1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 #include <linux/cc_platform.h> 29 30 #include <asm/apic.h> 31 #include <asm/perf_event.h> 32 #include <asm/tlbflush.h> 33 #include <asm/desc.h> 34 #include <asm/debugreg.h> 35 #include <asm/kvm_para.h> 36 #include <asm/irq_remapping.h> 37 #include <asm/spec-ctrl.h> 38 #include <asm/cpu_device_id.h> 39 #include <asm/traps.h> 40 #include <asm/fpu/api.h> 41 42 #include <asm/virtext.h> 43 #include "trace.h" 44 45 #include "svm.h" 46 #include "svm_ops.h" 47 48 #include "kvm_onhyperv.h" 49 #include "svm_onhyperv.h" 50 51 MODULE_AUTHOR("Qumranet"); 52 MODULE_LICENSE("GPL"); 53 54 #ifdef MODULE 55 static const struct x86_cpu_id svm_cpu_id[] = { 56 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 57 {} 58 }; 59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 60 #endif 61 62 #define SEG_TYPE_LDT 2 63 #define SEG_TYPE_BUSY_TSS16 3 64 65 static bool erratum_383_found __read_mostly; 66 67 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 68 69 /* 70 * Set osvw_len to higher value when updated Revision Guides 71 * are published and we know what the new status bits are 72 */ 73 static uint64_t osvw_len = 4, osvw_status; 74 75 static DEFINE_PER_CPU(u64, current_tsc_ratio); 76 77 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 78 79 static const struct svm_direct_access_msrs { 80 u32 index; /* Index of the MSR */ 81 bool always; /* True if intercept is initially cleared */ 82 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 83 { .index = MSR_STAR, .always = true }, 84 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 85 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 86 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 87 #ifdef CONFIG_X86_64 88 { .index = MSR_GS_BASE, .always = true }, 89 { .index = MSR_FS_BASE, .always = true }, 90 { .index = MSR_KERNEL_GS_BASE, .always = true }, 91 { .index = MSR_LSTAR, .always = true }, 92 { .index = MSR_CSTAR, .always = true }, 93 { .index = MSR_SYSCALL_MASK, .always = true }, 94 #endif 95 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 96 { .index = MSR_IA32_PRED_CMD, .always = false }, 97 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 98 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 99 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 100 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 101 { .index = MSR_EFER, .always = false }, 102 { .index = MSR_IA32_CR_PAT, .always = false }, 103 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 104 { .index = MSR_TSC_AUX, .always = false }, 105 { .index = X2APIC_MSR(APIC_ID), .always = false }, 106 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 107 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 108 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 109 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 110 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 111 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 112 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 113 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 114 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 115 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 116 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 117 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 118 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 119 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 120 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 121 122 /* 123 * Note: 124 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 125 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 126 * the AVIC hardware would generate GP fault. Therefore, always 127 * intercept the MSR 0x832, and do not setup direct_access_msr. 128 */ 129 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 130 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 131 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 132 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 133 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 134 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 135 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 136 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 137 { .index = MSR_INVALID, .always = false }, 138 }; 139 140 /* 141 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 142 * pause_filter_count: On processors that support Pause filtering(indicated 143 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 144 * count value. On VMRUN this value is loaded into an internal counter. 145 * Each time a pause instruction is executed, this counter is decremented 146 * until it reaches zero at which time a #VMEXIT is generated if pause 147 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 148 * Intercept Filtering for more details. 149 * This also indicate if ple logic enabled. 150 * 151 * pause_filter_thresh: In addition, some processor families support advanced 152 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 153 * the amount of time a guest is allowed to execute in a pause loop. 154 * In this mode, a 16-bit pause filter threshold field is added in the 155 * VMCB. The threshold value is a cycle count that is used to reset the 156 * pause counter. As with simple pause filtering, VMRUN loads the pause 157 * count value from VMCB into an internal counter. Then, on each pause 158 * instruction the hardware checks the elapsed number of cycles since 159 * the most recent pause instruction against the pause filter threshold. 160 * If the elapsed cycle count is greater than the pause filter threshold, 161 * then the internal pause count is reloaded from the VMCB and execution 162 * continues. If the elapsed cycle count is less than the pause filter 163 * threshold, then the internal pause count is decremented. If the count 164 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 165 * triggered. If advanced pause filtering is supported and pause filter 166 * threshold field is set to zero, the filter will operate in the simpler, 167 * count only mode. 168 */ 169 170 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 171 module_param(pause_filter_thresh, ushort, 0444); 172 173 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 174 module_param(pause_filter_count, ushort, 0444); 175 176 /* Default doubles per-vcpu window every exit. */ 177 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 178 module_param(pause_filter_count_grow, ushort, 0444); 179 180 /* Default resets per-vcpu window every exit to pause_filter_count. */ 181 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 182 module_param(pause_filter_count_shrink, ushort, 0444); 183 184 /* Default is to compute the maximum so we can never overflow. */ 185 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 186 module_param(pause_filter_count_max, ushort, 0444); 187 188 /* 189 * Use nested page tables by default. Note, NPT may get forced off by 190 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 191 */ 192 bool npt_enabled = true; 193 module_param_named(npt, npt_enabled, bool, 0444); 194 195 /* allow nested virtualization in KVM/SVM */ 196 static int nested = true; 197 module_param(nested, int, S_IRUGO); 198 199 /* enable/disable Next RIP Save */ 200 static int nrips = true; 201 module_param(nrips, int, 0444); 202 203 /* enable/disable Virtual VMLOAD VMSAVE */ 204 static int vls = true; 205 module_param(vls, int, 0444); 206 207 /* enable/disable Virtual GIF */ 208 int vgif = true; 209 module_param(vgif, int, 0444); 210 211 /* enable/disable LBR virtualization */ 212 static int lbrv = true; 213 module_param(lbrv, int, 0444); 214 215 static int tsc_scaling = true; 216 module_param(tsc_scaling, int, 0444); 217 218 /* 219 * enable / disable AVIC. Because the defaults differ for APICv 220 * support between VMX and SVM we cannot use module_param_named. 221 */ 222 static bool avic; 223 module_param(avic, bool, 0444); 224 225 bool __read_mostly dump_invalid_vmcb; 226 module_param(dump_invalid_vmcb, bool, 0644); 227 228 229 bool intercept_smi = true; 230 module_param(intercept_smi, bool, 0444); 231 232 233 static bool svm_gp_erratum_intercept = true; 234 235 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 236 237 static unsigned long iopm_base; 238 239 struct kvm_ldttss_desc { 240 u16 limit0; 241 u16 base0; 242 unsigned base1:8, type:5, dpl:2, p:1; 243 unsigned limit1:4, zero0:3, g:1, base2:8; 244 u32 base3; 245 u32 zero1; 246 } __attribute__((packed)); 247 248 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 249 250 /* 251 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 252 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 253 * 254 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 255 * defer the restoration of TSC_AUX until the CPU returns to userspace. 256 */ 257 static int tsc_aux_uret_slot __read_mostly = -1; 258 259 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 260 261 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 262 #define MSRS_RANGE_SIZE 2048 263 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 264 265 u32 svm_msrpm_offset(u32 msr) 266 { 267 u32 offset; 268 int i; 269 270 for (i = 0; i < NUM_MSR_MAPS; i++) { 271 if (msr < msrpm_ranges[i] || 272 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 273 continue; 274 275 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 276 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 277 278 /* Now we have the u8 offset - but need the u32 offset */ 279 return offset / 4; 280 } 281 282 /* MSR not in any range */ 283 return MSR_INVALID; 284 } 285 286 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 287 288 static int get_npt_level(void) 289 { 290 #ifdef CONFIG_X86_64 291 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 292 #else 293 return PT32E_ROOT_LEVEL; 294 #endif 295 } 296 297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 298 { 299 struct vcpu_svm *svm = to_svm(vcpu); 300 u64 old_efer = vcpu->arch.efer; 301 vcpu->arch.efer = efer; 302 303 if (!npt_enabled) { 304 /* Shadow paging assumes NX to be available. */ 305 efer |= EFER_NX; 306 307 if (!(efer & EFER_LMA)) 308 efer &= ~EFER_LME; 309 } 310 311 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 312 if (!(efer & EFER_SVME)) { 313 svm_leave_nested(vcpu); 314 svm_set_gif(svm, true); 315 /* #GP intercept is still needed for vmware backdoor */ 316 if (!enable_vmware_backdoor) 317 clr_exception_intercept(svm, GP_VECTOR); 318 319 /* 320 * Free the nested guest state, unless we are in SMM. 321 * In this case we will return to the nested guest 322 * as soon as we leave SMM. 323 */ 324 if (!is_smm(vcpu)) 325 svm_free_nested(svm); 326 327 } else { 328 int ret = svm_allocate_nested(svm); 329 330 if (ret) { 331 vcpu->arch.efer = old_efer; 332 return ret; 333 } 334 335 /* 336 * Never intercept #GP for SEV guests, KVM can't 337 * decrypt guest memory to workaround the erratum. 338 */ 339 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 340 set_exception_intercept(svm, GP_VECTOR); 341 } 342 } 343 344 svm->vmcb->save.efer = efer | EFER_SVME; 345 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 346 return 0; 347 } 348 349 static int is_external_interrupt(u32 info) 350 { 351 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 352 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 353 } 354 355 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 356 { 357 struct vcpu_svm *svm = to_svm(vcpu); 358 u32 ret = 0; 359 360 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 361 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 362 return ret; 363 } 364 365 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 366 { 367 struct vcpu_svm *svm = to_svm(vcpu); 368 369 if (mask == 0) 370 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 371 else 372 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 373 374 } 375 376 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 377 bool commit_side_effects) 378 { 379 struct vcpu_svm *svm = to_svm(vcpu); 380 unsigned long old_rflags; 381 382 /* 383 * SEV-ES does not expose the next RIP. The RIP update is controlled by 384 * the type of exit and the #VC handler in the guest. 385 */ 386 if (sev_es_guest(vcpu->kvm)) 387 goto done; 388 389 if (nrips && svm->vmcb->control.next_rip != 0) { 390 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 391 svm->next_rip = svm->vmcb->control.next_rip; 392 } 393 394 if (!svm->next_rip) { 395 if (unlikely(!commit_side_effects)) 396 old_rflags = svm->vmcb->save.rflags; 397 398 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 399 return 0; 400 401 if (unlikely(!commit_side_effects)) 402 svm->vmcb->save.rflags = old_rflags; 403 } else { 404 kvm_rip_write(vcpu, svm->next_rip); 405 } 406 407 done: 408 if (likely(commit_side_effects)) 409 svm_set_interrupt_shadow(vcpu, 0); 410 411 return 1; 412 } 413 414 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 415 { 416 return __svm_skip_emulated_instruction(vcpu, true); 417 } 418 419 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 420 { 421 unsigned long rip, old_rip = kvm_rip_read(vcpu); 422 struct vcpu_svm *svm = to_svm(vcpu); 423 424 /* 425 * Due to architectural shortcomings, the CPU doesn't always provide 426 * NextRIP, e.g. if KVM intercepted an exception that occurred while 427 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 428 * the instruction even if NextRIP is supported to acquire the next 429 * RIP so that it can be shoved into the NextRIP field, otherwise 430 * hardware will fail to advance guest RIP during event injection. 431 * Drop the exception/interrupt if emulation fails and effectively 432 * retry the instruction, it's the least awful option. If NRIPS is 433 * in use, the skip must not commit any side effects such as clearing 434 * the interrupt shadow or RFLAGS.RF. 435 */ 436 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 437 return -EIO; 438 439 rip = kvm_rip_read(vcpu); 440 441 /* 442 * Save the injection information, even when using next_rip, as the 443 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 444 * doesn't complete due to a VM-Exit occurring while the CPU is 445 * vectoring the event. Decoding the instruction isn't guaranteed to 446 * work as there may be no backing instruction, e.g. if the event is 447 * being injected by L1 for L2, or if the guest is patching INT3 into 448 * a different instruction. 449 */ 450 svm->soft_int_injected = true; 451 svm->soft_int_csbase = svm->vmcb->save.cs.base; 452 svm->soft_int_old_rip = old_rip; 453 svm->soft_int_next_rip = rip; 454 455 if (nrips) 456 kvm_rip_write(vcpu, old_rip); 457 458 if (static_cpu_has(X86_FEATURE_NRIPS)) 459 svm->vmcb->control.next_rip = rip; 460 461 return 0; 462 } 463 464 static void svm_inject_exception(struct kvm_vcpu *vcpu) 465 { 466 struct kvm_queued_exception *ex = &vcpu->arch.exception; 467 struct vcpu_svm *svm = to_svm(vcpu); 468 469 kvm_deliver_exception_payload(vcpu, ex); 470 471 if (kvm_exception_is_soft(ex->vector) && 472 svm_update_soft_interrupt_rip(vcpu)) 473 return; 474 475 svm->vmcb->control.event_inj = ex->vector 476 | SVM_EVTINJ_VALID 477 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 478 | SVM_EVTINJ_TYPE_EXEPT; 479 svm->vmcb->control.event_inj_err = ex->error_code; 480 } 481 482 static void svm_init_erratum_383(void) 483 { 484 u32 low, high; 485 int err; 486 u64 val; 487 488 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 489 return; 490 491 /* Use _safe variants to not break nested virtualization */ 492 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 493 if (err) 494 return; 495 496 val |= (1ULL << 47); 497 498 low = lower_32_bits(val); 499 high = upper_32_bits(val); 500 501 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 502 503 erratum_383_found = true; 504 } 505 506 static void svm_init_osvw(struct kvm_vcpu *vcpu) 507 { 508 /* 509 * Guests should see errata 400 and 415 as fixed (assuming that 510 * HLT and IO instructions are intercepted). 511 */ 512 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 513 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 514 515 /* 516 * By increasing VCPU's osvw.length to 3 we are telling the guest that 517 * all osvw.status bits inside that length, including bit 0 (which is 518 * reserved for erratum 298), are valid. However, if host processor's 519 * osvw_len is 0 then osvw_status[0] carries no information. We need to 520 * be conservative here and therefore we tell the guest that erratum 298 521 * is present (because we really don't know). 522 */ 523 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 524 vcpu->arch.osvw.status |= 1; 525 } 526 527 static int has_svm(void) 528 { 529 const char *msg; 530 531 if (!cpu_has_svm(&msg)) { 532 printk(KERN_INFO "has_svm: %s\n", msg); 533 return 0; 534 } 535 536 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 537 pr_info("KVM is unsupported when running as an SEV guest\n"); 538 return 0; 539 } 540 541 return 1; 542 } 543 544 void __svm_write_tsc_multiplier(u64 multiplier) 545 { 546 preempt_disable(); 547 548 if (multiplier == __this_cpu_read(current_tsc_ratio)) 549 goto out; 550 551 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 552 __this_cpu_write(current_tsc_ratio, multiplier); 553 out: 554 preempt_enable(); 555 } 556 557 static void svm_hardware_disable(void) 558 { 559 /* Make sure we clean up behind us */ 560 if (tsc_scaling) 561 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 562 563 cpu_svm_disable(); 564 565 amd_pmu_disable_virt(); 566 } 567 568 static int svm_hardware_enable(void) 569 { 570 571 struct svm_cpu_data *sd; 572 uint64_t efer; 573 struct desc_struct *gdt; 574 int me = raw_smp_processor_id(); 575 576 rdmsrl(MSR_EFER, efer); 577 if (efer & EFER_SVME) 578 return -EBUSY; 579 580 if (!has_svm()) { 581 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 582 return -EINVAL; 583 } 584 sd = per_cpu(svm_data, me); 585 if (!sd) { 586 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 587 return -EINVAL; 588 } 589 590 sd->asid_generation = 1; 591 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 592 sd->next_asid = sd->max_asid + 1; 593 sd->min_asid = max_sev_asid + 1; 594 595 gdt = get_current_gdt_rw(); 596 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 597 598 wrmsrl(MSR_EFER, efer | EFER_SVME); 599 600 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); 601 602 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 603 /* 604 * Set the default value, even if we don't use TSC scaling 605 * to avoid having stale value in the msr 606 */ 607 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 608 } 609 610 611 /* 612 * Get OSVW bits. 613 * 614 * Note that it is possible to have a system with mixed processor 615 * revisions and therefore different OSVW bits. If bits are not the same 616 * on different processors then choose the worst case (i.e. if erratum 617 * is present on one processor and not on another then assume that the 618 * erratum is present everywhere). 