break;
2503 	case MSR_IA32_SPEC_CTRL:
2504 		if (!msr->host_initiated &&
2505 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2506 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2507 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2508 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2509 			return 1;
2510 
2511 		if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2512 			return 1;
2513 
2514 		svm->spec_ctrl = data;
2515 		if (!data)
2516 			break;
2517 
2518 		/*
2519 		 * For non-nested:
2520 		 * When it's written (to non-zero) for the first time, pass
2521 		 * it through.
2522 		 *
2523 		 * For nested:
2524 		 * The handling of the MSR bitmap for L2 guests is done in
2525 		 * nested_svm_vmrun_msrpm.
2526 		 * We update the L1 MSR bit as well since it will end up
2527 		 * touching the MSR anyway now.
2528 		 */
2529 		set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2530 		break;
2531 	case MSR_IA32_PRED_CMD:
2532 		if (!msr->host_initiated &&
2533 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
2534 			return 1;
2535 
2536 		if (data & ~PRED_CMD_IBPB)
2537 			return 1;
2538 		if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
2539 			return 1;
2540 		if (!data)
2541 			break;
2542 
2543 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2544 		set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2545 		break;
2546 	case MSR_AMD64_VIRT_SPEC_CTRL:
2547 		if (!msr->host_initiated &&
2548 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2549 			return 1;
2550 
2551 		if (data & ~SPEC_CTRL_SSBD)
2552 			return 1;
2553 
2554 		svm->virt_spec_ctrl = data;
2555 		break;
2556 	case MSR_STAR:
2557 		svm->vmcb->save.star = data;
2558 		break;
2559 #ifdef CONFIG_X86_64
2560 	case MSR_LSTAR:
2561 		svm->vmcb->save.lstar = data;
2562 		break;
2563 	case MSR_CSTAR:
2564 		svm->vmcb->save.cstar = data;
2565 		break;
2566 	case MSR_KERNEL_GS_BASE:
2567 		svm->vmcb->save.kernel_gs_base = data;
2568 		break;
2569 	case MSR_SYSCALL_MASK:
2570 		svm->vmcb->save.sfmask = data;
2571 		break;
2572 #endif
2573 	case MSR_IA32_SYSENTER_CS:
2574 		svm->vmcb->save.sysenter_cs = data;
2575 		break;
2576 	case MSR_IA32_SYSENTER_EIP:
2577 		svm->sysenter_eip = data;
2578 		svm->vmcb->save.sysenter_eip = data;
2579 		break;
2580 	case MSR_IA32_SYSENTER_ESP:
2581 		svm->sysenter_esp = data;
2582 		svm->vmcb->save.sysenter_esp = data;
2583 		break;
2584 	case MSR_TSC_AUX:
2585 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2586 			return 1;
2587 
2588 		/*
2589 		 * This is rare, so we update the MSR here instead of using
2590 		 * direct_access_msrs.  Doing that would require a rdmsr in
2591 		 * svm_vcpu_put.
2592 		 */
2593 		svm->tsc_aux = data;
2594 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2595 		break;
2596 	case MSR_IA32_DEBUGCTLMSR:
2597 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2598 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2599 				    __func__, data);
2600 			break;
2601 		}
2602 		if (data & DEBUGCTL_RESERVED_BITS)
2603 			return 1;
2604 
2605 		svm->vmcb->save.dbgctl = data;
2606 		mark_dirty(svm->vmcb, VMCB_LBR);
2607 		if (data & (1ULL<<0))
2608 			svm_enable_lbrv(svm);
2609 		else
2610 			svm_disable_lbrv(svm);
2611 		break;
2612 	case MSR_VM_HSAVE_PA:
2613 		svm->nested.hsave_msr = data;
2614 		break;
2615 	case MSR_VM_CR:
2616 		return svm_set_vm_cr(vcpu, data);
2617 	case MSR_VM_IGNNE:
2618 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2619 		break;
2620 	case MSR_F10H_DECFG: {
2621 		struct kvm_msr_entry msr_entry;
2622 
2623 		msr_entry.index = msr->index;
2624 		if (svm_get_msr_feature(&msr_entry))
2625 			return 1;
2626 
2627 		/* Check the supported bits */
2628 		if (data & ~msr_entry.data)
2629 			return 1;
2630 
2631 		/* Don't allow the guest to change a bit, #GP */
2632 		if (!msr->host_initiated && (data ^ msr_entry.data))
2633 			return 1;
2634 
2635 		svm->msr_decfg = data;
2636 		break;
2637 	}
2638 	case MSR_IA32_APICBASE:
2639 		if (kvm_vcpu_apicv_active(vcpu))
2640 			avic_update_vapic_bar(to_svm(vcpu), data);
2641 		/* Fall through */
2642 	default:
2643 		return kvm_set_msr_common(vcpu, msr);
2644 	}
2645 	return 0;
2646 }
2647 
2648 static int wrmsr_interception(struct vcpu_svm *svm)
2649 {
2650 	return kvm_emulate_wrmsr(&svm->vcpu);
2651 }
2652 
2653 static int msr_interception(struct vcpu_svm *svm)
2654 {
2655 	if (svm->vmcb->control.exit_info_1)
2656 		return wrmsr_interception(svm);
2657 	else
2658 		return rdmsr_interception(svm);
2659 }
2660 
2661 static int interrupt_window_interception(struct vcpu_svm *svm)
2662 {
2663 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2664 	svm_clear_vintr(svm);
2665 
2666 	/*
2667 	 * For AVIC, the only reason to end up here is ExtINTs.
2668 	 * In this case AVIC was temporarily disabled for
2669 	 * requesting the IRQ window and we have to re-enable it.
