1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 32 #include <asm/apic.h> 33 #include <asm/perf_event.h> 34 #include <asm/tlbflush.h> 35 #include <asm/desc.h> 36 #include <asm/debugreg.h> 37 #include <asm/kvm_para.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/spec-ctrl.h> 40 #include <asm/cpu_device_id.h> 41 #include <asm/traps.h> 42 #include <asm/fpu/api.h> 43 44 #include <asm/virtext.h> 45 46 #include <trace/events/ipi.h> 47 48 #include "trace.h" 49 50 #include "svm.h" 51 #include "svm_ops.h" 52 53 #include "kvm_onhyperv.h" 54 #include "svm_onhyperv.h" 55 56 MODULE_AUTHOR("Qumranet"); 57 MODULE_LICENSE("GPL"); 58 59 #ifdef MODULE 60 static const struct x86_cpu_id svm_cpu_id[] = { 61 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 62 {} 63 }; 64 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 65 #endif 66 67 #define SEG_TYPE_LDT 2 68 #define SEG_TYPE_BUSY_TSS16 3 69 70 static bool erratum_383_found __read_mostly; 71 72 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 73 74 /* 75 * Set osvw_len to higher value when updated Revision Guides 76 * are published and we know what the new status bits are 77 */ 78 static uint64_t osvw_len = 4, osvw_status; 79 80 static DEFINE_PER_CPU(u64, current_tsc_ratio); 81 82 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 83 84 static const struct svm_direct_access_msrs { 85 u32 index; /* Index of the MSR */ 86 bool always; /* True if intercept is initially cleared */ 87 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 88 { .index = MSR_STAR, .always = true }, 89 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 90 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 91 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 92 #ifdef CONFIG_X86_64 93 { .index = MSR_GS_BASE, .always = true }, 94 { .index = MSR_FS_BASE, .always = true }, 95 { .index = MSR_KERNEL_GS_BASE, .always = true }, 96 { .index = MSR_LSTAR, .always = true }, 97 { .index = MSR_CSTAR, .always = true }, 98 { .index = MSR_SYSCALL_MASK, .always = true }, 99 #endif 100 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 101 { .index = MSR_IA32_PRED_CMD, .always = false }, 102 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 103 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 104 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 105 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 106 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 107 { .index = MSR_EFER, .always = false }, 108 { .index = MSR_IA32_CR_PAT, .always = false }, 109 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 110 { .index = MSR_TSC_AUX, .always = false }, 111 { .index = X2APIC_MSR(APIC_ID), .always = false }, 112 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 113 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 114 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 115 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 116 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 117 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 118 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 119 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 120 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 121 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 122 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 123 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 124 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 125 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 126 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 127 128 /* 129 * Note: 130 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 131 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 132 * the AVIC hardware would generate GP fault. Therefore, always 133 * intercept the MSR 0x832, and do not setup direct_access_msr. 134 */ 135 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 136 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 137 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 138 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 139 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 140 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 141 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 142 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 143 { .index = MSR_INVALID, .always = false }, 144 }; 145 146 /* 147 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 148 * pause_filter_count: On processors that support Pause filtering(indicated 149 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 150 * count value. On VMRUN this value is loaded into an internal counter. 151 * Each time a pause instruction is executed, this counter is decremented 152 * until it reaches zero at which time a #VMEXIT is generated if pause 153 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 154 * Intercept Filtering for more details. 155 * This also indicate if ple logic enabled. 156 * 157 * pause_filter_thresh: In addition, some processor families support advanced 158 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 159 * the amount of time a guest is allowed to execute in a pause loop. 160 * In this mode, a 16-bit pause filter threshold field is added in the 161 * VMCB. The threshold value is a cycle count that is used to reset the 162 * pause counter. As with simple pause filtering, VMRUN loads the pause 163 * count value from VMCB into an internal counter. Then, on each pause 164 * instruction the hardware checks the elapsed number of cycles since 165 * the most recent pause instruction against the pause filter threshold. 166 * If the elapsed cycle count is greater than the pause filter threshold, 167 * then the internal pause count is reloaded from the VMCB and execution 168 * continues. If the elapsed cycle count is less than the pause filter 169 * threshold, then the internal pause count is decremented. If the count 170 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 171 * triggered. If advanced pause filtering is supported and pause filter 172 * threshold field is set to zero, the filter will operate in the simpler, 173 * count only mode. 174 */ 175 176 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 177 module_param(pause_filter_thresh, ushort, 0444); 178 179 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 180 module_param(pause_filter_count, ushort, 0444); 181 182 /* Default doubles per-vcpu window every exit. */ 183 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 184 module_param(pause_filter_count_grow, ushort, 0444); 185 186 /* Default resets per-vcpu window every exit to pause_filter_count. */ 187 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 188 module_param(pause_filter_count_shrink, ushort, 0444); 189 190 /* Default is to compute the maximum so we can never overflow. */ 191 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 192 module_param(pause_filter_count_max, ushort, 0444); 193 194 /* 195 * Use nested page tables by default. Note, NPT may get forced off by 196 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 197 */ 198 bool npt_enabled = true; 199 module_param_named(npt, npt_enabled, bool, 0444); 200 201 /* allow nested virtualization in KVM/SVM */ 202 static int nested = true; 203 module_param(nested, int, S_IRUGO); 204 205 /* enable/disable Next RIP Save */ 206 static int nrips = true; 207 module_param(nrips, int, 0444); 208 209 /* enable/disable Virtual VMLOAD VMSAVE */ 210 static int vls = true; 211 module_param(vls, int, 0444); 212 213 /* enable/disable Virtual GIF */ 214 int vgif = true; 215 module_param(vgif, int, 0444); 216 217 /* enable/disable LBR virtualization */ 218 static int lbrv = true; 219 module_param(lbrv, int, 0444); 220 221 static int tsc_scaling = true; 222 module_param(tsc_scaling, int, 0444); 223 224 /* 225 * enable / disable AVIC. Because the defaults differ for APICv 226 * support between VMX and SVM we cannot use module_param_named. 227 */ 228 static bool avic; 229 module_param(avic, bool, 0444); 230 231 bool __read_mostly dump_invalid_vmcb; 232 module_param(dump_invalid_vmcb, bool, 0644); 233 234 235 bool intercept_smi = true; 236 module_param(intercept_smi, bool, 0444); 237 238 bool vnmi = true; 239 module_param(vnmi, bool, 0444); 240 241 static bool svm_gp_erratum_intercept = true; 242 243 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 244 245 static unsigned long iopm_base; 246 247 struct kvm_ldttss_desc { 248 u16 limit0; 249 u16 base0; 250 unsigned base1:8, type:5, dpl:2, p:1; 251 unsigned limit1:4, zero0:3, g:1, base2:8; 252 u32 base3; 253 u32 zero1; 254 } __attribute__((packed)); 255 256 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 257 258 /* 259 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 260 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 261 * 262 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 263 * defer the restoration of TSC_AUX until the CPU returns to userspace. 264 */ 265 static int tsc_aux_uret_slot __read_mostly = -1; 266 267 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 268 269 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 270 #define MSRS_RANGE_SIZE 2048 271 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 272 273 u32 svm_msrpm_offset(u32 msr) 274 { 275 u32 offset; 276 int i; 277 278 for (i = 0; i < NUM_MSR_MAPS; i++) { 279 if (msr < msrpm_ranges[i] || 280 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 281 continue; 282 283 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 284 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 285 286 /* Now we have the u8 offset - but need the u32 offset */ 287 return offset / 4; 288 } 289 290 /* MSR not in any range */ 291 return MSR_INVALID; 292 } 293 294 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 295 296 static int get_npt_level(void) 297 { 298 #ifdef CONFIG_X86_64 299 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 300 #else 301 return PT32E_ROOT_LEVEL; 302 #endif 303 } 304 305 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 306 { 307 struct vcpu_svm *svm = to_svm(vcpu); 308 u64 old_efer = vcpu->arch.efer; 309 vcpu->arch.efer = efer; 310 311 if (!npt_enabled) { 312 /* Shadow paging assumes NX to be available. */ 313 efer |= EFER_NX; 314 315 if (!(efer & EFER_LMA)) 316 efer &= ~EFER_LME; 317 } 318 319 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 320 if (!(efer & EFER_SVME)) { 321 svm_leave_nested(vcpu); 322 svm_set_gif(svm, true); 323 /* #GP intercept is still needed for vmware backdoor */ 324 if (!enable_vmware_backdoor) 325 clr_exception_intercept(svm, GP_VECTOR); 326 327 /* 328 * Free the nested guest state, unless we are in SMM. 329 * In this case we will return to the nested guest 330 * as soon as we leave SMM. 331 */ 332 if (!is_smm(vcpu)) 333 svm_free_nested(svm); 334 335 } else { 336 int ret = svm_allocate_nested(svm); 337 338 if (ret) { 339 vcpu->arch.efer = old_efer; 340 return ret; 341 } 342 343 /* 344 * Never intercept #GP for SEV guests, KVM can't 345 * decrypt guest memory to workaround the erratum. 346 */ 347 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 348 set_exception_intercept(svm, GP_VECTOR); 349 } 350 } 351 352 svm->vmcb->save.efer = efer | EFER_SVME; 353 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 354 return 0; 355 } 356 357 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 358 { 359 struct vcpu_svm *svm = to_svm(vcpu); 360 u32 ret = 0; 361 362 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 363 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 364 return ret; 365 } 366 367 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 368 { 369 struct vcpu_svm *svm = to_svm(vcpu); 370 371 if (mask == 0) 372 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 373 else 374 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 375 376 } 377 378 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 379 bool commit_side_effects) 380 { 381 struct vcpu_svm *svm = to_svm(vcpu); 382 unsigned long old_rflags; 383 384 /* 385 * SEV-ES does not expose the next RIP. The RIP update is controlled by 386 * the type of exit and the #VC handler in the guest. 387 */ 388 if (sev_es_guest(vcpu->kvm)) 389 goto done; 390 391 if (nrips && svm->vmcb->control.next_rip != 0) { 392 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 393 svm->next_rip = svm->vmcb->control.next_rip; 394 } 395 396 if (!svm->next_rip) { 397 if (unlikely(!commit_side_effects)) 398 old_rflags = svm->vmcb->save.rflags; 399 400 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 401 return 0; 402 403 if (unlikely(!commit_side_effects)) 404 svm->vmcb->save.rflags = old_rflags; 405 } else { 406 kvm_rip_write(vcpu, svm->next_rip); 407 } 408 409 done: 410 if (likely(commit_side_effects)) 411 svm_set_interrupt_shadow(vcpu, 0); 412 413 return 1; 414 } 415 416 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 417 { 418 return __svm_skip_emulated_instruction(vcpu, true); 419 } 420 421 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 422 { 423 unsigned long rip, old_rip = kvm_rip_read(vcpu); 424 struct vcpu_svm *svm = to_svm(vcpu); 425 426 /* 427 * Due to architectural shortcomings, the CPU doesn't always provide 428 * NextRIP, e.g. if KVM intercepted an exception that occurred while 429 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 430 * the instruction even if NextRIP is supported to acquire the next 431 * RIP so that it can be shoved into the NextRIP field, otherwise 432 * hardware will fail to advance guest RIP during event injection. 433 * Drop the exception/interrupt if emulation fails and effectively 434 * retry the instruction, it's the least awful option. If NRIPS is 435 * in use, the skip must not commit any side effects such as clearing 436 * the interrupt shadow or RFLAGS.RF. 437 */ 438 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 439 return -EIO; 440 441 rip = kvm_rip_read(vcpu); 442 443 /* 444 * Save the injection information, even when using next_rip, as the 445 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 446 * doesn't complete due to a VM-Exit occurring while the CPU is 447 * vectoring the event. Decoding the instruction isn't guaranteed to 448 * work as there may be no backing instruction, e.g. if the event is 449 * being injected by L1 for L2, or if the guest is patching INT3 into 450 * a different instruction. 451 */ 452 svm->soft_int_injected = true; 453 svm->soft_int_csbase = svm->vmcb->save.cs.base; 454 svm->soft_int_old_rip = old_rip; 455 svm->soft_int_next_rip = rip; 456 457 if (nrips) 458 kvm_rip_write(vcpu, old_rip); 459 460 if (static_cpu_has(X86_FEATURE_NRIPS)) 461 svm->vmcb->control.next_rip = rip; 462 463 return 0; 464 } 465 466 static void svm_inject_exception(struct kvm_vcpu *vcpu) 467 { 468 struct kvm_queued_exception *ex = &vcpu->arch.exception; 469 struct vcpu_svm *svm = to_svm(vcpu); 470 471 kvm_deliver_exception_payload(vcpu, ex); 472 473 if (kvm_exception_is_soft(ex->vector) && 474 svm_update_soft_interrupt_rip(vcpu)) 475 return; 476 477 svm->vmcb->control.event_inj = ex->vector 478 | SVM_EVTINJ_VALID 479 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 480 | SVM_EVTINJ_TYPE_EXEPT; 481 svm->vmcb->control.event_inj_err = ex->error_code; 482 } 483 484 static void svm_init_erratum_383(void) 485 { 486 u32 low, high; 487 int err; 488 u64 val; 489 490 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 491 return; 492 493 /* Use _safe variants to not break nested virtualization */ 494 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 495 if (err) 496 return; 497 498 val |= (1ULL << 47); 499 500 low = lower_32_bits(val); 501 high = upper_32_bits(val); 502 503 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 504 505 erratum_383_found = true; 506 } 507 508 static void svm_init_osvw(struct kvm_vcpu *vcpu) 509 { 510 /* 511 * Guests should see errata 400 and 415 as fixed (assuming that 512 * HLT and IO instructions are intercepted). 513 */ 514 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 515 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 516 517 /* 518 * By increasing VCPU's osvw.length to 3 we are telling the guest that 519 * all osvw.status bits inside that length, including bit 0 (which is 520 * reserved for erratum 298), are valid. However, if host processor's 521 * osvw_len is 0 then osvw_status[0] carries no information. We need to 522 * be conservative here and therefore we tell the guest that erratum 298 523 * is present (because we really don't know). 524 */ 525 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 526 vcpu->arch.osvw.status |= 1; 527 } 528 529 static bool kvm_is_svm_supported(void) 530 { 531 int cpu = raw_smp_processor_id(); 532 const char *msg; 533 u64 vm_cr; 534 535 if (!cpu_has_svm(&msg)) { 536 pr_err("SVM not supported by CPU %d, %s\n", cpu, msg); 537 return false; 538 } 539 540 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 541 pr_info("KVM is unsupported when running as an SEV guest\n"); 542 return false; 543 } 544 545 rdmsrl(MSR_VM_CR, vm_cr); 546 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) { 547 pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu); 548 return false; 549 } 550 551 return true; 552 } 553 554 static int svm_check_processor_compat(void) 555 { 556 if (!kvm_is_svm_supported()) 557 return -EIO; 558 559 return 0; 560 } 561 562 void __svm_write_tsc_multiplier(u64 multiplier) 563 { 564 preempt_disable(); 565 566 if (multiplier == __this_cpu_read(current_tsc_ratio)) 567 goto out; 568 569 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 570 __this_cpu_write(current_tsc_ratio, multiplier); 571 out: 572 preempt_enable(); 573 } 574 575 static void svm_hardware_disable(void) 576 { 577 /* Make sure we clean up behind us */ 578 if (tsc_scaling) 579 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 580 581 cpu_svm_disable(); 582 583 amd_pmu_disable_virt(); 584 } 585 586 static int svm_hardware_enable(void) 587 { 588 589 struct svm_cpu_data *sd; 590 uint64_t efer; 591 struct desc_struct *gdt; 592 int me = raw_smp_processor_id(); 593 594 rdmsrl(MSR_EFER, efer); 595 if (efer & EFER_SVME) 596 return -EBUSY; 597 598 sd = per_cpu_ptr(&svm_data, me); 599 sd->asid_generation = 1; 600 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 601 sd->next_asid = sd->max_asid + 1; 602 sd->min_asid = max_sev_asid + 1; 603 604 gdt = get_current_gdt_rw(); 605 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 606 607 wrmsrl(MSR_EFER, efer | EFER_SVME); 608 609 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 610 611 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 612 /* 613 * Set the default value, even if we don't use TSC scaling 614 * to avoid having stale value in the msr 615 */ 616 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 617 } 618 619 620 /* 621 * Get OSVW bits. 622 * 623 * Note that it is possible to have a system with mixed processor 624 * revisions and therefore different OSVW bits. If bits are not the same 625 * on different processors then choose the worst case (i.e. if erratum 626 * is present on one processor and not on another then assume that the 627 * erratum is present everywhere). 