xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision acf50233)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 #include <linux/cc_platform.h>
29 
30 #include <asm/apic.h>
31 #include <asm/perf_event.h>
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/debugreg.h>
35 #include <asm/kvm_para.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 #include <asm/traps.h>
40 #include <asm/fpu/api.h>
41 
42 #include <asm/virtext.h>
43 #include "trace.h"
44 
45 #include "svm.h"
46 #include "svm_ops.h"
47 
48 #include "kvm_onhyperv.h"
49 #include "svm_onhyperv.h"
50 
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53 
54 #ifdef MODULE
55 static const struct x86_cpu_id svm_cpu_id[] = {
56 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
57 	{}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
60 #endif
61 
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64 
65 static bool erratum_383_found __read_mostly;
66 
67 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
68 
69 /*
70  * Set osvw_len to higher value when updated Revision Guides
71  * are published and we know what the new status bits are
72  */
73 static uint64_t osvw_len = 4, osvw_status;
74 
75 static DEFINE_PER_CPU(u64, current_tsc_ratio);
76 
77 static const struct svm_direct_access_msrs {
78 	u32 index;   /* Index of the MSR */
79 	bool always; /* True if intercept is initially cleared */
80 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
81 	{ .index = MSR_STAR,				.always = true  },
82 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
83 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
84 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
85 #ifdef CONFIG_X86_64
86 	{ .index = MSR_GS_BASE,				.always = true  },
87 	{ .index = MSR_FS_BASE,				.always = true  },
88 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
89 	{ .index = MSR_LSTAR,				.always = true  },
90 	{ .index = MSR_CSTAR,				.always = true  },
91 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
92 #endif
93 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
94 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
95 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
96 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
97 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
98 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
99 	{ .index = MSR_EFER,				.always = false },
100 	{ .index = MSR_IA32_CR_PAT,			.always = false },
101 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
102 	{ .index = MSR_TSC_AUX,				.always = false },
103 	{ .index = MSR_INVALID,				.always = false },
104 };
105 
106 /*
107  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
108  * pause_filter_count: On processors that support Pause filtering(indicated
109  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
110  *	count value. On VMRUN this value is loaded into an internal counter.
111  *	Each time a pause instruction is executed, this counter is decremented
112  *	until it reaches zero at which time a #VMEXIT is generated if pause
113  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
114  *	Intercept Filtering for more details.
115  *	This also indicate if ple logic enabled.
116  *
117  * pause_filter_thresh: In addition, some processor families support advanced
118  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
119  *	the amount of time a guest is allowed to execute in a pause loop.
120  *	In this mode, a 16-bit pause filter threshold field is added in the
121  *	VMCB. The threshold value is a cycle count that is used to reset the
122  *	pause counter. As with simple pause filtering, VMRUN loads the pause
123  *	count value from VMCB into an internal counter. Then, on each pause
124  *	instruction the hardware checks the elapsed number of cycles since
125  *	the most recent pause instruction against the pause filter threshold.
126  *	If the elapsed cycle count is greater than the pause filter threshold,
127  *	then the internal pause count is reloaded from the VMCB and execution
128  *	continues. If the elapsed cycle count is less than the pause filter
129  *	threshold, then the internal pause count is decremented. If the count
130  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
131  *	triggered. If advanced pause filtering is supported and pause filter
132  *	threshold field is set to zero, the filter will operate in the simpler,
133  *	count only mode.
134  */
135 
136 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
137 module_param(pause_filter_thresh, ushort, 0444);
138 
139 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
140 module_param(pause_filter_count, ushort, 0444);
141 
142 /* Default doubles per-vcpu window every exit. */
143 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
144 module_param(pause_filter_count_grow, ushort, 0444);
145 
146 /* Default resets per-vcpu window every exit to pause_filter_count. */
147 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
148 module_param(pause_filter_count_shrink, ushort, 0444);
149 
150 /* Default is to compute the maximum so we can never overflow. */
151 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
152 module_param(pause_filter_count_max, ushort, 0444);
153 
154 /*
155  * Use nested page tables by default.  Note, NPT may get forced off by
156  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
157  */
158 bool npt_enabled = true;
159 module_param_named(npt, npt_enabled, bool, 0444);
160 
161 /* allow nested virtualization in KVM/SVM */
162 static int nested = true;
163 module_param(nested, int, S_IRUGO);
164 
165 /* enable/disable Next RIP Save */
166 static int nrips = true;
167 module_param(nrips, int, 0444);
168 
169 /* enable/disable Virtual VMLOAD VMSAVE */
170 static int vls = true;
171 module_param(vls, int, 0444);
172 
173 /* enable/disable Virtual GIF */
174 int vgif = true;
175 module_param(vgif, int, 0444);
176 
177 /* enable/disable LBR virtualization */
178 static int lbrv = true;
179 module_param(lbrv, int, 0444);
180 
181 static int tsc_scaling = true;
182 module_param(tsc_scaling, int, 0444);
183 
184 /*
185  * enable / disable AVIC.  Because the defaults differ for APICv
186  * support between VMX and SVM we cannot use module_param_named.
187  */
188 static bool avic;
189 module_param(avic, bool, 0444);
190 
191 static bool force_avic;
192 module_param_unsafe(force_avic, bool, 0444);
193 
194 bool __read_mostly dump_invalid_vmcb;
195 module_param(dump_invalid_vmcb, bool, 0644);
196 
197 
198 bool intercept_smi = true;
199 module_param(intercept_smi, bool, 0444);
200 
201 
202 static bool svm_gp_erratum_intercept = true;
203 
204 static u8 rsm_ins_bytes[] = "\x0f\xaa";
205 
206 static unsigned long iopm_base;
207 
208 struct kvm_ldttss_desc {
209 	u16 limit0;
210 	u16 base0;
211 	unsigned base1:8, type:5, dpl:2, p:1;
212 	unsigned limit1:4, zero0:3, g:1, base2:8;
213 	u32 base3;
214 	u32 zero1;
215 } __attribute__((packed));
216 
217 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
218 
219 /*
220  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
221  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
222  *
223  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
224  * defer the restoration of TSC_AUX until the CPU returns to userspace.
225  */
226 static int tsc_aux_uret_slot __read_mostly = -1;
227 
228 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
229 
230 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
231 #define MSRS_RANGE_SIZE 2048
232 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
233 
234 u32 svm_msrpm_offset(u32 msr)
235 {
236 	u32 offset;
237 	int i;
238 
239 	for (i = 0; i < NUM_MSR_MAPS; i++) {
240 		if (msr < msrpm_ranges[i] ||
241 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
242 			continue;
243 
244 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
245 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
246 
247 		/* Now we have the u8 offset - but need the u32 offset */
248 		return offset / 4;
249 	}
250 
251 	/* MSR not in any range */
252 	return MSR_INVALID;
253 }
254 
255 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
256 
257 static int get_npt_level(void)
258 {
259 #ifdef CONFIG_X86_64
260 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
261 #else
262 	return PT32E_ROOT_LEVEL;
263 #endif
264 }
265 
266 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
267 {
268 	struct vcpu_svm *svm = to_svm(vcpu);
269 	u64 old_efer = vcpu->arch.efer;
270 	vcpu->arch.efer = efer;
271 
272 	if (!npt_enabled) {
273 		/* Shadow paging assumes NX to be available.  */
274 		efer |= EFER_NX;
275 
276 		if (!(efer & EFER_LMA))
277 			efer &= ~EFER_LME;
278 	}
279 
280 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
281 		if (!(efer & EFER_SVME)) {
282 			svm_leave_nested(vcpu);
283 			svm_set_gif(svm, true);
284 			/* #GP intercept is still needed for vmware backdoor */
285 			if (!enable_vmware_backdoor)
286 				clr_exception_intercept(svm, GP_VECTOR);
287 
288 			/*
289 			 * Free the nested guest state, unless we are in SMM.
290 			 * In this case we will return to the nested guest
291 			 * as soon as we leave SMM.
292 			 */
293 			if (!is_smm(vcpu))
294 				svm_free_nested(svm);
295 
296 		} else {
297 			int ret = svm_allocate_nested(svm);
298 
299 			if (ret) {
300 				vcpu->arch.efer = old_efer;
301 				return ret;
302 			}
303 
304 			/*
305 			 * Never intercept #GP for SEV guests, KVM can't
306 			 * decrypt guest memory to workaround the erratum.
307 			 */
308 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
309 				set_exception_intercept(svm, GP_VECTOR);
310 		}
311 	}
312 
313 	svm->vmcb->save.efer = efer | EFER_SVME;
314 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
315 	return 0;
316 }
317 
318 static int is_external_interrupt(u32 info)
319 {
320 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
321 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
322 }
323 
324 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
325 {
326 	struct vcpu_svm *svm = to_svm(vcpu);
327 	u32 ret = 0;
328 
329 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
330 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
331 	return ret;
332 }
333 
334 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
335 {
336 	struct vcpu_svm *svm = to_svm(vcpu);
337 
338 	if (mask == 0)
339 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
340 	else
341 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
342 
343 }
344 
345 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
346 {
347 	struct vcpu_svm *svm = to_svm(vcpu);
348 
349 	/*
350 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
351 	 * the type of exit and the #VC handler in the guest.
352 	 */
353 	if (sev_es_guest(vcpu->kvm))
354 		goto done;
355 
356 	if (nrips && svm->vmcb->control.next_rip != 0) {
357 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
358 		svm->next_rip = svm->vmcb->control.next_rip;
359 	}
360 
361 	if (!svm->next_rip) {
362 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
363 			return 0;
364 	} else {
365 		kvm_rip_write(vcpu, svm->next_rip);
366 	}
367 
368 done:
369 	svm_set_interrupt_shadow(vcpu, 0);
370 
371 	return 1;
372 }
373 
374 static void svm_queue_exception(struct kvm_vcpu *vcpu)
375 {
376 	struct vcpu_svm *svm = to_svm(vcpu);
377 	unsigned nr = vcpu->arch.exception.nr;
378 	bool has_error_code = vcpu->arch.exception.has_error_code;
379 	u32 error_code = vcpu->arch.exception.error_code;
380 
381 	kvm_deliver_exception_payload(vcpu);
382 
383 	if (nr == BP_VECTOR && !nrips) {
384 		unsigned long rip, old_rip = kvm_rip_read(vcpu);
385 
386 		/*
387 		 * For guest debugging where we have to reinject #BP if some
388 		 * INT3 is guest-owned:
389 		 * Emulate nRIP by moving RIP forward. Will fail if injection
390 		 * raises a fault that is not intercepted. Still better than
391 		 * failing in all cases.
392 		 */
393 		(void)svm_skip_emulated_instruction(vcpu);
394 		rip = kvm_rip_read(vcpu);
395 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
396 		svm->int3_injected = rip - old_rip;
397 	}
398 
399 	svm->vmcb->control.event_inj = nr
400 		| SVM_EVTINJ_VALID
401 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
402 		| SVM_EVTINJ_TYPE_EXEPT;
403 	svm->vmcb->control.event_inj_err = error_code;
404 }
405 
406 static void svm_init_erratum_383(void)
407 {
408 	u32 low, high;
409 	int err;
410 	u64 val;
411 
412 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
413 		return;
414 
415 	/* Use _safe variants to not break nested virtualization */
416 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
417 	if (err)
418 		return;
419 
420 	val |= (1ULL << 47);
421 
422 	low  = lower_32_bits(val);
423 	high = upper_32_bits(val);
424 
425 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
426 
427 	erratum_383_found = true;
428 }
429 
430 static void svm_init_osvw(struct kvm_vcpu *vcpu)
431 {
432 	/*
433 	 * Guests should see errata 400 and 415 as fixed (assuming that
434 	 * HLT and IO instructions are intercepted).
435 	 */
436 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
437 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
438 
439 	/*
440 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
441 	 * all osvw.status bits inside that length, including bit 0 (which is
442 	 * reserved for erratum 298), are valid. However, if host processor's
443 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
444 	 * be conservative here and therefore we tell the guest that erratum 298
445 	 * is present (because we really don't know).
446 	 */
447 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
448 		vcpu->arch.osvw.status |= 1;
449 }
450 
451 static int has_svm(void)
452 {
453 	const char *msg;
454 
455 	if (!cpu_has_svm(&msg)) {
456 		printk(KERN_INFO "has_svm: %s\n", msg);
457 		return 0;
458 	}
459 
460 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
461 		pr_info("KVM is unsupported when running as an SEV guest\n");
462 		return 0;
463 	}
464 
465 	return 1;
466 }
467 
468 void __svm_write_tsc_multiplier(u64 multiplier)
469 {
470 	preempt_disable();
471 
472 	if (multiplier == __this_cpu_read(current_tsc_ratio))
473 		goto out;
474 
475 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
476 	__this_cpu_write(current_tsc_ratio, multiplier);
477 out:
478 	preempt_enable();
479 }
480 
481 static void svm_hardware_disable(void)
482 {
483 	/* Make sure we clean up behind us */
484 	if (tsc_scaling)
485 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
486 
487 	cpu_svm_disable();
488 
489 	amd_pmu_disable_virt();
490 }
491 
492 static int svm_hardware_enable(void)
493 {
494 
495 	struct svm_cpu_data *sd;
496 	uint64_t efer;
497 	struct desc_struct *gdt;
498 	int me = raw_smp_processor_id();
499 
500 	rdmsrl(MSR_EFER, efer);
501 	if (efer & EFER_SVME)
502 		return -EBUSY;
503 
504 	if (!has_svm()) {
505 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
506 		return -EINVAL;
507 	}
508 	sd = per_cpu(svm_data, me);
509 	if (!sd) {
510 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
511 		return -EINVAL;
512 	}
513 
514 	sd->asid_generation = 1;
515 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
516 	sd->next_asid = sd->max_asid + 1;
517 	sd->min_asid = max_sev_asid + 1;
518 
519 	gdt = get_current_gdt_rw();
520 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
521 
522 	wrmsrl(MSR_EFER, efer | EFER_SVME);
523 
524 	wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
525 
526 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
527 		/*
528 		 * Set the default value, even if we don't use TSC scaling
529 		 * to avoid having stale value in the msr
530 		 */
531 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
532 	}
533 
534 
535 	/*
536 	 * Get OSVW bits.
537 	 *
538 	 * Note that it is possible to have a system with mixed processor
539 	 * revisions and therefore different OSVW bits. If bits are not the same
540 	 * on different processors then choose the worst case (i.e. if erratum
541 	 * is present on one processor and not on another then assume that the
542 	 * erratum is present everywhere).
543 	 */
544 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
545 		uint64_t len, status = 0;
546 		int err;
547 
548 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
549 		if (!err)
550 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
551 						      &err);
552 
553 		if (err)
554 			osvw_status = osvw_len = 0;
555 		else {
556 			if (len < osvw_len)
557 				osvw_len = len;
558 			osvw_status |= status;
559 			osvw_status &= (1ULL << osvw_len) - 1;
560 		}
561 	} else
562 		osvw_status = osvw_len = 0;
563 
564 	svm_init_erratum_383();
565 
566 	amd_pmu_enable_virt();
567 
568 	return 0;
569 }
570 
571 static void svm_cpu_uninit(int cpu)
572 {
573 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
574 
575 	if (!sd)
576 		return;
577 
578 	per_cpu(svm_data, cpu) = NULL;
579 	kfree(sd->sev_vmcbs);
580 	__free_page(sd->save_area);
581 	kfree(sd);
582 }
583 
584 static int svm_cpu_init(int cpu)
585 {
586 	struct svm_cpu_data *sd;
587 	int ret = -ENOMEM;
588 
589 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
590 	if (!sd)
591 		return ret;
592 	sd->cpu = cpu;
593 	sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
594 	if (!sd->save_area)
595 		goto free_cpu_data;
596 
597 	ret = sev_cpu_init(sd);
598 	if (ret)
599 		goto free_save_area;
600 
601 	per_cpu(svm_data, cpu) = sd;
602 
603 	return 0;
604 
605 free_save_area:
606 	__free_page(sd->save_area);
607 free_cpu_data:
608 	kfree(sd);
609 	return ret;
610 
611 }
612 
613 static int direct_access_msr_slot(u32 msr)
614 {
615 	u32 i;
616 
617 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
618 		if (direct_access_msrs[i].index == msr)
619 			return i;
620 
621 	return -ENOENT;
622 }
623 
624 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
625 				     int write)
626 {
627 	struct vcpu_svm *svm = to_svm(vcpu);
628 	int slot = direct_access_msr_slot(msr);
629 
630 	if (slot == -ENOENT)
631 		return;
632 
633 	/* Set the shadow bitmaps to the desired intercept states */
634 	if (read)
635 		set_bit(slot, svm->shadow_msr_intercept.read);
636 	else
637 		clear_bit(slot, svm->shadow_msr_intercept.read);
638 
639 	if (write)
640 		set_bit(slot, svm->shadow_msr_intercept.write);
641 	else
642 		clear_bit(slot, svm->shadow_msr_intercept.write);
643 }
644 
645 static bool valid_msr_intercept(u32 index)
646 {
647 	return direct_access_msr_slot(index) != -ENOENT;
648 }
649 
650 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
651 {
652 	u8 bit_write;
653 	unsigned long tmp;
654 	u32 offset;
655 	u32 *msrpm;
656 
657 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
658 				      to_svm(vcpu)->msrpm;
659 
660 	offset    = svm_msrpm_offset(msr);
661 	bit_write = 2 * (msr & 0x0f) + 1;
662 	tmp       = msrpm[offset];
663 
664 	BUG_ON(offset == MSR_INVALID);
665 
666 	return !!test_bit(bit_write,  &tmp);
667 }
668 
669 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
670 					u32 msr, int read, int write)
671 {
672 	struct vcpu_svm *svm = to_svm(vcpu);
673 	u8 bit_read, bit_write;
674 	unsigned long tmp;
675 	u32 offset;
676 
677 	/*
678 	 * If this warning triggers extend the direct_access_msrs list at the
679 	 * beginning of the file
680 	 */
681 	WARN_ON(!valid_msr_intercept(msr));
682 
683 	/* Enforce non allowed MSRs to trap */
684 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
685 		read = 0;
686 
687 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
688 		write = 0;
689 
690 	offset    = svm_msrpm_offset(msr);
691 	bit_read  = 2 * (msr & 0x0f);
692 	bit_write = 2 * (msr & 0x0f) + 1;
693 	tmp       = msrpm[offset];
694 
695 	BUG_ON(offset == MSR_INVALID);
696 
697 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
698 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
699 
700 	msrpm[offset] = tmp;
701 
702 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
703 	svm->nested.force_msr_bitmap_recalc = true;
704 }
705 
706 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
707 			  int read, int write)
708 {
709 	set_shadow_msr_intercept(vcpu, msr, read, write);
710 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
711 }
712 
713 u32 *svm_vcpu_alloc_msrpm(void)
714 {
715 	unsigned int order = get_order(MSRPM_SIZE);
716 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
717 	u32 *msrpm;
718 
719 	if (!pages)
720 		return NULL;
721 
722 	msrpm = page_address(pages);
723 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
724 
725 	return msrpm;
726 }
727 
728 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
729 {
730 	int i;
731 
732 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
733 		if (!direct_access_msrs[i].always)
734 			continue;
735 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
736 	}
737 }
738 
739 
740 void svm_vcpu_free_msrpm(u32 *msrpm)
741 {
742 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
743 }
744 
745 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
746 {
747 	struct vcpu_svm *svm = to_svm(vcpu);
748 	u32 i;
749 
750 	/*
751 	 * Set intercept permissions for all direct access MSRs again. They
752 	 * will automatically get filtered through the MSR filter, so we are
753 	 * back in sync after this.