619 */ 620 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 621 uint64_t len, status = 0; 622 int err; 623 624 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 625 if (!err) 626 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 627 &err); 628 629 if (err) 630 osvw_status = osvw_len = 0; 631 else { 632 if (len < osvw_len) 633 osvw_len = len; 634 osvw_status |= status; 635 osvw_status &= (1ULL << osvw_len) - 1; 636 } 637 } else 638 osvw_status = osvw_len = 0; 639 640 svm_init_erratum_383(); 641 642 amd_pmu_enable_virt(); 643 644 return 0; 645 } 646 647 static void svm_cpu_uninit(int cpu) 648 { 649 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 650 651 if (!sd) 652 return; 653 654 per_cpu(svm_data, cpu) = NULL; 655 kfree(sd->sev_vmcbs); 656 __free_page(sd->save_area); 657 kfree(sd); 658 } 659 660 static int svm_cpu_init(int cpu) 661 { 662 struct svm_cpu_data *sd; 663 int ret = -ENOMEM; 664 665 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 666 if (!sd) 667 return ret; 668 sd->cpu = cpu; 669 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 670 if (!sd->save_area) 671 goto free_cpu_data; 672 673 ret = sev_cpu_init(sd); 674 if (ret) 675 goto free_save_area; 676 677 per_cpu(svm_data, cpu) = sd; 678 679 return 0; 680 681 free_save_area: 682 __free_page(sd->save_area); 683 free_cpu_data: 684 kfree(sd); 685 return ret; 686 687 } 688 689 static int direct_access_msr_slot(u32 msr) 690 { 691 u32 i; 692 693 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 694 if (direct_access_msrs[i].index == msr) 695 return i; 696 697 return -ENOENT; 698 } 699 700 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 701 int write) 702 { 703 struct vcpu_svm *svm = to_svm(vcpu); 704 int slot = direct_access_msr_slot(msr); 705 706 if (slot == -ENOENT) 707 return; 708 709 /* Set the shadow bitmaps to the desired intercept states */ 710 if (read) 711 set_bit(slot, svm->shadow_msr_intercept.read); 712 else 713 clear_bit(slot, svm->shadow_msr_intercept.read); 714 715 if (write) 716 set_bit(slot, svm->shadow_msr_intercept.write); 717 else 718 clear_bit(slot, svm->shadow_msr_intercept.write); 719 } 720 721 static bool valid_msr_intercept(u32 index) 722 { 723 return direct_access_msr_slot(index) != -ENOENT; 724 } 725 726 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 727 { 728 u8 bit_write; 729 unsigned long tmp; 730 u32 offset; 731 u32 *msrpm; 732 733 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 734 to_svm(vcpu)->msrpm; 735 736 offset = svm_msrpm_offset(msr); 737 bit_write = 2 * (msr & 0x0f) + 1; 738 tmp = msrpm[offset]; 739 740 BUG_ON(offset == MSR_INVALID); 741 742 return !!test_bit(bit_write, &tmp); 743 } 744 745 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 746 u32 msr, int read, int write) 747 { 748 struct vcpu_svm *svm = to_svm(vcpu); 749 u8 bit_read, bit_write; 750 unsigned long tmp; 751 u32 offset; 752 753 /* 754 * If this warning triggers extend the direct_access_msrs list at the 755 * beginning of the file 756 */ 757 WARN_ON(!valid_msr_intercept(msr)); 758 759 /* Enforce non allowed MSRs to trap */ 760 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 761 read = 0; 762 763 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 764 write = 0; 765 766 offset = svm_msrpm_offset(msr); 767 bit_read = 2 * (msr & 0x0f); 768 bit_write = 2 * (msr & 0x0f) + 1; 769 tmp = msrpm[offset]; 770 771 BUG_ON(offset == MSR_INVALID); 772 773 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 774 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 775 776 msrpm[offset] = tmp; 777 778 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 779 svm->nested.force_msr_bitmap_recalc = true; 780 } 781 782 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 783 int read, int write) 784 { 785 set_shadow_msr_intercept(vcpu, msr, read, write); 786 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 787 } 788 789 u32 *svm_vcpu_alloc_msrpm(void) 790 { 791 unsigned int order = get_order(MSRPM_SIZE); 792 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 793 u32 *msrpm; 794 795 if (!pages) 796 return NULL; 797 798 msrpm = page_address(pages); 799 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 800 801 return msrpm; 802 } 803 804 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 805 { 806 int i; 807 808 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 809 if (!direct_access_msrs[i].always) 810 continue; 811 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 812 } 813 } 814 815 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 816 { 817 int i; 818 819 if (intercept == svm->x2avic_msrs_intercepted) 820 return; 821 822 if (avic_mode != AVIC_MODE_X2 || 823 !apic_x2apic_mode(svm->vcpu.arch.apic)) 824 return; 825 826 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 827 int index = direct_access_msrs[i].index; 828 829 if ((index < APIC_BASE_MSR) || 830 (index > APIC_BASE_MSR + 0xff)) 831 continue; 832 set_msr_interception(&svm->vcpu, svm->msrpm, index, 833 !intercept, !intercept); 834 } 835 836 svm->x2avic_msrs_intercepted = intercept; 837 } 838 839 void svm_vcpu_free_msrpm(u32 *msrpm) 840 { 841 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 842 } 843 844 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 845 { 846 struct vcpu_svm *svm = to_svm(vcpu); 847 u32 i; 848 849 /* 850 * Set intercept permissions for all direct access MSRs again. They 851 * will automatically get filtered through the MSR filter, so we are 852 * back in sync after this. 853 */ 854 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 855 u32 msr = direct_access_msrs[i].index; 856 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 857 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 858 859 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 860 } 861 } 862 863 static void add_msr_offset(u32 offset) 864 { 865 int i; 866 867 for (i = 0; i < MSRPM_OFFSETS; ++i) { 868 869 /* Offset already in list? */ 870 if (msrpm_offsets[i] == offset) 871 return; 872 873 /* Slot used by another offset? */ 874 if (msrpm_offsets[i] != MSR_INVALID) 875 continue; 876 877 /* Add offset to list */ 878 msrpm_offsets[i] = offset; 879 880 return; 881 } 882 883 /* 884 * If this BUG triggers the msrpm_offsets table has an overflow. Just 885 * increase MSRPM_OFFSETS in this case. 886 */ 887 BUG(); 888 } 889 890 static void init_msrpm_offsets(void) 891 { 892 int i; 893 894 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 895 896 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 897 u32 offset; 898 899 offset = svm_msrpm_offset(direct_access_msrs[i].index); 900 BUG_ON(offset == MSR_INVALID); 901 902 add_msr_offset(offset); 903 } 904 } 905 906 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 907 { 908 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 909 to_vmcb->save.br_from = from_vmcb->save.br_from; 910 to_vmcb->save.br_to = from_vmcb->save.br_to; 911 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 912 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 913 914 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 915 } 916 917 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 918 { 919 struct vcpu_svm *svm = to_svm(vcpu); 920 921 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 922 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 923 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 924 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 925 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 926 927 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 928 if (is_guest_mode(vcpu)) 929 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 930 } 931 932 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 933 { 934 struct vcpu_svm *svm = to_svm(vcpu); 935 936 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 937 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 938 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 939 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 940 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 941 942 /* 943 * Move the LBR msrs back to the vmcb01 to avoid copying them 944 * on nested guest entries. 945 */ 946 if (is_guest_mode(vcpu)) 947 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 948 } 949 950 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index) 951 { 952 /* 953 * If the LBR virtualization is disabled, the LBR msrs are always 954 * kept in the vmcb01 to avoid copying them on nested guest entries. 955 * 956 * If nested, and the LBR virtualization is enabled/disabled, the msrs 957 * are moved between the vmcb01 and vmcb02 as needed. 958 */ 959 struct vmcb *vmcb = 960 (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ? 961 svm->vmcb : svm->vmcb01.ptr; 962 963 switch (index) { 964 case MSR_IA32_DEBUGCTLMSR: 965 return vmcb->save.dbgctl; 966 case MSR_IA32_LASTBRANCHFROMIP: 967 return vmcb->save.br_from; 968 case MSR_IA32_LASTBRANCHTOIP: 969 return vmcb->save.br_to; 970 case MSR_IA32_LASTINTFROMIP: 971 return vmcb->save.last_excp_from; 972 case MSR_IA32_LASTINTTOIP: 973 return vmcb->save.last_excp_to; 974 default: 975 KVM_BUG(false, svm->vcpu.kvm, 976 "%s: Unknown MSR 0x%x", __func__, index); 977 return 0; 978 } 979 } 980 981 void svm_update_lbrv(struct kvm_vcpu *vcpu) 982 { 983 struct vcpu_svm *svm = to_svm(vcpu); 984 985 bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) & 986 DEBUGCTLMSR_LBR; 987 988 bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext & 989 LBR_CTL_ENABLE_MASK); 990 991 if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled)) 992 if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)) 993 enable_lbrv = true; 994 995 if (enable_lbrv == current_enable_lbrv) 996 return; 997 998 if (enable_lbrv) 999 svm_enable_lbrv(vcpu); 1000 else 1001 svm_disable_lbrv(vcpu); 1002 } 1003 1004 void disable_nmi_singlestep(struct vcpu_svm *svm) 1005 { 1006 svm->nmi_singlestep = false; 1007 1008 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1009 /* Clear our flags if they were not set by the guest */ 1010 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1011 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1012 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1013 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1014 } 1015 } 1016 1017 static void grow_ple_window(struct kvm_vcpu *vcpu) 1018 { 1019 struct vcpu_svm *svm = to_svm(vcpu); 1020 struct vmcb_control_area *control = &svm->vmcb->control; 1021 int old = control->pause_filter_count; 1022 1023 if (kvm_pause_in_guest(vcpu->kvm)) 1024 return; 1025 1026 control->pause_filter_count = __grow_ple_window(old, 1027 pause_filter_count, 1028 pause_filter_count_grow, 1029 pause_filter_count_max); 1030 1031 if (control->pause_filter_count != old) { 1032 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1033 trace_kvm_ple_window_update(vcpu->vcpu_id, 1034 control->pause_filter_count, old); 1035 } 1036 } 1037 1038 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1039 { 1040 struct vcpu_svm *svm = to_svm(vcpu); 1041 struct vmcb_control_area *control = &svm->vmcb->control; 1042 int old = control->pause_filter_count; 1043 1044 if (kvm_pause_in_guest(vcpu->kvm)) 1045 return; 1046 1047 control->pause_filter_count = 1048 __shrink_ple_window(old, 1049 pause_filter_count, 1050 pause_filter_count_shrink, 1051 pause_filter_count); 1052 if (control->pause_filter_count != old) { 1053 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1054 trace_kvm_ple_window_update(vcpu->vcpu_id, 1055 control->pause_filter_count, old); 1056 } 1057 } 1058 1059 static void svm_hardware_unsetup(void) 1060 { 1061 int cpu; 1062 1063 sev_hardware_unsetup(); 1064 1065 for_each_possible_cpu(cpu) 1066 svm_cpu_uninit(cpu); 1067 1068 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 1069 get_order(IOPM_SIZE)); 1070 iopm_base = 0; 1071 } 1072 1073 static void init_seg(struct vmcb_seg *seg) 1074 { 1075 seg->selector = 0; 1076 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1077 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1078 seg->limit = 0xffff; 1079 seg->base = 0; 1080 } 1081 1082 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1083 { 1084 seg->selector = 0; 1085 seg->attrib = SVM_SELECTOR_P_MASK | type; 1086 seg->limit = 0xffff; 1087 seg->base = 0; 1088 } 1089 1090 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1091 { 1092 struct vcpu_svm *svm = to_svm(vcpu); 1093 1094 return svm->nested.ctl.tsc_offset; 1095 } 1096 1097 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1098 { 1099 struct vcpu_svm *svm = to_svm(vcpu); 1100 1101 return svm->tsc_ratio_msr; 1102 } 1103 1104 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1105 { 1106 struct vcpu_svm *svm = to_svm(vcpu); 1107 1108 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1109 svm->vmcb->control.tsc_offset = offset; 1110 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1111 } 1112 1113 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1114 { 1115 __svm_write_tsc_multiplier(multiplier); 1116 } 1117 1118 1119 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1120 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1121 struct vcpu_svm *svm) 1122 { 1123 /* 1124 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1125 * roots, or if INVPCID is disabled in the guest to inject #UD. 1126 */ 1127 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1128 if (!npt_enabled || 1129 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1130 svm_set_intercept(svm, INTERCEPT_INVPCID); 1131 else 1132 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1133 } 1134 1135 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1136 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1137 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1138 else 1139 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1140 } 1141 } 1142 1143 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1144 { 1145 struct vcpu_svm *svm = to_svm(vcpu); 1146 1147 if (guest_cpuid_is_intel(vcpu)) { 1148 /* 1149 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1150 * accesses because the processor only stores 32 bits. 1151 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1152 */ 1153 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1154 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1155 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1156 1157 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1158 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1159 1160 svm->v_vmload_vmsave_enabled = false; 1161 } else { 1162 /* 1163 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1164 * in VMCB and clear intercepts to avoid #VMEXIT. 1165 */ 1166 if (vls) { 1167 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1168 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1169 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1170 } 1171 /* No need to intercept these MSRs */ 1172 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1173 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1174 } 1175 } 1176 1177 static void init_vmcb(struct kvm_vcpu *vcpu) 1178 { 1179 struct vcpu_svm *svm = to_svm(vcpu); 1180 struct vmcb *vmcb = svm->vmcb01.ptr; 1181 struct vmcb_control_area *control = &vmcb->control; 1182 struct vmcb_save_area *save = &vmcb->save; 1183 1184 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1185 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1186 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1187 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1188 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1189 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1190 if (!kvm_vcpu_apicv_active(vcpu)) 1191 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1192 1193 set_dr_intercepts(svm); 1194 1195 set_exception_intercept(svm, PF_VECTOR); 1196 set_exception_intercept(svm, UD_VECTOR); 1197 set_exception_intercept(svm, MC_VECTOR); 1198 set_exception_intercept(svm, AC_VECTOR); 1199 set_exception_intercept(svm, DB_VECTOR); 1200 /* 1201 * Guest access to VMware backdoor ports could legitimately 1202 * trigger #GP because of TSS I/O permission bitmap. 1203 * We intercept those #GP and allow access to them anyway 1204 * as VMware does. Don't intercept #GP for SEV guests as KVM can't 1205 * decrypt guest memory to decode the faulting instruction. 1206 */ 1207 if (enable_vmware_backdoor && !sev_guest(vcpu->kvm)) 1208 set_exception_intercept(svm, GP_VECTOR); 1209 1210 svm_set_intercept(svm, INTERCEPT_INTR); 1211 svm_set_intercept(svm, INTERCEPT_NMI); 1212 1213 if (intercept_smi) 1214 svm_set_intercept(svm, INTERCEPT_SMI); 1215 1216 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1217 svm_set_intercept(svm, INTERCEPT_RDPMC); 1218 svm_set_intercept(svm, INTERCEPT_CPUID); 1219 svm_set_intercept(svm, INTERCEPT_INVD); 1220 svm_set_intercept(svm, INTERCEPT_INVLPG); 1221 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1222 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1223 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1224 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1225 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1226 svm_set_intercept(svm, INTERCEPT_VMRUN); 1227 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1228 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1229 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1230 svm_set_intercept(svm, INTERCEPT_STGI); 1231 svm_set_intercept(svm, INTERCEPT_CLGI); 1232 svm_set_intercept(svm, INTERCEPT_SKINIT); 1233 svm_set_intercept(svm, INTERCEPT_WBINVD); 1234 svm_set_intercept(svm, INTERCEPT_XSETBV); 1235 svm_set_intercept(svm, INTERCEPT_RDPRU); 1236 svm_set_intercept(svm, INTERCEPT_RSM); 1237 1238 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1239 svm_set_intercept(svm, INTERCEPT_MONITOR); 1240 svm_set_intercept(svm, INTERCEPT_MWAIT); 1241 } 1242 1243 if (!kvm_hlt_in_guest(vcpu->kvm)) 1244 svm_set_intercept(svm, INTERCEPT_HLT); 1245 1246 control->iopm_base_pa = __sme_set(iopm_base); 1247 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1248 control->int_ctl = V_INTR_MASKING_MASK; 1249 1250 init_seg(&save->es); 1251 init_seg(&save->ss); 1252 init_seg(&save->ds); 1253 init_seg(&save->fs); 1254 init_seg(&save->gs); 1255 1256 save->cs.selector = 0xf000; 1257 save->cs.base = 0xffff0000; 1258 /* Executable/Readable Code Segment */ 1259 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1260 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1261 save->cs.limit = 0xffff; 1262 1263 save->gdtr.base = 0; 1264 save->gdtr.limit = 0xffff; 1265 save->idtr.base = 0; 1266 save->idtr.limit = 0xffff; 1267 1268 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1269 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1270 1271 if (npt_enabled) { 1272 /* Setup VMCB for Nested Paging */ 1273 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1274 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1275 clr_exception_intercept(svm, PF_VECTOR); 1276 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1277 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1278 save->g_pat = vcpu->arch.pat; 1279 save->cr3 = 0; 1280 } 1281 svm->current_vmcb->asid_generation = 0; 1282 svm->asid = 0; 1283 1284 svm->nested.vmcb12_gpa = INVALID_GPA; 1285 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1286 1287 if (!kvm_pause_in_guest(vcpu->kvm)) { 1288 control->pause_filter_count = pause_filter_count; 1289 if (pause_filter_thresh) 1290 control->pause_filter_thresh = pause_filter_thresh; 1291 svm_set_intercept(svm, INTERCEPT_PAUSE); 1292 } else { 1293 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1294 } 1295 1296 svm_recalc_instruction_intercepts(vcpu, svm); 1297 1298 /* 1299 * If the host supports V_SPEC_CTRL then disable the interception 1300 * of MSR_IA32_SPEC_CTRL. 1301 */ 1302 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1303 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1304 1305 if (kvm_vcpu_apicv_active(vcpu)) 1306 avic_init_vmcb(svm, vmcb); 1307 1308 if (vgif) { 1309 svm_clr_intercept(svm, INTERCEPT_STGI); 1310 svm_clr_intercept(svm, INTERCEPT_CLGI); 1311 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1312 } 1313 1314 if (sev_guest(vcpu->kvm)) 1315 sev_init_vmcb(svm); 1316 1317 svm_hv_init_vmcb(vmcb); 1318 init_vmcb_after_set_cpuid(vcpu); 1319 1320 vmcb_mark_all_dirty(vmcb); 1321 1322 enable_gif(svm); 1323 } 1324 1325 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1326 { 1327 struct vcpu_svm *svm = to_svm(vcpu); 1328 1329 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1330 1331 svm_init_osvw(vcpu); 1332 vcpu->arch.microcode_version = 0x01000065; 1333 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1334 1335 if (sev_es_guest(vcpu->kvm)) 1336 sev_es_vcpu_reset(svm); 1337 } 1338 1339 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1340 { 1341 struct vcpu_svm *svm = to_svm(vcpu); 1342 1343 svm->spec_ctrl = 0; 1344 svm->virt_spec_ctrl = 0; 1345 1346 init_vmcb(vcpu); 1347 1348 if (!init_event) 1349 __svm_vcpu_reset(vcpu); 1350 } 1351 1352 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1353 { 1354 svm->current_vmcb = target_vmcb; 1355 svm->vmcb = target_vmcb->ptr; 1356 } 1357 1358 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1359 { 1360 struct vcpu_svm *svm; 1361 struct page *vmcb01_page; 1362 struct page *vmsa_page = NULL; 1363 int err; 1364 1365 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1366 svm = to_svm(vcpu); 1367 1368 err = -ENOMEM; 1369 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1370 if (!vmcb01_page) 1371 goto out; 1372 1373 if (sev_es_guest(vcpu->kvm)) { 1374 /* 1375 * SEV-ES guests require a separate VMSA page used to contain 1376 * the encrypted register state of the guest. 