2670 	 */
2671 	svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2672 
2673 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2674 	mark_dirty(svm->vmcb, VMCB_INTR);
2675 	++svm->vcpu.stat.irq_window_exits;
2676 	return 1;
2677 }
2678 
2679 static int pause_interception(struct vcpu_svm *svm)
2680 {
2681 	struct kvm_vcpu *vcpu = &svm->vcpu;
2682 	bool in_kernel = (svm_get_cpl(vcpu) == 0);
2683 
2684 	if (pause_filter_thresh)
2685 		grow_ple_window(vcpu);
2686 
2687 	kvm_vcpu_on_spin(vcpu, in_kernel);
2688 	return 1;
2689 }
2690 
2691 static int nop_interception(struct vcpu_svm *svm)
2692 {
2693 	return kvm_skip_emulated_instruction(&(svm->vcpu));
2694 }
2695 
2696 static int monitor_interception(struct vcpu_svm *svm)
2697 {
2698 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2699 	return nop_interception(svm);
2700 }
2701 
2702 static int mwait_interception(struct vcpu_svm *svm)
2703 {
2704 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2705 	return nop_interception(svm);
2706 }
2707 
2708 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2709 	[SVM_EXIT_READ_CR0]			= cr_interception,
2710 	[SVM_EXIT_READ_CR3]			= cr_interception,
2711 	[SVM_EXIT_READ_CR4]			= cr_interception,
2712 	[SVM_EXIT_READ_CR8]			= cr_interception,
2713 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
2714 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
2715 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
2716 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
2717 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
2718 	[SVM_EXIT_READ_DR0]			= dr_interception,
2719 	[SVM_EXIT_READ_DR1]			= dr_interception,
2720 	[SVM_EXIT_READ_DR2]			= dr_interception,
2721 	[SVM_EXIT_READ_DR3]			= dr_interception,
2722 	[SVM_EXIT_READ_DR4]			= dr_interception,
2723 	[SVM_EXIT_READ_DR5]			= dr_interception,
2724 	[SVM_EXIT_READ_DR6]			= dr_interception,
2725 	[SVM_EXIT_READ_DR7]			= dr_interception,
2726 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
2727 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
2728 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
2729 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
2730 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
2731 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
2732 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
2733 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
2734 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
2735 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
2736 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
2737 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
2738 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
2739 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
2740 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
2741 	[SVM_EXIT_INTR]				= intr_interception,
2742 	[SVM_EXIT_NMI]				= nmi_interception,
2743 	[SVM_EXIT_SMI]				= nop_on_interception,
2744 	[SVM_EXIT_INIT]				= nop_on_interception,
2745 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
2746 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
2747 	[SVM_EXIT_CPUID]			= cpuid_interception,
2748 	[SVM_EXIT_IRET]                         = iret_interception,
2749 	[SVM_EXIT_INVD]                         = emulate_on_interception,
2750 	[SVM_EXIT_PAUSE]			= pause_interception,
2751 	[SVM_EXIT_HLT]				= halt_interception,
2752 	[SVM_EXIT_INVLPG]			= invlpg_interception,
2753 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
2754 	[SVM_EXIT_IOIO]				= io_interception,
2755 	[SVM_EXIT_MSR]				= msr_interception,
2756 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
2757 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
2758 	[SVM_EXIT_VMRUN]			= vmrun_interception,
2759 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
2760 	[SVM_EXIT_VMLOAD]			= vmload_interception,
2761 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
2762 	[SVM_EXIT_STGI]				= stgi_interception,
2763 	[SVM_EXIT_CLGI]				= clgi_interception,
2764 	[SVM_EXIT_SKINIT]			= skinit_interception,
2765 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
2766 	[SVM_EXIT_MONITOR]			= monitor_interception,
2767 	[SVM_EXIT_MWAIT]			= mwait_interception,
2768 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
2769 	[SVM_EXIT_RDPRU]			= rdpru_interception,
2770 	[SVM_EXIT_NPF]				= npf_interception,
2771 	[SVM_EXIT_RSM]                          = rsm_interception,
2772 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
2773 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
2774 };
2775 
2776 static void dump_vmcb(struct kvm_vcpu *vcpu)
2777 {
2778 	struct vcpu_svm *svm = to_svm(vcpu);
2779 	struct vmcb_control_area *control = &svm->vmcb->control;
2780 	struct vmcb_save_area *save = &svm->vmcb->save;
2781 
2782 	if (!dump_invalid_vmcb) {
2783 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2784 		return;
2785 	}
2786 
2787 	pr_err("VMCB Control Area:\n");
2788 	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
2789 	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
2790 	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
2791 	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
2792 	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
2793 	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
2794 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2795 	pr_err("%-20s%d\n", "pause filter threshold:",
2796 	       control->pause_filter_thresh);
2797 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2798 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
2799 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
2800 	pr_err("%-20s%d\n", "asid:", control->asid);
2801 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
2802 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
2803 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
2804 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
2805 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
2806 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
2807 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
2808 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
2809 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
2810 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
2811 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
2812 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
2813 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
2814 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
2815 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
2816 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
2817 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
2818 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
2819 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
2820 	pr_err("VMCB State Save Area:\n");
2821 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2822 	       "es:",
2823 	       save->es.selector, save->es.attrib,
2824 	       save->es.limit, save->es.base);