628 */ 629 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 630 uint64_t len, status = 0; 631 int err; 632 633 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 634 if (!err) 635 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 636 &err); 637 638 if (err) 639 osvw_status = osvw_len = 0; 640 else { 641 if (len < osvw_len) 642 osvw_len = len; 643 osvw_status |= status; 644 osvw_status &= (1ULL << osvw_len) - 1; 645 } 646 } else 647 osvw_status = osvw_len = 0; 648 649 svm_init_erratum_383(); 650 651 amd_pmu_enable_virt(); 652 653 return 0; 654 } 655 656 static void svm_cpu_uninit(int cpu) 657 { 658 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 659 660 if (!sd->save_area) 661 return; 662 663 kfree(sd->sev_vmcbs); 664 __free_page(sd->save_area); 665 sd->save_area_pa = 0; 666 sd->save_area = NULL; 667 } 668 669 static int svm_cpu_init(int cpu) 670 { 671 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 672 int ret = -ENOMEM; 673 674 memset(sd, 0, sizeof(struct svm_cpu_data)); 675 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 676 if (!sd->save_area) 677 return ret; 678 679 ret = sev_cpu_init(sd); 680 if (ret) 681 goto free_save_area; 682 683 sd->save_area_pa = __sme_page_pa(sd->save_area); 684 return 0; 685 686 free_save_area: 687 __free_page(sd->save_area); 688 sd->save_area = NULL; 689 return ret; 690 691 } 692 693 static int direct_access_msr_slot(u32 msr) 694 { 695 u32 i; 696 697 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 698 if (direct_access_msrs[i].index == msr) 699 return i; 700 701 return -ENOENT; 702 } 703 704 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 705 int write) 706 { 707 struct vcpu_svm *svm = to_svm(vcpu); 708 int slot = direct_access_msr_slot(msr); 709 710 if (slot == -ENOENT) 711 return; 712 713 /* Set the shadow bitmaps to the desired intercept states */ 714 if (read) 715 set_bit(slot, svm->shadow_msr_intercept.read); 716 else 717 clear_bit(slot, svm->shadow_msr_intercept.read); 718 719 if (write) 720 set_bit(slot, svm->shadow_msr_intercept.write); 721 else 722 clear_bit(slot, svm->shadow_msr_intercept.write); 723 } 724 725 static bool valid_msr_intercept(u32 index) 726 { 727 return direct_access_msr_slot(index) != -ENOENT; 728 } 729 730 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 731 { 732 u8 bit_write; 733 unsigned long tmp; 734 u32 offset; 735 u32 *msrpm; 736 737 /* 738 * For non-nested case: 739 * If the L01 MSR bitmap does not intercept the MSR, then we need to 740 * save it. 741 * 742 * For nested case: 743 * If the L02 MSR bitmap does not intercept the MSR, then we need to 744 * save it. 745 */ 746 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 747 to_svm(vcpu)->msrpm; 748 749 offset = svm_msrpm_offset(msr); 750 bit_write = 2 * (msr & 0x0f) + 1; 751 tmp = msrpm[offset]; 752 753 BUG_ON(offset == MSR_INVALID); 754 755 return !!test_bit(bit_write, &tmp); 756 } 757 758 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 759 u32 msr, int read, int write) 760 { 761 struct vcpu_svm *svm = to_svm(vcpu); 762 u8 bit_read, bit_write; 763 unsigned long tmp; 764 u32 offset; 765 766 /* 767 * If this warning triggers extend the direct_access_msrs list at the 768 * beginning of the file 769 */ 770 WARN_ON(!valid_msr_intercept(msr)); 771 772 /* Enforce non allowed MSRs to trap */ 773 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 774 read = 0; 775 776 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 777 write = 0; 778 779 offset = svm_msrpm_offset(msr); 780 bit_read = 2 * (msr & 0x0f); 781 bit_write = 2 * (msr & 0x0f) + 1; 782 tmp = msrpm[offset]; 783 784 BUG_ON(offset == MSR_INVALID); 785 786 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 787 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 788 789 msrpm[offset] = tmp; 790 791 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 792 svm->nested.force_msr_bitmap_recalc = true; 793 } 794 795 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 796 int read, int write) 797 { 798 set_shadow_msr_intercept(vcpu, msr, read, write); 799 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 800 } 801 802 u32 *svm_vcpu_alloc_msrpm(void) 803 { 804 unsigned int order = get_order(MSRPM_SIZE); 805 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 806 u32 *msrpm; 807 808 if (!pages) 809 return NULL; 810 811 msrpm = page_address(pages); 812 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 813 814 return msrpm; 815 } 816 817 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 818 { 819 int i; 820 821 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 822 if (!direct_access_msrs[i].always) 823 continue; 824 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 825 } 826 } 827 828 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 829 { 830 int i; 831 832 if (intercept == svm->x2avic_msrs_intercepted) 833 return; 834 835 if (!x2avic_enabled || 836 !apic_x2apic_mode(svm->vcpu.arch.apic)) 837 return; 838 839 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 840 int index = direct_access_msrs[i].index; 841 842 if ((index < APIC_BASE_MSR) || 843 (index > APIC_BASE_MSR + 0xff)) 844 continue; 845 set_msr_interception(&svm->vcpu, svm->msrpm, index, 846 !intercept, !intercept); 847 } 848 849 svm->x2avic_msrs_intercepted = intercept; 850 } 851 852 void svm_vcpu_free_msrpm(u32 *msrpm) 853 { 854 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 855 } 856 857 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 858 { 859 struct vcpu_svm *svm = to_svm(vcpu); 860 u32 i; 861 862 /* 863 * Set intercept permissions for all direct access MSRs again. They 864 * will automatically get filtered through the MSR filter, so we are 865 * back in sync after this. 866 */ 867 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 868 u32 msr = direct_access_msrs[i].index; 869 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 870 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 871 872 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 873 } 874 } 875 876 static void add_msr_offset(u32 offset) 877 { 878 int i; 879 880 for (i = 0; i < MSRPM_OFFSETS; ++i) { 881 882 /* Offset already in list? */ 883 if (msrpm_offsets[i] == offset) 884 return; 885 886 /* Slot used by another offset? */ 887 if (msrpm_offsets[i] != MSR_INVALID) 888 continue; 889 890 /* Add offset to list */ 891 msrpm_offsets[i] = offset; 892 893 return; 894 } 895 896 /* 897 * If this BUG triggers the msrpm_offsets table has an overflow. Just 898 * increase MSRPM_OFFSETS in this case. 899 */ 900 BUG(); 901 } 902 903 static void init_msrpm_offsets(void) 904 { 905 int i; 906 907 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 908 909 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 910 u32 offset; 911 912 offset = svm_msrpm_offset(direct_access_msrs[i].index); 913 BUG_ON(offset == MSR_INVALID); 914 915 add_msr_offset(offset); 916 } 917 } 918 919 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 920 { 921 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 922 to_vmcb->save.br_from = from_vmcb->save.br_from; 923 to_vmcb->save.br_to = from_vmcb->save.br_to; 924 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 925 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 926 927 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 928 } 929 930 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 931 { 932 struct vcpu_svm *svm = to_svm(vcpu); 933 934 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 935 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 936 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 937 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 938 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 939 940 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 941 if (is_guest_mode(vcpu)) 942 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 943 } 944 945 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 946 { 947 struct vcpu_svm *svm = to_svm(vcpu); 948 949 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 950 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 951 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 952 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 953 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 954 955 /* 956 * Move the LBR msrs back to the vmcb01 to avoid copying them 957 * on nested guest entries. 958 */ 959 if (is_guest_mode(vcpu)) 960 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 961 } 962 963 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index) 964 { 965 /* 966 * If the LBR virtualization is disabled, the LBR msrs are always 967 * kept in the vmcb01 to avoid copying them on nested guest entries. 968 * 969 * If nested, and the LBR virtualization is enabled/disabled, the msrs 970 * are moved between the vmcb01 and vmcb02 as needed. 971 */ 972 struct vmcb *vmcb = 973 (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ? 974 svm->vmcb : svm->vmcb01.ptr; 975 976 switch (index) { 977 case MSR_IA32_DEBUGCTLMSR: 978 return vmcb->save.dbgctl; 979 case MSR_IA32_LASTBRANCHFROMIP: 980 return vmcb->save.br_from; 981 case MSR_IA32_LASTBRANCHTOIP: 982 return vmcb->save.br_to; 983 case MSR_IA32_LASTINTFROMIP: 984 return vmcb->save.last_excp_from; 985 case MSR_IA32_LASTINTTOIP: 986 return vmcb->save.last_excp_to; 987 default: 988 KVM_BUG(false, svm->vcpu.kvm, 989 "%s: Unknown MSR 0x%x", __func__, index); 990 return 0; 991 } 992 } 993 994 void svm_update_lbrv(struct kvm_vcpu *vcpu) 995 { 996 struct vcpu_svm *svm = to_svm(vcpu); 997 998 bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) & 999 DEBUGCTLMSR_LBR; 1000 1001 bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext & 1002 LBR_CTL_ENABLE_MASK); 1003 1004 if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled)) 1005 if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)) 1006 enable_lbrv = true; 1007 1008 if (enable_lbrv == current_enable_lbrv) 1009 return; 1010 1011 if (enable_lbrv) 1012 svm_enable_lbrv(vcpu); 1013 else 1014 svm_disable_lbrv(vcpu); 1015 } 1016 1017 void disable_nmi_singlestep(struct vcpu_svm *svm) 1018 { 1019 svm->nmi_singlestep = false; 1020 1021 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1022 /* Clear our flags if they were not set by the guest */ 1023 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1024 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1025 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1026 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1027 } 1028 } 1029 1030 static void grow_ple_window(struct kvm_vcpu *vcpu) 1031 { 1032 struct vcpu_svm *svm = to_svm(vcpu); 1033 struct vmcb_control_area *control = &svm->vmcb->control; 1034 int old = control->pause_filter_count; 1035 1036 if (kvm_pause_in_guest(vcpu->kvm)) 1037 return; 1038 1039 control->pause_filter_count = __grow_ple_window(old, 1040 pause_filter_count, 1041 pause_filter_count_grow, 1042 pause_filter_count_max); 1043 1044 if (control->pause_filter_count != old) { 1045 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1046 trace_kvm_ple_window_update(vcpu->vcpu_id, 1047 control->pause_filter_count, old); 1048 } 1049 } 1050 1051 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1052 { 1053 struct vcpu_svm *svm = to_svm(vcpu); 1054 struct vmcb_control_area *control = &svm->vmcb->control; 1055 int old = control->pause_filter_count; 1056 1057 if (kvm_pause_in_guest(vcpu->kvm)) 1058 return; 1059 1060 control->pause_filter_count = 1061 __shrink_ple_window(old, 1062 pause_filter_count, 1063 pause_filter_count_shrink, 1064 pause_filter_count); 1065 if (control->pause_filter_count != old) { 1066 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1067 trace_kvm_ple_window_update(vcpu->vcpu_id, 1068 control->pause_filter_count, old); 1069 } 1070 } 1071 1072 static void svm_hardware_unsetup(void) 1073 { 1074 int cpu; 1075 1076 sev_hardware_unsetup(); 1077 1078 for_each_possible_cpu(cpu) 1079 svm_cpu_uninit(cpu); 1080 1081 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 1082 get_order(IOPM_SIZE)); 1083 iopm_base = 0; 1084 } 1085 1086 static void init_seg(struct vmcb_seg *seg) 1087 { 1088 seg->selector = 0; 1089 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1090 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1091 seg->limit = 0xffff; 1092 seg->base = 0; 1093 } 1094 1095 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1096 { 1097 seg->selector = 0; 1098 seg->attrib = SVM_SELECTOR_P_MASK | type; 1099 seg->limit = 0xffff; 1100 seg->base = 0; 1101 } 1102 1103 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1104 { 1105 struct vcpu_svm *svm = to_svm(vcpu); 1106 1107 return svm->nested.ctl.tsc_offset; 1108 } 1109 1110 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1111 { 1112 struct vcpu_svm *svm = to_svm(vcpu); 1113 1114 return svm->tsc_ratio_msr; 1115 } 1116 1117 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1118 { 1119 struct vcpu_svm *svm = to_svm(vcpu); 1120 1121 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1122 svm->vmcb->control.tsc_offset = offset; 1123 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1124 } 1125 1126 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1127 { 1128 __svm_write_tsc_multiplier(multiplier); 1129 } 1130 1131 1132 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1133 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1134 struct vcpu_svm *svm) 1135 { 1136 /* 1137 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1138 * roots, or if INVPCID is disabled in the guest to inject #UD. 1139 */ 1140 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1141 if (!npt_enabled || 1142 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1143 svm_set_intercept(svm, INTERCEPT_INVPCID); 1144 else 1145 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1146 } 1147 1148 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1149 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1150 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1151 else 1152 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1153 } 1154 } 1155 1156 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1157 { 1158 struct vcpu_svm *svm = to_svm(vcpu); 1159 1160 if (guest_cpuid_is_intel(vcpu)) { 1161 /* 1162 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1163 * accesses because the processor only stores 32 bits. 1164 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1165 */ 1166 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1167 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1168 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1169 1170 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1171 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1172 1173 svm->v_vmload_vmsave_enabled = false; 1174 } else { 1175 /* 1176 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1177 * in VMCB and clear intercepts to avoid #VMEXIT. 1178 */ 1179 if (vls) { 1180 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1181 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1182 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1183 } 1184 /* No need to intercept these MSRs */ 1185 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1186 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1187 } 1188 } 1189 1190 static void init_vmcb(struct kvm_vcpu *vcpu) 1191 { 1192 struct vcpu_svm *svm = to_svm(vcpu); 1193 struct vmcb *vmcb = svm->vmcb01.ptr; 1194 struct vmcb_control_area *control = &vmcb->control; 1195 struct vmcb_save_area *save = &vmcb->save; 1196 1197 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1198 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1199 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1200 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1201 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1202 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1203 if (!kvm_vcpu_apicv_active(vcpu)) 1204 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1205 1206 set_dr_intercepts(svm); 1207 1208 set_exception_intercept(svm, PF_VECTOR); 1209 set_exception_intercept(svm, UD_VECTOR); 1210 set_exception_intercept(svm, MC_VECTOR); 1211 set_exception_intercept(svm, AC_VECTOR); 1212 set_exception_intercept(svm, DB_VECTOR); 1213 /* 1214 * Guest access to VMware backdoor ports could legitimately 1215 * trigger #GP because of TSS I/O permission bitmap. 1216 * We intercept those #GP and allow access to them anyway 1217 * as VMware does. Don't intercept #GP for SEV guests as KVM can't 1218 * decrypt guest memory to decode the faulting instruction. 1219 */ 1220 if (enable_vmware_backdoor && !sev_guest(vcpu->kvm)) 1221 set_exception_intercept(svm, GP_VECTOR); 1222 1223 svm_set_intercept(svm, INTERCEPT_INTR); 1224 svm_set_intercept(svm, INTERCEPT_NMI); 1225 1226 if (intercept_smi) 1227 svm_set_intercept(svm, INTERCEPT_SMI); 1228 1229 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1230 svm_set_intercept(svm, INTERCEPT_RDPMC); 1231 svm_set_intercept(svm, INTERCEPT_CPUID); 1232 svm_set_intercept(svm, INTERCEPT_INVD); 1233 svm_set_intercept(svm, INTERCEPT_INVLPG); 1234 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1235 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1236 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1237 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1238 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1239 svm_set_intercept(svm, INTERCEPT_VMRUN); 1240 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1241 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1242 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1243 svm_set_intercept(svm, INTERCEPT_STGI); 1244 svm_set_intercept(svm, INTERCEPT_CLGI); 1245 svm_set_intercept(svm, INTERCEPT_SKINIT); 1246 svm_set_intercept(svm, INTERCEPT_WBINVD); 1247 svm_set_intercept(svm, INTERCEPT_XSETBV); 1248 svm_set_intercept(svm, INTERCEPT_RDPRU); 1249 svm_set_intercept(svm, INTERCEPT_RSM); 1250 1251 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1252 svm_set_intercept(svm, INTERCEPT_MONITOR); 1253 svm_set_intercept(svm, INTERCEPT_MWAIT); 1254 } 1255 1256 if (!kvm_hlt_in_guest(vcpu->kvm)) 1257 svm_set_intercept(svm, INTERCEPT_HLT); 1258 1259 control->iopm_base_pa = __sme_set(iopm_base); 1260 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1261 control->int_ctl = V_INTR_MASKING_MASK; 1262 1263 init_seg(&save->es); 1264 init_seg(&save->ss); 1265 init_seg(&save->ds); 1266 init_seg(&save->fs); 1267 init_seg(&save->gs); 1268 1269 save->cs.selector = 0xf000; 1270 save->cs.base = 0xffff0000; 1271 /* Executable/Readable Code Segment */ 1272 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1273 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1274 save->cs.limit = 0xffff; 1275 1276 save->gdtr.base = 0; 1277 save->gdtr.limit = 0xffff; 1278 save->idtr.base = 0; 1279 save->idtr.limit = 0xffff; 1280 1281 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1282 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1283 1284 if (npt_enabled) { 1285 /* Setup VMCB for Nested Paging */ 1286 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1287 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1288 clr_exception_intercept(svm, PF_VECTOR); 1289 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1290 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1291 save->g_pat = vcpu->arch.pat; 1292 save->cr3 = 0; 1293 } 1294 svm->current_vmcb->asid_generation = 0; 1295 svm->asid = 0; 1296 1297 svm->nested.vmcb12_gpa = INVALID_GPA; 1298 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1299 1300 if (!kvm_pause_in_guest(vcpu->kvm)) { 1301 control->pause_filter_count = pause_filter_count; 1302 if (pause_filter_thresh) 1303 control->pause_filter_thresh = pause_filter_thresh; 1304 svm_set_intercept(svm, INTERCEPT_PAUSE); 1305 } else { 1306 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1307 } 1308 1309 svm_recalc_instruction_intercepts(vcpu, svm); 1310 1311 /* 1312 * If the host supports V_SPEC_CTRL then disable the interception 1313 * of MSR_IA32_SPEC_CTRL. 1314 */ 1315 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1316 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1317 1318 if (kvm_vcpu_apicv_active(vcpu)) 1319 avic_init_vmcb(svm, vmcb); 1320 1321 if (vnmi) 1322 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1323 1324 if (vgif) { 1325 svm_clr_intercept(svm, INTERCEPT_STGI); 1326 svm_clr_intercept(svm, INTERCEPT_CLGI); 1327 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1328 } 1329 1330 if (sev_guest(vcpu->kvm)) 1331 sev_init_vmcb(svm); 1332 1333 svm_hv_init_vmcb(vmcb); 1334 init_vmcb_after_set_cpuid(vcpu); 1335 1336 vmcb_mark_all_dirty(vmcb); 1337 1338 enable_gif(svm); 1339 } 1340 1341 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1342 { 1343 struct vcpu_svm *svm = to_svm(vcpu); 1344 1345 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1346 1347 svm_init_osvw(vcpu); 1348 vcpu->arch.microcode_version = 0x01000065; 1349 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1350 1351 svm->nmi_masked = false; 1352 svm->awaiting_iret_completion = false; 1353 1354 if (sev_es_guest(vcpu->kvm)) 1355 sev_es_vcpu_reset(svm); 1356 } 1357 1358 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1359 { 1360 struct vcpu_svm *svm = to_svm(vcpu); 1361 1362 svm->spec_ctrl = 0; 1363 svm->virt_spec_ctrl = 0; 1364 1365 init_vmcb(vcpu); 1366 1367 if (!init_event) 1368 __svm_vcpu_reset(vcpu); 1369 } 1370 1371 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1372 { 1373 svm->current_vmcb = target_vmcb; 1374 svm->vmcb = target_vmcb->ptr; 1375 } 1376 1377 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1378 { 1379 struct vcpu_svm *svm; 1380 struct page *vmcb01_page; 1381 struct page *vmsa_page = NULL; 1382 int err; 1383 1384 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1385 svm = to_svm(vcpu); 1386 1387 err = -ENOMEM; 1388 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1389 if (!vmcb01_page) 1390 goto out; 1391 1392 if (sev_es_guest(vcpu->kvm)) { 1393 /* 1394 * SEV-ES guests require a separate VMSA page used to contain 1395 * the encrypted register state of the guest. 