1377 */ 1378 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1379 if (!vmsa_page) 1380 goto error_free_vmcb_page; 1381 1382 /* 1383 * SEV-ES guests maintain an encrypted version of their FPU 1384 * state which is restored and saved on VMRUN and VMEXIT. 1385 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1386 * do xsave/xrstor on it. 1387 */ 1388 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1389 } 1390 1391 err = avic_init_vcpu(svm); 1392 if (err) 1393 goto error_free_vmsa_page; 1394 1395 svm->msrpm = svm_vcpu_alloc_msrpm(); 1396 if (!svm->msrpm) { 1397 err = -ENOMEM; 1398 goto error_free_vmsa_page; 1399 } 1400 1401 svm->x2avic_msrs_intercepted = true; 1402 1403 svm->vmcb01.ptr = page_address(vmcb01_page); 1404 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1405 svm_switch_vmcb(svm, &svm->vmcb01); 1406 1407 if (vmsa_page) 1408 svm->sev_es.vmsa = page_address(vmsa_page); 1409 1410 svm->guest_state_loaded = false; 1411 1412 return 0; 1413 1414 error_free_vmsa_page: 1415 if (vmsa_page) 1416 __free_page(vmsa_page); 1417 error_free_vmcb_page: 1418 __free_page(vmcb01_page); 1419 out: 1420 return err; 1421 } 1422 1423 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1424 { 1425 int i; 1426 1427 for_each_online_cpu(i) 1428 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1429 } 1430 1431 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1432 { 1433 struct vcpu_svm *svm = to_svm(vcpu); 1434 1435 /* 1436 * The vmcb page can be recycled, causing a false negative in 1437 * svm_vcpu_load(). So, ensure that no logical CPU has this 1438 * vmcb page recorded as its current vmcb. 1439 */ 1440 svm_clear_current_vmcb(svm->vmcb); 1441 1442 svm_free_nested(svm); 1443 1444 sev_free_vcpu(vcpu); 1445 1446 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1447 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1448 } 1449 1450 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1451 { 1452 struct vcpu_svm *svm = to_svm(vcpu); 1453 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 1454 1455 if (sev_es_guest(vcpu->kvm)) 1456 sev_es_unmap_ghcb(svm); 1457 1458 if (svm->guest_state_loaded) 1459 return; 1460 1461 /* 1462 * Save additional host state that will be restored on VMEXIT (sev-es) 1463 * or subsequent vmload of host save area. 1464 */ 1465 vmsave(__sme_page_pa(sd->save_area)); 1466 if (sev_es_guest(vcpu->kvm)) { 1467 struct sev_es_save_area *hostsa; 1468 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 1469 1470 sev_es_prepare_switch_to_guest(hostsa); 1471 } 1472 1473 if (tsc_scaling) 1474 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1475 1476 if (likely(tsc_aux_uret_slot >= 0)) 1477 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1478 1479 svm->guest_state_loaded = true; 1480 } 1481 1482 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1483 { 1484 to_svm(vcpu)->guest_state_loaded = false; 1485 } 1486 1487 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1488 { 1489 struct vcpu_svm *svm = to_svm(vcpu); 1490 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1491 1492 if (sd->current_vmcb != svm->vmcb) { 1493 sd->current_vmcb = svm->vmcb; 1494 indirect_branch_prediction_barrier(); 1495 } 1496 if (kvm_vcpu_apicv_active(vcpu)) 1497 avic_vcpu_load(vcpu, cpu); 1498 } 1499 1500 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1501 { 1502 if (kvm_vcpu_apicv_active(vcpu)) 1503 avic_vcpu_put(vcpu); 1504 1505 svm_prepare_host_switch(vcpu); 1506 1507 ++vcpu->stat.host_state_reload; 1508 } 1509 1510 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1511 { 1512 struct vcpu_svm *svm = to_svm(vcpu); 1513 unsigned long rflags = svm->vmcb->save.rflags; 1514 1515 if (svm->nmi_singlestep) { 1516 /* Hide our flags if they were not set by the guest */ 1517 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1518 rflags &= ~X86_EFLAGS_TF; 1519 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1520 rflags &= ~X86_EFLAGS_RF; 1521 } 1522 return rflags; 1523 } 1524 1525 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1526 { 1527 if (to_svm(vcpu)->nmi_singlestep) 1528 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1529 1530 /* 1531 * Any change of EFLAGS.VM is accompanied by a reload of SS 1532 * (caused by either a task switch or an inter-privilege IRET), 1533 * so we do not need to update the CPL here. 1534 */ 1535 to_svm(vcpu)->vmcb->save.rflags = rflags; 1536 } 1537 1538 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1539 { 1540 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1541 1542 return sev_es_guest(vcpu->kvm) 1543 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1544 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1545 } 1546 1547 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1548 { 1549 kvm_register_mark_available(vcpu, reg); 1550 1551 switch (reg) { 1552 case VCPU_EXREG_PDPTR: 1553 /* 1554 * When !npt_enabled, mmu->pdptrs[] is already available since 1555 * it is always updated per SDM when moving to CRs. 1556 */ 1557 if (npt_enabled) 1558 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1559 break; 1560 default: 1561 KVM_BUG_ON(1, vcpu->kvm); 1562 } 1563 } 1564 1565 static void svm_set_vintr(struct vcpu_svm *svm) 1566 { 1567 struct vmcb_control_area *control; 1568 1569 /* 1570 * The following fields are ignored when AVIC is enabled 1571 */ 1572 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1573 1574 svm_set_intercept(svm, INTERCEPT_VINTR); 1575 1576 /* 1577 * This is just a dummy VINTR to actually cause a vmexit to happen. 1578 * Actual injection of virtual interrupts happens through EVENTINJ. 1579 */ 1580 control = &svm->vmcb->control; 1581 control->int_vector = 0x0; 1582 control->int_ctl &= ~V_INTR_PRIO_MASK; 1583 control->int_ctl |= V_IRQ_MASK | 1584 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1585 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1586 } 1587 1588 static void svm_clear_vintr(struct vcpu_svm *svm) 1589 { 1590 svm_clr_intercept(svm, INTERCEPT_VINTR); 1591 1592 /* Drop int_ctl fields related to VINTR injection. */ 1593 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1594 if (is_guest_mode(&svm->vcpu)) { 1595 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1596 1597 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1598 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1599 1600 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1601 V_IRQ_INJECTION_BITS_MASK; 1602 1603 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1604 } 1605 1606 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1607 } 1608 1609 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1610 { 1611 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1612 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1613 1614 switch (seg) { 1615 case VCPU_SREG_CS: return &save->cs; 1616 case VCPU_SREG_DS: return &save->ds; 1617 case VCPU_SREG_ES: return &save->es; 1618 case VCPU_SREG_FS: return &save01->fs; 1619 case VCPU_SREG_GS: return &save01->gs; 1620 case VCPU_SREG_SS: return &save->ss; 1621 case VCPU_SREG_TR: return &save01->tr; 1622 case VCPU_SREG_LDTR: return &save01->ldtr; 1623 } 1624 BUG(); 1625 return NULL; 1626 } 1627 1628 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1629 { 1630 struct vmcb_seg *s = svm_seg(vcpu, seg); 1631 1632 return s->base; 1633 } 1634 1635 static void svm_get_segment(struct kvm_vcpu *vcpu, 1636 struct kvm_segment *var, int seg) 1637 { 1638 struct vmcb_seg *s = svm_seg(vcpu, seg); 1639 1640 var->base = s->base; 1641 var->limit = s->limit; 1642 var->selector = s->selector; 1643 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1644 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1645 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1646 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1647 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1648 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1649 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1650 1651 /* 1652 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1653 * However, the SVM spec states that the G bit is not observed by the 1654 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1655 * So let's synthesize a legal G bit for all segments, this helps 1656 * running KVM nested. It also helps cross-vendor migration, because 1657 * Intel's vmentry has a check on the 'G' bit. 1658 */ 1659 var->g = s->limit > 0xfffff; 1660 1661 /* 1662 * AMD's VMCB does not have an explicit unusable field, so emulate it 1663 * for cross vendor migration purposes by "not present" 1664 */ 1665 var->unusable = !var->present; 1666 1667 switch (seg) { 1668 case VCPU_SREG_TR: 1669 /* 1670 * Work around a bug where the busy flag in the tr selector 1671 * isn't exposed 1672 */ 1673 var->type |= 0x2; 1674 break; 1675 case VCPU_SREG_DS: 1676 case VCPU_SREG_ES: 1677 case VCPU_SREG_FS: 1678 case VCPU_SREG_GS: 1679 /* 1680 * The accessed bit must always be set in the segment 1681 * descriptor cache, although it can be cleared in the 1682 * descriptor, the cached bit always remains at 1. Since 1683 * Intel has a check on this, set it here to support 1684 * cross-vendor migration. 1685 */ 1686 if (!var->unusable) 1687 var->type |= 0x1; 1688 break; 1689 case VCPU_SREG_SS: 1690 /* 1691 * On AMD CPUs sometimes the DB bit in the segment 1692 * descriptor is left as 1, although the whole segment has 1693 * been made unusable. Clear it here to pass an Intel VMX 1694 * entry check when cross vendor migrating. 1695 */ 1696 if (var->unusable) 1697 var->db = 0; 1698 /* This is symmetric with svm_set_segment() */ 1699 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1700 break; 1701 } 1702 } 1703 1704 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1705 { 1706 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1707 1708 return save->cpl; 1709 } 1710 1711 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1712 { 1713 struct kvm_segment cs; 1714 1715 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1716 *db = cs.db; 1717 *l = cs.l; 1718 } 1719 1720 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1721 { 1722 struct vcpu_svm *svm = to_svm(vcpu); 1723 1724 dt->size = svm->vmcb->save.idtr.limit; 1725 dt->address = svm->vmcb->save.idtr.base; 1726 } 1727 1728 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1729 { 1730 struct vcpu_svm *svm = to_svm(vcpu); 1731 1732 svm->vmcb->save.idtr.limit = dt->size; 1733 svm->vmcb->save.idtr.base = dt->address ; 1734 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1735 } 1736 1737 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1738 { 1739 struct vcpu_svm *svm = to_svm(vcpu); 1740 1741 dt->size = svm->vmcb->save.gdtr.limit; 1742 dt->address = svm->vmcb->save.gdtr.base; 1743 } 1744 1745 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1746 { 1747 struct vcpu_svm *svm = to_svm(vcpu); 1748 1749 svm->vmcb->save.gdtr.limit = dt->size; 1750 svm->vmcb->save.gdtr.base = dt->address ; 1751 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1752 } 1753 1754 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1755 { 1756 struct vcpu_svm *svm = to_svm(vcpu); 1757 1758 /* 1759 * For guests that don't set guest_state_protected, the cr3 update is 1760 * handled via kvm_mmu_load() while entering the guest. For guests 1761 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1762 * VMCB save area now, since the save area will become the initial 1763 * contents of the VMSA, and future VMCB save area updates won't be 1764 * seen. 1765 */ 1766 if (sev_es_guest(vcpu->kvm)) { 1767 svm->vmcb->save.cr3 = cr3; 1768 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1769 } 1770 } 1771 1772 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1773 { 1774 struct vcpu_svm *svm = to_svm(vcpu); 1775 u64 hcr0 = cr0; 1776 bool old_paging = is_paging(vcpu); 1777 1778 #ifdef CONFIG_X86_64 1779 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1780 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1781 vcpu->arch.efer |= EFER_LMA; 1782 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1783 } 1784 1785 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1786 vcpu->arch.efer &= ~EFER_LMA; 1787 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1788 } 1789 } 1790 #endif 1791 vcpu->arch.cr0 = cr0; 1792 1793 if (!npt_enabled) { 1794 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1795 if (old_paging != is_paging(vcpu)) 1796 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1797 } 1798 1799 /* 1800 * re-enable caching here because the QEMU bios 1801 * does not do it - this results in some delay at 1802 * reboot 1803 */ 1804 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1805 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1806 1807 svm->vmcb->save.cr0 = hcr0; 1808 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1809 1810 /* 1811 * SEV-ES guests must always keep the CR intercepts cleared. CR 1812 * tracking is done using the CR write traps. 1813 */ 1814 if (sev_es_guest(vcpu->kvm)) 1815 return; 1816 1817 if (hcr0 == cr0) { 1818 /* Selective CR0 write remains on. */ 1819 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1820 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1821 } else { 1822 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1823 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1824 } 1825 } 1826 1827 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1828 { 1829 return true; 1830 } 1831 1832 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1833 { 1834 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1835 unsigned long old_cr4 = vcpu->arch.cr4; 1836 1837 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1838 svm_flush_tlb_current(vcpu); 1839 1840 vcpu->arch.cr4 = cr4; 1841 if (!npt_enabled) { 1842 cr4 |= X86_CR4_PAE; 1843 1844 if (!is_paging(vcpu)) 1845 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1846 } 1847 cr4 |= host_cr4_mce; 1848 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1849 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1850 1851 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1852 kvm_update_cpuid_runtime(vcpu); 1853 } 1854 1855 static void svm_set_segment(struct kvm_vcpu *vcpu, 1856 struct kvm_segment *var, int seg) 1857 { 1858 struct vcpu_svm *svm = to_svm(vcpu); 1859 struct vmcb_seg *s = svm_seg(vcpu, seg); 1860 1861 s->base = var->base; 1862 s->limit = var->limit; 1863 s->selector = var->selector; 1864 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1865 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1866 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1867 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1868 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1869 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1870 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1871 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1872 1873 /* 1874 * This is always accurate, except if SYSRET returned to a segment 1875 * with SS.DPL != 3. Intel does not have this quirk, and always 1876 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1877 * would entail passing the CPL to userspace and back. 1878 */ 1879 if (seg == VCPU_SREG_SS) 1880 /* This is symmetric with svm_get_segment() */ 1881 svm->vmcb->save.cpl = (var->dpl & 3); 1882 1883 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1884 } 1885 1886 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1887 { 1888 struct vcpu_svm *svm = to_svm(vcpu); 1889 1890 clr_exception_intercept(svm, BP_VECTOR); 1891 1892 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1893 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1894 set_exception_intercept(svm, BP_VECTOR); 1895 } 1896 } 1897 1898 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1899 { 1900 if (sd->next_asid > sd->max_asid) { 1901 ++sd->asid_generation; 1902 sd->next_asid = sd->min_asid; 1903 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1904 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1905 } 1906 1907 svm->current_vmcb->asid_generation = sd->asid_generation; 1908 svm->asid = sd->next_asid++; 1909 } 1910 1911 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1912 { 1913 struct vmcb *vmcb = svm->vmcb; 1914 1915 if (svm->vcpu.arch.guest_state_protected) 1916 return; 1917 1918 if (unlikely(value != vmcb->save.dr6)) { 1919 vmcb->save.dr6 = value; 1920 vmcb_mark_dirty(vmcb, VMCB_DR); 1921 } 1922 } 1923 1924 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1925 { 1926 struct vcpu_svm *svm = to_svm(vcpu); 1927 1928 if (vcpu->arch.guest_state_protected) 1929 return; 1930 1931 get_debugreg(vcpu->arch.db[0], 0); 1932 get_debugreg(vcpu->arch.db[1], 1); 1933 get_debugreg(vcpu->arch.db[2], 2); 1934 get_debugreg(vcpu->arch.db[3], 3); 1935 /* 1936 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1937 * because db_interception might need it. We can do it before vmentry. 1938 */ 1939 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1940 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1941 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1942 set_dr_intercepts(svm); 1943 } 1944 1945 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1946 { 1947 struct vcpu_svm *svm = to_svm(vcpu); 1948 1949 if (vcpu->arch.guest_state_protected) 1950 return; 1951 1952 svm->vmcb->save.dr7 = value; 1953 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1954 } 1955 1956 static int pf_interception(struct kvm_vcpu *vcpu) 1957 { 1958 struct vcpu_svm *svm = to_svm(vcpu); 1959 1960 u64 fault_address = svm->vmcb->control.exit_info_2; 1961 u64 error_code = svm->vmcb->control.exit_info_1; 1962 1963 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1964 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1965 svm->vmcb->control.insn_bytes : NULL, 1966 svm->vmcb->control.insn_len); 1967 } 1968 1969 static int npf_interception(struct kvm_vcpu *vcpu) 1970 { 1971 struct vcpu_svm *svm = to_svm(vcpu); 1972 1973 u64 fault_address = svm->vmcb->control.exit_info_2; 1974 u64 error_code = svm->vmcb->control.exit_info_1; 1975 1976 trace_kvm_page_fault(vcpu, fault_address, error_code); 1977 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 1978 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1979 svm->vmcb->control.insn_bytes : NULL, 1980 svm->vmcb->control.insn_len); 1981 } 1982 1983 static int db_interception(struct kvm_vcpu *vcpu) 1984 { 1985 struct kvm_run *kvm_run = vcpu->run; 1986 struct vcpu_svm *svm = to_svm(vcpu); 1987 1988 if (!