xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision c8ed9fc9)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/frame.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/mce.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 
40 #include <asm/virtext.h>
41 #include "trace.h"
42 
43 #include "svm.h"
44 
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49 
50 #ifdef MODULE
51 static const struct x86_cpu_id svm_cpu_id[] = {
52 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
53 	{}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56 #endif
57 
58 #define IOPM_ALLOC_ORDER 2
59 #define MSRPM_ALLOC_ORDER 1
60 
61 #define SEG_TYPE_LDT 2
62 #define SEG_TYPE_BUSY_TSS16 3
63 
64 #define SVM_FEATURE_LBRV           (1 <<  1)
65 #define SVM_FEATURE_SVML           (1 <<  2)
66 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
67 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
68 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
69 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
70 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
71 
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73 
74 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
75 #define TSC_RATIO_MIN		0x0000000000000001ULL
76 #define TSC_RATIO_MAX		0x000000ffffffffffULL
77 
78 static bool erratum_383_found __read_mostly;
79 
80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
81 
82 /*
83  * Set osvw_len to higher value when updated Revision Guides
84  * are published and we know what the new status bits are
85  */
86 static uint64_t osvw_len = 4, osvw_status;
87 
88 static DEFINE_PER_CPU(u64, current_tsc_ratio);
89 #define TSC_RATIO_DEFAULT	0x0100000000ULL
90 
91 static const struct svm_direct_access_msrs {
92 	u32 index;   /* Index of the MSR */
93 	bool always; /* True if intercept is always on */
94 } direct_access_msrs[] = {
95 	{ .index = MSR_STAR,				.always = true  },
96 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
97 #ifdef CONFIG_X86_64
98 	{ .index = MSR_GS_BASE,				.always = true  },
99 	{ .index = MSR_FS_BASE,				.always = true  },
100 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
101 	{ .index = MSR_LSTAR,				.always = true  },
102 	{ .index = MSR_CSTAR,				.always = true  },
103 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
104 #endif
105 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
106 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
107 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
108 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
109 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
110 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
111 	{ .index = MSR_INVALID,				.always = false },
112 };
113 
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 bool npt_enabled = true;
117 #else
118 bool npt_enabled;
119 #endif
120 
121 /*
122  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
123  * pause_filter_count: On processors that support Pause filtering(indicated
124  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
125  *	count value. On VMRUN this value is loaded into an internal counter.
126  *	Each time a pause instruction is executed, this counter is decremented
127  *	until it reaches zero at which time a #VMEXIT is generated if pause
128  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
129  *	Intercept Filtering for more details.
130  *	This also indicate if ple logic enabled.
131  *
132  * pause_filter_thresh: In addition, some processor families support advanced
133  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
134  *	the amount of time a guest is allowed to execute in a pause loop.
135  *	In this mode, a 16-bit pause filter threshold field is added in the
136  *	VMCB. The threshold value is a cycle count that is used to reset the
137  *	pause counter. As with simple pause filtering, VMRUN loads the pause
138  *	count value from VMCB into an internal counter. Then, on each pause
139  *	instruction the hardware checks the elapsed number of cycles since
140  *	the most recent pause instruction against the pause filter threshold.
141  *	If the elapsed cycle count is greater than the pause filter threshold,
142  *	then the internal pause count is reloaded from the VMCB and execution
143  *	continues. If the elapsed cycle count is less than the pause filter
144  *	threshold, then the internal pause count is decremented. If the count
145  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
146  *	triggered. If advanced pause filtering is supported and pause filter
147  *	threshold field is set to zero, the filter will operate in the simpler,
148  *	count only mode.
149  */
150 
151 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
152 module_param(pause_filter_thresh, ushort, 0444);
153 
154 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
155 module_param(pause_filter_count, ushort, 0444);
156 
157 /* Default doubles per-vcpu window every exit. */
158 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
159 module_param(pause_filter_count_grow, ushort, 0444);
160 
161 /* Default resets per-vcpu window every exit to pause_filter_count. */
162 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
163 module_param(pause_filter_count_shrink, ushort, 0444);
164 
165 /* Default is to compute the maximum so we can never overflow. */
166 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
167 module_param(pause_filter_count_max, ushort, 0444);
168 
169 /* allow nested paging (virtualized MMU) for all guests */
170 static int npt = true;
171 module_param(npt, int, S_IRUGO);
172 
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176 
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180 
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184 
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188 
189 /* enable/disable SEV support */
190 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
191 module_param(sev, int, 0444);
192 
193 static bool __read_mostly dump_invalid_vmcb = 0;
194 module_param(dump_invalid_vmcb, bool, 0644);
195 
196 static u8 rsm_ins_bytes[] = "\x0f\xaa";
197 
198 static void svm_complete_interrupts(struct vcpu_svm *svm);
199 
200 static unsigned long iopm_base;
201 
202 struct kvm_ldttss_desc {
203 	u16 limit0;
204 	u16 base0;
205 	unsigned base1:8, type:5, dpl:2, p:1;
206 	unsigned limit1:4, zero0:3, g:1, base2:8;
207 	u32 base3;
208 	u32 zero1;
209 } __attribute__((packed));
210 
211 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
212 
213 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
214 
215 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
216 #define MSRS_RANGE_SIZE 2048
217 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
218 
219 u32 svm_msrpm_offset(u32 msr)
220 {
221 	u32 offset;
222 	int i;
223 
224 	for (i = 0; i < NUM_MSR_MAPS; i++) {
225 		if (msr < msrpm_ranges[i] ||
226 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
227 			continue;
228 
229 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
230 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
231 
232 		/* Now we have the u8 offset - but need the u32 offset */
233 		return offset / 4;
234 	}
235 
236 	/* MSR not in any range */
237 	return MSR_INVALID;
238 }
239 
240 #define MAX_INST_SIZE 15
241 
242 static inline void clgi(void)
243 {
244 	asm volatile (__ex("clgi"));
245 }
246 
247 static inline void stgi(void)
248 {
249 	asm volatile (__ex("stgi"));
250 }
251 
252 static inline void invlpga(unsigned long addr, u32 asid)
253 {
254 	asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
255 }
256 
257 static int get_npt_level(struct kvm_vcpu *vcpu)
258 {
259 #ifdef CONFIG_X86_64
260 	return PT64_ROOT_4LEVEL;
261 #else
262 	return PT32E_ROOT_LEVEL;
263 #endif
264 }
265 
266 void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
267 {
268 	struct vcpu_svm *svm = to_svm(vcpu);
269 	vcpu->arch.efer = efer;
270 
271 	if (!npt_enabled) {
272 		/* Shadow paging assumes NX to be available.  */
273 		efer |= EFER_NX;
274 
275 		if (!(efer & EFER_LMA))
276 			efer &= ~EFER_LME;
277 	}
278 
279 	if (!(efer & EFER_SVME)) {
280 		svm_leave_nested(svm);
281 		svm_set_gif(svm, true);
282 	}
283 
284 	svm->vmcb->save.efer = efer | EFER_SVME;
285 	mark_dirty(svm->vmcb, VMCB_CR);
286 }
287 
288 static int is_external_interrupt(u32 info)
289 {
290 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
291 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
292 }
293 
294 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
295 {
296 	struct vcpu_svm *svm = to_svm(vcpu);
297 	u32 ret = 0;
298 
299 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
300 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
301 	return ret;
302 }
303 
304 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
305 {
306 	struct vcpu_svm *svm = to_svm(vcpu);
307 
308 	if (mask == 0)
309 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
310 	else
311 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
312 
313 }
314 
315 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
316 {
317 	struct vcpu_svm *svm = to_svm(vcpu);
318 
319 	if (nrips && svm->vmcb->control.next_rip != 0) {
320 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
321 		svm->next_rip = svm->vmcb->control.next_rip;
322 	}
323 
324 	if (!svm->next_rip) {
325 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
326 			return 0;
327 	} else {
328 		kvm_rip_write(vcpu, svm->next_rip);
329 	}
330 	svm_set_interrupt_shadow(vcpu, 0);
331 
332 	return 1;
333 }
334 
335 static void svm_queue_exception(struct kvm_vcpu *vcpu)
336 {
337 	struct vcpu_svm *svm = to_svm(vcpu);
338 	unsigned nr = vcpu->arch.exception.nr;
339 	bool has_error_code = vcpu->arch.exception.has_error_code;
340 	u32 error_code = vcpu->arch.exception.error_code;
341 
342 	kvm_deliver_exception_payload(&svm->vcpu);
343 
344 	if (nr == BP_VECTOR && !nrips) {
345 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
346 
347 		/*
348 		 * For guest debugging where we have to reinject #BP if some
349 		 * INT3 is guest-owned:
350 		 * Emulate nRIP by moving RIP forward. Will fail if injection
351 		 * raises a fault that is not intercepted. Still better than
352 		 * failing in all cases.
353 		 */
354 		(void)skip_emulated_instruction(&svm->vcpu);
355 		rip = kvm_rip_read(&svm->vcpu);
356 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
357 		svm->int3_injected = rip - old_rip;
358 	}
359 
360 	svm->vmcb->control.event_inj = nr
361 		| SVM_EVTINJ_VALID
362 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
363 		| SVM_EVTINJ_TYPE_EXEPT;
364 	svm->vmcb->control.event_inj_err = error_code;
365 }
366 
367 static void svm_init_erratum_383(void)
368 {
369 	u32 low, high;
370 	int err;
371 	u64 val;
372 
373 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
374 		return;
375 
376 	/* Use _safe variants to not break nested virtualization */
377 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
378 	if (err)
379 		return;
380 
381 	val |= (1ULL << 47);
382 
383 	low  = lower_32_bits(val);
384 	high = upper_32_bits(val);
385 
386 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
387 
388 	erratum_383_found = true;
389 }
390 
391 static void svm_init_osvw(struct kvm_vcpu *vcpu)
392 {
393 	/*
394 	 * Guests should see errata 400 and 415 as fixed (assuming that
395 	 * HLT and IO instructions are intercepted).
396 	 */
397 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
398 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
399 
400 	/*
401 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
402 	 * all osvw.status bits inside that length, including bit 0 (which is
403 	 * reserved for erratum 298), are valid. However, if host processor's
404 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
405 	 * be conservative here and therefore we tell the guest that erratum 298
406 	 * is present (because we really don't know).
407 	 */
408 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
409 		vcpu->arch.osvw.status |= 1;
410 }
411 
412 static int has_svm(void)
413 {
414 	const char *msg;
415 
416 	if (!cpu_has_svm(&msg)) {
417 		printk(KERN_INFO "has_svm: %s\n", msg);
418 		return 0;
419 	}
420 
421 	return 1;
422 }
423 
424 static void svm_hardware_disable(void)
425 {
426 	/* Make sure we clean up behind us */
427 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
428 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
429 
430 	cpu_svm_disable();
431 
432 	amd_pmu_disable_virt();
433 }
434 
435 static int svm_hardware_enable(void)
436 {
437 
438 	struct svm_cpu_data *sd;
439 	uint64_t efer;
440 	struct desc_struct *gdt;
441 	int me = raw_smp_processor_id();
442 
443 	rdmsrl(MSR_EFER, efer);
444 	if (efer & EFER_SVME)
445 		return -EBUSY;
446 
447 	if (!has_svm()) {
448 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
449 		return -EINVAL;
450 	}
451 	sd = per_cpu(svm_data, me);
452 	if (!sd) {
453 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
454 		return -EINVAL;
455 	}
456 
457 	sd->asid_generation = 1;
458 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
459 	sd->next_asid = sd->max_asid + 1;
460 	sd->min_asid = max_sev_asid + 1;
461 
462 	gdt = get_current_gdt_rw();
463 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
464 
465 	wrmsrl(MSR_EFER, efer | EFER_SVME);
466 
467 	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
468 
469 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
470 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
471 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
472 	}
473 
474 
475 	/*
476 	 * Get OSVW bits.
477 	 *
478 	 * Note that it is possible to have a system with mixed processor
479 	 * revisions and therefore different OSVW bits. If bits are not the same
480 	 * on different processors then choose the worst case (i.e. if erratum
481 	 * is present on one processor and not on another then assume that the
482 	 * erratum is present everywhere).
483 	 */
484 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
485 		uint64_t len, status = 0;
486 		int err;
487 
488 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
489 		if (!err)
490 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
491 						      &err);
492 
493 		if (err)
494 			osvw_status = osvw_len = 0;
495 		else {
496 			if (len < osvw_len)
497 				osvw_len = len;
498 			osvw_status |= status;
499 			osvw_status &= (1ULL << osvw_len) - 1;
500 		}
501 	} else
502 		osvw_status = osvw_len = 0;
503 
504 	svm_init_erratum_383();
505 
506 	amd_pmu_enable_virt();
507 
508 	return 0;
509 }
510 
511 static void svm_cpu_uninit(int cpu)
512 {
513 	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
514 
515 	if (!sd)
516 		return;
517 
518 	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
519 	kfree(sd->sev_vmcbs);
520 	__free_page(sd->save_area);
521 	kfree(sd);
522 }
523 
524 static int svm_cpu_init(int cpu)
525 {
526 	struct svm_cpu_data *sd;
527 
528 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
529 	if (!sd)
530 		return -ENOMEM;
531 	sd->cpu = cpu;
532 	sd->save_area = alloc_page(GFP_KERNEL);
533 	if (!sd->save_area)
534 		goto free_cpu_data;
535 
536 	if (svm_sev_enabled()) {
537 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
538 					      sizeof(void *),
539 					      GFP_KERNEL);
540 		if (!sd->sev_vmcbs)
541 			goto free_save_area;
542 	}
543 
544 	per_cpu(svm_data, cpu) = sd;
545 
546 	return 0;
547 
548 free_save_area:
549 	__free_page(sd->save_area);
550 free_cpu_data:
551 	kfree(sd);
552 	return -ENOMEM;
553 
554 }
555 
556 static bool valid_msr_intercept(u32 index)
557 {
558 	int i;
559 
560 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
561 		if (direct_access_msrs[i].index == index)
562 			return true;
563 
564 	return false;
565 }
566 
567 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
568 {
569 	u8 bit_write;
570 	unsigned long tmp;
571 	u32 offset;
572 	u32 *msrpm;
573 
574 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
575 				      to_svm(vcpu)->msrpm;
576 
577 	offset    = svm_msrpm_offset(msr);
578 	bit_write = 2 * (msr & 0x0f) + 1;
579 	tmp       = msrpm[offset];
580 
581 	BUG_ON(offset == MSR_INVALID);
582 
583 	return !!test_bit(bit_write,  &tmp);
584 }
585 
586 static void set_msr_interception(u32 *msrpm, unsigned msr,
587 				 int read, int write)
588 {
589 	u8 bit_read, bit_write;
590 	unsigned long tmp;
591 	u32 offset;
592 
593 	/*
594 	 * If this warning triggers extend the direct_access_msrs list at the
595 	 * beginning of the file
596 	 */
597 	WARN_ON(!valid_msr_intercept(msr));
598 
599 	offset    = svm_msrpm_offset(msr);
600 	bit_read  = 2 * (msr & 0x0f);
601 	bit_write = 2 * (msr & 0x0f) + 1;
602 	tmp       = msrpm[offset];
603 
604 	BUG_ON(offset == MSR_INVALID);
605 
606 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
607 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
608 
609 	msrpm[offset] = tmp;
610 }
611 
612 static void svm_vcpu_init_msrpm(u32 *msrpm)
613 {
614 	int i;
615 
616 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
617 
618 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
619 		if (!direct_access_msrs[i].always)
620 			continue;
621 
622 		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
623 	}
624 }
625 
626 static void add_msr_offset(u32 offset)
627 {
628 	int i;
629 
630 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
631 
632 		/* Offset already in list? */
633 		if (msrpm_offsets[i] == offset)
634 			return;
635 
636 		/* Slot used by another offset? */
637 		if (msrpm_offsets[i] != MSR_INVALID)
638 			continue;
639 
640 		/* Add offset to list */
641 		msrpm_offsets[i] = offset;
642 
643 		return;
644 	}
645 
646 	/*
647 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
648 	 * increase MSRPM_OFFSETS in this case.