754 	 */
755 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
756 		u32 msr = direct_access_msrs[i].index;
757 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
758 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
759 
760 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
761 	}
762 }
763 
764 static void add_msr_offset(u32 offset)
765 {
766 	int i;
767 
768 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
769 
770 		/* Offset already in list? */
771 		if (msrpm_offsets[i] == offset)
772 			return;
773 
774 		/* Slot used by another offset? */
775 		if (msrpm_offsets[i] != MSR_INVALID)
776 			continue;
777 
778 		/* Add offset to list */
779 		msrpm_offsets[i] = offset;
780 
781 		return;
782 	}
783 
784 	/*
785 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
786 	 * increase MSRPM_OFFSETS in this case.
787 	 */
788 	BUG();
789 }
790 
791 static void init_msrpm_offsets(void)
792 {
793 	int i;
794 
795 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
796 
797 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
798 		u32 offset;
799 
800 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
801 		BUG_ON(offset == MSR_INVALID);
802 
803 		add_msr_offset(offset);
804 	}
805 }
806 
807 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
808 {
809 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
810 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
811 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
812 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
813 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
814 
815 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
816 }
817 
818 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
819 {
820 	struct vcpu_svm *svm = to_svm(vcpu);
821 
822 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
823 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
824 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
825 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
826 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
827 
828 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
829 	if (is_guest_mode(vcpu))
830 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
831 }
832 
833 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
834 {
835 	struct vcpu_svm *svm = to_svm(vcpu);
836 
837 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
838 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
839 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
840 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
841 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
842 
843 	/*
844 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
845 	 * on nested guest entries.
846 	 */
847 	if (is_guest_mode(vcpu))
848 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
849 }
850 
851 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
852 {
853 	/*
854 	 * If the LBR virtualization is disabled, the LBR msrs are always
855 	 * kept in the vmcb01 to avoid copying them on nested guest entries.
856 	 *
857 	 * If nested, and the LBR virtualization is enabled/disabled, the msrs
858 	 * are moved between the vmcb01 and vmcb02 as needed.
859 	 */
860 	struct vmcb *vmcb =
861 		(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
862 			svm->vmcb : svm->vmcb01.ptr;
863 
864 	switch (index) {
865 	case MSR_IA32_DEBUGCTLMSR:
866 		return vmcb->save.dbgctl;
867 	case MSR_IA32_LASTBRANCHFROMIP:
868 		return vmcb->save.br_from;
869 	case MSR_IA32_LASTBRANCHTOIP:
870 		return vmcb->save.br_to;
871 	case MSR_IA32_LASTINTFROMIP:
872 		return vmcb->save.last_excp_from;
873 	case MSR_IA32_LASTINTTOIP:
874 		return vmcb->save.last_excp_to;
875 	default:
876 		KVM_BUG(false, svm->vcpu.kvm,
877 			"%s: Unknown MSR 0x%x", __func__, index);
878 		return 0;
879 	}
880 }
881 
882 void svm_update_lbrv(struct kvm_vcpu *vcpu)
883 {
884 	struct vcpu_svm *svm = to_svm(vcpu);
885 
886 	bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
887 					   DEBUGCTLMSR_LBR;
888 
889 	bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
890 				      LBR_CTL_ENABLE_MASK);
891 
892 	if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
893 		if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
894 			enable_lbrv = true;
895 
896 	if (enable_lbrv == current_enable_lbrv)
897 		return;
898 
899 	if (enable_lbrv)
900 		svm_enable_lbrv(vcpu);
901 	else
902 		svm_disable_lbrv(vcpu);
903 }
904 
905 void disable_nmi_singlestep(struct vcpu_svm *svm)
906 {
907 	svm->nmi_singlestep = false;
908 
909 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
910 		/* Clear our flags if they were not set by the guest */
911 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
912 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
913 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
914 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
915 	}
916 }
917 
918 static void grow_ple_window(struct kvm_vcpu *vcpu)
919 {
920 	struct vcpu_svm *svm = to_svm(vcpu);
921 	struct vmcb_control_area *control = &svm->vmcb->control;
922 	int old = control->pause_filter_count;
923 
924 	if (kvm_pause_in_guest(vcpu->kvm))
925 		return;
926 
927 	control->pause_filter_count = __grow_ple_window(old,
928 							pause_filter_count,
929 							pause_filter_count_grow,
930 							pause_filter_count_max);
931 
932 	if (control->pause_filter_count != old) {
933 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
934 		trace_kvm_ple_window_update(vcpu->vcpu_id,
935 					    control->pause_filter_count, old);
936 	}
937 }
938 
939 static void shrink_ple_window(struct kvm_vcpu *vcpu)
940 {
941 	struct vcpu_svm *svm = to_svm(vcpu);
942 	struct vmcb_control_area *control = &svm->vmcb->control;
943 	int old = control->pause_filter_count;
944 
945 	if (kvm_pause_in_guest(vcpu->kvm))
946 		return;
947 
948 	control->pause_filter_count =
949 				__shrink_ple_window(old,
950 						    pause_filter_count,
951 						    pause_filter_count_shrink,
952 						    pause_filter_count);
953 	if (control->pause_filter_count != old) {
954 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
955 		trace_kvm_ple_window_update(vcpu->vcpu_id,
956 					    control->pause_filter_count, old);
957 	}
958 }
959 
960 static void svm_hardware_unsetup(void)
961 {
962 	int cpu;
963 
964 	sev_hardware_unsetup();
965 
966 	for_each_possible_cpu(cpu)
967 		svm_cpu_uninit(cpu);
968 
969 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
970 	get_order(IOPM_SIZE));
971 	iopm_base = 0;
972 }
973 
974 static void init_seg(struct vmcb_seg *seg)
975 {
976 	seg->selector = 0;
977 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
978 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
979 	seg->limit = 0xffff;
980 	seg->base = 0;
981 }
982 
983 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
984 {
985 	seg->selector = 0;
986 	seg->attrib = SVM_SELECTOR_P_MASK | type;
987 	seg->limit = 0xffff;
988 	seg->base = 0;
989 }
990 
991 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
992 {
993 	struct vcpu_svm *svm = to_svm(vcpu);
994 
995 	return svm->nested.ctl.tsc_offset;
996 }
997 
998 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
999 {
1000 	struct vcpu_svm *svm = to_svm(vcpu);
1001 
1002 	return svm->tsc_ratio_msr;
1003 }
1004 
1005 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1006 {
1007 	struct vcpu_svm *svm = to_svm(vcpu);
1008 
1009 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1010 	svm->vmcb->control.tsc_offset = offset;
1011 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1012 }
1013 
1014 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1015 {
1016 	__svm_write_tsc_multiplier(multiplier);
1017 }
1018 
1019 
1020 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1021 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1022 					      struct vcpu_svm *svm)
1023 {
1024 	/*
1025 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1026 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1027 	 */
1028 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1029 		if (!npt_enabled ||
1030 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1031 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1032 		else
1033 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1034 	}
1035 
1036 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1037 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1038 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1039 		else
1040 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1041 	}
1042 }
1043 
1044 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1045 {
1046 	struct vcpu_svm *svm = to_svm(vcpu);
1047 
1048 	if (guest_cpuid_is_intel(vcpu)) {
1049 		/*
1050 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1051 		 * accesses because the processor only stores 32 bits.
1052 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1053 		 */
1054 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1055 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1056 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1057 
1058 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1059 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1060 
1061 		svm->v_vmload_vmsave_enabled = false;
1062 	} else {
1063 		/*
1064 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1065 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1066 		 */
1067 		if (vls) {
1068 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1069 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1070 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1071 		}
1072 		/* No need to intercept these MSRs */
1073 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1074 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1075 	}
1076 }
1077 
1078 static void init_vmcb(struct kvm_vcpu *vcpu)
1079 {
1080 	struct vcpu_svm *svm = to_svm(vcpu);
1081 	struct vmcb *vmcb = svm->vmcb01.ptr;
1082 	struct vmcb_control_area *control = &vmcb->control;
1083 	struct vmcb_save_area *save = &vmcb->save;
1084 
1085 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1086 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1087 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1088 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1089 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1090 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1091 	if (!kvm_vcpu_apicv_active(vcpu))
1092 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1093 
1094 	set_dr_intercepts(svm);
1095 
1096 	set_exception_intercept(svm, PF_VECTOR);
1097 	set_exception_intercept(svm, UD_VECTOR);
1098 	set_exception_intercept(svm, MC_VECTOR);
1099 	set_exception_intercept(svm, AC_VECTOR);
1100 	set_exception_intercept(svm, DB_VECTOR);
1101 	/*
1102 	 * Guest access to VMware backdoor ports could legitimately
1103 	 * trigger #GP because of TSS I/O permission bitmap.
1104 	 * We intercept those #GP and allow access to them anyway
1105 	 * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
1106 	 * decrypt guest memory to decode the faulting instruction.
1107 	 */
1108 	if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1109 		set_exception_intercept(svm, GP_VECTOR);
1110 
1111 	svm_set_intercept(svm, INTERCEPT_INTR);
1112 	svm_set_intercept(svm, INTERCEPT_NMI);
1113 
1114 	if (intercept_smi)
1115 		svm_set_intercept(svm, INTERCEPT_SMI);
1116 
1117 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1118 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1119 	svm_set_intercept(svm, INTERCEPT_CPUID);
1120 	svm_set_intercept(svm, INTERCEPT_INVD);
1121 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1122 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1123 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1124 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1125 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1126 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1127 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1128 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1129 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1130 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1131 	svm_set_intercept(svm, INTERCEPT_STGI);
1132 	svm_set_intercept(svm, INTERCEPT_CLGI);
1133 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1134 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1135 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1136 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1137 	svm_set_intercept(svm, INTERCEPT_RSM);
1138 
1139 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1140 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1141 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1142 	}
1143 
1144 	if (!kvm_hlt_in_guest(vcpu->kvm))
1145 		svm_set_intercept(svm, INTERCEPT_HLT);
1146 
1147 	control->iopm_base_pa = __sme_set(iopm_base);
1148 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1149 	control->int_ctl = V_INTR_MASKING_MASK;
1150 
1151 	init_seg(&save->es);
1152 	init_seg(&save->ss);
1153 	init_seg(&save->ds);
1154 	init_seg(&save->fs);
1155 	init_seg(&save->gs);
1156 
1157 	save->cs.selector = 0xf000;
1158 	save->cs.base = 0xffff0000;
1159 	/* Executable/Readable Code Segment */
1160 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1161 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1162 	save->cs.limit = 0xffff;
1163 
1164 	save->gdtr.base = 0;
1165 	save->gdtr.limit = 0xffff;
1166 	save->idtr.base = 0;
1167 	save->idtr.limit = 0xffff;
1168 
1169 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1170 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1171 
1172 	if (npt_enabled) {
1173 		/* Setup VMCB for Nested Paging */
1174 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1175 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1176 		clr_exception_intercept(svm, PF_VECTOR);
1177 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1178 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1179 		save->g_pat = vcpu->arch.pat;
1180 		save->cr3 = 0;
1181 	}
1182 	svm->current_vmcb->asid_generation = 0;
1183 	svm->asid = 0;
1184 
1185 	svm->nested.vmcb12_gpa = INVALID_GPA;
1186 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1187 
1188 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1189 		control->pause_filter_count = pause_filter_count;
1190 		if (pause_filter_thresh)
1191 			control->pause_filter_thresh = pause_filter_thresh;
1192 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1193 	} else {
1194 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1195 	}
1196 
1197 	svm_recalc_instruction_intercepts(vcpu, svm);
1198 
1199 	/*
1200 	 * If the host supports V_SPEC_CTRL then disable the interception
1201 	 * of MSR_IA32_SPEC_CTRL.
1202 	 */
1203 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1204 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1205 
1206 	if (kvm_vcpu_apicv_active(vcpu))
1207 		avic_init_vmcb(svm, vmcb);
1208 
1209 	if (vgif) {
1210 		svm_clr_intercept(svm, INTERCEPT_STGI);
1211 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1212 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1213 	}
1214 
1215 	if (sev_guest(vcpu->kvm))
1216 		sev_init_vmcb(svm);
1217 
1218 	svm_hv_init_vmcb(vmcb);
1219 	init_vmcb_after_set_cpuid(vcpu);
1220 
1221 	vmcb_mark_all_dirty(vmcb);
1222 
1223 	enable_gif(svm);
1224 }
1225 
1226 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1227 {
1228 	struct vcpu_svm *svm = to_svm(vcpu);
1229 
1230 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1231 
1232 	svm_init_osvw(vcpu);
1233 	vcpu->arch.microcode_version = 0x01000065;
1234 	svm->tsc_ratio_msr = kvm_default_tsc_scaling_ratio;
1235 
1236 	if (sev_es_guest(vcpu->kvm))
1237 		sev_es_vcpu_reset(svm);
1238 }
1239 
1240 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1241 {
1242 	struct vcpu_svm *svm = to_svm(vcpu);
1243 
1244 	svm->spec_ctrl = 0;
1245 	svm->virt_spec_ctrl = 0;
1246 
1247 	init_vmcb(vcpu);
1248 
1249 	if (!init_event)
1250 		__svm_vcpu_reset(vcpu);
1251 }
1252 
1253 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1254 {
1255 	svm->current_vmcb = target_vmcb;
1256 	svm->vmcb = target_vmcb->ptr;
1257 }
1258 
1259 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1260 {
1261 	struct vcpu_svm *svm;
1262 	struct page *vmcb01_page;
1263 	struct page *vmsa_page = NULL;
1264 	int err;
1265 
1266 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1267 	svm = to_svm(vcpu);
1268 
1269 	err = -ENOMEM;
1270 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1271 	if (!vmcb01_page)
1272 		goto out;
1273 
1274 	if (sev_es_guest(vcpu->kvm)) {
1275 		/*
1276 		 * SEV-ES guests require a separate VMSA page used to contain
1277 		 * the encrypted register state of the guest.
1278 		 */
1279 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1280 		if (!vmsa_page)
1281 			goto error_free_vmcb_page;
1282 
1283 		/*
1284 		 * SEV-ES guests maintain an encrypted version of their FPU
1285 		 * state which is restored and saved on VMRUN and VMEXIT.
1286 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1287 		 * do xsave/xrstor on it.
1288 		 */
1289 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1290 	}
1291 
1292 	err = avic_init_vcpu(svm);
1293 	if (err)
1294 		goto error_free_vmsa_page;
1295 
1296 	svm->msrpm = svm_vcpu_alloc_msrpm();
1297 	if (!svm->msrpm) {
1298 		err = -ENOMEM;
1299 		goto error_free_vmsa_page;
1300 	}
1301 
1302 	svm->vmcb01.ptr = page_address(vmcb01_page);
1303 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1304 	svm_switch_vmcb(svm, &svm->vmcb01);
1305 
1306 	if (vmsa_page)
1307 		svm->sev_es.vmsa = page_address(vmsa_page);
1308 
1309 	svm->guest_state_loaded = false;
1310 
1311 	return 0;
1312 
1313 error_free_vmsa_page:
1314 	if (vmsa_page)
1315 		__free_page(vmsa_page);
1316 error_free_vmcb_page:
1317 	__free_page(vmcb01_page);
1318 out:
1319 	return err;
1320 }
1321 
1322 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1323 {
1324 	int i;
1325 
1326 	for_each_online_cpu(i)
1327 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1328 }
1329 
1330 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1331 {
1332 	struct vcpu_svm *svm = to_svm(vcpu);
1333 
1334 	/*
1335 	 * The vmcb page can be recycled, causing a false negative in
1336 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1337 	 * vmcb page recorded as its current vmcb.
1338 	 */
1339 	svm_clear_current_vmcb(svm->vmcb);
1340 
1341 	svm_free_nested(svm);
1342 
1343 	sev_free_vcpu(vcpu);
1344 
1345 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1346 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1347 }
1348 
1349 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1350 {
1351 	struct vcpu_svm *svm = to_svm(vcpu);
1352 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1353 
1354 	if (sev_es_guest(vcpu->kvm))
1355 		sev_es_unmap_ghcb(svm);
1356 
1357 	if (svm->guest_state_loaded)
1358 		return;
1359 
1360 	/*
1361 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1362 	 * or subsequent vmload of host save area.