(vcpu->guest_debug & 1989 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1990 !svm->nmi_singlestep) { 1991 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1992 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1993 return 1; 1994 } 1995 1996 if (svm->nmi_singlestep) { 1997 disable_nmi_singlestep(svm); 1998 /* Make sure we check for pending NMIs upon entry */ 1999 kvm_make_request(KVM_REQ_EVENT, vcpu); 2000 } 2001 2002 if (vcpu->guest_debug & 2003 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2004 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2005 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2006 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2007 kvm_run->debug.arch.pc = 2008 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2009 kvm_run->debug.arch.exception = DB_VECTOR; 2010 return 0; 2011 } 2012 2013 return 1; 2014 } 2015 2016 static int bp_interception(struct kvm_vcpu *vcpu) 2017 { 2018 struct vcpu_svm *svm = to_svm(vcpu); 2019 struct kvm_run *kvm_run = vcpu->run; 2020 2021 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2022 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2023 kvm_run->debug.arch.exception = BP_VECTOR; 2024 return 0; 2025 } 2026 2027 static int ud_interception(struct kvm_vcpu *vcpu) 2028 { 2029 return handle_ud(vcpu); 2030 } 2031 2032 static int ac_interception(struct kvm_vcpu *vcpu) 2033 { 2034 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2035 return 1; 2036 } 2037 2038 static bool is_erratum_383(void) 2039 { 2040 int err, i; 2041 u64 value; 2042 2043 if (!erratum_383_found) 2044 return false; 2045 2046 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2047 if (err) 2048 return false; 2049 2050 /* Bit 62 may or may not be set for this mce */ 2051 value &= ~(1ULL << 62); 2052 2053 if (value != 0xb600000000010015ULL) 2054 return false; 2055 2056 /* Clear MCi_STATUS registers */ 2057 for (i = 0; i < 6; ++i) 2058 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2059 2060 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2061 if (!err) { 2062 u32 low, high; 2063 2064 value &= ~(1ULL << 2); 2065 low = lower_32_bits(value); 2066 high = upper_32_bits(value); 2067 2068 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2069 } 2070 2071 /* Flush tlb to evict multi-match entries */ 2072 __flush_tlb_all(); 2073 2074 return true; 2075 } 2076 2077 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2078 { 2079 if (is_erratum_383()) { 2080 /* 2081 * Erratum 383 triggered. Guest state is corrupt so kill the 2082 * guest. 2083 */ 2084 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 2085 2086 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2087 2088 return; 2089 } 2090 2091 /* 2092 * On an #MC intercept the MCE handler is not called automatically in 2093 * the host. So do it by hand here. 2094 */ 2095 kvm_machine_check(); 2096 } 2097 2098 static int mc_interception(struct kvm_vcpu *vcpu) 2099 { 2100 return 1; 2101 } 2102 2103 static int shutdown_interception(struct kvm_vcpu *vcpu) 2104 { 2105 struct kvm_run *kvm_run = vcpu->run; 2106 struct vcpu_svm *svm = to_svm(vcpu); 2107 2108 /* 2109 * The VM save area has already been encrypted so it 2110 * cannot be reinitialized - just terminate. 2111 */ 2112 if (sev_es_guest(vcpu->kvm)) 2113 return -EINVAL; 2114 2115 /* 2116 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2117 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2118 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2119 * userspace. At a platform view, INIT is acceptable behavior as 2120 * there exist bare metal platforms that automatically INIT the CPU 2121 * in response to shutdown. 2122 */ 2123 clear_page(svm->vmcb); 2124 kvm_vcpu_reset(vcpu, true); 2125 2126 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2127 return 0; 2128 } 2129 2130 static int io_interception(struct kvm_vcpu *vcpu) 2131 { 2132 struct vcpu_svm *svm = to_svm(vcpu); 2133 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2134 int size, in, string; 2135 unsigned port; 2136 2137 ++vcpu->stat.io_exits; 2138 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2139 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2140 port = io_info >> 16; 2141 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2142 2143 if (string) { 2144 if (sev_es_guest(vcpu->kvm)) 2145 return sev_es_string_io(svm, size, port, in); 2146 else 2147 return kvm_emulate_instruction(vcpu, 0); 2148 } 2149 2150 svm->next_rip = svm->vmcb->control.exit_info_2; 2151 2152 return kvm_fast_pio(vcpu, size, port, in); 2153 } 2154 2155 static int nmi_interception(struct kvm_vcpu *vcpu) 2156 { 2157 return 1; 2158 } 2159 2160 static int smi_interception(struct kvm_vcpu *vcpu) 2161 { 2162 return 1; 2163 } 2164 2165 static int intr_interception(struct kvm_vcpu *vcpu) 2166 { 2167 ++vcpu->stat.irq_exits; 2168 return 1; 2169 } 2170 2171 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2172 { 2173 struct vcpu_svm *svm = to_svm(vcpu); 2174 struct vmcb *vmcb12; 2175 struct kvm_host_map map; 2176 int ret; 2177 2178 if (nested_svm_check_permissions(vcpu)) 2179 return 1; 2180 2181 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2182 if (ret) { 2183 if (ret == -EINVAL) 2184 kvm_inject_gp(vcpu, 0); 2185 return 1; 2186 } 2187 2188 vmcb12 = map.hva; 2189 2190 ret = kvm_skip_emulated_instruction(vcpu); 2191 2192 if (vmload) { 2193 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2194 svm->sysenter_eip_hi = 0; 2195 svm->sysenter_esp_hi = 0; 2196 } else { 2197 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2198 } 2199 2200 kvm_vcpu_unmap(vcpu, &map, true); 2201 2202 return ret; 2203 } 2204 2205 static int vmload_interception(struct kvm_vcpu *vcpu) 2206 { 2207 return vmload_vmsave_interception(vcpu, true); 2208 } 2209 2210 static int vmsave_interception(struct kvm_vcpu *vcpu) 2211 { 2212 return vmload_vmsave_interception(vcpu, false); 2213 } 2214 2215 static int vmrun_interception(struct kvm_vcpu *vcpu) 2216 { 2217 if (nested_svm_check_permissions(vcpu)) 2218 return 1; 2219 2220 return nested_svm_vmrun(vcpu); 2221 } 2222 2223 enum { 2224 NONE_SVM_INSTR, 2225 SVM_INSTR_VMRUN, 2226 SVM_INSTR_VMLOAD, 2227 SVM_INSTR_VMSAVE, 2228 }; 2229 2230 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2231 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2232 { 2233 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2234 2235 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2236 return NONE_SVM_INSTR; 2237 2238 switch (ctxt->modrm) { 2239 case 0xd8: /* VMRUN */ 2240 return SVM_INSTR_VMRUN; 2241 case 0xda: /* VMLOAD */ 2242 return SVM_INSTR_VMLOAD; 2243 case 0xdb: /* VMSAVE */ 2244 return SVM_INSTR_VMSAVE; 2245 default: 2246 break; 2247 } 2248 2249 return NONE_SVM_INSTR; 2250 } 2251 2252 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2253 { 2254 const int guest_mode_exit_codes[] = { 2255 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2256 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2257 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2258 }; 2259 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2260 [SVM_INSTR_VMRUN] = vmrun_interception, 2261 [SVM_INSTR_VMLOAD] = vmload_interception, 2262 [SVM_INSTR_VMSAVE] = vmsave_interception, 2263 }; 2264 struct vcpu_svm *svm = to_svm(vcpu); 2265 int ret; 2266 2267 if (is_guest_mode(vcpu)) { 2268 /* Returns '1' or -errno on failure, '0' on success. */ 2269 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2270 if (ret) 2271 return ret; 2272 return 1; 2273 } 2274 return svm_instr_handlers[opcode](vcpu); 2275 } 2276 2277 /* 2278 * #GP handling code. Note that #GP can be triggered under the following two 2279 * cases: 2280 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2281 * some AMD CPUs when EAX of these instructions are in the reserved memory 2282 * regions (e.g. SMM memory on host). 2283 * 2) VMware backdoor 2284 */ 2285 static int gp_interception(struct kvm_vcpu *vcpu) 2286 { 2287 struct vcpu_svm *svm = to_svm(vcpu); 2288 u32 error_code = svm->vmcb->control.exit_info_1; 2289 int opcode; 2290 2291 /* Both #GP cases have zero error_code */ 2292 if (error_code) 2293 goto reinject; 2294 2295 /* Decode the instruction for usage later */ 2296 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2297 goto reinject; 2298 2299 opcode = svm_instr_opcode(vcpu); 2300 2301 if (opcode == NONE_SVM_INSTR) { 2302 if (!enable_vmware_backdoor) 2303 goto reinject; 2304 2305 /* 2306 * VMware backdoor emulation on #GP interception only handles 2307 * IN{S}, OUT{S}, and RDPMC. 2308 */ 2309 if (!is_guest_mode(vcpu)) 2310 return kvm_emulate_instruction(vcpu, 2311 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2312 } else { 2313 /* All SVM instructions expect page aligned RAX */ 2314 if (svm->vmcb->save.rax & ~PAGE_MASK) 2315 goto reinject; 2316 2317 return emulate_svm_instr(vcpu, opcode); 2318 } 2319 2320 reinject: 2321 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2322 return 1; 2323 } 2324 2325 void svm_set_gif(struct vcpu_svm *svm, bool value) 2326 { 2327 if (value) { 2328 /* 2329 * If VGIF is enabled, the STGI intercept is only added to 2330 * detect the opening of the SMI/NMI window; remove it now. 2331 * Likewise, clear the VINTR intercept, we will set it 2332 * again while processing KVM_REQ_EVENT if needed. 2333 */ 2334 if (vgif) 2335 svm_clr_intercept(svm, INTERCEPT_STGI); 2336 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2337 svm_clear_vintr(svm); 2338 2339 enable_gif(svm); 2340 if (svm->vcpu.arch.smi_pending || 2341 svm->vcpu.arch.nmi_pending || 2342 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2343 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2344 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2345 } else { 2346 disable_gif(svm); 2347 2348 /* 2349 * After a CLGI no interrupts should come. But if vGIF is 2350 * in use, we still rely on the VINTR intercept (rather than 2351 * STGI) to detect an open interrupt window. 2352 */ 2353 if (!vgif) 2354 svm_clear_vintr(svm); 2355 } 2356 } 2357 2358 static int stgi_interception(struct kvm_vcpu *vcpu) 2359 { 2360 int ret; 2361 2362 if (nested_svm_check_permissions(vcpu)) 2363 return 1; 2364 2365 ret = kvm_skip_emulated_instruction(vcpu); 2366 svm_set_gif(to_svm(vcpu), true); 2367 return ret; 2368 } 2369 2370 static int clgi_interception(struct kvm_vcpu *vcpu) 2371 { 2372 int ret; 2373 2374 if (nested_svm_check_permissions(vcpu)) 2375 return 1; 2376 2377 ret = kvm_skip_emulated_instruction(vcpu); 2378 svm_set_gif(to_svm(vcpu), false); 2379 return ret; 2380 } 2381 2382 static int invlpga_interception(struct kvm_vcpu *vcpu) 2383 { 2384 gva_t gva = kvm_rax_read(vcpu); 2385 u32 asid = kvm_rcx_read(vcpu); 2386 2387 /* FIXME: Handle an address size prefix. */ 2388 if (!is_long_mode(vcpu)) 2389 gva = (u32)gva; 2390 2391 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2392 2393 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2394 kvm_mmu_invlpg(vcpu, gva); 2395 2396 return kvm_skip_emulated_instruction(vcpu); 2397 } 2398 2399 static int skinit_interception(struct kvm_vcpu *vcpu) 2400 { 2401 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2402 2403 kvm_queue_exception(vcpu, UD_VECTOR); 2404 return 1; 2405 } 2406 2407 static int task_switch_interception(struct kvm_vcpu *vcpu) 2408 { 2409 struct vcpu_svm *svm = to_svm(vcpu); 2410 u16 tss_selector; 2411 int reason; 2412 int int_type = svm->vmcb->control.exit_int_info & 2413 SVM_EXITINTINFO_TYPE_MASK; 2414 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2415 uint32_t type = 2416 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2417 uint32_t idt_v = 2418 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2419 bool has_error_code = false; 2420 u32 error_code = 0; 2421 2422 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2423 2424 if (svm->vmcb->control.exit_info_2 & 2425 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2426 reason = TASK_SWITCH_IRET; 2427 else if (svm->vmcb->control.exit_info_2 & 2428 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2429 reason = TASK_SWITCH_JMP; 2430 else if (idt_v) 2431 reason = TASK_SWITCH_GATE; 2432 else 2433 reason = TASK_SWITCH_CALL; 2434 2435 if (reason == TASK_SWITCH_GATE) { 2436 switch (type) { 2437 case SVM_EXITINTINFO_TYPE_NMI: 2438 vcpu->arch.nmi_injected = false; 2439 break; 2440 case SVM_EXITINTINFO_TYPE_EXEPT: 2441 if (svm->vmcb->control.exit_info_2 & 2442 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2443 has_error_code = true; 2444 error_code = 2445 (u32)svm->vmcb->control.exit_info_2; 2446 } 2447 kvm_clear_exception_queue(vcpu); 2448 break; 2449 case SVM_EXITINTINFO_TYPE_INTR: 2450 case SVM_EXITINTINFO_TYPE_SOFT: 2451 kvm_clear_interrupt_queue(vcpu); 2452 break; 2453 default: 2454 break; 2455 } 2456 } 2457 2458 if (reason != TASK_SWITCH_GATE || 2459 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2460 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2461 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2462 if (!svm_skip_emulated_instruction(vcpu)) 2463 return 0; 2464 } 2465 2466 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2467 int_vec = -1; 2468 2469 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2470 has_error_code, error_code); 2471 } 2472 2473 static int iret_interception(struct kvm_vcpu *vcpu) 2474 { 2475 struct vcpu_svm *svm = to_svm(vcpu); 2476 2477 ++vcpu->stat.nmi_window_exits; 2478 vcpu->arch.hflags |= HF_IRET_MASK; 2479 if (!sev_es_guest(vcpu->kvm)) { 2480 svm_clr_intercept(svm, INTERCEPT_IRET); 2481 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2482 } 2483 kvm_make_request(KVM_REQ_EVENT, vcpu); 2484 return 1; 2485 } 2486 2487 static int invlpg_interception(struct kvm_vcpu *vcpu) 2488 { 2489 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2490 return kvm_emulate_instruction(vcpu, 0); 2491 2492 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2493 return kvm_skip_emulated_instruction(vcpu); 2494 } 2495 2496 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2497 { 2498 return kvm_emulate_instruction(vcpu, 0); 2499 } 2500 2501 static int rsm_interception(struct kvm_vcpu *vcpu) 2502 { 2503 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2504 } 2505 2506 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2507 unsigned long val) 2508 { 2509 struct vcpu_svm *svm = to_svm(vcpu); 2510 unsigned long cr0 = vcpu->arch.cr0; 2511 bool ret = false; 2512 2513 if (!is_guest_mode(vcpu) || 2514 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2515 return false; 2516 2517 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2518 val &= ~SVM_CR0_SELECTIVE_MASK; 2519 2520 if (cr0 ^ val) { 2521 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2522 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2523 } 2524 2525 return ret; 2526 } 2527 2528 #define CR_VALID (1ULL << 63) 2529 2530 static int cr_interception(struct kvm_vcpu *vcpu) 2531 { 2532 struct vcpu_svm *svm = to_svm(vcpu); 2533 int reg, cr; 2534 unsigned long val; 2535 int err; 2536 2537 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2538 return emulate_on_interception(vcpu); 2539 2540 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2541 return emulate_on_interception(vcpu); 2542 2543 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2544 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2545 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2546 else 2547 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2548 2549 err = 0; 2550 if (cr >= 16) { /* mov to cr */ 2551 cr -= 16; 2552 val = kvm_register_read(vcpu, reg); 2553 trace_kvm_cr_write(cr, val); 2554 switch (cr) { 2555 case 0: 2556 if (!check_selective_cr0_intercepted(vcpu, val)) 2557 err = kvm_set_cr0(vcpu, val); 2558 else 2559 return 1; 2560 2561 break; 2562 case 3: 2563 err = kvm_set_cr3(vcpu, val); 2564 break; 2565 case 4: 2566 err = kvm_set_cr4(vcpu, val); 2567 break; 2568 case 8: 2569 err = kvm_set_cr8(vcpu, val); 2570 break; 2571 default: 2572 WARN(1, "unhandled write to CR%d", cr); 2573 kvm_queue_exception(vcpu, UD_VECTOR); 2574 return 1; 2575 } 2576 } else { /* mov from cr */ 2577 switch (cr) { 2578 case 0: 2579 val = kvm_read_cr0(vcpu); 2580 break; 2581 case 2: 2582 val = vcpu->arch.cr2; 2583 break; 2584 case 3: 2585 val = kvm_read_cr3(vcpu); 2586 break; 2587 case 4: 2588 val = kvm_read_cr4(vcpu); 2589 break; 2590 case 8: 2591 val = kvm_get_cr8(vcpu); 2592 break; 2593 default: 2594 WARN(1, "unhandled read from CR%d", cr); 2595 kvm_queue_exception(vcpu, UD_VECTOR); 2596 return 1; 2597 } 2598 kvm_register_write(vcpu, reg, val); 2599 trace_kvm_cr_read(cr, val); 2600 } 2601 return kvm_complete_insn_gp(vcpu, err); 2602 } 2603 2604 static int cr_trap(struct kvm_vcpu *vcpu) 2605 { 2606 struct vcpu_svm *svm = to_svm(vcpu); 2607 unsigned long old_value, new_value; 2608 unsigned int cr; 2609 int ret = 0; 2610 2611 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2612 2613 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2614 switch (cr) { 2615 case 0: 2616 old_value = kvm_read_cr0(vcpu); 2617 svm_set_cr0(vcpu, new_value); 2618 2619 kvm_post_set_cr0(vcpu, old_value, new_value); 2620 break; 2621 case 4: 2622 old_value = kvm_read_cr4(vcpu); 2623 svm_set_cr4(vcpu, new_value); 2624 2625 kvm_post_set_cr4(vcpu, old_value, new_value); 2626 break; 2627 case 8: 2628 ret = kvm_set_cr8(vcpu, new_value); 2629 break; 2630 default: 2631 WARN(1, "unhandled CR%d write trap", cr); 2632 kvm_queue_exception(vcpu, UD_VECTOR); 2633 return 1; 2634 } 2635 2636 return kvm_complete_insn_gp(vcpu, ret); 2637 } 2638 2639 static int dr_interception(struct kvm_vcpu *vcpu) 2640 { 2641 struct vcpu_svm *svm = to_svm(vcpu); 2642 int reg, dr; 2643 unsigned long val; 2644 int err = 0; 2645 2646 if (vcpu->guest_debug == 0) { 2647 /* 2648 * No more DR vmexits; force a reload of the debug registers 2649 * and reenter on this instruction. The next vmexit will 2650 * retrieve the full state of the debug registers. 