xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision aa6159ab)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/mce.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 
40 #include <asm/virtext.h>
41 #include "trace.h"
42 
43 #include "svm.h"
44 
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49 
50 #ifdef MODULE
51 static const struct x86_cpu_id svm_cpu_id[] = {
52 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
53 	{}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56 #endif
57 
58 #define IOPM_ALLOC_ORDER 2
59 #define MSRPM_ALLOC_ORDER 1
60 
61 #define SEG_TYPE_LDT 2
62 #define SEG_TYPE_BUSY_TSS16 3
63 
64 #define SVM_FEATURE_LBRV           (1 <<  1)
65 #define SVM_FEATURE_SVML           (1 <<  2)
66 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
67 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
68 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
69 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
70 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
71 
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73 
74 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
75 #define TSC_RATIO_MIN		0x0000000000000001ULL
76 #define TSC_RATIO_MAX		0x000000ffffffffffULL
77 
78 static bool erratum_383_found __read_mostly;
79 
80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
81 
82 /*
83  * Set osvw_len to higher value when updated Revision Guides
84  * are published and we know what the new status bits are
85  */
86 static uint64_t osvw_len = 4, osvw_status;
87 
88 static DEFINE_PER_CPU(u64, current_tsc_ratio);
89 #define TSC_RATIO_DEFAULT	0x0100000000ULL
90 
91 static const struct svm_direct_access_msrs {
92 	u32 index;   /* Index of the MSR */
93 	bool always; /* True if intercept is always on */
94 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
95 	{ .index = MSR_STAR,				.always = true  },
96 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
97 #ifdef CONFIG_X86_64
98 	{ .index = MSR_GS_BASE,				.always = true  },
99 	{ .index = MSR_FS_BASE,				.always = true  },
100 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
101 	{ .index = MSR_LSTAR,				.always = true  },
102 	{ .index = MSR_CSTAR,				.always = true  },
103 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
104 #endif
105 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
106 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
107 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
108 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
109 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
110 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
111 	{ .index = MSR_INVALID,				.always = false },
112 };
113 
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 bool npt_enabled = true;
117 #else
118 bool npt_enabled;
119 #endif
120 
121 /*
122  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
123  * pause_filter_count: On processors that support Pause filtering(indicated
124  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
125  *	count value. On VMRUN this value is loaded into an internal counter.
126  *	Each time a pause instruction is executed, this counter is decremented
127  *	until it reaches zero at which time a #VMEXIT is generated if pause
128  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
129  *	Intercept Filtering for more details.
130  *	This also indicate if ple logic enabled.
131  *
132  * pause_filter_thresh: In addition, some processor families support advanced
133  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
134  *	the amount of time a guest is allowed to execute in a pause loop.
135  *	In this mode, a 16-bit pause filter threshold field is added in the
136  *	VMCB. The threshold value is a cycle count that is used to reset the
137  *	pause counter. As with simple pause filtering, VMRUN loads the pause
138  *	count value from VMCB into an internal counter. Then, on each pause
139  *	instruction the hardware checks the elapsed number of cycles since
140  *	the most recent pause instruction against the pause filter threshold.
141  *	If the elapsed cycle count is greater than the pause filter threshold,
142  *	then the internal pause count is reloaded from the VMCB and execution
143  *	continues. If the elapsed cycle count is less than the pause filter
144  *	threshold, then the internal pause count is decremented. If the count
145  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
146  *	triggered. If advanced pause filtering is supported and pause filter
147  *	threshold field is set to zero, the filter will operate in the simpler,
148  *	count only mode.
149  */
150 
151 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
152 module_param(pause_filter_thresh, ushort, 0444);
153 
154 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
155 module_param(pause_filter_count, ushort, 0444);
156 
157 /* Default doubles per-vcpu window every exit. */
158 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
159 module_param(pause_filter_count_grow, ushort, 0444);
160 
161 /* Default resets per-vcpu window every exit to pause_filter_count. */
162 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
163 module_param(pause_filter_count_shrink, ushort, 0444);
164 
165 /* Default is to compute the maximum so we can never overflow. */
166 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
167 module_param(pause_filter_count_max, ushort, 0444);
168 
169 /* allow nested paging (virtualized MMU) for all guests */
170 static int npt = true;
171 module_param(npt, int, S_IRUGO);
172 
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176 
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180 
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184 
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188 
189 /* enable/disable SEV support */
190 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
191 module_param(sev, int, 0444);
192 
193 static bool __read_mostly dump_invalid_vmcb = 0;
194 module_param(dump_invalid_vmcb, bool, 0644);
195 
196 static u8 rsm_ins_bytes[] = "\x0f\xaa";
197 
198 static void svm_complete_interrupts(struct vcpu_svm *svm);
199 
200 static unsigned long iopm_base;
201 
202 struct kvm_ldttss_desc {
203 	u16 limit0;
204 	u16 base0;
205 	unsigned base1:8, type:5, dpl:2, p:1;
206 	unsigned limit1:4, zero0:3, g:1, base2:8;
207 	u32 base3;
208 	u32 zero1;
209 } __attribute__((packed));
210 
211 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
212 
213 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
214 
215 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
216 #define MSRS_RANGE_SIZE 2048
217 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
218 
219 u32 svm_msrpm_offset(u32 msr)
220 {
221 	u32 offset;
222 	int i;
223 
224 	for (i = 0; i < NUM_MSR_MAPS; i++) {
225 		if (msr < msrpm_ranges[i] ||
226 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
227 			continue;
228 
229 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
230 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
231 
232 		/* Now we have the u8 offset - but need the u32 offset */
233 		return offset / 4;
234 	}
235 
236 	/* MSR not in any range */
237 	return MSR_INVALID;
238 }
239 
240 #define MAX_INST_SIZE 15
241 
242 static inline void clgi(void)
243 {
244 	asm volatile (__ex("clgi"));
245 }
246 
247 static inline void stgi(void)
248 {
249 	asm volatile (__ex("stgi"));
250 }
251 
252 static inline void invlpga(unsigned long addr, u32 asid)
253 {
254 	asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
255 }
256 
257 static int get_max_npt_level(void)
258 {
259 #ifdef CONFIG_X86_64
260 	return PT64_ROOT_4LEVEL;
261 #else
262 	return PT32E_ROOT_LEVEL;
263 #endif
264 }
265 
266 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
267 {
268 	struct vcpu_svm *svm = to_svm(vcpu);
269 	u64 old_efer = vcpu->arch.efer;
270 	vcpu->arch.efer = efer;
271 
272 	if (!npt_enabled) {
273 		/* Shadow paging assumes NX to be available.  */
274 		efer |= EFER_NX;
275 
276 		if (!(efer & EFER_LMA))
277 			efer &= ~EFER_LME;
278 	}
279 
280 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
281 		if (!(efer & EFER_SVME)) {
282 			svm_leave_nested(svm);
283 			svm_set_gif(svm, true);
284 
285 			/*
286 			 * Free the nested guest state, unless we are in SMM.
