1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 29 #include <asm/apic.h> 30 #include <asm/perf_event.h> 31 #include <asm/tlbflush.h> 32 #include <asm/desc.h> 33 #include <asm/debugreg.h> 34 #include <asm/kvm_para.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/mce.h> 37 #include <asm/spec-ctrl.h> 38 #include <asm/cpu_device_id.h> 39 40 #include <asm/virtext.h> 41 #include "trace.h" 42 43 #include "svm.h" 44 45 #define __ex(x) __kvm_handle_fault_on_reboot(x) 46 47 MODULE_AUTHOR("Qumranet"); 48 MODULE_LICENSE("GPL"); 49 50 #ifdef MODULE 51 static const struct x86_cpu_id svm_cpu_id[] = { 52 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 53 {} 54 }; 55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 56 #endif 57 58 #define IOPM_ALLOC_ORDER 2 59 #define MSRPM_ALLOC_ORDER 1 60 61 #define SEG_TYPE_LDT 2 62 #define SEG_TYPE_BUSY_TSS16 3 63 64 #define SVM_FEATURE_LBRV (1 << 1) 65 #define SVM_FEATURE_SVML (1 << 2) 66 #define SVM_FEATURE_TSC_RATE (1 << 4) 67 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 68 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 69 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 70 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 71 72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 73 74 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 75 #define TSC_RATIO_MIN 0x0000000000000001ULL 76 #define TSC_RATIO_MAX 0x000000ffffffffffULL 77 78 static bool erratum_383_found __read_mostly; 79 80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 81 82 /* 83 * Set osvw_len to higher value when updated Revision Guides 84 * are published and we know what the new status bits are 85 */ 86 static uint64_t osvw_len = 4, osvw_status; 87 88 static DEFINE_PER_CPU(u64, current_tsc_ratio); 89 #define TSC_RATIO_DEFAULT 0x0100000000ULL 90 91 static const struct svm_direct_access_msrs { 92 u32 index; /* Index of the MSR */ 93 bool always; /* True if intercept is always on */ 94 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 95 { .index = MSR_STAR, .always = true }, 96 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 97 #ifdef CONFIG_X86_64 98 { .index = MSR_GS_BASE, .always = true }, 99 { .index = MSR_FS_BASE, .always = true }, 100 { .index = MSR_KERNEL_GS_BASE, .always = true }, 101 { .index = MSR_LSTAR, .always = true }, 102 { .index = MSR_CSTAR, .always = true }, 103 { .index = MSR_SYSCALL_MASK, .always = true }, 104 #endif 105 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 106 { .index = MSR_IA32_PRED_CMD, .always = false }, 107 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 108 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 109 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 110 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 111 { .index = MSR_INVALID, .always = false }, 112 }; 113 114 /* enable NPT for AMD64 and X86 with PAE */ 115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 116 bool npt_enabled = true; 117 #else 118 bool npt_enabled; 119 #endif 120 121 /* 122 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 123 * pause_filter_count: On processors that support Pause filtering(indicated 124 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 125 * count value. On VMRUN this value is loaded into an internal counter. 126 * Each time a pause instruction is executed, this counter is decremented 127 * until it reaches zero at which time a #VMEXIT is generated if pause 128 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 129 * Intercept Filtering for more details. 130 * This also indicate if ple logic enabled. 131 * 132 * pause_filter_thresh: In addition, some processor families support advanced 133 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 134 * the amount of time a guest is allowed to execute in a pause loop. 135 * In this mode, a 16-bit pause filter threshold field is added in the 136 * VMCB. The threshold value is a cycle count that is used to reset the 137 * pause counter. As with simple pause filtering, VMRUN loads the pause 138 * count value from VMCB into an internal counter. Then, on each pause 139 * instruction the hardware checks the elapsed number of cycles since 140 * the most recent pause instruction against the pause filter threshold. 141 * If the elapsed cycle count is greater than the pause filter threshold, 142 * then the internal pause count is reloaded from the VMCB and execution 143 * continues. If the elapsed cycle count is less than the pause filter 144 * threshold, then the internal pause count is decremented. If the count 145 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 146 * triggered. If advanced pause filtering is supported and pause filter 147 * threshold field is set to zero, the filter will operate in the simpler, 148 * count only mode. 149 */ 150 151 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 152 module_param(pause_filter_thresh, ushort, 0444); 153 154 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 155 module_param(pause_filter_count, ushort, 0444); 156 157 /* Default doubles per-vcpu window every exit. */ 158 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 159 module_param(pause_filter_count_grow, ushort, 0444); 160 161 /* Default resets per-vcpu window every exit to pause_filter_count. */ 162 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 163 module_param(pause_filter_count_shrink, ushort, 0444); 164 165 /* Default is to compute the maximum so we can never overflow. */ 166 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 167 module_param(pause_filter_count_max, ushort, 0444); 168 169 /* allow nested paging (virtualized MMU) for all guests */ 170 static int npt = true; 171 module_param(npt, int, S_IRUGO); 172 173 /* allow nested virtualization in KVM/SVM */ 174 static int nested = true; 175 module_param(nested, int, S_IRUGO); 176 177 /* enable/disable Next RIP Save */ 178 static int nrips = true; 179 module_param(nrips, int, 0444); 180 181 /* enable/disable Virtual VMLOAD VMSAVE */ 182 static int vls = true; 183 module_param(vls, int, 0444); 184 185 /* enable/disable Virtual GIF */ 186 static int vgif = true; 187 module_param(vgif, int, 0444); 188 189 /* enable/disable SEV support */ 190 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); 191 module_param(sev, int, 0444); 192 193 static bool __read_mostly dump_invalid_vmcb = 0; 194 module_param(dump_invalid_vmcb, bool, 0644); 195 196 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 197 198 static void svm_complete_interrupts(struct vcpu_svm *svm); 199 200 static unsigned long iopm_base; 201 202 struct kvm_ldttss_desc { 203 u16 limit0; 204 u16 base0; 205 unsigned base1:8, type:5, dpl:2, p:1; 206 unsigned limit1:4, zero0:3, g:1, base2:8; 207 u32 base3; 208 u32 zero1; 209 } __attribute__((packed)); 210 211 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 212 213 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 214 215 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 216 #define MSRS_RANGE_SIZE 2048 217 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 218 219 u32 svm_msrpm_offset(u32 msr) 220 { 221 u32 offset; 222 int i; 223 224 for (i = 0; i < NUM_MSR_MAPS; i++) { 225 if (msr < msrpm_ranges[i] || 226 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 227 continue; 228 229 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 230 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 231 232 /* Now we have the u8 offset - but need the u32 offset */ 233 return offset / 4; 234 } 235 236 /* MSR not in any range */ 237 return MSR_INVALID; 238 } 239 240 #define MAX_INST_SIZE 15 241 242 static inline void clgi(void) 243 { 244 asm volatile (__ex("clgi")); 245 } 246 247 static inline void stgi(void) 248 { 249 asm volatile (__ex("stgi")); 250 } 251 252 static inline void invlpga(unsigned long addr, u32 asid) 253 { 254 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr)); 255 } 256 257 static int get_max_npt_level(void) 258 { 259 #ifdef CONFIG_X86_64 260 return PT64_ROOT_4LEVEL; 261 #else 262 return PT32E_ROOT_LEVEL; 263 #endif 264 } 265 266 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 267 { 268 struct vcpu_svm *svm = to_svm(vcpu); 269 u64 old_efer = vcpu->arch.efer; 270 vcpu->arch.efer = efer; 271 272 if (!npt_enabled) { 273 /* Shadow paging assumes NX to be available. */ 274 efer |= EFER_NX; 275 276 if (!(efer & EFER_LMA)) 277 efer &= ~EFER_LME; 278 } 279 280 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 281 if (!(efer & EFER_SVME)) { 282 svm_leave_nested(svm); 283 svm_set_gif(svm, true); 284 285 /* 286 * Free the nested guest state, unless we are in SMM. 287 * In this case we will return to the nested guest 288 * as soon as we leave SMM. 289 */ 290 if (!is_smm(&svm->vcpu)) 291 svm_free_nested(svm); 292 293 } else { 294 int ret = svm_allocate_nested(svm); 295 296 if (ret) { 297 vcpu->arch.efer = old_efer; 298 return ret; 299 } 300 } 301 } 302 303 svm->vmcb->save.efer = efer | EFER_SVME; 304 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 305 return 0; 306 } 307 308 static int is_external_interrupt(u32 info) 309 { 310 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 311 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 312 } 313 314 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 315 { 316 struct vcpu_svm *svm = to_svm(vcpu); 317 u32 ret = 0; 318 319 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 320 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 321 return ret; 322 } 323 324 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 325 { 326 struct vcpu_svm *svm = to_svm(vcpu); 327 328 if (mask == 0) 329 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 330 else 331 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 332 333 } 334 335 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 336 { 337 struct vcpu_svm *svm = to_svm(vcpu); 338 339 if (nrips && svm->vmcb->control.next_rip != 0) { 340 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 341 svm->next_rip = svm->vmcb->control.next_rip; 342 } 343 344 if (!svm->next_rip) { 345 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 346 return 0; 347 } else { 348 kvm_rip_write(vcpu, svm->next_rip); 349 } 350 svm_set_interrupt_shadow(vcpu, 0); 351 352 return 1; 353 } 354 355 static void svm_queue_exception(struct kvm_vcpu *vcpu) 356 { 357 struct vcpu_svm *svm = to_svm(vcpu); 358 unsigned nr = vcpu->arch.exception.nr; 359 bool has_error_code = vcpu->arch.exception.has_error_code; 360 u32 error_code = vcpu->arch.exception.error_code; 361 362 kvm_deliver_exception_payload(&svm->vcpu); 363 364 if (nr == BP_VECTOR && !nrips) { 365 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); 366 367 /* 368 * For guest debugging where we have to reinject #BP if some 369 * INT3 is guest-owned: 370 * Emulate nRIP by moving RIP forward. Will fail if injection 371 * raises a fault that is not intercepted. Still better than 372 * failing in all cases. 373 */ 374 (void)skip_emulated_instruction(&svm->vcpu); 375 rip = kvm_rip_read(&svm->vcpu); 376 svm->int3_rip = rip + svm->vmcb->save.cs.base; 377 svm->int3_injected = rip - old_rip; 378 } 379 380 svm->vmcb->control.event_inj = nr 381 | SVM_EVTINJ_VALID 382 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 383 | SVM_EVTINJ_TYPE_EXEPT; 384 svm->vmcb->control.event_inj_err = error_code; 385 } 386 387 static void svm_init_erratum_383(void) 388 { 389 u32 low, high; 390 int err; 391 u64 val; 392 393 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 394 return; 395 396 /* Use _safe variants to not break nested virtualization */ 397 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 398 if (err) 399 return; 400 401 val |= (1ULL << 47); 402 403 low = lower_32_bits(val); 404 high = upper_32_bits(val); 405 406 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 407 408 erratum_383_found = true; 409 } 410 411 static void svm_init_osvw(struct kvm_vcpu *vcpu) 412 { 413 /* 414 * Guests should see errata 400 and 415 as fixed (assuming that 415 * HLT and IO instructions are intercepted). 416 */ 417 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 418 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 419 420 /* 421 * By increasing VCPU's osvw.length to 3 we are telling the guest that 422 * all osvw.status bits inside that length, including bit 0 (which is 423 * reserved for erratum 298), are valid. However, if host processor's 424 * osvw_len is 0 then osvw_status[0] carries no information. We need to 425 * be conservative here and therefore we tell the guest that erratum 298 426 * is present (because we really don't know). 427 */ 428 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 429 vcpu->arch.osvw.status |= 1; 430 } 431 432 static int has_svm(void) 433 { 434 const char *msg; 435 436 if (!cpu_has_svm(&msg)) { 437 printk(KERN_INFO "has_svm: %s\n", msg); 438 return 0; 439 } 440 441 return 1; 442 } 443 444 static void svm_hardware_disable(void) 445 { 446 /* Make sure we clean up behind us */ 447 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) 448 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 449 450 cpu_svm_disable(); 451 452 amd_pmu_disable_virt(); 453 } 454 455 static int svm_hardware_enable(void) 456 { 457 458 struct svm_cpu_data *sd; 459 uint64_t efer; 460 struct desc_struct *gdt; 461 int me = raw_smp_processor_id(); 462 463 rdmsrl(MSR_EFER, efer); 464 if (efer & EFER_SVME) 465 return -EBUSY; 466 467 if (!has_svm()) { 468 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 469 return -EINVAL; 470 } 471 sd = per_cpu(svm_data, me); 472 if (!sd) { 473 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 474 return -EINVAL; 475 } 476 477 sd->asid_generation = 1; 478 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 479 sd->next_asid = sd->max_asid + 1; 480 sd->min_asid = max_sev_asid + 1; 481 482 gdt = get_current_gdt_rw(); 483 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 484 485 wrmsrl(MSR_EFER, efer | EFER_SVME); 486 487 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT); 488 489 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 490 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 491 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 492 } 493 494 495 /* 496 * Get OSVW bits. 497 * 498 * Note that it is possible to have a system with mixed processor 499 * revisions and therefore different OSVW bits. If bits are not the same 500 * on different processors then choose the worst case (i.e. if erratum 501 * is present on one processor and not on another then assume that the 502 * erratum is present everywhere). 