1396 */ 1397 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1398 if (!vmsa_page) 1399 goto error_free_vmcb_page; 1400 1401 /* 1402 * SEV-ES guests maintain an encrypted version of their FPU 1403 * state which is restored and saved on VMRUN and VMEXIT. 1404 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1405 * do xsave/xrstor on it. 1406 */ 1407 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1408 } 1409 1410 err = avic_init_vcpu(svm); 1411 if (err) 1412 goto error_free_vmsa_page; 1413 1414 svm->msrpm = svm_vcpu_alloc_msrpm(); 1415 if (!svm->msrpm) { 1416 err = -ENOMEM; 1417 goto error_free_vmsa_page; 1418 } 1419 1420 svm->x2avic_msrs_intercepted = true; 1421 1422 svm->vmcb01.ptr = page_address(vmcb01_page); 1423 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1424 svm_switch_vmcb(svm, &svm->vmcb01); 1425 1426 if (vmsa_page) 1427 svm->sev_es.vmsa = page_address(vmsa_page); 1428 1429 svm->guest_state_loaded = false; 1430 1431 return 0; 1432 1433 error_free_vmsa_page: 1434 if (vmsa_page) 1435 __free_page(vmsa_page); 1436 error_free_vmcb_page: 1437 __free_page(vmcb01_page); 1438 out: 1439 return err; 1440 } 1441 1442 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1443 { 1444 int i; 1445 1446 for_each_online_cpu(i) 1447 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1448 } 1449 1450 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1451 { 1452 struct vcpu_svm *svm = to_svm(vcpu); 1453 1454 /* 1455 * The vmcb page can be recycled, causing a false negative in 1456 * svm_vcpu_load(). So, ensure that no logical CPU has this 1457 * vmcb page recorded as its current vmcb. 1458 */ 1459 svm_clear_current_vmcb(svm->vmcb); 1460 1461 svm_leave_nested(vcpu); 1462 svm_free_nested(svm); 1463 1464 sev_free_vcpu(vcpu); 1465 1466 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1467 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1468 } 1469 1470 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1471 { 1472 struct vcpu_svm *svm = to_svm(vcpu); 1473 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1474 1475 if (sev_es_guest(vcpu->kvm)) 1476 sev_es_unmap_ghcb(svm); 1477 1478 if (svm->guest_state_loaded) 1479 return; 1480 1481 /* 1482 * Save additional host state that will be restored on VMEXIT (sev-es) 1483 * or subsequent vmload of host save area. 1484 */ 1485 vmsave(sd->save_area_pa); 1486 if (sev_es_guest(vcpu->kvm)) { 1487 struct sev_es_save_area *hostsa; 1488 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 1489 1490 sev_es_prepare_switch_to_guest(hostsa); 1491 } 1492 1493 if (tsc_scaling) 1494 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1495 1496 if (likely(tsc_aux_uret_slot >= 0)) 1497 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1498 1499 svm->guest_state_loaded = true; 1500 } 1501 1502 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1503 { 1504 to_svm(vcpu)->guest_state_loaded = false; 1505 } 1506 1507 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1508 { 1509 struct vcpu_svm *svm = to_svm(vcpu); 1510 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1511 1512 if (sd->current_vmcb != svm->vmcb) { 1513 sd->current_vmcb = svm->vmcb; 1514 indirect_branch_prediction_barrier(); 1515 } 1516 if (kvm_vcpu_apicv_active(vcpu)) 1517 avic_vcpu_load(vcpu, cpu); 1518 } 1519 1520 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1521 { 1522 if (kvm_vcpu_apicv_active(vcpu)) 1523 avic_vcpu_put(vcpu); 1524 1525 svm_prepare_host_switch(vcpu); 1526 1527 ++vcpu->stat.host_state_reload; 1528 } 1529 1530 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1531 { 1532 struct vcpu_svm *svm = to_svm(vcpu); 1533 unsigned long rflags = svm->vmcb->save.rflags; 1534 1535 if (svm->nmi_singlestep) { 1536 /* Hide our flags if they were not set by the guest */ 1537 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1538 rflags &= ~X86_EFLAGS_TF; 1539 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1540 rflags &= ~X86_EFLAGS_RF; 1541 } 1542 return rflags; 1543 } 1544 1545 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1546 { 1547 if (to_svm(vcpu)->nmi_singlestep) 1548 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1549 1550 /* 1551 * Any change of EFLAGS.VM is accompanied by a reload of SS 1552 * (caused by either a task switch or an inter-privilege IRET), 1553 * so we do not need to update the CPL here. 1554 */ 1555 to_svm(vcpu)->vmcb->save.rflags = rflags; 1556 } 1557 1558 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1559 { 1560 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1561 1562 return sev_es_guest(vcpu->kvm) 1563 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1564 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1565 } 1566 1567 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1568 { 1569 kvm_register_mark_available(vcpu, reg); 1570 1571 switch (reg) { 1572 case VCPU_EXREG_PDPTR: 1573 /* 1574 * When !npt_enabled, mmu->pdptrs[] is already available since 1575 * it is always updated per SDM when moving to CRs. 1576 */ 1577 if (npt_enabled) 1578 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1579 break; 1580 default: 1581 KVM_BUG_ON(1, vcpu->kvm); 1582 } 1583 } 1584 1585 static void svm_set_vintr(struct vcpu_svm *svm) 1586 { 1587 struct vmcb_control_area *control; 1588 1589 /* 1590 * The following fields are ignored when AVIC is enabled 1591 */ 1592 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1593 1594 svm_set_intercept(svm, INTERCEPT_VINTR); 1595 1596 /* 1597 * Recalculating intercepts may have cleared the VINTR intercept. If 1598 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1599 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1600 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1601 * interrupts will never be unblocked while L2 is running. 1602 */ 1603 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1604 return; 1605 1606 /* 1607 * This is just a dummy VINTR to actually cause a vmexit to happen. 1608 * Actual injection of virtual interrupts happens through EVENTINJ. 1609 */ 1610 control = &svm->vmcb->control; 1611 control->int_vector = 0x0; 1612 control->int_ctl &= ~V_INTR_PRIO_MASK; 1613 control->int_ctl |= V_IRQ_MASK | 1614 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1615 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1616 } 1617 1618 static void svm_clear_vintr(struct vcpu_svm *svm) 1619 { 1620 svm_clr_intercept(svm, INTERCEPT_VINTR); 1621 1622 /* Drop int_ctl fields related to VINTR injection. */ 1623 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1624 if (is_guest_mode(&svm->vcpu)) { 1625 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1626 1627 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1628 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1629 1630 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1631 V_IRQ_INJECTION_BITS_MASK; 1632 1633 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1634 } 1635 1636 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1637 } 1638 1639 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1640 { 1641 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1642 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1643 1644 switch (seg) { 1645 case VCPU_SREG_CS: return &save->cs; 1646 case VCPU_SREG_DS: return &save->ds; 1647 case VCPU_SREG_ES: return &save->es; 1648 case VCPU_SREG_FS: return &save01->fs; 1649 case VCPU_SREG_GS: return &save01->gs; 1650 case VCPU_SREG_SS: return &save->ss; 1651 case VCPU_SREG_TR: return &save01->tr; 1652 case VCPU_SREG_LDTR: return &save01->ldtr; 1653 } 1654 BUG(); 1655 return NULL; 1656 } 1657 1658 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1659 { 1660 struct vmcb_seg *s = svm_seg(vcpu, seg); 1661 1662 return s->base; 1663 } 1664 1665 static void svm_get_segment(struct kvm_vcpu *vcpu, 1666 struct kvm_segment *var, int seg) 1667 { 1668 struct vmcb_seg *s = svm_seg(vcpu, seg); 1669 1670 var->base = s->base; 1671 var->limit = s->limit; 1672 var->selector = s->selector; 1673 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1674 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1675 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1676 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1677 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1678 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1679 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1680 1681 /* 1682 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1683 * However, the SVM spec states that the G bit is not observed by the 1684 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1685 * So let's synthesize a legal G bit for all segments, this helps 1686 * running KVM nested. It also helps cross-vendor migration, because 1687 * Intel's vmentry has a check on the 'G' bit. 1688 */ 1689 var->g = s->limit > 0xfffff; 1690 1691 /* 1692 * AMD's VMCB does not have an explicit unusable field, so emulate it 1693 * for cross vendor migration purposes by "not present" 1694 */ 1695 var->unusable = !var->present; 1696 1697 switch (seg) { 1698 case VCPU_SREG_TR: 1699 /* 1700 * Work around a bug where the busy flag in the tr selector 1701 * isn't exposed 1702 */ 1703 var->type |= 0x2; 1704 break; 1705 case VCPU_SREG_DS: 1706 case VCPU_SREG_ES: 1707 case VCPU_SREG_FS: 1708 case VCPU_SREG_GS: 1709 /* 1710 * The accessed bit must always be set in the segment 1711 * descriptor cache, although it can be cleared in the 1712 * descriptor, the cached bit always remains at 1. Since 1713 * Intel has a check on this, set it here to support 1714 * cross-vendor migration. 1715 */ 1716 if (!var->unusable) 1717 var->type |= 0x1; 1718 break; 1719 case VCPU_SREG_SS: 1720 /* 1721 * On AMD CPUs sometimes the DB bit in the segment 1722 * descriptor is left as 1, although the whole segment has 1723 * been made unusable. Clear it here to pass an Intel VMX 1724 * entry check when cross vendor migrating. 1725 */ 1726 if (var->unusable) 1727 var->db = 0; 1728 /* This is symmetric with svm_set_segment() */ 1729 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1730 break; 1731 } 1732 } 1733 1734 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1735 { 1736 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1737 1738 return save->cpl; 1739 } 1740 1741 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1742 { 1743 struct kvm_segment cs; 1744 1745 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1746 *db = cs.db; 1747 *l = cs.l; 1748 } 1749 1750 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1751 { 1752 struct vcpu_svm *svm = to_svm(vcpu); 1753 1754 dt->size = svm->vmcb->save.idtr.limit; 1755 dt->address = svm->vmcb->save.idtr.base; 1756 } 1757 1758 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1759 { 1760 struct vcpu_svm *svm = to_svm(vcpu); 1761 1762 svm->vmcb->save.idtr.limit = dt->size; 1763 svm->vmcb->save.idtr.base = dt->address ; 1764 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1765 } 1766 1767 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1768 { 1769 struct vcpu_svm *svm = to_svm(vcpu); 1770 1771 dt->size = svm->vmcb->save.gdtr.limit; 1772 dt->address = svm->vmcb->save.gdtr.base; 1773 } 1774 1775 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1776 { 1777 struct vcpu_svm *svm = to_svm(vcpu); 1778 1779 svm->vmcb->save.gdtr.limit = dt->size; 1780 svm->vmcb->save.gdtr.base = dt->address ; 1781 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1782 } 1783 1784 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1785 { 1786 struct vcpu_svm *svm = to_svm(vcpu); 1787 1788 /* 1789 * For guests that don't set guest_state_protected, the cr3 update is 1790 * handled via kvm_mmu_load() while entering the guest. For guests 1791 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1792 * VMCB save area now, since the save area will become the initial 1793 * contents of the VMSA, and future VMCB save area updates won't be 1794 * seen. 1795 */ 1796 if (sev_es_guest(vcpu->kvm)) { 1797 svm->vmcb->save.cr3 = cr3; 1798 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1799 } 1800 } 1801 1802 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1803 { 1804 struct vcpu_svm *svm = to_svm(vcpu); 1805 u64 hcr0 = cr0; 1806 bool old_paging = is_paging(vcpu); 1807 1808 #ifdef CONFIG_X86_64 1809 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1810 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1811 vcpu->arch.efer |= EFER_LMA; 1812 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1813 } 1814 1815 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1816 vcpu->arch.efer &= ~EFER_LMA; 1817 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1818 } 1819 } 1820 #endif 1821 vcpu->arch.cr0 = cr0; 1822 1823 if (!npt_enabled) { 1824 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1825 if (old_paging != is_paging(vcpu)) 1826 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1827 } 1828 1829 /* 1830 * re-enable caching here because the QEMU bios 1831 * does not do it - this results in some delay at 1832 * reboot 1833 */ 1834 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1835 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1836 1837 svm->vmcb->save.cr0 = hcr0; 1838 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1839 1840 /* 1841 * SEV-ES guests must always keep the CR intercepts cleared. CR 1842 * tracking is done using the CR write traps. 1843 */ 1844 if (sev_es_guest(vcpu->kvm)) 1845 return; 1846 1847 if (hcr0 == cr0) { 1848 /* Selective CR0 write remains on. */ 1849 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1850 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1851 } else { 1852 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1853 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1854 } 1855 } 1856 1857 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1858 { 1859 return true; 1860 } 1861 1862 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1863 { 1864 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1865 unsigned long old_cr4 = vcpu->arch.cr4; 1866 1867 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1868 svm_flush_tlb_current(vcpu); 1869 1870 vcpu->arch.cr4 = cr4; 1871 if (!npt_enabled) { 1872 cr4 |= X86_CR4_PAE; 1873 1874 if (!is_paging(vcpu)) 1875 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1876 } 1877 cr4 |= host_cr4_mce; 1878 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1879 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1880 1881 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1882 kvm_update_cpuid_runtime(vcpu); 1883 } 1884 1885 static void svm_set_segment(struct kvm_vcpu *vcpu, 1886 struct kvm_segment *var, int seg) 1887 { 1888 struct vcpu_svm *svm = to_svm(vcpu); 1889 struct vmcb_seg *s = svm_seg(vcpu, seg); 1890 1891 s->base = var->base; 1892 s->limit = var->limit; 1893 s->selector = var->selector; 1894 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1895 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1896 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1897 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1898 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1899 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1900 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1901 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1902 1903 /* 1904 * This is always accurate, except if SYSRET returned to a segment 1905 * with SS.DPL != 3. Intel does not have this quirk, and always 1906 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1907 * would entail passing the CPL to userspace and back. 1908 */ 1909 if (seg == VCPU_SREG_SS) 1910 /* This is symmetric with svm_get_segment() */ 1911 svm->vmcb->save.cpl = (var->dpl & 3); 1912 1913 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1914 } 1915 1916 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1917 { 1918 struct vcpu_svm *svm = to_svm(vcpu); 1919 1920 clr_exception_intercept(svm, BP_VECTOR); 1921 1922 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1923 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1924 set_exception_intercept(svm, BP_VECTOR); 1925 } 1926 } 1927 1928 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1929 { 1930 if (sd->next_asid > sd->max_asid) { 1931 ++sd->asid_generation; 1932 sd->next_asid = sd->min_asid; 1933 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1934 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1935 } 1936 1937 svm->current_vmcb->asid_generation = sd->asid_generation; 1938 svm->asid = sd->next_asid++; 1939 } 1940 1941 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1942 { 1943 struct vmcb *vmcb = svm->vmcb; 1944 1945 if (svm->vcpu.arch.guest_state_protected) 1946 return; 1947 1948 if (unlikely(value != vmcb->save.dr6)) { 1949 vmcb->save.dr6 = value; 1950 vmcb_mark_dirty(vmcb, VMCB_DR); 1951 } 1952 } 1953 1954 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1955 { 1956 struct vcpu_svm *svm = to_svm(vcpu); 1957 1958 if (vcpu->arch.guest_state_protected) 1959 return; 1960 1961 get_debugreg(vcpu->arch.db[0], 0); 1962 get_debugreg(vcpu->arch.db[1], 1); 1963 get_debugreg(vcpu->arch.db[2], 2); 1964 get_debugreg(vcpu->arch.db[3], 3); 1965 /* 1966 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1967 * because db_interception might need it. We can do it before vmentry. 1968 */ 1969 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1970 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1971 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1972 set_dr_intercepts(svm); 1973 } 1974 1975 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1976 { 1977 struct vcpu_svm *svm = to_svm(vcpu); 1978 1979 if (vcpu->arch.guest_state_protected) 1980 return; 1981 1982 svm->vmcb->save.dr7 = value; 1983 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1984 } 1985 1986 static int pf_interception(struct kvm_vcpu *vcpu) 1987 { 1988 struct vcpu_svm *svm = to_svm(vcpu); 1989 1990 u64 fault_address = svm->vmcb->control.exit_info_2; 1991 u64 error_code = svm->vmcb->control.exit_info_1; 1992 1993 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1994 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1995 svm->vmcb->control.insn_bytes : NULL, 1996 svm->vmcb->control.insn_len); 1997 } 1998 1999 static int npf_interception(struct kvm_vcpu *vcpu) 2000 { 2001 struct vcpu_svm *svm = to_svm(vcpu); 2002 2003 u64 fault_address = svm->vmcb->control.exit_info_2; 2004 u64 error_code = svm->vmcb->control.exit_info_1; 2005 2006 trace_kvm_page_fault(vcpu, fault_address, error_code); 2007 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 2008 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2009 svm->vmcb->control.insn_bytes : NULL, 2010 svm->vmcb->control.insn_len); 2011 } 2012 2013 static int db_interception(struct kvm_vcpu *vcpu) 2014 { 2015 struct kvm_run *kvm_run = vcpu->run; 2016 struct vcpu_svm *svm = to_svm(vcpu); 2017 2018 if (!