287 			 * In this case we will return to the nested guest
288 			 * as soon as we leave SMM.
289 			 */
290 			if (!is_smm(&svm->vcpu))
291 				svm_free_nested(svm);
292 
293 		} else {
294 			int ret = svm_allocate_nested(svm);
295 
296 			if (ret) {
297 				vcpu->arch.efer = old_efer;
298 				return ret;
299 			}
300 		}
301 	}
302 
303 	svm->vmcb->save.efer = efer | EFER_SVME;
304 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
305 	return 0;
306 }
307 
308 static int is_external_interrupt(u32 info)
309 {
310 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
311 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
312 }
313 
314 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
315 {
316 	struct vcpu_svm *svm = to_svm(vcpu);
317 	u32 ret = 0;
318 
319 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
320 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
321 	return ret;
322 }
323 
324 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
325 {
326 	struct vcpu_svm *svm = to_svm(vcpu);
327 
328 	if (mask == 0)
329 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
330 	else
331 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
332 
333 }
334 
335 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
336 {
337 	struct vcpu_svm *svm = to_svm(vcpu);
338 
339 	if (nrips && svm->vmcb->control.next_rip != 0) {
340 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
341 		svm->next_rip = svm->vmcb->control.next_rip;
342 	}
343 
344 	if (!svm->next_rip) {
345 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
346 			return 0;
347 	} else {
348 		kvm_rip_write(vcpu, svm->next_rip);
349 	}
350 	svm_set_interrupt_shadow(vcpu, 0);
351 
352 	return 1;
353 }
354 
355 static void svm_queue_exception(struct kvm_vcpu *vcpu)
356 {
357 	struct vcpu_svm *svm = to_svm(vcpu);
358 	unsigned nr = vcpu->arch.exception.nr;
359 	bool has_error_code = vcpu->arch.exception.has_error_code;
360 	u32 error_code = vcpu->arch.exception.error_code;
361 
362 	kvm_deliver_exception_payload(&svm->vcpu);
363 
364 	if (nr == BP_VECTOR && !nrips) {
365 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
366 
367 		/*
368 		 * For guest debugging where we have to reinject #BP if some
369 		 * INT3 is guest-owned:
370 		 * Emulate nRIP by moving RIP forward. Will fail if injection
371 		 * raises a fault that is not intercepted. Still better than
372 		 * failing in all cases.
373 		 */
374 		(void)skip_emulated_instruction(&svm->vcpu);
375 		rip = kvm_rip_read(&svm->vcpu);
376 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
377 		svm->int3_injected = rip - old_rip;
378 	}
379 
380 	svm->vmcb->control.event_inj = nr
381 		| SVM_EVTINJ_VALID
382 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
383 		| SVM_EVTINJ_TYPE_EXEPT;
384 	svm->vmcb->control.event_inj_err = error_code;
385 }
386 
387 static void svm_init_erratum_383(void)
388 {
389 	u32 low, high;
390 	int err;
391 	u64 val;
392 
393 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
394 		return;
395 
396 	/* Use _safe variants to not break nested virtualization */
397 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
398 	if (err)
399 		return;
400 
401 	val |= (1ULL << 47);
402 
403 	low  = lower_32_bits(val);
404 	high = upper_32_bits(val);
405 
406 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
407 
408 	erratum_383_found = true;
409 }
410 
411 static void svm_init_osvw(struct kvm_vcpu *vcpu)
412 {
413 	/*
414 	 * Guests should see errata 400 and 415 as fixed (assuming that
415 	 * HLT and IO instructions are intercepted).
416 	 */
417 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
418 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
419 
420 	/*
421 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
422 	 * all osvw.status bits inside that length, including bit 0 (which is
423 	 * reserved for erratum 298), are valid. However, if host processor's
424 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
425 	 * be conservative here and therefore we tell the guest that erratum 298
426 	 * is present (because we really don't know).
427 	 */
428 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
429 		vcpu->arch.osvw.status |= 1;
430 }
431 
432 static int has_svm(void)
433 {
434 	const char *msg;
435 
436 	if (!cpu_has_svm(&msg)) {
437 		printk(KERN_INFO "has_svm: %s\n", msg);
438 		return 0;
439 	}
440 
441 	return 1;
442 }
443 
444 static void svm_hardware_disable(void)
445 {
446 	/* Make sure we clean up behind us */
447 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
448 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
449 
450 	cpu_svm_disable();
451 
452 	amd_pmu_disable_virt();
453 }
454 
455 static int svm_hardware_enable(void)
456 {
457 
458 	struct svm_cpu_data *sd;
459 	uint64_t efer;
460 	struct desc_struct *gdt;
461 	int me = raw_smp_processor_id();
462 
463 	rdmsrl(MSR_EFER, efer);
464 	if (efer & EFER_SVME)
465 		return -EBUSY;
466 
467 	if (!has_svm()) {
468 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
469 		return -EINVAL;
470 	}
471 	sd = per_cpu(svm_data, me);
472 	if (!sd) {
473 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
474 		return -EINVAL;
475 	}
476 
477 	sd->asid_generation = 1;
478 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
479 	sd->next_asid = sd->max_asid + 1;
480 	sd->min_asid = max_sev_asid + 1;
481 
482 	gdt = get_current_gdt_rw();
483 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
484 
485 	wrmsrl(MSR_EFER, efer | EFER_SVME);
486 
487 	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
488 
489 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
490 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
491 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
492 	}
493 
494 
495 	/*
496 	 * Get OSVW bits.