649 	 */
650 	BUG();
651 }
652 
653 static void init_msrpm_offsets(void)
654 {
655 	int i;
656 
657 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
658 
659 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
660 		u32 offset;
661 
662 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
663 		BUG_ON(offset == MSR_INVALID);
664 
665 		add_msr_offset(offset);
666 	}
667 }
668 
669 static void svm_enable_lbrv(struct vcpu_svm *svm)
670 {
671 	u32 *msrpm = svm->msrpm;
672 
673 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
674 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
675 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
676 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
677 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
678 }
679 
680 static void svm_disable_lbrv(struct vcpu_svm *svm)
681 {
682 	u32 *msrpm = svm->msrpm;
683 
684 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
685 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
686 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
687 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
688 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
689 }
690 
691 void disable_nmi_singlestep(struct vcpu_svm *svm)
692 {
693 	svm->nmi_singlestep = false;
694 
695 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
696 		/* Clear our flags if they were not set by the guest */
697 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
698 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
699 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
700 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
701 	}
702 }
703 
704 static void grow_ple_window(struct kvm_vcpu *vcpu)
705 {
706 	struct vcpu_svm *svm = to_svm(vcpu);
707 	struct vmcb_control_area *control = &svm->vmcb->control;
708 	int old = control->pause_filter_count;
709 
710 	control->pause_filter_count = __grow_ple_window(old,
711 							pause_filter_count,
712 							pause_filter_count_grow,
713 							pause_filter_count_max);
714 
715 	if (control->pause_filter_count != old) {
716 		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
717 		trace_kvm_ple_window_update(vcpu->vcpu_id,
718 					    control->pause_filter_count, old);
719 	}
720 }
721 
722 static void shrink_ple_window(struct kvm_vcpu *vcpu)
723 {
724 	struct vcpu_svm *svm = to_svm(vcpu);
725 	struct vmcb_control_area *control = &svm->vmcb->control;
726 	int old = control->pause_filter_count;
727 
728 	control->pause_filter_count =
729 				__shrink_ple_window(old,
730 						    pause_filter_count,
731 						    pause_filter_count_shrink,
732 						    pause_filter_count);
733 	if (control->pause_filter_count != old) {
734 		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
735 		trace_kvm_ple_window_update(vcpu->vcpu_id,
736 					    control->pause_filter_count, old);
737 	}
738 }
739 
740 /*
741  * The default MMIO mask is a single bit (excluding the present bit),
742  * which could conflict with the memory encryption bit. Check for
743  * memory encryption support and override the default MMIO mask if
744  * memory encryption is enabled.
745  */
746 static __init void svm_adjust_mmio_mask(void)
747 {
748 	unsigned int enc_bit, mask_bit;
749 	u64 msr, mask;
750 
751 	/* If there is no memory encryption support, use existing mask */
752 	if (cpuid_eax(0x80000000) < 0x8000001f)
753 		return;
754 
755 	/* If memory encryption is not enabled, use existing mask */
756 	rdmsrl(MSR_K8_SYSCFG, msr);
757 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
758 		return;
759 
760 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
761 	mask_bit = boot_cpu_data.x86_phys_bits;
762 
763 	/* Increment the mask bit if it is the same as the encryption bit */
764 	if (enc_bit == mask_bit)
765 		mask_bit++;
766 
767 	/*
768 	 * If the mask bit location is below 52, then some bits above the
769 	 * physical addressing limit will always be reserved, so use the
770 	 * rsvd_bits() function to generate the mask. This mask, along with
771 	 * the present bit, will be used to generate a page fault with
772 	 * PFER.RSV = 1.
773 	 *
774 	 * If the mask bit location is 52 (or above), then clear the mask.
775 	 */
776 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
777 
778 	kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
779 }
780 
781 static void svm_hardware_teardown(void)
782 {
783 	int cpu;
784 
785 	if (svm_sev_enabled())
786 		sev_hardware_teardown();
787 
788 	for_each_possible_cpu(cpu)
789 		svm_cpu_uninit(cpu);
790 
791 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
792 	iopm_base = 0;
793 }
794 
795 static __init void svm_set_cpu_caps(void)
796 {
797 	kvm_set_cpu_caps();
798 
799 	supported_xss = 0;
800 
801 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
802 	if (nested) {
803 		kvm_cpu_cap_set(X86_FEATURE_SVM);
804 
805 		if (nrips)
806 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
807 
808 		if (npt_enabled)
809 			kvm_cpu_cap_set(X86_FEATURE_NPT);
810 	}
811 
812 	/* CPUID 0x80000008 */
813 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
814 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
815 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
816 }
817 
818 static __init int svm_hardware_setup(void)
819 {
820 	int cpu;
821 	struct page *iopm_pages;
822 	void *iopm_va;
823 	int r;
824 
825 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
826 
827 	if (!iopm_pages)
828 		return -ENOMEM;
829 
830 	iopm_va = page_address(iopm_pages);
831 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
832 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
833 
834 	init_msrpm_offsets();
835 
836 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
837 
838 	if (boot_cpu_has(X86_FEATURE_NX))
839 		kvm_enable_efer_bits(EFER_NX);
840 
841 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
842 		kvm_enable_efer_bits(EFER_FFXSR);
843 
844 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
845 		kvm_has_tsc_control = true;
846 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
847 		kvm_tsc_scaling_ratio_frac_bits = 32;
848 	}
849 
850 	/* Check for pause filtering support */
851 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
852 		pause_filter_count = 0;
853 		pause_filter_thresh = 0;
854 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
855 		pause_filter_thresh = 0;
856 	}
857 
858 	if (nested) {
859 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
860 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
861 	}
862 
863 	if (sev) {
864 		if (boot_cpu_has(X86_FEATURE_SEV) &&
865 		    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
866 			r = sev_hardware_setup();
867 			if (r)
868 				sev = false;
869 		} else {
870 			sev = false;
871 		}
872 	}
873 
874 	svm_adjust_mmio_mask();
875 
876 	for_each_possible_cpu(cpu) {
877 		r = svm_cpu_init(cpu);
878 		if (r)
879 			goto err;
880 	}
881 
882 	if (!boot_cpu_has(X86_FEATURE_NPT))
883 		npt_enabled = false;
884 
885 	if (npt_enabled && !npt)
886 		npt_enabled = false;
887 
888 	kvm_configure_mmu(npt_enabled, PG_LEVEL_1G);
889 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
890 
891 	if (nrips) {
892 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
893 			nrips = false;
894 	}
895 
896 	if (avic) {
897 		if (!npt_enabled ||
898 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
899 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
900 			avic = false;
901 		} else {
902 			pr_info("AVIC enabled\n");
903 
904 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
905 		}
906 	}
907 
908 	if (vls) {
909 		if (!npt_enabled ||
910 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
911 		    !IS_ENABLED(CONFIG_X86_64)) {
912 			vls = false;
913 		} else {
914 			pr_info("Virtual VMLOAD VMSAVE supported\n");
915 		}
916 	}
917 
918 	if (vgif) {
919 		if (!boot_cpu_has(X86_FEATURE_VGIF))
920 			vgif = false;
921 		else
922 			pr_info("Virtual GIF supported\n");
923 	}
924 
925 	svm_set_cpu_caps();
926 
927 	return 0;
928 
929 err:
930 	svm_hardware_teardown();
931 	return r;
932 }
933 
934 static void init_seg(struct vmcb_seg *seg)
935 {
936 	seg->selector = 0;
937 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
938 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
939 	seg->limit = 0xffff;
940 	seg->base = 0;
941 }
942 
943 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
944 {
945 	seg->selector = 0;
946 	seg->attrib = SVM_SELECTOR_P_MASK | type;
947 	seg->limit = 0xffff;
948 	seg->base = 0;
949 }
950 
951 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
952 {
953 	struct vcpu_svm *svm = to_svm(vcpu);
954 	u64 g_tsc_offset = 0;
955 
956 	if (is_guest_mode(vcpu)) {
957 		/* Write L1's TSC offset.  */
958 		g_tsc_offset = svm->vmcb->control.tsc_offset -
959 			       svm->nested.hsave->control.tsc_offset;
960 		svm->nested.hsave->control.tsc_offset = offset;
961 	}
962 
963 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
964 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
965 				   offset);
966 
967 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
968 
969 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
970 	return svm->vmcb->control.tsc_offset;
971 }
972 
973 static void init_vmcb(struct vcpu_svm *svm)
974 {
975 	struct vmcb_control_area *control = &svm->vmcb->control;
976 	struct vmcb_save_area *save = &svm->vmcb->save;
977 
978 	svm->vcpu.arch.hflags = 0;
979 
980 	set_cr_intercept(svm, INTERCEPT_CR0_READ);
981 	set_cr_intercept(svm, INTERCEPT_CR3_READ);
982 	set_cr_intercept(svm, INTERCEPT_CR4_READ);
983 	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
984 	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
985 	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
986 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
987 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
988 
989 	set_dr_intercepts(svm);
990 
991 	set_exception_intercept(svm, PF_VECTOR);
992 	set_exception_intercept(svm, UD_VECTOR);
993 	set_exception_intercept(svm, MC_VECTOR);
994 	set_exception_intercept(svm, AC_VECTOR);
995 	set_exception_intercept(svm, DB_VECTOR);
996 	/*
997 	 * Guest access to VMware backdoor ports could legitimately
998 	 * trigger #GP because of TSS I/O permission bitmap.
999 	 * We intercept those #GP and allow access to them anyway
1000 	 * as VMware does.
1001 	 */
1002 	if (enable_vmware_backdoor)
1003 		set_exception_intercept(svm, GP_VECTOR);
1004 
1005 	set_intercept(svm, INTERCEPT_INTR);
1006 	set_intercept(svm, INTERCEPT_NMI);
1007 	set_intercept(svm, INTERCEPT_SMI);
1008 	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1009 	set_intercept(svm, INTERCEPT_RDPMC);
1010 	set_intercept(svm, INTERCEPT_CPUID);
1011 	set_intercept(svm, INTERCEPT_INVD);
1012 	set_intercept(svm, INTERCEPT_INVLPG);
1013 	set_intercept(svm, INTERCEPT_INVLPGA);
1014 	set_intercept(svm, INTERCEPT_IOIO_PROT);
1015 	set_intercept(svm, INTERCEPT_MSR_PROT);
1016 	set_intercept(svm, INTERCEPT_TASK_SWITCH);
1017 	set_intercept(svm, INTERCEPT_SHUTDOWN);
1018 	set_intercept(svm, INTERCEPT_VMRUN);
1019 	set_intercept(svm, INTERCEPT_VMMCALL);
1020 	set_intercept(svm, INTERCEPT_VMLOAD);
1021 	set_intercept(svm, INTERCEPT_VMSAVE);
1022 	set_intercept(svm, INTERCEPT_STGI);
1023 	set_intercept(svm, INTERCEPT_CLGI);
1024 	set_intercept(svm, INTERCEPT_SKINIT);
1025 	set_intercept(svm, INTERCEPT_WBINVD);
1026 	set_intercept(svm, INTERCEPT_XSETBV);
1027 	set_intercept(svm, INTERCEPT_RDPRU);
1028 	set_intercept(svm, INTERCEPT_RSM);
1029 
1030 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1031 		set_intercept(svm, INTERCEPT_MONITOR);
1032 		set_intercept(svm, INTERCEPT_MWAIT);
1033 	}
1034 
1035 	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1036 		set_intercept(svm, INTERCEPT_HLT);
1037 
1038 	control->iopm_base_pa = __sme_set(iopm_base);
1039 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1040 	control->int_ctl = V_INTR_MASKING_MASK;
1041 
1042 	init_seg(&save->es);
1043 	init_seg(&save->ss);
1044 	init_seg(&save->ds);
1045 	init_seg(&save->fs);
1046 	init_seg(&save->gs);
1047 
1048 	save->cs.selector = 0xf000;
1049 	save->cs.base = 0xffff0000;
1050 	/* Executable/Readable Code Segment */
1051 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1052 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1053 	save->cs.limit = 0xffff;
1054 
1055 	save->gdtr.limit = 0xffff;
1056 	save->idtr.limit = 0xffff;
1057 
1058 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1059 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1060 
1061 	svm_set_efer(&svm->vcpu, 0);
1062 	save->dr6 = 0xffff0ff0;
1063 	kvm_set_rflags(&svm->vcpu, 2);
1064 	save->rip = 0x0000fff0;
1065 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1066 
1067 	/*
1068 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1069 	 * It also updates the guest-visible cr0 value.
1070 	 */
1071 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1072 	kvm_mmu_reset_context(&svm->vcpu);
1073 
1074 	save->cr4 = X86_CR4_PAE;
1075 	/* rdx = ?? */
1076 
1077 	if (npt_enabled) {
1078 		/* Setup VMCB for Nested Paging */
1079 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1080 		clr_intercept(svm, INTERCEPT_INVLPG);
1081 		clr_exception_intercept(svm, PF_VECTOR);
1082 		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1083 		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1084 		save->g_pat = svm->vcpu.arch.pat;
1085 		save->cr3 = 0;
1086 		save->cr4 = 0;
1087 	}
1088 	svm->asid_generation = 0;
1089 
1090 	svm->nested.vmcb = 0;
1091 	svm->vcpu.arch.hflags = 0;
1092 
1093 	if (pause_filter_count) {
1094 		control->pause_filter_count = pause_filter_count;
1095 		if (pause_filter_thresh)
1096 			control->pause_filter_thresh = pause_filter_thresh;
1097 		set_intercept(svm, INTERCEPT_PAUSE);
1098 	} else {
1099 		clr_intercept(svm, INTERCEPT_PAUSE);
1100 	}
1101 
1102 	if (kvm_vcpu_apicv_active(&svm->vcpu))
1103 		avic_init_vmcb(svm);
1104 
1105 	/*
1106 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1107 	 * in VMCB and clear intercepts to avoid #VMEXIT.