(vcpu->guest_debug & 2019 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2020 !svm->nmi_singlestep) { 2021 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2022 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2023 return 1; 2024 } 2025 2026 if (svm->nmi_singlestep) { 2027 disable_nmi_singlestep(svm); 2028 /* Make sure we check for pending NMIs upon entry */ 2029 kvm_make_request(KVM_REQ_EVENT, vcpu); 2030 } 2031 2032 if (vcpu->guest_debug & 2033 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2034 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2035 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2036 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2037 kvm_run->debug.arch.pc = 2038 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2039 kvm_run->debug.arch.exception = DB_VECTOR; 2040 return 0; 2041 } 2042 2043 return 1; 2044 } 2045 2046 static int bp_interception(struct kvm_vcpu *vcpu) 2047 { 2048 struct vcpu_svm *svm = to_svm(vcpu); 2049 struct kvm_run *kvm_run = vcpu->run; 2050 2051 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2052 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2053 kvm_run->debug.arch.exception = BP_VECTOR; 2054 return 0; 2055 } 2056 2057 static int ud_interception(struct kvm_vcpu *vcpu) 2058 { 2059 return handle_ud(vcpu); 2060 } 2061 2062 static int ac_interception(struct kvm_vcpu *vcpu) 2063 { 2064 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2065 return 1; 2066 } 2067 2068 static bool is_erratum_383(void) 2069 { 2070 int err, i; 2071 u64 value; 2072 2073 if (!erratum_383_found) 2074 return false; 2075 2076 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2077 if (err) 2078 return false; 2079 2080 /* Bit 62 may or may not be set for this mce */ 2081 value &= ~(1ULL << 62); 2082 2083 if (value != 0xb600000000010015ULL) 2084 return false; 2085 2086 /* Clear MCi_STATUS registers */ 2087 for (i = 0; i < 6; ++i) 2088 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2089 2090 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2091 if (!err) { 2092 u32 low, high; 2093 2094 value &= ~(1ULL << 2); 2095 low = lower_32_bits(value); 2096 high = upper_32_bits(value); 2097 2098 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2099 } 2100 2101 /* Flush tlb to evict multi-match entries */ 2102 __flush_tlb_all(); 2103 2104 return true; 2105 } 2106 2107 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2108 { 2109 if (is_erratum_383()) { 2110 /* 2111 * Erratum 383 triggered. Guest state is corrupt so kill the 2112 * guest. 2113 */ 2114 pr_err("Guest triggered AMD Erratum 383\n"); 2115 2116 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2117 2118 return; 2119 } 2120 2121 /* 2122 * On an #MC intercept the MCE handler is not called automatically in 2123 * the host. So do it by hand here. 2124 */ 2125 kvm_machine_check(); 2126 } 2127 2128 static int mc_interception(struct kvm_vcpu *vcpu) 2129 { 2130 return 1; 2131 } 2132 2133 static int shutdown_interception(struct kvm_vcpu *vcpu) 2134 { 2135 struct kvm_run *kvm_run = vcpu->run; 2136 struct vcpu_svm *svm = to_svm(vcpu); 2137 2138 /* 2139 * The VM save area has already been encrypted so it 2140 * cannot be reinitialized - just terminate. 2141 */ 2142 if (sev_es_guest(vcpu->kvm)) 2143 return -EINVAL; 2144 2145 /* 2146 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2147 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2148 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2149 * userspace. At a platform view, INIT is acceptable behavior as 2150 * there exist bare metal platforms that automatically INIT the CPU 2151 * in response to shutdown. 2152 */ 2153 clear_page(svm->vmcb); 2154 kvm_vcpu_reset(vcpu, true); 2155 2156 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2157 return 0; 2158 } 2159 2160 static int io_interception(struct kvm_vcpu *vcpu) 2161 { 2162 struct vcpu_svm *svm = to_svm(vcpu); 2163 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2164 int size, in, string; 2165 unsigned port; 2166 2167 ++vcpu->stat.io_exits; 2168 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2169 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2170 port = io_info >> 16; 2171 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2172 2173 if (string) { 2174 if (sev_es_guest(vcpu->kvm)) 2175 return sev_es_string_io(svm, size, port, in); 2176 else 2177 return kvm_emulate_instruction(vcpu, 0); 2178 } 2179 2180 svm->next_rip = svm->vmcb->control.exit_info_2; 2181 2182 return kvm_fast_pio(vcpu, size, port, in); 2183 } 2184 2185 static int nmi_interception(struct kvm_vcpu *vcpu) 2186 { 2187 return 1; 2188 } 2189 2190 static int smi_interception(struct kvm_vcpu *vcpu) 2191 { 2192 return 1; 2193 } 2194 2195 static int intr_interception(struct kvm_vcpu *vcpu) 2196 { 2197 ++vcpu->stat.irq_exits; 2198 return 1; 2199 } 2200 2201 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2202 { 2203 struct vcpu_svm *svm = to_svm(vcpu); 2204 struct vmcb *vmcb12; 2205 struct kvm_host_map map; 2206 int ret; 2207 2208 if (nested_svm_check_permissions(vcpu)) 2209 return 1; 2210 2211 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2212 if (ret) { 2213 if (ret == -EINVAL) 2214 kvm_inject_gp(vcpu, 0); 2215 return 1; 2216 } 2217 2218 vmcb12 = map.hva; 2219 2220 ret = kvm_skip_emulated_instruction(vcpu); 2221 2222 if (vmload) { 2223 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2224 svm->sysenter_eip_hi = 0; 2225 svm->sysenter_esp_hi = 0; 2226 } else { 2227 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2228 } 2229 2230 kvm_vcpu_unmap(vcpu, &map, true); 2231 2232 return ret; 2233 } 2234 2235 static int vmload_interception(struct kvm_vcpu *vcpu) 2236 { 2237 return vmload_vmsave_interception(vcpu, true); 2238 } 2239 2240 static int vmsave_interception(struct kvm_vcpu *vcpu) 2241 { 2242 return vmload_vmsave_interception(vcpu, false); 2243 } 2244 2245 static int vmrun_interception(struct kvm_vcpu *vcpu) 2246 { 2247 if (nested_svm_check_permissions(vcpu)) 2248 return 1; 2249 2250 return nested_svm_vmrun(vcpu); 2251 } 2252 2253 enum { 2254 NONE_SVM_INSTR, 2255 SVM_INSTR_VMRUN, 2256 SVM_INSTR_VMLOAD, 2257 SVM_INSTR_VMSAVE, 2258 }; 2259 2260 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2261 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2262 { 2263 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2264 2265 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2266 return NONE_SVM_INSTR; 2267 2268 switch (ctxt->modrm) { 2269 case 0xd8: /* VMRUN */ 2270 return SVM_INSTR_VMRUN; 2271 case 0xda: /* VMLOAD */ 2272 return SVM_INSTR_VMLOAD; 2273 case 0xdb: /* VMSAVE */ 2274 return SVM_INSTR_VMSAVE; 2275 default: 2276 break; 2277 } 2278 2279 return NONE_SVM_INSTR; 2280 } 2281 2282 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2283 { 2284 const int guest_mode_exit_codes[] = { 2285 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2286 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2287 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2288 }; 2289 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2290 [SVM_INSTR_VMRUN] = vmrun_interception, 2291 [SVM_INSTR_VMLOAD] = vmload_interception, 2292 [SVM_INSTR_VMSAVE] = vmsave_interception, 2293 }; 2294 struct vcpu_svm *svm = to_svm(vcpu); 2295 int ret; 2296 2297 if (is_guest_mode(vcpu)) { 2298 /* Returns '1' or -errno on failure, '0' on success. */ 2299 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2300 if (ret) 2301 return ret; 2302 return 1; 2303 } 2304 return svm_instr_handlers[opcode](vcpu); 2305 } 2306 2307 /* 2308 * #GP handling code. Note that #GP can be triggered under the following two 2309 * cases: 2310 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2311 * some AMD CPUs when EAX of these instructions are in the reserved memory 2312 * regions (e.g. SMM memory on host). 2313 * 2) VMware backdoor 2314 */ 2315 static int gp_interception(struct kvm_vcpu *vcpu) 2316 { 2317 struct vcpu_svm *svm = to_svm(vcpu); 2318 u32 error_code = svm->vmcb->control.exit_info_1; 2319 int opcode; 2320 2321 /* Both #GP cases have zero error_code */ 2322 if (error_code) 2323 goto reinject; 2324 2325 /* Decode the instruction for usage later */ 2326 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2327 goto reinject; 2328 2329 opcode = svm_instr_opcode(vcpu); 2330 2331 if (opcode == NONE_SVM_INSTR) { 2332 if (!enable_vmware_backdoor) 2333 goto reinject; 2334 2335 /* 2336 * VMware backdoor emulation on #GP interception only handles 2337 * IN{S}, OUT{S}, and RDPMC. 2338 */ 2339 if (!is_guest_mode(vcpu)) 2340 return kvm_emulate_instruction(vcpu, 2341 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2342 } else { 2343 /* All SVM instructions expect page aligned RAX */ 2344 if (svm->vmcb->save.rax & ~PAGE_MASK) 2345 goto reinject; 2346 2347 return emulate_svm_instr(vcpu, opcode); 2348 } 2349 2350 reinject: 2351 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2352 return 1; 2353 } 2354 2355 void svm_set_gif(struct vcpu_svm *svm, bool value) 2356 { 2357 if (value) { 2358 /* 2359 * If VGIF is enabled, the STGI intercept is only added to 2360 * detect the opening of the SMI/NMI window; remove it now. 2361 * Likewise, clear the VINTR intercept, we will set it 2362 * again while processing KVM_REQ_EVENT if needed. 2363 */ 2364 if (vgif) 2365 svm_clr_intercept(svm, INTERCEPT_STGI); 2366 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2367 svm_clear_vintr(svm); 2368 2369 enable_gif(svm); 2370 if (svm->vcpu.arch.smi_pending || 2371 svm->vcpu.arch.nmi_pending || 2372 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2373 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2374 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2375 } else { 2376 disable_gif(svm); 2377 2378 /* 2379 * After a CLGI no interrupts should come. But if vGIF is 2380 * in use, we still rely on the VINTR intercept (rather than 2381 * STGI) to detect an open interrupt window. 2382 */ 2383 if (!vgif) 2384 svm_clear_vintr(svm); 2385 } 2386 } 2387 2388 static int stgi_interception(struct kvm_vcpu *vcpu) 2389 { 2390 int ret; 2391 2392 if (nested_svm_check_permissions(vcpu)) 2393 return 1; 2394 2395 ret = kvm_skip_emulated_instruction(vcpu); 2396 svm_set_gif(to_svm(vcpu), true); 2397 return ret; 2398 } 2399 2400 static int clgi_interception(struct kvm_vcpu *vcpu) 2401 { 2402 int ret; 2403 2404 if (nested_svm_check_permissions(vcpu)) 2405 return 1; 2406 2407 ret = kvm_skip_emulated_instruction(vcpu); 2408 svm_set_gif(to_svm(vcpu), false); 2409 return ret; 2410 } 2411 2412 static int invlpga_interception(struct kvm_vcpu *vcpu) 2413 { 2414 gva_t gva = kvm_rax_read(vcpu); 2415 u32 asid = kvm_rcx_read(vcpu); 2416 2417 /* FIXME: Handle an address size prefix. */ 2418 if (!is_long_mode(vcpu)) 2419 gva = (u32)gva; 2420 2421 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2422 2423 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2424 kvm_mmu_invlpg(vcpu, gva); 2425 2426 return kvm_skip_emulated_instruction(vcpu); 2427 } 2428 2429 static int skinit_interception(struct kvm_vcpu *vcpu) 2430 { 2431 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2432 2433 kvm_queue_exception(vcpu, UD_VECTOR); 2434 return 1; 2435 } 2436 2437 static int task_switch_interception(struct kvm_vcpu *vcpu) 2438 { 2439 struct vcpu_svm *svm = to_svm(vcpu); 2440 u16 tss_selector; 2441 int reason; 2442 int int_type = svm->vmcb->control.exit_int_info & 2443 SVM_EXITINTINFO_TYPE_MASK; 2444 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2445 uint32_t type = 2446 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2447 uint32_t idt_v = 2448 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2449 bool has_error_code = false; 2450 u32 error_code = 0; 2451 2452 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2453 2454 if (svm->vmcb->control.exit_info_2 & 2455 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2456 reason = TASK_SWITCH_IRET; 2457 else if (svm->vmcb->control.exit_info_2 & 2458 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2459 reason = TASK_SWITCH_JMP; 2460 else if (idt_v) 2461 reason = TASK_SWITCH_GATE; 2462 else 2463 reason = TASK_SWITCH_CALL; 2464 2465 if (reason == TASK_SWITCH_GATE) { 2466 switch (type) { 2467 case SVM_EXITINTINFO_TYPE_NMI: 2468 vcpu->arch.nmi_injected = false; 2469 break; 2470 case SVM_EXITINTINFO_TYPE_EXEPT: 2471 if (svm->vmcb->control.exit_info_2 & 2472 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2473 has_error_code = true; 2474 error_code = 2475 (u32)svm->vmcb->control.exit_info_2; 2476 } 2477 kvm_clear_exception_queue(vcpu); 2478 break; 2479 case SVM_EXITINTINFO_TYPE_INTR: 2480 case SVM_EXITINTINFO_TYPE_SOFT: 2481 kvm_clear_interrupt_queue(vcpu); 2482 break; 2483 default: 2484 break; 2485 } 2486 } 2487 2488 if (reason != TASK_SWITCH_GATE || 2489 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2490 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2491 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2492 if (!svm_skip_emulated_instruction(vcpu)) 2493 return 0; 2494 } 2495 2496 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2497 int_vec = -1; 2498 2499 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2500 has_error_code, error_code); 2501 } 2502 2503 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2504 { 2505 if (!sev_es_guest(svm->vcpu.kvm)) 2506 svm_clr_intercept(svm, INTERCEPT_IRET); 2507 } 2508 2509 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2510 { 2511 if (!sev_es_guest(svm->vcpu.kvm)) 2512 svm_set_intercept(svm, INTERCEPT_IRET); 2513 } 2514 2515 static int iret_interception(struct kvm_vcpu *vcpu) 2516 { 2517 struct vcpu_svm *svm = to_svm(vcpu); 2518 2519 ++vcpu->stat.nmi_window_exits; 2520 svm->awaiting_iret_completion = true; 2521 2522 svm_clr_iret_intercept(svm); 2523 if (!sev_es_guest(vcpu->kvm)) 2524 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2525 2526 kvm_make_request(KVM_REQ_EVENT, vcpu); 2527 return 1; 2528 } 2529 2530 static int invlpg_interception(struct kvm_vcpu *vcpu) 2531 { 2532 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2533 return kvm_emulate_instruction(vcpu, 0); 2534 2535 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2536 return kvm_skip_emulated_instruction(vcpu); 2537 } 2538 2539 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2540 { 2541 return kvm_emulate_instruction(vcpu, 0); 2542 } 2543 2544 static int rsm_interception(struct kvm_vcpu *vcpu) 2545 { 2546 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2547 } 2548 2549 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2550 unsigned long val) 2551 { 2552 struct vcpu_svm *svm = to_svm(vcpu); 2553 unsigned long cr0 = vcpu->arch.cr0; 2554 bool ret = false; 2555 2556 if (!is_guest_mode(vcpu) || 2557 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2558 return false; 2559 2560 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2561 val &= ~SVM_CR0_SELECTIVE_MASK; 2562 2563 if (cr0 ^ val) { 2564 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2565 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2566 } 2567 2568 return ret; 2569 } 2570 2571 #define CR_VALID (1ULL << 63) 2572 2573 static int cr_interception(struct kvm_vcpu *vcpu) 2574 { 2575 struct vcpu_svm *svm = to_svm(vcpu); 2576 int reg, cr; 2577 unsigned long val; 2578 int err; 2579 2580 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2581 return emulate_on_interception(vcpu); 2582 2583 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2584 return emulate_on_interception(vcpu); 2585 2586 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2587 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2588 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2589 else 2590 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2591 2592 err = 0; 2593 if (cr >= 16) { /* mov to cr */ 2594 cr -= 16; 2595 val = kvm_register_read(vcpu, reg); 2596 trace_kvm_cr_write(cr, val); 2597 switch (cr) { 2598 case 0: 2599 if (!check_selective_cr0_intercepted(vcpu, val)) 2600 err = kvm_set_cr0(vcpu, val); 2601 else 2602 return 1; 2603 2604 break; 2605 case 3: 2606 err = kvm_set_cr3(vcpu, val); 2607 break; 2608 case 4: 2609 err = kvm_set_cr4(vcpu, val); 2610 break; 2611 case 8: 2612 err = kvm_set_cr8(vcpu, val); 2613 break; 2614 default: 2615 WARN(1, "unhandled write to CR%d", cr); 2616 kvm_queue_exception(vcpu, UD_VECTOR); 2617 return 1; 2618 } 2619 } else { /* mov from cr */ 2620 switch (cr) { 2621 case 0: 2622 val = kvm_read_cr0(vcpu); 2623 break; 2624 case 2: 2625 val = vcpu->arch.cr2; 2626 break; 2627 case 3: 2628 val = kvm_read_cr3(vcpu); 2629 break; 2630 case 4: 2631 val = kvm_read_cr4(vcpu); 2632 break; 2633 case 8: 2634 val = kvm_get_cr8(vcpu); 2635 break; 2636 default: 2637 WARN(1, "unhandled read from CR%d", cr); 2638 kvm_queue_exception(vcpu, UD_VECTOR); 2639 return 1; 2640 } 2641 kvm_register_write(vcpu, reg, val); 2642 trace_kvm_cr_read(cr, val); 2643 } 2644 return kvm_complete_insn_gp(vcpu, err); 2645 } 2646 2647 static int cr_trap(struct kvm_vcpu *vcpu) 2648 { 2649 struct vcpu_svm *svm = to_svm(vcpu); 2650 unsigned long old_value, new_value; 2651 unsigned int cr; 2652 int ret = 0; 2653 2654 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2655 2656 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2657 switch (cr) { 2658 case 0: 2659 old_value = kvm_read_cr0(vcpu); 2660 svm_set_cr0(vcpu, new_value); 2661 2662 kvm_post_set_cr0(vcpu, old_value, new_value); 2663 break; 2664 case 4: 2665 old_value = kvm_read_cr4(vcpu); 2666 svm_set_cr4(vcpu, new_value); 2667 2668 kvm_post_set_cr4(vcpu, old_value, new_value); 2669 break; 2670 case 8: 2671 ret = kvm_set_cr8(vcpu, new_value); 2672 break; 2673 default: 2674 WARN(1, "unhandled CR%d write trap", cr); 2675 kvm_queue_exception(vcpu, UD_VECTOR); 2676 return 1; 2677 } 2678 2679 return kvm_complete_insn_gp(vcpu, ret); 2680 } 2681 2682 static int dr_interception(struct kvm_vcpu *vcpu) 2683 { 2684 struct vcpu_svm *svm = to_svm(vcpu); 2685 int reg, dr; 2686 unsigned long val; 2687 int err = 0; 2688 2689 if (vcpu->guest_debug == 0) { 2690 /* 2691 * No more DR vmexits; force a reload of the debug registers 2692 * and reenter on this instruction. The next vmexit will 2693 * retrieve the full state of the debug registers. 