497 	 *
498 	 * Note that it is possible to have a system with mixed processor
499 	 * revisions and therefore different OSVW bits. If bits are not the same
500 	 * on different processors then choose the worst case (i.e. if erratum
501 	 * is present on one processor and not on another then assume that the
502 	 * erratum is present everywhere).
503 	 */
504 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
505 		uint64_t len, status = 0;
506 		int err;
507 
508 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
509 		if (!err)
510 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
511 						      &err);
512 
513 		if (err)
514 			osvw_status = osvw_len = 0;
515 		else {
516 			if (len < osvw_len)
517 				osvw_len = len;
518 			osvw_status |= status;
519 			osvw_status &= (1ULL << osvw_len) - 1;
520 		}
521 	} else
522 		osvw_status = osvw_len = 0;
523 
524 	svm_init_erratum_383();
525 
526 	amd_pmu_enable_virt();
527 
528 	return 0;
529 }
530 
531 static void svm_cpu_uninit(int cpu)
532 {
533 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
534 
535 	if (!sd)
536 		return;
537 
538 	per_cpu(svm_data, cpu) = NULL;
539 	kfree(sd->sev_vmcbs);
540 	__free_page(sd->save_area);
541 	kfree(sd);
542 }
543 
544 static int svm_cpu_init(int cpu)
545 {
546 	struct svm_cpu_data *sd;
547 
548 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
549 	if (!sd)
550 		return -ENOMEM;
551 	sd->cpu = cpu;
552 	sd->save_area = alloc_page(GFP_KERNEL);
553 	if (!sd->save_area)
554 		goto free_cpu_data;
555 
556 	if (svm_sev_enabled()) {
557 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
558 					      sizeof(void *),
559 					      GFP_KERNEL);
560 		if (!sd->sev_vmcbs)
561 			goto free_save_area;
562 	}
563 
564 	per_cpu(svm_data, cpu) = sd;
565 
566 	return 0;
567 
568 free_save_area:
569 	__free_page(sd->save_area);
570 free_cpu_data:
571 	kfree(sd);
572 	return -ENOMEM;
573 
574 }
575 
576 static int direct_access_msr_slot(u32 msr)
577 {
578 	u32 i;
579 
580 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
581 		if (direct_access_msrs[i].index == msr)
582 			return i;
583 
584 	return -ENOENT;
585 }
586 
587 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
588 				     int write)
589 {
590 	struct vcpu_svm *svm = to_svm(vcpu);
591 	int slot = direct_access_msr_slot(msr);
592 
593 	if (slot == -ENOENT)
594 		return;
595 
596 	/* Set the shadow bitmaps to the desired intercept states */
597 	if (read)
598 		set_bit(slot, svm->shadow_msr_intercept.read);
599 	else
600 		clear_bit(slot, svm->shadow_msr_intercept.read);
601 
602 	if (write)
603 		set_bit(slot, svm->shadow_msr_intercept.write);
604 	else
605 		clear_bit(slot, svm->shadow_msr_intercept.write);
606 }
607 
608 static bool valid_msr_intercept(u32 index)
609 {
610 	return direct_access_msr_slot(index) != -ENOENT;
611 }
612 
613 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
614 {
615 	u8 bit_write;
616 	unsigned long tmp;
617 	u32 offset;
618 	u32 *msrpm;
619 
620 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
621 				      to_svm(vcpu)->msrpm;
622 
623 	offset    = svm_msrpm_offset(msr);
624 	bit_write = 2 * (msr & 0x0f) + 1;
625 	tmp       = msrpm[offset];
626 
627 	BUG_ON(offset == MSR_INVALID);
628 
629 	return !!test_bit(bit_write,  &tmp);
630 }
631 
632 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
633 					u32 msr, int read, int write)
634 {
635 	u8 bit_read, bit_write;
636 	unsigned long tmp;
637 	u32 offset;
638 
639 	/*
640 	 * If this warning triggers extend the direct_access_msrs list at the
641 	 * beginning of the file
642 	 */
643 	WARN_ON(!valid_msr_intercept(msr));
644 
645 	/* Enforce non allowed MSRs to trap */
646 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
647 		read = 0;
648 
649 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
650 		write = 0;
651 
652 	offset    = svm_msrpm_offset(msr);
653 	bit_read  = 2 * (msr & 0x0f);
654 	bit_write = 2 * (msr & 0x0f) + 1;
655 	tmp       = msrpm[offset];
656 
657 	BUG_ON(offset == MSR_INVALID);
658 
659 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
660 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
661 
662 	msrpm[offset] = tmp;
663 }
664 
665 static void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
666 				 int read, int write)
667 {
668 	set_shadow_msr_intercept(vcpu, msr, read, write);
669 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
670 }
671 
672 u32 *svm_vcpu_alloc_msrpm(void)
673 {
674 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
675 	u32 *msrpm;
676 
677 	if (!pages)
678 		return NULL;
679 
680 	msrpm = page_address(pages);
681 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
682 
683 	return msrpm;
684 }
685 
686 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
687 {
688 	int i;
689 
690 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
691 		if (!direct_access_msrs[i].always)
692 			continue;
693 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
694 	}
695 }
696 
697 
698 void svm_vcpu_free_msrpm(u32 *msrpm)
699 {
700 	__free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
701 }
702 
703 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
704 {
705 	struct vcpu_svm *svm = to_svm(vcpu);
706 	u32 i;
707 
708 	/*
709 	 * Set intercept permissions for all direct access MSRs again. They
710 	 * will automatically get filtered through the MSR filter, so we are
711 	 * back in sync after this.