1363 	 */
1364 	vmsave(__sme_page_pa(sd->save_area));
1365 	if (sev_es_guest(vcpu->kvm)) {
1366 		struct sev_es_save_area *hostsa;
1367 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1368 
1369 		sev_es_prepare_switch_to_guest(hostsa);
1370 	}
1371 
1372 	if (tsc_scaling)
1373 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1374 
1375 	if (likely(tsc_aux_uret_slot >= 0))
1376 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1377 
1378 	svm->guest_state_loaded = true;
1379 }
1380 
1381 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1382 {
1383 	to_svm(vcpu)->guest_state_loaded = false;
1384 }
1385 
1386 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1387 {
1388 	struct vcpu_svm *svm = to_svm(vcpu);
1389 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1390 
1391 	if (sd->current_vmcb != svm->vmcb) {
1392 		sd->current_vmcb = svm->vmcb;
1393 		indirect_branch_prediction_barrier();
1394 	}
1395 	if (kvm_vcpu_apicv_active(vcpu))
1396 		avic_vcpu_load(vcpu, cpu);
1397 }
1398 
1399 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1400 {
1401 	if (kvm_vcpu_apicv_active(vcpu))
1402 		avic_vcpu_put(vcpu);
1403 
1404 	svm_prepare_host_switch(vcpu);
1405 
1406 	++vcpu->stat.host_state_reload;
1407 }
1408 
1409 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1410 {
1411 	struct vcpu_svm *svm = to_svm(vcpu);
1412 	unsigned long rflags = svm->vmcb->save.rflags;
1413 
1414 	if (svm->nmi_singlestep) {
1415 		/* Hide our flags if they were not set by the guest */
1416 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1417 			rflags &= ~X86_EFLAGS_TF;
1418 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1419 			rflags &= ~X86_EFLAGS_RF;
1420 	}
1421 	return rflags;
1422 }
1423 
1424 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1425 {
1426 	if (to_svm(vcpu)->nmi_singlestep)
1427 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1428 
1429        /*
1430         * Any change of EFLAGS.VM is accompanied by a reload of SS
1431         * (caused by either a task switch or an inter-privilege IRET),
1432         * so we do not need to update the CPL here.
1433         */
1434 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1435 }
1436 
1437 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1438 {
1439 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1440 
1441 	return sev_es_guest(vcpu->kvm)
1442 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1443 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1444 }
1445 
1446 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1447 {
1448 	kvm_register_mark_available(vcpu, reg);
1449 
1450 	switch (reg) {
1451 	case VCPU_EXREG_PDPTR:
1452 		/*
1453 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1454 		 * it is always updated per SDM when moving to CRs.
1455 		 */
1456 		if (npt_enabled)
1457 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1458 		break;
1459 	default:
1460 		KVM_BUG_ON(1, vcpu->kvm);
1461 	}
1462 }
1463 
1464 static void svm_set_vintr(struct vcpu_svm *svm)
1465 {
1466 	struct vmcb_control_area *control;
1467 
1468 	/*
1469 	 * The following fields are ignored when AVIC is enabled
1470 	 */
1471 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1472 
1473 	svm_set_intercept(svm, INTERCEPT_VINTR);
1474 
1475 	/*
1476 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1477 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1478 	 */
1479 	control = &svm->vmcb->control;
1480 	control->int_vector = 0x0;
1481 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1482 	control->int_ctl |= V_IRQ_MASK |
1483 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1484 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1485 }
1486 
1487 static void svm_clear_vintr(struct vcpu_svm *svm)
1488 {
1489 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1490 
1491 	/* Drop int_ctl fields related to VINTR injection.  */
1492 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1493 	if (is_guest_mode(&svm->vcpu)) {
1494 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1495 
1496 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1497 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1498 
1499 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1500 			V_IRQ_INJECTION_BITS_MASK;
1501 
1502 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1503 	}
1504 
1505 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1506 }
1507 
1508 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1509 {
1510 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1511 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1512 
1513 	switch (seg) {
1514 	case VCPU_SREG_CS: return &save->cs;
1515 	case VCPU_SREG_DS: return &save->ds;
1516 	case VCPU_SREG_ES: return &save->es;
1517 	case VCPU_SREG_FS: return &save01->fs;
1518 	case VCPU_SREG_GS: return &save01->gs;
1519 	case VCPU_SREG_SS: return &save->ss;
1520 	case VCPU_SREG_TR: return &save01->tr;
1521 	case VCPU_SREG_LDTR: return &save01->ldtr;
1522 	}
1523 	BUG();
1524 	return NULL;
1525 }
1526 
1527 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1528 {
1529 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1530 
1531 	return s->base;
1532 }
1533 
1534 static void svm_get_segment(struct kvm_vcpu *vcpu,
1535 			    struct kvm_segment *var, int seg)
1536 {
1537 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1538 
1539 	var->base = s->base;
1540 	var->limit = s->limit;
1541 	var->selector = s->selector;
1542 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1543 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1544 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1545 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1546 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1547 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1548 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1549 
1550 	/*
1551 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1552 	 * However, the SVM spec states that the G bit is not observed by the
1553 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1554 	 * So let's synthesize a legal G bit for all segments, this helps
1555 	 * running KVM nested. It also helps cross-vendor migration, because
1556 	 * Intel's vmentry has a check on the 'G' bit.
1557 	 */
1558 	var->g = s->limit > 0xfffff;
1559 
1560 	/*
1561 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1562 	 * for cross vendor migration purposes by "not present"
1563 	 */
1564 	var->unusable = !var->present;
1565 
1566 	switch (seg) {
1567 	case VCPU_SREG_TR:
1568 		/*
1569 		 * Work around a bug where the busy flag in the tr selector
1570 		 * isn't exposed
1571 		 */
1572 		var->type |= 0x2;
1573 		break;
1574 	case VCPU_SREG_DS:
1575 	case VCPU_SREG_ES:
1576 	case VCPU_SREG_FS:
1577 	case VCPU_SREG_GS:
1578 		/*
1579 		 * The accessed bit must always be set in the segment
1580 		 * descriptor cache, although it can be cleared in the
1581 		 * descriptor, the cached bit always remains at 1. Since
1582 		 * Intel has a check on this, set it here to support
1583 		 * cross-vendor migration.
1584 		 */
1585 		if (!var->unusable)
1586 			var->type |= 0x1;
1587 		break;
1588 	case VCPU_SREG_SS:
1589 		/*
1590 		 * On AMD CPUs sometimes the DB bit in the segment
1591 		 * descriptor is left as 1, although the whole segment has
1592 		 * been made unusable. Clear it here to pass an Intel VMX
1593 		 * entry check when cross vendor migrating.
1594 		 */
1595 		if (var->unusable)
1596 			var->db = 0;
1597 		/* This is symmetric with svm_set_segment() */
1598 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1599 		break;
1600 	}
1601 }
1602 
1603 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1604 {
1605 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1606 
1607 	return save->cpl;
1608 }
1609 
1610 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1611 {
1612 	struct kvm_segment cs;
1613 
1614 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1615 	*db = cs.db;
1616 	*l = cs.l;
1617 }
1618 
1619 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1620 {
1621 	struct vcpu_svm *svm = to_svm(vcpu);
1622 
1623 	dt->size = svm->vmcb->save.idtr.limit;
1624 	dt->address = svm->vmcb->save.idtr.base;
1625 }
1626 
1627 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1628 {
1629 	struct vcpu_svm *svm = to_svm(vcpu);
1630 
1631 	svm->vmcb->save.idtr.limit = dt->size;
1632 	svm->vmcb->save.idtr.base = dt->address ;
1633 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1634 }
1635 
1636 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1637 {
1638 	struct vcpu_svm *svm = to_svm(vcpu);
1639 
1640 	dt->size = svm->vmcb->save.gdtr.limit;
1641 	dt->address = svm->vmcb->save.gdtr.base;
1642 }
1643 
1644 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1645 {
1646 	struct vcpu_svm *svm = to_svm(vcpu);
1647 
1648 	svm->vmcb->save.gdtr.limit = dt->size;
1649 	svm->vmcb->save.gdtr.base = dt->address ;
1650 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1651 }
1652 
1653 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1654 {
1655 	struct vcpu_svm *svm = to_svm(vcpu);
1656 
1657 	/*
1658 	 * For guests that don't set guest_state_protected, the cr3 update is
1659 	 * handled via kvm_mmu_load() while entering the guest. For guests
1660 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1661 	 * VMCB save area now, since the save area will become the initial
1662 	 * contents of the VMSA, and future VMCB save area updates won't be
1663 	 * seen.
1664 	 */
1665 	if (sev_es_guest(vcpu->kvm)) {
1666 		svm->vmcb->save.cr3 = cr3;
1667 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1668 	}
1669 }
1670 
1671 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1672 {
1673 	struct vcpu_svm *svm = to_svm(vcpu);
1674 	u64 hcr0 = cr0;
1675 	bool old_paging = is_paging(vcpu);
1676 
1677 #ifdef CONFIG_X86_64
1678 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1679 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1680 			vcpu->arch.efer |= EFER_LMA;
1681 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1682 		}
1683 
1684 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1685 			vcpu->arch.efer &= ~EFER_LMA;
1686 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1687 		}
1688 	}
1689 #endif
1690 	vcpu->arch.cr0 = cr0;
1691 
1692 	if (!npt_enabled) {
1693 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1694 		if (old_paging != is_paging(vcpu))
1695 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1696 	}
1697 
1698 	/*
1699 	 * re-enable caching here because the QEMU bios
1700 	 * does not do it - this results in some delay at
1701 	 * reboot
1702 	 */
1703 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1704 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1705 
1706 	svm->vmcb->save.cr0 = hcr0;
1707 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1708 
1709 	/*
1710 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1711 	 * tracking is done using the CR write traps.
1712 	 */
1713 	if (sev_es_guest(vcpu->kvm))
1714 		return;
1715 
1716 	if (hcr0 == cr0) {
1717 		/* Selective CR0 write remains on.  */
1718 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1719 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1720 	} else {
1721 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1722 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1723 	}
1724 }
1725 
1726 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1727 {
1728 	return true;
1729 }
1730 
1731 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1732 {
1733 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1734 	unsigned long old_cr4 = vcpu->arch.cr4;
1735 
1736 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1737 		svm_flush_tlb_current(vcpu);
1738 
1739 	vcpu->arch.cr4 = cr4;
1740 	if (!npt_enabled) {
1741 		cr4 |= X86_CR4_PAE;
1742 
1743 		if (!is_paging(vcpu))
1744 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1745 	}
1746 	cr4 |= host_cr4_mce;
1747 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1748 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1749 
1750 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1751 		kvm_update_cpuid_runtime(vcpu);
1752 }
1753 
1754 static void svm_set_segment(struct kvm_vcpu *vcpu,
1755 			    struct kvm_segment *var, int seg)
1756 {
1757 	struct vcpu_svm *svm = to_svm(vcpu);
1758 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1759 
1760 	s->base = var->base;
1761 	s->limit = var->limit;
1762 	s->selector = var->selector;
1763 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1764 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1765 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1766 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1767 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1768 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1769 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1770 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1771 
1772 	/*
1773 	 * This is always accurate, except if SYSRET returned to a segment
1774 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1775 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1776 	 * would entail passing the CPL to userspace and back.
1777 	 */
1778 	if (seg == VCPU_SREG_SS)
1779 		/* This is symmetric with svm_get_segment() */
1780 		svm->vmcb->save.cpl = (var->dpl & 3);
1781 
1782 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1783 }
1784 
1785 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1786 {
1787 	struct vcpu_svm *svm = to_svm(vcpu);
1788 
1789 	clr_exception_intercept(svm, BP_VECTOR);
1790 
1791 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1792 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1793 			set_exception_intercept(svm, BP_VECTOR);
1794 	}
1795 }
1796 
1797 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1798 {
1799 	if (sd->next_asid > sd->max_asid) {
1800 		++sd->asid_generation;
1801 		sd->next_asid = sd->min_asid;
1802 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1803 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1804 	}
1805 
1806 	svm->current_vmcb->asid_generation = sd->asid_generation;
1807 	svm->asid = sd->next_asid++;
1808 }
1809 
1810 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1811 {
1812 	struct vmcb *vmcb = svm->vmcb;
1813 
1814 	if (svm->vcpu.arch.guest_state_protected)
1815 		return;
1816 
1817 	if (unlikely(value != vmcb->save.dr6)) {
1818 		vmcb->save.dr6 = value;
1819 		vmcb_mark_dirty(vmcb, VMCB_DR);
1820 	}
1821 }
1822 
1823 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1824 {
1825 	struct vcpu_svm *svm = to_svm(vcpu);
1826 
1827 	if (vcpu->arch.guest_state_protected)
1828 		return;
1829 
1830 	get_debugreg(vcpu->arch.db[0], 0);
1831 	get_debugreg(vcpu->arch.db[1], 1);
1832 	get_debugreg(vcpu->arch.db[2], 2);
1833 	get_debugreg(vcpu->arch.db[3], 3);
1834 	/*
1835 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1836 	 * because db_interception might need it.  We can do it before vmentry.
1837 	 */
1838 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1839 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1840 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1841 	set_dr_intercepts(svm);
1842 }
1843 
1844 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1845 {
1846 	struct vcpu_svm *svm = to_svm(vcpu);
1847 
1848 	if (vcpu->arch.guest_state_protected)
1849 		return;
1850 
1851 	svm->vmcb->save.dr7 = value;
1852 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1853 }
1854 
1855 static int pf_interception(struct kvm_vcpu *vcpu)
1856 {
1857 	struct vcpu_svm *svm = to_svm(vcpu);
1858 
1859 	u64 fault_address = svm->vmcb->control.exit_info_2;
1860 	u64 error_code = svm->vmcb->control.exit_info_1;
1861 
1862 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1863 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1864 			svm->vmcb->control.insn_bytes : NULL,
1865 			svm->vmcb->control.insn_len);
1866 }
1867 
1868 static int npf_interception(struct kvm_vcpu *vcpu)
1869 {
1870 	struct vcpu_svm *svm = to_svm(vcpu);
1871 
1872 	u64 fault_address = svm->vmcb->control.exit_info_2;
1873 	u64 error_code = svm->vmcb->control.exit_info_1;
1874 
1875 	trace_kvm_page_fault(fault_address, error_code);
1876 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1877 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1878 			svm->vmcb->control.insn_bytes : NULL,
1879 			svm->vmcb->control.insn_len);
1880 }
1881 
1882 static int db_interception(struct kvm_vcpu *vcpu)
1883 {
1884 	struct kvm_run *kvm_run = vcpu->run;
1885 	struct vcpu_svm *svm = to_svm(vcpu);
1886 
1887 	if (!(vcpu->guest_debug &
1888 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1889 		!svm->nmi_singlestep) {
1890 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1891 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1892 		return 1;
1893 	}
1894 
1895 	if (svm->nmi_singlestep) {
1896 		disable_nmi_singlestep(svm);
1897 		/* Make sure we check for pending NMIs upon entry */
1898 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1899 	}
1900 
1901 	if (vcpu->guest_debug &
1902 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1903 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1904 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1905 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1906 		kvm_run->debug.arch.pc =
1907 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1908 		kvm_run->debug.arch.exception = DB_VECTOR;
1909 		return 0;
1910 	}
1911 
1912 	return 1;
1913 }
1914 
1915 static int bp_interception(struct kvm_vcpu *vcpu)
1916 {
1917 	struct vcpu_svm *svm = to_svm(vcpu);
1918 	struct kvm_run *kvm_run = vcpu->run;
1919 
1920 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1921 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1922 	kvm_run->debug.arch.exception = BP_VECTOR;
1923 	return 0;
1924 }
1925 
1926 static int ud_interception(struct kvm_vcpu *vcpu)
1927 {
1928 	return handle_ud(vcpu);
1929 }
1930 
1931 static int ac_interception(struct kvm_vcpu *vcpu)
1932 {
1933 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1934 	return 1;
1935 }
1936 
1937 static bool is_erratum_383(void)
1938 {
1939 	int err, i;
1940 	u64 value;
1941 
1942 	if (!erratum_383_found)
1943 		return false;
1944 
1945 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1946 	if (err)
1947 		return false;
1948 
1949 	/* Bit 62 may or may not be set for this mce */
1950 	value &= ~(1ULL << 62);
1951 
1952 	if (value != 0xb600000000010015ULL)
1953 		return false;
1954 
1955 	/* Clear MCi_STATUS registers */
1956 	for (i = 0; i < 6; ++i)
1957 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1958 
1959 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1960 	if (!err) {
1961 		u32 low, high;
1962 
1963 		value &= ~(1ULL << 2);
1964 		low    = lower_32_bits(value);
1965 		high   = upper_32_bits(value);
1966 
1967 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1968 	}
1969 
1970 	/* Flush tlb to evict multi-match entries */
1971 	__flush_tlb_all();
1972 
1973 	return true;
1974 }
1975 
1976 static void svm_handle_mce(struct kvm_vcpu *vcpu)
1977 {
1978 	if (is_erratum_383()) {
1979 		/*
1980 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1981 		 * guest.
1982 		 */
1983 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
1984 
1985 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1986 
1987 		return;
1988 	}
1989 
1990 	/*
1991 	 * On an #MC intercept the MCE handler is not called automatically in
1992 	 * the host. So do it by hand here.
1993 	 */
1994 	kvm_machine_check();
1995 }
1996 
1997 static int mc_interception(struct kvm_vcpu *vcpu)
1998 {
1999 	return 1;
2000 }
2001 
2002 static int shutdown_interception(struct kvm_vcpu *vcpu)
2003 {
2004 	struct kvm_run *kvm_run = vcpu->run;
2005 	struct vcpu_svm *svm = to_svm(vcpu);
2006 
2007 	/*
2008 	 * The VM save area has already been encrypted so it
2009 	 * cannot be reinitialized - just terminate.
2010 	 */
2011 	if (sev_es_guest(vcpu->kvm))
2012 		return -EINVAL;
2013 
2014 	/*
2015 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2016 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2017 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2018 	 * userspace.  At a platform view, INIT is acceptable behavior as
2019 	 * there exist bare metal platforms that automatically INIT the CPU
2020 	 * in response to shutdown.