1108 	 */
1109 	if (vls) {
1110 		clr_intercept(svm, INTERCEPT_VMLOAD);
1111 		clr_intercept(svm, INTERCEPT_VMSAVE);
1112 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1113 	}
1114 
1115 	if (vgif) {
1116 		clr_intercept(svm, INTERCEPT_STGI);
1117 		clr_intercept(svm, INTERCEPT_CLGI);
1118 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1119 	}
1120 
1121 	if (sev_guest(svm->vcpu.kvm)) {
1122 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1123 		clr_exception_intercept(svm, UD_VECTOR);
1124 	}
1125 
1126 	mark_all_dirty(svm->vmcb);
1127 
1128 	enable_gif(svm);
1129 
1130 }
1131 
1132 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1133 {
1134 	struct vcpu_svm *svm = to_svm(vcpu);
1135 	u32 dummy;
1136 	u32 eax = 1;
1137 
1138 	svm->spec_ctrl = 0;
1139 	svm->virt_spec_ctrl = 0;
1140 
1141 	if (!init_event) {
1142 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1143 					   MSR_IA32_APICBASE_ENABLE;
1144 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1145 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1146 	}
1147 	init_vmcb(svm);
1148 
1149 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1150 	kvm_rdx_write(vcpu, eax);
1151 
1152 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1153 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1154 }
1155 
1156 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1157 {
1158 	struct vcpu_svm *svm;
1159 	struct page *page;
1160 	struct page *msrpm_pages;
1161 	struct page *hsave_page;
1162 	struct page *nested_msrpm_pages;
1163 	int err;
1164 
1165 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1166 	svm = to_svm(vcpu);
1167 
1168 	err = -ENOMEM;
1169 	page = alloc_page(GFP_KERNEL_ACCOUNT);
1170 	if (!page)
1171 		goto out;
1172 
1173 	msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1174 	if (!msrpm_pages)
1175 		goto free_page1;
1176 
1177 	nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1178 	if (!nested_msrpm_pages)
1179 		goto free_page2;
1180 
1181 	hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
1182 	if (!hsave_page)
1183 		goto free_page3;
1184 
1185 	err = avic_init_vcpu(svm);
1186 	if (err)
1187 		goto free_page4;
1188 
1189 	/* We initialize this flag to true to make sure that the is_running
1190 	 * bit would be set the first time the vcpu is loaded.
1191 	 */
1192 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1193 		svm->avic_is_running = true;
1194 
1195 	svm->nested.hsave = page_address(hsave_page);
1196 	clear_page(svm->nested.hsave);
1197 
1198 	svm->msrpm = page_address(msrpm_pages);
1199 	svm_vcpu_init_msrpm(svm->msrpm);
1200 
1201 	svm->nested.msrpm = page_address(nested_msrpm_pages);
1202 	svm_vcpu_init_msrpm(svm->nested.msrpm);
1203 
1204 	svm->vmcb = page_address(page);
1205 	clear_page(svm->vmcb);
1206 	svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1207 	svm->asid_generation = 0;
1208 	init_vmcb(svm);
1209 
1210 	svm_init_osvw(vcpu);
1211 	vcpu->arch.microcode_version = 0x01000065;
1212 
1213 	return 0;
1214 
1215 free_page4:
1216 	__free_page(hsave_page);
1217 free_page3:
1218 	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1219 free_page2:
1220 	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1221 free_page1:
1222 	__free_page(page);
1223 out:
1224 	return err;
1225 }
1226 
1227 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1228 {
1229 	int i;
1230 
1231 	for_each_online_cpu(i)
1232 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1233 }
1234 
1235 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1236 {
1237 	struct vcpu_svm *svm = to_svm(vcpu);
1238 
1239 	/*
1240 	 * The vmcb page can be recycled, causing a false negative in
1241 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1242 	 * vmcb page recorded as its current vmcb.
1243 	 */
1244 	svm_clear_current_vmcb(svm->vmcb);
1245 
1246 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1247 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1248 	__free_page(virt_to_page(svm->nested.hsave));
1249 	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1250 }
1251 
1252 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1253 {
1254 	struct vcpu_svm *svm = to_svm(vcpu);
1255 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1256 	int i;
1257 
1258 	if (unlikely(cpu != vcpu->cpu)) {
1259 		svm->asid_generation = 0;
1260 		mark_all_dirty(svm->vmcb);
1261 	}
1262 
1263 #ifdef CONFIG_X86_64
1264 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1265 #endif
1266 	savesegment(fs, svm->host.fs);
1267 	savesegment(gs, svm->host.gs);
1268 	svm->host.ldt = kvm_read_ldt();
1269 
1270 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1271 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1272 
1273 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1274 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1275 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1276 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1277 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1278 		}
1279 	}
1280 	/* This assumes that the kernel never uses MSR_TSC_AUX */
1281 	if (static_cpu_has(X86_FEATURE_RDTSCP))
1282 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1283 
1284 	if (sd->current_vmcb != svm->vmcb) {
1285 		sd->current_vmcb = svm->vmcb;
1286 		indirect_branch_prediction_barrier();
1287 	}
1288 	avic_vcpu_load(vcpu, cpu);
1289 }
1290 
1291 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1292 {
1293 	struct vcpu_svm *svm = to_svm(vcpu);
1294 	int i;
1295 
1296 	avic_vcpu_put(vcpu);
1297 
1298 	++vcpu->stat.host_state_reload;
1299 	kvm_load_ldt(svm->host.ldt);
1300 #ifdef CONFIG_X86_64
1301 	loadsegment(fs, svm->host.fs);
1302 	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1303 	load_gs_index(svm->host.gs);
1304 #else
1305 #ifdef CONFIG_X86_32_LAZY_GS
1306 	loadsegment(gs, svm->host.gs);
1307 #endif
1308 #endif
1309 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1310 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1311 }
1312 
1313 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1314 {
1315 	struct vcpu_svm *svm = to_svm(vcpu);
1316 	unsigned long rflags = svm->vmcb->save.rflags;
1317 
1318 	if (svm->nmi_singlestep) {
1319 		/* Hide our flags if they were not set by the guest */
1320 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1321 			rflags &= ~X86_EFLAGS_TF;
1322 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1323 			rflags &= ~X86_EFLAGS_RF;
1324 	}
1325 	return rflags;
1326 }
1327 
1328 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1329 {
1330 	if (to_svm(vcpu)->nmi_singlestep)
1331 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1332 
1333        /*
1334         * Any change of EFLAGS.VM is accompanied by a reload of SS
1335         * (caused by either a task switch or an inter-privilege IRET),
1336         * so we do not need to update the CPL here.
1337         */
1338 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1339 }
1340 
1341 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1342 {
1343 	switch (reg) {
1344 	case VCPU_EXREG_PDPTR:
1345 		BUG_ON(!npt_enabled);
1346 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1347 		break;
1348 	default:
1349 		WARN_ON_ONCE(1);
1350 	}
1351 }
1352 
1353 static void svm_set_vintr(struct vcpu_svm *svm)
1354 {
1355 	struct vmcb_control_area *control;
1356 
1357 	/* The following fields are ignored when AVIC is enabled */
1358 	WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1359 	set_intercept(svm, INTERCEPT_VINTR);
1360 
1361 	/*
1362 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1363 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1364 	 */
1365 	control = &svm->vmcb->control;
1366 	control->int_vector = 0x0;
1367 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1368 	control->int_ctl |= V_IRQ_MASK |
1369 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1370 	mark_dirty(svm->vmcb, VMCB_INTR);
1371 }
1372 
1373 static void svm_clear_vintr(struct vcpu_svm *svm)
1374 {
1375 	const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1376 	clr_intercept(svm, INTERCEPT_VINTR);
1377 
1378 	/* Drop int_ctl fields related to VINTR injection.  */
1379 	svm->vmcb->control.int_ctl &= mask;
1380 	if (is_guest_mode(&svm->vcpu)) {
1381 		svm->nested.hsave->control.int_ctl &= mask;
1382 
1383 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1384 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1385 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1386 	}
1387 
1388 	mark_dirty(svm->vmcb, VMCB_INTR);
1389 }
1390 
1391 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1392 {
1393 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1394 
1395 	switch (seg) {
1396 	case VCPU_SREG_CS: return &save->cs;
1397 	case VCPU_SREG_DS: return &save->ds;
1398 	case VCPU_SREG_ES: return &save->es;
1399 	case VCPU_SREG_FS: return &save->fs;
1400 	case VCPU_SREG_GS: return &save->gs;
1401 	case VCPU_SREG_SS: return &save->ss;
1402 	case VCPU_SREG_TR: return &save->tr;
1403 	case VCPU_SREG_LDTR: return &save->ldtr;
1404 	}
1405 	BUG();
1406 	return NULL;
1407 }
1408 
1409 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1410 {
1411 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1412 
1413 	return s->base;
1414 }
1415 
1416 static void svm_get_segment(struct kvm_vcpu *vcpu,
1417 			    struct kvm_segment *var, int seg)
1418 {
1419 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1420 
1421 	var->base = s->base;
1422 	var->limit = s->limit;
1423 	var->selector = s->selector;
1424 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1425 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1426 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1427 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1428 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1429 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1430 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1431 
1432 	/*
1433 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1434 	 * However, the SVM spec states that the G bit is not observed by the
1435 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1436 	 * So let's synthesize a legal G bit for all segments, this helps
1437 	 * running KVM nested. It also helps cross-vendor migration, because
1438 	 * Intel's vmentry has a check on the 'G' bit.
1439 	 */
1440 	var->g = s->limit > 0xfffff;
1441 
1442 	/*
1443 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1444 	 * for cross vendor migration purposes by "not present"
1445 	 */
1446 	var->unusable = !var->present;
1447 
1448 	switch (seg) {
1449 	case VCPU_SREG_TR:
1450 		/*
1451 		 * Work around a bug where the busy flag in the tr selector
1452 		 * isn't exposed
1453 		 */
1454 		var->type |= 0x2;
1455 		break;
1456 	case VCPU_SREG_DS:
1457 	case VCPU_SREG_ES:
1458 	case VCPU_SREG_FS:
1459 	case VCPU_SREG_GS:
1460 		/*
1461 		 * The accessed bit must always be set in the segment
1462 		 * descriptor cache, although it can be cleared in the
1463 		 * descriptor, the cached bit always remains at 1. Since
1464 		 * Intel has a check on this, set it here to support
1465 		 * cross-vendor migration.
1466 		 */
1467 		if (!var->unusable)
1468 			var->type |= 0x1;
1469 		break;
1470 	case VCPU_SREG_SS:
1471 		/*
1472 		 * On AMD CPUs sometimes the DB bit in the segment
1473 		 * descriptor is left as 1, although the whole segment has
1474 		 * been made unusable. Clear it here to pass an Intel VMX
1475 		 * entry check when cross vendor migrating.
1476 		 */
1477 		if (var->unusable)
1478 			var->db = 0;
1479 		/* This is symmetric with svm_set_segment() */
1480 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1481 		break;
1482 	}
1483 }
1484 
1485 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1486 {
1487 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1488 
1489 	return save->cpl;
1490 }
1491 
1492 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1493 {
1494 	struct vcpu_svm *svm = to_svm(vcpu);
1495 
1496 	dt->size = svm->vmcb->save.idtr.limit;
1497 	dt->address = svm->vmcb->save.idtr.base;
1498 }
1499 
1500 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1501 {
1502 	struct vcpu_svm *svm = to_svm(vcpu);
1503 
1504 	svm->vmcb->save.idtr.limit = dt->size;
1505 	svm->vmcb->save.idtr.base = dt->address ;
1506 	mark_dirty(svm->vmcb, VMCB_DT);
1507 }
1508 
1509 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1510 {
1511 	struct vcpu_svm *svm = to_svm(vcpu);
1512 
1513 	dt->size = svm->vmcb->save.gdtr.limit;
1514 	dt->address = svm->vmcb->save.gdtr.base;
1515 }
1516 
1517 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1518 {
1519 	struct vcpu_svm *svm = to_svm(vcpu);
1520 
1521 	svm->vmcb->save.gdtr.limit = dt->size;
1522 	svm->vmcb->save.gdtr.base = dt->address ;
1523 	mark_dirty(svm->vmcb, VMCB_DT);
1524 }
1525 
1526 static void update_cr0_intercept(struct vcpu_svm *svm)
1527 {
1528 	ulong gcr0 = svm->vcpu.arch.cr0;
1529 	u64 *hcr0 = &svm->vmcb->save.cr0;
1530 
1531 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1532 		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1533 
1534 	mark_dirty(svm->vmcb, VMCB_CR);
1535 
1536 	if (gcr0 == *hcr0) {
1537 		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1538 		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1539 	} else {
1540 		set_cr_intercept(svm, INTERCEPT_CR0_READ);
1541 		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1542 	}
1543 }
1544 
1545 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1546 {
1547 	struct vcpu_svm *svm = to_svm(vcpu);
1548 
1549 #ifdef CONFIG_X86_64
1550 	if (vcpu->arch.efer & EFER_LME) {
1551 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1552 			vcpu->arch.efer |= EFER_LMA;
1553 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1554 		}
1555 
1556 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1557 			vcpu->arch.efer &= ~EFER_LMA;
1558 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1559 		}
1560 	}
1561 #endif
1562 	vcpu->arch.cr0 = cr0;
1563 
1564 	if (!npt_enabled)
1565 		cr0 |= X86_CR0_PG | X86_CR0_WP;
1566 
1567 	/*
1568 	 * re-enable caching here because the QEMU bios
1569 	 * does not do it - this results in some delay at
1570 	 * reboot
1571 	 */
1572 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1573 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1574 	svm->vmcb->save.cr0 = cr0;
1575 	mark_dirty(svm->vmcb, VMCB_CR);
1576 	update_cr0_intercept(svm);
1577 }
1578 
1579 int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1580 {
1581 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1582 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1583 
1584 	if (cr4 & X86_CR4_VMXE)
1585 		return 1;
1586 
1587 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1588 		svm_flush_tlb(vcpu);
1589 
1590 	vcpu->arch.cr4 = cr4;
1591 	if (!npt_enabled)
1592 		cr4 |= X86_CR4_PAE;
1593 	cr4 |= host_cr4_mce;
1594 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1595 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1596 	return 0;
1597 }
1598 
1599 static void svm_set_segment(struct kvm_vcpu *vcpu,
1600 			    struct kvm_segment *var, int seg)
1601 {
1602 	struct vcpu_svm *svm = to_svm(vcpu);
1603 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1604 
1605 	s->base = var->base;
1606 	s->limit = var->limit;
1607 	s->selector = var->selector;
1608 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1609 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1610 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1611 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1612 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1613 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1614 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1615 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1616 
1617 	/*
1618 	 * This is always accurate, except if SYSRET returned to a segment
1619 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1620 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1621 	 * would entail passing the CPL to userspace and back.