712 	 */
713 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
714 		u32 msr = direct_access_msrs[i].index;
715 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
716 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
717 
718 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
719 	}
720 }
721 
722 static void add_msr_offset(u32 offset)
723 {
724 	int i;
725 
726 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
727 
728 		/* Offset already in list? */
729 		if (msrpm_offsets[i] == offset)
730 			return;
731 
732 		/* Slot used by another offset? */
733 		if (msrpm_offsets[i] != MSR_INVALID)
734 			continue;
735 
736 		/* Add offset to list */
737 		msrpm_offsets[i] = offset;
738 
739 		return;
740 	}
741 
742 	/*
743 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
744 	 * increase MSRPM_OFFSETS in this case.
745 	 */
746 	BUG();
747 }
748 
749 static void init_msrpm_offsets(void)
750 {
751 	int i;
752 
753 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
754 
755 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
756 		u32 offset;
757 
758 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
759 		BUG_ON(offset == MSR_INVALID);
760 
761 		add_msr_offset(offset);
762 	}
763 }
764 
765 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
766 {
767 	struct vcpu_svm *svm = to_svm(vcpu);
768 
769 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
770 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
771 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
772 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
773 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
774 }
775 
776 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
777 {
778 	struct vcpu_svm *svm = to_svm(vcpu);
779 
780 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
781 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
782 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
783 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
784 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
785 }
786 
787 void disable_nmi_singlestep(struct vcpu_svm *svm)
788 {
789 	svm->nmi_singlestep = false;
790 
791 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
792 		/* Clear our flags if they were not set by the guest */
793 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
794 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
795 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
796 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
797 	}
798 }
799 
800 static void grow_ple_window(struct kvm_vcpu *vcpu)
801 {
802 	struct vcpu_svm *svm = to_svm(vcpu);
803 	struct vmcb_control_area *control = &svm->vmcb->control;
804 	int old = control->pause_filter_count;
805 
806 	control->pause_filter_count = __grow_ple_window(old,
807 							pause_filter_count,
808 							pause_filter_count_grow,
809 							pause_filter_count_max);
810 
811 	if (control->pause_filter_count != old) {
812 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
813 		trace_kvm_ple_window_update(vcpu->vcpu_id,
814 					    control->pause_filter_count, old);
815 	}
816 }
817 
818 static void shrink_ple_window(struct kvm_vcpu *vcpu)
819 {
820 	struct vcpu_svm *svm = to_svm(vcpu);
821 	struct vmcb_control_area *control = &svm->vmcb->control;
822 	int old = control->pause_filter_count;
823 
824 	control->pause_filter_count =
825 				__shrink_ple_window(old,
826 						    pause_filter_count,
827 						    pause_filter_count_shrink,
828 						    pause_filter_count);
829 	if (control->pause_filter_count != old) {
830 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
831 		trace_kvm_ple_window_update(vcpu->vcpu_id,
832 					    control->pause_filter_count, old);
833 	}
834 }
835 
836 /*
837  * The default MMIO mask is a single bit (excluding the present bit),
838  * which could conflict with the memory encryption bit. Check for
839  * memory encryption support and override the default MMIO mask if
840  * memory encryption is enabled.
841  */
842 static __init void svm_adjust_mmio_mask(void)
843 {
844 	unsigned int enc_bit, mask_bit;
845 	u64 msr, mask;
846 
847 	/* If there is no memory encryption support, use existing mask */
848 	if (cpuid_eax(0x80000000) < 0x8000001f)
849 		return;
850 
851 	/* If memory encryption is not enabled, use existing mask */
852 	rdmsrl(MSR_K8_SYSCFG, msr);
853 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
854 		return;
855 
856 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
857 	mask_bit = boot_cpu_data.x86_phys_bits;
858 
859 	/* Increment the mask bit if it is the same as the encryption bit */
860 	if (enc_bit == mask_bit)
861 		mask_bit++;
862 
863 	/*
864 	 * If the mask bit location is below 52, then some bits above the
865 	 * physical addressing limit will always be reserved, so use the
866 	 * rsvd_bits() function to generate the mask. This mask, along with
867 	 * the present bit, will be used to generate a page fault with
868 	 * PFER.RSV = 1.
869 	 *
870 	 * If the mask bit location is 52 (or above), then clear the mask.
871 	 */
872 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
873 
874 	kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
875 }
876 
877 static void svm_hardware_teardown(void)
878 {
879 	int cpu;
880 
881 	if (svm_sev_enabled())
882 		sev_hardware_teardown();
883 
884 	for_each_possible_cpu(cpu)
885 		svm_cpu_uninit(cpu);
886 
887 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
888 	iopm_base = 0;
889 }
890 
891 static __init void svm_set_cpu_caps(void)
892 {
893 	kvm_set_cpu_caps();
894 
895 	supported_xss = 0;
896 
897 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
898 	if (nested) {
899 		kvm_cpu_cap_set(X86_FEATURE_SVM);
900 
901 		if (nrips)
902 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
903 
904 		if (npt_enabled)
905 			kvm_cpu_cap_set(X86_FEATURE_NPT);
906 	}
907 
908 	/* CPUID 0x80000008 */
909 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
910 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
911 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
912 
913 	/* Enable INVPCID feature */
914 	kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
915 }
916 
917 static __init int svm_hardware_setup(void)
918 {
919 	int cpu;
920 	struct page *iopm_pages;
921 	void *iopm_va;
922 	int r;
923 
924 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
925 
926 	if (!iopm_pages)
927 		return -ENOMEM;
928 
929 	iopm_va = page_address(iopm_pages);
930 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
931 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
932 
933 	init_msrpm_offsets();
934 
935 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
936 
937 	if (boot_cpu_has(X86_FEATURE_NX))
938 		kvm_enable_efer_bits(EFER_NX);
939 
940 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
941 		kvm_enable_efer_bits(EFER_FFXSR);
942 
943 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
944 		kvm_has_tsc_control = true;
945 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
946 		kvm_tsc_scaling_ratio_frac_bits = 32;
947 	}
948 
949 	/* Check for pause filtering support */
950 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
951 		pause_filter_count = 0;
952 		pause_filter_thresh = 0;
953 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
954 		pause_filter_thresh = 0;
955 	}
956 
957 	if (nested) {
958 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
959 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
960 	}
961 
962 	if (sev) {
963 		if (boot_cpu_has(X86_FEATURE_SEV) &&
964 		    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
965 			r = sev_hardware_setup();
966 			if (r)
967 				sev = false;
968 		} else {
969 			sev = false;
970 		}
971 	}
972 
973 	svm_adjust_mmio_mask();
974 
975 	for_each_possible_cpu(cpu) {
976 		r = svm_cpu_init(cpu);
977 		if (r)
978 			goto err;
979 	}
980 
981 	if (!boot_cpu_has(X86_FEATURE_NPT))
982 		npt_enabled = false;
983 
984 	if (npt_enabled && !npt)
985 		npt_enabled = false;
986 
987 	kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
988 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
989 
990 	if (nrips) {
991 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
992 			nrips = false;
993 	}
994 
995 	if (avic) {
996 		if (!npt_enabled ||
997 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
998 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
999 			avic = false;
1000 		} else {
1001 			pr_info("AVIC enabled\n");
1002 
1003 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1004 		}
1005 	}
1006 
1007 	if (vls) {
1008 		if (!npt_enabled ||
1009 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1010 		    !IS_ENABLED(CONFIG_X86_64)) {
1011 			vls = false;
1012 		} else {
1013 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1014 		}
1015 	}
1016 
1017 	if (vgif) {
1018 		if (!boot_cpu_has(X86_FEATURE_VGIF))
1019 			vgif = false;
1020 		else
1021 			pr_info("Virtual GIF supported\n");
1022 	}
1023 
1024 	svm_set_cpu_caps();
1025 
1026 	/*
1027 	 * It seems that on AMD processors PTE's accessed bit is
1028 	 * being set by the CPU hardware before the NPF vmexit.