2694 */ 2695 clr_dr_intercepts(svm); 2696 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2697 return 1; 2698 } 2699 2700 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2701 return emulate_on_interception(vcpu); 2702 2703 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2704 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2705 if (dr >= 16) { /* mov to DRn */ 2706 dr -= 16; 2707 val = kvm_register_read(vcpu, reg); 2708 err = kvm_set_dr(vcpu, dr, val); 2709 } else { 2710 kvm_get_dr(vcpu, dr, &val); 2711 kvm_register_write(vcpu, reg, val); 2712 } 2713 2714 return kvm_complete_insn_gp(vcpu, err); 2715 } 2716 2717 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2718 { 2719 int r; 2720 2721 u8 cr8_prev = kvm_get_cr8(vcpu); 2722 /* instruction emulation calls kvm_set_cr8() */ 2723 r = cr_interception(vcpu); 2724 if (lapic_in_kernel(vcpu)) 2725 return r; 2726 if (cr8_prev <= kvm_get_cr8(vcpu)) 2727 return r; 2728 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2729 return 0; 2730 } 2731 2732 static int efer_trap(struct kvm_vcpu *vcpu) 2733 { 2734 struct msr_data msr_info; 2735 int ret; 2736 2737 /* 2738 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2739 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2740 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2741 * the guest doesn't have X86_FEATURE_SVM. 2742 */ 2743 msr_info.host_initiated = false; 2744 msr_info.index = MSR_EFER; 2745 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2746 ret = kvm_set_msr_common(vcpu, &msr_info); 2747 2748 return kvm_complete_insn_gp(vcpu, ret); 2749 } 2750 2751 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2752 { 2753 msr->data = 0; 2754 2755 switch (msr->index) { 2756 case MSR_AMD64_DE_CFG: 2757 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2758 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2759 break; 2760 default: 2761 return KVM_MSR_RET_INVALID; 2762 } 2763 2764 return 0; 2765 } 2766 2767 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2768 { 2769 struct vcpu_svm *svm = to_svm(vcpu); 2770 2771 switch (msr_info->index) { 2772 case MSR_AMD64_TSC_RATIO: 2773 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled) 2774 return 1; 2775 msr_info->data = svm->tsc_ratio_msr; 2776 break; 2777 case MSR_STAR: 2778 msr_info->data = svm->vmcb01.ptr->save.star; 2779 break; 2780 #ifdef CONFIG_X86_64 2781 case MSR_LSTAR: 2782 msr_info->data = svm->vmcb01.ptr->save.lstar; 2783 break; 2784 case MSR_CSTAR: 2785 msr_info->data = svm->vmcb01.ptr->save.cstar; 2786 break; 2787 case MSR_KERNEL_GS_BASE: 2788 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2789 break; 2790 case MSR_SYSCALL_MASK: 2791 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2792 break; 2793 #endif 2794 case MSR_IA32_SYSENTER_CS: 2795 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2796 break; 2797 case MSR_IA32_SYSENTER_EIP: 2798 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2799 if (guest_cpuid_is_intel(vcpu)) 2800 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2801 break; 2802 case MSR_IA32_SYSENTER_ESP: 2803 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2804 if (guest_cpuid_is_intel(vcpu)) 2805 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2806 break; 2807 case MSR_TSC_AUX: 2808 msr_info->data = svm->tsc_aux; 2809 break; 2810 case MSR_IA32_DEBUGCTLMSR: 2811 case MSR_IA32_LASTBRANCHFROMIP: 2812 case MSR_IA32_LASTBRANCHTOIP: 2813 case MSR_IA32_LASTINTFROMIP: 2814 case MSR_IA32_LASTINTTOIP: 2815 msr_info->data = svm_get_lbr_msr(svm, msr_info->index); 2816 break; 2817 case MSR_VM_HSAVE_PA: 2818 msr_info->data = svm->nested.hsave_msr; 2819 break; 2820 case MSR_VM_CR: 2821 msr_info->data = svm->nested.vm_cr_msr; 2822 break; 2823 case MSR_IA32_SPEC_CTRL: 2824 if (!msr_info->host_initiated && 2825 !guest_has_spec_ctrl_msr(vcpu)) 2826 return 1; 2827 2828 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2829 msr_info->data = svm->vmcb->save.spec_ctrl; 2830 else 2831 msr_info->data = svm->spec_ctrl; 2832 break; 2833 case MSR_AMD64_VIRT_SPEC_CTRL: 2834 if (!msr_info->host_initiated && 2835 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2836 return 1; 2837 2838 msr_info->data = svm->virt_spec_ctrl; 2839 break; 2840 case MSR_F15H_IC_CFG: { 2841 2842 int family, model; 2843 2844 family = guest_cpuid_family(vcpu); 2845 model = guest_cpuid_model(vcpu); 2846 2847 if (family < 0 || model < 0) 2848 return kvm_get_msr_common(vcpu, msr_info); 2849 2850 msr_info->data = 0; 2851 2852 if (family == 0x15 && 2853 (model >= 0x2 && model < 0x20)) 2854 msr_info->data = 0x1E; 2855 } 2856 break; 2857 case MSR_AMD64_DE_CFG: 2858 msr_info->data = svm->msr_decfg; 2859 break; 2860 default: 2861 return kvm_get_msr_common(vcpu, msr_info); 2862 } 2863 return 0; 2864 } 2865 2866 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2867 { 2868 struct vcpu_svm *svm = to_svm(vcpu); 2869 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2870 return kvm_complete_insn_gp(vcpu, err); 2871 2872 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2873 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2874 X86_TRAP_GP | 2875 SVM_EVTINJ_TYPE_EXEPT | 2876 SVM_EVTINJ_VALID); 2877 return 1; 2878 } 2879 2880 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2881 { 2882 struct vcpu_svm *svm = to_svm(vcpu); 2883 int svm_dis, chg_mask; 2884 2885 if (data & ~SVM_VM_CR_VALID_MASK) 2886 return 1; 2887 2888 chg_mask = SVM_VM_CR_VALID_MASK; 2889 2890 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2891 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2892 2893 svm->nested.vm_cr_msr &= ~chg_mask; 2894 svm->nested.vm_cr_msr |= (data & chg_mask); 2895 2896 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2897 2898 /* check for svm_disable while efer.svme is set */ 2899 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2900 return 1; 2901 2902 return 0; 2903 } 2904 2905 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2906 { 2907 struct vcpu_svm *svm = to_svm(vcpu); 2908 int ret = 0; 2909 2910 u32 ecx = msr->index; 2911 u64 data = msr->data; 2912 switch (ecx) { 2913 case MSR_AMD64_TSC_RATIO: 2914 2915 if (!svm->tsc_scaling_enabled) { 2916 2917 if (!msr->host_initiated) 2918 return 1; 2919 /* 2920 * In case TSC scaling is not enabled, always 2921 * leave this MSR at the default value. 2922 * 2923 * Due to bug in qemu 6.2.0, it would try to set 2924 * this msr to 0 if tsc scaling is not enabled. 2925 * Ignore this value as well. 2926 */ 2927 if (data != 0 && data != svm->tsc_ratio_msr) 2928 return 1; 2929 break; 2930 } 2931 2932 if (data & SVM_TSC_RATIO_RSVD) 2933 return 1; 2934 2935 svm->tsc_ratio_msr = data; 2936 2937 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu)) 2938 nested_svm_update_tsc_ratio_msr(vcpu); 2939 2940 break; 2941 case MSR_IA32_CR_PAT: 2942 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2943 return 1; 2944 vcpu->arch.pat = data; 2945 svm->vmcb01.ptr->save.g_pat = data; 2946 if (is_guest_mode(vcpu)) 2947 nested_vmcb02_compute_g_pat(svm); 2948 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2949 break; 2950 case MSR_IA32_SPEC_CTRL: 2951 if (!msr->host_initiated && 2952 !guest_has_spec_ctrl_msr(vcpu)) 2953 return 1; 2954 2955 if (kvm_spec_ctrl_test_value(data)) 2956 return 1; 2957 2958 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2959 svm->vmcb->save.spec_ctrl = data; 2960 else 2961 svm->spec_ctrl = data; 2962 if (!data) 2963 break; 2964 2965 /* 2966 * For non-nested: 2967 * When it's written (to non-zero) for the first time, pass 2968 * it through. 2969 * 2970 * For nested: 2971 * The handling of the MSR bitmap for L2 guests is done in 2972 * nested_svm_vmrun_msrpm. 2973 * We update the L1 MSR bit as well since it will end up 2974 * touching the MSR anyway now. 2975 */ 2976 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2977 break; 2978 case MSR_AMD64_VIRT_SPEC_CTRL: 2979 if (!msr->host_initiated && 2980 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2981 return 1; 2982 2983 if (data & ~SPEC_CTRL_SSBD) 2984 return 1; 2985 2986 svm->virt_spec_ctrl = data; 2987 break; 2988 case MSR_STAR: 2989 svm->vmcb01.ptr->save.star = data; 2990 break; 2991 #ifdef CONFIG_X86_64 2992 case MSR_LSTAR: 2993 svm->vmcb01.ptr->save.lstar = data; 2994 break; 2995 case MSR_CSTAR: 2996 svm->vmcb01.ptr->save.cstar = data; 2997 break; 2998 case MSR_KERNEL_GS_BASE: 2999 svm->vmcb01.ptr->save.kernel_gs_base = data; 3000 break; 3001 case MSR_SYSCALL_MASK: 3002 svm->vmcb01.ptr->save.sfmask = data; 3003 break; 3004 #endif 3005 case MSR_IA32_SYSENTER_CS: 3006 svm->vmcb01.ptr->save.sysenter_cs = data; 3007 break; 3008 case MSR_IA32_SYSENTER_EIP: 3009 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3010 /* 3011 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3012 * when we spoof an Intel vendor ID (for cross vendor migration). 3013 * In this case we use this intercept to track the high 3014 * 32 bit part of these msrs to support Intel's 3015 * implementation of SYSENTER/SYSEXIT. 3016 */ 3017 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3018 break; 3019 case MSR_IA32_SYSENTER_ESP: 3020 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3021 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3022 break; 3023 case MSR_TSC_AUX: 3024 /* 3025 * TSC_AUX is usually changed only during boot and never read 3026 * directly. Intercept TSC_AUX instead of exposing it to the 3027 * guest via direct_access_msrs, and switch it via user return. 3028 */ 3029 preempt_disable(); 3030 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3031 preempt_enable(); 3032 if (ret) 3033 break; 3034 3035 svm->tsc_aux = data; 3036 break; 3037 case MSR_IA32_DEBUGCTLMSR: 3038 if (!lbrv) { 3039 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3040 break; 3041 } 3042 if (data & DEBUGCTL_RESERVED_BITS) 3043 return 1; 3044 3045 if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) 3046 svm->vmcb->save.dbgctl = data; 3047 else 3048 svm->vmcb01.ptr->save.dbgctl = data; 3049 3050 svm_update_lbrv(vcpu); 3051 3052 break; 3053 case MSR_VM_HSAVE_PA: 3054 /* 3055 * Old kernels did not validate the value written to 3056 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3057 * value to allow live migrating buggy or malicious guests 3058 * originating from those kernels. 3059 */ 3060 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3061 return 1; 3062 3063 svm->nested.hsave_msr = data & PAGE_MASK; 3064 break; 3065 case MSR_VM_CR: 3066 return svm_set_vm_cr(vcpu, data); 3067 case MSR_VM_IGNNE: 3068 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3069 break; 3070 case MSR_AMD64_DE_CFG: { 3071 struct kvm_msr_entry msr_entry; 3072 3073 msr_entry.index = msr->index; 3074 if (svm_get_msr_feature(&msr_entry)) 3075 return 1; 3076 3077 /* Check the supported bits */ 3078 if (data & ~msr_entry.data) 3079 return 1; 3080 3081 /* Don't allow the guest to change a bit, #GP */ 3082 if (!msr->host_initiated && (data ^ msr_entry.data)) 3083 return 1; 3084 3085 svm->msr_decfg = data; 3086 break; 3087 } 3088 default: 3089 return kvm_set_msr_common(vcpu, msr); 3090 } 3091 return ret; 3092 } 3093 3094 static int msr_interception(struct kvm_vcpu *vcpu) 3095 { 3096 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3097 return kvm_emulate_wrmsr(vcpu); 3098 else 3099 return kvm_emulate_rdmsr(vcpu); 3100 } 3101 3102 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3103 { 3104 kvm_make_request(KVM_REQ_EVENT, vcpu); 3105 svm_clear_vintr(to_svm(vcpu)); 3106 3107 /* 3108 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3109 * In this case AVIC was temporarily disabled for 3110 * requesting the IRQ window and we have to re-enable it. 3111 * 3112 * If running nested, still remove the VM wide AVIC inhibit to 3113 * support case in which the interrupt window was requested when the 3114 * vCPU was not running nested. 3115 3116 * All vCPUs which run still run nested, will remain to have their 3117 * AVIC still inhibited due to per-cpu AVIC inhibition. 3118 */ 3119 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3120 3121 ++vcpu->stat.irq_window_exits; 3122 return 1; 3123 } 3124 3125 static int pause_interception(struct kvm_vcpu *vcpu) 3126 { 3127 bool in_kernel; 3128 /* 3129 * CPL is not made available for an SEV-ES guest, therefore 3130 * vcpu->arch.preempted_in_kernel can never be true. Just 3131 * set in_kernel to false as well. 3132 */ 3133 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3134 3135 grow_ple_window(vcpu); 3136 3137 kvm_vcpu_on_spin(vcpu, in_kernel); 3138 return kvm_skip_emulated_instruction(vcpu); 3139 } 3140 3141 static int invpcid_interception(struct kvm_vcpu *vcpu) 3142 { 3143 struct vcpu_svm *svm = to_svm(vcpu); 3144 unsigned long type; 3145 gva_t gva; 3146 3147 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3148 kvm_queue_exception(vcpu, UD_VECTOR); 3149 return 1; 3150 } 3151 3152 /* 3153 * For an INVPCID intercept: 3154 * EXITINFO1 provides the linear address of the memory operand. 3155 * EXITINFO2 provides the contents of the register operand. 3156 */ 3157 type = svm->vmcb->control.exit_info_2; 3158 gva = svm->vmcb->control.exit_info_1; 3159 3160 return kvm_handle_invpcid(vcpu, type, gva); 3161 } 3162 3163 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3164 [SVM_EXIT_READ_CR0] = cr_interception, 3165 [SVM_EXIT_READ_CR3] = cr_interception, 3166 [SVM_EXIT_READ_CR4] = cr_interception, 3167 [SVM_EXIT_READ_CR8] = cr_interception, 3168 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3169 [SVM_EXIT_WRITE_CR0] = cr_interception, 3170 [SVM_EXIT_WRITE_CR3] = cr_interception, 3171 [SVM_EXIT_WRITE_CR4] = cr_interception, 3172 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3173 [SVM_EXIT_READ_DR0] = dr_interception, 3174 [SVM_EXIT_READ_DR1] = dr_interception, 3175 [SVM_EXIT_READ_DR2] = dr_interception, 3176 [SVM_EXIT_READ_DR3] = dr_interception, 3177 [SVM_EXIT_READ_DR4] = dr_interception, 3178 [SVM_EXIT_READ_DR5] = dr_interception, 3179 [SVM_EXIT_READ_DR6] = dr_interception, 3180 [SVM_EXIT_READ_DR7] = dr_interception, 3181 [SVM_EXIT_WRITE_DR0] = dr_interception, 3182 [SVM_EXIT_WRITE_DR1] = dr_interception, 3183 [SVM_EXIT_WRITE_DR2] = dr_interception, 3184 [SVM_EXIT_WRITE_DR3] = dr_interception, 3185 [SVM_EXIT_WRITE_DR4] = dr_interception, 3186 [SVM_EXIT_WRITE_DR5] = dr_interception, 3187 [SVM_EXIT_WRITE_DR6] = dr_interception, 3188 [SVM_EXIT_WRITE_DR7] = dr_interception, 3189 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3190 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3191 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3192 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3193 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3194 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3195 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3196 [SVM_EXIT_INTR] = intr_interception, 3197 [SVM_EXIT_NMI] = nmi_interception, 3198 [SVM_EXIT_SMI] = smi_interception, 3199 [SVM_EXIT_VINTR] = interrupt_window_interception, 3200 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3201 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3202 [SVM_EXIT_IRET] = iret_interception, 3203 [SVM_EXIT_INVD] = kvm_emulate_invd, 3204 [SVM_EXIT_PAUSE] = pause_interception, 3205 [SVM_EXIT_HLT] = kvm_emulate_halt, 3206 [SVM_EXIT_INVLPG] = invlpg_interception, 3207 [SVM_EXIT_INVLPGA] = invlpga_interception, 3208 [SVM_EXIT_IOIO] = io_interception, 3209 [SVM_EXIT_MSR] = msr_interception, 3210 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3211 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3212 [SVM_EXIT_VMRUN] = vmrun_interception, 3213 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3214 [SVM_EXIT_VMLOAD] = vmload_interception, 3215 [SVM_EXIT_VMSAVE] = vmsave_interception, 3216 [SVM_EXIT_STGI] = stgi_interception, 3217 [SVM_EXIT_CLGI] = clgi_interception, 3218 [SVM_EXIT_SKINIT] = skinit_interception, 3219 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3220 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3221 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3222 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3223 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3224 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3225 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3226 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3227 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3228 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3229 [SVM_EXIT_INVPCID] = invpcid_interception, 3230 [SVM_EXIT_NPF] = npf_interception, 3231 [SVM_EXIT_RSM] = rsm_interception, 3232 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3233 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3234 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3235 }; 3236 3237 static void dump_vmcb(struct kvm_vcpu *vcpu) 3238 { 3239 struct vcpu_svm *svm = to_svm(vcpu); 3240 struct vmcb_control_area *control = &svm->vmcb->control; 3241 struct vmcb_save_area *save = &svm->vmcb->save; 3242 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3243 3244 if (!dump_invalid_vmcb) { 3245 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3246 return; 3247 } 3248 3249 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3250 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3251 pr_err("VMCB Control Area:\n"); 3252 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3253 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3254 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3255 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3256 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3257 pr_err("%-20s%08x %08x\n", "intercepts:", 3258 control->intercepts[INTERCEPT_WORD3], 3259 control->intercepts[INTERCEPT_WORD4]); 3260 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3261 pr_err("%-20s%d\n", "pause filter threshold:", 3262 control->pause_filter_thresh); 3263 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3264 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3265 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3266 pr_err("%-20s%d\n", "asid:", control->asid); 3267 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3268 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3269 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3270 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3271 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3272 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3273 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3274 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3275 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3276 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3277 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3278 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3279 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3280 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3281 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3282 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3283 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3284 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3285 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3286 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3287 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3288 pr_err("VMCB State Save Area:\n"); 3289 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3290 "es:", 3291 save->es.selector, save->es.attrib, 3292 save->es.limit, save->es.base); 3293 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3294 "cs:", 3295 save->cs.selector, save->cs.attrib, 3296 save->cs.limit, save->cs.base); 3297 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3298 "ss:", 3299 save->ss.selector, save->ss.attrib, 3300 save->ss.limit, save->ss.base); 3301 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3302 "ds:", 3303 save->ds.selector, save->ds.attrib, 3304 save->ds.limit, save->ds.base); 3305 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3306 "fs:", 3307 save01->fs.selector, save01->fs.attrib, 3308 save01->fs.limit, save01->fs.base); 3309 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3310 "gs:", 3311 save01->gs.selector, save01->gs.attrib, 3312 save01->gs.limit, save01->gs.base); 3313 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3314 "gdtr:", 3315 save->gdtr.selector, save->gdtr.attrib, 3316 save->gdtr.limit, save->gdtr.base); 3317 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3318 "ldtr:", 3319 save01->ldtr.selector, save01->ldtr.attrib, 3320 save01->ldtr.limit, save01->ldtr.base); 3321 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3322 "idtr:", 3323 save->idtr.selector, save->idtr.attrib, 3324 save->idtr.limit, save->idtr.base); 3325 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3326 "tr:", 3327 save01->tr.selector, save01->tr.attrib, 3328 save01->tr.limit, save01->tr.base); 3329 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3330 save->vmpl, save->cpl, save->efer); 3331 pr_err("%-15s %016llx %-13s %016llx\n", 3332 "cr0:", save->cr0, "cr2:", save->cr2); 3333 pr_err("%-15s %016llx %-13s %016llx\n", 3334 "cr3:", save->cr3, "cr4:", save->cr4); 3335 pr_err("%-15s %016llx %-13s %016llx\n", 3336 "dr6:", save->dr6, "dr7:", save->dr7); 3337 pr_err("%-15s %016llx %-13s %016llx\n", 3338 "rip:", save->rip, "rflags:", save->rflags); 3339 pr_err("%-15s %016llx %-13s %016llx\n", 3340 "rsp:", save->rsp, "rax:", save->rax); 3341 pr_err("%-15s %016llx %-13s %016llx\n", 3342 "star:", save01->star, "lstar:", save01->lstar); 3343 pr_err("%-15s %016llx %-13s %016llx\n", 3344 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3345 pr_err("%-15s %016llx %-13s %016llx\n", 3346 "kernel_gs_base:", save01->kernel_gs_base, 3347 "sysenter_cs:", save01->sysenter_cs); 3348 pr_err("%-15s %016llx %-13s %016llx\n", 3349 "sysenter_esp:", save01->sysenter_esp, 