2651 */ 2652 clr_dr_intercepts(svm); 2653 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2654 return 1; 2655 } 2656 2657 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2658 return emulate_on_interception(vcpu); 2659 2660 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2661 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2662 if (dr >= 16) { /* mov to DRn */ 2663 dr -= 16; 2664 val = kvm_register_read(vcpu, reg); 2665 err = kvm_set_dr(vcpu, dr, val); 2666 } else { 2667 kvm_get_dr(vcpu, dr, &val); 2668 kvm_register_write(vcpu, reg, val); 2669 } 2670 2671 return kvm_complete_insn_gp(vcpu, err); 2672 } 2673 2674 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2675 { 2676 int r; 2677 2678 u8 cr8_prev = kvm_get_cr8(vcpu); 2679 /* instruction emulation calls kvm_set_cr8() */ 2680 r = cr_interception(vcpu); 2681 if (lapic_in_kernel(vcpu)) 2682 return r; 2683 if (cr8_prev <= kvm_get_cr8(vcpu)) 2684 return r; 2685 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2686 return 0; 2687 } 2688 2689 static int efer_trap(struct kvm_vcpu *vcpu) 2690 { 2691 struct msr_data msr_info; 2692 int ret; 2693 2694 /* 2695 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2696 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2697 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2698 * the guest doesn't have X86_FEATURE_SVM. 2699 */ 2700 msr_info.host_initiated = false; 2701 msr_info.index = MSR_EFER; 2702 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2703 ret = kvm_set_msr_common(vcpu, &msr_info); 2704 2705 return kvm_complete_insn_gp(vcpu, ret); 2706 } 2707 2708 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2709 { 2710 msr->data = 0; 2711 2712 switch (msr->index) { 2713 case MSR_F10H_DECFG: 2714 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2715 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2716 break; 2717 case MSR_IA32_PERF_CAPABILITIES: 2718 return 0; 2719 default: 2720 return KVM_MSR_RET_INVALID; 2721 } 2722 2723 return 0; 2724 } 2725 2726 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2727 { 2728 struct vcpu_svm *svm = to_svm(vcpu); 2729 2730 switch (msr_info->index) { 2731 case MSR_AMD64_TSC_RATIO: 2732 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled) 2733 return 1; 2734 msr_info->data = svm->tsc_ratio_msr; 2735 break; 2736 case MSR_STAR: 2737 msr_info->data = svm->vmcb01.ptr->save.star; 2738 break; 2739 #ifdef CONFIG_X86_64 2740 case MSR_LSTAR: 2741 msr_info->data = svm->vmcb01.ptr->save.lstar; 2742 break; 2743 case MSR_CSTAR: 2744 msr_info->data = svm->vmcb01.ptr->save.cstar; 2745 break; 2746 case MSR_KERNEL_GS_BASE: 2747 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2748 break; 2749 case MSR_SYSCALL_MASK: 2750 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2751 break; 2752 #endif 2753 case MSR_IA32_SYSENTER_CS: 2754 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2755 break; 2756 case MSR_IA32_SYSENTER_EIP: 2757 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2758 if (guest_cpuid_is_intel(vcpu)) 2759 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2760 break; 2761 case MSR_IA32_SYSENTER_ESP: 2762 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2763 if (guest_cpuid_is_intel(vcpu)) 2764 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2765 break; 2766 case MSR_TSC_AUX: 2767 msr_info->data = svm->tsc_aux; 2768 break; 2769 case MSR_IA32_DEBUGCTLMSR: 2770 case MSR_IA32_LASTBRANCHFROMIP: 2771 case MSR_IA32_LASTBRANCHTOIP: 2772 case MSR_IA32_LASTINTFROMIP: 2773 case MSR_IA32_LASTINTTOIP: 2774 msr_info->data = svm_get_lbr_msr(svm, msr_info->index); 2775 break; 2776 case MSR_VM_HSAVE_PA: 2777 msr_info->data = svm->nested.hsave_msr; 2778 break; 2779 case MSR_VM_CR: 2780 msr_info->data = svm->nested.vm_cr_msr; 2781 break; 2782 case MSR_IA32_SPEC_CTRL: 2783 if (!msr_info->host_initiated && 2784 !guest_has_spec_ctrl_msr(vcpu)) 2785 return 1; 2786 2787 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2788 msr_info->data = svm->vmcb->save.spec_ctrl; 2789 else 2790 msr_info->data = svm->spec_ctrl; 2791 break; 2792 case MSR_AMD64_VIRT_SPEC_CTRL: 2793 if (!msr_info->host_initiated && 2794 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2795 return 1; 2796 2797 msr_info->data = svm->virt_spec_ctrl; 2798 break; 2799 case MSR_F15H_IC_CFG: { 2800 2801 int family, model; 2802 2803 family = guest_cpuid_family(vcpu); 2804 model = guest_cpuid_model(vcpu); 2805 2806 if (family < 0 || model < 0) 2807 return kvm_get_msr_common(vcpu, msr_info); 2808 2809 msr_info->data = 0; 2810 2811 if (family == 0x15 && 2812 (model >= 0x2 && model < 0x20)) 2813 msr_info->data = 0x1E; 2814 } 2815 break; 2816 case MSR_F10H_DECFG: 2817 msr_info->data = svm->msr_decfg; 2818 break; 2819 default: 2820 return kvm_get_msr_common(vcpu, msr_info); 2821 } 2822 return 0; 2823 } 2824 2825 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2826 { 2827 struct vcpu_svm *svm = to_svm(vcpu); 2828 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2829 return kvm_complete_insn_gp(vcpu, err); 2830 2831 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2832 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2833 X86_TRAP_GP | 2834 SVM_EVTINJ_TYPE_EXEPT | 2835 SVM_EVTINJ_VALID); 2836 return 1; 2837 } 2838 2839 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2840 { 2841 struct vcpu_svm *svm = to_svm(vcpu); 2842 int svm_dis, chg_mask; 2843 2844 if (data & ~SVM_VM_CR_VALID_MASK) 2845 return 1; 2846 2847 chg_mask = SVM_VM_CR_VALID_MASK; 2848 2849 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2850 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2851 2852 svm->nested.vm_cr_msr &= ~chg_mask; 2853 svm->nested.vm_cr_msr |= (data & chg_mask); 2854 2855 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2856 2857 /* check for svm_disable while efer.svme is set */ 2858 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2859 return 1; 2860 2861 return 0; 2862 } 2863 2864 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2865 { 2866 struct vcpu_svm *svm = to_svm(vcpu); 2867 int r; 2868 2869 u32 ecx = msr->index; 2870 u64 data = msr->data; 2871 switch (ecx) { 2872 case MSR_AMD64_TSC_RATIO: 2873 2874 if (!svm->tsc_scaling_enabled) { 2875 2876 if (!msr->host_initiated) 2877 return 1; 2878 /* 2879 * In case TSC scaling is not enabled, always 2880 * leave this MSR at the default value. 2881 * 2882 * Due to bug in qemu 6.2.0, it would try to set 2883 * this msr to 0 if tsc scaling is not enabled. 2884 * Ignore this value as well. 2885 */ 2886 if (data != 0 && data != svm->tsc_ratio_msr) 2887 return 1; 2888 break; 2889 } 2890 2891 if (data & SVM_TSC_RATIO_RSVD) 2892 return 1; 2893 2894 svm->tsc_ratio_msr = data; 2895 2896 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu)) 2897 nested_svm_update_tsc_ratio_msr(vcpu); 2898 2899 break; 2900 case MSR_IA32_CR_PAT: 2901 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2902 return 1; 2903 vcpu->arch.pat = data; 2904 svm->vmcb01.ptr->save.g_pat = data; 2905 if (is_guest_mode(vcpu)) 2906 nested_vmcb02_compute_g_pat(svm); 2907 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2908 break; 2909 case MSR_IA32_SPEC_CTRL: 2910 if (!msr->host_initiated && 2911 !guest_has_spec_ctrl_msr(vcpu)) 2912 return 1; 2913 2914 if (kvm_spec_ctrl_test_value(data)) 2915 return 1; 2916 2917 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2918 svm->vmcb->save.spec_ctrl = data; 2919 else 2920 svm->spec_ctrl = data; 2921 if (!data) 2922 break; 2923 2924 /* 2925 * For non-nested: 2926 * When it's written (to non-zero) for the first time, pass 2927 * it through. 2928 * 2929 * For nested: 2930 * The handling of the MSR bitmap for L2 guests is done in 2931 * nested_svm_vmrun_msrpm. 2932 * We update the L1 MSR bit as well since it will end up 2933 * touching the MSR anyway now. 2934 */ 2935 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2936 break; 2937 case MSR_IA32_PRED_CMD: 2938 if (!msr->host_initiated && 2939 !guest_has_pred_cmd_msr(vcpu)) 2940 return 1; 2941 2942 if (data & ~PRED_CMD_IBPB) 2943 return 1; 2944 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2945 return 1; 2946 if (!data) 2947 break; 2948 2949 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2950 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2951 break; 2952 case MSR_AMD64_VIRT_SPEC_CTRL: 2953 if (!msr->host_initiated && 2954 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2955 return 1; 2956 2957 if (data & ~SPEC_CTRL_SSBD) 2958 return 1; 2959 2960 svm->virt_spec_ctrl = data; 2961 break; 2962 case MSR_STAR: 2963 svm->vmcb01.ptr->save.star = data; 2964 break; 2965 #ifdef CONFIG_X86_64 2966 case MSR_LSTAR: 2967 svm->vmcb01.ptr->save.lstar = data; 2968 break; 2969 case MSR_CSTAR: 2970 svm->vmcb01.ptr->save.cstar = data; 2971 break; 2972 case MSR_KERNEL_GS_BASE: 2973 svm->vmcb01.ptr->save.kernel_gs_base = data; 2974 break; 2975 case MSR_SYSCALL_MASK: 2976 svm->vmcb01.ptr->save.sfmask = data; 2977 break; 2978 #endif 2979 case MSR_IA32_SYSENTER_CS: 2980 svm->vmcb01.ptr->save.sysenter_cs = data; 2981 break; 2982 case MSR_IA32_SYSENTER_EIP: 2983 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2984 /* 2985 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2986 * when we spoof an Intel vendor ID (for cross vendor migration). 2987 * In this case we use this intercept to track the high 2988 * 32 bit part of these msrs to support Intel's 2989 * implementation of SYSENTER/SYSEXIT. 2990 */ 2991 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2992 break; 2993 case MSR_IA32_SYSENTER_ESP: 2994 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 2995 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2996 break; 2997 case MSR_TSC_AUX: 2998 /* 2999 * TSC_AUX is usually changed only during boot and never read 3000 * directly. Intercept TSC_AUX instead of exposing it to the 3001 * guest via direct_access_msrs, and switch it via user return. 3002 */ 3003 preempt_disable(); 3004 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3005 preempt_enable(); 3006 if (r) 3007 return 1; 3008 3009 svm->tsc_aux = data; 3010 break; 3011 case MSR_IA32_DEBUGCTLMSR: 3012 if (!lbrv) { 3013 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 3014 __func__, data); 3015 break; 3016 } 3017 if (data & DEBUGCTL_RESERVED_BITS) 3018 return 1; 3019 3020 if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) 3021 svm->vmcb->save.dbgctl = data; 3022 else 3023 svm->vmcb01.ptr->save.dbgctl = data; 3024 3025 svm_update_lbrv(vcpu); 3026 3027 break; 3028 case MSR_VM_HSAVE_PA: 3029 /* 3030 * Old kernels did not validate the value written to 3031 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3032 * value to allow live migrating buggy or malicious guests 3033 * originating from those kernels. 3034 */ 3035 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3036 return 1; 3037 3038 svm->nested.hsave_msr = data & PAGE_MASK; 3039 break; 3040 case MSR_VM_CR: 3041 return svm_set_vm_cr(vcpu, data); 3042 case MSR_VM_IGNNE: 3043 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 3044 break; 3045 case MSR_F10H_DECFG: { 3046 struct kvm_msr_entry msr_entry; 3047 3048 msr_entry.index = msr->index; 3049 if (svm_get_msr_feature(&msr_entry)) 3050 return 1; 3051 3052 /* Check the supported bits */ 3053 if (data & ~msr_entry.data) 3054 return 1; 3055 3056 /* Don't allow the guest to change a bit, #GP */ 3057 if (!msr->host_initiated && (data ^ msr_entry.data)) 3058 return 1; 3059 3060 svm->msr_decfg = data; 3061 break; 3062 } 3063 default: 3064 return kvm_set_msr_common(vcpu, msr); 3065 } 3066 return 0; 3067 } 3068 3069 static int msr_interception(struct kvm_vcpu *vcpu) 3070 { 3071 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3072 return kvm_emulate_wrmsr(vcpu); 3073 else 3074 return kvm_emulate_rdmsr(vcpu); 3075 } 3076 3077 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3078 { 3079 kvm_make_request(KVM_REQ_EVENT, vcpu); 3080 svm_clear_vintr(to_svm(vcpu)); 3081 3082 /* 3083 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3084 * In this case AVIC was temporarily disabled for 3085 * requesting the IRQ window and we have to re-enable it. 3086 * 3087 * If running nested, still remove the VM wide AVIC inhibit to 3088 * support case in which the interrupt window was requested when the 3089 * vCPU was not running nested. 3090 3091 * All vCPUs which run still run nested, will remain to have their 3092 * AVIC still inhibited due to per-cpu AVIC inhibition. 3093 */ 3094 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3095 3096 ++vcpu->stat.irq_window_exits; 3097 return 1; 3098 } 3099 3100 static int pause_interception(struct kvm_vcpu *vcpu) 3101 { 3102 bool in_kernel; 3103 /* 3104 * CPL is not made available for an SEV-ES guest, therefore 3105 * vcpu->arch.preempted_in_kernel can never be true. Just 3106 * set in_kernel to false as well. 3107 */ 3108 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3109 3110 grow_ple_window(vcpu); 3111 3112 kvm_vcpu_on_spin(vcpu, in_kernel); 3113 return kvm_skip_emulated_instruction(vcpu); 3114 } 3115 3116 static int invpcid_interception(struct kvm_vcpu *vcpu) 3117 { 3118 struct vcpu_svm *svm = to_svm(vcpu); 3119 unsigned long type; 3120 gva_t gva; 3121 3122 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3123 kvm_queue_exception(vcpu, UD_VECTOR); 3124 return 1; 3125 } 3126 3127 /* 3128 * For an INVPCID intercept: 3129 * EXITINFO1 provides the linear address of the memory operand. 3130 * EXITINFO2 provides the contents of the register operand. 3131 */ 3132 type = svm->vmcb->control.exit_info_2; 3133 gva = svm->vmcb->control.exit_info_1; 3134 3135 return kvm_handle_invpcid(vcpu, type, gva); 3136 } 3137 3138 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3139 [SVM_EXIT_READ_CR0] = cr_interception, 3140 [SVM_EXIT_READ_CR3] = cr_interception, 3141 [SVM_EXIT_READ_CR4] = cr_interception, 3142 [SVM_EXIT_READ_CR8] = cr_interception, 3143 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3144 [SVM_EXIT_WRITE_CR0] = cr_interception, 3145 [SVM_EXIT_WRITE_CR3] = cr_interception, 3146 [SVM_EXIT_WRITE_CR4] = cr_interception, 3147 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3148 [SVM_EXIT_READ_DR0] = dr_interception, 3149 [SVM_EXIT_READ_DR1] = dr_interception, 3150 [SVM_EXIT_READ_DR2] = dr_interception, 3151 [SVM_EXIT_READ_DR3] = dr_interception, 3152 [SVM_EXIT_READ_DR4] = dr_interception, 3153 [SVM_EXIT_READ_DR5] = dr_interception, 3154 [SVM_EXIT_READ_DR6] = dr_interception, 3155 [SVM_EXIT_READ_DR7] = dr_interception, 3156 [SVM_EXIT_WRITE_DR0] = dr_interception, 3157 [SVM_EXIT_WRITE_DR1] = dr_interception, 3158 [SVM_EXIT_WRITE_DR2] = dr_interception, 3159 [SVM_EXIT_WRITE_DR3] = dr_interception, 3160 [SVM_EXIT_WRITE_DR4] = dr_interception, 3161 [SVM_EXIT_WRITE_DR5] = dr_interception, 3162 [SVM_EXIT_WRITE_DR6] = dr_interception, 3163 [SVM_EXIT_WRITE_DR7] = dr_interception, 3164 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3165 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3166 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3167 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3168 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3169 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3170 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3171 [SVM_EXIT_INTR] = intr_interception, 3172 [SVM_EXIT_NMI] = nmi_interception, 3173 [SVM_EXIT_SMI] = smi_interception, 3174 [SVM_EXIT_VINTR] = interrupt_window_interception, 3175 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3176 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3177 [SVM_EXIT_IRET] = iret_interception, 3178 [SVM_EXIT_INVD] = kvm_emulate_invd, 3179 [SVM_EXIT_PAUSE] = pause_interception, 3180 [SVM_EXIT_HLT] = kvm_emulate_halt, 3181 [SVM_EXIT_INVLPG] = invlpg_interception, 3182 [SVM_EXIT_INVLPGA] = invlpga_interception, 3183 [SVM_EXIT_IOIO] = io_interception, 3184 [SVM_EXIT_MSR] = msr_interception, 3185 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3186 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3187 [SVM_EXIT_VMRUN] = vmrun_interception, 3188 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3189 [SVM_EXIT_VMLOAD] = vmload_interception, 3190 [SVM_EXIT_VMSAVE] = vmsave_interception, 3191 [SVM_EXIT_STGI] = stgi_interception, 3192 [SVM_EXIT_CLGI] = clgi_interception, 3193 [SVM_EXIT_SKINIT] = skinit_interception, 3194 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3195 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3196 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3197 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3198 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3199 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3200 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3201 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3202 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3203 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3204 [SVM_EXIT_INVPCID] = invpcid_interception, 3205 [SVM_EXIT_NPF] = npf_interception, 3206 [SVM_EXIT_RSM] = rsm_interception, 3207 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3208 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3209 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3210 }; 3211 3212 static void dump_vmcb(struct kvm_vcpu *vcpu) 3213 { 3214 struct vcpu_svm *svm = to_svm(vcpu); 3215 struct vmcb_control_area *control = &svm->vmcb->control; 3216 struct vmcb_save_area *save = &svm->vmcb->save; 3217 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3218 3219 if (!dump_invalid_vmcb) { 3220 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3221 return; 3222 } 3223 3224 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3225 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3226 pr_err("VMCB Control Area:\n"); 3227 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3228 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3229 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3230 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3231 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3232 pr_err("%-20s%08x %08x\n", "intercepts:", 3233 control->intercepts[INTERCEPT_WORD3], 3234 control->intercepts[INTERCEPT_WORD4]); 3235 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3236 pr_err("%-20s%d\n", "pause filter threshold:", 3237 control->pause_filter_thresh); 3238 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3239 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3240 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3241 pr_err("%-20s%d\n", "asid:", control->asid); 3242 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3243 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3244 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3245 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3246 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3247 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3248 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3249 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3250 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3251 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3252 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3253 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3254 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3255 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3256 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3257 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3258 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3259 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3260 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3261 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3262 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3263 pr_err("VMCB State Save Area:\n"); 3264 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3265 "es:", 3266 save->es.selector, save->es.attrib, 3267 save->es.limit, save->es.base); 3268 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3269 "cs:", 3270 save->cs.selector, save->cs.attrib, 3271 save->cs.limit, save->cs.base); 3272 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3273 "ss:", 3274 save->ss.selector, save->ss.attrib, 3275 save->ss.limit, save->ss.base); 3276 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3277 "ds:", 3278 save->ds.selector, save->ds.attrib, 3279 save->ds.limit, save->ds.base); 3280 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3281 "fs:", 3282 save01->fs.selector, save01->fs.attrib, 3283 save01->fs.limit, save01->fs.base); 3284 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3285 "gs:", 3286 save01->gs.selector, save01->gs.attrib, 3287 save01->gs.limit, save01->gs.base); 3288 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3289 "gdtr:", 3290 save->gdtr.selector, save->gdtr.attrib, 3291 save->gdtr.limit, save->gdtr.base); 3292 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3293 "ldtr:", 3294 