1029 	 * This is not expected behaviour and our tests fail because
1030 	 * of it.
1031 	 * A workaround here is to disable support for
1032 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1033 	 * In this case userspace can know if there is support using
1034 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1035 	 * it
1036 	 * If future AMD CPU models change the behaviour described above,
1037 	 * this variable can be changed accordingly
1038 	 */
1039 	allow_smaller_maxphyaddr = !npt_enabled;
1040 
1041 	return 0;
1042 
1043 err:
1044 	svm_hardware_teardown();
1045 	return r;
1046 }
1047 
1048 static void init_seg(struct vmcb_seg *seg)
1049 {
1050 	seg->selector = 0;
1051 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1052 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1053 	seg->limit = 0xffff;
1054 	seg->base = 0;
1055 }
1056 
1057 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1058 {
1059 	seg->selector = 0;
1060 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1061 	seg->limit = 0xffff;
1062 	seg->base = 0;
1063 }
1064 
1065 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1066 {
1067 	struct vcpu_svm *svm = to_svm(vcpu);
1068 	u64 g_tsc_offset = 0;
1069 
1070 	if (is_guest_mode(vcpu)) {
1071 		/* Write L1's TSC offset.  */
1072 		g_tsc_offset = svm->vmcb->control.tsc_offset -
1073 			       svm->nested.hsave->control.tsc_offset;
1074 		svm->nested.hsave->control.tsc_offset = offset;
1075 	}
1076 
1077 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1078 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
1079 				   offset);
1080 
1081 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1082 
1083 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1084 	return svm->vmcb->control.tsc_offset;
1085 }
1086 
1087 static void svm_check_invpcid(struct vcpu_svm *svm)
1088 {
1089 	/*
1090 	 * Intercept INVPCID instruction only if shadow page table is
1091 	 * enabled. Interception is not required with nested page table
1092 	 * enabled.
1093 	 */
1094 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1095 		if (!npt_enabled)
1096 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1097 		else
1098 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1099 	}
1100 }
1101 
1102 static void init_vmcb(struct vcpu_svm *svm)
1103 {
1104 	struct vmcb_control_area *control = &svm->vmcb->control;
1105 	struct vmcb_save_area *save = &svm->vmcb->save;
1106 
1107 	svm->vcpu.arch.hflags = 0;
1108 
1109 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1110 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1111 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1112 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1113 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1114 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1115 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1116 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1117 
1118 	set_dr_intercepts(svm);
1119 
1120 	set_exception_intercept(svm, PF_VECTOR);
1121 	set_exception_intercept(svm, UD_VECTOR);
1122 	set_exception_intercept(svm, MC_VECTOR);
1123 	set_exception_intercept(svm, AC_VECTOR);
1124 	set_exception_intercept(svm, DB_VECTOR);
1125 	/*
1126 	 * Guest access to VMware backdoor ports could legitimately
1127 	 * trigger #GP because of TSS I/O permission bitmap.
1128 	 * We intercept those #GP and allow access to them anyway
1129 	 * as VMware does.
1130 	 */
1131 	if (enable_vmware_backdoor)
1132 		set_exception_intercept(svm, GP_VECTOR);
1133 
1134 	svm_set_intercept(svm, INTERCEPT_INTR);
1135 	svm_set_intercept(svm, INTERCEPT_NMI);
1136 	svm_set_intercept(svm, INTERCEPT_SMI);
1137 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1138 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1139 	svm_set_intercept(svm, INTERCEPT_CPUID);
1140 	svm_set_intercept(svm, INTERCEPT_INVD);
1141 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1142 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1143 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1144 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1145 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1146 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1147 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1148 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1149 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1150 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1151 	svm_set_intercept(svm, INTERCEPT_STGI);
1152 	svm_set_intercept(svm, INTERCEPT_CLGI);
1153 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1154 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1155 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1156 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1157 	svm_set_intercept(svm, INTERCEPT_RSM);
1158 
1159 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1160 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1161 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1162 	}
1163 
1164 	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1165 		svm_set_intercept(svm, INTERCEPT_HLT);
1166 
1167 	control->iopm_base_pa = __sme_set(iopm_base);
1168 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1169 	control->int_ctl = V_INTR_MASKING_MASK;
1170 
1171 	init_seg(&save->es);
1172 	init_seg(&save->ss);
1173 	init_seg(&save->ds);
1174 	init_seg(&save->fs);
1175 	init_seg(&save->gs);
1176 
1177 	save->cs.selector = 0xf000;
1178 	save->cs.base = 0xffff0000;
1179 	/* Executable/Readable Code Segment */
1180 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1181 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1182 	save->cs.limit = 0xffff;
1183 
1184 	save->gdtr.limit = 0xffff;
1185 	save->idtr.limit = 0xffff;
1186 
1187 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1188 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1189 
1190 	svm_set_efer(&svm->vcpu, 0);
1191 	save->dr6 = 0xffff0ff0;
1192 	kvm_set_rflags(&svm->vcpu, 2);
1193 	save->rip = 0x0000fff0;
1194 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1195 
1196 	/*
1197 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1198 	 * It also updates the guest-visible cr0 value.