2825 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2826 	       "cs:",
2827 	       save->cs.selector, save->cs.attrib,
2828 	       save->cs.limit, save->cs.base);
2829 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2830 	       "ss:",
2831 	       save->ss.selector, save->ss.attrib,
2832 	       save->ss.limit, save->ss.base);
2833 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2834 	       "ds:",
2835 	       save->ds.selector, save->ds.attrib,
2836 	       save->ds.limit, save->ds.base);
2837 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2838 	       "fs:",
2839 	       save->fs.selector, save->fs.attrib,
2840 	       save->fs.limit, save->fs.base);
2841 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2842 	       "gs:",
2843 	       save->gs.selector, save->gs.attrib,
2844 	       save->gs.limit, save->gs.base);
2845 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2846 	       "gdtr:",
2847 	       save->gdtr.selector, save->gdtr.attrib,
2848 	       save->gdtr.limit, save->gdtr.base);
2849 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2850 	       "ldtr:",
2851 	       save->ldtr.selector, save->ldtr.attrib,
2852 	       save->ldtr.limit, save->ldtr.base);
2853 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2854 	       "idtr:",
2855 	       save->idtr.selector, save->idtr.attrib,
2856 	       save->idtr.limit, save->idtr.base);
2857 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2858 	       "tr:",
2859 	       save->tr.selector, save->tr.attrib,
2860 	       save->tr.limit, save->tr.base);
2861 	pr_err("cpl:            %d                efer:         %016llx\n",
2862 		save->cpl, save->efer);
2863 	pr_err("%-15s %016llx %-13s %016llx\n",
2864 	       "cr0:", save->cr0, "cr2:", save->cr2);
2865 	pr_err("%-15s %016llx %-13s %016llx\n",
2866 	       "cr3:", save->cr3, "cr4:", save->cr4);
2867 	pr_err("%-15s %016llx %-13s %016llx\n",
2868 	       "dr6:", save->dr6, "dr7:", save->dr7);
2869 	pr_err("%-15s %016llx %-13s %016llx\n",
2870 	       "rip:", save->rip, "rflags:", save->rflags);
2871 	pr_err("%-15s %016llx %-13s %016llx\n",
2872 	       "rsp:", save->rsp, "rax:", save->rax);
2873 	pr_err("%-15s %016llx %-13s %016llx\n",
2874 	       "star:", save->star, "lstar:", save->lstar);
2875 	pr_err("%-15s %016llx %-13s %016llx\n",
2876 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
2877 	pr_err("%-15s %016llx %-13s %016llx\n",
2878 	       "kernel_gs_base:", save->kernel_gs_base,
2879 	       "sysenter_cs:", save->sysenter_cs);
2880 	pr_err("%-15s %016llx %-13s %016llx\n",
2881 	       "sysenter_esp:", save->sysenter_esp,
2882 	       "sysenter_eip:", save->sysenter_eip);
2883 	pr_err("%-15s %016llx %-13s %016llx\n",
2884 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
2885 	pr_err("%-15s %016llx %-13s %016llx\n",
2886 	       "br_from:", save->br_from, "br_to:", save->br_to);
2887 	pr_err("%-15s %016llx %-13s %016llx\n",
2888 	       "excp_from:", save->last_excp_from,
2889 	       "excp_to:", save->last_excp_to);
2890 }
2891 
2892 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
2893 {
2894 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
2895 
2896 	*info1 = control->exit_info_1;
2897 	*info2 = control->exit_info_2;
2898 }
2899 
2900 static int handle_exit(struct kvm_vcpu *vcpu,
2901 	enum exit_fastpath_completion exit_fastpath)
2902 {
2903 	struct vcpu_svm *svm = to_svm(vcpu);
2904 	struct kvm_run *kvm_run = vcpu->run;
2905 	u32 exit_code = svm->vmcb->control.exit_code;
2906 
2907 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
2908 
2909 	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
2910 		vcpu->arch.cr0 = svm->vmcb->save.cr0;
2911 	if (npt_enabled)
2912 		vcpu->arch.cr3 = svm->vmcb->save.cr3;
2913 
2914 	if (unlikely(svm->nested.exit_required)) {
2915 		nested_svm_vmexit(svm);
2916 		svm->nested.exit_required = false;
2917 
2918 		return 1;
2919 	}
2920 
2921 	if (is_guest_mode(vcpu)) {
2922 		int vmexit;
2923 
2924 		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2925 					svm->vmcb->control.exit_info_1,
2926 					svm->vmcb->control.exit_info_2,
2927 					svm->vmcb->control.exit_int_info,
2928 					svm->vmcb->control.exit_int_info_err,
2929 					KVM_ISA_SVM);
2930 
2931 		vmexit = nested_svm_exit_special(svm);
2932 
2933 		if (vmexit == NESTED_EXIT_CONTINUE)
2934 			vmexit = nested_svm_exit_handled(svm);
2935 
2936 		if (vmexit == NESTED_EXIT_DONE)
2937 			return 1;
2938 	}
2939 
2940 	svm_complete_interrupts(svm);
2941 
2942 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2943 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2944 		kvm_run->fail_entry.hardware_entry_failure_reason
2945 			= svm->vmcb->control.exit_code;
2946 		dump_vmcb(vcpu);
2947 		return 0;
2948 	}
2949 
2950 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2951 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2952 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
2953 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
2954 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
2955 		       "exit_code 0x%x\n",
2956 		       __func__, svm->vmcb->control.exit_int_info,
2957 		       exit_code);
2958 
2959 	if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
2960 		kvm_skip_emulated_instruction(vcpu);
2961 		return 1;
2962 	} else if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2963 	    || !svm_exit_handlers[exit_code]) {
2964 		vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
2965 		dump_vmcb(vcpu);
2966 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2967 		vcpu->run->internal.suberror =
2968 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2969 		vcpu->run->internal.ndata = 1;
2970 		vcpu->run->internal.data[0] = exit_code;
2971 		return 0;
2972 	}
2973 
2974 #ifdef CONFIG_RETPOLINE
2975 	if (exit_code == SVM_EXIT_MSR)
2976 		return msr_interception(svm);
2977 	else if (exit_code == SVM_EXIT_VINTR)
2978 		return interrupt_window_interception(svm);
2979 	else if (exit_code == SVM_EXIT_INTR)
2980 		return intr_interception(svm);
2981 	else if (exit_code == SVM_EXIT_HLT)
2982 		return halt_interception(svm);
2983 	else if (exit_code == SVM_EXIT_NPF)
2984 		return npf_interception(svm);
2985 #endif
2986 	return svm_exit_handlers[exit_code](svm);
2987 }
2988 
2989 static void reload_tss(struct kvm_vcpu *vcpu)
2990 {
2991 	int cpu = raw_smp_processor_id();
2992 
2993 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2994 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2995 	load_TR_desc();
2996 }
2997 
2998 static void pre_svm_run(struct vcpu_svm *svm)
2999 {
3000 	int cpu = raw_smp_processor_id();
3001 
3002 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3003 
3004 	if (sev_guest(svm->vcpu.kvm))
3005 		return pre_sev_run(svm, cpu);
3006 
3007 	/* FIXME: handle wraparound of asid_generation */
3008 	if (svm->asid_generation != sd->asid_generation)
3009 		new_asid(svm, sd);
3010 }
3011 
3012 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3013 {