503 */ 504 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 505 uint64_t len, status = 0; 506 int err; 507 508 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 509 if (!err) 510 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 511 &err); 512 513 if (err) 514 osvw_status = osvw_len = 0; 515 else { 516 if (len < osvw_len) 517 osvw_len = len; 518 osvw_status |= status; 519 osvw_status &= (1ULL << osvw_len) - 1; 520 } 521 } else 522 osvw_status = osvw_len = 0; 523 524 svm_init_erratum_383(); 525 526 amd_pmu_enable_virt(); 527 528 return 0; 529 } 530 531 static void svm_cpu_uninit(int cpu) 532 { 533 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id()); 534 535 if (!sd) 536 return; 537 538 per_cpu(svm_data, raw_smp_processor_id()) = NULL; 539 kfree(sd->sev_vmcbs); 540 __free_page(sd->save_area); 541 kfree(sd); 542 } 543 544 static int svm_cpu_init(int cpu) 545 { 546 struct svm_cpu_data *sd; 547 548 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 549 if (!sd) 550 return -ENOMEM; 551 sd->cpu = cpu; 552 sd->save_area = alloc_page(GFP_KERNEL); 553 if (!sd->save_area) 554 goto free_cpu_data; 555 556 if (svm_sev_enabled()) { 557 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1, 558 sizeof(void *), 559 GFP_KERNEL); 560 if (!sd->sev_vmcbs) 561 goto free_save_area; 562 } 563 564 per_cpu(svm_data, cpu) = sd; 565 566 return 0; 567 568 free_save_area: 569 __free_page(sd->save_area); 570 free_cpu_data: 571 kfree(sd); 572 return -ENOMEM; 573 574 } 575 576 static int direct_access_msr_slot(u32 msr) 577 { 578 u32 i; 579 580 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 581 if (direct_access_msrs[i].index == msr) 582 return i; 583 584 return -ENOENT; 585 } 586 587 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 588 int write) 589 { 590 struct vcpu_svm *svm = to_svm(vcpu); 591 int slot = direct_access_msr_slot(msr); 592 593 if (slot == -ENOENT) 594 return; 595 596 /* Set the shadow bitmaps to the desired intercept states */ 597 if (read) 598 set_bit(slot, svm->shadow_msr_intercept.read); 599 else 600 clear_bit(slot, svm->shadow_msr_intercept.read); 601 602 if (write) 603 set_bit(slot, svm->shadow_msr_intercept.write); 604 else 605 clear_bit(slot, svm->shadow_msr_intercept.write); 606 } 607 608 static bool valid_msr_intercept(u32 index) 609 { 610 return direct_access_msr_slot(index) != -ENOENT; 611 } 612 613 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 614 { 615 u8 bit_write; 616 unsigned long tmp; 617 u32 offset; 618 u32 *msrpm; 619 620 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 621 to_svm(vcpu)->msrpm; 622 623 offset = svm_msrpm_offset(msr); 624 bit_write = 2 * (msr & 0x0f) + 1; 625 tmp = msrpm[offset]; 626 627 BUG_ON(offset == MSR_INVALID); 628 629 return !!test_bit(bit_write, &tmp); 630 } 631 632 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 633 u32 msr, int read, int write) 634 { 635 u8 bit_read, bit_write; 636 unsigned long tmp; 637 u32 offset; 638 639 /* 640 * If this warning triggers extend the direct_access_msrs list at the 641 * beginning of the file 642 */ 643 WARN_ON(!valid_msr_intercept(msr)); 644 645 /* Enforce non allowed MSRs to trap */ 646 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 647 read = 0; 648 649 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 650 write = 0; 651 652 offset = svm_msrpm_offset(msr); 653 bit_read = 2 * (msr & 0x0f); 654 bit_write = 2 * (msr & 0x0f) + 1; 655 tmp = msrpm[offset]; 656 657 BUG_ON(offset == MSR_INVALID); 658 659 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 660 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 661 662 msrpm[offset] = tmp; 663 } 664 665 static void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 666 int read, int write) 667 { 668 set_shadow_msr_intercept(vcpu, msr, read, write); 669 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 670 } 671 672 u32 *svm_vcpu_alloc_msrpm(void) 673 { 674 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); 675 u32 *msrpm; 676 677 if (!pages) 678 return NULL; 679 680 msrpm = page_address(pages); 681 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); 682 683 return msrpm; 684 } 685 686 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 687 { 688 int i; 689 690 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 691 if (!direct_access_msrs[i].always) 692 continue; 693 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 694 } 695 } 696 697 698 void svm_vcpu_free_msrpm(u32 *msrpm) 699 { 700 __free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER); 701 } 702 703 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 704 { 705 struct vcpu_svm *svm = to_svm(vcpu); 706 u32 i; 707 708 /* 709 * Set intercept permissions for all direct access MSRs again. They 710 * will automatically get filtered through the MSR filter, so we are 711 * back in sync after this. 712 */ 713 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 714 u32 msr = direct_access_msrs[i].index; 715 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 716 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 717 718 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 719 } 720 } 721 722 static void add_msr_offset(u32 offset) 723 { 724 int i; 725 726 for (i = 0; i < MSRPM_OFFSETS; ++i) { 727 728 /* Offset already in list? */ 729 if (msrpm_offsets[i] == offset) 730 return; 731 732 /* Slot used by another offset? */ 733 if (msrpm_offsets[i] != MSR_INVALID) 734 continue; 735 736 /* Add offset to list */ 737 msrpm_offsets[i] = offset; 738 739 return; 740 } 741 742 /* 743 * If this BUG triggers the msrpm_offsets table has an overflow. Just 744 * increase MSRPM_OFFSETS in this case. 745 */ 746 BUG(); 747 } 748 749 static void init_msrpm_offsets(void) 750 { 751 int i; 752 753 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 754 755 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 756 u32 offset; 757 758 offset = svm_msrpm_offset(direct_access_msrs[i].index); 759 BUG_ON(offset == MSR_INVALID); 760 761 add_msr_offset(offset); 762 } 763 } 764 765 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 766 { 767 struct vcpu_svm *svm = to_svm(vcpu); 768 769 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 770 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 771 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 772 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 773 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 774 } 775 776 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 777 { 778 struct vcpu_svm *svm = to_svm(vcpu); 779 780 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 781 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 782 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 783 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 784 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 785 } 786 787 void disable_nmi_singlestep(struct vcpu_svm *svm) 788 { 789 svm->nmi_singlestep = false; 790 791 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 792 /* Clear our flags if they were not set by the guest */ 793 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 794 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 795 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 796 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 797 } 798 } 799 800 static void grow_ple_window(struct kvm_vcpu *vcpu) 801 { 802 struct vcpu_svm *svm = to_svm(vcpu); 803 struct vmcb_control_area *control = &svm->vmcb->control; 804 int old = control->pause_filter_count; 805 806 control->pause_filter_count = __grow_ple_window(old, 807 pause_filter_count, 808 pause_filter_count_grow, 809 pause_filter_count_max); 810 811 if (control->pause_filter_count != old) { 812 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 813 trace_kvm_ple_window_update(vcpu->vcpu_id, 814 control->pause_filter_count, old); 815 } 816 } 817 818 static void shrink_ple_window(struct kvm_vcpu *vcpu) 819 { 820 struct vcpu_svm *svm = to_svm(vcpu); 821 struct vmcb_control_area *control = &svm->vmcb->control; 822 int old = control->pause_filter_count; 823 824 control->pause_filter_count = 825 __shrink_ple_window(old, 826 pause_filter_count, 827 pause_filter_count_shrink, 828 pause_filter_count); 829 if (control->pause_filter_count != old) { 830 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 831 trace_kvm_ple_window_update(vcpu->vcpu_id, 832 control->pause_filter_count, old); 833 } 834 } 835 836 /* 837 * The default MMIO mask is a single bit (excluding the present bit), 838 * which could conflict with the memory encryption bit. Check for 839 * memory encryption support and override the default MMIO mask if 840 * memory encryption is enabled. 841 */ 842 static __init void svm_adjust_mmio_mask(void) 843 { 844 unsigned int enc_bit, mask_bit; 845 u64 msr, mask; 846 847 /* If there is no memory encryption support, use existing mask */ 848 if (cpuid_eax(0x80000000) < 0x8000001f) 849 return; 850 851 /* If memory encryption is not enabled, use existing mask */ 852 rdmsrl(MSR_K8_SYSCFG, msr); 853 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) 854 return; 855 856 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 857 mask_bit = boot_cpu_data.x86_phys_bits; 858 859 /* Increment the mask bit if it is the same as the encryption bit */ 860 if (enc_bit == mask_bit) 861 mask_bit++; 862 863 /* 864 * If the mask bit location is below 52, then some bits above the 865 * physical addressing limit will always be reserved, so use the 866 * rsvd_bits() function to generate the mask. This mask, along with 867 * the present bit, will be used to generate a page fault with 868 * PFER.RSV = 1. 869 * 870 * If the mask bit location is 52 (or above), then clear the mask. 871 */ 872 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 873 874 kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK); 875 } 876 877 static void svm_hardware_teardown(void) 878 { 879 int cpu; 880 881 if (svm_sev_enabled()) 882 sev_hardware_teardown(); 883 884 for_each_possible_cpu(cpu) 885 svm_cpu_uninit(cpu); 886 887 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); 888 iopm_base = 0; 889 } 890 891 static __init void svm_set_cpu_caps(void) 892 { 893 kvm_set_cpu_caps(); 894 895 supported_xss = 0; 896 897 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 898 if (nested) { 899 kvm_cpu_cap_set(X86_FEATURE_SVM); 900 901 if (nrips) 902 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 903 904 if (npt_enabled) 905 kvm_cpu_cap_set(X86_FEATURE_NPT); 906 } 907 908 /* CPUID 0x80000008 */ 909 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 910 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 911 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 912 913 /* Enable INVPCID feature */ 914 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID); 915 } 916 917 static __init int svm_hardware_setup(void) 918 { 919 int cpu; 920 struct page *iopm_pages; 921 void *iopm_va; 922 int r; 923 924 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); 925 926 if (!iopm_pages) 927 return -ENOMEM; 928 929 iopm_va = page_address(iopm_pages); 930 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); 931 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 932 933 init_msrpm_offsets(); 934 935 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 936 937 if (boot_cpu_has(X86_FEATURE_NX)) 938 kvm_enable_efer_bits(EFER_NX); 939 940 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 941 kvm_enable_efer_bits(EFER_FFXSR); 942 943 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 944 kvm_has_tsc_control = true; 945 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 946 kvm_tsc_scaling_ratio_frac_bits = 32; 947 } 948 949 /* Check for pause filtering support */ 950 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 951 pause_filter_count = 0; 952 pause_filter_thresh = 0; 953 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 954 pause_filter_thresh = 0; 955 } 956 957 if (nested) { 958 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 959 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 960 } 961 962 if (sev) { 963 if (boot_cpu_has(X86_FEATURE_SEV) && 964 IS_ENABLED(CONFIG_KVM_AMD_SEV)) { 965 r = sev_hardware_setup(); 966 if (r) 967 sev = false; 968 } else { 969 sev = false; 970 } 971 } 972 973 svm_adjust_mmio_mask(); 974 975 for_each_possible_cpu(cpu) { 976 r = svm_cpu_init(cpu); 977 if (r) 978 goto err; 979 } 980 981 if (!boot_cpu_has(X86_FEATURE_NPT)) 982 npt_enabled = false; 983 984 if (npt_enabled && !npt) 985 npt_enabled = false; 986 987 kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G); 988 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 989 990 if (nrips) { 991 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 992 nrips = false; 993 } 994 995 if (avic) { 996 if (!npt_enabled || 997 !boot_cpu_has(X86_FEATURE_AVIC) || 998 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { 999 avic = false; 1000 } else { 1001 pr_info("AVIC enabled\n"); 1002 1003 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 1004 } 1005 } 1006 1007 if (vls) { 1008 if (!npt_enabled || 1009 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 1010 !IS_ENABLED(CONFIG_X86_64)) { 1011 vls = false; 1012 } else { 1013 pr_info("Virtual VMLOAD VMSAVE supported\n"); 1014 } 1015 } 1016 1017 if (vgif) { 1018 if (!boot_cpu_has(X86_FEATURE_VGIF)) 1019 vgif = false; 1020 else 1021 pr_info("Virtual GIF supported\n"); 1022 } 1023 1024 svm_set_cpu_caps(); 1025 1026 /* 1027 * It seems that on AMD processors PTE's accessed bit is 1028 * being set by the CPU hardware before the NPF vmexit. 1029 * This is not expected behaviour and our tests fail because 1030 * of it. 1031 * A workaround here is to disable support for 1032 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 1033 * In this case userspace can know if there is support using 1034 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 1035 * it 1036 * If future AMD CPU models change the behaviour described above, 1037 * this variable can be changed accordingly 1038 */ 1039 allow_smaller_maxphyaddr = !npt_enabled; 1040 1041 return 0; 1042 1043 err: 1044 svm_hardware_teardown(); 1045 return r; 1046 } 1047 1048 static void init_seg(struct vmcb_seg *seg) 1049 { 1050 seg->selector = 0; 1051 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1052 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1053 seg->limit = 0xffff; 1054 seg->base = 0; 1055 } 1056 1057 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1058 { 1059 seg->selector = 0; 1060 seg->attrib = SVM_SELECTOR_P_MASK | type; 1061 seg->limit = 0xffff; 1062 seg->base = 0; 1063 } 1064 1065 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1066 { 1067 struct vcpu_svm *svm = to_svm(vcpu); 1068 u64 g_tsc_offset = 0; 1069 1070 if (is_guest_mode(vcpu)) { 1071 /* Write L1's TSC offset. */ 1072 g_tsc_offset = svm->vmcb->control.tsc_offset - 1073 svm->nested.hsave->control.tsc_offset; 1074 svm->nested.hsave->control.tsc_offset = offset; 1075 } 1076 1077 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1078 svm->vmcb->control.tsc_offset - g_tsc_offset, 1079 offset); 1080 1081 svm->vmcb->control.tsc_offset = offset + g_tsc_offset; 1082 1083 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1084 return svm->vmcb->control.tsc_offset; 1085 } 1086 1087 static void svm_check_invpcid(struct vcpu_svm *svm) 1088 { 1089 /* 1090 * Intercept INVPCID instruction only if shadow page table is 1091 * enabled. Interception is not required with nested page table 1092 * enabled. 1093 */ 1094 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1095 if (!npt_enabled) 1096 svm_set_intercept(svm, INTERCEPT_INVPCID); 1097 else 1098 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1099 } 1100 } 1101 1102 static void init_vmcb(struct vcpu_svm *svm) 1103 { 1104 struct vmcb_control_area *control = &svm->vmcb->control; 1105 struct vmcb_save_area *save = &svm->vmcb->save; 1106 1107 svm->vcpu.arch.hflags = 0; 1108 1109 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1110 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1111 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1112 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1113 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1114 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1115 if (!kvm_vcpu_apicv_active(&svm->vcpu)) 1116 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1117 1118 set_dr_intercepts(svm); 1119 1120 set_exception_intercept(svm, PF_VECTOR); 1121 set_exception_intercept(svm, UD_VECTOR); 1122 set_exception_intercept(svm, MC_VECTOR); 1123 set_exception_intercept(svm, AC_VECTOR); 1124 set_exception_intercept(svm, DB_VECTOR); 1125 /* 1126 * Guest access to VMware backdoor ports could legitimately 1127 * trigger #GP because of TSS I/O permission bitmap. 