3350 "sysenter_eip:", save01->sysenter_eip); 3351 pr_err("%-15s %016llx %-13s %016llx\n", 3352 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3353 pr_err("%-15s %016llx %-13s %016llx\n", 3354 "br_from:", save->br_from, "br_to:", save->br_to); 3355 pr_err("%-15s %016llx %-13s %016llx\n", 3356 "excp_from:", save->last_excp_from, 3357 "excp_to:", save->last_excp_to); 3358 } 3359 3360 static bool svm_check_exit_valid(u64 exit_code) 3361 { 3362 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3363 svm_exit_handlers[exit_code]); 3364 } 3365 3366 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3367 { 3368 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3369 dump_vmcb(vcpu); 3370 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3371 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3372 vcpu->run->internal.ndata = 2; 3373 vcpu->run->internal.data[0] = exit_code; 3374 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3375 return 0; 3376 } 3377 3378 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3379 { 3380 if (!svm_check_exit_valid(exit_code)) 3381 return svm_handle_invalid_exit(vcpu, exit_code); 3382 3383 #ifdef CONFIG_RETPOLINE 3384 if (exit_code == SVM_EXIT_MSR) 3385 return msr_interception(vcpu); 3386 else if (exit_code == SVM_EXIT_VINTR) 3387 return interrupt_window_interception(vcpu); 3388 else if (exit_code == SVM_EXIT_INTR) 3389 return intr_interception(vcpu); 3390 else if (exit_code == SVM_EXIT_HLT) 3391 return kvm_emulate_halt(vcpu); 3392 else if (exit_code == SVM_EXIT_NPF) 3393 return npf_interception(vcpu); 3394 #endif 3395 return svm_exit_handlers[exit_code](vcpu); 3396 } 3397 3398 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3399 u64 *info1, u64 *info2, 3400 u32 *intr_info, u32 *error_code) 3401 { 3402 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3403 3404 *reason = control->exit_code; 3405 *info1 = control->exit_info_1; 3406 *info2 = control->exit_info_2; 3407 *intr_info = control->exit_int_info; 3408 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3409 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3410 *error_code = control->exit_int_info_err; 3411 else 3412 *error_code = 0; 3413 } 3414 3415 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3416 { 3417 struct vcpu_svm *svm = to_svm(vcpu); 3418 struct kvm_run *kvm_run = vcpu->run; 3419 u32 exit_code = svm->vmcb->control.exit_code; 3420 3421 trace_kvm_exit(vcpu, KVM_ISA_SVM); 3422 3423 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3424 if (!sev_es_guest(vcpu->kvm)) { 3425 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3426 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3427 if (npt_enabled) 3428 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3429 } 3430 3431 if (is_guest_mode(vcpu)) { 3432 int vmexit; 3433 3434 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3435 3436 vmexit = nested_svm_exit_special(svm); 3437 3438 if (vmexit == NESTED_EXIT_CONTINUE) 3439 vmexit = nested_svm_exit_handled(svm); 3440 3441 if (vmexit == NESTED_EXIT_DONE) 3442 return 1; 3443 } 3444 3445 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3446 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3447 kvm_run->fail_entry.hardware_entry_failure_reason 3448 = svm->vmcb->control.exit_code; 3449 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3450 dump_vmcb(vcpu); 3451 return 0; 3452 } 3453 3454 if (exit_fastpath != EXIT_FASTPATH_NONE) 3455 return 1; 3456 3457 return svm_invoke_exit_handler(vcpu, exit_code); 3458 } 3459 3460 static void reload_tss(struct kvm_vcpu *vcpu) 3461 { 3462 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3463 3464 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3465 load_TR_desc(); 3466 } 3467 3468 static void pre_svm_run(struct kvm_vcpu *vcpu) 3469 { 3470 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3471 struct vcpu_svm *svm = to_svm(vcpu); 3472 3473 /* 3474 * If the previous vmrun of the vmcb occurred on a different physical 3475 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3476 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3477 */ 3478 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3479 svm->current_vmcb->asid_generation = 0; 3480 vmcb_mark_all_dirty(svm->vmcb); 3481 svm->current_vmcb->cpu = vcpu->cpu; 3482 } 3483 3484 if (sev_guest(vcpu->kvm)) 3485 return pre_sev_run(svm, vcpu->cpu); 3486 3487 /* FIXME: handle wraparound of asid_generation */ 3488 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3489 new_asid(svm, sd); 3490 } 3491 3492 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3493 { 3494 struct vcpu_svm *svm = to_svm(vcpu); 3495 3496 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3497 3498 if (svm->nmi_l1_to_l2) 3499 return; 3500 3501 svm->nmi_masked = true; 3502 svm_set_iret_intercept(svm); 3503 ++vcpu->stat.nmi_injections; 3504 } 3505 3506 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3507 { 3508 struct vcpu_svm *svm = to_svm(vcpu); 3509 3510 if (!is_vnmi_enabled(svm)) 3511 return false; 3512 3513 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3514 } 3515 3516 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3517 { 3518 struct vcpu_svm *svm = to_svm(vcpu); 3519 3520 if (!is_vnmi_enabled(svm)) 3521 return false; 3522 3523 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3524 return false; 3525 3526 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3527 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3528 3529 /* 3530 * Because the pending NMI is serviced by hardware, KVM can't know when 3531 * the NMI is "injected", but for all intents and purposes, passing the 3532 * NMI off to hardware counts as injection. 3533 */ 3534 ++vcpu->stat.nmi_injections; 3535 3536 return true; 3537 } 3538 3539 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3540 { 3541 struct vcpu_svm *svm = to_svm(vcpu); 3542 u32 type; 3543 3544 if (vcpu->arch.interrupt.soft) { 3545 if (svm_update_soft_interrupt_rip(vcpu)) 3546 return; 3547 3548 type = SVM_EVTINJ_TYPE_SOFT; 3549 } else { 3550 type = SVM_EVTINJ_TYPE_INTR; 3551 } 3552 3553 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3554 vcpu->arch.interrupt.soft, reinjected); 3555 ++vcpu->stat.irq_injections; 3556 3557 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3558 SVM_EVTINJ_VALID | type; 3559 } 3560 3561 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3562 int trig_mode, int vector) 3563 { 3564 /* 3565 * apic->apicv_active must be read after vcpu->mode. 3566 * Pairs with smp_store_release in vcpu_enter_guest. 3567 */ 3568 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3569 3570 /* Note, this is called iff the local APIC is in-kernel. */ 3571 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3572 /* Process the interrupt via kvm_check_and_inject_events(). */ 3573 kvm_make_request(KVM_REQ_EVENT, vcpu); 3574 kvm_vcpu_kick(vcpu); 3575 return; 3576 } 3577 3578 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3579 if (in_guest_mode) { 3580 /* 3581 * Signal the doorbell to tell hardware to inject the IRQ. If 3582 * the vCPU exits the guest before the doorbell chimes, hardware 3583 * will automatically process AVIC interrupts at the next VMRUN. 3584 */ 3585 avic_ring_doorbell(vcpu); 3586 } else { 3587 /* 3588 * Wake the vCPU if it was blocking. KVM will then detect the 3589 * pending IRQ when checking if the vCPU has a wake event. 3590 */ 3591 kvm_vcpu_wake_up(vcpu); 3592 } 3593 } 3594 3595 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3596 int trig_mode, int vector) 3597 { 3598 kvm_lapic_set_irr(vector, apic); 3599 3600 /* 3601 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3602 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3603 * the read of guest_mode. This guarantees that either VMRUN will see 3604 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3605 * will signal the doorbell if the CPU has already entered the guest. 3606 */ 3607 smp_mb__after_atomic(); 3608 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3609 } 3610 3611 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3612 { 3613 struct vcpu_svm *svm = to_svm(vcpu); 3614 3615 /* 3616 * SEV-ES guests must always keep the CR intercepts cleared. CR 3617 * tracking is done using the CR write traps. 3618 */ 3619 if (sev_es_guest(vcpu->kvm)) 3620 return; 3621 3622 if (nested_svm_virtualize_tpr(vcpu)) 3623 return; 3624 3625 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3626 3627 if (irr == -1) 3628 return; 3629 3630 if (tpr >= irr) 3631 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3632 } 3633 3634 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3635 { 3636 struct vcpu_svm *svm = to_svm(vcpu); 3637 3638 if (is_vnmi_enabled(svm)) 3639 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3640 else 3641 return svm->nmi_masked; 3642 } 3643 3644 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3645 { 3646 struct vcpu_svm *svm = to_svm(vcpu); 3647 3648 if (is_vnmi_enabled(svm)) { 3649 if (masked) 3650 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3651 else 3652 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3653 3654 } else { 3655 svm->nmi_masked = masked; 3656 if (masked) 3657 svm_set_iret_intercept(svm); 3658 else 3659 svm_clr_iret_intercept(svm); 3660 } 3661 } 3662 3663 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3664 { 3665 struct vcpu_svm *svm = to_svm(vcpu); 3666 struct vmcb *vmcb = svm->vmcb; 3667 3668 if (!gif_set(svm)) 3669 return true; 3670 3671 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3672 return false; 3673 3674 if (svm_get_nmi_mask(vcpu)) 3675 return true; 3676 3677 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3678 } 3679 3680 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3681 { 3682 struct vcpu_svm *svm = to_svm(vcpu); 3683 if (svm->nested.nested_run_pending) 3684 return -EBUSY; 3685 3686 if (svm_nmi_blocked(vcpu)) 3687 return 0; 3688 3689 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3690 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3691 return -EBUSY; 3692 return 1; 3693 } 3694 3695 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3696 { 3697 struct vcpu_svm *svm = to_svm(vcpu); 3698 struct vmcb *vmcb = svm->vmcb; 3699 3700 if (!gif_set(svm)) 3701 return true; 3702 3703 if (is_guest_mode(vcpu)) { 3704 /* As long as interrupts are being delivered... */ 3705 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3706 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3707 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3708 return true; 3709 3710 /* ... vmexits aren't blocked by the interrupt shadow */ 3711 if (nested_exit_on_intr(svm)) 3712 return false; 3713 } else { 3714 if (!svm_get_if_flag(vcpu)) 3715 return true; 3716 } 3717 3718 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3719 } 3720 3721 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3722 { 3723 struct vcpu_svm *svm = to_svm(vcpu); 3724 3725 if (svm->nested.nested_run_pending) 3726 return -EBUSY; 3727 3728 if (svm_interrupt_blocked(vcpu)) 3729 return 0; 3730 3731 /* 3732 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3733 * e.g. if the IRQ arrived asynchronously after checking nested events. 3734 */ 3735 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3736 return -EBUSY; 3737 3738 return 1; 3739 } 3740 3741 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3742 { 3743 struct vcpu_svm *svm = to_svm(vcpu); 3744 3745 /* 3746 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3747 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3748 * get that intercept, this function will be called again though and 3749 * we'll get the vintr intercept. However, if the vGIF feature is 3750 * enabled, the STGI interception will not occur. Enable the irq 3751 * window under the assumption that the hardware will set the GIF. 3752 */ 3753 if (vgif || gif_set(svm)) { 3754 /* 3755 * IRQ window is not needed when AVIC is enabled, 3756 * unless we have pending ExtINT since it cannot be injected 3757 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3758 * and fallback to injecting IRQ via V_IRQ. 3759 * 3760 * If running nested, AVIC is already locally inhibited 3761 * on this vCPU, therefore there is no need to request 3762 * the VM wide AVIC inhibition. 3763 */ 3764 if (!is_guest_mode(vcpu)) 3765 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3766 3767 svm_set_vintr(svm); 3768 } 3769 } 3770 3771 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3772 { 3773 struct vcpu_svm *svm = to_svm(vcpu); 3774 3775 /* 3776 * KVM should never request an NMI window when vNMI is enabled, as KVM 3777 * allows at most one to-be-injected NMI and one pending NMI, i.e. if 3778 * two NMIs arrive simultaneously, KVM will inject one and set 3779 * V_NMI_PENDING for the other. WARN, but continue with the standard 3780 * single-step approach to try and salvage the pending NMI. 3781 */ 3782 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3783 3784 if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion) 3785 return; /* IRET will cause a vm exit */ 3786 3787 if (!gif_set(svm)) { 3788 if (vgif) 3789 svm_set_intercept(svm, INTERCEPT_STGI); 3790 return; /* STGI will cause a vm exit */ 3791 } 3792 3793 /* 3794 * Something prevents NMI from been injected. Single step over possible 3795 * problem (IRET or exception injection or interrupt shadow) 3796 */ 3797 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3798 svm->nmi_singlestep = true; 3799 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3800 } 3801 3802 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3803 { 3804 struct vcpu_svm *svm = to_svm(vcpu); 3805 3806 /* 3807 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3808 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3809 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3810 */ 3811 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3812 3813 /* 3814 * Flush only the current ASID even if the TLB flush was invoked via 3815 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3816 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3817 * unconditionally does a TLB flush on both nested VM-Enter and nested 3818 * VM-Exit (via kvm_mmu_reset_context()). 3819 */ 3820 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3821 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3822 else 3823 svm->current_vmcb->asid_generation--; 3824 } 3825 3826 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3827 { 3828 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 3829 3830 /* 3831 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 3832 * flush the NPT mappings via hypercall as flushing the ASID only 3833 * affects virtual to physical mappings, it does not invalidate guest 3834 * physical to host physical mappings. 3835 */ 3836 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 3837 hyperv_flush_guest_mapping(root_tdp); 3838 3839 svm_flush_tlb_asid(vcpu); 3840 } 3841 3842 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 3843 { 3844 /* 3845 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 3846 * flushes should be routed to hv_flush_remote_tlbs() without requesting 3847 * a "regular" remote flush. Reaching this point means either there's 3848 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 3849 * which might be fatal to the guest. Yell, but try to recover. 3850 */ 3851 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 3852 hv_flush_remote_tlbs(vcpu->kvm); 3853 3854 svm_flush_tlb_asid(vcpu); 3855 } 3856 3857 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3858 { 3859 struct vcpu_svm *svm = to_svm(vcpu); 3860 3861 invlpga(gva, svm->vmcb->control.asid); 3862 } 3863 3864 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3865 { 3866 struct vcpu_svm *svm = to_svm(vcpu); 3867 3868 if (nested_svm_virtualize_tpr(vcpu)) 3869 return; 3870 3871 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3872 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3873 kvm_set_cr8(vcpu, cr8); 3874 } 3875 } 3876 3877 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3878 { 3879 struct vcpu_svm *svm = to_svm(vcpu); 3880 u64 cr8; 3881 3882 if (nested_svm_virtualize_tpr(vcpu) || 3883 kvm_vcpu_apicv_active(vcpu)) 3884 return; 3885 3886 cr8 = kvm_get_cr8(vcpu); 3887 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3888 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3889 } 3890 3891 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 3892 int type) 3893 { 3894 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 3895 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 3896 struct vcpu_svm *svm = to_svm(vcpu); 3897 3898 /* 3899 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 3900 * associated with the original soft exception/interrupt. next_rip is 3901 * cleared on all exits that can occur while vectoring an event, so KVM 3902 * needs to manually set next_rip for re-injection. Unlike the !nrips 3903 * case below, this needs to be done if and only if KVM is re-injecting 3904 * the same event, i.e. if the event is a soft exception/interrupt, 3905 * otherwise next_rip is unused on VMRUN. 3906 */ 3907 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 3908 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 3909 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 3910 /* 3911 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 3912 * injecting the soft exception/interrupt. That advancement needs to 3913 * be unwound if vectoring didn't complete. Note, the new event may 3914 * not be the injected event, e.g. if KVM injected an INTn, the INTn 3915 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 3916 * be the reported vectored event, but RIP still needs to be unwound. 3917 */ 3918 else if (!nrips && (is_soft || is_exception) && 3919 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 3920 kvm_rip_write(vcpu, svm->soft_int_old_rip); 3921 } 3922 3923 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3924 { 3925 struct vcpu_svm *svm = to_svm(vcpu); 3926 u8 vector; 3927 int type; 3928 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3929 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 3930 bool soft_int_injected = svm->soft_int_injected; 3931 3932 svm->nmi_l1_to_l2 = false; 3933 svm->soft_int_injected = false; 3934 3935 /* 3936 * If we've made progress since setting HF_IRET_MASK, we've 3937 * executed an IRET and can allow NMI injection. 3938 */ 3939 if (svm->awaiting_iret_completion && 3940 (sev_es_guest(vcpu->kvm) || 3941 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { 3942 svm->awaiting_iret_completion = false; 3943 svm->nmi_masked = false; 3944 kvm_make_request(KVM_REQ_EVENT, vcpu); 3945 } 3946 3947 vcpu->arch.nmi_injected = false; 3948 kvm_clear_exception_queue(vcpu); 3949 kvm_clear_interrupt_queue(vcpu); 3950 3951 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3952 return; 3953 3954 kvm_make_request(KVM_REQ_EVENT, vcpu); 3955 3956 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3957 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3958 3959 if (soft_int_injected) 3960 svm_complete_soft_interrupt(vcpu, vector, type); 3961 3962 switch (type) { 3963 case SVM_EXITINTINFO_TYPE_NMI: 3964 vcpu->arch.nmi_injected = true; 3965 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 3966 break; 3967 case SVM_EXITINTINFO_TYPE_EXEPT: 3968 /* 3969 * Never re-inject a #VC exception. 3970 */ 3971 if (vector == X86_TRAP_VC) 3972 break; 3973 3974 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3975 u32 err = svm->vmcb->control.exit_int_info_err; 3976 kvm_requeue_exception_e(vcpu, vector, err); 3977 3978 } else 3979 kvm_requeue_exception(vcpu, vector); 3980 break; 3981 case SVM_EXITINTINFO_TYPE_INTR: 3982 kvm_queue_interrupt(vcpu, vector, false); 3983 break; 3984 case SVM_EXITINTINFO_TYPE_SOFT: 3985 kvm_queue_interrupt(vcpu, vector, true); 3986 break; 3987 default: 3988 break; 3989 } 3990 3991 } 3992 3993 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3994 { 3995 struct vcpu_svm *svm = to_svm(vcpu); 3996 struct vmcb_control_area *control = &svm->vmcb->control; 3997 3998 control->exit_int_info = control->event_inj; 3999 control->exit_int_info_err = control->event_inj_err; 4000 control->event_inj = 0; 4001 svm_complete_interrupts(vcpu); 4002 } 4003 4004 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4005 { 4006 return 1; 4007 } 4008 4009 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4010 { 4011 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 4012 4013 /* 4014 * Note, the next RIP must be provided as SRCU isn't held, i.e. KVM 4015 * can't read guest memory (dereference memslots) to decode the WRMSR. 