3014 	struct vcpu_svm *svm = to_svm(vcpu);
3015 
3016 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3017 	vcpu->arch.hflags |= HF_NMI_MASK;
3018 	set_intercept(svm, INTERCEPT_IRET);
3019 	++vcpu->stat.nmi_injections;
3020 }
3021 
3022 static void svm_set_irq(struct kvm_vcpu *vcpu)
3023 {
3024 	struct vcpu_svm *svm = to_svm(vcpu);
3025 
3026 	BUG_ON(!(gif_set(svm)));
3027 
3028 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3029 	++vcpu->stat.irq_injections;
3030 
3031 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3032 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3033 }
3034 
3035 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3036 {
3037 	struct vcpu_svm *svm = to_svm(vcpu);
3038 
3039 	if (svm_nested_virtualize_tpr(vcpu))
3040 		return;
3041 
3042 	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3043 
3044 	if (irr == -1)
3045 		return;
3046 
3047 	if (tpr >= irr)
3048 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3049 }
3050 
3051 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3052 {
3053 	struct vcpu_svm *svm = to_svm(vcpu);
3054 	struct vmcb *vmcb = svm->vmcb;
3055 	int ret;
3056 	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3057 	      !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3058 	ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3059 
3060 	return ret;
3061 }
3062 
3063 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3064 {
3065 	struct vcpu_svm *svm = to_svm(vcpu);
3066 
3067 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3068 }
3069 
3070 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3071 {
3072 	struct vcpu_svm *svm = to_svm(vcpu);
3073 
3074 	if (masked) {
3075 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3076 		set_intercept(svm, INTERCEPT_IRET);
3077 	} else {
3078 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3079 		clr_intercept(svm, INTERCEPT_IRET);
3080 	}
3081 }
3082 
3083 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3084 {
3085 	struct vcpu_svm *svm = to_svm(vcpu);
3086 	struct vmcb *vmcb = svm->vmcb;
3087 
3088 	if (!gif_set(svm) ||
3089 	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3090 		return 0;
3091 
3092 	if (is_guest_mode(vcpu) && (svm->vcpu.arch.hflags & HF_VINTR_MASK))
3093 		return !!(svm->vcpu.arch.hflags & HF_HIF_MASK);
3094 	else
3095 		return !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3096 }
3097 
3098 static void enable_irq_window(struct kvm_vcpu *vcpu)
3099 {
3100 	struct vcpu_svm *svm = to_svm(vcpu);
3101 
3102 	/*
3103 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3104 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3105 	 * get that intercept, this function will be called again though and
3106 	 * we'll get the vintr intercept. However, if the vGIF feature is
3107 	 * enabled, the STGI interception will not occur. Enable the irq
3108 	 * window under the assumption that the hardware will set the GIF.
3109 	 */
3110 	if (vgif_enabled(svm) || gif_set(svm)) {
3111 		/*
3112 		 * IRQ window is not needed when AVIC is enabled,
3113 		 * unless we have pending ExtINT since it cannot be injected
3114 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3115 		 * and fallback to injecting IRQ via V_IRQ.
3116 		 */
3117 		svm_toggle_avic_for_irq_window(vcpu, false);
3118 		svm_set_vintr(svm);
3119 	}
3120 }
3121 
3122 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3123 {
3124 	struct vcpu_svm *svm = to_svm(vcpu);
3125 
3126 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3127 	    == HF_NMI_MASK)
3128 		return; /* IRET will cause a vm exit */
3129 
3130 	if (!gif_set(svm)) {
3131 		if (vgif_enabled(svm))
3132 			set_intercept(svm, INTERCEPT_STGI);
3133 		return; /* STGI will cause a vm exit */
3134 	}
3135 
3136 	if (svm->nested.exit_required)
3137 		return; /* we're not going to run the guest yet */
3138 
3139 	/*
3140 	 * Something prevents NMI from been injected. Single step over possible
3141 	 * problem (IRET or exception injection or interrupt shadow)
3142 	 */
3143 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3144 	svm->nmi_singlestep = true;
3145 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3146 }
3147 
3148 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3149 {
3150 	return 0;
3151 }
3152 
3153 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3154 {
3155 	return 0;
3156 }
3157 
3158 void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
3159 {
3160 	struct vcpu_svm *svm = to_svm(vcpu);
3161 
3162 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3163 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3164 	else
3165 		svm->asid_generation--;
3166 }
3167 
3168 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3169 {
3170 	struct vcpu_svm *svm = to_svm(vcpu);
3171 
3172 	invlpga(gva, svm->vmcb->control.asid);
3173 }
3174 
3175 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3176 {
3177 }
3178 
3179 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3180 {
3181 	struct vcpu_svm *svm = to_svm(vcpu);
3182 
3183 	if (svm_nested_virtualize_tpr(vcpu))
3184 		return;
3185 
3186 	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3187 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3188 		kvm_set_cr8(vcpu, cr8);
3189 	}
3190 }
3191 
3192 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3193 {
3194 	struct vcpu_svm *svm = to_svm(vcpu);
3195 	u64 cr8;
3196 
3197 	if (svm_nested_virtualize_tpr(vcpu) ||
3198 	    kvm_vcpu_apicv_active(vcpu))
3199 		return;
3200 
3201 	cr8 = kvm_get_cr8(vcpu);
3202 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3203 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3204 }
3205 
3206 static void svm_complete_interrupts(struct vcpu_svm *svm)
3207 {
3208 	u8 vector;
3209 	int type;
3210 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3211 	unsigned int3_injected = svm->int3_injected;
3212 
3213 	svm->int3_injected = 0;
3214 
3215 	/*
3216 	 * If we've made progress since setting HF_IRET_MASK, we've
3217 	 * executed an IRET and can allow NMI injection.
3218 	 */
3219 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3220 	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3221 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3222 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3223 	}
3224 
3225 	svm->vcpu.arch.nmi_injected = false;
3226 	kvm_clear_exception_queue(&svm->vcpu);
3227 	kvm_clear_interrupt_queue(&svm->vcpu);
3228 
3229 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3230 		return;
3231 
3232 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3233 
3234 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3235 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3236 
3237 	switch (type) {
3238 	case SVM_EXITINTINFO_TYPE_NMI:
3239 		svm->vcpu.arch.nmi_injected = true;
3240 		break;
3241 	case SVM_EXITINTINFO_TYPE_EXEPT:
3242 		/*
3243 		 * In case of software exceptions, do not reinject the vector,
3244 		 * but re-execute the instruction instead. Rewind RIP first
3245 		 * if we emulated INT3 before.