2021 	 */
2022 	clear_page(svm->vmcb);
2023 	kvm_vcpu_reset(vcpu, true);
2024 
2025 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2026 	return 0;
2027 }
2028 
2029 static int io_interception(struct kvm_vcpu *vcpu)
2030 {
2031 	struct vcpu_svm *svm = to_svm(vcpu);
2032 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2033 	int size, in, string;
2034 	unsigned port;
2035 
2036 	++vcpu->stat.io_exits;
2037 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2038 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2039 	port = io_info >> 16;
2040 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2041 
2042 	if (string) {
2043 		if (sev_es_guest(vcpu->kvm))
2044 			return sev_es_string_io(svm, size, port, in);
2045 		else
2046 			return kvm_emulate_instruction(vcpu, 0);
2047 	}
2048 
2049 	svm->next_rip = svm->vmcb->control.exit_info_2;
2050 
2051 	return kvm_fast_pio(vcpu, size, port, in);
2052 }
2053 
2054 static int nmi_interception(struct kvm_vcpu *vcpu)
2055 {
2056 	return 1;
2057 }
2058 
2059 static int smi_interception(struct kvm_vcpu *vcpu)
2060 {
2061 	return 1;
2062 }
2063 
2064 static int intr_interception(struct kvm_vcpu *vcpu)
2065 {
2066 	++vcpu->stat.irq_exits;
2067 	return 1;
2068 }
2069 
2070 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2071 {
2072 	struct vcpu_svm *svm = to_svm(vcpu);
2073 	struct vmcb *vmcb12;
2074 	struct kvm_host_map map;
2075 	int ret;
2076 
2077 	if (nested_svm_check_permissions(vcpu))
2078 		return 1;
2079 
2080 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2081 	if (ret) {
2082 		if (ret == -EINVAL)
2083 			kvm_inject_gp(vcpu, 0);
2084 		return 1;
2085 	}
2086 
2087 	vmcb12 = map.hva;
2088 
2089 	ret = kvm_skip_emulated_instruction(vcpu);
2090 
2091 	if (vmload) {
2092 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2093 		svm->sysenter_eip_hi = 0;
2094 		svm->sysenter_esp_hi = 0;
2095 	} else {
2096 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2097 	}
2098 
2099 	kvm_vcpu_unmap(vcpu, &map, true);
2100 
2101 	return ret;
2102 }
2103 
2104 static int vmload_interception(struct kvm_vcpu *vcpu)
2105 {
2106 	return vmload_vmsave_interception(vcpu, true);
2107 }
2108 
2109 static int vmsave_interception(struct kvm_vcpu *vcpu)
2110 {
2111 	return vmload_vmsave_interception(vcpu, false);
2112 }
2113 
2114 static int vmrun_interception(struct kvm_vcpu *vcpu)
2115 {
2116 	if (nested_svm_check_permissions(vcpu))
2117 		return 1;
2118 
2119 	return nested_svm_vmrun(vcpu);
2120 }
2121 
2122 enum {
2123 	NONE_SVM_INSTR,
2124 	SVM_INSTR_VMRUN,
2125 	SVM_INSTR_VMLOAD,
2126 	SVM_INSTR_VMSAVE,
2127 };
2128 
2129 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2130 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2131 {
2132 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2133 
2134 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2135 		return NONE_SVM_INSTR;
2136 
2137 	switch (ctxt->modrm) {
2138 	case 0xd8: /* VMRUN */
2139 		return SVM_INSTR_VMRUN;
2140 	case 0xda: /* VMLOAD */
2141 		return SVM_INSTR_VMLOAD;
2142 	case 0xdb: /* VMSAVE */
2143 		return SVM_INSTR_VMSAVE;
2144 	default:
2145 		break;
2146 	}
2147 
2148 	return NONE_SVM_INSTR;
2149 }
2150 
2151 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2152 {
2153 	const int guest_mode_exit_codes[] = {
2154 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2155 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2156 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2157 	};
2158 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2159 		[SVM_INSTR_VMRUN] = vmrun_interception,
2160 		[SVM_INSTR_VMLOAD] = vmload_interception,
2161 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2162 	};
2163 	struct vcpu_svm *svm = to_svm(vcpu);
2164 	int ret;
2165 
2166 	if (is_guest_mode(vcpu)) {
2167 		/* Returns '1' or -errno on failure, '0' on success. */
2168 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2169 		if (ret)
2170 			return ret;
2171 		return 1;
2172 	}
2173 	return svm_instr_handlers[opcode](vcpu);
2174 }
2175 
2176 /*
2177  * #GP handling code. Note that #GP can be triggered under the following two
2178  * cases:
2179  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2180  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2181  *      regions (e.g. SMM memory on host).
2182  *   2) VMware backdoor
2183  */
2184 static int gp_interception(struct kvm_vcpu *vcpu)
2185 {
2186 	struct vcpu_svm *svm = to_svm(vcpu);
2187 	u32 error_code = svm->vmcb->control.exit_info_1;
2188 	int opcode;
2189 
2190 	/* Both #GP cases have zero error_code */
2191 	if (error_code)
2192 		goto reinject;
2193 
2194 	/* Decode the instruction for usage later */
2195 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2196 		goto reinject;
2197 
2198 	opcode = svm_instr_opcode(vcpu);
2199 
2200 	if (opcode == NONE_SVM_INSTR) {
2201 		if (!enable_vmware_backdoor)
2202 			goto reinject;
2203 
2204 		/*
2205 		 * VMware backdoor emulation on #GP interception only handles
2206 		 * IN{S}, OUT{S}, and RDPMC.
2207 		 */
2208 		if (!is_guest_mode(vcpu))
2209 			return kvm_emulate_instruction(vcpu,
2210 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2211 	} else {
2212 		/* All SVM instructions expect page aligned RAX */
2213 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2214 			goto reinject;
2215 
2216 		return emulate_svm_instr(vcpu, opcode);
2217 	}
2218 
2219 reinject:
2220 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2221 	return 1;
2222 }
2223 
2224 void svm_set_gif(struct vcpu_svm *svm, bool value)
2225 {
2226 	if (value) {
2227 		/*
2228 		 * If VGIF is enabled, the STGI intercept is only added to
2229 		 * detect the opening of the SMI/NMI window; remove it now.
2230 		 * Likewise, clear the VINTR intercept, we will set it
2231 		 * again while processing KVM_REQ_EVENT if needed.
2232 		 */
2233 		if (vgif)
2234 			svm_clr_intercept(svm, INTERCEPT_STGI);
2235 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2236 			svm_clear_vintr(svm);
2237 
2238 		enable_gif(svm);
2239 		if (svm->vcpu.arch.smi_pending ||
2240 		    svm->vcpu.arch.nmi_pending ||
2241 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2242 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2243 	} else {
2244 		disable_gif(svm);
2245 
2246 		/*
2247 		 * After a CLGI no interrupts should come.  But if vGIF is
2248 		 * in use, we still rely on the VINTR intercept (rather than
2249 		 * STGI) to detect an open interrupt window.
2250 		*/
2251 		if (!vgif)
2252 			svm_clear_vintr(svm);
2253 	}
2254 }
2255 
2256 static int stgi_interception(struct kvm_vcpu *vcpu)
2257 {
2258 	int ret;
2259 
2260 	if (nested_svm_check_permissions(vcpu))
2261 		return 1;
2262 
2263 	ret = kvm_skip_emulated_instruction(vcpu);
2264 	svm_set_gif(to_svm(vcpu), true);
2265 	return ret;
2266 }
2267 
2268 static int clgi_interception(struct kvm_vcpu *vcpu)
2269 {
2270 	int ret;
2271 
2272 	if (nested_svm_check_permissions(vcpu))
2273 		return 1;
2274 
2275 	ret = kvm_skip_emulated_instruction(vcpu);
2276 	svm_set_gif(to_svm(vcpu), false);
2277 	return ret;
2278 }
2279 
2280 static int invlpga_interception(struct kvm_vcpu *vcpu)
2281 {
2282 	gva_t gva = kvm_rax_read(vcpu);
2283 	u32 asid = kvm_rcx_read(vcpu);
2284 
2285 	/* FIXME: Handle an address size prefix. */
2286 	if (!is_long_mode(vcpu))
2287 		gva = (u32)gva;
2288 
2289 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2290 
2291 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2292 	kvm_mmu_invlpg(vcpu, gva);
2293 
2294 	return kvm_skip_emulated_instruction(vcpu);
2295 }
2296 
2297 static int skinit_interception(struct kvm_vcpu *vcpu)
2298 {
2299 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2300 
2301 	kvm_queue_exception(vcpu, UD_VECTOR);
2302 	return 1;
2303 }
2304 
2305 static int task_switch_interception(struct kvm_vcpu *vcpu)
2306 {
2307 	struct vcpu_svm *svm = to_svm(vcpu);
2308 	u16 tss_selector;
2309 	int reason;
2310 	int int_type = svm->vmcb->control.exit_int_info &
2311 		SVM_EXITINTINFO_TYPE_MASK;
2312 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2313 	uint32_t type =
2314 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2315 	uint32_t idt_v =
2316 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2317 	bool has_error_code = false;
2318 	u32 error_code = 0;
2319 
2320 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2321 
2322 	if (svm->vmcb->control.exit_info_2 &
2323 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2324 		reason = TASK_SWITCH_IRET;
2325 	else if (svm->vmcb->control.exit_info_2 &
2326 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2327 		reason = TASK_SWITCH_JMP;
2328 	else if (idt_v)
2329 		reason = TASK_SWITCH_GATE;
2330 	else
2331 		reason = TASK_SWITCH_CALL;
2332 
2333 	if (reason == TASK_SWITCH_GATE) {
2334 		switch (type) {
2335 		case SVM_EXITINTINFO_TYPE_NMI:
2336 			vcpu->arch.nmi_injected = false;
2337 			break;
2338 		case SVM_EXITINTINFO_TYPE_EXEPT:
2339 			if (svm->vmcb->control.exit_info_2 &
2340 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2341 				has_error_code = true;
2342 				error_code =
2343 					(u32)svm->vmcb->control.exit_info_2;
2344 			}
2345 			kvm_clear_exception_queue(vcpu);
2346 			break;
2347 		case SVM_EXITINTINFO_TYPE_INTR:
2348 			kvm_clear_interrupt_queue(vcpu);
2349 			break;
2350 		default:
2351 			break;
2352 		}
2353 	}
2354 
2355 	if (reason != TASK_SWITCH_GATE ||
2356 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2357 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2358 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2359 		if (!svm_skip_emulated_instruction(vcpu))
2360 			return 0;
2361 	}
2362 
2363 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2364 		int_vec = -1;
2365 
2366 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2367 			       has_error_code, error_code);
2368 }
2369 
2370 static int iret_interception(struct kvm_vcpu *vcpu)
2371 {
2372 	struct vcpu_svm *svm = to_svm(vcpu);
2373 
2374 	++vcpu->stat.nmi_window_exits;
2375 	vcpu->arch.hflags |= HF_IRET_MASK;
2376 	if (!sev_es_guest(vcpu->kvm)) {
2377 		svm_clr_intercept(svm, INTERCEPT_IRET);
2378 		svm->nmi_iret_rip = kvm_rip_read(vcpu);
2379 	}
2380 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2381 	return 1;
2382 }
2383 
2384 static int invlpg_interception(struct kvm_vcpu *vcpu)
2385 {
2386 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2387 		return kvm_emulate_instruction(vcpu, 0);
2388 
2389 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2390 	return kvm_skip_emulated_instruction(vcpu);
2391 }
2392 
2393 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2394 {
2395 	return kvm_emulate_instruction(vcpu, 0);
2396 }
2397 
2398 static int rsm_interception(struct kvm_vcpu *vcpu)
2399 {
2400 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2401 }
2402 
2403 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2404 					    unsigned long val)
2405 {
2406 	struct vcpu_svm *svm = to_svm(vcpu);
2407 	unsigned long cr0 = vcpu->arch.cr0;
2408 	bool ret = false;
2409 
2410 	if (!is_guest_mode(vcpu) ||
2411 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2412 		return false;
2413 
2414 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2415 	val &= ~SVM_CR0_SELECTIVE_MASK;
2416 
2417 	if (cr0 ^ val) {
2418 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2419 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2420 	}
2421 
2422 	return ret;
2423 }
2424 
2425 #define CR_VALID (1ULL << 63)
2426 
2427 static int cr_interception(struct kvm_vcpu *vcpu)
2428 {
2429 	struct vcpu_svm *svm = to_svm(vcpu);
2430 	int reg, cr;
2431 	unsigned long val;
2432 	int err;
2433 
2434 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2435 		return emulate_on_interception(vcpu);
2436 
2437 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2438 		return emulate_on_interception(vcpu);
2439 
2440 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2441 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2442 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2443 	else
2444 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2445 
2446 	err = 0;
2447 	if (cr >= 16) { /* mov to cr */
2448 		cr -= 16;
2449 		val = kvm_register_read(vcpu, reg);
2450 		trace_kvm_cr_write(cr, val);
2451 		switch (cr) {
2452 		case 0:
2453 			if (!check_selective_cr0_intercepted(vcpu, val))
2454 				err = kvm_set_cr0(vcpu, val);
2455 			else
2456 				return 1;
2457 
2458 			break;
2459 		case 3:
2460 			err = kvm_set_cr3(vcpu, val);
2461 			break;
2462 		case 4:
2463 			err = kvm_set_cr4(vcpu, val);
2464 			break;
2465 		case 8:
2466 			err = kvm_set_cr8(vcpu, val);
2467 			break;
2468 		default:
2469 			WARN(1, "unhandled write to CR%d", cr);
2470 			kvm_queue_exception(vcpu, UD_VECTOR);
2471 			return 1;
2472 		}
2473 	} else { /* mov from cr */
2474 		switch (cr) {
2475 		case 0:
2476 			val = kvm_read_cr0(vcpu);
2477 			break;
2478 		case 2:
2479 			val = vcpu->arch.cr2;
2480 			break;
2481 		case 3:
2482 			val = kvm_read_cr3(vcpu);
2483 			break;
2484 		case 4:
2485 			val = kvm_read_cr4(vcpu);
2486 			break;
2487 		case 8:
2488 			val = kvm_get_cr8(vcpu);
2489 			break;
2490 		default:
2491 			WARN(1, "unhandled read from CR%d", cr);
2492 			kvm_queue_exception(vcpu, UD_VECTOR);
2493 			return 1;
2494 		}
2495 		kvm_register_write(vcpu, reg, val);
2496 		trace_kvm_cr_read(cr, val);
2497 	}
2498 	return kvm_complete_insn_gp(vcpu, err);
2499 }
2500 
2501 static int cr_trap(struct kvm_vcpu *vcpu)
2502 {
2503 	struct vcpu_svm *svm = to_svm(vcpu);
2504 	unsigned long old_value, new_value;
2505 	unsigned int cr;
2506 	int ret = 0;
2507 
2508 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2509 
2510 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2511 	switch (cr) {
2512 	case 0:
2513 		old_value = kvm_read_cr0(vcpu);
2514 		svm_set_cr0(vcpu, new_value);
2515 
2516 		kvm_post_set_cr0(vcpu, old_value, new_value);
2517 		break;
2518 	case 4:
2519 		old_value = kvm_read_cr4(vcpu);
2520 		svm_set_cr4(vcpu, new_value);
2521 
2522 		kvm_post_set_cr4(vcpu, old_value, new_value);
2523 		break;
2524 	case 8:
2525 		ret = kvm_set_cr8(vcpu, new_value);
2526 		break;
2527 	default:
2528 		WARN(1, "unhandled CR%d write trap", cr);
2529 		kvm_queue_exception(vcpu, UD_VECTOR);
2530 		return 1;
2531 	}
2532 
2533 	return kvm_complete_insn_gp(vcpu, ret);
2534 }
2535 
2536 static int dr_interception(struct kvm_vcpu *vcpu)
2537 {
2538 	struct vcpu_svm *svm = to_svm(vcpu);
2539 	int reg, dr;
2540 	unsigned long val;
2541 	int err = 0;
2542 
2543 	if (vcpu->guest_debug == 0) {
2544 		/*
2545 		 * No more DR vmexits; force a reload of the debug registers
2546 		 * and reenter on this instruction.  The next vmexit will
2547 		 * retrieve the full state of the debug registers.
2548 		 */
2549 		clr_dr_intercepts(svm);
2550 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2551 		return 1;
2552 	}
2553 
2554 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2555 		return emulate_on_interception(vcpu);
2556 
2557 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2558 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2559 	if (dr >= 16) { /* mov to DRn  */
2560 		dr -= 16;
2561 		val = kvm_register_read(vcpu, reg);
2562 		err = kvm_set_dr(vcpu, dr, val);
2563 	} else {
2564 		kvm_get_dr(vcpu, dr, &val);
2565 		kvm_register_write(vcpu, reg, val);
2566 	}
2567 
2568 	return kvm_complete_insn_gp(vcpu, err);
2569 }
2570 
2571 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2572 {
2573 	int r;
2574 
2575 	u8 cr8_prev = kvm_get_cr8(vcpu);
2576 	/* instruction emulation calls kvm_set_cr8() */
2577 	r = cr_interception(vcpu);
2578 	if (lapic_in_kernel(vcpu))
2579 		return r;
2580 	if (cr8_prev <= kvm_get_cr8(vcpu))
2581 		return r;
2582 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2583 	return 0;
2584 }
2585 
2586 static int efer_trap(struct kvm_vcpu *vcpu)
2587 {
2588 	struct msr_data msr_info;
2589 	int ret;
2590 
2591 	/*
2592 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2593 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2594 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2595 	 * the guest doesn't have X86_FEATURE_SVM.