1199 	 */
1200 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1201 	kvm_mmu_reset_context(&svm->vcpu);
1202 
1203 	save->cr4 = X86_CR4_PAE;
1204 	/* rdx = ?? */
1205 
1206 	if (npt_enabled) {
1207 		/* Setup VMCB for Nested Paging */
1208 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1209 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1210 		clr_exception_intercept(svm, PF_VECTOR);
1211 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1212 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1213 		save->g_pat = svm->vcpu.arch.pat;
1214 		save->cr3 = 0;
1215 		save->cr4 = 0;
1216 	}
1217 	svm->asid_generation = 0;
1218 
1219 	svm->nested.vmcb12_gpa = 0;
1220 	svm->vcpu.arch.hflags = 0;
1221 
1222 	if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1223 		control->pause_filter_count = pause_filter_count;
1224 		if (pause_filter_thresh)
1225 			control->pause_filter_thresh = pause_filter_thresh;
1226 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1227 	} else {
1228 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1229 	}
1230 
1231 	svm_check_invpcid(svm);
1232 
1233 	if (kvm_vcpu_apicv_active(&svm->vcpu))
1234 		avic_init_vmcb(svm);
1235 
1236 	/*
1237 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1238 	 * in VMCB and clear intercepts to avoid #VMEXIT.
1239 	 */
1240 	if (vls) {
1241 		svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1242 		svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1243 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1244 	}
1245 
1246 	if (vgif) {
1247 		svm_clr_intercept(svm, INTERCEPT_STGI);
1248 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1249 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1250 	}
1251 
1252 	if (sev_guest(svm->vcpu.kvm)) {
1253 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1254 		clr_exception_intercept(svm, UD_VECTOR);
1255 	}
1256 
1257 	vmcb_mark_all_dirty(svm->vmcb);
1258 
1259 	enable_gif(svm);
1260 
1261 }
1262 
1263 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1264 {
1265 	struct vcpu_svm *svm = to_svm(vcpu);
1266 	u32 dummy;
1267 	u32 eax = 1;
1268 
1269 	svm->spec_ctrl = 0;
1270 	svm->virt_spec_ctrl = 0;
1271 
1272 	if (!init_event) {
1273 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1274 					   MSR_IA32_APICBASE_ENABLE;
1275 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1276 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1277 	}
1278 	init_vmcb(svm);
1279 
1280 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1281 	kvm_rdx_write(vcpu, eax);
1282 
1283 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1284 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1285 }
1286 
1287 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1288 {
1289 	struct vcpu_svm *svm;
1290 	struct page *vmcb_page;
1291 	int err;
1292 
1293 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1294 	svm = to_svm(vcpu);
1295 
1296 	err = -ENOMEM;
1297 	vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1298 	if (!vmcb_page)
1299 		goto out;
1300 
1301 	err = avic_init_vcpu(svm);
1302 	if (err)
1303 		goto error_free_vmcb_page;
1304 
1305 	/* We initialize this flag to true to make sure that the is_running
1306 	 * bit would be set the first time the vcpu is loaded.
1307 	 */
1308 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1309 		svm->avic_is_running = true;
1310 
1311 	svm->msrpm = svm_vcpu_alloc_msrpm();
1312 	if (!svm->msrpm) {
1313 		err = -ENOMEM;
1314 		goto error_free_vmcb_page;
1315 	}
1316 
1317 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1318 
1319 	svm->vmcb = page_address(vmcb_page);
1320 	svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
1321 	svm->asid_generation = 0;
1322 	init_vmcb(svm);
1323 
1324 	svm_init_osvw(vcpu);
1325 	vcpu->arch.microcode_version = 0x01000065;
1326 
1327 	return 0;
1328 
1329 error_free_vmcb_page:
1330 	__free_page(vmcb_page);
1331 out:
1332 	return err;
1333 }
1334 
1335 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1336 {
1337 	int i;
1338 
1339 	for_each_online_cpu(i)
1340 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1341 }
1342 
1343 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1344 {
1345 	struct vcpu_svm *svm = to_svm(vcpu);
1346 
1347 	/*
1348 	 * The vmcb page can be recycled, causing a false negative in
1349 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1350 	 * vmcb page recorded as its current vmcb.