4016 */ 4017 if (control->exit_code == SVM_EXIT_MSR && control->exit_info_1 && 4018 nrips && control->next_rip) 4019 return handle_fastpath_set_msr_irqoff(vcpu); 4020 4021 return EXIT_FASTPATH_NONE; 4022 } 4023 4024 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4025 { 4026 struct vcpu_svm *svm = to_svm(vcpu); 4027 4028 guest_state_enter_irqoff(); 4029 4030 if (sev_es_guest(vcpu->kvm)) 4031 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted); 4032 else 4033 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4034 4035 guest_state_exit_irqoff(); 4036 } 4037 4038 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 4039 { 4040 struct vcpu_svm *svm = to_svm(vcpu); 4041 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4042 4043 trace_kvm_entry(vcpu); 4044 4045 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4046 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4047 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4048 4049 /* 4050 * Disable singlestep if we're injecting an interrupt/exception. 4051 * We don't want our modified rflags to be pushed on the stack where 4052 * we might not be able to easily reset them if we disabled NMI 4053 * singlestep later. 4054 */ 4055 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4056 /* 4057 * Event injection happens before external interrupts cause a 4058 * vmexit and interrupts are disabled here, so smp_send_reschedule 4059 * is enough to force an immediate vmexit. 4060 */ 4061 disable_nmi_singlestep(svm); 4062 smp_send_reschedule(vcpu->cpu); 4063 } 4064 4065 pre_svm_run(vcpu); 4066 4067 sync_lapic_to_cr8(vcpu); 4068 4069 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4070 svm->vmcb->control.asid = svm->asid; 4071 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4072 } 4073 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4074 4075 svm_hv_update_vp_id(svm->vmcb, vcpu); 4076 4077 /* 4078 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4079 * of a #DB. 4080 */ 4081 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 4082 svm_set_dr6(svm, vcpu->arch.dr6); 4083 else 4084 svm_set_dr6(svm, DR6_ACTIVE_LOW); 4085 4086 clgi(); 4087 kvm_load_guest_xsave_state(vcpu); 4088 4089 kvm_wait_lapic_expire(vcpu); 4090 4091 /* 4092 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4093 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4094 * is no need to worry about the conditional branch over the wrmsr 4095 * being speculatively taken. 4096 */ 4097 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4098 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4099 4100 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4101 4102 if (!sev_es_guest(vcpu->kvm)) 4103 reload_tss(vcpu); 4104 4105 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4106 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4107 4108 if (!sev_es_guest(vcpu->kvm)) { 4109 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4110 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4111 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4112 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4113 } 4114 vcpu->arch.regs_dirty = 0; 4115 4116 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4117 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4118 4119 kvm_load_host_xsave_state(vcpu); 4120 stgi(); 4121 4122 /* Any pending NMI will happen here */ 4123 4124 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4125 kvm_after_interrupt(vcpu); 4126 4127 sync_cr8_to_lapic(vcpu); 4128 4129 svm->next_rip = 0; 4130 if (is_guest_mode(vcpu)) { 4131 nested_sync_control_from_vmcb02(svm); 4132 4133 /* Track VMRUNs that have made past consistency checking */ 4134 if (svm->nested.nested_run_pending && 4135 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4136 ++vcpu->stat.nested_run; 4137 4138 svm->nested.nested_run_pending = 0; 4139 } 4140 4141 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4142 vmcb_mark_all_clean(svm->vmcb); 4143 4144 /* if exit due to PF check for async PF */ 4145 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4146 vcpu->arch.apf.host_apf_flags = 4147 kvm_read_and_reset_apf_flags(); 4148 4149 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4150 4151 /* 4152 * We need to handle MC intercepts here before the vcpu has a chance to 4153 * change the physical cpu 4154 */ 4155 if (unlikely(svm->vmcb->control.exit_code == 4156 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4157 svm_handle_mce(vcpu); 4158 4159 svm_complete_interrupts(vcpu); 4160 4161 if (is_guest_mode(vcpu)) 4162 return EXIT_FASTPATH_NONE; 4163 4164 return svm_exit_handlers_fastpath(vcpu); 4165 } 4166 4167 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4168 int root_level) 4169 { 4170 struct vcpu_svm *svm = to_svm(vcpu); 4171 unsigned long cr3; 4172 4173 if (npt_enabled) { 4174 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4175 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4176 4177 hv_track_root_tdp(vcpu, root_hpa); 4178 4179 cr3 = vcpu->arch.cr3; 4180 } else if (root_level >= PT64_ROOT_4LEVEL) { 4181 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4182 } else { 4183 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4184 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4185 cr3 = root_hpa; 4186 } 4187 4188 svm->vmcb->save.cr3 = cr3; 4189 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4190 } 4191 4192 static void 4193 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4194 { 4195 /* 4196 * Patch in the VMMCALL instruction: 4197 */ 4198 hypercall[0] = 0x0f; 4199 hypercall[1] = 0x01; 4200 hypercall[2] = 0xd9; 4201 } 4202 4203 /* 4204 * The kvm parameter can be NULL (module initialization, or invocation before 4205 * VM creation). Be sure to check the kvm parameter before using it. 4206 */ 4207 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4208 { 4209 switch (index) { 4210 case MSR_IA32_MCG_EXT_CTL: 4211 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4212 return false; 4213 case MSR_IA32_SMBASE: 4214 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4215 return false; 4216 /* SEV-ES guests do not support SMM, so report false */ 4217 if (kvm && sev_es_guest(kvm)) 4218 return false; 4219 break; 4220 default: 4221 break; 4222 } 4223 4224 return true; 4225 } 4226 4227 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4228 { 4229 struct vcpu_svm *svm = to_svm(vcpu); 4230 struct kvm_cpuid_entry2 *best; 4231 4232 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4233 boot_cpu_has(X86_FEATURE_XSAVE) && 4234 boot_cpu_has(X86_FEATURE_XSAVES); 4235 4236 /* Update nrips enabled cache */ 4237 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 4238 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); 4239 4240 svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR); 4241 svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV); 4242 4243 svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4244 4245 svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) && 4246 guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER); 4247 4248 svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) && 4249 guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD); 4250 4251 svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF); 4252 4253 svm->vnmi_enabled = vnmi && guest_cpuid_has(vcpu, X86_FEATURE_VNMI); 4254 4255 svm_recalc_instruction_intercepts(vcpu, svm); 4256 4257 if (boot_cpu_has(X86_FEATURE_IBPB)) 4258 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4259 !!guest_has_pred_cmd_msr(vcpu)); 4260 4261 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4262 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4263 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4264 4265 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4266 if (sev_guest(vcpu->kvm)) { 4267 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4268 if (best) 4269 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4270 } 4271 4272 init_vmcb_after_set_cpuid(vcpu); 4273 } 4274 4275 static bool svm_has_wbinvd_exit(void) 4276 { 4277 return true; 4278 } 4279 4280 #define PRE_EX(exit) { .exit_code = (exit), \ 4281 .stage = X86_ICPT_PRE_EXCEPT, } 4282 #define POST_EX(exit) { .exit_code = (exit), \ 4283 .stage = X86_ICPT_POST_EXCEPT, } 4284 #define POST_MEM(exit) { .exit_code = (exit), \ 4285 .stage = X86_ICPT_POST_MEMACCESS, } 4286 4287 static const struct __x86_intercept { 4288 u32 exit_code; 4289 enum x86_intercept_stage stage; 4290 } x86_intercept_map[] = { 4291 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4292 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4293 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4294 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4295 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4296 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4297 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4298 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4299 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4300 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4301 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4302 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4303 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4304 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4305 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4306 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4307 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4308 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4309 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4310 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4311 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4312 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4313 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4314 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4315 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4316 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4317 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4318 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4319 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4320 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4321 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4322 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4323 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4324 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4325 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4326 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4327 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4328 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4329 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4330 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4331 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4332 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4333 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4334 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4335 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4336 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4337 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4338 }; 4339 4340 #undef PRE_EX 4341 #undef POST_EX 4342 #undef POST_MEM 4343 4344 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4345 struct x86_instruction_info *info, 4346 enum x86_intercept_stage stage, 4347 struct x86_exception *exception) 4348 { 4349 struct vcpu_svm *svm = to_svm(vcpu); 4350 int vmexit, ret = X86EMUL_CONTINUE; 4351 struct __x86_intercept icpt_info; 4352 struct vmcb *vmcb = svm->vmcb; 4353 4354 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4355 goto out; 4356 4357 icpt_info = x86_intercept_map[info->intercept]; 4358 4359 if (stage != icpt_info.stage) 4360 goto out; 4361 4362 switch (icpt_info.exit_code) { 4363 case SVM_EXIT_READ_CR0: 4364 if (info->intercept == x86_intercept_cr_read) 4365 icpt_info.exit_code += info->modrm_reg; 4366 break; 4367 case SVM_EXIT_WRITE_CR0: { 4368 unsigned long cr0, val; 4369 4370 if (info->intercept == x86_intercept_cr_write) 4371 icpt_info.exit_code += info->modrm_reg; 4372 4373 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4374 info->intercept == x86_intercept_clts) 4375 break; 4376 4377 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4378 INTERCEPT_SELECTIVE_CR0))) 4379 break; 4380 4381 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4382 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4383 4384 if (info->intercept == x86_intercept_lmsw) { 4385 cr0 &= 0xfUL; 4386 val &= 0xfUL; 4387 /* lmsw can't clear PE - catch this here */ 4388 if (cr0 & X86_CR0_PE) 4389 val |= X86_CR0_PE; 4390 } 4391 4392 if (cr0 ^ val) 4393 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4394 4395 break; 4396 } 4397 case SVM_EXIT_READ_DR0: 4398 case SVM_EXIT_WRITE_DR0: 4399 icpt_info.exit_code += info->modrm_reg; 4400 break; 4401 case SVM_EXIT_MSR: 4402 if (info->intercept == x86_intercept_wrmsr) 4403 vmcb->control.exit_info_1 = 1; 4404 else 4405 vmcb->control.exit_info_1 = 0; 4406 break; 4407 case SVM_EXIT_PAUSE: 4408 /* 4409 * We get this for NOP only, but pause 4410 * is rep not, check this here 4411 */ 4412 if (info->rep_prefix != REPE_PREFIX) 4413 goto out; 4414 break; 4415 case SVM_EXIT_IOIO: { 4416 u64 exit_info; 4417 u32 bytes; 4418 4419 if (info->intercept == x86_intercept_in || 4420 info->intercept == x86_intercept_ins) { 4421 exit_info = ((info->src_val & 0xffff) << 16) | 4422 SVM_IOIO_TYPE_MASK; 4423 bytes = info->dst_bytes; 4424 } else { 4425 exit_info = (info->dst_val & 0xffff) << 16; 4426 bytes = info->src_bytes; 4427 } 4428 4429 if (info->intercept == x86_intercept_outs || 4430 info->intercept == x86_intercept_ins) 4431 exit_info |= SVM_IOIO_STR_MASK; 4432 4433 if (info->rep_prefix) 4434 exit_info |= SVM_IOIO_REP_MASK; 4435 4436 bytes = min(bytes, 4u); 4437 4438 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4439 4440 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4441 4442 vmcb->control.exit_info_1 = exit_info; 4443 vmcb->control.exit_info_2 = info->next_rip; 4444 4445 break; 4446 } 4447 default: 4448 break; 4449 } 4450 4451 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4452 if (static_cpu_has(X86_FEATURE_NRIPS)) 4453 vmcb->control.next_rip = info->next_rip; 4454 vmcb->control.exit_code = icpt_info.exit_code; 4455 vmexit = nested_svm_exit_handled(svm); 4456 4457 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4458 : X86EMUL_CONTINUE; 4459 4460 out: 4461 return ret; 4462 } 4463 4464 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4465 { 4466 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4467 vcpu->arch.at_instruction_boundary = true; 4468 } 4469 4470 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4471 { 4472 if (!kvm_pause_in_guest(vcpu->kvm)) 4473 shrink_ple_window(vcpu); 4474 } 4475 4476 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4477 { 4478 /* [63:9] are reserved. */ 4479 vcpu->arch.mcg_cap &= 0x1ff; 4480 } 4481 4482 #ifdef CONFIG_KVM_SMM 4483 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4484 { 4485 struct vcpu_svm *svm = to_svm(vcpu); 4486 4487 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4488 if (!gif_set(svm)) 4489 return true; 4490 4491 return is_smm(vcpu); 4492 } 4493 4494 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4495 { 4496 struct vcpu_svm *svm = to_svm(vcpu); 4497 if (svm->nested.nested_run_pending) 4498 return -EBUSY; 4499 4500 if (svm_smi_blocked(vcpu)) 4501 return 0; 4502 4503 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4504 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4505 return -EBUSY; 4506 4507 return 1; 4508 } 4509 4510 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4511 { 4512 struct vcpu_svm *svm = to_svm(vcpu); 4513 struct kvm_host_map map_save; 4514 int ret; 4515 4516 if (!is_guest_mode(vcpu)) 4517 return 0; 4518 4519 /* 4520 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4521 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4522 */ 4523 4524 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4525 return 1; 4526 4527 smram->smram64.svm_guest_flag = 1; 4528 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4529 4530 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4531 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4532 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4533 4534 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4535 if (ret) 4536 return ret; 4537 4538 /* 4539 * KVM uses VMCB01 to store L1 host state while L2 runs but 4540 * VMCB01 is going to be used during SMM and thus the state will 4541 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4542 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4543 * format of the area is identical to guest save area offsetted 4544 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4545 * within 'struct vmcb'). Note: HSAVE area may also be used by 4546 * L1 hypervisor to save additional host context (e.g. KVM does 4547 * that, see svm_prepare_switch_to_guest()) which must be 4548 * preserved. 4549 */ 4550 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4551 return 1; 4552 4553 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4554 4555 svm_copy_vmrun_state(map_save.hva + 0x400, 4556 &svm->vmcb01.ptr->save); 4557 4558 kvm_vcpu_unmap(vcpu, &map_save, true); 4559 return 0; 4560 } 4561 4562 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4563 { 4564 struct vcpu_svm *svm = to_svm(vcpu); 4565 struct kvm_host_map map, map_save; 4566 struct vmcb *vmcb12; 4567 int ret; 4568 4569 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4570 4571 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4572 return 0; 4573 4574 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4575 if (!smram64->svm_guest_flag) 4576 return 0; 4577 4578 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4579 return 1; 4580 4581 if (!(smram64->efer & EFER_SVME)) 4582 return 1; 4583 4584 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4585 return 1; 4586 4587 ret = 1; 4588 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4589 goto unmap_map; 4590 4591 if (svm_allocate_nested(svm)) 4592 goto unmap_save; 4593 4594 /* 4595 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4596 * used during SMM (see svm_enter_smm()) 4597 */ 4598 4599 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4600 4601 /* 4602 * Enter the nested guest now 4603 */ 4604 4605 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4606 4607 vmcb12 = map.hva; 4608 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4609 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4610 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4611 4612 if (ret) 4613 goto unmap_save; 4614 4615 svm->nested.nested_run_pending = 1; 4616 4617 unmap_save: 4618 kvm_vcpu_unmap(vcpu, &map_save, true); 4619 unmap_map: 4620 kvm_vcpu_unmap(vcpu, &map, true); 4621 return ret; 4622 } 4623 4624 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4625 { 4626 struct vcpu_svm *svm = to_svm(vcpu); 4627 4628 if (!gif_set(svm)) { 4629 if (vgif) 4630 svm_set_intercept(svm, INTERCEPT_STGI); 4631 /* STGI will cause a vm exit */ 4632 } else { 4633 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4634 } 4635 } 4636 #endif 4637 4638 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4639 void *insn, int insn_len) 4640 { 4641 bool smep, smap, is_user; 4642 u64 error_code; 4643 4644 /* Emulation is always possible when KVM has access to all guest state. */ 4645 if (!sev_guest(vcpu->kvm)) 4646 return true; 4647 4648 /* #UD and #GP should never be intercepted for SEV guests. */ 4649 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4650 EMULTYPE_TRAP_UD_FORCED | 4651 EMULTYPE_VMWARE_GP)); 4652 4653 /* 4654 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4655 * to guest register state. 