2596 	 */
2597 	msr_info.host_initiated = false;
2598 	msr_info.index = MSR_EFER;
2599 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2600 	ret = kvm_set_msr_common(vcpu, &msr_info);
2601 
2602 	return kvm_complete_insn_gp(vcpu, ret);
2603 }
2604 
2605 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2606 {
2607 	msr->data = 0;
2608 
2609 	switch (msr->index) {
2610 	case MSR_F10H_DECFG:
2611 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2612 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2613 		break;
2614 	case MSR_IA32_PERF_CAPABILITIES:
2615 		return 0;
2616 	default:
2617 		return KVM_MSR_RET_INVALID;
2618 	}
2619 
2620 	return 0;
2621 }
2622 
2623 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2624 {
2625 	struct vcpu_svm *svm = to_svm(vcpu);
2626 
2627 	switch (msr_info->index) {
2628 	case MSR_AMD64_TSC_RATIO:
2629 		if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2630 			return 1;
2631 		msr_info->data = svm->tsc_ratio_msr;
2632 		break;
2633 	case MSR_STAR:
2634 		msr_info->data = svm->vmcb01.ptr->save.star;
2635 		break;
2636 #ifdef CONFIG_X86_64
2637 	case MSR_LSTAR:
2638 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2639 		break;
2640 	case MSR_CSTAR:
2641 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2642 		break;
2643 	case MSR_KERNEL_GS_BASE:
2644 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2645 		break;
2646 	case MSR_SYSCALL_MASK:
2647 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2648 		break;
2649 #endif
2650 	case MSR_IA32_SYSENTER_CS:
2651 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2652 		break;
2653 	case MSR_IA32_SYSENTER_EIP:
2654 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2655 		if (guest_cpuid_is_intel(vcpu))
2656 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2657 		break;
2658 	case MSR_IA32_SYSENTER_ESP:
2659 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2660 		if (guest_cpuid_is_intel(vcpu))
2661 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2662 		break;
2663 	case MSR_TSC_AUX:
2664 		msr_info->data = svm->tsc_aux;
2665 		break;
2666 	case MSR_IA32_DEBUGCTLMSR:
2667 	case MSR_IA32_LASTBRANCHFROMIP:
2668 	case MSR_IA32_LASTBRANCHTOIP:
2669 	case MSR_IA32_LASTINTFROMIP:
2670 	case MSR_IA32_LASTINTTOIP:
2671 		msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
2672 		break;
2673 	case MSR_VM_HSAVE_PA:
2674 		msr_info->data = svm->nested.hsave_msr;
2675 		break;
2676 	case MSR_VM_CR:
2677 		msr_info->data = svm->nested.vm_cr_msr;
2678 		break;
2679 	case MSR_IA32_SPEC_CTRL:
2680 		if (!msr_info->host_initiated &&
2681 		    !guest_has_spec_ctrl_msr(vcpu))
2682 			return 1;
2683 
2684 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2685 			msr_info->data = svm->vmcb->save.spec_ctrl;
2686 		else
2687 			msr_info->data = svm->spec_ctrl;
2688 		break;
2689 	case MSR_AMD64_VIRT_SPEC_CTRL:
2690 		if (!msr_info->host_initiated &&
2691 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2692 			return 1;
2693 
2694 		msr_info->data = svm->virt_spec_ctrl;
2695 		break;
2696 	case MSR_F15H_IC_CFG: {
2697 
2698 		int family, model;
2699 
2700 		family = guest_cpuid_family(vcpu);
2701 		model  = guest_cpuid_model(vcpu);
2702 
2703 		if (family < 0 || model < 0)
2704 			return kvm_get_msr_common(vcpu, msr_info);
2705 
2706 		msr_info->data = 0;
2707 
2708 		if (family == 0x15 &&
2709 		    (model >= 0x2 && model < 0x20))
2710 			msr_info->data = 0x1E;
2711 		}
2712 		break;
2713 	case MSR_F10H_DECFG:
2714 		msr_info->data = svm->msr_decfg;
2715 		break;
2716 	default:
2717 		return kvm_get_msr_common(vcpu, msr_info);
2718 	}
2719 	return 0;
2720 }
2721 
2722 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2723 {
2724 	struct vcpu_svm *svm = to_svm(vcpu);
2725 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2726 		return kvm_complete_insn_gp(vcpu, err);
2727 
2728 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2729 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2730 				X86_TRAP_GP |
2731 				SVM_EVTINJ_TYPE_EXEPT |
2732 				SVM_EVTINJ_VALID);
2733 	return 1;
2734 }
2735 
2736 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2737 {
2738 	struct vcpu_svm *svm = to_svm(vcpu);
2739 	int svm_dis, chg_mask;
2740 
2741 	if (data & ~SVM_VM_CR_VALID_MASK)
2742 		return 1;
2743 
2744 	chg_mask = SVM_VM_CR_VALID_MASK;
2745 
2746 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2747 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2748 
2749 	svm->nested.vm_cr_msr &= ~chg_mask;
2750 	svm->nested.vm_cr_msr |= (data & chg_mask);
2751 
2752 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2753 
2754 	/* check for svm_disable while efer.svme is set */
2755 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2756 		return 1;
2757 
2758 	return 0;
2759 }
2760 
2761 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2762 {
2763 	struct vcpu_svm *svm = to_svm(vcpu);
2764 	int r;
2765 
2766 	u32 ecx = msr->index;
2767 	u64 data = msr->data;
2768 	switch (ecx) {
2769 	case MSR_AMD64_TSC_RATIO:
2770 
2771 		if (!svm->tsc_scaling_enabled) {
2772 
2773 			if (!msr->host_initiated)
2774 				return 1;
2775 			/*
2776 			 * In case TSC scaling is not enabled, always
2777 			 * leave this MSR at the default value.
2778 			 *
2779 			 * Due to bug in qemu 6.2.0, it would try to set
2780 			 * this msr to 0 if tsc scaling is not enabled.
2781 			 * Ignore this value as well.
2782 			 */
2783 			if (data != 0 && data != svm->tsc_ratio_msr)
2784 				return 1;
2785 			break;
2786 		}
2787 
2788 		if (data & SVM_TSC_RATIO_RSVD)
2789 			return 1;
2790 
2791 		svm->tsc_ratio_msr = data;
2792 
2793 		if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2794 			nested_svm_update_tsc_ratio_msr(vcpu);
2795 
2796 		break;
2797 	case MSR_IA32_CR_PAT:
2798 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2799 			return 1;
2800 		vcpu->arch.pat = data;
2801 		svm->vmcb01.ptr->save.g_pat = data;
2802 		if (is_guest_mode(vcpu))
2803 			nested_vmcb02_compute_g_pat(svm);
2804 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2805 		break;
2806 	case MSR_IA32_SPEC_CTRL:
2807 		if (!msr->host_initiated &&
2808 		    !guest_has_spec_ctrl_msr(vcpu))
2809 			return 1;
2810 
2811 		if (kvm_spec_ctrl_test_value(data))
2812 			return 1;
2813 
2814 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2815 			svm->vmcb->save.spec_ctrl = data;
2816 		else
2817 			svm->spec_ctrl = data;
2818 		if (!data)
2819 			break;
2820 
2821 		/*
2822 		 * For non-nested:
2823 		 * When it's written (to non-zero) for the first time, pass
2824 		 * it through.
2825 		 *
2826 		 * For nested:
2827 		 * The handling of the MSR bitmap for L2 guests is done in
2828 		 * nested_svm_vmrun_msrpm.
2829 		 * We update the L1 MSR bit as well since it will end up
2830 		 * touching the MSR anyway now.
2831 		 */
2832 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2833 		break;
2834 	case MSR_IA32_PRED_CMD:
2835 		if (!msr->host_initiated &&
2836 		    !guest_has_pred_cmd_msr(vcpu))
2837 			return 1;
2838 
2839 		if (data & ~PRED_CMD_IBPB)
2840 			return 1;
2841 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2842 			return 1;
2843 		if (!data)
2844 			break;
2845 
2846 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2847 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2848 		break;
2849 	case MSR_AMD64_VIRT_SPEC_CTRL:
2850 		if (!msr->host_initiated &&
2851 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2852 			return 1;
2853 
2854 		if (data & ~SPEC_CTRL_SSBD)
2855 			return 1;
2856 
2857 		svm->virt_spec_ctrl = data;
2858 		break;
2859 	case MSR_STAR:
2860 		svm->vmcb01.ptr->save.star = data;
2861 		break;
2862 #ifdef CONFIG_X86_64
2863 	case MSR_LSTAR:
2864 		svm->vmcb01.ptr->save.lstar = data;
2865 		break;
2866 	case MSR_CSTAR:
2867 		svm->vmcb01.ptr->save.cstar = data;
2868 		break;
2869 	case MSR_KERNEL_GS_BASE:
2870 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2871 		break;
2872 	case MSR_SYSCALL_MASK:
2873 		svm->vmcb01.ptr->save.sfmask = data;
2874 		break;
2875 #endif
2876 	case MSR_IA32_SYSENTER_CS:
2877 		svm->vmcb01.ptr->save.sysenter_cs = data;
2878 		break;
2879 	case MSR_IA32_SYSENTER_EIP:
2880 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2881 		/*
2882 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2883 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2884 		 * In this case we use this intercept to track the high
2885 		 * 32 bit part of these msrs to support Intel's
2886 		 * implementation of SYSENTER/SYSEXIT.
2887 		 */
2888 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2889 		break;
2890 	case MSR_IA32_SYSENTER_ESP:
2891 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2892 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2893 		break;
2894 	case MSR_TSC_AUX:
2895 		/*
2896 		 * TSC_AUX is usually changed only during boot and never read
2897 		 * directly.  Intercept TSC_AUX instead of exposing it to the
2898 		 * guest via direct_access_msrs, and switch it via user return.
2899 		 */
2900 		preempt_disable();
2901 		r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2902 		preempt_enable();
2903 		if (r)
2904 			return 1;
2905 
2906 		svm->tsc_aux = data;
2907 		break;
2908 	case MSR_IA32_DEBUGCTLMSR:
2909 		if (!lbrv) {
2910 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2911 				    __func__, data);
2912 			break;
2913 		}
2914 		if (data & DEBUGCTL_RESERVED_BITS)
2915 			return 1;
2916 
2917 		if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
2918 			svm->vmcb->save.dbgctl = data;
2919 		else
2920 			svm->vmcb01.ptr->save.dbgctl = data;
2921 
2922 		svm_update_lbrv(vcpu);
2923 
2924 		break;
2925 	case MSR_VM_HSAVE_PA:
2926 		/*
2927 		 * Old kernels did not validate the value written to
2928 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
2929 		 * value to allow live migrating buggy or malicious guests
2930 		 * originating from those kernels.
2931 		 */
2932 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
2933 			return 1;
2934 
2935 		svm->nested.hsave_msr = data & PAGE_MASK;
2936 		break;
2937 	case MSR_VM_CR:
2938 		return svm_set_vm_cr(vcpu, data);
2939 	case MSR_VM_IGNNE:
2940 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2941 		break;
2942 	case MSR_F10H_DECFG: {
2943 		struct kvm_msr_entry msr_entry;
2944 
2945 		msr_entry.index = msr->index;
2946 		if (svm_get_msr_feature(&msr_entry))
2947 			return 1;
2948 
2949 		/* Check the supported bits */
2950 		if (data & ~msr_entry.data)
2951 			return 1;
2952 
2953 		/* Don't allow the guest to change a bit, #GP */
2954 		if (!msr->host_initiated && (data ^ msr_entry.data))
2955 			return 1;
2956 
2957 		svm->msr_decfg = data;
2958 		break;
2959 	}
2960 	default:
2961 		return kvm_set_msr_common(vcpu, msr);
2962 	}
2963 	return 0;
2964 }
2965 
2966 static int msr_interception(struct kvm_vcpu *vcpu)
2967 {
2968 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
2969 		return kvm_emulate_wrmsr(vcpu);
2970 	else
2971 		return kvm_emulate_rdmsr(vcpu);
2972 }
2973 
2974 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
2975 {
2976 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2977 	svm_clear_vintr(to_svm(vcpu));
2978 
2979 	/*
2980 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
2981 	 * In this case AVIC was temporarily disabled for
2982 	 * requesting the IRQ window and we have to re-enable it.
2983 	 *
2984 	 * If running nested, still remove the VM wide AVIC inhibit to
2985 	 * support case in which the interrupt window was requested when the
2986 	 * vCPU was not running nested.
2987 
2988 	 * All vCPUs which run still run nested, will remain to have their
2989 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
2990 	 */
2991 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
2992 
2993 	++vcpu->stat.irq_window_exits;
2994 	return 1;
2995 }
2996 
2997 static int pause_interception(struct kvm_vcpu *vcpu)
2998 {
2999 	bool in_kernel;
3000 	/*
3001 	 * CPL is not made available for an SEV-ES guest, therefore
3002 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3003 	 * set in_kernel to false as well.
3004 	 */
3005 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3006 
3007 	grow_ple_window(vcpu);
3008 
3009 	kvm_vcpu_on_spin(vcpu, in_kernel);
3010 	return kvm_skip_emulated_instruction(vcpu);
3011 }
3012 
3013 static int invpcid_interception(struct kvm_vcpu *vcpu)
3014 {
3015 	struct vcpu_svm *svm = to_svm(vcpu);
3016 	unsigned long type;
3017 	gva_t gva;
3018 
3019 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3020 		kvm_queue_exception(vcpu, UD_VECTOR);
3021 		return 1;
3022 	}
3023 
3024 	/*
3025 	 * For an INVPCID intercept:
3026 	 * EXITINFO1 provides the linear address of the memory operand.
3027 	 * EXITINFO2 provides the contents of the register operand.