1351 	 */
1352 	svm_clear_current_vmcb(svm->vmcb);
1353 
1354 	svm_free_nested(svm);
1355 
1356 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1357 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1358 }
1359 
1360 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1361 {
1362 	struct vcpu_svm *svm = to_svm(vcpu);
1363 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1364 	int i;
1365 
1366 	if (unlikely(cpu != vcpu->cpu)) {
1367 		svm->asid_generation = 0;
1368 		vmcb_mark_all_dirty(svm->vmcb);
1369 	}
1370 
1371 #ifdef CONFIG_X86_64
1372 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1373 #endif
1374 	savesegment(fs, svm->host.fs);
1375 	savesegment(gs, svm->host.gs);
1376 	svm->host.ldt = kvm_read_ldt();
1377 
1378 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1379 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1380 
1381 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1382 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1383 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1384 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1385 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1386 		}
1387 	}
1388 	/* This assumes that the kernel never uses MSR_TSC_AUX */
1389 	if (static_cpu_has(X86_FEATURE_RDTSCP))
1390 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1391 
1392 	if (sd->current_vmcb != svm->vmcb) {
1393 		sd->current_vmcb = svm->vmcb;
1394 		indirect_branch_prediction_barrier();
1395 	}
1396 	avic_vcpu_load(vcpu, cpu);
1397 }
1398 
1399 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1400 {
1401 	struct vcpu_svm *svm = to_svm(vcpu);
1402 	int i;
1403 
1404 	avic_vcpu_put(vcpu);
1405 
1406 	++vcpu->stat.host_state_reload;
1407 	kvm_load_ldt(svm->host.ldt);
1408 #ifdef CONFIG_X86_64
1409 	loadsegment(fs, svm->host.fs);
1410 	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1411 	load_gs_index(svm->host.gs);
1412 #else
1413 #ifdef CONFIG_X86_32_LAZY_GS
1414 	loadsegment(gs, svm->host.gs);
1415 #endif
1416 #endif
1417 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1418 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1419 }
1420 
1421 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1422 {
1423 	struct vcpu_svm *svm = to_svm(vcpu);
1424 	unsigned long rflags = svm->vmcb->save.rflags;
1425 
1426 	if (svm->nmi_singlestep) {
1427 		/* Hide our flags if they were not set by the guest */
1428 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1429 			rflags &= ~X86_EFLAGS_TF;
1430 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1431 			rflags &= ~X86_EFLAGS_RF;
1432 	}
1433 	return rflags;
1434 }
1435 
1436 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1437 {
1438 	if (to_svm(vcpu)->nmi_singlestep)
1439 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1440 
1441        /*
1442         * Any change of EFLAGS.VM is accompanied by a reload of SS
1443         * (caused by either a task switch or an inter-privilege IRET),
1444         * so we do not need to update the CPL here.
1445         */
1446 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1447 }
1448 
1449 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1450 {
1451 	switch (reg) {
1452 	case VCPU_EXREG_PDPTR:
1453 		BUG_ON(!npt_enabled);
1454 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1455 		break;
1456 	default:
1457 		WARN_ON_ONCE(1);
1458 	}
1459 }
1460 
1461 static void svm_set_vintr(struct vcpu_svm *svm)
1462 {
1463 	struct vmcb_control_area *control;
1464 
1465 	/* The following fields are ignored when AVIC is enabled */
1466 	WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1467 	svm_set_intercept(svm, INTERCEPT_VINTR);
1468 
1469 	/*
1470 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1471 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1472 	 */
1473 	control = &svm->vmcb->control;
1474 	control->int_vector = 0x0;
1475 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1476 	control->int_ctl |= V_IRQ_MASK |
1477 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1478 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1479 }
1480 
1481 static void svm_clear_vintr(struct vcpu_svm *svm)
1482 {
1483 	const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1484 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1485 
1486 	/* Drop int_ctl fields related to VINTR injection.  */
1487 	svm->vmcb->control.int_ctl &= mask;
1488 	if (is_guest_mode(&svm->vcpu)) {
1489 		svm->nested.hsave->control.int_ctl &= mask;
1490 
1491 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1492 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1493 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1494 	}
1495 
1496 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1497 }
1498 
1499 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1500 {
1501 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1502 
1503 	switch (seg) {
1504 	case VCPU_SREG_CS: return &save->cs;
1505 	case VCPU_SREG_DS: return &save->ds;
1506 	case VCPU_SREG_ES: return &save->es;
1507 	case VCPU_SREG_FS: return &save->fs;
1508 	case VCPU_SREG_GS: return &save->gs;
1509 	case VCPU_SREG_SS: return &save->ss;
1510 	case VCPU_SREG_TR: return &save->tr;
1511 	case VCPU_SREG_LDTR: return &save->ldtr;
1512 	}
1513 	BUG();
1514 	return NULL;
1515 }
1516 
1517 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1518 {
1519 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1520 
1521 	return s->base;
1522 }
1523 
1524 static void svm_get_segment(struct kvm_vcpu *vcpu,
1525 			    struct kvm_segment *var, int seg)
1526 {
1527 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1528 
1529 	var->base = s->base;
1530 	var->limit = s->limit;
1531 	var->selector = s->selector;
1532 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1533 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1534 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1535 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1536 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1537 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1538 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1539 
1540 	/*
1541 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1542 	 * However, the SVM spec states that the G bit is not observed by the
1543 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1544 	 * So let's synthesize a legal G bit for all segments, this helps
1545 	 * running KVM nested. It also helps cross-vendor migration, because
1546 	 * Intel's vmentry has a check on the 'G' bit.
1547 	 */
1548 	var->g = s->limit > 0xfffff;
1549 
1550 	/*
1551 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1552 	 * for cross vendor migration purposes by "not present"
1553 	 */
1554 	var->unusable = !var->present;
1555 
1556 	switch (seg) {
1557 	case VCPU_SREG_TR:
1558 		/*
1559 		 * Work around a bug where the busy flag in the tr selector
1560 		 * isn't exposed
1561 		 */
1562 		var->type |= 0x2;
1563 		break;
1564 	case VCPU_SREG_DS:
1565 	case VCPU_SREG_ES:
1566 	case VCPU_SREG_FS:
1567 	case VCPU_SREG_GS:
1568 		/*
1569 		 * The accessed bit must always be set in the segment
1570 		 * descriptor cache, although it can be cleared in the
1571 		 * descriptor, the cached bit always remains at 1. Since
1572 		 * Intel has a check on this, set it here to support
1573 		 * cross-vendor migration.
1574 		 */
1575 		if (!var->unusable)
1576 			var->type |= 0x1;
1577 		break;
1578 	case VCPU_SREG_SS:
1579 		/*
1580 		 * On AMD CPUs sometimes the DB bit in the segment
1581 		 * descriptor is left as 1, although the whole segment has
1582 		 * been made unusable. Clear it here to pass an Intel VMX
1583 		 * entry check when cross vendor migrating.