1128 * We intercept those #GP and allow access to them anyway 1129 * as VMware does. 1130 */ 1131 if (enable_vmware_backdoor) 1132 set_exception_intercept(svm, GP_VECTOR); 1133 1134 svm_set_intercept(svm, INTERCEPT_INTR); 1135 svm_set_intercept(svm, INTERCEPT_NMI); 1136 svm_set_intercept(svm, INTERCEPT_SMI); 1137 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1138 svm_set_intercept(svm, INTERCEPT_RDPMC); 1139 svm_set_intercept(svm, INTERCEPT_CPUID); 1140 svm_set_intercept(svm, INTERCEPT_INVD); 1141 svm_set_intercept(svm, INTERCEPT_INVLPG); 1142 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1143 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1144 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1145 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1146 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1147 svm_set_intercept(svm, INTERCEPT_VMRUN); 1148 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1149 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1150 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1151 svm_set_intercept(svm, INTERCEPT_STGI); 1152 svm_set_intercept(svm, INTERCEPT_CLGI); 1153 svm_set_intercept(svm, INTERCEPT_SKINIT); 1154 svm_set_intercept(svm, INTERCEPT_WBINVD); 1155 svm_set_intercept(svm, INTERCEPT_XSETBV); 1156 svm_set_intercept(svm, INTERCEPT_RDPRU); 1157 svm_set_intercept(svm, INTERCEPT_RSM); 1158 1159 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) { 1160 svm_set_intercept(svm, INTERCEPT_MONITOR); 1161 svm_set_intercept(svm, INTERCEPT_MWAIT); 1162 } 1163 1164 if (!kvm_hlt_in_guest(svm->vcpu.kvm)) 1165 svm_set_intercept(svm, INTERCEPT_HLT); 1166 1167 control->iopm_base_pa = __sme_set(iopm_base); 1168 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1169 control->int_ctl = V_INTR_MASKING_MASK; 1170 1171 init_seg(&save->es); 1172 init_seg(&save->ss); 1173 init_seg(&save->ds); 1174 init_seg(&save->fs); 1175 init_seg(&save->gs); 1176 1177 save->cs.selector = 0xf000; 1178 save->cs.base = 0xffff0000; 1179 /* Executable/Readable Code Segment */ 1180 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1181 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1182 save->cs.limit = 0xffff; 1183 1184 save->gdtr.limit = 0xffff; 1185 save->idtr.limit = 0xffff; 1186 1187 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1188 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1189 1190 svm_set_efer(&svm->vcpu, 0); 1191 save->dr6 = 0xffff0ff0; 1192 kvm_set_rflags(&svm->vcpu, 2); 1193 save->rip = 0x0000fff0; 1194 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; 1195 1196 /* 1197 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. 1198 * It also updates the guest-visible cr0 value. 1199 */ 1200 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); 1201 kvm_mmu_reset_context(&svm->vcpu); 1202 1203 save->cr4 = X86_CR4_PAE; 1204 /* rdx = ?? */ 1205 1206 if (npt_enabled) { 1207 /* Setup VMCB for Nested Paging */ 1208 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1209 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1210 clr_exception_intercept(svm, PF_VECTOR); 1211 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1212 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1213 save->g_pat = svm->vcpu.arch.pat; 1214 save->cr3 = 0; 1215 save->cr4 = 0; 1216 } 1217 svm->asid_generation = 0; 1218 1219 svm->nested.vmcb12_gpa = 0; 1220 svm->vcpu.arch.hflags = 0; 1221 1222 if (!kvm_pause_in_guest(svm->vcpu.kvm)) { 1223 control->pause_filter_count = pause_filter_count; 1224 if (pause_filter_thresh) 1225 control->pause_filter_thresh = pause_filter_thresh; 1226 svm_set_intercept(svm, INTERCEPT_PAUSE); 1227 } else { 1228 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1229 } 1230 1231 svm_check_invpcid(svm); 1232 1233 if (kvm_vcpu_apicv_active(&svm->vcpu)) 1234 avic_init_vmcb(svm); 1235 1236 /* 1237 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1238 * in VMCB and clear intercepts to avoid #VMEXIT. 1239 */ 1240 if (vls) { 1241 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1242 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1243 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1244 } 1245 1246 if (vgif) { 1247 svm_clr_intercept(svm, INTERCEPT_STGI); 1248 svm_clr_intercept(svm, INTERCEPT_CLGI); 1249 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1250 } 1251 1252 if (sev_guest(svm->vcpu.kvm)) { 1253 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1254 clr_exception_intercept(svm, UD_VECTOR); 1255 } 1256 1257 vmcb_mark_all_dirty(svm->vmcb); 1258 1259 enable_gif(svm); 1260 1261 } 1262 1263 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1264 { 1265 struct vcpu_svm *svm = to_svm(vcpu); 1266 u32 dummy; 1267 u32 eax = 1; 1268 1269 svm->spec_ctrl = 0; 1270 svm->virt_spec_ctrl = 0; 1271 1272 if (!init_event) { 1273 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | 1274 MSR_IA32_APICBASE_ENABLE; 1275 if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) 1276 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; 1277 } 1278 init_vmcb(svm); 1279 1280 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false); 1281 kvm_rdx_write(vcpu, eax); 1282 1283 if (kvm_vcpu_apicv_active(vcpu) && !init_event) 1284 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); 1285 } 1286 1287 static int svm_create_vcpu(struct kvm_vcpu *vcpu) 1288 { 1289 struct vcpu_svm *svm; 1290 struct page *vmcb_page; 1291 int err; 1292 1293 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1294 svm = to_svm(vcpu); 1295 1296 err = -ENOMEM; 1297 vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1298 if (!vmcb_page) 1299 goto out; 1300 1301 err = avic_init_vcpu(svm); 1302 if (err) 1303 goto error_free_vmcb_page; 1304 1305 /* We initialize this flag to true to make sure that the is_running 1306 * bit would be set the first time the vcpu is loaded. 1307 */ 1308 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) 1309 svm->avic_is_running = true; 1310 1311 svm->msrpm = svm_vcpu_alloc_msrpm(); 1312 if (!svm->msrpm) 1313 goto error_free_vmcb_page; 1314 1315 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1316 1317 svm->vmcb = page_address(vmcb_page); 1318 svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT); 1319 svm->asid_generation = 0; 1320 init_vmcb(svm); 1321 1322 svm_init_osvw(vcpu); 1323 vcpu->arch.microcode_version = 0x01000065; 1324 1325 return 0; 1326 1327 error_free_vmcb_page: 1328 __free_page(vmcb_page); 1329 out: 1330 return err; 1331 } 1332 1333 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1334 { 1335 int i; 1336 1337 for_each_online_cpu(i) 1338 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1339 } 1340 1341 static void svm_free_vcpu(struct kvm_vcpu *vcpu) 1342 { 1343 struct vcpu_svm *svm = to_svm(vcpu); 1344 1345 /* 1346 * The vmcb page can be recycled, causing a false negative in 1347 * svm_vcpu_load(). So, ensure that no logical CPU has this 1348 * vmcb page recorded as its current vmcb. 1349 */ 1350 svm_clear_current_vmcb(svm->vmcb); 1351 1352 svm_free_nested(svm); 1353 1354 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); 1355 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); 1356 } 1357 1358 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1359 { 1360 struct vcpu_svm *svm = to_svm(vcpu); 1361 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1362 int i; 1363 1364 if (unlikely(cpu != vcpu->cpu)) { 1365 svm->asid_generation = 0; 1366 vmcb_mark_all_dirty(svm->vmcb); 1367 } 1368 1369 #ifdef CONFIG_X86_64 1370 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base); 1371 #endif 1372 savesegment(fs, svm->host.fs); 1373 savesegment(gs, svm->host.gs); 1374 svm->host.ldt = kvm_read_ldt(); 1375 1376 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) 1377 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); 1378 1379 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 1380 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1381 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1382 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1383 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1384 } 1385 } 1386 /* This assumes that the kernel never uses MSR_TSC_AUX */ 1387 if (static_cpu_has(X86_FEATURE_RDTSCP)) 1388 wrmsrl(MSR_TSC_AUX, svm->tsc_aux); 1389 1390 if (sd->current_vmcb != svm->vmcb) { 1391 sd->current_vmcb = svm->vmcb; 1392 indirect_branch_prediction_barrier(); 1393 } 1394 avic_vcpu_load(vcpu, cpu); 1395 } 1396 1397 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1398 { 1399 struct vcpu_svm *svm = to_svm(vcpu); 1400 int i; 1401 1402 avic_vcpu_put(vcpu); 1403 1404 ++vcpu->stat.host_state_reload; 1405 kvm_load_ldt(svm->host.ldt); 1406 #ifdef CONFIG_X86_64 1407 loadsegment(fs, svm->host.fs); 1408 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase); 1409 load_gs_index(svm->host.gs); 1410 #else 1411 #ifdef CONFIG_X86_32_LAZY_GS 1412 loadsegment(gs, svm->host.gs); 1413 #endif 1414 #endif 1415 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) 1416 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); 1417 } 1418 1419 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1420 { 1421 struct vcpu_svm *svm = to_svm(vcpu); 1422 unsigned long rflags = svm->vmcb->save.rflags; 1423 1424 if (svm->nmi_singlestep) { 1425 /* Hide our flags if they were not set by the guest */ 1426 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1427 rflags &= ~X86_EFLAGS_TF; 1428 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1429 rflags &= ~X86_EFLAGS_RF; 1430 } 1431 return rflags; 1432 } 1433 1434 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1435 { 1436 if (to_svm(vcpu)->nmi_singlestep) 1437 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1438 1439 /* 1440 * Any change of EFLAGS.VM is accompanied by a reload of SS 1441 * (caused by either a task switch or an inter-privilege IRET), 1442 * so we do not need to update the CPL here. 1443 */ 1444 to_svm(vcpu)->vmcb->save.rflags = rflags; 1445 } 1446 1447 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1448 { 1449 switch (reg) { 1450 case VCPU_EXREG_PDPTR: 1451 BUG_ON(!npt_enabled); 1452 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 1453 break; 1454 default: 1455 WARN_ON_ONCE(1); 1456 } 1457 } 1458 1459 static void svm_set_vintr(struct vcpu_svm *svm) 1460 { 1461 struct vmcb_control_area *control; 1462 1463 /* The following fields are ignored when AVIC is enabled */ 1464 WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu)); 1465 svm_set_intercept(svm, INTERCEPT_VINTR); 1466 1467 /* 1468 * This is just a dummy VINTR to actually cause a vmexit to happen. 1469 * Actual injection of virtual interrupts happens through EVENTINJ. 1470 */ 1471 control = &svm->vmcb->control; 1472 control->int_vector = 0x0; 1473 control->int_ctl &= ~V_INTR_PRIO_MASK; 1474 control->int_ctl |= V_IRQ_MASK | 1475 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1476 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1477 } 1478 1479 static void svm_clear_vintr(struct vcpu_svm *svm) 1480 { 1481 const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK; 1482 svm_clr_intercept(svm, INTERCEPT_VINTR); 1483 1484 /* Drop int_ctl fields related to VINTR injection. */ 1485 svm->vmcb->control.int_ctl &= mask; 1486 if (is_guest_mode(&svm->vcpu)) { 1487 svm->nested.hsave->control.int_ctl &= mask; 1488 1489 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1490 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1491 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask; 1492 } 1493 1494 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1495 } 1496 1497 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1498 { 1499 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1500 1501 switch (seg) { 1502 case VCPU_SREG_CS: return &save->cs; 1503 case VCPU_SREG_DS: return &save->ds; 1504 case VCPU_SREG_ES: return &save->es; 1505 case VCPU_SREG_FS: return &save->fs; 1506 case VCPU_SREG_GS: return &save->gs; 1507 case VCPU_SREG_SS: return &save->ss; 1508 case VCPU_SREG_TR: return &save->tr; 1509 case VCPU_SREG_LDTR: return &save->ldtr; 1510 } 1511 BUG(); 1512 return NULL; 1513 } 1514 1515 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1516 { 1517 struct vmcb_seg *s = svm_seg(vcpu, seg); 1518 1519 return s->base; 1520 } 1521 1522 static void svm_get_segment(struct kvm_vcpu *vcpu, 1523 struct kvm_segment *var, int seg) 1524 { 1525 struct vmcb_seg *s = svm_seg(vcpu, seg); 1526 1527 var->base = s->base; 1528 var->limit = s->limit; 1529 var->selector = s->selector; 1530 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1531 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1532 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1533 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1534 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1535 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1536 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1537 1538 /* 1539 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1540 * However, the SVM spec states that the G bit is not observed by the 1541 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1542 * So let's synthesize a legal G bit for all segments, this helps 1543 * running KVM nested. It also helps cross-vendor migration, because 1544 * Intel's vmentry has a check on the 'G' bit. 1545 */ 1546 var->g = s->limit > 0xfffff; 1547 1548 /* 1549 * AMD's VMCB does not have an explicit unusable field, so emulate it 1550 * for cross vendor migration purposes by "not present" 1551 */ 1552 var->unusable = !var->present; 1553 1554 switch (seg) { 1555 case VCPU_SREG_TR: 1556 /* 1557 * Work around a bug where the busy flag in the tr selector 1558 * isn't exposed 1559 */ 1560 var->type |= 0x2; 1561 break; 1562 case VCPU_SREG_DS: 1563 case VCPU_SREG_ES: 1564 case VCPU_SREG_FS: 1565 case VCPU_SREG_GS: 1566 /* 1567 * The accessed bit must always be set in the segment 1568 * descriptor cache, although it can be cleared in the 1569 * descriptor, the cached bit always remains at 1. Since 1570 * Intel has a check on this, set it here to support 1571 * cross-vendor migration. 1572 */ 1573 if (!var->unusable) 1574 var->type |= 0x1; 1575 break; 1576 case VCPU_SREG_SS: 1577 /* 1578 * On AMD CPUs sometimes the DB bit in the segment 1579 * descriptor is left as 1, although the whole segment has 1580 * been made unusable. Clear it here to pass an Intel VMX 1581 * entry check when cross vendor migrating. 1582 */ 1583 if (var->unusable) 1584 var->db = 0; 1585 /* This is symmetric with svm_set_segment() */ 1586 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1587 break; 1588 } 1589 } 1590 1591 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1592 { 1593 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1594 1595 return save->cpl; 1596 } 1597 1598 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1599 { 1600 struct vcpu_svm *svm = to_svm(vcpu); 1601 1602 dt->size = svm->vmcb->save.idtr.limit; 1603 dt->address = svm->vmcb->save.idtr.base; 1604 } 1605 1606 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1607 { 1608 struct vcpu_svm *svm = to_svm(vcpu); 1609 1610 svm->vmcb->save.idtr.limit = dt->size; 1611 svm->vmcb->save.idtr.base = dt->address ; 1612 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1613 } 1614 1615 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1616 { 1617 struct vcpu_svm *svm = to_svm(vcpu); 1618 1619 dt->size = svm->vmcb->save.gdtr.limit; 1620 dt->address = svm->vmcb->save.gdtr.base; 1621 } 1622 1623 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1624 { 1625 struct vcpu_svm *svm = to_svm(vcpu); 1626 1627 svm->vmcb->save.gdtr.limit = dt->size; 1628 svm->vmcb->save.gdtr.base = dt->address ; 1629 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1630 } 1631 1632 static void update_cr0_intercept(struct vcpu_svm *svm) 1633 { 1634 ulong gcr0 = svm->vcpu.arch.cr0; 1635 u64 *hcr0 = &svm->vmcb->save.cr0; 1636 1637 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) 1638 | (gcr0 & SVM_CR0_SELECTIVE_MASK); 1639 1640 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1641 1642 if (gcr0 == *hcr0) { 1643 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1644 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1645 } else { 1646 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1647 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1648 } 1649 } 1650 1651 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1652 { 1653 struct vcpu_svm *svm = to_svm(vcpu); 1654 1655 #ifdef CONFIG_X86_64 1656 if (vcpu->arch.efer & EFER_LME) { 1657 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1658 vcpu->arch.efer |= EFER_LMA; 1659 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1660 } 1661 1662 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1663 vcpu->arch.efer &= ~EFER_LMA; 1664 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1665 } 1666 } 1667 #endif 1668 vcpu->arch.cr0 = cr0; 1669 1670 if (!npt_enabled) 1671 cr0 |= X86_CR0_PG | X86_CR0_WP; 1672 1673 /* 1674 * re-enable caching here because the QEMU bios 1675 * does not do it - this results in some delay at 1676 * reboot 1677 */ 1678 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1679 cr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1680 svm->vmcb->save.cr0 = cr0; 1681 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1682 update_cr0_intercept(svm); 1683 } 1684 1685 int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1686 { 1687 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1688 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; 1689 1690 if (cr4 & X86_CR4_VMXE) 1691 return 1; 1692 1693 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1694 svm_flush_tlb(vcpu); 1695 1696 vcpu->arch.cr4 = cr4; 1697 if (!npt_enabled) 1698 cr4 |= X86_CR4_PAE; 1699 cr4 |= host_cr4_mce; 1700 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1701 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1702 return 0; 1703 } 1704 1705 static void svm_set_segment(struct kvm_vcpu *vcpu, 1706 struct kvm_segment *var, int seg) 1707 { 1708 struct vcpu_svm *svm = to_svm(vcpu); 1709 struct vmcb_seg *s = svm_seg(vcpu, seg); 1710 1711 s->base = var->base; 1712 s->limit = var->limit; 1713 s->selector = var->selector; 1714 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1715 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1716 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1717 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1718 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1719 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1720 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1721 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1722 1723 /* 1724 * This is always accurate, except if SYSRET returned to a segment 1725 * with SS.DPL != 3. Intel does not have this quirk, and always 1726 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1727 * would entail passing the CPL to userspace and back. 1728 */ 1729 if (seg == VCPU_SREG_SS) 1730 /* This is symmetric with svm_get_segment() */ 1731 svm->vmcb->save.cpl = (var->dpl & 3); 1732 1733 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1734 } 1735 1736 static void update_exception_bitmap(struct kvm_vcpu *vcpu) 1737 { 1738 struct vcpu_svm *svm = to_svm(vcpu); 1739 1740 clr_exception_intercept(svm, BP_VECTOR); 1741 1742 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1743 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1744 set_exception_intercept(svm, BP_VECTOR); 1745 } 1746 } 1747 1748 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1749 { 1750 if (sd->next_asid > sd->max_asid) { 1751 ++sd->asid_generation; 1752 sd->next_asid = sd->min_asid; 1753 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1754 } 1755 1756 svm->asid_generation = sd->asid_generation; 1757 svm->vmcb->control.asid = sd->next_asid++; 1758 1759 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1760 } 1761 1762 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1763 { 1764 struct vmcb *vmcb = svm->vmcb; 1765 1766 if (unlikely(value != vmcb->save.dr6)) { 1767 vmcb->save.dr6 = value; 1768 vmcb_mark_dirty(vmcb, VMCB_DR); 1769 } 1770 } 1771 1772 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1773 { 1774 struct vcpu_svm *svm = to_svm(vcpu); 1775 1776 get_debugreg(vcpu->arch.db[0], 0); 1777 get_debugreg(vcpu->arch.db[1], 1); 1778 get_debugreg(vcpu->arch.db[2], 2); 1779 get_debugreg(vcpu->arch.db[3], 3); 1780 /* 1781 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here, 1782 * because db_interception might need it. We can do it before vmentry. 1783 */ 1784 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1785 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1786 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1787 set_dr_intercepts(svm); 1788 } 1789 1790 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1791 { 1792 struct vcpu_svm *svm = to_svm(vcpu); 1793 1794 svm->vmcb->save.dr7 = value; 1795 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1796 } 1797 1798 static int pf_interception(struct vcpu_svm *svm) 1799 { 1800 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1801 u64 error_code = svm->vmcb->control.exit_info_1; 1802 1803 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address, 1804 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1805 svm->vmcb->control.insn_bytes : NULL, 1806 svm->vmcb->control.insn_len); 1807 } 1808 1809 static int npf_interception(struct vcpu_svm *svm) 1810 { 1811 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1812 u64 error_code = svm->vmcb->control.exit_info_1; 1813 1814 trace_kvm_page_fault(fault_address, error_code); 1815 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, 1816 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1817 svm->vmcb->control.insn_bytes : NULL, 1818 svm->vmcb->control.insn_len); 1819 } 1820 1821 static int db_interception(struct vcpu_svm *svm) 1822 { 1823 struct kvm_run *kvm_run = svm->vcpu.run; 1824 struct kvm_vcpu *vcpu = &svm->vcpu; 1825 1826 if (!(svm->vcpu.guest_debug & 1827 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1828 !svm->nmi_singlestep) { 1829 u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1; 1830 kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload); 1831 return 1; 1832 } 1833 1834 if (svm->nmi_singlestep) { 1835 disable_nmi_singlestep(svm); 1836 /* Make sure we check for pending NMIs upon entry */ 1837 kvm_make_request(KVM_REQ_EVENT, vcpu); 1838 } 1839 1840 if (svm->vcpu.guest_debug & 1841 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1842 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1843 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1844 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1845 kvm_run->debug.arch.pc = 1846 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1847 kvm_run->debug.arch.exception = DB_VECTOR; 1848 return 0; 1849 } 1850 1851 return 1; 1852 } 1853 1854 static int bp_interception(struct vcpu_svm *svm) 1855 { 1856 struct kvm_run *kvm_run = svm->vcpu.run; 1857 1858 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1859 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1860 kvm_run->debug.arch.exception = BP_VECTOR; 1861 return 0; 1862 } 1863 1864 static int ud_interception(struct vcpu_svm *svm) 1865 { 1866 return handle_ud(&svm->vcpu); 1867 } 1868 1869 static int ac_interception(struct vcpu_svm *svm) 1870 { 1871 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0); 1872 return 1; 1873 } 1874 1875 static int gp_interception(struct vcpu_svm *svm) 1876 { 1877 struct kvm_vcpu *vcpu = &svm->vcpu; 1878 u32 error_code = svm->vmcb->control.exit_info_1; 1879 1880 WARN_ON_ONCE(!enable_vmware_backdoor); 1881 1882 /* 1883 * VMware backdoor emulation on #GP interception only handles IN{S}, 1884 * OUT{S}, and RDPMC, none of which generate a non-zero error code. 1885 */ 1886 if (error_code) { 1887 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 1888 return 1; 1889 } 1890 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 1891 } 1892 1893 static bool is_erratum_383(void) 1894 { 1895 int err, i; 1896 u64 value; 1897 1898 if (!erratum_383_found) 1899 return false; 1900 1901 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 1902 if (err) 1903 return false; 1904 1905 /* Bit 62 may or may not be set for this mce */ 1906 value &= ~(1ULL << 62); 1907 1908 if (value != 0xb600000000010015ULL) 1909 return false; 1910 1911 /* Clear MCi_STATUS registers */ 1912 for (i = 0; i < 6; ++i) 1913 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 1914 1915 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 1916 if (!err) { 1917 u32 low, high; 1918 1919 value &= ~(1ULL << 2); 1920 low = lower_32_bits(value); 1921 high = upper_32_bits(value); 1922 1923 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 1924 } 1925 1926 /* Flush tlb to evict multi-match entries */ 1927 __flush_tlb_all(); 1928 1929 return true; 1930 } 1931 1932 /* 1933 * Trigger machine check on the host. We assume all the MSRs are already set up 1934 * by the CPU and that we still run on the same CPU as the MCE occurred on. 1935 * We pass a fake environment to the machine check handler because we want 1936 * the guest to be always treated like user space, no matter what context 1937 * it used internally. 1938 */ 1939 static void kvm_machine_check(void) 1940 { 1941 #if defined(CONFIG_X86_MCE) 1942 struct pt_regs regs = { 1943 .cs = 3, /* Fake ring 3 no matter what the guest ran on */ 1944 .flags = X86_EFLAGS_IF, 1945 }; 1946 1947 do_machine_check(®s); 1948 #endif 1949 } 1950 1951 static void svm_handle_mce(struct vcpu_svm *svm) 1952 { 1953 if (is_erratum_383()) { 1954 /* 1955 * Erratum 383 triggered. Guest state is corrupt so kill the 1956 * guest. 1957 */ 1958 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 1959 1960 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); 1961 1962 return; 1963 } 1964 1965 /* 1966 * On an #MC intercept the MCE handler is not called automatically in 1967 * the host. So do it by hand here. 1968 */ 1969 kvm_machine_check(); 1970 } 1971 1972 static int mc_interception(struct vcpu_svm *svm) 1973 { 1974 return 1; 1975 } 1976 1977 static int shutdown_interception(struct vcpu_svm *svm) 1978 { 1979 struct kvm_run *kvm_run = svm->vcpu.run; 1980 1981 /* 1982 * VMCB is undefined after a SHUTDOWN intercept 1983 * so reinitialize it. 1984 */ 1985 clear_page(svm->vmcb); 1986 init_vmcb(svm); 1987 1988 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 1989 return 0; 1990 } 1991 1992 static int io_interception(struct vcpu_svm *svm) 1993 { 1994 struct kvm_vcpu *vcpu = &svm->vcpu; 1995 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 1996 int size, in, string; 1997 unsigned port; 1998 1999 ++svm->vcpu.stat.io_exits; 2000 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2001 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2002 if (string) 2003 return kvm_emulate_instruction(vcpu, 0); 2004 2005 port = io_info >> 16; 2006 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2007 svm->next_rip = svm->vmcb->control.exit_info_2; 2008 2009 return kvm_fast_pio(&svm->vcpu, size, port, in); 2010 } 2011 2012 static int nmi_interception(struct vcpu_svm *svm) 2013 { 2014 return 1; 2015 } 2016 2017 static int intr_interception(struct vcpu_svm *svm) 2018 { 2019 ++svm->vcpu.stat.irq_exits; 2020 return 1; 2021 } 2022 2023 static int nop_on_interception(struct vcpu_svm *svm) 2024 { 2025 return 1; 2026 } 2027 2028 static int halt_interception(struct vcpu_svm *svm) 2029 { 2030 return kvm_emulate_halt(&svm->vcpu); 2031 } 2032 2033 static int vmmcall_interception(struct vcpu_svm *svm) 2034 { 2035 return kvm_emulate_hypercall(&svm->vcpu); 2036 } 2037 2038 static int vmload_interception(struct vcpu_svm *svm) 2039 { 2040 struct vmcb *nested_vmcb; 2041 struct kvm_host_map map; 2042 int ret; 2043 2044 if (nested_svm_check_permissions(svm)) 2045 return 1; 2046 2047 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2048 if (ret) { 2049 if (ret == -EINVAL) 2050 kvm_inject_gp(&svm->vcpu, 0); 2051 return 1; 2052 } 2053 2054 nested_vmcb = map.hva; 2055 2056 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2057 2058 nested_svm_vmloadsave(nested_vmcb, svm->vmcb); 2059 kvm_vcpu_unmap(&svm->vcpu, &map, true); 2060 2061 return ret; 2062 } 2063 2064 static int vmsave_interception(struct vcpu_svm *svm) 2065 { 2066 struct vmcb *nested_vmcb; 2067 struct kvm_host_map map; 2068 int ret; 2069 2070 if (nested_svm_check_permissions(svm)) 2071 return 1; 2072 2073 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2074 if (ret) { 2075 if (ret == -EINVAL) 2076 kvm_inject_gp(&svm->vcpu, 0); 2077 return 1; 2078 } 2079 2080 nested_vmcb = map.hva; 2081 2082 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2083 2084 nested_svm_vmloadsave(svm->vmcb, nested_vmcb); 2085 kvm_vcpu_unmap(&svm->vcpu, &map, true); 2086 2087 return ret; 2088 } 2089 2090 static int vmrun_interception(struct vcpu_svm *svm) 2091 { 2092 if (nested_svm_check_permissions(svm)) 2093 return 1; 2094 2095 return nested_svm_vmrun(svm); 2096 } 2097 2098 void svm_set_gif(struct vcpu_svm *svm, bool value) 2099 { 2100 if (value) { 2101 /* 2102 * If VGIF is enabled, the STGI intercept is only added to 2103 * detect the opening of the SMI/NMI window; remove it now. 2104 * Likewise, clear the VINTR intercept, we will set it 2105 * again while processing KVM_REQ_EVENT if needed. 2106 */ 2107 if (vgif_enabled(svm)) 2108 svm_clr_intercept(svm, INTERCEPT_STGI); 2109 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2110 svm_clear_vintr(svm); 2111 2112 enable_gif(svm); 2113 if (svm->vcpu.arch.smi_pending || 2114 svm->vcpu.arch.nmi_pending || 2115 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2116 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2117 } else { 2118 disable_gif(svm); 2119 2120 /* 2121 * After a CLGI no interrupts should come. But if vGIF is 2122 * in use, we still rely on the VINTR intercept (rather than 2123 * STGI) to detect an open interrupt window. 2124 */ 2125 if (!vgif_enabled(svm)) 2126 svm_clear_vintr(svm); 2127 } 2128 } 2129 2130 static int stgi_interception(struct vcpu_svm *svm) 2131 { 2132 int ret; 2133 2134 if (nested_svm_check_permissions(svm)) 2135 return 1; 2136 2137 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2138 svm_set_gif(svm, true); 2139 return ret; 2140 } 2141 2142 static int clgi_interception(struct vcpu_svm *svm) 2143 { 2144 int ret; 2145 2146 if (nested_svm_check_permissions(svm)) 2147 return 1; 2148 2149 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2150 svm_set_gif(svm, false); 2151 return ret; 2152 } 2153 2154 static int invlpga_interception(struct vcpu_svm *svm) 2155 { 2156 struct kvm_vcpu *vcpu = &svm->vcpu; 2157 2158 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu), 2159 kvm_rax_read(&svm->vcpu)); 2160 2161 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2162 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu)); 2163 2164 return kvm_skip_emulated_instruction(&svm->vcpu); 2165 } 2166 2167 static int skinit_interception(struct vcpu_svm *svm) 2168 { 2169 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu)); 2170 2171 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2172 return 1; 2173 } 2174 2175 static int wbinvd_interception(struct vcpu_svm *svm) 2176 { 2177 return kvm_emulate_wbinvd(&svm->vcpu); 2178 } 2179 2180 static int xsetbv_interception(struct vcpu_svm *svm) 2181 { 2182 u64 new_bv = kvm_read_edx_eax(&svm->vcpu); 2183 u32 index = kvm_rcx_read(&svm->vcpu); 2184 2185 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) { 2186 return kvm_skip_emulated_instruction(&svm->vcpu); 2187 } 2188 2189 return 1; 2190 } 2191 2192 static int rdpru_interception(struct vcpu_svm *svm) 2193 { 2194 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2195 return 1; 2196 } 2197 2198 static int task_switch_interception(struct vcpu_svm *svm) 2199 { 2200 u16 tss_selector; 2201 int reason; 2202 int int_type = svm->vmcb->control.exit_int_info & 2203 SVM_EXITINTINFO_TYPE_MASK; 2204 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2205 uint32_t type = 2206 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2207 uint32_t idt_v = 2208 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2209 bool has_error_code = false; 2210 u32 error_code = 0; 2211 2212 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2213 2214 if (svm->vmcb->control.exit_info_2 & 2215 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2216 reason = TASK_SWITCH_IRET; 2217 else if (svm->vmcb->control.exit_info_2 & 2218 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2219 reason = TASK_SWITCH_JMP; 2220 else if (idt_v) 2221 reason = TASK_SWITCH_GATE; 2222 else 2223 reason = TASK_SWITCH_CALL; 2224 2225 if (reason == TASK_SWITCH_GATE) { 2226 switch (type) { 2227 case SVM_EXITINTINFO_TYPE_NMI: 2228 svm->vcpu.arch.nmi_injected = false; 2229 break; 2230 case SVM_EXITINTINFO_TYPE_EXEPT: 2231 if (svm->vmcb->control.exit_info_2 & 2232 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2233 has_error_code = true; 2234 error_code = 2235 (u32)svm->vmcb->control.exit_info_2; 2236 } 2237 kvm_clear_exception_queue(&svm->vcpu); 2238 break; 2239 case SVM_EXITINTINFO_TYPE_INTR: 2240 kvm_clear_interrupt_queue(&svm->vcpu); 2241 break; 2242 default: 2243 break; 2244 } 2245 } 2246 2247 if (reason != TASK_SWITCH_GATE || 2248 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2249 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2250 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2251 if (!skip_emulated_instruction(&svm->vcpu)) 2252 return 0; 2253 } 2254 2255 