3028 	 */
3029 	type = svm->vmcb->control.exit_info_2;
3030 	gva = svm->vmcb->control.exit_info_1;
3031 
3032 	return kvm_handle_invpcid(vcpu, type, gva);
3033 }
3034 
3035 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3036 	[SVM_EXIT_READ_CR0]			= cr_interception,
3037 	[SVM_EXIT_READ_CR3]			= cr_interception,
3038 	[SVM_EXIT_READ_CR4]			= cr_interception,
3039 	[SVM_EXIT_READ_CR8]			= cr_interception,
3040 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3041 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3042 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3043 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3044 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3045 	[SVM_EXIT_READ_DR0]			= dr_interception,
3046 	[SVM_EXIT_READ_DR1]			= dr_interception,
3047 	[SVM_EXIT_READ_DR2]			= dr_interception,
3048 	[SVM_EXIT_READ_DR3]			= dr_interception,
3049 	[SVM_EXIT_READ_DR4]			= dr_interception,
3050 	[SVM_EXIT_READ_DR5]			= dr_interception,
3051 	[SVM_EXIT_READ_DR6]			= dr_interception,
3052 	[SVM_EXIT_READ_DR7]			= dr_interception,
3053 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3054 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3055 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3056 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3057 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3058 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3059 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3060 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3061 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3062 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3063 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3064 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3065 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3066 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3067 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3068 	[SVM_EXIT_INTR]				= intr_interception,
3069 	[SVM_EXIT_NMI]				= nmi_interception,
3070 	[SVM_EXIT_SMI]				= smi_interception,
3071 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3072 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3073 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3074 	[SVM_EXIT_IRET]                         = iret_interception,
3075 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3076 	[SVM_EXIT_PAUSE]			= pause_interception,
3077 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3078 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3079 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3080 	[SVM_EXIT_IOIO]				= io_interception,
3081 	[SVM_EXIT_MSR]				= msr_interception,
3082 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3083 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3084 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3085 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3086 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3087 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3088 	[SVM_EXIT_STGI]				= stgi_interception,
3089 	[SVM_EXIT_CLGI]				= clgi_interception,
3090 	[SVM_EXIT_SKINIT]			= skinit_interception,
3091 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3092 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3093 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3094 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3095 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3096 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3097 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3098 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3099 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3100 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3101 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3102 	[SVM_EXIT_NPF]				= npf_interception,
3103 	[SVM_EXIT_RSM]                          = rsm_interception,
3104 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3105 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3106 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3107 };
3108 
3109 static void dump_vmcb(struct kvm_vcpu *vcpu)
3110 {
3111 	struct vcpu_svm *svm = to_svm(vcpu);
3112 	struct vmcb_control_area *control = &svm->vmcb->control;
3113 	struct vmcb_save_area *save = &svm->vmcb->save;
3114 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3115 
3116 	if (!dump_invalid_vmcb) {
3117 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3118 		return;
3119 	}
3120 
3121 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3122 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3123 	pr_err("VMCB Control Area:\n");
3124 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3125 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3126 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3127 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3128 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3129 	pr_err("%-20s%08x %08x\n", "intercepts:",
3130               control->intercepts[INTERCEPT_WORD3],
3131 	       control->intercepts[INTERCEPT_WORD4]);
3132 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3133 	pr_err("%-20s%d\n", "pause filter threshold:",
3134 	       control->pause_filter_thresh);
3135 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3136 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3137 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3138 	pr_err("%-20s%d\n", "asid:", control->asid);
3139 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3140 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3141 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3142 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3143 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3144 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3145 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3146 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3147 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3148 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3149 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3150 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3151 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3152 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3153 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3154 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3155 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3156 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3157 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3158 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3159 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3160 	pr_err("VMCB State Save Area:\n");
3161 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3162 	       "es:",
3163 	       save->es.selector, save->es.attrib,
3164 	       save->es.limit, save->es.base);
3165 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3166 	       "cs:",
3167 	       save->cs.selector, save->cs.attrib,
3168 	       save->cs.limit, save->cs.base);
3169 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3170 	       "ss:",
3171 	       save->ss.selector, save->ss.attrib,
3172 	       save->ss.limit, save->ss.base);
3173 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3174 	       "ds:",
3175 	       save->ds.selector, save->ds.attrib,
3176 	       save->ds.limit, save->ds.base);
3177 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3178 	       "fs:",
3179 	       save01->fs.selector, save01->fs.attrib,
3180 	       save01->fs.limit, save01->fs.base);
3181 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3182 	       "gs:",
3183 	       save01->gs.selector, save01->gs.attrib,
3184 	       save01->gs.limit, save01->gs.base);
3185 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3186 	       "gdtr:",
3187 	       save->gdtr.selector, save->gdtr.attrib,
3188 	       save->gdtr.limit, save->gdtr.base);
3189 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3190 	       "ldtr:",
3191 	       save01->ldtr.selector, save01->ldtr.attrib,
3192 	       save01->ldtr.limit, save01->ldtr.base);
3193 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3194 	       "idtr:",
3195 	       save->idtr.selector, save->idtr.attrib,
3196 	       save->idtr.limit, save->idtr.base);
3197 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3198 	       "tr:",
3199 	       save01->tr.selector, save01->tr.attrib,
3200 	       save01->tr.limit, save01->tr.base);
3201 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3202 	       save->vmpl, save->cpl, save->efer);
3203 	pr_err("%-15s %016llx %-13s %016llx\n",
3204 	       "cr0:", save->cr0, "cr2:", save->cr2);
3205 	pr_err("%-15s %016llx %-13s %016llx\n",
3206 	       "cr3:", save->cr3, "cr4:", save->cr4);
3207 	pr_err("%-15s %016llx %-13s %016llx\n",
3208 	       "dr6:", save->dr6, "dr7:", save->dr7);
3209 	pr_err("%-15s %016llx %-13s %016llx\n",
3210 	       "rip:", save->rip, "rflags:", save->rflags);
3211 	pr_err("%-15s %016llx %-13s %016llx\n",
3212 	       "rsp:", save->rsp, "rax:", save->rax);
3213 	pr_err("%-15s %016llx %-13s %016llx\n",
3214 	       "star:", save01->star, "lstar:", save01->lstar);
3215 	pr_err("%-15s %016llx %-13s %016llx\n",
3216 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3217 	pr_err("%-15s %016llx %-13s %016llx\n",
3218 	       "kernel_gs_base:", save01->kernel_gs_base,
3219 	       "sysenter_cs:", save01->sysenter_cs);
3220 	pr_err("%-15s %016llx %-13s %016llx\n",
3221 	       "sysenter_esp:", save01->sysenter_esp,
3222 	       "sysenter_eip:", save01->sysenter_eip);
3223 	pr_err("%-15s %016llx %-13s %016llx\n",
3224 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3225 	pr_err("%-15s %016llx %-13s %016llx\n",
3226 	       "br_from:", save->br_from, "br_to:", save->br_to);
3227 	pr_err("%-15s %016llx %-13s %016llx\n",
3228 	       "excp_from:", save->last_excp_from,
3229 	       "excp_to:", save->last_excp_to);
3230 }
3231 
3232 static bool svm_check_exit_valid(u64 exit_code)
3233 {
3234 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3235 		svm_exit_handlers[exit_code]);
3236 }
3237 
3238 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3239 {
3240 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3241 	dump_vmcb(vcpu);
3242 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3243 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3244 	vcpu->run->internal.ndata = 2;
3245 	vcpu->run->internal.data[0] = exit_code;
3246 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3247 	return 0;
3248 }
3249 
3250 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3251 {
3252 	if (!svm_check_exit_valid(exit_code))
3253 		return svm_handle_invalid_exit(vcpu, exit_code);
3254 
3255 #ifdef CONFIG_RETPOLINE
3256 	if (exit_code == SVM_EXIT_MSR)
3257 		return msr_interception(vcpu);
3258 	else if (exit_code == SVM_EXIT_VINTR)
3259 		return interrupt_window_interception(vcpu);
3260 	else if (exit_code == SVM_EXIT_INTR)
3261 		return intr_interception(vcpu);
3262 	else if (exit_code == SVM_EXIT_HLT)
3263 		return kvm_emulate_halt(vcpu);
3264 	else if (exit_code == SVM_EXIT_NPF)
3265 		return npf_interception(vcpu);
3266 #endif
3267 	return svm_exit_handlers[exit_code](vcpu);
3268 }
3269 
3270 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3271 			      u64 *info1, u64 *info2,
3272 			      u32 *intr_info, u32 *error_code)
3273 {
3274 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3275 
3276 	*reason = control->exit_code;
3277 	*info1 = control->exit_info_1;
3278 	*info2 = control->exit_info_2;
3279 	*intr_info = control->exit_int_info;
3280 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3281 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3282 		*error_code = control->exit_int_info_err;
3283 	else
3284 		*error_code = 0;
3285 }
3286 
3287 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3288 {
3289 	struct vcpu_svm *svm = to_svm(vcpu);
3290 	struct kvm_run *kvm_run = vcpu->run;
3291 	u32 exit_code = svm->vmcb->control.exit_code;
3292 
3293 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
3294 
3295 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3296 	if (!sev_es_guest(vcpu->kvm)) {
3297 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3298 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3299 		if (npt_enabled)
3300 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3301 	}
3302 
3303 	if (is_guest_mode(vcpu)) {
3304 		int vmexit;
3305 
3306 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3307 
3308 		vmexit = nested_svm_exit_special(svm);
3309 
3310 		if (vmexit == NESTED_EXIT_CONTINUE)
3311 			vmexit = nested_svm_exit_handled(svm);
3312 
3313 		if (vmexit == NESTED_EXIT_DONE)
3314 			return 1;
3315 	}
3316 
3317 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3318 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3319 		kvm_run->fail_entry.hardware_entry_failure_reason
3320 			= svm->vmcb->control.exit_code;
3321 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3322 		dump_vmcb(vcpu);
3323 		return 0;
3324 	}
3325 
3326 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3327 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3328 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3329 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3330 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3331 		       "exit_code 0x%x\n",
3332 		       __func__, svm->vmcb->control.exit_int_info,
3333 		       exit_code);
3334 
3335 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3336 		return 1;
3337 
3338 	return svm_invoke_exit_handler(vcpu, exit_code);
3339 }
3340 
3341 static void reload_tss(struct kvm_vcpu *vcpu)
3342 {
3343 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3344 
3345 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3346 	load_TR_desc();
3347 }
3348 
3349 static void pre_svm_run(struct kvm_vcpu *vcpu)
3350 {
3351 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3352 	struct vcpu_svm *svm = to_svm(vcpu);
3353 
3354 	/*
3355 	 * If the previous vmrun of the vmcb occurred on a different physical
3356 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3357 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3358 	 */
3359 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3360 		svm->current_vmcb->asid_generation = 0;
3361 		vmcb_mark_all_dirty(svm->vmcb);
3362 		svm->current_vmcb->cpu = vcpu->cpu;
3363         }
3364 
3365 	if (sev_guest(vcpu->kvm))
3366 		return pre_sev_run(svm, vcpu->cpu);
3367 
3368 	/* FIXME: handle wraparound of asid_generation */
3369 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3370 		new_asid(svm, sd);
3371 }
3372 
3373 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3374 {
3375 	struct vcpu_svm *svm = to_svm(vcpu);
3376 
3377 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3378 	vcpu->arch.hflags |= HF_NMI_MASK;
3379 	if (!sev_es_guest(vcpu->kvm))
3380 		svm_set_intercept(svm, INTERCEPT_IRET);
3381 	++vcpu->stat.nmi_injections;
3382 }
3383 
3384 static void svm_inject_irq(struct kvm_vcpu *vcpu)
3385 {
3386 	struct vcpu_svm *svm = to_svm(vcpu);
3387 
3388 	BUG_ON(!(gif_set(svm)));
3389 
3390 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3391 	++vcpu->stat.irq_injections;
3392 
3393 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3394 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3395 }
3396 
3397 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3398 				     int trig_mode, int vector)
3399 {
3400 	/*
3401 	 * vcpu->arch.apicv_active must be read after vcpu->mode.
3402 	 * Pairs with smp_store_release in vcpu_enter_guest.
3403 	 */
3404 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3405 
3406 	if (!READ_ONCE(vcpu->arch.apicv_active)) {
3407 		/* Process the interrupt via inject_pending_event */
3408 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3409 		kvm_vcpu_kick(vcpu);
3410 		return;
3411 	}
3412 
3413 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3414 	if (in_guest_mode) {
3415 		/*
3416 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3417 		 * the vCPU exits the guest before the doorbell chimes, hardware
3418 		 * will automatically process AVIC interrupts at the next VMRUN.
3419 		 */
3420 		avic_ring_doorbell(vcpu);
3421 	} else {
3422 		/*
3423 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3424 		 * pending IRQ when checking if the vCPU has a wake event.
3425 		 */
3426 		kvm_vcpu_wake_up(vcpu);
3427 	}
3428 }
3429 
3430 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3431 				  int trig_mode, int vector)
3432 {
3433 	kvm_lapic_set_irr(vector, apic);
3434 
3435 	/*
3436 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3437 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3438 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3439 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3440 	 * will signal the doorbell if the CPU has already entered the guest.
3441 	 */
3442 	smp_mb__after_atomic();
3443 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3444 }
3445 
3446 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3447 {
3448 	struct vcpu_svm *svm = to_svm(vcpu);
3449 
3450 	/*
3451 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3452 	 * tracking is done using the CR write traps.
3453 	 */
3454 	if (sev_es_guest(vcpu->kvm))
3455 		return;
3456 
3457 	if (nested_svm_virtualize_tpr(vcpu))
3458 		return;
3459 
3460 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3461 
3462 	if (irr == -1)
3463 		return;
3464 
3465 	if (tpr >= irr)
3466 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3467 }
3468 
3469 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3470 {
3471 	struct vcpu_svm *svm = to_svm(vcpu);
3472 	struct vmcb *vmcb = svm->vmcb;
3473 	bool ret;
3474 
3475 	if (!gif_set(svm))
3476 		return true;
3477 
3478 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3479 		return false;
3480 
3481 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3482 	      (vcpu->arch.hflags & HF_NMI_MASK);
3483 
3484 	return ret;
3485 }
3486 
3487 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3488 {
3489 	struct vcpu_svm *svm = to_svm(vcpu);
3490 	if (svm->nested.nested_run_pending)
3491 		return -EBUSY;
3492 
3493 	if (svm_nmi_blocked(vcpu))
3494 		return 0;
3495 
3496 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3497 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3498 		return -EBUSY;
3499 	return 1;
3500 }
3501 
3502 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3503 {
3504 	return !!(vcpu->arch.hflags & HF_NMI_MASK);
3505 }
3506 
3507 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3508 {
3509 	struct vcpu_svm *svm = to_svm(vcpu);
3510 
3511 	if (masked) {
3512 		vcpu->arch.hflags |= HF_NMI_MASK;
3513 		if (!sev_es_guest(vcpu->kvm))
3514 			svm_set_intercept(svm, INTERCEPT_IRET);
3515 	} else {
3516 		vcpu->arch.hflags &= ~HF_NMI_MASK;
3517 		if (!sev_es_guest(vcpu->kvm))
3518 			svm_clr_intercept(svm, INTERCEPT_IRET);
3519 	}
3520 }
3521 
3522 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3523 {
3524 	struct vcpu_svm *svm = to_svm(vcpu);
3525 	struct vmcb *vmcb = svm->vmcb;
3526 
3527 	if (!gif_set(svm))
3528 		return true;
3529 
3530 	if (is_guest_mode(vcpu)) {
3531 		/* As long as interrupts are being delivered...  */
3532 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3533 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3534 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3535 			return true;
3536 
3537 		/* ... vmexits aren't blocked by the interrupt shadow  */
3538 		if (nested_exit_on_intr(svm))
3539 			return false;
3540 	} else {
3541 		if (!svm_get_if_flag(vcpu))
3542 			return true;
3543 	}
3544 
3545 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3546 }
3547 
3548 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3549 {
3550 	struct vcpu_svm *svm = to_svm(vcpu);
3551 
3552 	if (svm->nested.nested_run_pending)
3553 		return -EBUSY;
3554 
3555 	if (svm_interrupt_blocked(vcpu))
3556 		return 0;
3557 
3558 	/*
3559 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3560 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3561 	 */
3562 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3563 		return -EBUSY;
3564 
3565 	return 1;
3566 }
3567 
3568 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3569 {
3570 	struct vcpu_svm *svm = to_svm(vcpu);
3571 
3572 	/*
3573 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3574 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3575 	 * get that intercept, this function will be called again though and
3576 	 * we'll get the vintr intercept. However, if the vGIF feature is
3577 	 * enabled, the STGI interception will not occur. Enable the irq
3578 	 * window under the assumption that the hardware will set the GIF.
3579 	 */
3580 	if (vgif || gif_set(svm)) {
3581 		/*
3582 		 * IRQ window is not needed when AVIC is enabled,
3583 		 * unless we have pending ExtINT since it cannot be injected
3584 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3585 		 * and fallback to injecting IRQ via V_IRQ.
3586 		 *
3587 		 * If running nested, AVIC is already locally inhibited
3588 		 * on this vCPU, therefore there is no need to request
3589 		 * the VM wide AVIC inhibition.
3590 		 */
3591 		if (!is_guest_mode(vcpu))
3592 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3593 
3594 		svm_set_vintr(svm);
3595 	}
3596 }
3597 
3598 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3599 {
3600 	struct vcpu_svm *svm = to_svm(vcpu);
3601 
3602 	if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3603 		return; /* IRET will cause a vm exit */
3604 
3605 	if (!gif_set(svm)) {
3606 		if (vgif)
3607 			svm_set_intercept(svm, INTERCEPT_STGI);
3608 		return; /* STGI will cause a vm exit */
3609 	}
3610 
3611 	/*
3612 	 * Something prevents NMI from been injected. Single step over possible
3613 	 * problem (IRET or exception injection or interrupt shadow)
3614 	 */
3615 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3616 	svm->nmi_singlestep = true;
3617 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3618 }
3619 
3620 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3621 {
3622 	struct vcpu_svm *svm = to_svm(vcpu);
3623 
3624 	/*
3625 	 * Flush only the current ASID even if the TLB flush was invoked via
3626 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3627 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3628 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3629 	 * VM-Exit (via kvm_mmu_reset_context()).
3630 	 */
3631 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3632 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3633 	else
3634 		svm->current_vmcb->asid_generation--;
3635 }
3636 
3637 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3638 {
3639 	struct vcpu_svm *svm = to_svm(vcpu);
3640 
3641 	invlpga(gva, svm->vmcb->control.asid);
3642 }
3643 
3644 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3645 {
3646 	struct vcpu_svm *svm = to_svm(vcpu);
3647 
3648 	if (nested_svm_virtualize_tpr(vcpu))
3649 		return;
3650 
3651 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3652 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3653 		kvm_set_cr8(vcpu, cr8);
3654 	}
3655 }
3656 
3657 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3658 {
3659 	struct vcpu_svm *svm = to_svm(vcpu);
3660 	u64 cr8;
3661 
3662 	if (nested_svm_virtualize_tpr(vcpu) ||
3663 	    kvm_vcpu_apicv_active(vcpu))
3664 		return;
3665 
3666 	cr8 = kvm_get_cr8(vcpu);
3667 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3668 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3669 }
3670 
3671 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3672 {
3673 	struct vcpu_svm *svm = to_svm(vcpu);
3674 	u8 vector;
3675 	int type;
3676 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3677 	unsigned int3_injected = svm->int3_injected;
3678 
3679 	svm->int3_injected = 0;
3680 
3681 	/*
3682 	 * If we've made progress since setting HF_IRET_MASK, we've
3683 	 * executed an IRET and can allow NMI injection.
3684 	 */
3685 	if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3686 	    (sev_es_guest(vcpu->kvm) ||
3687 	     kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3688 		vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3689 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3690 	}
3691 
3692 	vcpu->arch.nmi_injected = false;
3693 	kvm_clear_exception_queue(vcpu);
3694 	kvm_clear_interrupt_queue(vcpu);
3695 
3696 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3697 		return;
3698 
3699 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3700 
3701 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3702 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3703 
3704 	switch (type) {
3705 	case SVM_EXITINTINFO_TYPE_NMI:
3706 		vcpu->arch.nmi_injected = true;
3707 		break;
3708 	case SVM_EXITINTINFO_TYPE_EXEPT:
3709 		/*
3710 		 * Never re-inject a #VC exception.
3711 		 */
3712 		if (vector == X86_TRAP_VC)
3713 			break;
3714 
3715 		/*
3716 		 * In case of software exceptions, do not reinject the vector,
3717 		 * but re-execute the instruction instead. Rewind RIP first
3718 		 * if we emulated INT3 before.
3719 		 */
3720 		if (kvm_exception_is_soft(vector)) {
3721 			if (vector == BP_VECTOR && int3_injected &&
3722 			    kvm_is_linear_rip(vcpu, svm->int3_rip))
3723 				kvm_rip_write(vcpu,
3724 					      kvm_rip_read(vcpu) - int3_injected);
3725 			break;
3726 		}
3727 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3728 			u32 err = svm->vmcb->control.exit_int_info_err;
3729 			kvm_requeue_exception_e(vcpu, vector, err);
3730 
3731 		} else
3732 			kvm_requeue_exception(vcpu, vector);
3733 		break;
3734 	case SVM_EXITINTINFO_TYPE_INTR:
3735 		kvm_queue_interrupt(vcpu, vector, false);
3736 		break;
3737 	default:
3738 		break;
3739 	}
3740 }
3741 
3742 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3743 {
3744 	struct vcpu_svm *svm = to_svm(vcpu);
3745 	struct vmcb_control_area *control = &svm->vmcb->control;
3746 
3747 	control->exit_int_info = control->event_inj;
3748 	control->exit_int_info_err = control->event_inj_err;
3749 	control->event_inj = 0;
3750 	svm_complete_interrupts(vcpu);
3751 }
3752 
3753 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3754 {
3755 	return 1;
3756 }
3757 
3758 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3759 {
3760 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3761 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3762 		return handle_fastpath_set_msr_irqoff(vcpu);
3763 
3764 	return EXIT_FASTPATH_NONE;
3765 }
3766 
3767 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3768 {
3769 	struct vcpu_svm *svm = to_svm(vcpu);
3770 	unsigned long vmcb_pa = svm->current_vmcb->pa;
3771 
3772 	guest_state_enter_irqoff();
3773 
3774 	if (sev_es_guest(vcpu->kvm)) {
3775 		__svm_sev_es_vcpu_run(vmcb_pa);
3776 	} else {
3777 		struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3778 
3779 		/*
3780 		 * Use a single vmcb (vmcb01 because it's always valid) for
3781 		 * context switching guest state via VMLOAD/VMSAVE, that way
3782 		 * the state doesn't need to be copied between vmcb01 and
3783 		 * vmcb02 when switching vmcbs for nested virtualization.
3784 		 */
3785 		vmload(svm->vmcb01.pa);
3786 		__svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3787 		vmsave(svm->vmcb01.pa);
3788 
3789 		vmload(__sme_page_pa(sd->save_area));
3790 	}
3791 
3792 	guest_state_exit_irqoff();
3793 }
3794 
3795 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3796 {
3797 	struct vcpu_svm *svm = to_svm(vcpu);
3798 
3799 	trace_kvm_entry(vcpu);
3800 
3801 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3802 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3803 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3804 
3805 	/*
3806 	 * Disable singlestep if we're injecting an interrupt/exception.