3246 		 */
3247 		if (kvm_exception_is_soft(vector)) {
3248 			if (vector == BP_VECTOR && int3_injected &&
3249 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3250 				kvm_rip_write(&svm->vcpu,
3251 					      kvm_rip_read(&svm->vcpu) -
3252 					      int3_injected);
3253 			break;
3254 		}
3255 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3256 			u32 err = svm->vmcb->control.exit_int_info_err;
3257 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3258 
3259 		} else
3260 			kvm_requeue_exception(&svm->vcpu, vector);
3261 		break;
3262 	case SVM_EXITINTINFO_TYPE_INTR:
3263 		kvm_queue_interrupt(&svm->vcpu, vector, false);
3264 		break;
3265 	default:
3266 		break;
3267 	}
3268 }
3269 
3270 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3271 {
3272 	struct vcpu_svm *svm = to_svm(vcpu);
3273 	struct vmcb_control_area *control = &svm->vmcb->control;
3274 
3275 	control->exit_int_info = control->event_inj;
3276 	control->exit_int_info_err = control->event_inj_err;
3277 	control->event_inj = 0;
3278 	svm_complete_interrupts(svm);
3279 }
3280 
3281 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3282 
3283 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3284 {
3285 	struct vcpu_svm *svm = to_svm(vcpu);
3286 
3287 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3288 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3289 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3290 
3291 	/*
3292 	 * A vmexit emulation is required before the vcpu can be executed
3293 	 * again.
3294 	 */
3295 	if (unlikely(svm->nested.exit_required))
3296 		return;
3297 
3298 	/*
3299 	 * Disable singlestep if we're injecting an interrupt/exception.
3300 	 * We don't want our modified rflags to be pushed on the stack where
3301 	 * we might not be able to easily reset them if we disabled NMI
3302 	 * singlestep later.
3303 	 */
3304 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3305 		/*
3306 		 * Event injection happens before external interrupts cause a
3307 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3308 		 * is enough to force an immediate vmexit.
3309 		 */
3310 		disable_nmi_singlestep(svm);
3311 		smp_send_reschedule(vcpu->cpu);
3312 	}
3313 
3314 	pre_svm_run(svm);
3315 
3316 	sync_lapic_to_cr8(vcpu);
3317 
3318 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3319 
3320 	clgi();
3321 	kvm_load_guest_xsave_state(vcpu);
3322 
3323 	if (lapic_in_kernel(vcpu) &&
3324 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
3325 		kvm_wait_lapic_expire(vcpu);
3326 
3327 	/*
3328 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3329 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3330 	 * is no need to worry about the conditional branch over the wrmsr
3331 	 * being speculatively taken.
3332 	 */
3333 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3334 
3335 	__svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3336 
3337 #ifdef CONFIG_X86_64
3338 	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3339 #else
3340 	loadsegment(fs, svm->host.fs);
3341 #ifndef CONFIG_X86_32_LAZY_GS
3342 	loadsegment(gs, svm->host.gs);
3343 #endif
3344 #endif
3345 
3346 	/*
3347 	 * We do not use IBRS in the kernel. If this vCPU has used the
3348 	 * SPEC_CTRL MSR it may have left it on; save the value and
3349 	 * turn it off. This is much more efficient than blindly adding
3350 	 * it to the atomic save/restore list. Especially as the former
3351 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3352 	 *
3353 	 * For non-nested case:
3354 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3355 	 * save it.
3356 	 *
3357 	 * For nested case:
3358 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3359 	 * save it.
3360 	 */
3361 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3362 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3363 
3364 	reload_tss(vcpu);
3365 
3366 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3367 
3368 	vcpu->arch.cr2 = svm->vmcb->save.cr2;
3369 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3370 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3371 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3372 
3373 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3374 		kvm_before_interrupt(&svm->vcpu);
3375 
3376 	kvm_load_host_xsave_state(vcpu);
3377 	stgi();
3378 
3379 	/* Any pending NMI will happen here */
3380 
3381 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3382 		kvm_after_interrupt(&svm->vcpu);
3383 
3384 	sync_cr8_to_lapic(vcpu);
3385 
3386 	svm->next_rip = 0;
3387 
3388 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3389 
3390 	/* if exit due to PF check for async PF */
3391 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3392 		svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
3393 
3394 	if (npt_enabled) {
3395 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3396 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3397 	}
3398 
3399 	/*
3400 	 * We need to handle MC intercepts here before the vcpu has a chance to
3401 	 * change the physical cpu
3402 	 */
3403 	if (unlikely(svm->vmcb->control.exit_code ==
3404 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3405 		svm_handle_mce(svm);
3406 
3407 	mark_all_clean(svm->vmcb);
3408 }
3409 
3410 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root)
3411 {
3412 	struct vcpu_svm *svm = to_svm(vcpu);
3413 	bool update_guest_cr3 = true;
3414 	unsigned long cr3;
3415 
3416 	cr3 = __sme_set(root);
3417 	if (npt_enabled) {
3418 		svm->vmcb->control.nested_cr3 = cr3;
3419 		mark_dirty(svm->vmcb, VMCB_NPT);
3420 
3421 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3422 		if (is_guest_mode(vcpu))
3423 			update_guest_cr3 = false;
3424 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3425 			cr3 = vcpu->arch.cr3;
3426 		else /* CR3 is already up-to-date.  */
3427 			update_guest_cr3 = false;
3428 	}
3429 
3430 	if (update_guest_cr3) {
3431 		svm->vmcb->save.cr3 = cr3;
3432 		mark_dirty(svm->vmcb, VMCB_CR);
3433 	}
3434 }
3435 
3436 static int is_disabled(void)
3437 {
3438 	u64 vm_cr;
3439 
3440 	rdmsrl(MSR_VM_CR, vm_cr);
3441 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3442 		return 1;
3443 
3444 	return 0;
3445 }
3446 
3447 static void
3448 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3449 {
3450 	/*
3451 	 * Patch in the VMMCALL instruction:
3452 	 */
3453 	hypercall[0] = 0x0f;
3454 	hypercall[1] = 0x01;
3455 	hypercall[2] = 0xd9;
3456 }
3457 
3458 static int __init svm_check_processor_compat(void)
3459 {
3460 	return 0;
3461 }
3462 
3463 static bool svm_cpu_has_accelerated_tpr(void)
3464 {
3465 	return false;
3466 }
3467 
3468 static bool svm_has_emulated_msr(int index)
3469 {
3470 	switch (index) {
3471 	case MSR_IA32_MCG_EXT_CTL:
3472 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3473 		return false;
3474 	default:
3475 		break;
3476 	}
3477 
3478 	return true;
3479 }
3480 
3481 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3482 {
3483 	return 0;
3484 }
3485 
3486 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3487 {
3488 	struct vcpu_svm *svm = to_svm(vcpu);
3489 
3490 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3491 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
3492 				    boot_cpu_has(X86_FEATURE_XSAVES);
3493 
3494 	/* Update nrips enabled cache */
3495 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3496 			     guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3497 
3498 	if (!kvm_vcpu_apicv_active(vcpu))
3499 		return;
3500 
3501 	/*
3502 	 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3503 	 * is exposed to the guest, disable AVIC.