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2256 int_vec = -1; 2257 2258 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, 2259 has_error_code, error_code); 2260 } 2261 2262 static int cpuid_interception(struct vcpu_svm *svm) 2263 { 2264 return kvm_emulate_cpuid(&svm->vcpu); 2265 } 2266 2267 static int iret_interception(struct vcpu_svm *svm) 2268 { 2269 ++svm->vcpu.stat.nmi_window_exits; 2270 svm_clr_intercept(svm, INTERCEPT_IRET); 2271 svm->vcpu.arch.hflags |= HF_IRET_MASK; 2272 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); 2273 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2274 return 1; 2275 } 2276 2277 static int invd_interception(struct vcpu_svm *svm) 2278 { 2279 /* Treat an INVD instruction as a NOP and just skip it. */ 2280 return kvm_skip_emulated_instruction(&svm->vcpu); 2281 } 2282 2283 static int invlpg_interception(struct vcpu_svm *svm) 2284 { 2285 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2286 return kvm_emulate_instruction(&svm->vcpu, 0); 2287 2288 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); 2289 return kvm_skip_emulated_instruction(&svm->vcpu); 2290 } 2291 2292 static int emulate_on_interception(struct vcpu_svm *svm) 2293 { 2294 return kvm_emulate_instruction(&svm->vcpu, 0); 2295 } 2296 2297 static int rsm_interception(struct vcpu_svm *svm) 2298 { 2299 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2); 2300 } 2301 2302 static int rdpmc_interception(struct vcpu_svm *svm) 2303 { 2304 int err; 2305 2306 if (!nrips) 2307 return emulate_on_interception(svm); 2308 2309 err = kvm_rdpmc(&svm->vcpu); 2310 return kvm_complete_insn_gp(&svm->vcpu, err); 2311 } 2312 2313 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, 2314 unsigned long val) 2315 { 2316 unsigned long cr0 = svm->vcpu.arch.cr0; 2317 bool ret = false; 2318 2319 if (!is_guest_mode(&svm->vcpu) || 2320 (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2321 return false; 2322 2323 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2324 val &= ~SVM_CR0_SELECTIVE_MASK; 2325 2326 if (cr0 ^ val) { 2327 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2328 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2329 } 2330 2331 return ret; 2332 } 2333 2334 #define CR_VALID (1ULL << 63) 2335 2336 static int cr_interception(struct vcpu_svm *svm) 2337 { 2338 int reg, cr; 2339 unsigned long val; 2340 int err; 2341 2342 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2343 return emulate_on_interception(svm); 2344 2345 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2346 return emulate_on_interception(svm); 2347 2348 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2349 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2350 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2351 else 2352 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2353 2354 err = 0; 2355 if (cr >= 16) { /* mov to cr */ 2356 cr -= 16; 2357 val = kvm_register_read(&svm->vcpu, reg); 2358 trace_kvm_cr_write(cr, val); 2359 switch (cr) { 2360 case 0: 2361 if (!check_selective_cr0_intercepted(svm, val)) 2362 err = kvm_set_cr0(&svm->vcpu, val); 2363 else 2364 return 1; 2365 2366 break; 2367 case 3: 2368 err = kvm_set_cr3(&svm->vcpu, val); 2369 break; 2370 case 4: 2371 err = kvm_set_cr4(&svm->vcpu, val); 2372 break; 2373 case 8: 2374 err = kvm_set_cr8(&svm->vcpu, val); 2375 break; 2376 default: 2377 WARN(1, "unhandled write to CR%d", cr); 2378 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2379 return 1; 2380 } 2381 } else { /* mov from cr */ 2382 switch (cr) { 2383 case 0: 2384 val = kvm_read_cr0(&svm->vcpu); 2385 break; 2386 case 2: 2387 val = svm->vcpu.arch.cr2; 2388 break; 2389 case 3: 2390 val = kvm_read_cr3(&svm->vcpu); 2391 break; 2392 case 4: 2393 val = kvm_read_cr4(&svm->vcpu); 2394 break; 2395 case 8: 2396 val = kvm_get_cr8(&svm->vcpu); 2397 break; 2398 default: 2399 WARN(1, "unhandled read from CR%d", cr); 2400 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2401 return 1; 2402 } 2403 kvm_register_write(&svm->vcpu, reg, val); 2404 trace_kvm_cr_read(cr, val); 2405 } 2406 return kvm_complete_insn_gp(&svm->vcpu, err); 2407 } 2408 2409 static int dr_interception(struct vcpu_svm *svm) 2410 { 2411 int reg, dr; 2412 unsigned long val; 2413 2414 if (svm->vcpu.guest_debug == 0) { 2415 /* 2416 * No more DR vmexits; force a reload of the debug registers 2417 * and reenter on this instruction. The next vmexit will 2418 * retrieve the full state of the debug registers. 2419 */ 2420 clr_dr_intercepts(svm); 2421 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2422 return 1; 2423 } 2424 2425 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2426 return emulate_on_interception(svm); 2427 2428 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2429 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2430 2431 if (dr >= 16) { /* mov to DRn */ 2432 if (!kvm_require_dr(&svm->vcpu, dr - 16)) 2433 return 1; 2434 val = kvm_register_read(&svm->vcpu, reg); 2435 kvm_set_dr(&svm->vcpu, dr - 16, val); 2436 } else { 2437 if (!kvm_require_dr(&svm->vcpu, dr)) 2438 return 1; 2439 kvm_get_dr(&svm->vcpu, dr, &val); 2440 kvm_register_write(&svm->vcpu, reg, val); 2441 } 2442 2443 return kvm_skip_emulated_instruction(&svm->vcpu); 2444 } 2445 2446 static int cr8_write_interception(struct vcpu_svm *svm) 2447 { 2448 struct kvm_run *kvm_run = svm->vcpu.run; 2449 int r; 2450 2451 u8 cr8_prev = kvm_get_cr8(&svm->vcpu); 2452 /* instruction emulation calls kvm_set_cr8() */ 2453 r = cr_interception(svm); 2454 if (lapic_in_kernel(&svm->vcpu)) 2455 return r; 2456 if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) 2457 return r; 2458 kvm_run->exit_reason = KVM_EXIT_SET_TPR; 2459 return 0; 2460 } 2461 2462 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2463 { 2464 msr->data = 0; 2465 2466 switch (msr->index) { 2467 case MSR_F10H_DECFG: 2468 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2469 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2470 break; 2471 case MSR_IA32_PERF_CAPABILITIES: 2472 return 0; 2473 default: 2474 return KVM_MSR_RET_INVALID; 2475 } 2476 2477 return 0; 2478 } 2479 2480 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2481 { 2482 struct vcpu_svm *svm = to_svm(vcpu); 2483 2484 switch (msr_info->index) { 2485 case MSR_STAR: 2486 msr_info->data = svm->vmcb->save.star; 2487 break; 2488 #ifdef CONFIG_X86_64 2489 case MSR_LSTAR: 2490 msr_info->data = svm->vmcb->save.lstar; 2491 break; 2492 case MSR_CSTAR: 2493 msr_info->data = svm->vmcb->save.cstar; 2494 break; 2495 case MSR_KERNEL_GS_BASE: 2496 msr_info->data = svm->vmcb->save.kernel_gs_base; 2497 break; 2498 case MSR_SYSCALL_MASK: 2499 msr_info->data = svm->vmcb->save.sfmask; 2500 break; 2501 #endif 2502 case MSR_IA32_SYSENTER_CS: 2503 msr_info->data = svm->vmcb->save.sysenter_cs; 2504 break; 2505 case MSR_IA32_SYSENTER_EIP: 2506 msr_info->data = svm->sysenter_eip; 2507 break; 2508 case MSR_IA32_SYSENTER_ESP: 2509 msr_info->data = svm->sysenter_esp; 2510 break; 2511 case MSR_TSC_AUX: 2512 if (!boot_cpu_has(X86_FEATURE_RDTSCP)) 2513 return 1; 2514 msr_info->data = svm->tsc_aux; 2515 break; 2516 /* 2517 * Nobody will change the following 5 values in the VMCB so we can 2518 * safely return them on rdmsr. They will always be 0 until LBRV is 2519 * implemented. 2520 */ 2521 case MSR_IA32_DEBUGCTLMSR: 2522 msr_info->data = svm->vmcb->save.dbgctl; 2523 break; 2524 case MSR_IA32_LASTBRANCHFROMIP: 2525 msr_info->data = svm->vmcb->save.br_from; 2526 break; 2527 case MSR_IA32_LASTBRANCHTOIP: 2528 msr_info->data = svm->vmcb->save.br_to; 2529 break; 2530 case MSR_IA32_LASTINTFROMIP: 2531 msr_info->data = svm->vmcb->save.last_excp_from; 2532 break; 2533 case MSR_IA32_LASTINTTOIP: 2534 msr_info->data = svm->vmcb->save.last_excp_to; 2535 break; 2536 case MSR_VM_HSAVE_PA: 2537 msr_info->data = svm->nested.hsave_msr; 2538 break; 2539 case MSR_VM_CR: 2540 msr_info->data = svm->nested.vm_cr_msr; 2541 break; 2542 case MSR_IA32_SPEC_CTRL: 2543 if (!msr_info->host_initiated && 2544 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 2545 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) && 2546 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && 2547 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) 2548 return 1; 2549 2550 msr_info->data = svm->spec_ctrl; 2551 break; 2552 case MSR_AMD64_VIRT_SPEC_CTRL: 2553 if (!msr_info->host_initiated && 2554 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2555 return 1; 2556 2557 msr_info->data = svm->virt_spec_ctrl; 2558 break; 2559 case MSR_F15H_IC_CFG: { 2560 2561 int family, model; 2562 2563 family = guest_cpuid_family(vcpu); 2564 model = guest_cpuid_model(vcpu); 2565 2566 if (family < 0 || model < 0) 2567 return kvm_get_msr_common(vcpu, msr_info); 2568 2569 msr_info->data = 0; 2570 2571 if (family == 0x15 && 2572 (model >= 0x2 && model < 0x20)) 2573 msr_info->data = 0x1E; 2574 } 2575 break; 2576 case MSR_F10H_DECFG: 2577 msr_info->data = svm->msr_decfg; 2578 break; 2579 default: 2580 return kvm_get_msr_common(vcpu, msr_info); 2581 } 2582 return 0; 2583 } 2584 2585 static int rdmsr_interception(struct vcpu_svm *svm) 2586 { 2587 return kvm_emulate_rdmsr(&svm->vcpu); 2588 } 2589 2590 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2591 { 2592 struct vcpu_svm *svm = to_svm(vcpu); 2593 int svm_dis, chg_mask; 2594 2595 if (data & ~SVM_VM_CR_VALID_MASK) 2596 return 1; 2597 2598 chg_mask = SVM_VM_CR_VALID_MASK; 2599 2600 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2601 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2602 2603 svm->nested.vm_cr_msr &= ~chg_mask; 2604 svm->nested.vm_cr_msr |= (data & chg_mask); 2605 2606 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2607 2608 /* check for svm_disable while efer.svme is set */ 2609 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2610 return 1; 2611 2612 return 0; 2613 } 2614 2615 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2616 { 2617 struct vcpu_svm *svm = to_svm(vcpu); 2618 2619 u32 ecx = msr->index; 2620 u64 data = msr->data; 2621 switch (ecx) { 2622 case MSR_IA32_CR_PAT: 2623 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2624 return 1; 2625 vcpu->arch.pat = data; 2626 svm->vmcb->save.g_pat = data; 2627 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2628 break; 2629 case MSR_IA32_SPEC_CTRL: 2630 if (!msr->host_initiated && 2631 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 2632 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) && 2633 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && 2634 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) 2635 return 1; 2636 2637 if (kvm_spec_ctrl_test_value(data)) 2638 return 1; 2639 2640 svm->spec_ctrl = data; 2641 if (!data) 2642 break; 2643 2644 /* 2645 * For non-nested: 2646 * When it's written (to non-zero) for the first time, pass 2647 * it through. 2648 * 2649 * For nested: 2650 * The handling of the MSR bitmap for L2 guests is done in 2651 * nested_svm_vmrun_msrpm. 2652 * We update the L1 MSR bit as well since it will end up 2653 * touching the MSR anyway now. 2654 */ 2655 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2656 break; 2657 case MSR_IA32_PRED_CMD: 2658 if (!msr->host_initiated && 2659 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 2660 return 1; 2661 2662 if (data & ~PRED_CMD_IBPB) 2663 return 1; 2664 if (!boot_cpu_has(X86_FEATURE_AMD_IBPB)) 2665 return 1; 2666 if (!data) 2667 break; 2668 2669 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2670 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2671 break; 2672 case MSR_AMD64_VIRT_SPEC_CTRL: 2673 if (!msr->host_initiated && 2674 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2675 return 1; 2676 2677 if (data & ~SPEC_CTRL_SSBD) 2678 return 1; 2679 2680 svm->virt_spec_ctrl = data; 2681 break; 2682 case MSR_STAR: 2683 svm->vmcb->save.star = data; 2684 break; 2685 #ifdef CONFIG_X86_64 2686 case MSR_LSTAR: 2687 svm->vmcb->save.lstar = data; 2688 break; 2689 case MSR_CSTAR: 2690 svm->vmcb->save.cstar = data; 2691 break; 2692 case MSR_KERNEL_GS_BASE: 2693 svm->vmcb->save.kernel_gs_base = data; 2694 break; 2695 case MSR_SYSCALL_MASK: 2696 svm->vmcb->save.sfmask = data; 2697 break; 2698 #endif 2699 case MSR_IA32_SYSENTER_CS: 2700 svm->vmcb->save.sysenter_cs = data; 2701 break; 2702 case MSR_IA32_SYSENTER_EIP: 2703 svm->sysenter_eip = data; 2704 svm->vmcb->save.sysenter_eip = data; 2705 break; 2706 case MSR_IA32_SYSENTER_ESP: 2707 svm->sysenter_esp = data; 2708 svm->vmcb->save.sysenter_esp = data; 2709 break; 2710 case MSR_TSC_AUX: 2711 if (!boot_cpu_has(X86_FEATURE_RDTSCP)) 2712 return 1; 2713 2714 /* 2715 * This is rare, so we update the MSR here instead of using 2716 * direct_access_msrs. Doing that would require a rdmsr in 2717 * svm_vcpu_put. 2718 */ 2719 svm->tsc_aux = data; 2720 wrmsrl(MSR_TSC_AUX, svm->tsc_aux); 2721 break; 2722 case MSR_IA32_DEBUGCTLMSR: 2723 if (!boot_cpu_has(X86_FEATURE_LBRV)) { 2724 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2725 __func__, data); 2726 break; 2727 } 2728 if (data & DEBUGCTL_RESERVED_BITS) 2729 return 1; 2730 2731 svm->vmcb->save.dbgctl = data; 2732 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 2733 if (data & (1ULL<<0)) 2734 svm_enable_lbrv(vcpu); 2735 else 2736 svm_disable_lbrv(vcpu); 2737 break; 2738 case MSR_VM_HSAVE_PA: 2739 svm->nested.hsave_msr = data; 2740 break; 2741 case MSR_VM_CR: 2742 return svm_set_vm_cr(vcpu, data); 2743 case MSR_VM_IGNNE: 2744 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2745 break; 2746 case MSR_F10H_DECFG: { 2747 struct kvm_msr_entry msr_entry; 2748 2749 msr_entry.index = msr->index; 2750 if (svm_get_msr_feature(&msr_entry)) 2751 return 1; 2752 2753 /* Check the supported bits */ 2754 if (data & ~msr_entry.data) 2755 return 1; 2756 2757 /* Don't allow the guest to change a bit, #GP */ 2758 if (!msr->host_initiated && (data ^ msr_entry.data)) 2759 return 1; 2760 2761 svm->msr_decfg = data; 2762 break; 2763 } 2764 case MSR_IA32_APICBASE: 2765 if (kvm_vcpu_apicv_active(vcpu)) 2766 avic_update_vapic_bar(to_svm(vcpu), data); 2767 fallthrough; 2768 default: 2769 return kvm_set_msr_common(vcpu, msr); 2770 } 2771 return 0; 2772 } 2773 2774 static int wrmsr_interception(struct vcpu_svm *svm) 2775 { 2776 return kvm_emulate_wrmsr(&svm->vcpu); 2777 } 2778 2779 static int msr_interception(struct vcpu_svm *svm) 2780 { 2781 if (svm->vmcb->control.exit_info_1) 2782 return wrmsr_interception(svm); 2783 else 2784 return rdmsr_interception(svm); 2785 } 2786 2787 static int interrupt_window_interception(struct vcpu_svm *svm) 2788 { 2789 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2790 svm_clear_vintr(svm); 2791 2792 /* 2793 * For AVIC, the only reason to end up here is ExtINTs. 2794 * In this case AVIC was temporarily disabled for 2795 * requesting the IRQ window and we have to re-enable it. 2796 */ 2797 svm_toggle_avic_for_irq_window(&svm->vcpu, true); 2798 2799 ++svm->vcpu.stat.irq_window_exits; 2800 return 1; 2801 } 2802 2803 static int pause_interception(struct vcpu_svm *svm) 2804 { 2805 struct kvm_vcpu *vcpu = &svm->vcpu; 2806 bool in_kernel = (svm_get_cpl(vcpu) == 0); 2807 2808 if (!kvm_pause_in_guest(vcpu->kvm)) 2809 grow_ple_window(vcpu); 2810 2811 kvm_vcpu_on_spin(vcpu, in_kernel); 2812 return 1; 2813 } 2814 2815 static int nop_interception(struct vcpu_svm *svm) 2816 { 2817 return kvm_skip_emulated_instruction(&(svm->vcpu)); 2818 } 2819 2820 static int monitor_interception(struct vcpu_svm *svm) 2821 { 2822 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); 2823 return nop_interception(svm); 2824 } 2825 2826 static int mwait_interception(struct vcpu_svm *svm) 2827 { 2828 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); 2829 return nop_interception(svm); 2830 } 2831 2832 static int invpcid_interception(struct vcpu_svm *svm) 2833 { 2834 struct kvm_vcpu *vcpu = &svm->vcpu; 2835 unsigned long type; 2836 gva_t gva; 2837 2838 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 2839 kvm_queue_exception(vcpu, UD_VECTOR); 2840 return 1; 2841 } 2842 2843 /* 2844 * For an INVPCID intercept: 2845 * EXITINFO1 provides the linear address of the memory operand. 2846 * EXITINFO2 provides the contents of the register operand. 