3807 	 * We don't want our modified rflags to be pushed on the stack where
3808 	 * we might not be able to easily reset them if we disabled NMI
3809 	 * singlestep later.
3810 	 */
3811 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3812 		/*
3813 		 * Event injection happens before external interrupts cause a
3814 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3815 		 * is enough to force an immediate vmexit.
3816 		 */
3817 		disable_nmi_singlestep(svm);
3818 		smp_send_reschedule(vcpu->cpu);
3819 	}
3820 
3821 	pre_svm_run(vcpu);
3822 
3823 	sync_lapic_to_cr8(vcpu);
3824 
3825 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3826 		svm->vmcb->control.asid = svm->asid;
3827 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3828 	}
3829 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3830 
3831 	svm_hv_update_vp_id(svm->vmcb, vcpu);
3832 
3833 	/*
3834 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3835 	 * of a #DB.
3836 	 */
3837 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3838 		svm_set_dr6(svm, vcpu->arch.dr6);
3839 	else
3840 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
3841 
3842 	clgi();
3843 	kvm_load_guest_xsave_state(vcpu);
3844 
3845 	kvm_wait_lapic_expire(vcpu);
3846 
3847 	/*
3848 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3849 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3850 	 * is no need to worry about the conditional branch over the wrmsr
3851 	 * being speculatively taken.
3852 	 */
3853 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3854 		x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3855 
3856 	svm_vcpu_enter_exit(vcpu);
3857 
3858 	/*
3859 	 * We do not use IBRS in the kernel. If this vCPU has used the
3860 	 * SPEC_CTRL MSR it may have left it on; save the value and
3861 	 * turn it off. This is much more efficient than blindly adding
3862 	 * it to the atomic save/restore list. Especially as the former
3863 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3864 	 *
3865 	 * For non-nested case:
3866 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3867 	 * save it.
3868 	 *
3869 	 * For nested case:
3870 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3871 	 * save it.
3872 	 */
3873 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
3874 	    unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3875 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3876 
3877 	if (!sev_es_guest(vcpu->kvm))
3878 		reload_tss(vcpu);
3879 
3880 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3881 		x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3882 
3883 	if (!sev_es_guest(vcpu->kvm)) {
3884 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
3885 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3886 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3887 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3888 	}
3889 	vcpu->arch.regs_dirty = 0;
3890 
3891 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3892 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
3893 
3894 	kvm_load_host_xsave_state(vcpu);
3895 	stgi();
3896 
3897 	/* Any pending NMI will happen here */
3898 
3899 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3900 		kvm_after_interrupt(vcpu);
3901 
3902 	sync_cr8_to_lapic(vcpu);
3903 
3904 	svm->next_rip = 0;
3905 	if (is_guest_mode(vcpu)) {
3906 		nested_sync_control_from_vmcb02(svm);
3907 
3908 		/* Track VMRUNs that have made past consistency checking */
3909 		if (svm->nested.nested_run_pending &&
3910 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
3911                         ++vcpu->stat.nested_run;
3912 
3913 		svm->nested.nested_run_pending = 0;
3914 	}
3915 
3916 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3917 	vmcb_mark_all_clean(svm->vmcb);
3918 
3919 	/* if exit due to PF check for async PF */
3920 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3921 		vcpu->arch.apf.host_apf_flags =
3922 			kvm_read_and_reset_apf_flags();
3923 
3924 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
3925 
3926 	/*
3927 	 * We need to handle MC intercepts here before the vcpu has a chance to
3928 	 * change the physical cpu
3929 	 */
3930 	if (unlikely(svm->vmcb->control.exit_code ==
3931 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3932 		svm_handle_mce(vcpu);
3933 
3934 	svm_complete_interrupts(vcpu);
3935 
3936 	if (is_guest_mode(vcpu))
3937 		return EXIT_FASTPATH_NONE;
3938 
3939 	return svm_exit_handlers_fastpath(vcpu);
3940 }
3941 
3942 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3943 			     int root_level)
3944 {
3945 	struct vcpu_svm *svm = to_svm(vcpu);
3946 	unsigned long cr3;
3947 
3948 	if (npt_enabled) {
3949 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
3950 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3951 
3952 		hv_track_root_tdp(vcpu, root_hpa);
3953 
3954 		cr3 = vcpu->arch.cr3;
3955 	} else if (vcpu->arch.mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3956 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
3957 	} else {
3958 		/* PCID in the guest should be impossible with a 32-bit MMU. */
3959 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
3960 		cr3 = root_hpa;
3961 	}
3962 
3963 	svm->vmcb->save.cr3 = cr3;
3964 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3965 }
3966 
3967 static int is_disabled(void)
3968 {
3969 	u64 vm_cr;
3970 
3971 	rdmsrl(MSR_VM_CR, vm_cr);
3972 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3973 		return 1;
3974 
3975 	return 0;
3976 }
3977 
3978 static void
3979 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3980 {
3981 	/*
3982 	 * Patch in the VMMCALL instruction:
3983 	 */
3984 	hypercall[0] = 0x0f;
3985 	hypercall[1] = 0x01;
3986 	hypercall[2] = 0xd9;
3987 }
3988 
3989 static int __init svm_check_processor_compat(void)
3990 {
3991 	return 0;
3992 }
3993 
3994 /*
3995  * The kvm parameter can be NULL (module initialization, or invocation before
3996  * VM creation). Be sure to check the kvm parameter before using it.
3997  */
3998 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3999 {
4000 	switch (index) {
4001 	case MSR_IA32_MCG_EXT_CTL:
4002 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4003 		return false;
4004 	case MSR_IA32_SMBASE:
4005 		/* SEV-ES guests do not support SMM, so report false */
4006 		if (kvm && sev_es_guest(kvm))
4007 			return false;
4008 		break;
4009 	default:
4010 		break;
4011 	}
4012 
4013 	return true;
4014 }
4015 
4016 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4017 {
4018 	return 0;
4019 }
4020 
4021 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4022 {
4023 	struct vcpu_svm *svm = to_svm(vcpu);
4024 	struct kvm_cpuid_entry2 *best;
4025 	struct kvm *kvm = vcpu->kvm;
4026 
4027 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4028 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
4029 				    boot_cpu_has(X86_FEATURE_XSAVES);
4030 
4031 	/* Update nrips enabled cache */
4032 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4033 			     guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4034 
4035 	svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4036 	svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
4037 
4038 	svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4039 
4040 	svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
4041 			guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
4042 
4043 	svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
4044 			guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
4045 
4046 	svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF);
4047 
4048 	svm_recalc_instruction_intercepts(vcpu, svm);
4049 
4050 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4051 	if (sev_guest(vcpu->kvm)) {
4052 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
4053 		if (best)
4054 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4055 	}
4056 
4057 	if (kvm_vcpu_apicv_active(vcpu)) {
4058 		/*
4059 		 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
4060 		 * is exposed to the guest, disable AVIC.
4061 		 */
4062 		if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
4063 			kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_X2APIC);
4064 	}
4065 	init_vmcb_after_set_cpuid(vcpu);
4066 }
4067 
4068 static bool svm_has_wbinvd_exit(void)
4069 {
4070 	return true;
4071 }
4072 
4073 #define PRE_EX(exit)  { .exit_code = (exit), \
4074 			.stage = X86_ICPT_PRE_EXCEPT, }
4075 #define POST_EX(exit) { .exit_code = (exit), \
4076 			.stage = X86_ICPT_POST_EXCEPT, }
4077 #define POST_MEM(exit) { .exit_code = (exit), \
4078 			.stage = X86_ICPT_POST_MEMACCESS, }
4079 
4080 static const struct __x86_intercept {
4081 	u32 exit_code;
4082 	enum x86_intercept_stage stage;
4083 } x86_intercept_map[] = {
4084 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4085 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4086 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4087 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4088 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4089 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4090 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4091 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4092 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4093 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4094 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4095 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4096 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4097 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4098 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4099 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4100 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4101 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4102 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4103 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4104 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4105 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4106 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4107 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4108 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4109 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4110 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4111 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4112 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4113 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4114 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4115 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4116 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4117 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4118 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4119 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4120 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4121 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4122 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4123 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4124 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4125 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4126 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4127 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4128 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4129 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4130 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4131 };
4132 
4133 #undef PRE_EX
4134 #undef POST_EX
4135 #undef POST_MEM
4136 
4137 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4138 			       struct x86_instruction_info *info,
4139 			       enum x86_intercept_stage stage,
4140 			       struct x86_exception *exception)
4141 {
4142 	struct vcpu_svm *svm = to_svm(vcpu);
4143 	int vmexit, ret = X86EMUL_CONTINUE;
4144 	struct __x86_intercept icpt_info;
4145 	struct vmcb *vmcb = svm->vmcb;
4146 
4147 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4148 		goto out;
4149 
4150 	icpt_info = x86_intercept_map[info->intercept];
4151 
4152 	if (stage != icpt_info.stage)
4153 		goto out;
4154 
4155 	switch (icpt_info.exit_code) {
4156 	case SVM_EXIT_READ_CR0:
4157 		if (info->intercept == x86_intercept_cr_read)
4158 			icpt_info.exit_code += info->modrm_reg;
4159 		break;
4160 	case SVM_EXIT_WRITE_CR0: {
4161 		unsigned long cr0, val;
4162 
4163 		if (info->intercept == x86_intercept_cr_write)
4164 			icpt_info.exit_code += info->modrm_reg;
4165 
4166 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4167 		    info->intercept == x86_intercept_clts)
4168 			break;
4169 
4170 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4171 					INTERCEPT_SELECTIVE_CR0)))
4172 			break;
4173 
4174 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4175 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4176 
4177 		if (info->intercept == x86_intercept_lmsw) {
4178 			cr0 &= 0xfUL;
4179 			val &= 0xfUL;
4180 			/* lmsw can't clear PE - catch this here */
4181 			if (cr0 & X86_CR0_PE)
4182 				val |= X86_CR0_PE;
4183 		}
4184 
4185 		if (cr0 ^ val)
4186 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4187 
4188 		break;
4189 	}
4190 	case SVM_EXIT_READ_DR0:
4191 	case SVM_EXIT_WRITE_DR0:
4192 		icpt_info.exit_code += info->modrm_reg;
4193 		break;
4194 	case SVM_EXIT_MSR:
4195 		if (info->intercept == x86_intercept_wrmsr)
4196 			vmcb->control.exit_info_1 = 1;
4197 		else
4198 			vmcb->control.exit_info_1 = 0;
4199 		break;
4200 	case SVM_EXIT_PAUSE:
4201 		/*
4202 		 * We get this for NOP only, but pause
4203 		 * is rep not, check this here
4204 		 */
4205 		if (info->rep_prefix != REPE_PREFIX)
4206 			goto out;
4207 		break;
4208 	case SVM_EXIT_IOIO: {
4209 		u64 exit_info;
4210 		u32 bytes;
4211 
4212 		if (info->intercept == x86_intercept_in ||
4213 		    info->intercept == x86_intercept_ins) {
4214 			exit_info = ((info->src_val & 0xffff) << 16) |
4215 				SVM_IOIO_TYPE_MASK;
4216 			bytes = info->dst_bytes;
4217 		} else {
4218 			exit_info = (info->dst_val & 0xffff) << 16;
4219 			bytes = info->src_bytes;
4220 		}
4221 
4222 		if (info->intercept == x86_intercept_outs ||
4223 		    info->intercept == x86_intercept_ins)
4224 			exit_info |= SVM_IOIO_STR_MASK;
4225 
4226 		if (info->rep_prefix)
4227 			exit_info |= SVM_IOIO_REP_MASK;
4228 
4229 		bytes = min(bytes, 4u);
4230 
4231 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4232 
4233 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4234 
4235 		vmcb->control.exit_info_1 = exit_info;
4236 		vmcb->control.exit_info_2 = info->next_rip;
4237 
4238 		break;
4239 	}
4240 	default:
4241 		break;
4242 	}
4243 
4244 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4245 	if (static_cpu_has(X86_FEATURE_NRIPS))
4246 		vmcb->control.next_rip  = info->next_rip;
4247 	vmcb->control.exit_code = icpt_info.exit_code;
4248 	vmexit = nested_svm_exit_handled(svm);
4249 
4250 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4251 					   : X86EMUL_CONTINUE;
4252 
4253 out:
4254 	return ret;
4255 }
4256 
4257 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4258 {
4259 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4260 		vcpu->arch.at_instruction_boundary = true;
4261 }
4262 
4263 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4264 {
4265 	if (!kvm_pause_in_guest(vcpu->kvm))
4266 		shrink_ple_window(vcpu);
4267 }
4268 
4269 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4270 {
4271 	/* [63:9] are reserved. */
4272 	vcpu->arch.mcg_cap &= 0x1ff;
4273 }
4274 
4275 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4276 {
4277 	struct vcpu_svm *svm = to_svm(vcpu);
4278 
4279 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4280 	if (!gif_set(svm))
4281 		return true;
4282 
4283 	return is_smm(vcpu);
4284 }
4285 
4286 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4287 {
4288 	struct vcpu_svm *svm = to_svm(vcpu);
4289 	if (svm->nested.nested_run_pending)
4290 		return -EBUSY;
4291 
4292 	if (svm_smi_blocked(vcpu))
4293 		return 0;
4294 
4295 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4296 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4297 		return -EBUSY;
4298 
4299 	return 1;
4300 }
4301 
4302 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4303 {
4304 	struct vcpu_svm *svm = to_svm(vcpu);
4305 	struct kvm_host_map map_save;
4306 	int ret;
4307 
4308 	if (!is_guest_mode(vcpu))
4309 		return 0;
4310 
4311 	/* FED8h - SVM Guest */
4312 	put_smstate(u64, smstate, 0x7ed8, 1);
4313 	/* FEE0h - SVM Guest VMCB Physical Address */
4314 	put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4315 
4316 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4317 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4318 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4319 
4320 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4321 	if (ret)
4322 		return ret;
4323 
4324 	/*
4325 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4326 	 * VMCB01 is going to be used during SMM and thus the state will
4327 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4328 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4329 	 * format of the area is identical to guest save area offsetted
4330 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4331 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4332 	 * L1 hypervisor to save additional host context (e.g. KVM does
4333 	 * that, see svm_prepare_switch_to_guest()) which must be
4334 	 * preserved.
4335 	 */
4336 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4337 			 &map_save) == -EINVAL)
4338 		return 1;
4339 
4340 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4341 
4342 	svm_copy_vmrun_state(map_save.hva + 0x400,
4343 			     &svm->vmcb01.ptr->save);
4344 
4345 	kvm_vcpu_unmap(vcpu, &map_save, true);
4346 	return 0;
4347 }
4348 
4349 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4350 {
4351 	struct vcpu_svm *svm = to_svm(vcpu);
4352 	struct kvm_host_map map, map_save;
4353 	u64 saved_efer, vmcb12_gpa;
4354 	struct vmcb *vmcb12;
4355 	int ret;
4356 
4357 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4358 		return 0;
4359 
4360 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4361 	if (!GET_SMSTATE(u64, smstate, 0x7ed8))
4362 		return 0;
4363 
4364 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4365 		return 1;
4366 
4367 	saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4368 	if (!(saved_efer & EFER_SVME))
4369 		return 1;
4370 
4371 	vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4372 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4373 		return 1;
4374 
4375 	ret = 1;
4376 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL)
4377 		goto unmap_map;
4378 
4379 	if (svm_allocate_nested(svm))
4380 		goto unmap_save;
4381 
4382 	/*
4383 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4384 	 * used during SMM (see svm_enter_smm())
4385 	 */
4386 
4387 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4388 
4389 	/*
4390 	 * Enter the nested guest now
4391 	 */
4392 
4393 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4394 
4395 	vmcb12 = map.hva;
4396 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4397 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4398 	ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false);
4399 
4400 	if (ret)
4401 		goto unmap_save;
4402 
4403 	svm->nested.nested_run_pending = 1;
4404 
4405 unmap_save:
4406 	kvm_vcpu_unmap(vcpu, &map_save, true);
4407 unmap_map:
4408 	kvm_vcpu_unmap(vcpu, &map, true);
4409 	return ret;
4410 }
4411 
4412 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4413 {
4414 	struct vcpu_svm *svm = to_svm(vcpu);
4415 
4416 	if (!gif_set(svm)) {
4417 		if (vgif)
4418 			svm_set_intercept(svm, INTERCEPT_STGI);
4419 		/* STGI will cause a vm exit */
4420 	} else {
4421 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4422 	}
4423 }
4424 
4425 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4426 					void *insn, int insn_len)
4427 {
4428 	bool smep, smap, is_user;
4429 	unsigned long cr4;
4430 	u64 error_code;
4431 
4432 	/* Emulation is always possible when KVM has access to all guest state. */
4433 	if (!sev_guest(vcpu->kvm))
4434 		return true;
4435 
4436 	/* #UD and #GP should never be intercepted for SEV guests. */
4437 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4438 				  EMULTYPE_TRAP_UD_FORCED |
4439 				  EMULTYPE_VMWARE_GP));
4440 
4441 	/*
4442 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4443 	 * to guest register state.
4444 	 */
4445 	if (sev_es_guest(vcpu->kvm))
4446 		return false;
4447 
4448 	/*
4449 	 * Emulation is possible if the instruction is already decoded, e.g.
4450 	 * when completing I/O after returning from userspace.
4451 	 */
4452 	if (emul_type & EMULTYPE_NO_DECODE)
4453 		return true;
4454 
4455 	/*
4456 	 * Emulation is possible for SEV guests if and only if a prefilled
4457 	 * buffer containing the bytes of the intercepted instruction is
4458 	 * available. SEV guest memory is encrypted with a guest specific key
4459 	 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4460 	 * decode garbage.
4461 	 *
4462 	 * Inject #UD if KVM reached this point without an instruction buffer.
4463 	 * In practice, this path should never be hit by a well-behaved guest,
4464 	 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4465 	 * is still theoretically reachable, e.g. via unaccelerated fault-like
4466 	 * AVIC access, and needs to be handled by KVM to avoid putting the
4467 	 * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
4468 	 * but its the least awful option given lack of insight into the guest.