save01->ldtr.selector, save01->ldtr.attrib, 3295 save01->ldtr.limit, save01->ldtr.base); 3296 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3297 "idtr:", 3298 save->idtr.selector, save->idtr.attrib, 3299 save->idtr.limit, save->idtr.base); 3300 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3301 "tr:", 3302 save01->tr.selector, save01->tr.attrib, 3303 save01->tr.limit, save01->tr.base); 3304 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3305 save->vmpl, save->cpl, save->efer); 3306 pr_err("%-15s %016llx %-13s %016llx\n", 3307 "cr0:", save->cr0, "cr2:", save->cr2); 3308 pr_err("%-15s %016llx %-13s %016llx\n", 3309 "cr3:", save->cr3, "cr4:", save->cr4); 3310 pr_err("%-15s %016llx %-13s %016llx\n", 3311 "dr6:", save->dr6, "dr7:", save->dr7); 3312 pr_err("%-15s %016llx %-13s %016llx\n", 3313 "rip:", save->rip, "rflags:", save->rflags); 3314 pr_err("%-15s %016llx %-13s %016llx\n", 3315 "rsp:", save->rsp, "rax:", save->rax); 3316 pr_err("%-15s %016llx %-13s %016llx\n", 3317 "star:", save01->star, "lstar:", save01->lstar); 3318 pr_err("%-15s %016llx %-13s %016llx\n", 3319 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3320 pr_err("%-15s %016llx %-13s %016llx\n", 3321 "kernel_gs_base:", save01->kernel_gs_base, 3322 "sysenter_cs:", save01->sysenter_cs); 3323 pr_err("%-15s %016llx %-13s %016llx\n", 3324 "sysenter_esp:", save01->sysenter_esp, 3325 "sysenter_eip:", save01->sysenter_eip); 3326 pr_err("%-15s %016llx %-13s %016llx\n", 3327 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3328 pr_err("%-15s %016llx %-13s %016llx\n", 3329 "br_from:", save->br_from, "br_to:", save->br_to); 3330 pr_err("%-15s %016llx %-13s %016llx\n", 3331 "excp_from:", save->last_excp_from, 3332 "excp_to:", save->last_excp_to); 3333 } 3334 3335 static bool svm_check_exit_valid(u64 exit_code) 3336 { 3337 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3338 svm_exit_handlers[exit_code]); 3339 } 3340 3341 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3342 { 3343 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3344 dump_vmcb(vcpu); 3345 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3346 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3347 vcpu->run->internal.ndata = 2; 3348 vcpu->run->internal.data[0] = exit_code; 3349 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3350 return 0; 3351 } 3352 3353 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3354 { 3355 if (!svm_check_exit_valid(exit_code)) 3356 return svm_handle_invalid_exit(vcpu, exit_code); 3357 3358 #ifdef CONFIG_RETPOLINE 3359 if (exit_code == SVM_EXIT_MSR) 3360 return msr_interception(vcpu); 3361 else if (exit_code == SVM_EXIT_VINTR) 3362 return interrupt_window_interception(vcpu); 3363 else if (exit_code == SVM_EXIT_INTR) 3364 return intr_interception(vcpu); 3365 else if (exit_code == SVM_EXIT_HLT) 3366 return kvm_emulate_halt(vcpu); 3367 else if (exit_code == SVM_EXIT_NPF) 3368 return npf_interception(vcpu); 3369 #endif 3370 return svm_exit_handlers[exit_code](vcpu); 3371 } 3372 3373 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3374 u64 *info1, u64 *info2, 3375 u32 *intr_info, u32 *error_code) 3376 { 3377 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3378 3379 *reason = control->exit_code; 3380 *info1 = control->exit_info_1; 3381 *info2 = control->exit_info_2; 3382 *intr_info = control->exit_int_info; 3383 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3384 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3385 *error_code = control->exit_int_info_err; 3386 else 3387 *error_code = 0; 3388 } 3389 3390 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3391 { 3392 struct vcpu_svm *svm = to_svm(vcpu); 3393 struct kvm_run *kvm_run = vcpu->run; 3394 u32 exit_code = svm->vmcb->control.exit_code; 3395 3396 trace_kvm_exit(vcpu, KVM_ISA_SVM); 3397 3398 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3399 if (!sev_es_guest(vcpu->kvm)) { 3400 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3401 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3402 if (npt_enabled) 3403 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3404 } 3405 3406 if (is_guest_mode(vcpu)) { 3407 int vmexit; 3408 3409 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3410 3411 vmexit = nested_svm_exit_special(svm); 3412 3413 if (vmexit == NESTED_EXIT_CONTINUE) 3414 vmexit = nested_svm_exit_handled(svm); 3415 3416 if (vmexit == NESTED_EXIT_DONE) 3417 return 1; 3418 } 3419 3420 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3421 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3422 kvm_run->fail_entry.hardware_entry_failure_reason 3423 = svm->vmcb->control.exit_code; 3424 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3425 dump_vmcb(vcpu); 3426 return 0; 3427 } 3428 3429 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3430 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3431 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3432 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3433 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3434 "exit_code 0x%x\n", 3435 __func__, svm->vmcb->control.exit_int_info, 3436 exit_code); 3437 3438 if (exit_fastpath != EXIT_FASTPATH_NONE) 3439 return 1; 3440 3441 return svm_invoke_exit_handler(vcpu, exit_code); 3442 } 3443 3444 static void reload_tss(struct kvm_vcpu *vcpu) 3445 { 3446 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3447 3448 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3449 load_TR_desc(); 3450 } 3451 3452 static void pre_svm_run(struct kvm_vcpu *vcpu) 3453 { 3454 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3455 struct vcpu_svm *svm = to_svm(vcpu); 3456 3457 /* 3458 * If the previous vmrun of the vmcb occurred on a different physical 3459 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3460 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3461 */ 3462 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3463 svm->current_vmcb->asid_generation = 0; 3464 vmcb_mark_all_dirty(svm->vmcb); 3465 svm->current_vmcb->cpu = vcpu->cpu; 3466 } 3467 3468 if (sev_guest(vcpu->kvm)) 3469 return pre_sev_run(svm, vcpu->cpu); 3470 3471 /* FIXME: handle wraparound of asid_generation */ 3472 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3473 new_asid(svm, sd); 3474 } 3475 3476 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3477 { 3478 struct vcpu_svm *svm = to_svm(vcpu); 3479 3480 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3481 3482 if (svm->nmi_l1_to_l2) 3483 return; 3484 3485 vcpu->arch.hflags |= HF_NMI_MASK; 3486 if (!sev_es_guest(vcpu->kvm)) 3487 svm_set_intercept(svm, INTERCEPT_IRET); 3488 ++vcpu->stat.nmi_injections; 3489 } 3490 3491 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3492 { 3493 struct vcpu_svm *svm = to_svm(vcpu); 3494 u32 type; 3495 3496 if (vcpu->arch.interrupt.soft) { 3497 if (svm_update_soft_interrupt_rip(vcpu)) 3498 return; 3499 3500 type = SVM_EVTINJ_TYPE_SOFT; 3501 } else { 3502 type = SVM_EVTINJ_TYPE_INTR; 3503 } 3504 3505 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3506 vcpu->arch.interrupt.soft, reinjected); 3507 ++vcpu->stat.irq_injections; 3508 3509 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3510 SVM_EVTINJ_VALID | type; 3511 } 3512 3513 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3514 int trig_mode, int vector) 3515 { 3516 /* 3517 * apic->apicv_active must be read after vcpu->mode. 3518 * Pairs with smp_store_release in vcpu_enter_guest. 3519 */ 3520 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3521 3522 /* Note, this is called iff the local APIC is in-kernel. */ 3523 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3524 /* Process the interrupt via kvm_check_and_inject_events(). */ 3525 kvm_make_request(KVM_REQ_EVENT, vcpu); 3526 kvm_vcpu_kick(vcpu); 3527 return; 3528 } 3529 3530 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3531 if (in_guest_mode) { 3532 /* 3533 * Signal the doorbell to tell hardware to inject the IRQ. If 3534 * the vCPU exits the guest before the doorbell chimes, hardware 3535 * will automatically process AVIC interrupts at the next VMRUN. 3536 */ 3537 avic_ring_doorbell(vcpu); 3538 } else { 3539 /* 3540 * Wake the vCPU if it was blocking. KVM will then detect the 3541 * pending IRQ when checking if the vCPU has a wake event. 3542 */ 3543 kvm_vcpu_wake_up(vcpu); 3544 } 3545 } 3546 3547 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3548 int trig_mode, int vector) 3549 { 3550 kvm_lapic_set_irr(vector, apic); 3551 3552 /* 3553 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3554 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3555 * the read of guest_mode. This guarantees that either VMRUN will see 3556 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3557 * will signal the doorbell if the CPU has already entered the guest. 3558 */ 3559 smp_mb__after_atomic(); 3560 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3561 } 3562 3563 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3564 { 3565 struct vcpu_svm *svm = to_svm(vcpu); 3566 3567 /* 3568 * SEV-ES guests must always keep the CR intercepts cleared. CR 3569 * tracking is done using the CR write traps. 3570 */ 3571 if (sev_es_guest(vcpu->kvm)) 3572 return; 3573 3574 if (nested_svm_virtualize_tpr(vcpu)) 3575 return; 3576 3577 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3578 3579 if (irr == -1) 3580 return; 3581 3582 if (tpr >= irr) 3583 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3584 } 3585 3586 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3587 { 3588 struct vcpu_svm *svm = to_svm(vcpu); 3589 struct vmcb *vmcb = svm->vmcb; 3590 bool ret; 3591 3592 if (!gif_set(svm)) 3593 return true; 3594 3595 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3596 return false; 3597 3598 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3599 (vcpu->arch.hflags & HF_NMI_MASK); 3600 3601 return ret; 3602 } 3603 3604 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3605 { 3606 struct vcpu_svm *svm = to_svm(vcpu); 3607 if (svm->nested.nested_run_pending) 3608 return -EBUSY; 3609 3610 if (svm_nmi_blocked(vcpu)) 3611 return 0; 3612 3613 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3614 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3615 return -EBUSY; 3616 return 1; 3617 } 3618 3619 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3620 { 3621 return !!(vcpu->arch.hflags & HF_NMI_MASK); 3622 } 3623 3624 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3625 { 3626 struct vcpu_svm *svm = to_svm(vcpu); 3627 3628 if (masked) { 3629 vcpu->arch.hflags |= HF_NMI_MASK; 3630 if (!sev_es_guest(vcpu->kvm)) 3631 svm_set_intercept(svm, INTERCEPT_IRET); 3632 } else { 3633 vcpu->arch.hflags &= ~HF_NMI_MASK; 3634 if (!sev_es_guest(vcpu->kvm)) 3635 svm_clr_intercept(svm, INTERCEPT_IRET); 3636 } 3637 } 3638 3639 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3640 { 3641 struct vcpu_svm *svm = to_svm(vcpu); 3642 struct vmcb *vmcb = svm->vmcb; 3643 3644 if (!gif_set(svm)) 3645 return true; 3646 3647 if (is_guest_mode(vcpu)) { 3648 /* As long as interrupts are being delivered... */ 3649 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3650 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3651 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3652 return true; 3653 3654 /* ... vmexits aren't blocked by the interrupt shadow */ 3655 if (nested_exit_on_intr(svm)) 3656 return false; 3657 } else { 3658 if (!svm_get_if_flag(vcpu)) 3659 return true; 3660 } 3661 3662 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3663 } 3664 3665 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3666 { 3667 struct vcpu_svm *svm = to_svm(vcpu); 3668 3669 if (svm->nested.nested_run_pending) 3670 return -EBUSY; 3671 3672 if (svm_interrupt_blocked(vcpu)) 3673 return 0; 3674 3675 /* 3676 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3677 * e.g. if the IRQ arrived asynchronously after checking nested events. 3678 */ 3679 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3680 return -EBUSY; 3681 3682 return 1; 3683 } 3684 3685 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3686 { 3687 struct vcpu_svm *svm = to_svm(vcpu); 3688 3689 /* 3690 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3691 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3692 * get that intercept, this function will be called again though and 3693 * we'll get the vintr intercept. However, if the vGIF feature is 3694 * enabled, the STGI interception will not occur. Enable the irq 3695 * window under the assumption that the hardware will set the GIF. 3696 */ 3697 if (vgif || gif_set(svm)) { 3698 /* 3699 * IRQ window is not needed when AVIC is enabled, 3700 * unless we have pending ExtINT since it cannot be injected 3701 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3702 * and fallback to injecting IRQ via V_IRQ. 3703 * 3704 * If running nested, AVIC is already locally inhibited 3705 * on this vCPU, therefore there is no need to request 3706 * the VM wide AVIC inhibition. 3707 */ 3708 if (!is_guest_mode(vcpu)) 3709 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3710 3711 svm_set_vintr(svm); 3712 } 3713 } 3714 3715 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3716 { 3717 struct vcpu_svm *svm = to_svm(vcpu); 3718 3719 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) 3720 return; /* IRET will cause a vm exit */ 3721 3722 if (!gif_set(svm)) { 3723 if (vgif) 3724 svm_set_intercept(svm, INTERCEPT_STGI); 3725 return; /* STGI will cause a vm exit */ 3726 } 3727 3728 /* 3729 * Something prevents NMI from been injected. Single step over possible 3730 * problem (IRET or exception injection or interrupt shadow) 3731 */ 3732 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3733 svm->nmi_singlestep = true; 3734 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3735 } 3736 3737 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3738 { 3739 struct vcpu_svm *svm = to_svm(vcpu); 3740 3741 /* 3742 * Flush only the current ASID even if the TLB flush was invoked via 3743 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3744 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3745 * unconditionally does a TLB flush on both nested VM-Enter and nested 3746 * VM-Exit (via kvm_mmu_reset_context()). 3747 */ 3748 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3749 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3750 else 3751 svm->current_vmcb->asid_generation--; 3752 } 3753 3754 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3755 { 3756 struct vcpu_svm *svm = to_svm(vcpu); 3757 3758 invlpga(gva, svm->vmcb->control.asid); 3759 } 3760 3761 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3762 { 3763 struct vcpu_svm *svm = to_svm(vcpu); 3764 3765 if (nested_svm_virtualize_tpr(vcpu)) 3766 return; 3767 3768 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3769 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3770 kvm_set_cr8(vcpu, cr8); 3771 } 3772 } 3773 3774 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3775 { 3776 struct vcpu_svm *svm = to_svm(vcpu); 3777 u64 cr8; 3778 3779 if (nested_svm_virtualize_tpr(vcpu) || 3780 kvm_vcpu_apicv_active(vcpu)) 3781 return; 3782 3783 cr8 = kvm_get_cr8(vcpu); 3784 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3785 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3786 } 3787 3788 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 3789 int type) 3790 { 3791 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 3792 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 3793 struct vcpu_svm *svm = to_svm(vcpu); 3794 3795 /* 3796 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 3797 * associated with the original soft exception/interrupt. next_rip is 3798 * cleared on all exits that can occur while vectoring an event, so KVM 3799 * needs to manually set next_rip for re-injection. Unlike the !nrips 3800 * case below, this needs to be done if and only if KVM is re-injecting 3801 * the same event, i.e. if the event is a soft exception/interrupt, 3802 * otherwise next_rip is unused on VMRUN. 3803 */ 3804 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 3805 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 3806 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 3807 /* 3808 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 3809 * injecting the soft exception/interrupt. That advancement needs to 3810 * be unwound if vectoring didn't complete. Note, the new event may 3811 * not be the injected event, e.g. if KVM injected an INTn, the INTn 3812 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 3813 * be the reported vectored event, but RIP still needs to be unwound. 3814 */ 3815 else if (!nrips && (is_soft || is_exception) && 3816 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 3817 kvm_rip_write(vcpu, svm->soft_int_old_rip); 3818 } 3819 3820 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3821 { 3822 struct vcpu_svm *svm = to_svm(vcpu); 3823 u8 vector; 3824 int type; 3825 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3826 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 3827 bool soft_int_injected = svm->soft_int_injected; 3828 3829 svm->nmi_l1_to_l2 = false; 3830 svm->soft_int_injected = false; 3831 3832 /* 3833 * If we've made progress since setting HF_IRET_MASK, we've 3834 * executed an IRET and can allow NMI injection. 3835 */ 3836 if ((vcpu->arch.hflags & HF_IRET_MASK) && 3837 (sev_es_guest(vcpu->kvm) || 3838 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { 3839 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3840 kvm_make_request(KVM_REQ_EVENT, vcpu); 3841 } 3842 3843 vcpu->arch.nmi_injected = false; 3844 kvm_clear_exception_queue(vcpu); 3845 kvm_clear_interrupt_queue(vcpu); 3846 3847 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3848 return; 3849 3850 kvm_make_request(KVM_REQ_EVENT, vcpu); 3851 3852 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3853 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3854 3855 if (soft_int_injected) 3856 svm_complete_soft_interrupt(vcpu, vector, type); 3857 3858 switch (type) { 3859 case SVM_EXITINTINFO_TYPE_NMI: 3860 vcpu->arch.nmi_injected = true; 3861 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 3862 break; 3863 case SVM_EXITINTINFO_TYPE_EXEPT: 3864 /* 3865 * Never re-inject a #VC exception. 3866 */ 3867 if (vector == X86_TRAP_VC) 3868 break; 3869 3870 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3871 u32 err = svm->vmcb->control.exit_int_info_err; 3872 kvm_requeue_exception_e(vcpu, vector, err); 3873 3874 } else 3875 kvm_requeue_exception(vcpu, vector); 3876 break; 3877 case SVM_EXITINTINFO_TYPE_INTR: 3878 kvm_queue_interrupt(vcpu, vector, false); 3879 break; 3880 case SVM_EXITINTINFO_TYPE_SOFT: 3881 kvm_queue_interrupt(vcpu, vector, true); 3882 break; 3883 default: 3884 break; 3885 } 3886 3887 } 3888 3889 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3890 { 3891 struct vcpu_svm *svm = to_svm(vcpu); 3892 struct vmcb_control_area *control = &svm->vmcb->control; 3893 3894 control->exit_int_info = control->event_inj; 3895 control->exit_int_info_err = control->event_inj_err; 3896 control->event_inj = 0; 3897 svm_complete_interrupts(vcpu); 3898 } 3899 3900 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 3901 { 3902 return 1; 3903 } 3904 3905 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3906 { 3907 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3908 to_svm(vcpu)->vmcb->control.exit_info_1) 3909 return handle_fastpath_set_msr_irqoff(vcpu); 3910 3911 return EXIT_FASTPATH_NONE; 3912 } 3913 3914 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 3915 { 3916 struct vcpu_svm *svm = to_svm(vcpu); 3917 unsigned long vmcb_pa = svm->current_vmcb->pa; 3918 3919 guest_state_enter_irqoff(); 3920 3921 if (sev_es_guest(vcpu->kvm)) { 3922 __svm_sev_es_vcpu_run(vmcb_pa); 3923 } else { 3924 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3925 3926 /* 3927 * Use a single vmcb (vmcb01 because it's always valid) for 3928 * context switching guest state via VMLOAD/VMSAVE, that way 3929 * the state doesn't need to be copied between vmcb01 and 3930 * vmcb02 when switching vmcbs for nested virtualization. 