2847 */ 2848 type = svm->vmcb->control.exit_info_2; 2849 gva = svm->vmcb->control.exit_info_1; 2850 2851 if (type > 3) { 2852 kvm_inject_gp(vcpu, 0); 2853 return 1; 2854 } 2855 2856 return kvm_handle_invpcid(vcpu, type, gva); 2857 } 2858 2859 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { 2860 [SVM_EXIT_READ_CR0] = cr_interception, 2861 [SVM_EXIT_READ_CR3] = cr_interception, 2862 [SVM_EXIT_READ_CR4] = cr_interception, 2863 [SVM_EXIT_READ_CR8] = cr_interception, 2864 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 2865 [SVM_EXIT_WRITE_CR0] = cr_interception, 2866 [SVM_EXIT_WRITE_CR3] = cr_interception, 2867 [SVM_EXIT_WRITE_CR4] = cr_interception, 2868 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 2869 [SVM_EXIT_READ_DR0] = dr_interception, 2870 [SVM_EXIT_READ_DR1] = dr_interception, 2871 [SVM_EXIT_READ_DR2] = dr_interception, 2872 [SVM_EXIT_READ_DR3] = dr_interception, 2873 [SVM_EXIT_READ_DR4] = dr_interception, 2874 [SVM_EXIT_READ_DR5] = dr_interception, 2875 [SVM_EXIT_READ_DR6] = dr_interception, 2876 [SVM_EXIT_READ_DR7] = dr_interception, 2877 [SVM_EXIT_WRITE_DR0] = dr_interception, 2878 [SVM_EXIT_WRITE_DR1] = dr_interception, 2879 [SVM_EXIT_WRITE_DR2] = dr_interception, 2880 [SVM_EXIT_WRITE_DR3] = dr_interception, 2881 [SVM_EXIT_WRITE_DR4] = dr_interception, 2882 [SVM_EXIT_WRITE_DR5] = dr_interception, 2883 [SVM_EXIT_WRITE_DR6] = dr_interception, 2884 [SVM_EXIT_WRITE_DR7] = dr_interception, 2885 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 2886 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 2887 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 2888 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 2889 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 2890 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 2891 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 2892 [SVM_EXIT_INTR] = intr_interception, 2893 [SVM_EXIT_NMI] = nmi_interception, 2894 [SVM_EXIT_SMI] = nop_on_interception, 2895 [SVM_EXIT_INIT] = nop_on_interception, 2896 [SVM_EXIT_VINTR] = interrupt_window_interception, 2897 [SVM_EXIT_RDPMC] = rdpmc_interception, 2898 [SVM_EXIT_CPUID] = cpuid_interception, 2899 [SVM_EXIT_IRET] = iret_interception, 2900 [SVM_EXIT_INVD] = invd_interception, 2901 [SVM_EXIT_PAUSE] = pause_interception, 2902 [SVM_EXIT_HLT] = halt_interception, 2903 [SVM_EXIT_INVLPG] = invlpg_interception, 2904 [SVM_EXIT_INVLPGA] = invlpga_interception, 2905 [SVM_EXIT_IOIO] = io_interception, 2906 [SVM_EXIT_MSR] = msr_interception, 2907 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 2908 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 2909 [SVM_EXIT_VMRUN] = vmrun_interception, 2910 [SVM_EXIT_VMMCALL] = vmmcall_interception, 2911 [SVM_EXIT_VMLOAD] = vmload_interception, 2912 [SVM_EXIT_VMSAVE] = vmsave_interception, 2913 [SVM_EXIT_STGI] = stgi_interception, 2914 [SVM_EXIT_CLGI] = clgi_interception, 2915 [SVM_EXIT_SKINIT] = skinit_interception, 2916 [SVM_EXIT_WBINVD] = wbinvd_interception, 2917 [SVM_EXIT_MONITOR] = monitor_interception, 2918 [SVM_EXIT_MWAIT] = mwait_interception, 2919 [SVM_EXIT_XSETBV] = xsetbv_interception, 2920 [SVM_EXIT_RDPRU] = rdpru_interception, 2921 [SVM_EXIT_INVPCID] = invpcid_interception, 2922 [SVM_EXIT_NPF] = npf_interception, 2923 [SVM_EXIT_RSM] = rsm_interception, 2924 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 2925 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 2926 }; 2927 2928 static void dump_vmcb(struct kvm_vcpu *vcpu) 2929 { 2930 struct vcpu_svm *svm = to_svm(vcpu); 2931 struct vmcb_control_area *control = &svm->vmcb->control; 2932 struct vmcb_save_area *save = &svm->vmcb->save; 2933 2934 if (!dump_invalid_vmcb) { 2935 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2936 return; 2937 } 2938 2939 pr_err("VMCB Control Area:\n"); 2940 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 2941 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 2942 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 2943 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 2944 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 2945 pr_err("%-20s%08x %08x\n", "intercepts:", 2946 control->intercepts[INTERCEPT_WORD3], 2947 control->intercepts[INTERCEPT_WORD4]); 2948 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 2949 pr_err("%-20s%d\n", "pause filter threshold:", 2950 control->pause_filter_thresh); 2951 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 2952 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 2953 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 2954 pr_err("%-20s%d\n", "asid:", control->asid); 2955 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 2956 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 2957 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 2958 pr_err("%-20s%08x\n", "int_state:", control->int_state); 2959 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 2960 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 2961 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 2962 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 2963 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 2964 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 2965 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 2966 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 2967 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 2968 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 2969 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 2970 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 2971 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 2972 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 2973 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 2974 pr_err("VMCB State Save Area:\n"); 2975 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2976 "es:", 2977 save->es.selector, save->es.attrib, 2978 save->es.limit, save->es.base); 2979 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2980 "cs:", 2981 save->cs.selector, save->cs.attrib, 2982 save->cs.limit, save->cs.base); 2983 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2984 "ss:", 2985 save->ss.selector, save->ss.attrib, 2986 save->ss.limit, save->ss.base); 2987 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2988 "ds:", 2989 save->ds.selector, save->ds.attrib, 2990 save->ds.limit, save->ds.base); 2991 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2992 "fs:", 2993 save->fs.selector, save->fs.attrib, 2994 save->fs.limit, save->fs.base); 2995 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2996 "gs:", 2997 save->gs.selector, save->gs.attrib, 2998 save->gs.limit, save->gs.base); 2999 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3000 "gdtr:", 3001 save->gdtr.selector, save->gdtr.attrib, 3002 save->gdtr.limit, save->gdtr.base); 3003 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3004 "ldtr:", 3005 save->ldtr.selector, save->ldtr.attrib, 3006 save->ldtr.limit, save->ldtr.base); 3007 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3008 "idtr:", 3009 save->idtr.selector, save->idtr.attrib, 3010 save->idtr.limit, save->idtr.base); 3011 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3012 "tr:", 3013 save->tr.selector, save->tr.attrib, 3014 save->tr.limit, save->tr.base); 3015 pr_err("cpl: %d efer: %016llx\n", 3016 save->cpl, save->efer); 3017 pr_err("%-15s %016llx %-13s %016llx\n", 3018 "cr0:", save->cr0, "cr2:", save->cr2); 3019 pr_err("%-15s %016llx %-13s %016llx\n", 3020 "cr3:", save->cr3, "cr4:", save->cr4); 3021 pr_err("%-15s %016llx %-13s %016llx\n", 3022 "dr6:", save->dr6, "dr7:", save->dr7); 3023 pr_err("%-15s %016llx %-13s %016llx\n", 3024 "rip:", save->rip, "rflags:", save->rflags); 3025 pr_err("%-15s %016llx %-13s %016llx\n", 3026 "rsp:", save->rsp, "rax:", save->rax); 3027 pr_err("%-15s %016llx %-13s %016llx\n", 3028 "star:", save->star, "lstar:", save->lstar); 3029 pr_err("%-15s %016llx %-13s %016llx\n", 3030 "cstar:", save->cstar, "sfmask:", save->sfmask); 3031 pr_err("%-15s %016llx %-13s %016llx\n", 3032 "kernel_gs_base:", save->kernel_gs_base, 3033 "sysenter_cs:", save->sysenter_cs); 3034 pr_err("%-15s %016llx %-13s %016llx\n", 3035 "sysenter_esp:", save->sysenter_esp, 3036 "sysenter_eip:", save->sysenter_eip); 3037 pr_err("%-15s %016llx %-13s %016llx\n", 3038 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3039 pr_err("%-15s %016llx %-13s %016llx\n", 3040 "br_from:", save->br_from, "br_to:", save->br_to); 3041 pr_err("%-15s %016llx %-13s %016llx\n", 3042 "excp_from:", save->last_excp_from, 3043 "excp_to:", save->last_excp_to); 3044 } 3045 3046 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 3047 u32 *intr_info, u32 *error_code) 3048 { 3049 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3050 3051 *info1 = control->exit_info_1; 3052 *info2 = control->exit_info_2; 3053 *intr_info = control->exit_int_info; 3054 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3055 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3056 *error_code = control->exit_int_info_err; 3057 else 3058 *error_code = 0; 3059 } 3060 3061 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3062 { 3063 struct vcpu_svm *svm = to_svm(vcpu); 3064 struct kvm_run *kvm_run = vcpu->run; 3065 u32 exit_code = svm->vmcb->control.exit_code; 3066 3067 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); 3068 3069 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3070 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3071 if (npt_enabled) 3072 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3073 3074 if (is_guest_mode(vcpu)) { 3075 int vmexit; 3076 3077 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM); 3078 3079 vmexit = nested_svm_exit_special(svm); 3080 3081 if (vmexit == NESTED_EXIT_CONTINUE) 3082 vmexit = nested_svm_exit_handled(svm); 3083 3084 if (vmexit == NESTED_EXIT_DONE) 3085 return 1; 3086 } 3087 3088 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3089 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3090 kvm_run->fail_entry.hardware_entry_failure_reason 3091 = svm->vmcb->control.exit_code; 3092 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3093 dump_vmcb(vcpu); 3094 return 0; 3095 } 3096 3097 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3098 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3099 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3100 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3101 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3102 "exit_code 0x%x\n", 3103 __func__, svm->vmcb->control.exit_int_info, 3104 exit_code); 3105 3106 if (exit_fastpath != EXIT_FASTPATH_NONE) 3107 return 1; 3108 3109 if (exit_code >= ARRAY_SIZE(svm_exit_handlers) 3110 || !svm_exit_handlers[exit_code]) { 3111 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code); 3112 dump_vmcb(vcpu); 3113 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3114 vcpu->run->internal.suberror = 3115 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3116 vcpu->run->internal.ndata = 2; 3117 vcpu->run->internal.data[0] = exit_code; 3118 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3119 return 0; 3120 } 3121 3122 #ifdef CONFIG_RETPOLINE 3123 if (exit_code == SVM_EXIT_MSR) 3124 return msr_interception(svm); 3125 else if (exit_code == SVM_EXIT_VINTR) 3126 return interrupt_window_interception(svm); 3127 else if (exit_code == SVM_EXIT_INTR) 3128 return intr_interception(svm); 3129 else if (exit_code == SVM_EXIT_HLT) 3130 return halt_interception(svm); 3131 else if (exit_code == SVM_EXIT_NPF) 3132 return npf_interception(svm); 3133 #endif 3134 return svm_exit_handlers[exit_code](svm); 3135 } 3136 3137 static void reload_tss(struct kvm_vcpu *vcpu) 3138 { 3139 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3140 3141 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3142 load_TR_desc(); 3143 } 3144 3145 static void pre_svm_run(struct vcpu_svm *svm) 3146 { 3147 struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu); 3148 3149 if (sev_guest(svm->vcpu.kvm)) 3150 return pre_sev_run(svm, svm->vcpu.cpu); 3151 3152 /* FIXME: handle wraparound of asid_generation */ 3153 if (svm->asid_generation != sd->asid_generation) 3154 new_asid(svm, sd); 3155 } 3156 3157 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3158 { 3159 struct vcpu_svm *svm = to_svm(vcpu); 3160 3161 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3162 vcpu->arch.hflags |= HF_NMI_MASK; 3163 svm_set_intercept(svm, INTERCEPT_IRET); 3164 ++vcpu->stat.nmi_injections; 3165 } 3166 3167 static void svm_set_irq(struct kvm_vcpu *vcpu) 3168 { 3169 struct vcpu_svm *svm = to_svm(vcpu); 3170 3171 BUG_ON(!(gif_set(svm))); 3172 3173 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3174 ++vcpu->stat.irq_injections; 3175 3176 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3177 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3178 } 3179 3180 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3181 { 3182 struct vcpu_svm *svm = to_svm(vcpu); 3183 3184 if (nested_svm_virtualize_tpr(vcpu)) 3185 return; 3186 3187 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3188 3189 if (irr == -1) 3190 return; 3191 3192 if (tpr >= irr) 3193 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3194 } 3195 3196 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3197 { 3198 struct vcpu_svm *svm = to_svm(vcpu); 3199 struct vmcb *vmcb = svm->vmcb; 3200 bool ret; 3201 3202 if (!gif_set(svm)) 3203 return true; 3204 3205 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3206 return false; 3207 3208 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3209 (svm->vcpu.arch.hflags & HF_NMI_MASK); 3210 3211 return ret; 3212 } 3213 3214 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3215 { 3216 struct vcpu_svm *svm = to_svm(vcpu); 3217 if (svm->nested.nested_run_pending) 3218 return -EBUSY; 3219 3220 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3221 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3222 return -EBUSY; 3223 3224 return !svm_nmi_blocked(vcpu); 3225 } 3226 3227 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3228 { 3229 struct vcpu_svm *svm = to_svm(vcpu); 3230 3231 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); 3232 } 3233 3234 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3235 { 3236 struct vcpu_svm *svm = to_svm(vcpu); 3237 3238 if (masked) { 3239 svm->vcpu.arch.hflags |= HF_NMI_MASK; 3240 svm_set_intercept(svm, INTERCEPT_IRET); 3241 } else { 3242 svm->vcpu.arch.hflags &= ~HF_NMI_MASK; 3243 svm_clr_intercept(svm, INTERCEPT_IRET); 3244 } 3245 } 3246 3247 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3248 { 3249 struct vcpu_svm *svm = to_svm(vcpu); 3250 struct vmcb *vmcb = svm->vmcb; 3251 3252 if (!gif_set(svm)) 3253 return true; 3254 3255 if (is_guest_mode(vcpu)) { 3256 /* As long as interrupts are being delivered... */ 3257 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3258 ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF) 3259 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3260 return true; 3261 3262 /* ... vmexits aren't blocked by the interrupt shadow */ 3263 if (nested_exit_on_intr(svm)) 3264 return false; 3265 } else { 3266 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3267 return true; 3268 } 3269 3270 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3271 } 3272 3273 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3274 { 3275 struct vcpu_svm *svm = to_svm(vcpu); 3276 if (svm->nested.nested_run_pending) 3277 return -EBUSY; 3278 3279 /* 3280 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3281 * e.g. if the IRQ arrived asynchronously after checking nested events. 