4656 */ 4657 if (sev_es_guest(vcpu->kvm)) 4658 return false; 4659 4660 /* 4661 * Emulation is possible if the instruction is already decoded, e.g. 4662 * when completing I/O after returning from userspace. 4663 */ 4664 if (emul_type & EMULTYPE_NO_DECODE) 4665 return true; 4666 4667 /* 4668 * Emulation is possible for SEV guests if and only if a prefilled 4669 * buffer containing the bytes of the intercepted instruction is 4670 * available. SEV guest memory is encrypted with a guest specific key 4671 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4672 * decode garbage. 4673 * 4674 * Inject #UD if KVM reached this point without an instruction buffer. 4675 * In practice, this path should never be hit by a well-behaved guest, 4676 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path 4677 * is still theoretically reachable, e.g. via unaccelerated fault-like 4678 * AVIC access, and needs to be handled by KVM to avoid putting the 4679 * guest into an infinite loop. Injecting #UD is somewhat arbitrary, 4680 * but its the least awful option given lack of insight into the guest. 4681 */ 4682 if (unlikely(!insn)) { 4683 kvm_queue_exception(vcpu, UD_VECTOR); 4684 return false; 4685 } 4686 4687 /* 4688 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4689 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4690 * the faulting instruction because the code fetch itself faulted, e.g. 4691 * the guest attempted to fetch from emulated MMIO or a guest page 4692 * table used to translate CS:RIP resides in emulated MMIO. 4693 */ 4694 if (likely(insn_len)) 4695 return true; 4696 4697 /* 4698 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4699 * 4700 * Errata: 4701 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4702 * possible that CPU microcode implementing DecodeAssist will fail to 4703 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4704 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4705 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4706 * gives up and does not fill the instruction bytes buffer. 4707 * 4708 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4709 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4710 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4711 * GuestIntrBytes field of the VMCB. 4712 * 4713 * This does _not_ mean that the erratum has been encountered, as the 4714 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4715 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4716 * encountered a reserved/not-present #PF. 4717 * 4718 * To hit the erratum, the following conditions must be true: 4719 * 1. CR4.SMAP=1 (obviously). 4720 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4721 * have been hit as the guest would have encountered a SMEP 4722 * violation #PF, not a #NPF. 4723 * 3. The #NPF is not due to a code fetch, in which case failure to 4724 * retrieve the instruction bytes is legitimate (see abvoe). 4725 * 4726 * In addition, don't apply the erratum workaround if the #NPF occurred 4727 * while translating guest page tables (see below). 4728 */ 4729 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4730 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4731 goto resume_guest; 4732 4733 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4734 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4735 is_user = svm_get_cpl(vcpu) == 3; 4736 if (smap && (!smep || is_user)) { 4737 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4738 4739 /* 4740 * If the fault occurred in userspace, arbitrarily inject #GP 4741 * to avoid killing the guest and to hopefully avoid confusing 4742 * the guest kernel too much, e.g. injecting #PF would not be 4743 * coherent with respect to the guest's page tables. Request 4744 * triple fault if the fault occurred in the kernel as there's 4745 * no fault that KVM can inject without confusing the guest. 4746 * In practice, the triple fault is moot as no sane SEV kernel 4747 * will execute from user memory while also running with SMAP=1. 4748 */ 4749 if (is_user) 4750 kvm_inject_gp(vcpu, 0); 4751 else 4752 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4753 } 4754 4755 resume_guest: 4756 /* 4757 * If the erratum was not hit, simply resume the guest and let it fault 4758 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4759 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4760 * userspace will kill the guest, and letting the emulator read garbage 4761 * will yield random behavior and potentially corrupt the guest. 4762 * 4763 * Simply resuming the guest is technically not a violation of the SEV 4764 * architecture. AMD's APM states that all code fetches and page table 4765 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4766 * APM also states that encrypted accesses to MMIO are "ignored", but 4767 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4768 * the guest spin is technically "ignoring" the access. 4769 */ 4770 return false; 4771 } 4772 4773 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4774 { 4775 struct vcpu_svm *svm = to_svm(vcpu); 4776 4777 return !gif_set(svm); 4778 } 4779 4780 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4781 { 4782 if (!sev_es_guest(vcpu->kvm)) 4783 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4784 4785 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4786 } 4787 4788 static void svm_vm_destroy(struct kvm *kvm) 4789 { 4790 avic_vm_destroy(kvm); 4791 sev_vm_destroy(kvm); 4792 } 4793 4794 static int svm_vm_init(struct kvm *kvm) 4795 { 4796 if (!pause_filter_count || !pause_filter_thresh) 4797 kvm->arch.pause_in_guest = true; 4798 4799 if (enable_apicv) { 4800 int ret = avic_vm_init(kvm); 4801 if (ret) 4802 return ret; 4803 } 4804 4805 return 0; 4806 } 4807 4808 static struct kvm_x86_ops svm_x86_ops __initdata = { 4809 .name = KBUILD_MODNAME, 4810 4811 .check_processor_compatibility = svm_check_processor_compat, 4812 4813 .hardware_unsetup = svm_hardware_unsetup, 4814 .hardware_enable = svm_hardware_enable, 4815 .hardware_disable = svm_hardware_disable, 4816 .has_emulated_msr = svm_has_emulated_msr, 4817 4818 .vcpu_create = svm_vcpu_create, 4819 .vcpu_free = svm_vcpu_free, 4820 .vcpu_reset = svm_vcpu_reset, 4821 4822 .vm_size = sizeof(struct kvm_svm), 4823 .vm_init = svm_vm_init, 4824 .vm_destroy = svm_vm_destroy, 4825 4826 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4827 .vcpu_load = svm_vcpu_load, 4828 .vcpu_put = svm_vcpu_put, 4829 .vcpu_blocking = avic_vcpu_blocking, 4830 .vcpu_unblocking = avic_vcpu_unblocking, 4831 4832 .update_exception_bitmap = svm_update_exception_bitmap, 4833 .get_msr_feature = svm_get_msr_feature, 4834 .get_msr = svm_get_msr, 4835 .set_msr = svm_set_msr, 4836 .get_segment_base = svm_get_segment_base, 4837 .get_segment = svm_get_segment, 4838 .set_segment = svm_set_segment, 4839 .get_cpl = svm_get_cpl, 4840 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4841 .set_cr0 = svm_set_cr0, 4842 .post_set_cr3 = sev_post_set_cr3, 4843 .is_valid_cr4 = svm_is_valid_cr4, 4844 .set_cr4 = svm_set_cr4, 4845 .set_efer = svm_set_efer, 4846 .get_idt = svm_get_idt, 4847 .set_idt = svm_set_idt, 4848 .get_gdt = svm_get_gdt, 4849 .set_gdt = svm_set_gdt, 4850 .set_dr7 = svm_set_dr7, 4851 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4852 .cache_reg = svm_cache_reg, 4853 .get_rflags = svm_get_rflags, 4854 .set_rflags = svm_set_rflags, 4855 .get_if_flag = svm_get_if_flag, 4856 4857 .flush_tlb_all = svm_flush_tlb_all, 4858 .flush_tlb_current = svm_flush_tlb_current, 4859 .flush_tlb_gva = svm_flush_tlb_gva, 4860 .flush_tlb_guest = svm_flush_tlb_asid, 4861 4862 .vcpu_pre_run = svm_vcpu_pre_run, 4863 .vcpu_run = svm_vcpu_run, 4864 .handle_exit = svm_handle_exit, 4865 .skip_emulated_instruction = svm_skip_emulated_instruction, 4866 .update_emulated_instruction = NULL, 4867 .set_interrupt_shadow = svm_set_interrupt_shadow, 4868 .get_interrupt_shadow = svm_get_interrupt_shadow, 4869 .patch_hypercall = svm_patch_hypercall, 4870 .inject_irq = svm_inject_irq, 4871 .inject_nmi = svm_inject_nmi, 4872 .is_vnmi_pending = svm_is_vnmi_pending, 4873 .set_vnmi_pending = svm_set_vnmi_pending, 4874 .inject_exception = svm_inject_exception, 4875 .cancel_injection = svm_cancel_injection, 4876 .interrupt_allowed = svm_interrupt_allowed, 4877 .nmi_allowed = svm_nmi_allowed, 4878 .get_nmi_mask = svm_get_nmi_mask, 4879 .set_nmi_mask = svm_set_nmi_mask, 4880 .enable_nmi_window = svm_enable_nmi_window, 4881 .enable_irq_window = svm_enable_irq_window, 4882 .update_cr8_intercept = svm_update_cr8_intercept, 4883 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 4884 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 4885 .apicv_post_state_restore = avic_apicv_post_state_restore, 4886 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 4887 4888 .get_exit_info = svm_get_exit_info, 4889 4890 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4891 4892 .has_wbinvd_exit = svm_has_wbinvd_exit, 4893 4894 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4895 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4896 .write_tsc_offset = svm_write_tsc_offset, 4897 .write_tsc_multiplier = svm_write_tsc_multiplier, 4898 4899 .load_mmu_pgd = svm_load_mmu_pgd, 4900 4901 .check_intercept = svm_check_intercept, 4902 .handle_exit_irqoff = svm_handle_exit_irqoff, 4903 4904 .request_immediate_exit = __kvm_request_immediate_exit, 4905 4906 .sched_in = svm_sched_in, 4907 4908 .nested_ops = &svm_nested_ops, 4909 4910 .deliver_interrupt = svm_deliver_interrupt, 4911 .pi_update_irte = avic_pi_update_irte, 4912 .setup_mce = svm_setup_mce, 4913 4914 #ifdef CONFIG_KVM_SMM 4915 .smi_allowed = svm_smi_allowed, 4916 .enter_smm = svm_enter_smm, 4917 .leave_smm = svm_leave_smm, 4918 .enable_smi_window = svm_enable_smi_window, 4919 #endif 4920 4921 .mem_enc_ioctl = sev_mem_enc_ioctl, 4922 .mem_enc_register_region = sev_mem_enc_register_region, 4923 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 4924 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 4925 4926 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 4927 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 4928 4929 .can_emulate_instruction = svm_can_emulate_instruction, 4930 4931 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4932 4933 .msr_filter_changed = svm_msr_filter_changed, 4934 .complete_emulated_msr = svm_complete_emulated_msr, 4935 4936 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4937 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 4938 }; 4939 4940 /* 4941 * The default MMIO mask is a single bit (excluding the present bit), 4942 * which could conflict with the memory encryption bit. Check for 4943 * memory encryption support and override the default MMIO mask if 4944 * memory encryption is enabled. 4945 */ 4946 static __init void svm_adjust_mmio_mask(void) 4947 { 4948 unsigned int enc_bit, mask_bit; 4949 u64 msr, mask; 4950 4951 /* If there is no memory encryption support, use existing mask */ 4952 if (cpuid_eax(0x80000000) < 0x8000001f) 4953 return; 4954 4955 /* If memory encryption is not enabled, use existing mask */ 4956 rdmsrl(MSR_AMD64_SYSCFG, msr); 4957 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 4958 return; 4959 4960 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 4961 mask_bit = boot_cpu_data.x86_phys_bits; 4962 4963 /* Increment the mask bit if it is the same as the encryption bit */ 4964 if (enc_bit == mask_bit) 4965 mask_bit++; 4966 4967 /* 4968 * If the mask bit location is below 52, then some bits above the 4969 * physical addressing limit will always be reserved, so use the 4970 * rsvd_bits() function to generate the mask. This mask, along with 4971 * the present bit, will be used to generate a page fault with 4972 * PFER.RSV = 1. 4973 * 4974 * If the mask bit location is 52 (or above), then clear the mask. 4975 */ 4976 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 4977 4978 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 4979 } 4980 4981 static __init void svm_set_cpu_caps(void) 4982 { 4983 kvm_set_cpu_caps(); 4984 4985 kvm_caps.supported_perf_cap = 0; 4986 kvm_caps.supported_xss = 0; 4987 4988 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 4989 if (nested) { 4990 kvm_cpu_cap_set(X86_FEATURE_SVM); 4991 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 4992 4993 if (nrips) 4994 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 4995 4996 if (npt_enabled) 4997 kvm_cpu_cap_set(X86_FEATURE_NPT); 4998 4999 if (tsc_scaling) 5000 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5001 5002 if (vls) 5003 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5004 if (lbrv) 5005 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5006 5007 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5008 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5009 5010 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5011 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5012 5013 if (vgif) 5014 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5015 5016 if (vnmi) 5017 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5018 5019 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5020 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5021 } 5022 5023 /* CPUID 0x80000008 */ 5024 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5025 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5026 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5027 5028 /* AMD PMU PERFCTR_CORE CPUID */ 5029 if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE)) 5030 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE); 5031 5032 /* CPUID 0x8000001F (SME/SEV features) */ 5033 sev_set_cpu_caps(); 5034 } 5035 5036 static __init int svm_hardware_setup(void) 5037 { 5038 int cpu; 5039 struct page *iopm_pages; 5040 void *iopm_va; 5041 int r; 5042 unsigned int order = get_order(IOPM_SIZE); 5043 5044 /* 5045 * NX is required for shadow paging and for NPT if the NX huge pages 5046 * mitigation is enabled. 5047 */ 5048 if (!boot_cpu_has(X86_FEATURE_NX)) { 5049 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5050 return -EOPNOTSUPP; 5051 } 5052 kvm_enable_efer_bits(EFER_NX); 5053 5054 iopm_pages = alloc_pages(GFP_KERNEL, order); 5055 5056 if (!iopm_pages) 5057 return -ENOMEM; 5058 5059 iopm_va = page_address(iopm_pages); 5060 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5061 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 5062 5063 init_msrpm_offsets(); 5064 5065 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5066 XFEATURE_MASK_BNDCSR); 5067 5068 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5069 kvm_enable_efer_bits(EFER_FFXSR); 5070 5071 if (tsc_scaling) { 5072 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5073 tsc_scaling = false; 5074 } else { 5075 pr_info("TSC scaling supported\n"); 5076 kvm_caps.has_tsc_control = true; 5077 } 5078 } 5079 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5080 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5081 5082 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5083 5084 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5085 kvm_enable_efer_bits(EFER_AUTOIBRS); 5086 5087 /* Check for pause filtering support */ 5088 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5089 pause_filter_count = 0; 5090 pause_filter_thresh = 0; 5091 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5092 pause_filter_thresh = 0; 5093 } 5094 5095 if (nested) { 5096 pr_info("Nested Virtualization enabled\n"); 5097 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5098 } 5099 5100 /* 5101 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5102 * NPT isn't supported if the host is using 2-level paging since host 5103 * CR4 is unchanged on VMRUN. 5104 */ 5105 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5106 npt_enabled = false; 5107 5108 if (!boot_cpu_has(X86_FEATURE_NPT)) 5109 npt_enabled = false; 5110 5111 /* Force VM NPT level equal to the host's paging level */ 5112 kvm_configure_mmu(npt_enabled, get_npt_level(), 5113 get_npt_level(), PG_LEVEL_1G); 5114 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5115 5116 /* Setup shadow_me_value and shadow_me_mask */ 5117 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5118 5119 svm_adjust_mmio_mask(); 5120 5121 /* 5122 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5123 * may be modified by svm_adjust_mmio_mask()). 5124 */ 5125 sev_hardware_setup(); 5126 5127 svm_hv_hardware_setup(); 5128 5129 for_each_possible_cpu(cpu) { 5130 r = svm_cpu_init(cpu); 5131 if (r) 5132 goto err; 5133 } 5134 5135 if (nrips) { 5136 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 5137 nrips = false; 5138 } 5139 5140 enable_apicv = avic = avic && avic_hardware_setup(); 5141 5142 if (!enable_apicv) { 5143 svm_x86_ops.vcpu_blocking = NULL; 5144 svm_x86_ops.vcpu_unblocking = NULL; 5145 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5146 } else if (!x2avic_enabled) { 5147 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5148 } 5149 5150 if (vls) { 5151 if (!npt_enabled || 5152 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5153 !IS_ENABLED(CONFIG_X86_64)) { 5154 vls = false; 5155 } else { 5156 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5157 } 5158 } 5159 5160 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5161 svm_gp_erratum_intercept = false; 5162 5163 if (vgif) { 5164 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5165 vgif = false; 5166 else 5167 pr_info("Virtual GIF supported\n"); 5168 } 5169 5170 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5171 if (vnmi) 5172 pr_info("Virtual NMI enabled\n"); 5173 5174 if (!vnmi) { 5175 svm_x86_ops.is_vnmi_pending = NULL; 5176 svm_x86_ops.set_vnmi_pending = NULL; 5177 } 5178 5179 5180 if (lbrv) { 5181 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5182 lbrv = false; 5183 else 5184 pr_info("LBR virtualization supported\n"); 5185 } 5186 5187 if (!enable_pmu) 5188 pr_info("PMU virtualization is disabled\n"); 5189 5190 svm_set_cpu_caps(); 5191 5192 /* 5193 * It seems that on AMD processors PTE's accessed bit is 5194 * being set by the CPU hardware before the NPF vmexit. 5195 * This is not expected behaviour and our tests fail because 5196 * of it. 5197 * A workaround here is to disable support for 5198 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5199 * In this case userspace can know if there is support using 5200 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5201 * it 5202 * If future AMD CPU models change the behaviour described above, 5203 * this variable can be changed accordingly 5204 */ 5205 allow_smaller_maxphyaddr = !npt_enabled; 5206 5207 return 0; 5208 5209 err: 5210 svm_hardware_unsetup(); 5211 return r; 5212 } 5213 5214 5215 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5216 .hardware_setup = svm_hardware_setup, 5217 5218 .runtime_ops = &svm_x86_ops, 5219 .pmu_ops = &amd_pmu_ops, 5220 }; 5221 5222 static int __init svm_init(void) 5223 { 5224 int r; 5225 5226 __unused_size_checks(); 5227 5228 if (!kvm_is_svm_supported()) 5229 return -EOPNOTSUPP; 5230 5231 r = kvm_x86_vendor_init(&svm_init_ops); 5232 if (r) 5233 return r; 5234 5235 /* 5236 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5237 * exposed to userspace! 5238 */ 5239 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5240 THIS_MODULE); 5241 if (r) 5242 goto err_kvm_init; 5243 5244 return 0; 5245 5246 err_kvm_init: 5247 kvm_x86_vendor_exit(); 5248 return r; 5249 } 5250 5251 static void __exit svm_exit(void) 5252 { 5253 kvm_exit(); 5254 kvm_x86_vendor_exit(); 5255 } 5256 5257 module_init(svm_init) 5258 module_exit(svm_exit) 5259