3931 */ 3932 vmload(svm->vmcb01.pa); 3933 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs); 3934 vmsave(svm->vmcb01.pa); 3935 3936 vmload(__sme_page_pa(sd->save_area)); 3937 } 3938 3939 guest_state_exit_irqoff(); 3940 } 3941 3942 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3943 { 3944 struct vcpu_svm *svm = to_svm(vcpu); 3945 3946 trace_kvm_entry(vcpu); 3947 3948 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3949 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3950 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3951 3952 /* 3953 * Disable singlestep if we're injecting an interrupt/exception. 3954 * We don't want our modified rflags to be pushed on the stack where 3955 * we might not be able to easily reset them if we disabled NMI 3956 * singlestep later. 3957 */ 3958 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3959 /* 3960 * Event injection happens before external interrupts cause a 3961 * vmexit and interrupts are disabled here, so smp_send_reschedule 3962 * is enough to force an immediate vmexit. 3963 */ 3964 disable_nmi_singlestep(svm); 3965 smp_send_reschedule(vcpu->cpu); 3966 } 3967 3968 pre_svm_run(vcpu); 3969 3970 sync_lapic_to_cr8(vcpu); 3971 3972 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3973 svm->vmcb->control.asid = svm->asid; 3974 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3975 } 3976 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3977 3978 svm_hv_update_vp_id(svm->vmcb, vcpu); 3979 3980 /* 3981 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3982 * of a #DB. 3983 */ 3984 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3985 svm_set_dr6(svm, vcpu->arch.dr6); 3986 else 3987 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3988 3989 clgi(); 3990 kvm_load_guest_xsave_state(vcpu); 3991 3992 kvm_wait_lapic_expire(vcpu); 3993 3994 /* 3995 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3996 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3997 * is no need to worry about the conditional branch over the wrmsr 3998 * being speculatively taken. 3999 */ 4000 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4001 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 4002 4003 svm_vcpu_enter_exit(vcpu); 4004 4005 /* 4006 * We do not use IBRS in the kernel. If this vCPU has used the 4007 * SPEC_CTRL MSR it may have left it on; save the value and 4008 * turn it off. This is much more efficient than blindly adding 4009 * it to the atomic save/restore list. Especially as the former 4010 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 4011 * 4012 * For non-nested case: 4013 * If the L01 MSR bitmap does not intercept the MSR, then we need to 4014 * save it. 4015 * 4016 * For nested case: 4017 * If the L02 MSR bitmap does not intercept the MSR, then we need to 4018 * save it. 4019 */ 4020 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) && 4021 unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 4022 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 4023 4024 if (!sev_es_guest(vcpu->kvm)) 4025 reload_tss(vcpu); 4026 4027 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4028 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 4029 4030 if (!sev_es_guest(vcpu->kvm)) { 4031 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4032 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4033 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4034 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4035 } 4036 vcpu->arch.regs_dirty = 0; 4037 4038 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4039 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4040 4041 kvm_load_host_xsave_state(vcpu); 4042 stgi(); 4043 4044 /* Any pending NMI will happen here */ 4045 4046 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4047 kvm_after_interrupt(vcpu); 4048 4049 sync_cr8_to_lapic(vcpu); 4050 4051 svm->next_rip = 0; 4052 if (is_guest_mode(vcpu)) { 4053 nested_sync_control_from_vmcb02(svm); 4054 4055 /* Track VMRUNs that have made past consistency checking */ 4056 if (svm->nested.nested_run_pending && 4057 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4058 ++vcpu->stat.nested_run; 4059 4060 svm->nested.nested_run_pending = 0; 4061 } 4062 4063 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4064 vmcb_mark_all_clean(svm->vmcb); 4065 4066 /* if exit due to PF check for async PF */ 4067 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4068 vcpu->arch.apf.host_apf_flags = 4069 kvm_read_and_reset_apf_flags(); 4070 4071 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4072 4073 /* 4074 * We need to handle MC intercepts here before the vcpu has a chance to 4075 * change the physical cpu 4076 */ 4077 if (unlikely(svm->vmcb->control.exit_code == 4078 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4079 svm_handle_mce(vcpu); 4080 4081 svm_complete_interrupts(vcpu); 4082 4083 if (is_guest_mode(vcpu)) 4084 return EXIT_FASTPATH_NONE; 4085 4086 return svm_exit_handlers_fastpath(vcpu); 4087 } 4088 4089 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4090 int root_level) 4091 { 4092 struct vcpu_svm *svm = to_svm(vcpu); 4093 unsigned long cr3; 4094 4095 if (npt_enabled) { 4096 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4097 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4098 4099 hv_track_root_tdp(vcpu, root_hpa); 4100 4101 cr3 = vcpu->arch.cr3; 4102 } else if (root_level >= PT64_ROOT_4LEVEL) { 4103 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4104 } else { 4105 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4106 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4107 cr3 = root_hpa; 4108 } 4109 4110 svm->vmcb->save.cr3 = cr3; 4111 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4112 } 4113 4114 static int is_disabled(void) 4115 { 4116 u64 vm_cr; 4117 4118 rdmsrl(MSR_VM_CR, vm_cr); 4119 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 4120 return 1; 4121 4122 return 0; 4123 } 4124 4125 static void 4126 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4127 { 4128 /* 4129 * Patch in the VMMCALL instruction: 4130 */ 4131 hypercall[0] = 0x0f; 4132 hypercall[1] = 0x01; 4133 hypercall[2] = 0xd9; 4134 } 4135 4136 static int __init svm_check_processor_compat(void) 4137 { 4138 return 0; 4139 } 4140 4141 /* 4142 * The kvm parameter can be NULL (module initialization, or invocation before 4143 * VM creation). Be sure to check the kvm parameter before using it. 4144 */ 4145 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4146 { 4147 switch (index) { 4148 case MSR_IA32_MCG_EXT_CTL: 4149 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 4150 return false; 4151 case MSR_IA32_SMBASE: 4152 /* SEV-ES guests do not support SMM, so report false */ 4153 if (kvm && sev_es_guest(kvm)) 4154 return false; 4155 break; 4156 default: 4157 break; 4158 } 4159 4160 return true; 4161 } 4162 4163 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4164 { 4165 struct vcpu_svm *svm = to_svm(vcpu); 4166 struct kvm_cpuid_entry2 *best; 4167 4168 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4169 boot_cpu_has(X86_FEATURE_XSAVE) && 4170 boot_cpu_has(X86_FEATURE_XSAVES); 4171 4172 /* Update nrips enabled cache */ 4173 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 4174 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); 4175 4176 svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR); 4177 svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV); 4178 4179 svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4180 4181 svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) && 4182 guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER); 4183 4184 svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) && 4185 guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD); 4186 4187 svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF); 4188 4189 svm_recalc_instruction_intercepts(vcpu, svm); 4190 4191 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4192 if (sev_guest(vcpu->kvm)) { 4193 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4194 if (best) 4195 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4196 } 4197 4198 init_vmcb_after_set_cpuid(vcpu); 4199 } 4200 4201 static bool svm_has_wbinvd_exit(void) 4202 { 4203 return true; 4204 } 4205 4206 #define PRE_EX(exit) { .exit_code = (exit), \ 4207 .stage = X86_ICPT_PRE_EXCEPT, } 4208 #define POST_EX(exit) { .exit_code = (exit), \ 4209 .stage = X86_ICPT_POST_EXCEPT, } 4210 #define POST_MEM(exit) { .exit_code = (exit), \ 4211 .stage = X86_ICPT_POST_MEMACCESS, } 4212 4213 static const struct __x86_intercept { 4214 u32 exit_code; 4215 enum x86_intercept_stage stage; 4216 } x86_intercept_map[] = { 4217 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4218 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4219 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4220 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4221 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4222 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4223 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4224 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4225 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4226 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4227 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4228 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4229 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4230 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4231 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4232 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4233 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4234 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4235 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4236 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4237 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4238 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4239 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4240 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4241 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4242 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4243 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4244 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4245 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4246 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4247 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4248 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4249 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4250 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4251 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4252 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4253 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4254 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4255 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4256 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4257 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4258 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4259 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4260 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4261 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4262 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4263 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4264 }; 4265 4266 #undef PRE_EX 4267 #undef POST_EX 4268 #undef POST_MEM 4269 4270 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4271 struct x86_instruction_info *info, 4272 enum x86_intercept_stage stage, 4273 struct x86_exception *exception) 4274 { 4275 struct vcpu_svm *svm = to_svm(vcpu); 4276 int vmexit, ret = X86EMUL_CONTINUE; 4277 struct __x86_intercept icpt_info; 4278 struct vmcb *vmcb = svm->vmcb; 4279 4280 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4281 goto out; 4282 4283 icpt_info = x86_intercept_map[info->intercept]; 4284 4285 if (stage != icpt_info.stage) 4286 goto out; 4287 4288 switch (icpt_info.exit_code) { 4289 case SVM_EXIT_READ_CR0: 4290 if (info->intercept == x86_intercept_cr_read) 4291 icpt_info.exit_code += info->modrm_reg; 4292 break; 4293 case SVM_EXIT_WRITE_CR0: { 4294 unsigned long cr0, val; 4295 4296 if (info->intercept == x86_intercept_cr_write) 4297 icpt_info.exit_code += info->modrm_reg; 4298 4299 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4300 info->intercept == x86_intercept_clts) 4301 break; 4302 4303 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4304 INTERCEPT_SELECTIVE_CR0))) 4305 break; 4306 4307 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4308 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4309 4310 if (info->intercept == x86_intercept_lmsw) { 4311 cr0 &= 0xfUL; 4312 val &= 0xfUL; 4313 /* lmsw can't clear PE - catch this here */ 4314 if (cr0 & X86_CR0_PE) 4315 val |= X86_CR0_PE; 4316 } 4317 4318 if (cr0 ^ val) 4319 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4320 4321 break; 4322 } 4323 case SVM_EXIT_READ_DR0: 4324 case SVM_EXIT_WRITE_DR0: 4325 icpt_info.exit_code += info->modrm_reg; 4326 break; 4327 case SVM_EXIT_MSR: 4328 if (info->intercept == x86_intercept_wrmsr) 4329 vmcb->control.exit_info_1 = 1; 4330 else 4331 vmcb->control.exit_info_1 = 0; 4332 break; 4333 case SVM_EXIT_PAUSE: 4334 /* 4335 * We get this for NOP only, but pause 4336 * is rep not, check this here 4337 */ 4338 if (info->rep_prefix != REPE_PREFIX) 4339 goto out; 4340 break; 4341 case SVM_EXIT_IOIO: { 4342 u64 exit_info; 4343 u32 bytes; 4344 4345 if (info->intercept == x86_intercept_in || 4346 info->intercept == x86_intercept_ins) { 4347 exit_info = ((info->src_val & 0xffff) << 16) | 4348 SVM_IOIO_TYPE_MASK; 4349 bytes = info->dst_bytes; 4350 } else { 4351 exit_info = (info->dst_val & 0xffff) << 16; 4352 bytes = info->src_bytes; 4353 } 4354 4355 if (info->intercept == x86_intercept_outs || 4356 info->intercept == x86_intercept_ins) 4357 exit_info |= SVM_IOIO_STR_MASK; 4358 4359 if (info->rep_prefix) 4360 exit_info |= SVM_IOIO_REP_MASK; 4361 4362 bytes = min(bytes, 4u); 4363 4364 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4365 4366 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4367 4368 vmcb->control.exit_info_1 = exit_info; 4369 vmcb->control.exit_info_2 = info->next_rip; 4370 4371 break; 4372 } 4373 default: 4374 break; 4375 } 4376 4377 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4378 if (static_cpu_has(X86_FEATURE_NRIPS)) 4379 vmcb->control.next_rip = info->next_rip; 4380 vmcb->control.exit_code = icpt_info.exit_code; 4381 vmexit = nested_svm_exit_handled(svm); 4382 4383 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4384 : X86EMUL_CONTINUE; 4385 4386 out: 4387 return ret; 4388 } 4389 4390 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4391 { 4392 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4393 vcpu->arch.at_instruction_boundary = true; 4394 } 4395 4396 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4397 { 4398 if (!kvm_pause_in_guest(vcpu->kvm)) 4399 shrink_ple_window(vcpu); 4400 } 4401 4402 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4403 { 4404 /* [63:9] are reserved. */ 4405 vcpu->arch.mcg_cap &= 0x1ff; 4406 } 4407 4408 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4409 { 4410 struct vcpu_svm *svm = to_svm(vcpu); 4411 4412 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4413 if (!gif_set(svm)) 4414 return true; 4415 4416 return is_smm(vcpu); 4417 } 4418 4419 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4420 { 4421 struct vcpu_svm *svm = to_svm(vcpu); 4422 if (svm->nested.nested_run_pending) 4423 return -EBUSY; 4424 4425 if (svm_smi_blocked(vcpu)) 4426 return 0; 4427 4428 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4429 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4430 return -EBUSY; 4431 4432 return 1; 4433 } 4434 4435 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4436 { 4437 struct vcpu_svm *svm = to_svm(vcpu); 4438 struct kvm_host_map map_save; 4439 int ret; 4440 4441 if (!is_guest_mode(vcpu)) 4442 return 0; 4443 4444 /* FED8h - SVM Guest */ 4445 put_smstate(u64, smstate, 0x7ed8, 1); 4446 /* FEE0h - SVM Guest VMCB Physical Address */ 4447 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4448 4449 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4450 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4451 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4452 4453 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4454 if (ret) 4455 return ret; 4456 4457 /* 4458 * KVM uses VMCB01 to store L1 host state while L2 runs but 4459 * VMCB01 is going to be used during SMM and thus the state will 4460 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4461 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4462 * format of the area is identical to guest save area offsetted 4463 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4464 * within 'struct vmcb'). Note: HSAVE area may also be used by 4465 * L1 hypervisor to save additional host context (e.g. KVM does 4466 * that, see svm_prepare_switch_to_guest()) which must be 4467 * preserved. 4468 */ 4469 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), 4470 &map_save) == -EINVAL) 4471 return 1; 4472 4473 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4474 4475 svm_copy_vmrun_state(map_save.hva + 0x400, 4476 &svm->vmcb01.ptr->save); 4477 4478 kvm_vcpu_unmap(vcpu, &map_save, true); 4479 return 0; 4480 } 4481 4482 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4483 { 4484 struct vcpu_svm *svm = to_svm(vcpu); 4485 struct kvm_host_map map, map_save; 4486 u64 saved_efer, vmcb12_gpa; 4487 struct vmcb *vmcb12; 4488 int ret; 4489 4490 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4491 return 0; 4492 4493 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4494 if (!GET_SMSTATE(u64, smstate, 0x7ed8)) 4495 return 0; 4496 4497 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4498 return 1; 4499 4500 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4501 if (!(saved_efer & EFER_SVME)) 4502 return 1; 4503 4504 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4505 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4506 return 1; 4507 4508 ret = 1; 4509 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL) 4510 goto unmap_map; 4511 4512 if (svm_allocate_nested(svm)) 4513 goto unmap_save; 4514 4515 /* 4516 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4517 * used during SMM (see svm_enter_smm()) 4518 */ 4519 4520 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4521 4522 /* 4523 * Enter the nested guest now 4524 */ 4525 4526 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4527 4528 vmcb12 = map.hva; 4529 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4530 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4531 ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false); 4532 4533 if (ret) 4534 goto unmap_save; 4535 4536 svm->nested.nested_run_pending = 1; 4537 4538 unmap_save: 4539 kvm_vcpu_unmap(vcpu, &map_save, true); 4540 unmap_map: 4541 kvm_vcpu_unmap(vcpu, &map, true); 4542 return ret; 4543 } 4544 4545 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4546 { 4547 struct vcpu_svm *svm = to_svm(vcpu); 4548 4549 if (!gif_set(svm)) { 4550 if (vgif) 4551 svm_set_intercept(svm, INTERCEPT_STGI); 4552 /* STGI will cause a vm exit */ 4553 } else { 4554 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4555 } 4556 } 4557 4558 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4559 void *insn, int insn_len) 4560 { 4561 bool smep, smap, is_user; 4562 unsigned long cr4; 4563 u64 error_code; 4564 4565 /* Emulation is always possible when KVM has access to all guest state. */ 4566 if (!sev_guest(vcpu->kvm)) 4567 return true; 4568 4569 /* #UD and #GP should never be intercepted for SEV guests. */ 4570 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4571 EMULTYPE_TRAP_UD_FORCED | 4572 EMULTYPE_VMWARE_GP)); 4573 4574 /* 4575 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4576 * to guest register state. 