1622 	 */
1623 	if (seg == VCPU_SREG_SS)
1624 		/* This is symmetric with svm_get_segment() */
1625 		svm->vmcb->save.cpl = (var->dpl & 3);
1626 
1627 	mark_dirty(svm->vmcb, VMCB_SEG);
1628 }
1629 
1630 static void update_bp_intercept(struct kvm_vcpu *vcpu)
1631 {
1632 	struct vcpu_svm *svm = to_svm(vcpu);
1633 
1634 	clr_exception_intercept(svm, BP_VECTOR);
1635 
1636 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1637 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1638 			set_exception_intercept(svm, BP_VECTOR);
1639 	} else
1640 		vcpu->guest_debug = 0;
1641 }
1642 
1643 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1644 {
1645 	if (sd->next_asid > sd->max_asid) {
1646 		++sd->asid_generation;
1647 		sd->next_asid = sd->min_asid;
1648 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1649 	}
1650 
1651 	svm->asid_generation = sd->asid_generation;
1652 	svm->vmcb->control.asid = sd->next_asid++;
1653 
1654 	mark_dirty(svm->vmcb, VMCB_ASID);
1655 }
1656 
1657 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1658 {
1659 	struct vmcb *vmcb = svm->vmcb;
1660 
1661 	if (unlikely(value != vmcb->save.dr6)) {
1662 		vmcb->save.dr6 = value;
1663 		mark_dirty(vmcb, VMCB_DR);
1664 	}
1665 }
1666 
1667 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1668 {
1669 	struct vcpu_svm *svm = to_svm(vcpu);
1670 
1671 	get_debugreg(vcpu->arch.db[0], 0);
1672 	get_debugreg(vcpu->arch.db[1], 1);
1673 	get_debugreg(vcpu->arch.db[2], 2);
1674 	get_debugreg(vcpu->arch.db[3], 3);
1675 	/*
1676 	 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1677 	 * because db_interception might need it.  We can do it before vmentry.
1678 	 */
1679 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1680 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1681 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1682 	set_dr_intercepts(svm);
1683 }
1684 
1685 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1686 {
1687 	struct vcpu_svm *svm = to_svm(vcpu);
1688 
1689 	svm->vmcb->save.dr7 = value;
1690 	mark_dirty(svm->vmcb, VMCB_DR);
1691 }
1692 
1693 static int pf_interception(struct vcpu_svm *svm)
1694 {
1695 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1696 	u64 error_code = svm->vmcb->control.exit_info_1;
1697 
1698 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1699 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1700 			svm->vmcb->control.insn_bytes : NULL,
1701 			svm->vmcb->control.insn_len);
1702 }
1703 
1704 static int npf_interception(struct vcpu_svm *svm)
1705 {
1706 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1707 	u64 error_code = svm->vmcb->control.exit_info_1;
1708 
1709 	trace_kvm_page_fault(fault_address, error_code);
1710 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1711 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1712 			svm->vmcb->control.insn_bytes : NULL,
1713 			svm->vmcb->control.insn_len);
1714 }
1715 
1716 static int db_interception(struct vcpu_svm *svm)
1717 {
1718 	struct kvm_run *kvm_run = svm->vcpu.run;
1719 	struct kvm_vcpu *vcpu = &svm->vcpu;
1720 
1721 	if (!(svm->vcpu.guest_debug &
1722 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1723 		!svm->nmi_singlestep) {
1724 		u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1725 		kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1726 		return 1;
1727 	}
1728 
1729 	if (svm->nmi_singlestep) {
1730 		disable_nmi_singlestep(svm);
1731 		/* Make sure we check for pending NMIs upon entry */
1732 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1733 	}
1734 
1735 	if (svm->vcpu.guest_debug &
1736 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1737 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1738 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1739 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1740 		kvm_run->debug.arch.pc =
1741 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1742 		kvm_run->debug.arch.exception = DB_VECTOR;
1743 		return 0;
1744 	}
1745 
1746 	return 1;
1747 }
1748 
1749 static int bp_interception(struct vcpu_svm *svm)
1750 {
1751 	struct kvm_run *kvm_run = svm->vcpu.run;
1752 
1753 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1754 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1755 	kvm_run->debug.arch.exception = BP_VECTOR;
1756 	return 0;
1757 }
1758 
1759 static int ud_interception(struct vcpu_svm *svm)
1760 {
1761 	return handle_ud(&svm->vcpu);
1762 }
1763 
1764 static int ac_interception(struct vcpu_svm *svm)
1765 {
1766 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1767 	return 1;
1768 }
1769 
1770 static int gp_interception(struct vcpu_svm *svm)
1771 {
1772 	struct kvm_vcpu *vcpu = &svm->vcpu;
1773 	u32 error_code = svm->vmcb->control.exit_info_1;
1774 
1775 	WARN_ON_ONCE(!enable_vmware_backdoor);
1776 
1777 	/*
1778 	 * VMware backdoor emulation on #GP interception only handles IN{S},
1779 	 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1780 	 */
1781 	if (error_code) {
1782 		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1783 		return 1;
1784 	}
1785 	return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1786 }
1787 
1788 static bool is_erratum_383(void)
1789 {
1790 	int err, i;
1791 	u64 value;
1792 
1793 	if (!erratum_383_found)
1794 		return false;
1795 
1796 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1797 	if (err)
1798 		return false;
1799 
1800 	/* Bit 62 may or may not be set for this mce */
1801 	value &= ~(1ULL << 62);
1802 
1803 	if (value != 0xb600000000010015ULL)
1804 		return false;
1805 
1806 	/* Clear MCi_STATUS registers */
1807 	for (i = 0; i < 6; ++i)
1808 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1809 
1810 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1811 	if (!err) {
1812 		u32 low, high;
1813 
1814 		value &= ~(1ULL << 2);
1815 		low    = lower_32_bits(value);
1816 		high   = upper_32_bits(value);
1817 
1818 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1819 	}
1820 
1821 	/* Flush tlb to evict multi-match entries */
1822 	__flush_tlb_all();
1823 
1824 	return true;
1825 }
1826 
1827 /*
1828  * Trigger machine check on the host. We assume all the MSRs are already set up
1829  * by the CPU and that we still run on the same CPU as the MCE occurred on.
1830  * We pass a fake environment to the machine check handler because we want
1831  * the guest to be always treated like user space, no matter what context
1832  * it used internally.
1833  */
1834 static void kvm_machine_check(void)
1835 {
1836 #if defined(CONFIG_X86_MCE)
1837 	struct pt_regs regs = {
1838 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
1839 		.flags = X86_EFLAGS_IF,
1840 	};
1841 
1842 	do_machine_check(&regs);
1843 #endif
1844 }
1845 
1846 static void svm_handle_mce(struct vcpu_svm *svm)
1847 {
1848 	if (is_erratum_383()) {
1849 		/*
1850 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1851 		 * guest.
1852 		 */
1853 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
1854 
1855 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1856 
1857 		return;
1858 	}
1859 
1860 	/*
1861 	 * On an #MC intercept the MCE handler is not called automatically in
1862 	 * the host. So do it by hand here.
1863 	 */
1864 	kvm_machine_check();
1865 }
1866 
1867 static int mc_interception(struct vcpu_svm *svm)
1868 {
1869 	return 1;
1870 }
1871 
1872 static int shutdown_interception(struct vcpu_svm *svm)
1873 {
1874 	struct kvm_run *kvm_run = svm->vcpu.run;
1875 
1876 	/*
1877 	 * VMCB is undefined after a SHUTDOWN intercept
1878 	 * so reinitialize it.
1879 	 */
1880 	clear_page(svm->vmcb);
1881 	init_vmcb(svm);
1882 
1883 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1884 	return 0;
1885 }
1886 
1887 static int io_interception(struct vcpu_svm *svm)
1888 {
1889 	struct kvm_vcpu *vcpu = &svm->vcpu;
1890 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1891 	int size, in, string;
1892 	unsigned port;
1893 
1894 	++svm->vcpu.stat.io_exits;
1895 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
1896 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1897 	if (string)
1898 		return kvm_emulate_instruction(vcpu, 0);
1899 
1900 	port = io_info >> 16;
1901 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1902 	svm->next_rip = svm->vmcb->control.exit_info_2;
1903 
1904 	return kvm_fast_pio(&svm->vcpu, size, port, in);
1905 }
1906 
1907 static int nmi_interception(struct vcpu_svm *svm)
1908 {
1909 	return 1;
1910 }
1911 
1912 static int intr_interception(struct vcpu_svm *svm)
1913 {
1914 	++svm->vcpu.stat.irq_exits;
1915 	return 1;
1916 }
1917 
1918 static int nop_on_interception(struct vcpu_svm *svm)
1919 {
1920 	return 1;
1921 }
1922 
1923 static int halt_interception(struct vcpu_svm *svm)
1924 {
1925 	return kvm_emulate_halt(&svm->vcpu);
1926 }
1927 
1928 static int vmmcall_interception(struct vcpu_svm *svm)
1929 {
1930 	return kvm_emulate_hypercall(&svm->vcpu);
1931 }
1932 
1933 static int vmload_interception(struct vcpu_svm *svm)
1934 {
1935 	struct vmcb *nested_vmcb;
1936 	struct kvm_host_map map;
1937 	int ret;
1938 
1939 	if (nested_svm_check_permissions(svm))
1940 		return 1;
1941 
1942 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1943 	if (ret) {
1944 		if (ret == -EINVAL)
1945 			kvm_inject_gp(&svm->vcpu, 0);
1946 		return 1;
1947 	}
1948 
1949 	nested_vmcb = map.hva;
1950 
1951 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
1952 
1953 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1954 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
1955 
1956 	return ret;
1957 }
1958 
1959 static int vmsave_interception(struct vcpu_svm *svm)
1960 {
1961 	struct vmcb *nested_vmcb;
1962 	struct kvm_host_map map;
1963 	int ret;
1964 
1965 	if (nested_svm_check_permissions(svm))
1966 		return 1;
1967 
1968 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1969 	if (ret) {
1970 		if (ret == -EINVAL)
1971 			kvm_inject_gp(&svm->vcpu, 0);
1972 		return 1;
1973 	}
1974 
1975 	nested_vmcb = map.hva;
1976 
1977 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
1978 
1979 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1980 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
1981 
1982 	return ret;
1983 }
1984 
1985 static int vmrun_interception(struct vcpu_svm *svm)
1986 {
1987 	if (nested_svm_check_permissions(svm))
1988 		return 1;
1989 
1990 	return nested_svm_vmrun(svm);
1991 }
1992 
1993 void svm_set_gif(struct vcpu_svm *svm, bool value)
1994 {
1995 	if (value) {
1996 		/*
1997 		 * If VGIF is enabled, the STGI intercept is only added to
1998 		 * detect the opening of the SMI/NMI window; remove it now.
1999 		 * Likewise, clear the VINTR intercept, we will set it
2000 		 * again while processing KVM_REQ_EVENT if needed.
2001 		 */
2002 		if (vgif_enabled(svm))
2003 			clr_intercept(svm, INTERCEPT_STGI);
2004 		if (is_intercept(svm, INTERCEPT_VINTR))
2005 			svm_clear_vintr(svm);
2006 
2007 		enable_gif(svm);
2008 		if (svm->vcpu.arch.smi_pending ||
2009 		    svm->vcpu.arch.nmi_pending ||
2010 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2011 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2012 	} else {
2013 		disable_gif(svm);
2014 
2015 		/*
2016 		 * After a CLGI no interrupts should come.  But if vGIF is
2017 		 * in use, we still rely on the VINTR intercept (rather than
2018 		 * STGI) to detect an open interrupt window.
2019 		*/
2020 		if (!vgif_enabled(svm))
2021 			svm_clear_vintr(svm);
2022 	}
2023 }
2024 
2025 static int stgi_interception(struct vcpu_svm *svm)
2026 {
2027 	int ret;
2028 
2029 	if (nested_svm_check_permissions(svm))
2030 		return 1;
2031 
2032 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2033 	svm_set_gif(svm, true);
2034 	return ret;
2035 }
2036 
2037 static int clgi_interception(struct vcpu_svm *svm)
2038 {
2039 	int ret;
2040 
2041 	if (nested_svm_check_permissions(svm))
2042 		return 1;
2043 
2044 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2045 	svm_set_gif(svm, false);
2046 	return ret;
2047 }
2048 
2049 static int invlpga_interception(struct vcpu_svm *svm)
2050 {
2051 	struct kvm_vcpu *vcpu = &svm->vcpu;
2052 
2053 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2054 			  kvm_rax_read(&svm->vcpu));
2055 
2056 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2057 	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2058 
2059 	return kvm_skip_emulated_instruction(&svm->vcpu);
2060 }
2061 
2062 static int skinit_interception(struct vcpu_svm *svm)
2063 {
2064 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2065 
2066 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2067 	return 1;
2068 }
2069 
2070 static int wbinvd_interception(struct vcpu_svm *svm)
2071 {
2072 	return kvm_emulate_wbinvd(&svm->vcpu);
2073 }
2074 
2075 static int xsetbv_interception(struct vcpu_svm *svm)
2076 {
2077 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2078 	u32 index = kvm_rcx_read(&svm->vcpu);
2079 
2080 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2081 		return kvm_skip_emulated_instruction(&svm->vcpu);
2082 	}
2083 
2084 	return 1;
2085 }
2086 
2087 static int rdpru_interception(struct vcpu_svm *svm)
2088 {
2089 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2090 	return 1;
2091 }
2092 
2093 static int task_switch_interception(struct vcpu_svm *svm)
2094 {
2095 	u16 tss_selector;
2096 	int reason;
2097 	int int_type = svm->vmcb->control.exit_int_info &
2098 		SVM_EXITINTINFO_TYPE_MASK;
2099 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2100 	uint32_t type =
2101 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2102 	uint32_t idt_v =
2103 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2104 	bool has_error_code = false;
2105 	u32 error_code = 0;
2106 
2107 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2108 
2109 	if (svm->vmcb->control.exit_info_2 &
2110 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2111 		reason = TASK_SWITCH_IRET;
2112 	else if (svm->vmcb->control.exit_info_2 &
2113 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2114 		reason = TASK_SWITCH_JMP;
2115 	else if (idt_v)
2116 		reason = TASK_SWITCH_GATE;
2117 	else
2118 		reason = TASK_SWITCH_CALL;
2119 
2120 	if (reason == TASK_SWITCH_GATE) {
2121 		switch (type) {
2122 		case SVM_EXITINTINFO_TYPE_NMI:
2123 			svm->vcpu.arch.nmi_injected = false;
2124 			break;
2125 		case SVM_EXITINTINFO_TYPE_EXEPT:
2126 			if (svm->vmcb->control.exit_info_2 &
2127 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2128 				has_error_code = true;
2129 				error_code =
2130 					(u32)svm->vmcb->control.exit_info_2;
2131 			}
2132 			kvm_clear_exception_queue(&svm->vcpu);
2133 			break;
2134 		case SVM_EXITINTINFO_TYPE_INTR:
2135 			kvm_clear_interrupt_queue(&svm->vcpu);
2136 			break;
2137 		default:
2138 			break;
2139 		}
2140 	}
2141 
2142 	if (reason != TASK_SWITCH_GATE ||
2143 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2144 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2145 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2146 		if (!skip_emulated_instruction(&svm->vcpu))
2147 			return 0;
2148 	}
2149 
2150 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2151 		int_vec = -1;
2152 
2153 	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2154 			       has_error_code, error_code);
2155 }
2156 
2157 static int cpuid_interception(struct vcpu_svm *svm)
2158 {
2159 	return kvm_emulate_cpuid(&svm->vcpu);
2160 }
2161 
2162 static int iret_interception(struct vcpu_svm *svm)
2163 {
2164 	++svm->vcpu.stat.nmi_window_exits;
2165 	clr_intercept(svm, INTERCEPT_IRET);
2166 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2167 	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2168 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2169 	return 1;
2170 }
2171 
2172 static int invlpg_interception(struct vcpu_svm *svm)
2173 {
2174 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2175 		return kvm_emulate_instruction(&svm->vcpu, 0);
2176 
2177 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2178 	return kvm_skip_emulated_instruction(&svm->vcpu);
2179 }
2180 
2181 static int emulate_on_interception(struct vcpu_svm *svm)
2182 {
2183 	return kvm_emulate_instruction(&svm->vcpu, 0);
2184 }
2185 
2186 static int rsm_interception(struct vcpu_svm *svm)
2187 {
2188 	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2189 }
2190 
2191 static int rdpmc_interception(struct vcpu_svm *svm)
2192 {
2193 	int err;
2194 
2195 	if (!nrips)
2196 		return emulate_on_interception(svm);
2197 
2198 	err = kvm_rdpmc(&svm->vcpu);
2199 	return kvm_complete_insn_gp(&svm->vcpu, err);
2200 }
2201 
2202 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2203 					    unsigned long val)
2204 {
2205 	unsigned long cr0 = svm->vcpu.arch.cr0;
2206 	bool ret = false;
2207 	u64 intercept;
2208 
2209 	intercept = svm->nested.ctl.intercept;
2210 
2211 	if (!is_guest_mode(&svm->vcpu) ||
2212 	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2213 		return false;
2214 
2215 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2216 	val &= ~SVM_CR0_SELECTIVE_MASK;
2217 
2218 	if (cr0 ^ val) {
2219 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2220 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2221 	}
2222 
2223 	return ret;
2224 }
2225 
2226 #define CR_VALID (1ULL << 63)
2227 
2228 static int cr_interception(struct vcpu_svm *svm)
2229 {
2230 	int reg, cr;
2231 	unsigned long val;
2232 	int err;
2233 
2234 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2235 		return emulate_on_interception(svm);
2236 
2237 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2238 		return emulate_on_interception(svm);
2239 
2240 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2241 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2242 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2243 	else
2244 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2245 
2246 	err = 0;
2247 	if (cr >= 16) { /* mov to cr */
2248 		cr -= 16;
2249 		val = kvm_register_read(&svm->vcpu, reg);
2250 		switch (cr) {
2251 		case 0:
2252 			if (!check_selective_cr0_intercepted(svm, val))
2253 				err = kvm_set_cr0(&svm->vcpu, val);
2254 			else
2255 				return 1;
2256 
2257 			break;
2258 		case 3:
2259 			err = kvm_set_cr3(&svm->vcpu, val);
2260 			break;
2261 		case 4:
2262 			err = kvm_set_cr4(&svm->vcpu, val);
2263 			break;
2264 		case 8:
2265 			err = kvm_set_cr8(&svm->vcpu, val);
2266 			break;
2267 		default:
2268 			WARN(1, "unhandled write to CR%d", cr);
2269 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2270 			return 1;
2271 		}
2272 	} else { /* mov from cr */
2273 		switch (cr) {
2274 		case 0:
2275 			val = kvm_read_cr0(&svm->vcpu);
2276 			break;
2277 		case 2:
2278 			val = svm->vcpu.arch.cr2;
2279 			break;
2280 		case 3:
2281 			val = kvm_read_cr3(&svm->vcpu);
2282 			break;
2283 		case 4:
2284 			val = kvm_read_cr4(&svm->vcpu);
2285 			break;
2286 		case 8:
2287 			val = kvm_get_cr8(&svm->vcpu);
2288 			break;
2289 		default:
2290 			WARN(1, "unhandled read from CR%d", cr);
2291 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2292 			return 1;
2293 		}
2294 		kvm_register_write(&svm->vcpu, reg, val);
2295 	}
2296 	return kvm_complete_insn_gp(&svm->vcpu, err);
2297 }
2298 
2299 static int dr_interception(struct vcpu_svm *svm)
2300 {
2301 	int reg, dr;
2302 	unsigned long val;
2303 
2304 	if (svm->vcpu.guest_debug == 0) {
2305 		/*
2306 		 * No more DR vmexits; force a reload of the debug registers
2307 		 * and reenter on this instruction.  The next vmexit will
2308 		 * retrieve the full state of the debug registers.