3504 	 */
3505 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3506 		kvm_request_apicv_update(vcpu->kvm, false,
3507 					 APICV_INHIBIT_REASON_X2APIC);
3508 
3509 	/*
3510 	 * Currently, AVIC does not work with nested virtualization.
3511 	 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3512 	 */
3513 	if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3514 		kvm_request_apicv_update(vcpu->kvm, false,
3515 					 APICV_INHIBIT_REASON_NESTED);
3516 }
3517 
3518 static bool svm_has_wbinvd_exit(void)
3519 {
3520 	return true;
3521 }
3522 
3523 #define PRE_EX(exit)  { .exit_code = (exit), \
3524 			.stage = X86_ICPT_PRE_EXCEPT, }
3525 #define POST_EX(exit) { .exit_code = (exit), \
3526 			.stage = X86_ICPT_POST_EXCEPT, }
3527 #define POST_MEM(exit) { .exit_code = (exit), \
3528 			.stage = X86_ICPT_POST_MEMACCESS, }
3529 
3530 static const struct __x86_intercept {
3531 	u32 exit_code;
3532 	enum x86_intercept_stage stage;
3533 } x86_intercept_map[] = {
3534 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
3535 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
3536 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
3537 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
3538 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
3539 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
3540 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
3541 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
3542 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
3543 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
3544 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
3545 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
3546 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
3547 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
3548 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
3549 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
3550 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
3551 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
3552 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
3553 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
3554 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
3555 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
3556 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
3557 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
3558 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
3559 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
3560 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
3561 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
3562 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
3563 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
3564 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
3565 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
3566 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
3567 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
3568 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
3569 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
3570 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
3571 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
3572 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
3573 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
3574 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
3575 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
3576 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
3577 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
3578 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
3579 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
3580 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
3581 };
3582 
3583 #undef PRE_EX
3584 #undef POST_EX
3585 #undef POST_MEM
3586 
3587 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3588 			       struct x86_instruction_info *info,
3589 			       enum x86_intercept_stage stage,
3590 			       struct x86_exception *exception)
3591 {
3592 	struct vcpu_svm *svm = to_svm(vcpu);
3593 	int vmexit, ret = X86EMUL_CONTINUE;
3594 	struct __x86_intercept icpt_info;
3595 	struct vmcb *vmcb = svm->vmcb;
3596 
3597 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3598 		goto out;
3599 
3600 	icpt_info = x86_intercept_map[info->intercept];
3601 
3602 	if (stage != icpt_info.stage)
3603 		goto out;
3604 
3605 	switch (icpt_info.exit_code) {
3606 	case SVM_EXIT_READ_CR0:
3607 		if (info->intercept == x86_intercept_cr_read)
3608 			icpt_info.exit_code += info->modrm_reg;
3609 		break;
3610 	case SVM_EXIT_WRITE_CR0: {
3611 		unsigned long cr0, val;
3612 		u64 intercept;
3613 
3614 		if (info->intercept == x86_intercept_cr_write)
3615 			icpt_info.exit_code += info->modrm_reg;
3616 
3617 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3618 		    info->intercept == x86_intercept_clts)
3619 			break;
3620 
3621 		intercept = svm->nested.intercept;
3622 
3623 		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
3624 			break;
3625 
3626 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3627 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
3628 
3629 		if (info->intercept == x86_intercept_lmsw) {
3630 			cr0 &= 0xfUL;
3631 			val &= 0xfUL;
3632 			/* lmsw can't clear PE - catch this here */
3633 			if (cr0 & X86_CR0_PE)
3634 				val |= X86_CR0_PE;
3635 		}
3636 
3637 		if (cr0 ^ val)
3638 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3639 
3640 		break;
3641 	}
3642 	case SVM_EXIT_READ_DR0:
3643 	case SVM_EXIT_WRITE_DR0:
3644 		icpt_info.exit_code += info->modrm_reg;
3645 		break;
3646 	case SVM_EXIT_MSR:
3647 		if (info->intercept == x86_intercept_wrmsr)
3648 			vmcb->control.exit_info_1 = 1;
3649 		else
3650 			vmcb->control.exit_info_1 = 0;
3651 		break;
3652 	case SVM_EXIT_PAUSE:
3653 		/*
3654 		 * We get this for NOP only, but pause
3655 		 * is rep not, check this here
3656 		 */
3657 		if (info->rep_prefix != REPE_PREFIX)
3658 			goto out;
3659 		break;
3660 	case SVM_EXIT_IOIO: {
3661 		u64 exit_info;
3662 		u32 bytes;
3663 
3664 		if (info->intercept == x86_intercept_in ||
3665 		    info->intercept == x86_intercept_ins) {
3666 			exit_info = ((info->src_val & 0xffff) << 16) |
3667 				SVM_IOIO_TYPE_MASK;
3668 			bytes = info->dst_bytes;
3669 		} else {
3670 			exit_info = (info->dst_val & 0xffff) << 16;
3671 			bytes = info->src_bytes;
3672 		}
3673 
3674 		if (info->intercept == x86_intercept_outs ||
3675 		    info->intercept == x86_intercept_ins)