3282 */ 3283 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3284 return -EBUSY; 3285 3286 return !svm_interrupt_blocked(vcpu); 3287 } 3288 3289 static void enable_irq_window(struct kvm_vcpu *vcpu) 3290 { 3291 struct vcpu_svm *svm = to_svm(vcpu); 3292 3293 /* 3294 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3295 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3296 * get that intercept, this function will be called again though and 3297 * we'll get the vintr intercept. However, if the vGIF feature is 3298 * enabled, the STGI interception will not occur. Enable the irq 3299 * window under the assumption that the hardware will set the GIF. 3300 */ 3301 if (vgif_enabled(svm) || gif_set(svm)) { 3302 /* 3303 * IRQ window is not needed when AVIC is enabled, 3304 * unless we have pending ExtINT since it cannot be injected 3305 * via AVIC. In such case, we need to temporarily disable AVIC, 3306 * and fallback to injecting IRQ via V_IRQ. 3307 */ 3308 svm_toggle_avic_for_irq_window(vcpu, false); 3309 svm_set_vintr(svm); 3310 } 3311 } 3312 3313 static void enable_nmi_window(struct kvm_vcpu *vcpu) 3314 { 3315 struct vcpu_svm *svm = to_svm(vcpu); 3316 3317 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) 3318 == HF_NMI_MASK) 3319 return; /* IRET will cause a vm exit */ 3320 3321 if (!gif_set(svm)) { 3322 if (vgif_enabled(svm)) 3323 svm_set_intercept(svm, INTERCEPT_STGI); 3324 return; /* STGI will cause a vm exit */ 3325 } 3326 3327 /* 3328 * Something prevents NMI from been injected. Single step over possible 3329 * problem (IRET or exception injection or interrupt shadow) 3330 */ 3331 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3332 svm->nmi_singlestep = true; 3333 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3334 } 3335 3336 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) 3337 { 3338 return 0; 3339 } 3340 3341 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 3342 { 3343 return 0; 3344 } 3345 3346 void svm_flush_tlb(struct kvm_vcpu *vcpu) 3347 { 3348 struct vcpu_svm *svm = to_svm(vcpu); 3349 3350 /* 3351 * Flush only the current ASID even if the TLB flush was invoked via 3352 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3353 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3354 * unconditionally does a TLB flush on both nested VM-Enter and nested 3355 * VM-Exit (via kvm_mmu_reset_context()). 3356 */ 3357 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3358 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3359 else 3360 svm->asid_generation--; 3361 } 3362 3363 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3364 { 3365 struct vcpu_svm *svm = to_svm(vcpu); 3366 3367 invlpga(gva, svm->vmcb->control.asid); 3368 } 3369 3370 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) 3371 { 3372 } 3373 3374 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3375 { 3376 struct vcpu_svm *svm = to_svm(vcpu); 3377 3378 if (nested_svm_virtualize_tpr(vcpu)) 3379 return; 3380 3381 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3382 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3383 kvm_set_cr8(vcpu, cr8); 3384 } 3385 } 3386 3387 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3388 { 3389 struct vcpu_svm *svm = to_svm(vcpu); 3390 u64 cr8; 3391 3392 if (nested_svm_virtualize_tpr(vcpu) || 3393 kvm_vcpu_apicv_active(vcpu)) 3394 return; 3395 3396 cr8 = kvm_get_cr8(vcpu); 3397 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3398 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3399 } 3400 3401 static void svm_complete_interrupts(struct vcpu_svm *svm) 3402 { 3403 u8 vector; 3404 int type; 3405 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3406 unsigned int3_injected = svm->int3_injected; 3407 3408 svm->int3_injected = 0; 3409 3410 /* 3411 * If we've made progress since setting HF_IRET_MASK, we've 3412 * executed an IRET and can allow NMI injection. 3413 */ 3414 if ((svm->vcpu.arch.hflags & HF_IRET_MASK) 3415 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) { 3416 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3417 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3418 } 3419 3420 svm->vcpu.arch.nmi_injected = false; 3421 kvm_clear_exception_queue(&svm->vcpu); 3422 kvm_clear_interrupt_queue(&svm->vcpu); 3423 3424 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3425 return; 3426 3427 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3428 3429 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3430 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3431 3432 switch (type) { 3433 case SVM_EXITINTINFO_TYPE_NMI: 3434 svm->vcpu.arch.nmi_injected = true; 3435 break; 3436 case SVM_EXITINTINFO_TYPE_EXEPT: 3437 /* 3438 * In case of software exceptions, do not reinject the vector, 3439 * but re-execute the instruction instead. Rewind RIP first 3440 * if we emulated INT3 before. 3441 */ 3442 if (kvm_exception_is_soft(vector)) { 3443 if (vector == BP_VECTOR && int3_injected && 3444 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) 3445 kvm_rip_write(&svm->vcpu, 3446 kvm_rip_read(&svm->vcpu) - 3447 int3_injected); 3448 break; 3449 } 3450 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3451 u32 err = svm->vmcb->control.exit_int_info_err; 3452 kvm_requeue_exception_e(&svm->vcpu, vector, err); 3453 3454 } else 3455 kvm_requeue_exception(&svm->vcpu, vector); 3456 break; 3457 case SVM_EXITINTINFO_TYPE_INTR: 3458 kvm_queue_interrupt(&svm->vcpu, vector, false); 3459 break; 3460 default: 3461 break; 3462 } 3463 } 3464 3465 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3466 { 3467 struct vcpu_svm *svm = to_svm(vcpu); 3468 struct vmcb_control_area *control = &svm->vmcb->control; 3469 3470 control->exit_int_info = control->event_inj; 3471 control->exit_int_info_err = control->event_inj_err; 3472 control->event_inj = 0; 3473 svm_complete_interrupts(svm); 3474 } 3475 3476 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3477 { 3478 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3479 to_svm(vcpu)->vmcb->control.exit_info_1) 3480 return handle_fastpath_set_msr_irqoff(vcpu); 3481 3482 return EXIT_FASTPATH_NONE; 3483 } 3484 3485 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs); 3486 3487 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, 3488 struct vcpu_svm *svm) 3489 { 3490 /* 3491 * VMENTER enables interrupts (host state), but the kernel state is 3492 * interrupts disabled when this is invoked. Also tell RCU about 3493 * it. This is the same logic as for exit_to_user_mode(). 3494 * 3495 * This ensures that e.g. latency analysis on the host observes 3496 * guest mode as interrupt enabled. 3497 * 3498 * guest_enter_irqoff() informs context tracking about the 3499 * transition to guest mode and if enabled adjusts RCU state 3500 * accordingly. 3501 */ 3502 instrumentation_begin(); 3503 trace_hardirqs_on_prepare(); 3504 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 3505 instrumentation_end(); 3506 3507 guest_enter_irqoff(); 3508 lockdep_hardirqs_on(CALLER_ADDR0); 3509 3510 __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs); 3511 3512 #ifdef CONFIG_X86_64 3513 native_wrmsrl(MSR_GS_BASE, svm->host.gs_base); 3514 #else 3515 loadsegment(fs, svm->host.fs); 3516 #ifndef CONFIG_X86_32_LAZY_GS 3517 loadsegment(gs, svm->host.gs); 3518 #endif 3519 #endif 3520 3521 /* 3522 * VMEXIT disables interrupts (host state), but tracing and lockdep 3523 * have them in state 'on' as recorded before entering guest mode. 3524 * Same as enter_from_user_mode(). 3525 * 3526 * guest_exit_irqoff() restores host context and reinstates RCU if 3527 * enabled and required. 3528 * 3529 * This needs to be done before the below as native_read_msr() 3530 * contains a tracepoint and x86_spec_ctrl_restore_host() calls 3531 * into world and some more. 3532 */ 3533 lockdep_hardirqs_off(CALLER_ADDR0); 3534 guest_exit_irqoff(); 3535 3536 instrumentation_begin(); 3537 trace_hardirqs_off_finish(); 3538 instrumentation_end(); 3539 } 3540 3541 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3542 { 3543 struct vcpu_svm *svm = to_svm(vcpu); 3544 3545 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3546 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3547 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3548 3549 /* 3550 * Disable singlestep if we're injecting an interrupt/exception. 3551 * We don't want our modified rflags to be pushed on the stack where 3552 * we might not be able to easily reset them if we disabled NMI 3553 * singlestep later. 3554 */ 3555 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3556 /* 3557 * Event injection happens before external interrupts cause a 3558 * vmexit and interrupts are disabled here, so smp_send_reschedule 3559 * is enough to force an immediate vmexit. 3560 */ 3561 disable_nmi_singlestep(svm); 3562 smp_send_reschedule(vcpu->cpu); 3563 } 3564 3565 pre_svm_run(svm); 3566 3567 sync_lapic_to_cr8(vcpu); 3568 3569 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3570 3571 /* 3572 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3573 * of a #DB. 3574 */ 3575 if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3576 svm_set_dr6(svm, vcpu->arch.dr6); 3577 else 3578 svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM); 3579 3580 clgi(); 3581 kvm_load_guest_xsave_state(vcpu); 3582 3583 kvm_wait_lapic_expire(vcpu); 3584 3585 /* 3586 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3587 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3588 * is no need to worry about the conditional branch over the wrmsr 3589 * being speculatively taken. 3590 */ 3591 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3592 3593 svm_vcpu_enter_exit(vcpu, svm); 3594 3595 /* 3596 * We do not use IBRS in the kernel. If this vCPU has used the 3597 * SPEC_CTRL MSR it may have left it on; save the value and 3598 * turn it off. This is much more efficient than blindly adding 3599 * it to the atomic save/restore list. Especially as the former 3600 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3601 * 3602 * For non-nested case: 3603 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3604 * save it. 3605 * 3606 * For nested case: 3607 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3608 * save it. 3609 */ 3610 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3611 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3612 3613 reload_tss(vcpu); 3614 3615 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3616 3617 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3618 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3619 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3620 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3621 3622 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3623 kvm_before_interrupt(&svm->vcpu); 3624 3625 kvm_load_host_xsave_state(vcpu); 3626 stgi(); 3627 3628 /* Any pending NMI will happen here */ 3629 3630 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3631 kvm_after_interrupt(&svm->vcpu); 3632 3633 sync_cr8_to_lapic(vcpu); 3634 3635 svm->next_rip = 0; 3636 if (is_guest_mode(&svm->vcpu)) { 3637 sync_nested_vmcb_control(svm); 3638 svm->nested.nested_run_pending = 0; 3639 } 3640 3641 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3642 vmcb_mark_all_clean(svm->vmcb); 3643 3644 /* if exit due to PF check for async PF */ 3645 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3646 svm->vcpu.arch.apf.host_apf_flags = 3647 kvm_read_and_reset_apf_flags(); 3648 3649 if (npt_enabled) { 3650 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); 3651 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); 3652 } 3653 3654 /* 3655 * We need to handle MC intercepts here before the vcpu has a chance to 3656 * change the physical cpu 3657 */ 3658 if (unlikely(svm->vmcb->control.exit_code == 3659 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3660 svm_handle_mce(svm); 3661 3662 svm_complete_interrupts(svm); 3663 3664 if (is_guest_mode(vcpu)) 3665 return EXIT_FASTPATH_NONE; 3666 3667 return svm_exit_handlers_fastpath(vcpu); 3668 } 3669 3670 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root, 3671 int root_level) 3672 { 3673 struct vcpu_svm *svm = to_svm(vcpu); 3674 unsigned long cr3; 3675 3676 cr3 = __sme_set(root); 3677 if (npt_enabled) { 3678 svm->vmcb->control.nested_cr3 = cr3; 3679 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3680 3681 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ 3682 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3683 return; 3684 cr3 = vcpu->arch.cr3; 3685 } 3686 3687 svm->vmcb->save.cr3 = cr3; 3688 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 3689 } 3690 3691 static int is_disabled(void) 3692 { 3693 u64 vm_cr; 3694 3695 rdmsrl(MSR_VM_CR, vm_cr); 3696 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3697 return 1; 3698 3699 return 0; 3700 } 3701 3702 static void 3703 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3704 { 3705 /* 3706 * Patch in the VMMCALL instruction: 3707 */ 3708 hypercall[0] = 0x0f; 3709 hypercall[1] = 0x01; 3710 hypercall[2] = 0xd9; 3711 } 3712 3713 static int __init svm_check_processor_compat(void) 3714 { 3715 return 0; 3716 } 3717 3718 static bool svm_cpu_has_accelerated_tpr(void) 3719 { 3720 return false; 3721 } 3722 3723 static bool svm_has_emulated_msr(u32 index) 3724 { 3725 switch (index) { 3726 case MSR_IA32_MCG_EXT_CTL: 3727 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 3728 return false; 3729 default: 3730 break; 3731 } 3732 3733 return true; 3734 } 3735 3736 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 3737 { 3738 return 0; 3739 } 3740 3741 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 3742 { 3743 struct vcpu_svm *svm = to_svm(vcpu); 3744 struct kvm_cpuid_entry2 *best; 3745 3746 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3747 boot_cpu_has(X86_FEATURE_XSAVE) && 3748 boot_cpu_has(X86_FEATURE_XSAVES); 3749 3750 /* Update nrips enabled cache */ 3751 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 3752 guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS); 3753 3754 /* Check again if INVPCID interception if required */ 3755 svm_check_invpcid(svm); 3756 3757 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 3758 if (sev_guest(vcpu->kvm)) { 3759 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); 3760 if (best) 3761 vcpu->arch.cr3_lm_rsvd_bits &= ~(1UL << (best->ebx & 0x3f)); 3762 } 3763 3764 if (!kvm_vcpu_apicv_active(vcpu)) 3765 return; 3766 3767 /* 3768 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 3769 * is exposed to the guest, disable AVIC. 3770 */ 3771 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 3772 kvm_request_apicv_update(vcpu->kvm, false, 3773 APICV_INHIBIT_REASON_X2APIC); 3774 3775 /* 3776 * Currently, AVIC does not work with nested virtualization. 