2309 		 */
2310 		clr_dr_intercepts(svm);
2311 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2312 		return 1;
2313 	}
2314 
2315 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2316 		return emulate_on_interception(svm);
2317 
2318 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2319 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2320 
2321 	if (dr >= 16) { /* mov to DRn */
2322 		if (!kvm_require_dr(&svm->vcpu, dr - 16))
2323 			return 1;
2324 		val = kvm_register_read(&svm->vcpu, reg);
2325 		kvm_set_dr(&svm->vcpu, dr - 16, val);
2326 	} else {
2327 		if (!kvm_require_dr(&svm->vcpu, dr))
2328 			return 1;
2329 		kvm_get_dr(&svm->vcpu, dr, &val);
2330 		kvm_register_write(&svm->vcpu, reg, val);
2331 	}
2332 
2333 	return kvm_skip_emulated_instruction(&svm->vcpu);
2334 }
2335 
2336 static int cr8_write_interception(struct vcpu_svm *svm)
2337 {
2338 	struct kvm_run *kvm_run = svm->vcpu.run;
2339 	int r;
2340 
2341 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2342 	/* instruction emulation calls kvm_set_cr8() */
2343 	r = cr_interception(svm);
2344 	if (lapic_in_kernel(&svm->vcpu))
2345 		return r;
2346 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2347 		return r;
2348 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2349 	return 0;
2350 }
2351 
2352 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2353 {
2354 	msr->data = 0;
2355 
2356 	switch (msr->index) {
2357 	case MSR_F10H_DECFG:
2358 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2359 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2360 		break;
2361 	default:
2362 		return 1;
2363 	}
2364 
2365 	return 0;
2366 }
2367 
2368 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2369 {
2370 	struct vcpu_svm *svm = to_svm(vcpu);
2371 
2372 	switch (msr_info->index) {
2373 	case MSR_STAR:
2374 		msr_info->data = svm->vmcb->save.star;
2375 		break;
2376 #ifdef CONFIG_X86_64
2377 	case MSR_LSTAR:
2378 		msr_info->data = svm->vmcb->save.lstar;
2379 		break;
2380 	case MSR_CSTAR:
2381 		msr_info->data = svm->vmcb->save.cstar;
2382 		break;
2383 	case MSR_KERNEL_GS_BASE:
2384 		msr_info->data = svm->vmcb->save.kernel_gs_base;
2385 		break;
2386 	case MSR_SYSCALL_MASK:
2387 		msr_info->data = svm->vmcb->save.sfmask;
2388 		break;
2389 #endif
2390 	case MSR_IA32_SYSENTER_CS:
2391 		msr_info->data = svm->vmcb->save.sysenter_cs;
2392 		break;
2393 	case MSR_IA32_SYSENTER_EIP:
2394 		msr_info->data = svm->sysenter_eip;
2395 		break;
2396 	case MSR_IA32_SYSENTER_ESP:
2397 		msr_info->data = svm->sysenter_esp;
2398 		break;
2399 	case MSR_TSC_AUX:
2400 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2401 			return 1;
2402 		msr_info->data = svm->tsc_aux;
2403 		break;
2404 	/*
2405 	 * Nobody will change the following 5 values in the VMCB so we can
2406 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2407 	 * implemented.
2408 	 */
2409 	case MSR_IA32_DEBUGCTLMSR:
2410 		msr_info->data = svm->vmcb->save.dbgctl;
2411 		break;
2412 	case MSR_IA32_LASTBRANCHFROMIP:
2413 		msr_info->data = svm->vmcb->save.br_from;
2414 		break;
2415 	case MSR_IA32_LASTBRANCHTOIP:
2416 		msr_info->data = svm->vmcb->save.br_to;
2417 		break;
2418 	case MSR_IA32_LASTINTFROMIP:
2419 		msr_info->data = svm->vmcb->save.last_excp_from;
2420 		break;
2421 	case MSR_IA32_LASTINTTOIP:
2422 		msr_info->data = svm->vmcb->save.last_excp_to;
2423 		break;
2424 	case MSR_VM_HSAVE_PA:
2425 		msr_info->data = svm->nested.hsave_msr;
2426 		break;
2427 	case MSR_VM_CR:
2428 		msr_info->data = svm->nested.vm_cr_msr;
2429 		break;
2430 	case MSR_IA32_SPEC_CTRL:
2431 		if (!msr_info->host_initiated &&
2432 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2433 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2434 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2435 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2436 			return 1;
2437 
2438 		msr_info->data = svm->spec_ctrl;
2439 		break;
2440 	case MSR_AMD64_VIRT_SPEC_CTRL:
2441 		if (!msr_info->host_initiated &&
2442 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2443 			return 1;
2444 
2445 		msr_info->data = svm->virt_spec_ctrl;
2446 		break;
2447 	case MSR_F15H_IC_CFG: {
2448 
2449 		int family, model;
2450 
2451 		family = guest_cpuid_family(vcpu);
2452 		model  = guest_cpuid_model(vcpu);
2453 
2454 		if (family < 0 || model < 0)
2455 			return kvm_get_msr_common(vcpu, msr_info);
2456 
2457 		msr_info->data = 0;
2458 
2459 		if (family == 0x15 &&
2460 		    (model >= 0x2 && model < 0x20))
2461 			msr_info->data = 0x1E;
2462 		}
2463 		break;
2464 	case MSR_F10H_DECFG:
2465 		msr_info->data = svm->msr_decfg;
2466 		break;
2467 	default:
2468 		return kvm_get_msr_common(vcpu, msr_info);
2469 	}
2470 	return 0;
2471 }
2472 
2473 static int rdmsr_interception(struct vcpu_svm *svm)
2474 {
2475 	return kvm_emulate_rdmsr(&svm->vcpu);
2476 }
2477 
2478 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2479 {
2480 	struct vcpu_svm *svm = to_svm(vcpu);
2481 	int svm_dis, chg_mask;
2482 
2483 	if (data & ~SVM_VM_CR_VALID_MASK)
2484 		return 1;
2485 
2486 	chg_mask = SVM_VM_CR_VALID_MASK;
2487 
2488 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2489 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2490 
2491 	svm->nested.vm_cr_msr &= ~chg_mask;
2492 	svm->nested.vm_cr_msr |= (data & chg_mask);
2493 
2494 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2495 
2496 	/* check for svm_disable while efer.svme is set */
2497 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2498 		return 1;
2499 
2500 	return 0;
2501 }
2502 
2503 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2504 {
2505 	struct vcpu_svm *svm = to_svm(vcpu);
2506 
2507 	u32 ecx = msr->index;
2508 	u64 data = msr->data;
2509 	switch (ecx) {
2510 	case MSR_IA32_CR_PAT:
2511 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2512 			return 1;
2513 		vcpu->arch.pat = data;
2514 		svm->vmcb->save.g_pat = data;
2515 		mark_dirty(svm->vmcb, VMCB_NPT);
2516 		break;
2517 	case MSR_IA32_SPEC_CTRL:
2518 		if (!msr->host_initiated &&
2519 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2520 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2521 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2522 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2523 			return 1;
2524 
2525 		if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2526 			return 1;
2527 
2528 		svm->spec_ctrl = data;
2529 		if (!data)
2530 			break;
2531 
2532 		/*
2533 		 * For non-nested:
2534 		 * When it's written (to non-zero) for the first time, pass
2535 		 * it through.
2536 		 *
2537 		 * For nested:
2538 		 * The handling of the MSR bitmap for L2 guests is done in
2539 		 * nested_svm_vmrun_msrpm.
2540 		 * We update the L1 MSR bit as well since it will end up
2541 		 * touching the MSR anyway now.
2542 		 */
2543 		set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2544 		break;
2545 	case MSR_IA32_PRED_CMD:
2546 		if (!msr->host_initiated &&
2547 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
2548 			return 1;
2549 
2550 		if (data & ~PRED_CMD_IBPB)
2551 			return 1;
2552 		if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
2553 			return 1;
2554 		if (!data)
2555 			break;
2556 
2557 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2558 		set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2559 		break;
2560 	case MSR_AMD64_VIRT_SPEC_CTRL:
2561 		if (!msr->host_initiated &&
2562 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2563 			return 1;
2564 
2565 		if (data & ~SPEC_CTRL_SSBD)
2566 			return 1;
2567 
2568 		svm->virt_spec_ctrl = data;
2569 		break;
2570 	case MSR_STAR:
2571 		svm->vmcb->save.star = data;
2572 		break;
2573 #ifdef CONFIG_X86_64
2574 	case MSR_LSTAR:
2575 		svm->vmcb->save.lstar = data;
2576 		break;
2577 	case MSR_CSTAR:
2578 		svm->vmcb->save.cstar = data;
2579 		break;
2580 	case MSR_KERNEL_GS_BASE:
2581 		svm->vmcb->save.kernel_gs_base = data;
2582 		break;
2583 	case MSR_SYSCALL_MASK:
2584 		svm->vmcb->save.sfmask = data;
2585 		break;
2586 #endif
2587 	case MSR_IA32_SYSENTER_CS:
2588 		svm->vmcb->save.sysenter_cs = data;
2589 		break;
2590 	case MSR_IA32_SYSENTER_EIP:
2591 		svm->sysenter_eip = data;
2592 		svm->vmcb->save.sysenter_eip = data;
2593 		break;
2594 	case MSR_IA32_SYSENTER_ESP:
2595 		svm->sysenter_esp = data;
2596 		svm->vmcb->save.sysenter_esp = data;
2597 		break;
2598 	case MSR_TSC_AUX:
2599 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2600 			return 1;
2601 
2602 		/*
2603 		 * This is rare, so we update the MSR here instead of using
2604 		 * direct_access_msrs.  Doing that would require a rdmsr in
2605 		 * svm_vcpu_put.
2606 		 */
2607 		svm->tsc_aux = data;
2608 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2609 		break;
2610 	case MSR_IA32_DEBUGCTLMSR:
2611 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2612 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2613 				    __func__, data);
2614 			break;
2615 		}
2616 		if (data & DEBUGCTL_RESERVED_BITS)
2617 			return 1;
2618 
2619 		svm->vmcb->save.dbgctl = data;
2620 		mark_dirty(svm->vmcb, VMCB_LBR);
2621 		if (data & (1ULL<<0))
2622 			svm_enable_lbrv(svm);
2623 		else
2624 			svm_disable_lbrv(svm);
2625 		break;
2626 	case MSR_VM_HSAVE_PA:
2627 		svm->nested.hsave_msr = data;
2628 		break;
2629 	case MSR_VM_CR:
2630 		return svm_set_vm_cr(vcpu, data);
2631 	case MSR_VM_IGNNE:
2632 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2633 		break;
2634 	case MSR_F10H_DECFG: {
2635 		struct kvm_msr_entry msr_entry;
2636 
2637 		msr_entry.index = msr->index;
2638 		if (svm_get_msr_feature(&msr_entry))
2639 			return 1;
2640 
2641 		/* Check the supported bits */
2642 		if (data & ~msr_entry.data)
2643 			return 1;
2644 
2645 		/* Don't allow the guest to change a bit, #GP */
2646 		if (!msr->host_initiated && (data ^ msr_entry.data))
2647 			return 1;
2648 
2649 		svm->msr_decfg = data;
2650 		break;
2651 	}
2652 	case MSR_IA32_APICBASE:
2653 		if (kvm_vcpu_apicv_active(vcpu))
2654 			avic_update_vapic_bar(to_svm(vcpu), data);
2655 		/* Fall through */
2656 	default:
2657 		return kvm_set_msr_common(vcpu, msr);
2658 	}
2659 	return 0;
2660 }
2661 
2662 static int wrmsr_interception(struct vcpu_svm *svm)
2663 {
2664 	return kvm_emulate_wrmsr(&svm->vcpu);
2665 }
2666 
2667 static int msr_interception(struct vcpu_svm *svm)
2668 {
2669 	if (svm->vmcb->control.exit_info_1)
2670 		return wrmsr_interception(svm);
2671 	else
2672 		return rdmsr_interception(svm);
2673 }
2674 
2675 static int interrupt_window_interception(struct vcpu_svm *svm)
2676 {
2677 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2678 	svm_clear_vintr(svm);
2679 
2680 	/*
2681 	 * For AVIC, the only reason to end up here is ExtINTs.