3676 			exit_info |= SVM_IOIO_STR_MASK;
3677 
3678 		if (info->rep_prefix)
3679 			exit_info |= SVM_IOIO_REP_MASK;
3680 
3681 		bytes = min(bytes, 4u);
3682 
3683 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
3684 
3685 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
3686 
3687 		vmcb->control.exit_info_1 = exit_info;
3688 		vmcb->control.exit_info_2 = info->next_rip;
3689 
3690 		break;
3691 	}
3692 	default:
3693 		break;
3694 	}
3695 
3696 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3697 	if (static_cpu_has(X86_FEATURE_NRIPS))
3698 		vmcb->control.next_rip  = info->next_rip;
3699 	vmcb->control.exit_code = icpt_info.exit_code;
3700 	vmexit = nested_svm_exit_handled(svm);
3701 
3702 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
3703 					   : X86EMUL_CONTINUE;
3704 
3705 out:
3706 	return ret;
3707 }
3708 
3709 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu,
3710 	enum exit_fastpath_completion *exit_fastpath)
3711 {
3712 	if (!is_guest_mode(vcpu) &&
3713 	    to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3714 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3715 		*exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
3716 }
3717 
3718 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
3719 {
3720 	if (pause_filter_thresh)
3721 		shrink_ple_window(vcpu);
3722 }
3723 
3724 static void svm_setup_mce(struct kvm_vcpu *vcpu)
3725 {
3726 	/* [63:9] are reserved. */
3727 	vcpu->arch.mcg_cap &= 0x1ff;
3728 }
3729 
3730 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
3731 {
3732 	struct vcpu_svm *svm = to_svm(vcpu);
3733 
3734 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
3735 	if (!gif_set(svm))
3736 		return 0;
3737 
3738 	if (is_guest_mode(&svm->vcpu) &&
3739 	    svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
3740 		/* TODO: Might need to set exit_info_1 and exit_info_2 here */
3741 		svm->vmcb->control.exit_code = SVM_EXIT_SMI;
3742 		svm->nested.exit_required = true;
3743 		return 0;
3744 	}
3745 
3746 	return 1;
3747 }
3748 
3749 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
3750 {
3751 	struct vcpu_svm *svm = to_svm(vcpu);
3752 	int ret;
3753 
3754 	if (is_guest_mode(vcpu)) {
3755 		/* FED8h - SVM Guest */
3756 		put_smstate(u64, smstate, 0x7ed8, 1);
3757 		/* FEE0h - SVM Guest VMCB Physical Address */
3758 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
3759 
3760 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3761 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3762 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3763 
3764 		ret = nested_svm_vmexit(svm);
3765 		if (ret)
3766 			return ret;
3767 	}
3768 	return 0;
3769 }
3770 
3771 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
3772 {
3773 	struct vcpu_svm *svm = to_svm(vcpu);
3774 	struct vmcb *nested_vmcb;
3775 	struct kvm_host_map map;
3776 	u64 guest;
3777 	u64 vmcb;
3778 
3779 	guest = GET_SMSTATE(u64, smstate, 0x7ed8);
3780 	vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
3781 
3782 	if (guest) {
3783 		if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
3784 			return 1;
3785 		nested_vmcb = map.hva;
3786 		enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
3787 	}
3788 	return 0;
3789 }
3790 
3791 static int enable_smi_window(struct kvm_vcpu *vcpu)
3792 {
3793 	struct vcpu_svm *svm = to_svm(vcpu);
3794 
3795 	if (!gif_set(svm)) {
3796 		if (vgif_enabled(svm))
3797 			set_intercept(svm, INTERCEPT_STGI);
3798 		/* STGI will cause a vm exit */
3799 		return 1;
3800 	}
3801 	return 0;
3802 }
3803 
3804 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
3805 {
3806 	unsigned long cr4 = kvm_read_cr4(vcpu);
3807 	bool smep = cr4 & X86_CR4_SMEP;
3808 	bool smap = cr4 & X86_CR4_SMAP;
3809 	bool is_user = svm_get_cpl(vcpu) == 3;
3810 
3811 	/*
3812 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
3813 	 *
3814 	 * Errata:
3815 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
3816 	 * possible that CPU microcode implementing DecodeAssist will fail
3817 	 * to read bytes of instruction which caused #NPF. In this case,
3818 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
3819 	 * return 0 instead of the correct guest instruction bytes.
3820 	 *
3821 	 * This happens because CPU microcode reading instruction bytes
3822 	 * uses a special opcode which attempts to read data using CPL=0
3823 	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
3824 	 * fault, it gives up and returns no instruction bytes.
3825 	 *
3826 	 * Detection:
3827 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
3828 	 * returned 0 in GuestIntrBytes field of the VMCB.
3829 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
3830 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
3831 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
3832 	 * a SMEP fault instead of #NPF).
3833 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
3834 	 * As most guests enable SMAP if they have also enabled SMEP, use above
3835 	 * logic in order to attempt minimize false-positive of detecting errata
3836 	 * while still preserving all cases semantic correctness.
3837 	 *
3838 	 * Workaround:
3839 	 * To determine what instruction the guest was executing, the hypervisor
3840 	 * will have to decode the instruction at the instruction pointer.
3841 	 *
3842 	 * In non SEV guest, hypervisor will be able to read the guest
3843 	 * memory to decode the instruction pointer when insn_len is zero
3844 	 * so we return true to indicate that decoding is possible.
3845 	 *
3846 	 * But in the SEV guest, the guest memory is encrypted with the
3847 	 * guest specific key and hypervisor will not be able to decode the
3848 	 * instruction pointer so we will not able to workaround it. Lets
3849 	 * print the error and request to kill the guest.
3850 	 */
3851 	if (smap && (!smep || is_user)) {
3852 		if (!sev_guest(vcpu->kvm))
3853 			return true;
3854 
3855 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
3856 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3857 	}
3858 
3859 	return false;
3860 }
3861 
3862 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
3863 {
3864 	struct vcpu_svm *svm = to_svm(vcpu);
3865 
3866 	/*
3867 	 * TODO: Last condition latch INIT signals on vCPU when
3868 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
3869 	 * To properly emulate the INIT intercept, SVM should implement
3870 	 * kvm_x86_ops.check_nested_events() and call nested_svm_vmexit()
3871 	 * there if an INIT signal is pending.