4577 */ 4578 if (sev_es_guest(vcpu->kvm)) 4579 return false; 4580 4581 /* 4582 * Emulation is possible if the instruction is already decoded, e.g. 4583 * when completing I/O after returning from userspace. 4584 */ 4585 if (emul_type & EMULTYPE_NO_DECODE) 4586 return true; 4587 4588 /* 4589 * Emulation is possible for SEV guests if and only if a prefilled 4590 * buffer containing the bytes of the intercepted instruction is 4591 * available. SEV guest memory is encrypted with a guest specific key 4592 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4593 * decode garbage. 4594 * 4595 * Inject #UD if KVM reached this point without an instruction buffer. 4596 * In practice, this path should never be hit by a well-behaved guest, 4597 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path 4598 * is still theoretically reachable, e.g. via unaccelerated fault-like 4599 * AVIC access, and needs to be handled by KVM to avoid putting the 4600 * guest into an infinite loop. Injecting #UD is somewhat arbitrary, 4601 * but its the least awful option given lack of insight into the guest. 4602 */ 4603 if (unlikely(!insn)) { 4604 kvm_queue_exception(vcpu, UD_VECTOR); 4605 return false; 4606 } 4607 4608 /* 4609 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4610 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4611 * the faulting instruction because the code fetch itself faulted, e.g. 4612 * the guest attempted to fetch from emulated MMIO or a guest page 4613 * table used to translate CS:RIP resides in emulated MMIO. 4614 */ 4615 if (likely(insn_len)) 4616 return true; 4617 4618 /* 4619 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4620 * 4621 * Errata: 4622 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4623 * possible that CPU microcode implementing DecodeAssist will fail to 4624 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4625 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4626 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4627 * gives up and does not fill the instruction bytes buffer. 4628 * 4629 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4630 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4631 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4632 * GuestIntrBytes field of the VMCB. 4633 * 4634 * This does _not_ mean that the erratum has been encountered, as the 4635 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4636 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4637 * encountered a reserved/not-present #PF. 4638 * 4639 * To hit the erratum, the following conditions must be true: 4640 * 1. CR4.SMAP=1 (obviously). 4641 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4642 * have been hit as the guest would have encountered a SMEP 4643 * violation #PF, not a #NPF. 4644 * 3. The #NPF is not due to a code fetch, in which case failure to 4645 * retrieve the instruction bytes is legitimate (see abvoe). 4646 * 4647 * In addition, don't apply the erratum workaround if the #NPF occurred 4648 * while translating guest page tables (see below). 4649 */ 4650 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4651 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4652 goto resume_guest; 4653 4654 cr4 = kvm_read_cr4(vcpu); 4655 smep = cr4 & X86_CR4_SMEP; 4656 smap = cr4 & X86_CR4_SMAP; 4657 is_user = svm_get_cpl(vcpu) == 3; 4658 if (smap && (!smep || is_user)) { 4659 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4660 4661 /* 4662 * If the fault occurred in userspace, arbitrarily inject #GP 4663 * to avoid killing the guest and to hopefully avoid confusing 4664 * the guest kernel too much, e.g. injecting #PF would not be 4665 * coherent with respect to the guest's page tables. Request 4666 * triple fault if the fault occurred in the kernel as there's 4667 * no fault that KVM can inject without confusing the guest. 4668 * In practice, the triple fault is moot as no sane SEV kernel 4669 * will execute from user memory while also running with SMAP=1. 4670 */ 4671 if (is_user) 4672 kvm_inject_gp(vcpu, 0); 4673 else 4674 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4675 } 4676 4677 resume_guest: 4678 /* 4679 * If the erratum was not hit, simply resume the guest and let it fault 4680 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4681 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4682 * userspace will kill the guest, and letting the emulator read garbage 4683 * will yield random behavior and potentially corrupt the guest. 4684 * 4685 * Simply resuming the guest is technically not a violation of the SEV 4686 * architecture. AMD's APM states that all code fetches and page table 4687 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4688 * APM also states that encrypted accesses to MMIO are "ignored", but 4689 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4690 * the guest spin is technically "ignoring" the access. 4691 */ 4692 return false; 4693 } 4694 4695 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4696 { 4697 struct vcpu_svm *svm = to_svm(vcpu); 4698 4699 return !gif_set(svm); 4700 } 4701 4702 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4703 { 4704 if (!sev_es_guest(vcpu->kvm)) 4705 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4706 4707 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4708 } 4709 4710 static void svm_vm_destroy(struct kvm *kvm) 4711 { 4712 avic_vm_destroy(kvm); 4713 sev_vm_destroy(kvm); 4714 } 4715 4716 static int svm_vm_init(struct kvm *kvm) 4717 { 4718 if (!pause_filter_count || !pause_filter_thresh) 4719 kvm->arch.pause_in_guest = true; 4720 4721 if (enable_apicv) { 4722 int ret = avic_vm_init(kvm); 4723 if (ret) 4724 return ret; 4725 } 4726 4727 return 0; 4728 } 4729 4730 static struct kvm_x86_ops svm_x86_ops __initdata = { 4731 .name = "kvm_amd", 4732 4733 .hardware_unsetup = svm_hardware_unsetup, 4734 .hardware_enable = svm_hardware_enable, 4735 .hardware_disable = svm_hardware_disable, 4736 .has_emulated_msr = svm_has_emulated_msr, 4737 4738 .vcpu_create = svm_vcpu_create, 4739 .vcpu_free = svm_vcpu_free, 4740 .vcpu_reset = svm_vcpu_reset, 4741 4742 .vm_size = sizeof(struct kvm_svm), 4743 .vm_init = svm_vm_init, 4744 .vm_destroy = svm_vm_destroy, 4745 4746 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4747 .vcpu_load = svm_vcpu_load, 4748 .vcpu_put = svm_vcpu_put, 4749 .vcpu_blocking = avic_vcpu_blocking, 4750 .vcpu_unblocking = avic_vcpu_unblocking, 4751 4752 .update_exception_bitmap = svm_update_exception_bitmap, 4753 .get_msr_feature = svm_get_msr_feature, 4754 .get_msr = svm_get_msr, 4755 .set_msr = svm_set_msr, 4756 .get_segment_base = svm_get_segment_base, 4757 .get_segment = svm_get_segment, 4758 .set_segment = svm_set_segment, 4759 .get_cpl = svm_get_cpl, 4760 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4761 .set_cr0 = svm_set_cr0, 4762 .post_set_cr3 = sev_post_set_cr3, 4763 .is_valid_cr4 = svm_is_valid_cr4, 4764 .set_cr4 = svm_set_cr4, 4765 .set_efer = svm_set_efer, 4766 .get_idt = svm_get_idt, 4767 .set_idt = svm_set_idt, 4768 .get_gdt = svm_get_gdt, 4769 .set_gdt = svm_set_gdt, 4770 .set_dr7 = svm_set_dr7, 4771 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4772 .cache_reg = svm_cache_reg, 4773 .get_rflags = svm_get_rflags, 4774 .set_rflags = svm_set_rflags, 4775 .get_if_flag = svm_get_if_flag, 4776 4777 .flush_tlb_all = svm_flush_tlb_current, 4778 .flush_tlb_current = svm_flush_tlb_current, 4779 .flush_tlb_gva = svm_flush_tlb_gva, 4780 .flush_tlb_guest = svm_flush_tlb_current, 4781 4782 .vcpu_pre_run = svm_vcpu_pre_run, 4783 .vcpu_run = svm_vcpu_run, 4784 .handle_exit = svm_handle_exit, 4785 .skip_emulated_instruction = svm_skip_emulated_instruction, 4786 .update_emulated_instruction = NULL, 4787 .set_interrupt_shadow = svm_set_interrupt_shadow, 4788 .get_interrupt_shadow = svm_get_interrupt_shadow, 4789 .patch_hypercall = svm_patch_hypercall, 4790 .inject_irq = svm_inject_irq, 4791 .inject_nmi = svm_inject_nmi, 4792 .inject_exception = svm_inject_exception, 4793 .cancel_injection = svm_cancel_injection, 4794 .interrupt_allowed = svm_interrupt_allowed, 4795 .nmi_allowed = svm_nmi_allowed, 4796 .get_nmi_mask = svm_get_nmi_mask, 4797 .set_nmi_mask = svm_set_nmi_mask, 4798 .enable_nmi_window = svm_enable_nmi_window, 4799 .enable_irq_window = svm_enable_irq_window, 4800 .update_cr8_intercept = svm_update_cr8_intercept, 4801 .set_virtual_apic_mode = avic_set_virtual_apic_mode, 4802 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 4803 .check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons, 4804 .apicv_post_state_restore = avic_apicv_post_state_restore, 4805 4806 .get_exit_info = svm_get_exit_info, 4807 4808 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4809 4810 .has_wbinvd_exit = svm_has_wbinvd_exit, 4811 4812 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4813 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4814 .write_tsc_offset = svm_write_tsc_offset, 4815 .write_tsc_multiplier = svm_write_tsc_multiplier, 4816 4817 .load_mmu_pgd = svm_load_mmu_pgd, 4818 4819 .check_intercept = svm_check_intercept, 4820 .handle_exit_irqoff = svm_handle_exit_irqoff, 4821 4822 .request_immediate_exit = __kvm_request_immediate_exit, 4823 4824 .sched_in = svm_sched_in, 4825 4826 .nested_ops = &svm_nested_ops, 4827 4828 .deliver_interrupt = svm_deliver_interrupt, 4829 .pi_update_irte = avic_pi_update_irte, 4830 .setup_mce = svm_setup_mce, 4831 4832 .smi_allowed = svm_smi_allowed, 4833 .enter_smm = svm_enter_smm, 4834 .leave_smm = svm_leave_smm, 4835 .enable_smi_window = svm_enable_smi_window, 4836 4837 .mem_enc_ioctl = sev_mem_enc_ioctl, 4838 .mem_enc_register_region = sev_mem_enc_register_region, 4839 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 4840 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 4841 4842 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 4843 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 4844 4845 .can_emulate_instruction = svm_can_emulate_instruction, 4846 4847 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4848 4849 .msr_filter_changed = svm_msr_filter_changed, 4850 .complete_emulated_msr = svm_complete_emulated_msr, 4851 4852 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4853 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 4854 }; 4855 4856 /* 4857 * The default MMIO mask is a single bit (excluding the present bit), 4858 * which could conflict with the memory encryption bit. Check for 4859 * memory encryption support and override the default MMIO mask if 4860 * memory encryption is enabled. 4861 */ 4862 static __init void svm_adjust_mmio_mask(void) 4863 { 4864 unsigned int enc_bit, mask_bit; 4865 u64 msr, mask; 4866 4867 /* If there is no memory encryption support, use existing mask */ 4868 if (cpuid_eax(0x80000000) < 0x8000001f) 4869 return; 4870 4871 /* If memory encryption is not enabled, use existing mask */ 4872 rdmsrl(MSR_AMD64_SYSCFG, msr); 4873 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 4874 return; 4875 4876 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 4877 mask_bit = boot_cpu_data.x86_phys_bits; 4878 4879 /* Increment the mask bit if it is the same as the encryption bit */ 4880 if (enc_bit == mask_bit) 4881 mask_bit++; 4882 4883 /* 4884 * If the mask bit location is below 52, then some bits above the 4885 * physical addressing limit will always be reserved, so use the 4886 * rsvd_bits() function to generate the mask. This mask, along with 4887 * the present bit, will be used to generate a page fault with 4888 * PFER.RSV = 1. 4889 * 4890 * If the mask bit location is 52 (or above), then clear the mask. 4891 */ 4892 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 4893 4894 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 4895 } 4896 4897 static __init void svm_set_cpu_caps(void) 4898 { 4899 kvm_set_cpu_caps(); 4900 4901 kvm_caps.supported_xss = 0; 4902 4903 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 4904 if (nested) { 4905 kvm_cpu_cap_set(X86_FEATURE_SVM); 4906 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 4907 4908 if (nrips) 4909 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 4910 4911 if (npt_enabled) 4912 kvm_cpu_cap_set(X86_FEATURE_NPT); 4913 4914 if (tsc_scaling) 4915 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 4916 4917 if (vls) 4918 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 4919 if (lbrv) 4920 kvm_cpu_cap_set(X86_FEATURE_LBRV); 4921 4922 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 4923 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 4924 4925 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 4926 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 4927 4928 if (vgif) 4929 kvm_cpu_cap_set(X86_FEATURE_VGIF); 4930 4931 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 4932 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 4933 } 4934 4935 /* CPUID 0x80000008 */ 4936 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 4937 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 4938 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 4939 4940 /* AMD PMU PERFCTR_CORE CPUID */ 4941 if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE)) 4942 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE); 4943 4944 /* CPUID 0x8000001F (SME/SEV features) */ 4945 sev_set_cpu_caps(); 4946 } 4947 4948 static __init int svm_hardware_setup(void) 4949 { 4950 int cpu; 4951 struct page *iopm_pages; 4952 void *iopm_va; 4953 int r; 4954 unsigned int order = get_order(IOPM_SIZE); 4955 4956 /* 4957 * NX is required for shadow paging and for NPT if the NX huge pages 4958 * mitigation is enabled. 4959 */ 4960 if (!boot_cpu_has(X86_FEATURE_NX)) { 4961 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 4962 return -EOPNOTSUPP; 4963 } 4964 kvm_enable_efer_bits(EFER_NX); 4965 4966 iopm_pages = alloc_pages(GFP_KERNEL, order); 4967 4968 if (!iopm_pages) 4969 return -ENOMEM; 4970 4971 iopm_va = page_address(iopm_pages); 4972 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 4973 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 4974 4975 init_msrpm_offsets(); 4976 4977 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 4978 XFEATURE_MASK_BNDCSR); 4979 4980 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 4981 kvm_enable_efer_bits(EFER_FFXSR); 4982 4983 if (tsc_scaling) { 4984 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 4985 tsc_scaling = false; 4986 } else { 4987 pr_info("TSC scaling supported\n"); 4988 kvm_caps.has_tsc_control = true; 4989 } 4990 } 4991 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 4992 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 4993 4994 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 4995 4996 /* Check for pause filtering support */ 4997 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 4998 pause_filter_count = 0; 4999 pause_filter_thresh = 0; 5000 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5001 pause_filter_thresh = 0; 5002 } 5003 5004 if (nested) { 5005 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 5006 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5007 } 5008 5009 /* 5010 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5011 * NPT isn't supported if the host is using 2-level paging since host 5012 * CR4 is unchanged on VMRUN. 5013 */ 5014 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5015 npt_enabled = false; 5016 5017 if (!boot_cpu_has(X86_FEATURE_NPT)) 5018 npt_enabled = false; 5019 5020 /* Force VM NPT level equal to the host's paging level */ 5021 kvm_configure_mmu(npt_enabled, get_npt_level(), 5022 get_npt_level(), PG_LEVEL_1G); 5023 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5024 5025 /* Setup shadow_me_value and shadow_me_mask */ 5026 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5027 5028 svm_adjust_mmio_mask(); 5029 5030 /* 5031 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5032 * may be modified by svm_adjust_mmio_mask()). 5033 */ 5034 sev_hardware_setup(); 5035 5036 svm_hv_hardware_setup(); 5037 5038 for_each_possible_cpu(cpu) { 5039 r = svm_cpu_init(cpu); 5040 if (r) 5041 goto err; 5042 } 5043 5044 if (nrips) { 5045 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 5046 nrips = false; 5047 } 5048 5049 enable_apicv = avic = avic && avic_hardware_setup(&svm_x86_ops); 5050 5051 if (!enable_apicv) { 5052 svm_x86_ops.vcpu_blocking = NULL; 5053 svm_x86_ops.vcpu_unblocking = NULL; 5054 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5055 } 5056 5057 if (vls) { 5058 if (!npt_enabled || 5059 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5060 !IS_ENABLED(CONFIG_X86_64)) { 5061 vls = false; 5062 } else { 5063 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5064 } 5065 } 5066 5067 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5068 svm_gp_erratum_intercept = false; 5069 5070 if (vgif) { 5071 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5072 vgif = false; 5073 else 5074 pr_info("Virtual GIF supported\n"); 5075 } 5076 5077 if (lbrv) { 5078 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5079 lbrv = false; 5080 else 5081 pr_info("LBR virtualization supported\n"); 5082 } 5083 5084 if (!enable_pmu) 5085 pr_info("PMU virtualization is disabled\n"); 5086 5087 svm_set_cpu_caps(); 5088 5089 /* 5090 * It seems that on AMD processors PTE's accessed bit is 5091 * being set by the CPU hardware before the NPF vmexit. 5092 * This is not expected behaviour and our tests fail because 5093 * of it. 5094 * A workaround here is to disable support for 5095 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5096 * In this case userspace can know if there is support using 5097 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5098 * it 5099 * If future AMD CPU models change the behaviour described above, 5100 * this variable can be changed accordingly 5101 */ 5102 allow_smaller_maxphyaddr = !npt_enabled; 5103 5104 return 0; 5105 5106 err: 5107 svm_hardware_unsetup(); 5108 return r; 5109 } 5110 5111 5112 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5113 .cpu_has_kvm_support = has_svm, 5114 .disabled_by_bios = is_disabled, 5115 .hardware_setup = svm_hardware_setup, 5116 .check_processor_compatibility = svm_check_processor_compat, 5117 5118 .runtime_ops = &svm_x86_ops, 5119 .pmu_ops = &amd_pmu_ops, 5120 }; 5121 5122 static int __init svm_init(void) 5123 { 5124 __unused_size_checks(); 5125 5126 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 5127 __alignof__(struct vcpu_svm), THIS_MODULE); 5128 } 5129 5130 static void __exit svm_exit(void) 5131 { 5132 kvm_exit(); 5133 } 5134 5135 module_init(svm_init) 5136 module_exit(svm_exit) 5137