2682 	 * In this case AVIC was temporarily disabled for
2683 	 * requesting the IRQ window and we have to re-enable it.
2684 	 */
2685 	svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2686 
2687 	++svm->vcpu.stat.irq_window_exits;
2688 	return 1;
2689 }
2690 
2691 static int pause_interception(struct vcpu_svm *svm)
2692 {
2693 	struct kvm_vcpu *vcpu = &svm->vcpu;
2694 	bool in_kernel = (svm_get_cpl(vcpu) == 0);
2695 
2696 	if (pause_filter_thresh)
2697 		grow_ple_window(vcpu);
2698 
2699 	kvm_vcpu_on_spin(vcpu, in_kernel);
2700 	return 1;
2701 }
2702 
2703 static int nop_interception(struct vcpu_svm *svm)
2704 {
2705 	return kvm_skip_emulated_instruction(&(svm->vcpu));
2706 }
2707 
2708 static int monitor_interception(struct vcpu_svm *svm)
2709 {
2710 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2711 	return nop_interception(svm);
2712 }
2713 
2714 static int mwait_interception(struct vcpu_svm *svm)
2715 {
2716 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2717 	return nop_interception(svm);
2718 }
2719 
2720 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2721 	[SVM_EXIT_READ_CR0]			= cr_interception,
2722 	[SVM_EXIT_READ_CR3]			= cr_interception,
2723 	[SVM_EXIT_READ_CR4]			= cr_interception,
2724 	[SVM_EXIT_READ_CR8]			= cr_interception,
2725 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
2726 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
2727 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
2728 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
2729 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
2730 	[SVM_EXIT_READ_DR0]			= dr_interception,
2731 	[SVM_EXIT_READ_DR1]			= dr_interception,
2732 	[SVM_EXIT_READ_DR2]			= dr_interception,
2733 	[SVM_EXIT_READ_DR3]			= dr_interception,
2734 	[SVM_EXIT_READ_DR4]			= dr_interception,
2735 	[SVM_EXIT_READ_DR5]			= dr_interception,
2736 	[SVM_EXIT_READ_DR6]			= dr_interception,
2737 	[SVM_EXIT_READ_DR7]			= dr_interception,
2738 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
2739 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
2740 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
2741 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
2742 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
2743 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
2744 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
2745 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
2746 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
2747 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
2748 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
2749 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
2750 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
2751 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
2752 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
2753 	[SVM_EXIT_INTR]				= intr_interception,
2754 	[SVM_EXIT_NMI]				= nmi_interception,
2755 	[SVM_EXIT_SMI]				= nop_on_interception,
2756 	[SVM_EXIT_INIT]				= nop_on_interception,
2757 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
2758 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
2759 	[SVM_EXIT_CPUID]			= cpuid_interception,
2760 	[SVM_EXIT_IRET]                         = iret_interception,
2761 	[SVM_EXIT_INVD]                         = emulate_on_interception,
2762 	[SVM_EXIT_PAUSE]			= pause_interception,
2763 	[SVM_EXIT_HLT]				= halt_interception,
2764 	[SVM_EXIT_INVLPG]			= invlpg_interception,
2765 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
2766 	[SVM_EXIT_IOIO]				= io_interception,
2767 	[SVM_EXIT_MSR]				= msr_interception,
2768 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
2769 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
2770 	[SVM_EXIT_VMRUN]			= vmrun_interception,
2771 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
2772 	[SVM_EXIT_VMLOAD]			= vmload_interception,
2773 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
2774 	[SVM_EXIT_STGI]				= stgi_interception,
2775 	[SVM_EXIT_CLGI]				= clgi_interception,
2776 	[SVM_EXIT_SKINIT]			= skinit_interception,
2777 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
2778 	[SVM_EXIT_MONITOR]			= monitor_interception,
2779 	[SVM_EXIT_MWAIT]			= mwait_interception,
2780 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
2781 	[SVM_EXIT_RDPRU]			= rdpru_interception,
2782 	[SVM_EXIT_NPF]				= npf_interception,
2783 	[SVM_EXIT_RSM]                          = rsm_interception,
2784 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
2785 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
2786 };
2787 
2788 static void dump_vmcb(struct kvm_vcpu *vcpu)
2789 {
2790 	struct vcpu_svm *svm = to_svm(vcpu);
2791 	struct vmcb_control_area *control = &svm->vmcb->control;
2792 	struct vmcb_save_area *save = &svm->vmcb->save;
2793 
2794 	if (!dump_invalid_vmcb) {
2795 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2796 		return;
2797 	}
2798 
2799 	pr_err("VMCB Control Area:\n");
2800 	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
2801 	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
2802 	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
2803 	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
2804 	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
2805 	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
2806 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2807 	pr_err("%-20s%d\n", "pause filter threshold:",
2808 	       control->pause_filter_thresh);
2809 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2810 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
2811 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
2812 	pr_err("%-20s%d\n", "asid:", control->asid);
2813 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
2814 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
2815 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
2816 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
2817 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
2818 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
2819 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
2820 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
2821 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
2822 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
2823 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
2824 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
2825 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
2826 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
2827 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
2828 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
2829 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
2830 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
2831 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
2832 	pr_err("VMCB State Save Area:\n");
2833 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2834 	       "es:",
2835 	       save->es.selector, save->es.attrib,
2836 	       save->es.limit, save->es.base);
2837 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2838 	       "cs:",
2839 	       save->cs.selector, save->cs.attrib,
2840 	       save->cs.limit, save->cs.base);
2841 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2842 	       "ss:",
2843 	       save->ss.selector, save->ss.attrib,
2844 	       save->ss.limit, save->ss.base);
2845 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2846 	       "ds:",
2847 	       save->ds.selector, save->ds.attrib,
2848 	       save->ds.limit, save->ds.base);
2849 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2850 	       "fs:",
2851 	       save->fs.selector, save->fs.attrib,
2852 	       save->fs.limit, save->fs.base);
2853 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2854 	       "gs:",
2855 	       save->gs.selector, save->gs.attrib,
2856 	       save->gs.limit, save->gs.base);
2857 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2858 	       "gdtr:",
2859 	       save->gdtr.selector, save->gdtr.attrib,
2860 	       save->gdtr.limit, save->gdtr.base);
2861 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2862 	       "ldtr:",
2863 	       save->ldtr.selector, save->ldtr.attrib,
2864 	       save->ldtr.limit, save->ldtr.base);
2865 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2866 	       "idtr:",
2867 	       save->idtr.selector, save->idtr.attrib,
2868 	       save->idtr.limit, save->idtr.base);
2869 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2870 	       "tr:",
2871 	       save->tr.selector, save->tr.attrib,
2872 	       save->tr.limit, save->tr.base);
2873 	pr_err("cpl:            %d                efer:         %016llx\n",
2874 		save->cpl, save->efer);
2875 	pr_err("%-15s %016llx %-13s %016llx\n",
2876 	       "cr0:", save->cr0, "cr2:", save->cr2);
2877 	pr_err("%-15s %016llx %-13s %016llx\n",
2878 	       "cr3:", save->cr3, "cr4:", save->cr4);
2879 	pr_err("%-15s %016llx %-13s %016llx\n",
2880 	       "dr6:", save->dr6, "dr7:", save->dr7);
2881 	pr_err("%-15s %016llx %-13s %016llx\n",
2882 	       "rip:", save->rip, "rflags:", save->rflags);
2883 	pr_err("%-15s %016llx %-13s %016llx\n",
2884 	       "rsp:", save->rsp, "rax:", save->rax);
2885 	pr_err("%-15s %016llx %-13s %016llx\n",
2886 	       "star:", save->star, "lstar:", save->lstar);
2887 	pr_err("%-15s %016llx %-13s %016llx\n",
2888 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
2889 	pr_err("%-15s %016llx %-13s %016llx\n",
2890 	       "kernel_gs_base:", save->kernel_gs_base,
2891 	       "sysenter_cs:", save->sysenter_cs);
2892 	pr_err("%-15s %016llx %-13s %016llx\n",
2893 	       "sysenter_esp:", save->sysenter_esp,
2894 	       "sysenter_eip:", save->sysenter_eip);
2895 	pr_err("%-15s %016llx %-13s %016llx\n",
2896 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
2897 	pr_err("%-15s %016llx %-13s %016llx\n",
2898 	       "br_from:", save->br_from, "br_to:", save->br_to);
2899 	pr_err("%-15s %016llx %-13s %016llx\n",
2900 	       "excp_from:", save->last_excp_from,
2901 	       "excp_to:", save->last_excp_to);
2902 }
2903 
2904 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
2905 {
2906 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
2907 
2908 	*info1 = control->exit_info_1;
2909 	*info2 = control->exit_info_2;
2910 }
2911 
2912 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
2913 {
2914 	struct vcpu_svm *svm = to_svm(vcpu);
2915 	struct kvm_run *kvm_run = vcpu->run;
2916 	u32 exit_code = svm->vmcb->control.exit_code;
2917 
2918 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
2919 
2920 	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
2921 		vcpu->arch.cr0 = svm->vmcb->save.cr0;
2922 	if (npt_enabled)
2923 		vcpu->arch.cr3 = svm->vmcb->save.cr3;
2924 
2925 	svm_complete_interrupts(svm);
2926 
2927 	if (is_guest_mode(vcpu)) {
2928 		int vmexit;
2929 
2930 		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2931 					svm->vmcb->control.exit_info_1,
2932 					svm->vmcb->control.exit_info_2,
2933 					svm->vmcb->control.exit_int_info,
2934 					svm->vmcb->control.exit_int_info_err,
2935 					KVM_ISA_SVM);
2936 
2937 		vmexit = nested_svm_exit_special(svm);
2938 
2939 		if (vmexit == NESTED_EXIT_CONTINUE)
2940 			vmexit = nested_svm_exit_handled(svm);
2941 
2942 		if (vmexit == NESTED_EXIT_DONE)
2943 			return 1;
2944 	}
2945 
2946 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2947 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2948 		kvm_run->fail_entry.hardware_entry_failure_reason
2949 			= svm->vmcb->control.exit_code;
2950 		dump_vmcb(vcpu);
2951 		return 0;
2952 	}
2953 
2954 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2955 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2956 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
2957 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
2958 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
2959 		       "exit_code 0x%x\n",
2960 		       __func__, svm->vmcb->control.exit_int_info,
2961 		       exit_code);
2962 
2963 	if (exit_fastpath != EXIT_FASTPATH_NONE)
2964 		return 1;
2965 
2966 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2967 	    || !svm_exit_handlers[exit_code]) {
2968 		vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
2969 		dump_vmcb(vcpu);
2970 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2971 		vcpu->run->internal.suberror =
2972 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2973 		vcpu->run->internal.ndata = 1;
2974 		vcpu->run->internal.data[0] = exit_code;
2975 		return 0;
2976 	}
2977 
2978 #ifdef CONFIG_RETPOLINE
2979 	if (exit_code == SVM_EXIT_MSR)
2980 		return msr_interception(svm);
2981 	else if (exit_code == SVM_EXIT_VINTR)
2982 		return interrupt_window_interception(svm);
2983 	else if (exit_code == SVM_EXIT_INTR)
2984 		return intr_interception(svm);
2985 	else if (exit_code == SVM_EXIT_HLT)
2986 		return halt_interception(svm);
2987 	else if (exit_code == SVM_EXIT_NPF)
2988 		return npf_interception(svm);
2989 #endif
2990 	return svm_exit_handlers[exit_code](svm);
2991 }
2992 
2993 static void reload_tss(struct kvm_vcpu *vcpu)
2994 {
2995 	int cpu = raw_smp_processor_id();
2996 
2997 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2998 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2999 	load_TR_desc();
3000 }
3001 
3002 static void pre_svm_run(struct vcpu_svm *svm)
3003 {
3004 	int cpu = raw_smp_processor_id();
3005 
3006 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3007 
3008 	if (sev_guest(svm->vcpu.kvm))
3009 		return pre_sev_run(svm, cpu);
3010 
3011 	/* FIXME: handle wraparound of asid_generation */
3012 	if (svm->asid_generation != sd->asid_generation)
3013 		new_asid(svm, sd);
3014 }
3015 
3016 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3017 {
3018 	struct vcpu_svm *svm = to_svm(vcpu);
3019 
3020 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3021 	vcpu->arch.hflags |= HF_NMI_MASK;
3022 	set_intercept(svm, INTERCEPT_IRET);
3023 	++vcpu->stat.nmi_injections;
3024 }
3025 
3026 static void svm_set_irq(struct kvm_vcpu *vcpu)
3027 {
3028 	struct vcpu_svm *svm = to_svm(vcpu);
3029 
3030 	BUG_ON(!(gif_set(svm)));
3031 
3032 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3033 	++vcpu->stat.irq_injections;
3034 
3035 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3036 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3037 }
3038 
3039 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3040 {
3041 	struct vcpu_svm *svm = to_svm(vcpu);
3042 
3043 	if (svm_nested_virtualize_tpr(vcpu))
3044 		return;
3045 
3046 	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3047 
3048 	if (irr == -1)
3049 		return;
3050 
3051 	if (tpr >= irr)
3052 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3053 }
3054 
3055 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3056 {
3057 	struct vcpu_svm *svm = to_svm(vcpu);
3058 	struct vmcb *vmcb = svm->vmcb;
3059 	bool ret;
3060 
3061 	if (!gif_set(svm))
3062 		return true;
3063 
3064 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3065 		return false;
3066 
3067 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3068 	      (svm->vcpu.arch.hflags & HF_NMI_MASK);
3069 
3070 	return ret;
3071 }
3072 
3073 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3074 {
3075 	struct vcpu_svm *svm = to_svm(vcpu);
3076 	if (svm->nested.nested_run_pending)
3077 		return -EBUSY;
3078 
3079 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3080 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3081 		return -EBUSY;
3082 
3083 	return !svm_nmi_blocked(vcpu);
3084 }
3085 
3086 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3087 {
3088 	struct vcpu_svm *svm = to_svm(vcpu);
3089 
3090 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3091 }
3092 
3093 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3094 {
3095 	struct vcpu_svm *svm = to_svm(vcpu);
3096 
3097 	if (masked) {
3098 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3099 		set_intercept(svm, INTERCEPT_IRET);
3100 	} else {
3101 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3102 		clr_intercept(svm, INTERCEPT_IRET);
3103 	}
3104 }
3105 
3106 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3107 {
3108 	struct vcpu_svm *svm = to_svm(vcpu);
3109 	struct vmcb *vmcb = svm->vmcb;
3110 
3111 	if (!gif_set(svm))
3112 		return true;
3113 
3114 	if (is_guest_mode(vcpu)) {
3115 		/* As long as interrupts are being delivered...  */
3116 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3117 		    ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3118 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3119 			return true;
3120 
3121 		/* ... vmexits aren't blocked by the interrupt shadow  */
3122 		if (nested_exit_on_intr(svm))
3123 			return false;
3124 	} else {
3125 		if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3126 			return true;
3127 	}
3128 
3129 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3130 }
3131 
3132 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3133 {
3134 	struct vcpu_svm *svm = to_svm(vcpu);
3135 	if (svm->nested.nested_run_pending)
3136 		return -EBUSY;
3137 
3138 	/*
3139 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3140 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3141 	 */
3142 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3143 		return -EBUSY;
3144 
3145 	return !svm_interrupt_blocked(vcpu);
3146 }
3147 
3148 static void enable_irq_window(struct kvm_vcpu *vcpu)
3149 {
3150 	struct vcpu_svm *svm = to_svm(vcpu);
3151 
3152 	/*
3153 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3154 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3155 	 * get that intercept, this function will be called again though and
3156 	 * we'll get the vintr intercept. However, if the vGIF feature is
3157 	 * enabled, the STGI interception will not occur. Enable the irq
3158 	 * window under the assumption that the hardware will set the GIF.