3872 	 */
3873 	return !gif_set(svm) ||
3874 		   (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
3875 }
3876 
3877 static void svm_vm_destroy(struct kvm *kvm)
3878 {
3879 	avic_vm_destroy(kvm);
3880 	sev_vm_destroy(kvm);
3881 }
3882 
3883 static int svm_vm_init(struct kvm *kvm)
3884 {
3885 	if (avic) {
3886 		int ret = avic_vm_init(kvm);
3887 		if (ret)
3888 			return ret;
3889 	}
3890 
3891 	kvm_apicv_init(kvm, avic);
3892 	return 0;
3893 }
3894 
3895 static struct kvm_x86_ops svm_x86_ops __initdata = {
3896 	.hardware_unsetup = svm_hardware_teardown,
3897 	.hardware_enable = svm_hardware_enable,
3898 	.hardware_disable = svm_hardware_disable,
3899 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3900 	.has_emulated_msr = svm_has_emulated_msr,
3901 
3902 	.vcpu_create = svm_create_vcpu,
3903 	.vcpu_free = svm_free_vcpu,
3904 	.vcpu_reset = svm_vcpu_reset,
3905 
3906 	.vm_size = sizeof(struct kvm_svm),
3907 	.vm_init = svm_vm_init,
3908 	.vm_destroy = svm_vm_destroy,
3909 
3910 	.prepare_guest_switch = svm_prepare_guest_switch,
3911 	.vcpu_load = svm_vcpu_load,
3912 	.vcpu_put = svm_vcpu_put,
3913 	.vcpu_blocking = svm_vcpu_blocking,
3914 	.vcpu_unblocking = svm_vcpu_unblocking,
3915 
3916 	.update_bp_intercept = update_bp_intercept,
3917 	.get_msr_feature = svm_get_msr_feature,
3918 	.get_msr = svm_get_msr,
3919 	.set_msr = svm_set_msr,
3920 	.get_segment_base = svm_get_segment_base,
3921 	.get_segment = svm_get_segment,
3922 	.set_segment = svm_set_segment,
3923 	.get_cpl = svm_get_cpl,
3924 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3925 	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3926 	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3927 	.set_cr0 = svm_set_cr0,
3928 	.set_cr4 = svm_set_cr4,
3929 	.set_efer = svm_set_efer,
3930 	.get_idt = svm_get_idt,
3931 	.set_idt = svm_set_idt,
3932 	.get_gdt = svm_get_gdt,
3933 	.set_gdt = svm_set_gdt,
3934 	.get_dr6 = svm_get_dr6,
3935 	.set_dr6 = svm_set_dr6,
3936 	.set_dr7 = svm_set_dr7,
3937 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
3938 	.cache_reg = svm_cache_reg,
3939 	.get_rflags = svm_get_rflags,
3940 	.set_rflags = svm_set_rflags,
3941 
3942 	.tlb_flush = svm_flush_tlb,
3943 	.tlb_flush_gva = svm_flush_tlb_gva,
3944 
3945 	.run = svm_vcpu_run,
3946 	.handle_exit = handle_exit,
3947 	.skip_emulated_instruction = skip_emulated_instruction,
3948 	.update_emulated_instruction = NULL,
3949 	.set_interrupt_shadow = svm_set_interrupt_shadow,
3950 	.get_interrupt_shadow = svm_get_interrupt_shadow,
3951 	.patch_hypercall = svm_patch_hypercall,
3952 	.set_irq = svm_set_irq,
3953 	.set_nmi = svm_inject_nmi,
3954 	.queue_exception = svm_queue_exception,
3955 	.cancel_injection = svm_cancel_injection,
3956 	.interrupt_allowed = svm_interrupt_allowed,
3957 	.nmi_allowed = svm_nmi_allowed,
3958 	.get_nmi_mask = svm_get_nmi_mask,
3959 	.set_nmi_mask = svm_set_nmi_mask,
3960 	.enable_nmi_window = enable_nmi_window,
3961 	.enable_irq_window = enable_irq_window,
3962 	.update_cr8_intercept = update_cr8_intercept,
3963 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
3964 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
3965 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
3966 	.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
3967 	.load_eoi_exitmap = svm_load_eoi_exitmap,
3968 	.hwapic_irr_update = svm_hwapic_irr_update,
3969 	.hwapic_isr_update = svm_hwapic_isr_update,
3970 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
3971 	.apicv_post_state_restore = avic_post_state_restore,
3972 
3973 	.set_tss_addr = svm_set_tss_addr,
3974 	.set_identity_map_addr = svm_set_identity_map_addr,
3975 	.get_tdp_level = get_npt_level,
3976 	.get_mt_mask = svm_get_mt_mask,
3977 
3978 	.get_exit_info = svm_get_exit_info,
3979 
3980 	.cpuid_update = svm_cpuid_update,
3981 
3982 	.has_wbinvd_exit = svm_has_wbinvd_exit,
3983 
3984 	.read_l1_tsc_offset = svm_read_l1_tsc_offset,
3985 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
3986 
3987 	.load_mmu_pgd = svm_load_mmu_pgd,
3988 
3989 	.check_intercept = svm_check_intercept,
3990 	.handle_exit_irqoff = svm_handle_exit_irqoff,
3991 
3992 	.request_immediate_exit = __kvm_request_immediate_exit,
3993 
3994 	.sched_in = svm_sched_in,
3995 
3996 	.pmu_ops = &amd_pmu_ops,
3997 	.deliver_posted_interrupt = svm_deliver_avic_intr,
3998 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
3999 	.update_pi_irte = svm_update_pi_irte,
4000 	.setup_mce = svm_setup_mce,
4001 
4002 	.smi_allowed = svm_smi_allowed,
4003 	.pre_enter_smm = svm_pre_enter_smm,
4004 	.pre_leave_smm = svm_pre_leave_smm,
4005 	.enable_smi_window = enable_smi_window,
4006 
4007 	.mem_enc_op = svm_mem_enc_op,
4008 	.mem_enc_reg_region = svm_register_enc_region,
4009 	.mem_enc_unreg_region = svm_unregister_enc_region,
4010 
4011 	.nested_enable_evmcs = NULL,
4012 	.nested_get_evmcs_version = NULL,
4013 
4014 	.need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
4015 
4016 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4017 
4018 	.check_nested_events = svm_check_nested_events,
4019 };
4020 
4021 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4022 	.cpu_has_kvm_support = has_svm,
4023 	.disabled_by_bios = is_disabled,
4024 	.hardware_setup = svm_hardware_setup,
4025 	.check_processor_compatibility = svm_check_processor_compat,
4026 
4027 	.runtime_ops = &svm_x86_ops,
4028 };
4029 
4030 static int __init svm_init(void)
4031 {
4032 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4033 			__alignof__(struct vcpu_svm), THIS_MODULE);
4034 }
4035 
4036 static void __exit svm_exit(void)
4037 {
4038 	kvm_exit();
4039 }
4040 
4041 module_init(svm_init)
4042 module_exit(svm_exit)
4043