4469 	 */
4470 	if (unlikely(!insn)) {
4471 		kvm_queue_exception(vcpu, UD_VECTOR);
4472 		return false;
4473 	}
4474 
4475 	/*
4476 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4477 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4478 	 * the faulting instruction because the code fetch itself faulted, e.g.
4479 	 * the guest attempted to fetch from emulated MMIO or a guest page
4480 	 * table used to translate CS:RIP resides in emulated MMIO.
4481 	 */
4482 	if (likely(insn_len))
4483 		return true;
4484 
4485 	/*
4486 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4487 	 *
4488 	 * Errata:
4489 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4490 	 * possible that CPU microcode implementing DecodeAssist will fail to
4491 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4492 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4493 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4494 	 * gives up and does not fill the instruction bytes buffer.
4495 	 *
4496 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4497 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4498 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4499 	 * GuestIntrBytes field of the VMCB.
4500 	 *
4501 	 * This does _not_ mean that the erratum has been encountered, as the
4502 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4503 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4504 	 * encountered a reserved/not-present #PF.
4505 	 *
4506 	 * To hit the erratum, the following conditions must be true:
4507 	 *    1. CR4.SMAP=1 (obviously).
4508 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4509 	 *       have been hit as the guest would have encountered a SMEP
4510 	 *       violation #PF, not a #NPF.
4511 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4512 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4513 	 *
4514 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4515 	 * while translating guest page tables (see below).
4516 	 */
4517 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4518 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4519 		goto resume_guest;
4520 
4521 	cr4 = kvm_read_cr4(vcpu);
4522 	smep = cr4 & X86_CR4_SMEP;
4523 	smap = cr4 & X86_CR4_SMAP;
4524 	is_user = svm_get_cpl(vcpu) == 3;
4525 	if (smap && (!smep || is_user)) {
4526 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4527 
4528 		/*
4529 		 * If the fault occurred in userspace, arbitrarily inject #GP
4530 		 * to avoid killing the guest and to hopefully avoid confusing
4531 		 * the guest kernel too much, e.g. injecting #PF would not be
4532 		 * coherent with respect to the guest's page tables.  Request
4533 		 * triple fault if the fault occurred in the kernel as there's
4534 		 * no fault that KVM can inject without confusing the guest.
4535 		 * In practice, the triple fault is moot as no sane SEV kernel
4536 		 * will execute from user memory while also running with SMAP=1.
4537 		 */
4538 		if (is_user)
4539 			kvm_inject_gp(vcpu, 0);
4540 		else
4541 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4542 	}
4543 
4544 resume_guest:
4545 	/*
4546 	 * If the erratum was not hit, simply resume the guest and let it fault
4547 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4548 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4549 	 * userspace will kill the guest, and letting the emulator read garbage
4550 	 * will yield random behavior and potentially corrupt the guest.
4551 	 *
4552 	 * Simply resuming the guest is technically not a violation of the SEV
4553 	 * architecture.  AMD's APM states that all code fetches and page table
4554 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4555 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4556 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4557 	 * the guest spin is technically "ignoring" the access.
4558 	 */
4559 	return false;
4560 }
4561 
4562 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4563 {
4564 	struct vcpu_svm *svm = to_svm(vcpu);
4565 
4566 	/*
4567 	 * TODO: Last condition latch INIT signals on vCPU when
4568 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4569 	 * To properly emulate the INIT intercept,
4570 	 * svm_check_nested_events() should call nested_svm_vmexit()
4571 	 * if an INIT signal is pending.
4572 	 */
4573 	return !gif_set(svm) ||
4574 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4575 }
4576 
4577 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4578 {
4579 	if (!sev_es_guest(vcpu->kvm))
4580 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4581 
4582 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4583 }
4584 
4585 static void svm_vm_destroy(struct kvm *kvm)
4586 {
4587 	avic_vm_destroy(kvm);
4588 	sev_vm_destroy(kvm);
4589 }
4590 
4591 static int svm_vm_init(struct kvm *kvm)
4592 {
4593 	if (!pause_filter_count || !pause_filter_thresh)
4594 		kvm->arch.pause_in_guest = true;
4595 
4596 	if (enable_apicv) {
4597 		int ret = avic_vm_init(kvm);
4598 		if (ret)
4599 			return ret;
4600 	}
4601 
4602 	return 0;
4603 }
4604 
4605 static struct kvm_x86_ops svm_x86_ops __initdata = {
4606 	.name = "kvm_amd",
4607 
4608 	.hardware_unsetup = svm_hardware_unsetup,
4609 	.hardware_enable = svm_hardware_enable,
4610 	.hardware_disable = svm_hardware_disable,
4611 	.has_emulated_msr = svm_has_emulated_msr,
4612 
4613 	.vcpu_create = svm_vcpu_create,
4614 	.vcpu_free = svm_vcpu_free,
4615 	.vcpu_reset = svm_vcpu_reset,
4616 
4617 	.vm_size = sizeof(struct kvm_svm),
4618 	.vm_init = svm_vm_init,
4619 	.vm_destroy = svm_vm_destroy,
4620 
4621 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4622 	.vcpu_load = svm_vcpu_load,
4623 	.vcpu_put = svm_vcpu_put,
4624 	.vcpu_blocking = avic_vcpu_blocking,
4625 	.vcpu_unblocking = avic_vcpu_unblocking,
4626 
4627 	.update_exception_bitmap = svm_update_exception_bitmap,
4628 	.get_msr_feature = svm_get_msr_feature,
4629 	.get_msr = svm_get_msr,
4630 	.set_msr = svm_set_msr,
4631 	.get_segment_base = svm_get_segment_base,
4632 	.get_segment = svm_get_segment,
4633 	.set_segment = svm_set_segment,
4634 	.get_cpl = svm_get_cpl,
4635 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4636 	.set_cr0 = svm_set_cr0,
4637 	.post_set_cr3 = sev_post_set_cr3,
4638 	.is_valid_cr4 = svm_is_valid_cr4,
4639 	.set_cr4 = svm_set_cr4,
4640 	.set_efer = svm_set_efer,
4641 	.get_idt = svm_get_idt,
4642 	.set_idt = svm_set_idt,
4643 	.get_gdt = svm_get_gdt,
4644 	.set_gdt = svm_set_gdt,
4645 	.set_dr7 = svm_set_dr7,
4646 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4647 	.cache_reg = svm_cache_reg,
4648 	.get_rflags = svm_get_rflags,
4649 	.set_rflags = svm_set_rflags,
4650 	.get_if_flag = svm_get_if_flag,
4651 
4652 	.flush_tlb_all = svm_flush_tlb_current,
4653 	.flush_tlb_current = svm_flush_tlb_current,
4654 	.flush_tlb_gva = svm_flush_tlb_gva,
4655 	.flush_tlb_guest = svm_flush_tlb_current,
4656 
4657 	.vcpu_pre_run = svm_vcpu_pre_run,
4658 	.vcpu_run = svm_vcpu_run,
4659 	.handle_exit = svm_handle_exit,
4660 	.skip_emulated_instruction = svm_skip_emulated_instruction,
4661 	.update_emulated_instruction = NULL,
4662 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4663 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4664 	.patch_hypercall = svm_patch_hypercall,
4665 	.inject_irq = svm_inject_irq,
4666 	.inject_nmi = svm_inject_nmi,
4667 	.queue_exception = svm_queue_exception,
4668 	.cancel_injection = svm_cancel_injection,
4669 	.interrupt_allowed = svm_interrupt_allowed,
4670 	.nmi_allowed = svm_nmi_allowed,
4671 	.get_nmi_mask = svm_get_nmi_mask,
4672 	.set_nmi_mask = svm_set_nmi_mask,
4673 	.enable_nmi_window = svm_enable_nmi_window,
4674 	.enable_irq_window = svm_enable_irq_window,
4675 	.update_cr8_intercept = svm_update_cr8_intercept,
4676 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4677 	.check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons,
4678 	.apicv_post_state_restore = avic_apicv_post_state_restore,
4679 
4680 	.get_mt_mask = svm_get_mt_mask,
4681 	.get_exit_info = svm_get_exit_info,
4682 
4683 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4684 
4685 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4686 
4687 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
4688 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4689 	.write_tsc_offset = svm_write_tsc_offset,
4690 	.write_tsc_multiplier = svm_write_tsc_multiplier,
4691 
4692 	.load_mmu_pgd = svm_load_mmu_pgd,
4693 
4694 	.check_intercept = svm_check_intercept,
4695 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4696 
4697 	.request_immediate_exit = __kvm_request_immediate_exit,
4698 
4699 	.sched_in = svm_sched_in,
4700 
4701 	.nested_ops = &svm_nested_ops,
4702 
4703 	.deliver_interrupt = svm_deliver_interrupt,
4704 	.pi_update_irte = avic_pi_update_irte,
4705 	.setup_mce = svm_setup_mce,
4706 
4707 	.smi_allowed = svm_smi_allowed,
4708 	.enter_smm = svm_enter_smm,
4709 	.leave_smm = svm_leave_smm,
4710 	.enable_smi_window = svm_enable_smi_window,
4711 
4712 	.mem_enc_ioctl = sev_mem_enc_ioctl,
4713 	.mem_enc_register_region = sev_mem_enc_register_region,
4714 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
4715 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
4716 
4717 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4718 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
4719 
4720 	.can_emulate_instruction = svm_can_emulate_instruction,
4721 
4722 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4723 
4724 	.msr_filter_changed = svm_msr_filter_changed,
4725 	.complete_emulated_msr = svm_complete_emulated_msr,
4726 
4727 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4728 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
4729 };
4730 
4731 /*
4732  * The default MMIO mask is a single bit (excluding the present bit),
4733  * which could conflict with the memory encryption bit. Check for
4734  * memory encryption support and override the default MMIO mask if
4735  * memory encryption is enabled.
4736  */
4737 static __init void svm_adjust_mmio_mask(void)
4738 {
4739 	unsigned int enc_bit, mask_bit;
4740 	u64 msr, mask;
4741 
4742 	/* If there is no memory encryption support, use existing mask */
4743 	if (cpuid_eax(0x80000000) < 0x8000001f)
4744 		return;
4745 
4746 	/* If memory encryption is not enabled, use existing mask */
4747 	rdmsrl(MSR_AMD64_SYSCFG, msr);
4748 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4749 		return;
4750 
4751 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4752 	mask_bit = boot_cpu_data.x86_phys_bits;
4753 
4754 	/* Increment the mask bit if it is the same as the encryption bit */
4755 	if (enc_bit == mask_bit)
4756 		mask_bit++;
4757 
4758 	/*
4759 	 * If the mask bit location is below 52, then some bits above the
4760 	 * physical addressing limit will always be reserved, so use the
4761 	 * rsvd_bits() function to generate the mask. This mask, along with
4762 	 * the present bit, will be used to generate a page fault with
4763 	 * PFER.RSV = 1.
4764 	 *
4765 	 * If the mask bit location is 52 (or above), then clear the mask.
4766 	 */
4767 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4768 
4769 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4770 }
4771 
4772 static __init void svm_set_cpu_caps(void)
4773 {
4774 	kvm_set_cpu_caps();
4775 
4776 	supported_xss = 0;
4777 
4778 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
4779 	if (nested) {
4780 		kvm_cpu_cap_set(X86_FEATURE_SVM);
4781 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4782 
4783 		if (nrips)
4784 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4785 
4786 		if (npt_enabled)
4787 			kvm_cpu_cap_set(X86_FEATURE_NPT);
4788 
4789 		if (tsc_scaling)
4790 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4791 
4792 		if (vls)
4793 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
4794 		if (lbrv)
4795 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
4796 
4797 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
4798 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
4799 
4800 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
4801 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
4802 
4803 		if (vgif)
4804 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
4805 
4806 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
4807 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4808 	}
4809 
4810 	/* CPUID 0x80000008 */
4811 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
4812 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
4813 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
4814 
4815 	/* AMD PMU PERFCTR_CORE CPUID */
4816 	if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4817 		kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
4818 
4819 	/* CPUID 0x8000001F (SME/SEV features) */
4820 	sev_set_cpu_caps();
4821 }
4822 
4823 static __init int svm_hardware_setup(void)
4824 {
4825 	int cpu;
4826 	struct page *iopm_pages;
4827 	void *iopm_va;
4828 	int r;
4829 	unsigned int order = get_order(IOPM_SIZE);
4830 
4831 	/*
4832 	 * NX is required for shadow paging and for NPT if the NX huge pages
4833 	 * mitigation is enabled.
4834 	 */
4835 	if (!boot_cpu_has(X86_FEATURE_NX)) {
4836 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
4837 		return -EOPNOTSUPP;
4838 	}
4839 	kvm_enable_efer_bits(EFER_NX);
4840 
4841 	iopm_pages = alloc_pages(GFP_KERNEL, order);
4842 
4843 	if (!iopm_pages)
4844 		return -ENOMEM;
4845 
4846 	iopm_va = page_address(iopm_pages);
4847 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
4848 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
4849 
4850 	init_msrpm_offsets();
4851 
4852 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
4853 
4854 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
4855 		kvm_enable_efer_bits(EFER_FFXSR);
4856 
4857 	if (tsc_scaling) {
4858 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
4859 			tsc_scaling = false;
4860 		} else {
4861 			pr_info("TSC scaling supported\n");
4862 			kvm_has_tsc_control = true;
4863 		}
4864 	}
4865 	kvm_max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
4866 	kvm_tsc_scaling_ratio_frac_bits = 32;
4867 
4868 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
4869 
4870 	/* Check for pause filtering support */
4871 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
4872 		pause_filter_count = 0;
4873 		pause_filter_thresh = 0;
4874 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
4875 		pause_filter_thresh = 0;
4876 	}
4877 
4878 	if (nested) {
4879 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
4880 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
4881 	}
4882 
4883 	/*
4884 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
4885 	 * NPT isn't supported if the host is using 2-level paging since host
4886 	 * CR4 is unchanged on VMRUN.
4887 	 */
4888 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
4889 		npt_enabled = false;
4890 
4891 	if (!boot_cpu_has(X86_FEATURE_NPT))
4892 		npt_enabled = false;
4893 
4894 	/* Force VM NPT level equal to the host's paging level */
4895 	kvm_configure_mmu(npt_enabled, get_npt_level(),
4896 			  get_npt_level(), PG_LEVEL_1G);
4897 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
4898 
4899 	/* Setup shadow_me_value and shadow_me_mask */
4900 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
4901 
4902 	/* Note, SEV setup consumes npt_enabled. */
4903 	sev_hardware_setup();
4904 
4905 	svm_hv_hardware_setup();
4906 
4907 	svm_adjust_mmio_mask();
4908 
4909 	for_each_possible_cpu(cpu) {
4910 		r = svm_cpu_init(cpu);
4911 		if (r)
4912 			goto err;
4913 	}
4914 
4915 	if (nrips) {
4916 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
4917 			nrips = false;
4918 	}
4919 
4920 	enable_apicv = avic = avic && npt_enabled && (boot_cpu_has(X86_FEATURE_AVIC) || force_avic);
4921 
4922 	if (enable_apicv) {
4923 		if (!boot_cpu_has(X86_FEATURE_AVIC)) {
4924 			pr_warn("AVIC is not supported in CPUID but force enabled");
4925 			pr_warn("Your system might crash and burn");
4926 		} else
4927 			pr_info("AVIC enabled\n");
4928 
4929 		amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
4930 	} else {
4931 		svm_x86_ops.vcpu_blocking = NULL;
4932 		svm_x86_ops.vcpu_unblocking = NULL;
4933 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
4934 	}
4935 
4936 	if (vls) {
4937 		if (!npt_enabled ||
4938 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
4939 		    !IS_ENABLED(CONFIG_X86_64)) {
4940 			vls = false;
4941 		} else {
4942 			pr_info("Virtual VMLOAD VMSAVE supported\n");
4943 		}
4944 	}
4945 
4946 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
4947 		svm_gp_erratum_intercept = false;
4948 
4949 	if (vgif) {
4950 		if (!boot_cpu_has(X86_FEATURE_VGIF))
4951 			vgif = false;
4952 		else
4953 			pr_info("Virtual GIF supported\n");
4954 	}
4955 
4956 	if (lbrv) {
4957 		if (!boot_cpu_has(X86_FEATURE_LBRV))
4958 			lbrv = false;
4959 		else
4960 			pr_info("LBR virtualization supported\n");
4961 	}
4962 
4963 	if (!enable_pmu)
4964 		pr_info("PMU virtualization is disabled\n");
4965 
4966 	svm_set_cpu_caps();
4967 
4968 	/*
4969 	 * It seems that on AMD processors PTE's accessed bit is
4970 	 * being set by the CPU hardware before the NPF vmexit.
4971 	 * This is not expected behaviour and our tests fail because
4972 	 * of it.
4973 	 * A workaround here is to disable support for
4974 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
4975 	 * In this case userspace can know if there is support using
4976 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
4977 	 * it
4978 	 * If future AMD CPU models change the behaviour described above,
4979 	 * this variable can be changed accordingly
4980 	 */
4981 	allow_smaller_maxphyaddr = !npt_enabled;
4982 
4983 	return 0;
4984 
4985 err:
4986 	svm_hardware_unsetup();
4987 	return r;
4988 }
4989 
4990 
4991 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4992 	.cpu_has_kvm_support = has_svm,
4993 	.disabled_by_bios = is_disabled,
4994 	.hardware_setup = svm_hardware_setup,
4995 	.check_processor_compatibility = svm_check_processor_compat,
4996 
4997 	.runtime_ops = &svm_x86_ops,
4998 	.pmu_ops = &amd_pmu_ops,
4999 };
5000 
5001 static int __init svm_init(void)
5002 {
5003 	__unused_size_checks();
5004 
5005 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
5006 			__alignof__(struct vcpu_svm), THIS_MODULE);
5007 }
5008 
5009 static void __exit svm_exit(void)
5010 {
5011 	kvm_exit();
5012 }
5013 
5014 module_init(svm_init)
5015 module_exit(svm_exit)
5016