3159 	 */
3160 	if (vgif_enabled(svm) || gif_set(svm)) {
3161 		/*
3162 		 * IRQ window is not needed when AVIC is enabled,
3163 		 * unless we have pending ExtINT since it cannot be injected
3164 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3165 		 * and fallback to injecting IRQ via V_IRQ.
3166 		 */
3167 		svm_toggle_avic_for_irq_window(vcpu, false);
3168 		svm_set_vintr(svm);
3169 	}
3170 }
3171 
3172 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3173 {
3174 	struct vcpu_svm *svm = to_svm(vcpu);
3175 
3176 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3177 	    == HF_NMI_MASK)
3178 		return; /* IRET will cause a vm exit */
3179 
3180 	if (!gif_set(svm)) {
3181 		if (vgif_enabled(svm))
3182 			set_intercept(svm, INTERCEPT_STGI);
3183 		return; /* STGI will cause a vm exit */
3184 	}
3185 
3186 	/*
3187 	 * Something prevents NMI from been injected. Single step over possible
3188 	 * problem (IRET or exception injection or interrupt shadow)
3189 	 */
3190 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3191 	svm->nmi_singlestep = true;
3192 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3193 }
3194 
3195 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3196 {
3197 	return 0;
3198 }
3199 
3200 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3201 {
3202 	return 0;
3203 }
3204 
3205 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3206 {
3207 	struct vcpu_svm *svm = to_svm(vcpu);
3208 
3209 	/*
3210 	 * Flush only the current ASID even if the TLB flush was invoked via
3211 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3212 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3213 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3214 	 * VM-Exit (via kvm_mmu_reset_context()).
3215 	 */
3216 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3217 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3218 	else
3219 		svm->asid_generation--;
3220 }
3221 
3222 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3223 {
3224 	struct vcpu_svm *svm = to_svm(vcpu);
3225 
3226 	invlpga(gva, svm->vmcb->control.asid);
3227 }
3228 
3229 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3230 {
3231 }
3232 
3233 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3234 {
3235 	struct vcpu_svm *svm = to_svm(vcpu);
3236 
3237 	if (svm_nested_virtualize_tpr(vcpu))
3238 		return;
3239 
3240 	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3241 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3242 		kvm_set_cr8(vcpu, cr8);
3243 	}
3244 }
3245 
3246 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3247 {
3248 	struct vcpu_svm *svm = to_svm(vcpu);
3249 	u64 cr8;
3250 
3251 	if (svm_nested_virtualize_tpr(vcpu) ||
3252 	    kvm_vcpu_apicv_active(vcpu))
3253 		return;
3254 
3255 	cr8 = kvm_get_cr8(vcpu);
3256 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3257 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3258 }
3259 
3260 static void svm_complete_interrupts(struct vcpu_svm *svm)
3261 {
3262 	u8 vector;
3263 	int type;
3264 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3265 	unsigned int3_injected = svm->int3_injected;
3266 
3267 	svm->int3_injected = 0;
3268 
3269 	/*
3270 	 * If we've made progress since setting HF_IRET_MASK, we've
3271 	 * executed an IRET and can allow NMI injection.
3272 	 */
3273 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3274 	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3275 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3276 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3277 	}
3278 
3279 	svm->vcpu.arch.nmi_injected = false;
3280 	kvm_clear_exception_queue(&svm->vcpu);
3281 	kvm_clear_interrupt_queue(&svm->vcpu);
3282 
3283 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3284 		return;
3285 
3286 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3287 
3288 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3289 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3290 
3291 	switch (type) {
3292 	case SVM_EXITINTINFO_TYPE_NMI:
3293 		svm->vcpu.arch.nmi_injected = true;
3294 		break;
3295 	case SVM_EXITINTINFO_TYPE_EXEPT:
3296 		/*
3297 		 * In case of software exceptions, do not reinject the vector,
3298 		 * but re-execute the instruction instead. Rewind RIP first
3299 		 * if we emulated INT3 before.
3300 		 */
3301 		if (kvm_exception_is_soft(vector)) {
3302 			if (vector == BP_VECTOR && int3_injected &&
3303 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3304 				kvm_rip_write(&svm->vcpu,
3305 					      kvm_rip_read(&svm->vcpu) -
3306 					      int3_injected);
3307 			break;
3308 		}
3309 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3310 			u32 err = svm->vmcb->control.exit_int_info_err;
3311 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3312 
3313 		} else
3314 			kvm_requeue_exception(&svm->vcpu, vector);
3315 		break;
3316 	case SVM_EXITINTINFO_TYPE_INTR:
3317 		kvm_queue_interrupt(&svm->vcpu, vector, false);
3318 		break;
3319 	default:
3320 		break;
3321 	}
3322 }
3323 
3324 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3325 {
3326 	struct vcpu_svm *svm = to_svm(vcpu);
3327 	struct vmcb_control_area *control = &svm->vmcb->control;
3328 
3329 	control->exit_int_info = control->event_inj;
3330 	control->exit_int_info_err = control->event_inj_err;
3331 	control->event_inj = 0;
3332 	svm_complete_interrupts(svm);
3333 }
3334 
3335 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3336 {
3337 	if (!is_guest_mode(vcpu) &&
3338 	    to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3339 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3340 		return handle_fastpath_set_msr_irqoff(vcpu);
3341 
3342 	return EXIT_FASTPATH_NONE;
3343 }
3344 
3345 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3346 
3347 static fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3348 {
3349 	fastpath_t exit_fastpath;
3350 	struct vcpu_svm *svm = to_svm(vcpu);
3351 
3352 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3353 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3354 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3355 
3356 	/*
3357 	 * Disable singlestep if we're injecting an interrupt/exception.
3358 	 * We don't want our modified rflags to be pushed on the stack where
3359 	 * we might not be able to easily reset them if we disabled NMI
3360 	 * singlestep later.
3361 	 */
3362 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3363 		/*
3364 		 * Event injection happens before external interrupts cause a
3365 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3366 		 * is enough to force an immediate vmexit.
3367 		 */
3368 		disable_nmi_singlestep(svm);
3369 		smp_send_reschedule(vcpu->cpu);
3370 	}
3371 
3372 	pre_svm_run(svm);
3373 
3374 	sync_lapic_to_cr8(vcpu);
3375 
3376 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3377 
3378 	/*
3379 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3380 	 * of a #DB.
3381 	 */
3382 	if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3383 		svm_set_dr6(svm, vcpu->arch.dr6);
3384 	else
3385 		svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3386 
3387 	clgi();
3388 	kvm_load_guest_xsave_state(vcpu);
3389 
3390 	if (lapic_in_kernel(vcpu) &&
3391 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
3392 		kvm_wait_lapic_expire(vcpu);
3393 
3394 	/*
3395 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3396 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3397 	 * is no need to worry about the conditional branch over the wrmsr
3398 	 * being speculatively taken.
3399 	 */
3400 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3401 
3402 	__svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3403 
3404 #ifdef CONFIG_X86_64
3405 	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3406 #else
3407 	loadsegment(fs, svm->host.fs);
3408 #ifndef CONFIG_X86_32_LAZY_GS
3409 	loadsegment(gs, svm->host.gs);
3410 #endif
3411 #endif
3412 
3413 	/*
3414 	 * We do not use IBRS in the kernel. If this vCPU has used the
3415 	 * SPEC_CTRL MSR it may have left it on; save the value and
3416 	 * turn it off. This is much more efficient than blindly adding
3417 	 * it to the atomic save/restore list. Especially as the former
3418 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3419 	 *
3420 	 * For non-nested case:
3421 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3422 	 * save it.
3423 	 *
3424 	 * For nested case:
3425 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3426 	 * save it.
3427 	 */
3428 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3429 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3430 
3431 	reload_tss(vcpu);
3432 
3433 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3434 
3435 	vcpu->arch.cr2 = svm->vmcb->save.cr2;
3436 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3437 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3438 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3439 
3440 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3441 		kvm_before_interrupt(&svm->vcpu);
3442 
3443 	kvm_load_host_xsave_state(vcpu);
3444 	stgi();
3445 
3446 	/* Any pending NMI will happen here */
3447 	exit_fastpath = svm_exit_handlers_fastpath(vcpu);
3448 
3449 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3450 		kvm_after_interrupt(&svm->vcpu);
3451 
3452 	sync_cr8_to_lapic(vcpu);
3453 
3454 	svm->next_rip = 0;
3455 	if (is_guest_mode(&svm->vcpu)) {
3456 		sync_nested_vmcb_control(svm);
3457 		svm->nested.nested_run_pending = 0;
3458 	}
3459 
3460 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3461 
3462 	/* if exit due to PF check for async PF */
3463 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3464 		svm->vcpu.arch.apf.host_apf_flags =
3465 			kvm_read_and_reset_apf_flags();
3466 
3467 	if (npt_enabled) {
3468 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3469 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3470 	}
3471 
3472 	/*
3473 	 * We need to handle MC intercepts here before the vcpu has a chance to
3474 	 * change the physical cpu
3475 	 */
3476 	if (unlikely(svm->vmcb->control.exit_code ==
3477 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3478 		svm_handle_mce(svm);
3479 
3480 	mark_all_clean(svm->vmcb);
3481 	return exit_fastpath;
3482 }
3483 
3484 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root)
3485 {
3486 	struct vcpu_svm *svm = to_svm(vcpu);
3487 	unsigned long cr3;
3488 
3489 	cr3 = __sme_set(root);
3490 	if (npt_enabled) {
3491 		svm->vmcb->control.nested_cr3 = cr3;
3492 		mark_dirty(svm->vmcb, VMCB_NPT);
3493 
3494 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3495 		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3496 			return;
3497 		cr3 = vcpu->arch.cr3;
3498 	}
3499 
3500 	svm->vmcb->save.cr3 = cr3;
3501 	mark_dirty(svm->vmcb, VMCB_CR);
3502 }
3503 
3504 static int is_disabled(void)
3505 {
3506 	u64 vm_cr;
3507 
3508 	rdmsrl(MSR_VM_CR, vm_cr);
3509 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3510 		return 1;
3511 
3512 	return 0;
3513 }
3514 
3515 static void
3516 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3517 {
3518 	/*
3519 	 * Patch in the VMMCALL instruction:
3520 	 */
3521 	hypercall[0] = 0x0f;
3522 	hypercall[1] = 0x01;
3523 	hypercall[2] = 0xd9;
3524 }
3525 
3526 static int __init svm_check_processor_compat(void)
3527 {
3528 	return 0;
3529 }
3530 
3531 static bool svm_cpu_has_accelerated_tpr(void)
3532 {
3533 	return false;
3534 }
3535 
3536 static bool svm_has_emulated_msr(u32 index)
3537 {
3538 	switch (index) {
3539 	case MSR_IA32_MCG_EXT_CTL:
3540 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3541 		return false;
3542 	default:
3543 		break;
3544 	}
3545 
3546 	return true;
3547 }
3548 
3549 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3550 {
3551 	return 0;
3552 }
3553 
3554 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3555 {
3556 	struct vcpu_svm *svm = to_svm(vcpu);
3557 
3558 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3559 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
3560 				    boot_cpu_has(X86_FEATURE_XSAVES);
3561 
3562 	/* Update nrips enabled cache */
3563 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3564 			     guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3565 
3566 	if (!kvm_vcpu_apicv_active(vcpu))
3567 		return;
3568 
3569 	/*
3570 	 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3571 	 * is exposed to the guest, disable AVIC.
3572 	 */
3573 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3574 		kvm_request_apicv_update(vcpu->kvm, false,
3575 					 APICV_INHIBIT_REASON_X2APIC);
3576 
3577 	/*
3578 	 * Currently, AVIC does not work with nested virtualization.