3777 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 3778 */ 3779 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 3780 kvm_request_apicv_update(vcpu->kvm, false, 3781 APICV_INHIBIT_REASON_NESTED); 3782 } 3783 3784 static bool svm_has_wbinvd_exit(void) 3785 { 3786 return true; 3787 } 3788 3789 #define PRE_EX(exit) { .exit_code = (exit), \ 3790 .stage = X86_ICPT_PRE_EXCEPT, } 3791 #define POST_EX(exit) { .exit_code = (exit), \ 3792 .stage = X86_ICPT_POST_EXCEPT, } 3793 #define POST_MEM(exit) { .exit_code = (exit), \ 3794 .stage = X86_ICPT_POST_MEMACCESS, } 3795 3796 static const struct __x86_intercept { 3797 u32 exit_code; 3798 enum x86_intercept_stage stage; 3799 } x86_intercept_map[] = { 3800 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 3801 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 3802 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 3803 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 3804 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 3805 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 3806 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 3807 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 3808 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 3809 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 3810 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 3811 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 3812 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 3813 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 3814 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 3815 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 3816 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 3817 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 3818 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 3819 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 3820 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 3821 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 3822 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 3823 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 3824 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 3825 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 3826 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 3827 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 3828 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 3829 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 3830 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 3831 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 3832 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 3833 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 3834 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 3835 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 3836 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 3837 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 3838 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 3839 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 3840 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 3841 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 3842 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 3843 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 3844 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 3845 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 3846 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 3847 }; 3848 3849 #undef PRE_EX 3850 #undef POST_EX 3851 #undef POST_MEM 3852 3853 static int svm_check_intercept(struct kvm_vcpu *vcpu, 3854 struct x86_instruction_info *info, 3855 enum x86_intercept_stage stage, 3856 struct x86_exception *exception) 3857 { 3858 struct vcpu_svm *svm = to_svm(vcpu); 3859 int vmexit, ret = X86EMUL_CONTINUE; 3860 struct __x86_intercept icpt_info; 3861 struct vmcb *vmcb = svm->vmcb; 3862 3863 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 3864 goto out; 3865 3866 icpt_info = x86_intercept_map[info->intercept]; 3867 3868 if (stage != icpt_info.stage) 3869 goto out; 3870 3871 switch (icpt_info.exit_code) { 3872 case SVM_EXIT_READ_CR0: 3873 if (info->intercept == x86_intercept_cr_read) 3874 icpt_info.exit_code += info->modrm_reg; 3875 break; 3876 case SVM_EXIT_WRITE_CR0: { 3877 unsigned long cr0, val; 3878 3879 if (info->intercept == x86_intercept_cr_write) 3880 icpt_info.exit_code += info->modrm_reg; 3881 3882 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 3883 info->intercept == x86_intercept_clts) 3884 break; 3885 3886 if (!(vmcb_is_intercept(&svm->nested.ctl, 3887 INTERCEPT_SELECTIVE_CR0))) 3888 break; 3889 3890 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 3891 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 3892 3893 if (info->intercept == x86_intercept_lmsw) { 3894 cr0 &= 0xfUL; 3895 val &= 0xfUL; 3896 /* lmsw can't clear PE - catch this here */ 3897 if (cr0 & X86_CR0_PE) 3898 val |= X86_CR0_PE; 3899 } 3900 3901 if (cr0 ^ val) 3902 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 3903 3904 break; 3905 } 3906 case SVM_EXIT_READ_DR0: 3907 case SVM_EXIT_WRITE_DR0: 3908 icpt_info.exit_code += info->modrm_reg; 3909 break; 3910 case SVM_EXIT_MSR: 3911 if (info->intercept == x86_intercept_wrmsr) 3912 vmcb->control.exit_info_1 = 1; 3913 else 3914 vmcb->control.exit_info_1 = 0; 3915 break; 3916 case SVM_EXIT_PAUSE: 3917 /* 3918 * We get this for NOP only, but pause 3919 * is rep not, check this here 3920 */ 3921 if (info->rep_prefix != REPE_PREFIX) 3922 goto out; 3923 break; 3924 case SVM_EXIT_IOIO: { 3925 u64 exit_info; 3926 u32 bytes; 3927 3928 if (info->intercept == x86_intercept_in || 3929 info->intercept == x86_intercept_ins) { 3930 exit_info = ((info->src_val & 0xffff) << 16) | 3931 SVM_IOIO_TYPE_MASK; 3932 bytes = info->dst_bytes; 3933 } else { 3934 exit_info = (info->dst_val & 0xffff) << 16; 3935 bytes = info->src_bytes; 3936 } 3937 3938 if (info->intercept == x86_intercept_outs || 3939 info->intercept == x86_intercept_ins) 3940 exit_info |= SVM_IOIO_STR_MASK; 3941 3942 if (info->rep_prefix) 3943 exit_info |= SVM_IOIO_REP_MASK; 3944 3945 bytes = min(bytes, 4u); 3946 3947 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 3948 3949 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 3950 3951 vmcb->control.exit_info_1 = exit_info; 3952 vmcb->control.exit_info_2 = info->next_rip; 3953 3954 break; 3955 } 3956 default: 3957 break; 3958 } 3959 3960 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 3961 if (static_cpu_has(X86_FEATURE_NRIPS)) 3962 vmcb->control.next_rip = info->next_rip; 3963 vmcb->control.exit_code = icpt_info.exit_code; 3964 vmexit = nested_svm_exit_handled(svm); 3965 3966 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 3967 : X86EMUL_CONTINUE; 3968 3969 out: 3970 return ret; 3971 } 3972 3973 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 3974 { 3975 } 3976 3977 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 3978 { 3979 if (!kvm_pause_in_guest(vcpu->kvm)) 3980 shrink_ple_window(vcpu); 3981 } 3982 3983 static void svm_setup_mce(struct kvm_vcpu *vcpu) 3984 { 3985 /* [63:9] are reserved. */ 3986 vcpu->arch.mcg_cap &= 0x1ff; 3987 } 3988 3989 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 3990 { 3991 struct vcpu_svm *svm = to_svm(vcpu); 3992 3993 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 3994 if (!gif_set(svm)) 3995 return true; 3996 3997 return is_smm(vcpu); 3998 } 3999 4000 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4001 { 4002 struct vcpu_svm *svm = to_svm(vcpu); 4003 if (svm->nested.nested_run_pending) 4004 return -EBUSY; 4005 4006 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4007 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4008 return -EBUSY; 4009 4010 return !svm_smi_blocked(vcpu); 4011 } 4012 4013 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4014 { 4015 struct vcpu_svm *svm = to_svm(vcpu); 4016 int ret; 4017 4018 if (is_guest_mode(vcpu)) { 4019 /* FED8h - SVM Guest */ 4020 put_smstate(u64, smstate, 0x7ed8, 1); 4021 /* FEE0h - SVM Guest VMCB Physical Address */ 4022 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4023 4024 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4025 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4026 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4027 4028 ret = nested_svm_vmexit(svm); 4029 if (ret) 4030 return ret; 4031 } 4032 return 0; 4033 } 4034 4035 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4036 { 4037 struct vcpu_svm *svm = to_svm(vcpu); 4038 struct kvm_host_map map; 4039 int ret = 0; 4040 4041 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) { 4042 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4043 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8); 4044 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4045 4046 if (guest) { 4047 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4048 return 1; 4049 4050 if (!(saved_efer & EFER_SVME)) 4051 return 1; 4052 4053 if (kvm_vcpu_map(&svm->vcpu, 4054 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4055 return 1; 4056 4057 if (svm_allocate_nested(svm)) 4058 return 1; 4059 4060 ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva); 4061 kvm_vcpu_unmap(&svm->vcpu, &map, true); 4062 } 4063 } 4064 4065 return ret; 4066 } 4067 4068 static void enable_smi_window(struct kvm_vcpu *vcpu) 4069 { 4070 struct vcpu_svm *svm = to_svm(vcpu); 4071 4072 if (!gif_set(svm)) { 4073 if (vgif_enabled(svm)) 4074 svm_set_intercept(svm, INTERCEPT_STGI); 4075 /* STGI will cause a vm exit */ 4076 } else { 4077 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4078 } 4079 } 4080 4081 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 4082 { 4083 bool smep, smap, is_user; 4084 unsigned long cr4; 4085 4086 /* 4087 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4088 * 4089 * Errata: 4090 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is 4091 * possible that CPU microcode implementing DecodeAssist will fail 4092 * to read bytes of instruction which caused #NPF. In this case, 4093 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly 4094 * return 0 instead of the correct guest instruction bytes. 4095 * 4096 * This happens because CPU microcode reading instruction bytes 4097 * uses a special opcode which attempts to read data using CPL=0 4098 * priviledges. The microcode reads CS:RIP and if it hits a SMAP 4099 * fault, it gives up and returns no instruction bytes. 4100 * 4101 * Detection: 4102 * We reach here in case CPU supports DecodeAssist, raised #NPF and 4103 * returned 0 in GuestIntrBytes field of the VMCB. 4104 * First, errata can only be triggered in case vCPU CR4.SMAP=1. 4105 * Second, if vCPU CR4.SMEP=1, errata could only be triggered 4106 * in case vCPU CPL==3 (Because otherwise guest would have triggered 4107 * a SMEP fault instead of #NPF). 4108 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. 4109 * As most guests enable SMAP if they have also enabled SMEP, use above 4110 * logic in order to attempt minimize false-positive of detecting errata 4111 * while still preserving all cases semantic correctness. 4112 * 4113 * Workaround: 4114 * To determine what instruction the guest was executing, the hypervisor 4115 * will have to decode the instruction at the instruction pointer. 4116 * 4117 * In non SEV guest, hypervisor will be able to read the guest 4118 * memory to decode the instruction pointer when insn_len is zero 4119 * so we return true to indicate that decoding is possible. 4120 * 4121 * But in the SEV guest, the guest memory is encrypted with the 4122 * guest specific key and hypervisor will not be able to decode the 4123 * instruction pointer so we will not able to workaround it. Lets 4124 * print the error and request to kill the guest. 4125 */ 4126 if (likely(!insn || insn_len)) 4127 return true; 4128 4129 /* 4130 * If RIP is invalid, go ahead with emulation which will cause an 4131 * internal error exit. 4132 */ 4133 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT)) 4134 return true; 4135 4136 cr4 = kvm_read_cr4(vcpu); 4137 smep = cr4 & X86_CR4_SMEP; 4138 smap = cr4 & X86_CR4_SMAP; 4139 is_user = svm_get_cpl(vcpu) == 3; 4140 if (smap && (!smep || is_user)) { 4141 if (!sev_guest(vcpu->kvm)) 4142 return true; 4143 4144 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4145 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4146 } 4147 4148 return false; 4149 } 4150 4151 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4152 { 4153 struct vcpu_svm *svm = to_svm(vcpu); 4154 4155 /* 4156 * TODO: Last condition latch INIT signals on vCPU when 4157 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4158 * To properly emulate the INIT intercept, 4159 * svm_check_nested_events() should call nested_svm_vmexit() 4160 * if an INIT signal is pending. 4161 */ 4162 return !gif_set(svm) || 4163 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); 4164 } 4165 4166 static void svm_vm_destroy(struct kvm *kvm) 4167 { 4168 avic_vm_destroy(kvm); 4169 sev_vm_destroy(kvm); 4170 } 4171 4172 static int svm_vm_init(struct kvm *kvm) 4173 { 4174 if (!pause_filter_count || !pause_filter_thresh) 4175 kvm->arch.pause_in_guest = true; 4176 4177 if (avic) { 4178 int ret = avic_vm_init(kvm); 4179 if (ret) 4180 return ret; 4181 } 4182 4183 kvm_apicv_init(kvm, avic); 4184 return 0; 4185 } 4186 4187 static struct kvm_x86_ops svm_x86_ops __initdata = { 4188 .hardware_unsetup = svm_hardware_teardown, 4189 .hardware_enable = svm_hardware_enable, 4190 .hardware_disable = svm_hardware_disable, 4191 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, 4192 .has_emulated_msr = svm_has_emulated_msr, 4193 4194 .vcpu_create = svm_create_vcpu, 4195 .vcpu_free = svm_free_vcpu, 4196 .vcpu_reset = svm_vcpu_reset, 4197 4198 .vm_size = sizeof(struct kvm_svm), 4199 .vm_init = svm_vm_init, 4200 .vm_destroy = svm_vm_destroy, 4201 4202 .prepare_guest_switch = svm_prepare_guest_switch, 4203 .vcpu_load = svm_vcpu_load, 4204 .vcpu_put = svm_vcpu_put, 4205 .vcpu_blocking = svm_vcpu_blocking, 4206 .vcpu_unblocking = svm_vcpu_unblocking, 4207 4208 .update_exception_bitmap = update_exception_bitmap, 4209 .get_msr_feature = svm_get_msr_feature, 4210 .get_msr = svm_get_msr, 4211 .set_msr = svm_set_msr, 4212 .get_segment_base = svm_get_segment_base, 4213 .get_segment = svm_get_segment, 4214 .set_segment = svm_set_segment, 4215 .get_cpl = svm_get_cpl, 4216 .get_cs_db_l_bits = kvm_get_cs_db_l_bits, 4217 .set_cr0 = svm_set_cr0, 4218 .set_cr4 = svm_set_cr4, 4219 .set_efer = svm_set_efer, 4220 .get_idt = svm_get_idt, 4221 .set_idt = svm_set_idt, 4222 .get_gdt = svm_get_gdt, 4223 .set_gdt = svm_set_gdt, 4224 .set_dr7 = svm_set_dr7, 4225 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4226 .cache_reg = svm_cache_reg, 4227 .get_rflags = svm_get_rflags, 4228 .set_rflags = svm_set_rflags, 4229 4230 .tlb_flush_all = svm_flush_tlb, 4231 .tlb_flush_current = svm_flush_tlb, 4232 .tlb_flush_gva = svm_flush_tlb_gva, 4233 .tlb_flush_guest = svm_flush_tlb, 4234 4235 .run = svm_vcpu_run, 4236 .handle_exit = handle_exit, 4237 .skip_emulated_instruction = skip_emulated_instruction, 4238 .update_emulated_instruction = NULL, 4239 .set_interrupt_shadow = svm_set_interrupt_shadow, 4240 .get_interrupt_shadow = svm_get_interrupt_shadow, 4241 .patch_hypercall = svm_patch_hypercall, 4242 .set_irq = svm_set_irq, 4243 .set_nmi = svm_inject_nmi, 4244 .queue_exception = svm_queue_exception, 4245 .cancel_injection = svm_cancel_injection, 4246 .interrupt_allowed = svm_interrupt_allowed, 4247 .nmi_allowed = svm_nmi_allowed, 4248 .get_nmi_mask = svm_get_nmi_mask, 4249 .set_nmi_mask = svm_set_nmi_mask, 4250 .enable_nmi_window = enable_nmi_window, 4251 .enable_irq_window = enable_irq_window, 4252 .update_cr8_intercept = update_cr8_intercept, 4253 .set_virtual_apic_mode = svm_set_virtual_apic_mode, 4254 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, 4255 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, 4256 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl, 4257 .load_eoi_exitmap = svm_load_eoi_exitmap, 4258 .hwapic_irr_update = svm_hwapic_irr_update, 4259 .hwapic_isr_update = svm_hwapic_isr_update, 4260 .sync_pir_to_irr = kvm_lapic_find_highest_irr, 4261 .apicv_post_state_restore = avic_post_state_restore, 4262 4263 .set_tss_addr = svm_set_tss_addr, 4264 .set_identity_map_addr = svm_set_identity_map_addr, 4265 .get_mt_mask = svm_get_mt_mask, 4266 4267 .get_exit_info = svm_get_exit_info, 4268 4269 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4270 4271 .has_wbinvd_exit = svm_has_wbinvd_exit, 4272 4273 .write_l1_tsc_offset = svm_write_l1_tsc_offset, 4274 4275 .load_mmu_pgd = svm_load_mmu_pgd, 4276 4277 .check_intercept = svm_check_intercept, 4278 .handle_exit_irqoff = svm_handle_exit_irqoff, 4279 4280 .request_immediate_exit = __kvm_request_immediate_exit, 4281 4282 .sched_in = svm_sched_in, 4283 4284 .pmu_ops = &amd_pmu_ops, 4285 .nested_ops = &svm_nested_ops, 4286 4287 .deliver_posted_interrupt = svm_deliver_avic_intr, 4288 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, 4289 .update_pi_irte = svm_update_pi_irte, 4290 .setup_mce = svm_setup_mce, 4291 4292 .smi_allowed = svm_smi_allowed, 4293 .pre_enter_smm = svm_pre_enter_smm, 4294 .pre_leave_smm = svm_pre_leave_smm, 4295 .enable_smi_window = enable_smi_window, 4296 4297 .mem_enc_op = svm_mem_enc_op, 4298 .mem_enc_reg_region = svm_register_enc_region, 4299 .mem_enc_unreg_region = svm_unregister_enc_region, 4300 4301 .can_emulate_instruction = svm_can_emulate_instruction, 4302 4303 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4304 4305 .msr_filter_changed = svm_msr_filter_changed, 4306 }; 4307 4308 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4309 .cpu_has_kvm_support = has_svm, 4310 .disabled_by_bios = is_disabled, 4311 .hardware_setup = svm_hardware_setup, 4312 .check_processor_compatibility = svm_check_processor_compat, 4313 4314 .runtime_ops = &svm_x86_ops, 4315 }; 4316 4317 static int __init svm_init(void) 4318 { 4319 __unused_size_checks(); 4320 4321 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4322 __alignof__(struct vcpu_svm), THIS_MODULE); 4323 } 4324 4325 static void __exit svm_exit(void) 4326 { 4327 kvm_exit(); 4328 } 4329 4330 module_init(svm_init) 4331 module_exit(svm_exit) 4332