3579 	 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3580 	 */
3581 	if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3582 		kvm_request_apicv_update(vcpu->kvm, false,
3583 					 APICV_INHIBIT_REASON_NESTED);
3584 }
3585 
3586 static bool svm_has_wbinvd_exit(void)
3587 {
3588 	return true;
3589 }
3590 
3591 #define PRE_EX(exit)  { .exit_code = (exit), \
3592 			.stage = X86_ICPT_PRE_EXCEPT, }
3593 #define POST_EX(exit) { .exit_code = (exit), \
3594 			.stage = X86_ICPT_POST_EXCEPT, }
3595 #define POST_MEM(exit) { .exit_code = (exit), \
3596 			.stage = X86_ICPT_POST_MEMACCESS, }
3597 
3598 static const struct __x86_intercept {
3599 	u32 exit_code;
3600 	enum x86_intercept_stage stage;
3601 } x86_intercept_map[] = {
3602 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
3603 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
3604 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
3605 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
3606 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
3607 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
3608 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
3609 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
3610 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
3611 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
3612 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
3613 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
3614 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
3615 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
3616 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
3617 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
3618 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
3619 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
3620 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
3621 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
3622 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
3623 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
3624 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
3625 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
3626 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
3627 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
3628 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
3629 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
3630 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
3631 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
3632 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
3633 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
3634 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
3635 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
3636 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
3637 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
3638 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
3639 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
3640 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
3641 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
3642 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
3643 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
3644 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
3645 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
3646 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
3647 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
3648 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
3649 };
3650 
3651 #undef PRE_EX
3652 #undef POST_EX
3653 #undef POST_MEM
3654 
3655 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3656 			       struct x86_instruction_info *info,
3657 			       enum x86_intercept_stage stage,
3658 			       struct x86_exception *exception)
3659 {
3660 	struct vcpu_svm *svm = to_svm(vcpu);
3661 	int vmexit, ret = X86EMUL_CONTINUE;
3662 	struct __x86_intercept icpt_info;
3663 	struct vmcb *vmcb = svm->vmcb;
3664 
3665 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3666 		goto out;
3667 
3668 	icpt_info = x86_intercept_map[info->intercept];
3669 
3670 	if (stage != icpt_info.stage)
3671 		goto out;
3672 
3673 	switch (icpt_info.exit_code) {
3674 	case SVM_EXIT_READ_CR0:
3675 		if (info->intercept == x86_intercept_cr_read)
3676 			icpt_info.exit_code += info->modrm_reg;
3677 		break;
3678 	case SVM_EXIT_WRITE_CR0: {
3679 		unsigned long cr0, val;
3680 		u64 intercept;
3681 
3682 		if (info->intercept == x86_intercept_cr_write)
3683 			icpt_info.exit_code += info->modrm_reg;
3684 
3685 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3686 		    info->intercept == x86_intercept_clts)
3687 			break;
3688 
3689 		intercept = svm->nested.ctl.intercept;
3690 
3691 		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
3692 			break;
3693 
3694 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3695 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
3696 
3697 		if (info->intercept == x86_intercept_lmsw) {
3698 			cr0 &= 0xfUL;
3699 			val &= 0xfUL;
3700 			/* lmsw can't clear PE - catch this here */
3701 			if (cr0 & X86_CR0_PE)
3702 				val |= X86_CR0_PE;
3703 		}
3704 
3705 		if (cr0 ^ val)
3706 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3707 
3708 		break;
3709 	}
3710 	case SVM_EXIT_READ_DR0:
3711 	case SVM_EXIT_WRITE_DR0:
3712 		icpt_info.exit_code += info->modrm_reg;
3713 		break;
3714 	case SVM_EXIT_MSR:
3715 		if (info->intercept == x86_intercept_wrmsr)
3716 			vmcb->control.exit_info_1 = 1;
3717 		else
3718 			vmcb->control.exit_info_1 = 0;
3719 		break;
3720 	case SVM_EXIT_PAUSE:
3721 		/*
3722 		 * We get this for NOP only, but pause
3723 		 * is rep not, check this here
3724 		 */
3725 		if (info->rep_prefix != REPE_PREFIX)
3726 			goto out;
3727 		break;
3728 	case SVM_EXIT_IOIO: {
3729 		u64 exit_info;
3730 		u32 bytes;
3731 
3732 		if (info->intercept == x86_intercept_in ||
3733 		    info->intercept == x86_intercept_ins) {
3734 			exit_info = ((info->src_val & 0xffff) << 16) |
3735 				SVM_IOIO_TYPE_MASK;
3736 			bytes = info->dst_bytes;
3737 		} else {
3738 			exit_info = (info->dst_val & 0xffff) << 16;
3739 			bytes = info->src_bytes;
3740 		}
3741 
3742 		if (info->intercept == x86_intercept_outs ||
3743 		    info->intercept == x86_intercept_ins)
3744 			exit_info |= SVM_IOIO_STR_MASK;
3745 
3746 		if (info->rep_prefix)
3747 			exit_info |= SVM_IOIO_REP_MASK;
3748 
3749 		bytes = min(bytes, 4u);
3750 
3751 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
3752 
3753 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
3754 
3755 		vmcb->control.exit_info_1 = exit_info;
3756 		vmcb->control.exit_info_2 = info->next_rip;
3757 
3758 		break;
3759 	}
3760 	default:
3761 		break;
3762 	}
3763 
3764 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3765 	if (static_cpu_has(X86_FEATURE_NRIPS))
3766 		vmcb->control.next_rip  = info->next_rip;
3767 	vmcb->control.exit_code = icpt_info.exit_code;
3768 	vmexit = nested_svm_exit_handled(svm);
3769 
3770 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
3771 					   : X86EMUL_CONTINUE;
3772 
3773 out:
3774 	return ret;
3775 }
3776 
3777 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
3778 {
3779 }
3780 
3781 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
3782 {
3783 	if (pause_filter_thresh)
3784 		shrink_ple_window(vcpu);
3785 }
3786 
3787 static void svm_setup_mce(struct kvm_vcpu *vcpu)
3788 {
3789 	/* [63:9] are reserved. */
3790 	vcpu->arch.mcg_cap &= 0x1ff;
3791 }
3792 
3793 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
3794 {
3795 	struct vcpu_svm *svm = to_svm(vcpu);
3796 
3797 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
3798 	if (!gif_set(svm))
3799 		return true;
3800 
3801 	return is_smm(vcpu);
3802 }
3803 
3804 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3805 {
3806 	struct vcpu_svm *svm = to_svm(vcpu);
3807 	if (svm->nested.nested_run_pending)
3808 		return -EBUSY;
3809 
3810 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
3811 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
3812 		return -EBUSY;
3813 
3814 	return !svm_smi_blocked(vcpu);
3815 }
3816 
3817 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
3818 {
3819 	struct vcpu_svm *svm = to_svm(vcpu);
3820 	int ret;
3821 
3822 	if (is_guest_mode(vcpu)) {
3823 		/* FED8h - SVM Guest */
3824 		put_smstate(u64, smstate, 0x7ed8, 1);
3825 		/* FEE0h - SVM Guest VMCB Physical Address */
3826 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
3827 
3828 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3829 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3830 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3831 
3832 		ret = nested_svm_vmexit(svm);
3833 		if (ret)
3834 			return ret;
3835 	}
3836 	return 0;
3837 }
3838 
3839 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
3840 {
3841 	struct vcpu_svm *svm = to_svm(vcpu);
3842 	struct vmcb *nested_vmcb;
3843 	struct kvm_host_map map;
3844 	u64 guest;
3845 	u64 vmcb;
3846 
3847 	guest = GET_SMSTATE(u64, smstate, 0x7ed8);
3848 	vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
3849 
3850 	if (guest) {
3851 		if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
3852 			return 1;
3853 		nested_vmcb = map.hva;
3854 		enter_svm_guest_mode(svm, vmcb, nested_vmcb);
3855 		kvm_vcpu_unmap(&svm->vcpu, &map, true);
3856 	}
3857 	return 0;
3858 }
3859 
3860 static void enable_smi_window(struct kvm_vcpu *vcpu)
3861 {
3862 	struct vcpu_svm *svm = to_svm(vcpu);
3863 
3864 	if (!gif_set(svm)) {
3865 		if (vgif_enabled(svm))
3866 			set_intercept(svm, INTERCEPT_STGI);
3867 		/* STGI will cause a vm exit */
3868 	} else {
3869 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
3870 	}
3871 }
3872 
3873 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
3874 {
3875 	unsigned long cr4 = kvm_read_cr4(vcpu);
3876 	bool smep = cr4 & X86_CR4_SMEP;
3877 	bool smap = cr4 & X86_CR4_SMAP;
3878 	bool is_user = svm_get_cpl(vcpu) == 3;
3879 
3880 	/*
3881 	 * If RIP is invalid, go ahead with emulation which will cause an
3882 	 * internal error exit.
3883 	 */
3884 	if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
3885 		return true;
3886 
3887 	/*
3888 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
3889 	 *
3890 	 * Errata:
3891 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
3892 	 * possible that CPU microcode implementing DecodeAssist will fail
3893 	 * to read bytes of instruction which caused #NPF. In this case,
3894 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
3895 	 * return 0 instead of the correct guest instruction bytes.
3896 	 *
3897 	 * This happens because CPU microcode reading instruction bytes
3898 	 * uses a special opcode which attempts to read data using CPL=0
3899 	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
3900 	 * fault, it gives up and returns no instruction bytes.
3901 	 *
3902 	 * Detection:
3903 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
3904 	 * returned 0 in GuestIntrBytes field of the VMCB.
3905 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
3906 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
3907 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
3908 	 * a SMEP fault instead of #NPF).
3909 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
3910 	 * As most guests enable SMAP if they have also enabled SMEP, use above
3911 	 * logic in order to attempt minimize false-positive of detecting errata
3912 	 * while still preserving all cases semantic correctness.
3913 	 *
3914 	 * Workaround:
3915 	 * To determine what instruction the guest was executing, the hypervisor
3916 	 * will have to decode the instruction at the instruction pointer.
3917 	 *
3918 	 * In non SEV guest, hypervisor will be able to read the guest
3919 	 * memory to decode the instruction pointer when insn_len is zero
3920 	 * so we return true to indicate that decoding is possible.
3921 	 *
3922 	 * But in the SEV guest, the guest memory is encrypted with the
3923 	 * guest specific key and hypervisor will not be able to decode the
3924 	 * instruction pointer so we will not able to workaround it. Lets
3925 	 * print the error and request to kill the guest.
3926 	 */
3927 	if (smap && (!smep || is_user)) {
3928 		if (!sev_guest(vcpu->kvm))
3929 			return true;
3930 
3931 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
3932 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3933 	}
3934 
3935 	return false;
3936 }
3937 
3938 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
3939 {
3940 	struct vcpu_svm *svm = to_svm(vcpu);
3941 
3942 	/*
3943 	 * TODO: Last condition latch INIT signals on vCPU when
3944 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
3945 	 * To properly emulate the INIT intercept,
3946 	 * svm_check_nested_events() should call nested_svm_vmexit()
3947 	 * if an INIT signal is pending.
3948 	 */
3949 	return !gif_set(svm) ||
3950 		   (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
3951 }
3952 
3953 static void svm_vm_destroy(struct kvm *kvm)
3954 {
3955 	avic_vm_destroy(kvm);
3956 	sev_vm_destroy(kvm);
3957 }
3958 
3959 static int svm_vm_init(struct kvm *kvm)
3960 {
3961 	if (avic) {
3962 		int ret = avic_vm_init(kvm);
3963 		if (ret)
3964 			return ret;
3965 	}
3966 
3967 	kvm_apicv_init(kvm, avic);
3968 	return 0;
3969 }
3970 
3971 static struct kvm_x86_ops svm_x86_ops __initdata = {
3972 	.hardware_unsetup = svm_hardware_teardown,
3973 	.hardware_enable = svm_hardware_enable,
3974 	.hardware_disable = svm_hardware_disable,
3975 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3976 	.has_emulated_msr = svm_has_emulated_msr,
3977 
3978 	.vcpu_create = svm_create_vcpu,
3979 	.vcpu_free = svm_free_vcpu,
3980 	.vcpu_reset = svm_vcpu_reset,
3981 
3982 	.vm_size = sizeof(struct kvm_svm),
3983 	.vm_init = svm_vm_init,
3984 	.vm_destroy = svm_vm_destroy,
3985 
3986 	.prepare_guest_switch = svm_prepare_guest_switch,
3987 	.vcpu_load = svm_vcpu_load,
3988 	.vcpu_put = svm_vcpu_put,
3989 	.vcpu_blocking = svm_vcpu_blocking,
3990 	.vcpu_unblocking = svm_vcpu_unblocking,
3991 
3992 	.update_bp_intercept = update_bp_intercept,
3993 	.get_msr_feature = svm_get_msr_feature,
3994 	.get_msr = svm_get_msr,
3995 	.set_msr = svm_set_msr,
3996 	.get_segment_base = svm_get_segment_base,
3997 	.get_segment = svm_get_segment,
3998 	.set_segment = svm_set_segment,
3999 	.get_cpl = svm_get_cpl,
4000 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4001 	.set_cr0 = svm_set_cr0,
4002 	.set_cr4 = svm_set_cr4,
4003 	.set_efer = svm_set_efer,
4004 	.get_idt = svm_get_idt,
4005 	.set_idt = svm_set_idt,
4006 	.get_gdt = svm_get_gdt,
4007 	.set_gdt = svm_set_gdt,
4008 	.set_dr7 = svm_set_dr7,
4009 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4010 	.cache_reg = svm_cache_reg,
4011 	.get_rflags = svm_get_rflags,
4012 	.set_rflags = svm_set_rflags,
4013 
4014 	.tlb_flush_all = svm_flush_tlb,
4015 	.tlb_flush_current = svm_flush_tlb,
4016 	.tlb_flush_gva = svm_flush_tlb_gva,
4017 	.tlb_flush_guest = svm_flush_tlb,
4018 
4019 	.run = svm_vcpu_run,
4020 	.handle_exit = handle_exit,
4021 	.skip_emulated_instruction = skip_emulated_instruction,
4022 	.update_emulated_instruction = NULL,
4023 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4024 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4025 	.patch_hypercall = svm_patch_hypercall,
4026 	.set_irq = svm_set_irq,
4027 	.set_nmi = svm_inject_nmi,
4028 	.queue_exception = svm_queue_exception,
4029 	.cancel_injection = svm_cancel_injection,
4030 	.interrupt_allowed = svm_interrupt_allowed,
4031 	.nmi_allowed = svm_nmi_allowed,
4032 	.get_nmi_mask = svm_get_nmi_mask,
4033 	.set_nmi_mask = svm_set_nmi_mask,
4034 	.enable_nmi_window = enable_nmi_window,
4035 	.enable_irq_window = enable_irq_window,
4036 	.update_cr8_intercept = update_cr8_intercept,
4037 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
4038 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4039 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4040 	.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4041 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4042 	.hwapic_irr_update = svm_hwapic_irr_update,
4043 	.hwapic_isr_update = svm_hwapic_isr_update,
4044 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
4045 	.apicv_post_state_restore = avic_post_state_restore,
4046 
4047 	.set_tss_addr = svm_set_tss_addr,
4048 	.set_identity_map_addr = svm_set_identity_map_addr,
4049 	.get_tdp_level = get_npt_level,
4050 	.get_mt_mask = svm_get_mt_mask,
4051 
4052 	.get_exit_info = svm_get_exit_info,
4053 
4054 	.cpuid_update = svm_cpuid_update,
4055 
4056 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4057 
4058 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
4059 
4060 	.load_mmu_pgd = svm_load_mmu_pgd,
4061 
4062 	.check_intercept = svm_check_intercept,
4063 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4064 
4065 	.request_immediate_exit = __kvm_request_immediate_exit,
4066 
4067 	.sched_in = svm_sched_in,
4068 
4069 	.pmu_ops = &amd_pmu_ops,
4070 	.nested_ops = &svm_nested_ops,
4071 
4072 	.deliver_posted_interrupt = svm_deliver_avic_intr,
4073 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4074 	.update_pi_irte = svm_update_pi_irte,
4075 	.setup_mce = svm_setup_mce,
4076 
4077 	.smi_allowed = svm_smi_allowed,
4078 	.pre_enter_smm = svm_pre_enter_smm,
4079 	.pre_leave_smm = svm_pre_leave_smm,
4080 	.enable_smi_window = enable_smi_window,
4081 
4082 	.mem_enc_op = svm_mem_enc_op,
4083 	.mem_enc_reg_region = svm_register_enc_region,
4084 	.mem_enc_unreg_region = svm_unregister_enc_region,
4085 
4086 	.need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
4087 
4088 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4089 };
4090 
4091 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4092 	.cpu_has_kvm_support = has_svm,
4093 	.disabled_by_bios = is_disabled,
4094 	.hardware_setup = svm_hardware_setup,
4095 	.check_processor_compatibility = svm_check_processor_compat,
4096 
4097 	.runtime_ops = &svm_x86_ops,
4098 };
4099 
4100 static int __init svm_init(void)
4101 {
4102 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4103 			__alignof__(struct vcpu_svm), THIS_MODULE);
4104 }
4105 
4106 static void __exit svm_exit(void)
4107 {
4108 	kvm_exit();
4109 }
4110 
4111 module_init(svm_init)
4112 module_exit(svm_exit)
4113