1584 		 */
1585 		if (var->unusable)
1586 			var->db = 0;
1587 		/* This is symmetric with svm_set_segment() */
1588 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1589 		break;
1590 	}
1591 }
1592 
1593 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1594 {
1595 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1596 
1597 	return save->cpl;
1598 }
1599 
1600 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1601 {
1602 	struct vcpu_svm *svm = to_svm(vcpu);
1603 
1604 	dt->size = svm->vmcb->save.idtr.limit;
1605 	dt->address = svm->vmcb->save.idtr.base;
1606 }
1607 
1608 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1609 {
1610 	struct vcpu_svm *svm = to_svm(vcpu);
1611 
1612 	svm->vmcb->save.idtr.limit = dt->size;
1613 	svm->vmcb->save.idtr.base = dt->address ;
1614 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1615 }
1616 
1617 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1618 {
1619 	struct vcpu_svm *svm = to_svm(vcpu);
1620 
1621 	dt->size = svm->vmcb->save.gdtr.limit;
1622 	dt->address = svm->vmcb->save.gdtr.base;
1623 }
1624 
1625 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1626 {
1627 	struct vcpu_svm *svm = to_svm(vcpu);
1628 
1629 	svm->vmcb->save.gdtr.limit = dt->size;
1630 	svm->vmcb->save.gdtr.base = dt->address ;
1631 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1632 }
1633 
1634 static void update_cr0_intercept(struct vcpu_svm *svm)
1635 {
1636 	ulong gcr0 = svm->vcpu.arch.cr0;
1637 	u64 *hcr0 = &svm->vmcb->save.cr0;
1638 
1639 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1640 		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1641 
1642 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1643 
1644 	if (gcr0 == *hcr0) {
1645 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1646 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1647 	} else {
1648 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1649 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1650 	}
1651 }
1652 
1653 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1654 {
1655 	struct vcpu_svm *svm = to_svm(vcpu);
1656 
1657 #ifdef CONFIG_X86_64
1658 	if (vcpu->arch.efer & EFER_LME) {
1659 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1660 			vcpu->arch.efer |= EFER_LMA;
1661 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1662 		}
1663 
1664 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1665 			vcpu->arch.efer &= ~EFER_LMA;
1666 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1667 		}
1668 	}
1669 #endif
1670 	vcpu->arch.cr0 = cr0;
1671 
1672 	if (!npt_enabled)
1673 		cr0 |= X86_CR0_PG | X86_CR0_WP;
1674 
1675 	/*
1676 	 * re-enable caching here because the QEMU bios
1677 	 * does not do it - this results in some delay at
1678 	 * reboot
1679 	 */
1680 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1681 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1682 	svm->vmcb->save.cr0 = cr0;
1683 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1684 	update_cr0_intercept(svm);
1685 }
1686 
1687 int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1688 {
1689 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1690 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1691 
1692 	if (cr4 & X86_CR4_VMXE)
1693 		return 1;
1694 
1695 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1696 		svm_flush_tlb(vcpu);
1697 
1698 	vcpu->arch.cr4 = cr4;
1699 	if (!npt_enabled)
1700 		cr4 |= X86_CR4_PAE;
1701 	cr4 |= host_cr4_mce;
1702 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1703 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1704 	return 0;
1705 }
1706 
1707 static void svm_set_segment(struct kvm_vcpu *vcpu,
1708 			    struct kvm_segment *var, int seg)
1709 {
1710 	struct vcpu_svm *svm = to_svm(vcpu);
1711 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1712 
1713 	s->base = var->base;
1714 	s->limit = var->limit;
1715 	s->selector = var->selector;
1716 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1717 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1718 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1719 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1720 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1721 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1722 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1723 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1724 
1725 	/*
1726 	 * This is always accurate, except if SYSRET returned to a segment
1727 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1728 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1729 	 * would entail passing the CPL to userspace and back.
1730 	 */
1731 	if (seg == VCPU_SREG_SS)
1732 		/* This is symmetric with svm_get_segment() */
1733 		svm->vmcb->save.cpl = (var->dpl & 3);
1734 
1735 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1736 }
1737 
1738 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1739 {
1740 	struct vcpu_svm *svm = to_svm(vcpu);
1741 
1742 	clr_exception_intercept(svm, BP_VECTOR);
1743 
1744 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1745 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1746 			set_exception_intercept(svm, BP_VECTOR);
1747 	}
1748 }
1749 
1750 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1751 {
1752 	if (sd->next_asid > sd->max_asid) {
1753 		++sd->asid_generation;
1754 		sd->next_asid = sd->min_asid;
1755 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1756 	}
1757 
1758 	svm->asid_generation = sd->asid_generation;
1759 	svm->vmcb->control.asid = sd->next_asid++;
1760 
1761 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1762 }
1763 
1764 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1765 {
1766 	struct vmcb *vmcb = svm->vmcb;
1767 
1768 	if (unlikely(value != vmcb->save.dr6)) {
1769 		vmcb->save.dr6 = value;
1770 		vmcb_mark_dirty(vmcb, VMCB_DR);
1771 	}
1772 }
1773 
1774 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1775 {
1776 	struct vcpu_svm *svm = to_svm(vcpu);
1777 
1778 	get_debugreg(vcpu->arch.db[0], 0);
1779 	get_debugreg(vcpu->arch.db[1], 1);
1780 	get_debugreg(vcpu->arch.db[2], 2);
1781 	get_debugreg(vcpu->arch.db[3], 3);
1782 	/*
1783 	 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1784 	 * because db_interception might need it.  We can do it before vmentry.
1785 	 */
1786 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1787 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1788 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1789 	set_dr_intercepts(svm);
1790 }
1791 
1792 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1793 {
1794 	struct vcpu_svm *svm = to_svm(vcpu);
1795 
1796 	svm->vmcb->save.dr7 = value;
1797 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1798 }
1799 
1800 static int pf_interception(struct vcpu_svm *svm)
1801 {
1802 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1803 	u64 error_code = svm->vmcb->control.exit_info_1;
1804 
1805 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1806 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1807 			svm->vmcb->control.insn_bytes : NULL,
1808 			svm->vmcb->control.insn_len);
1809 }
1810 
1811 static int npf_interception(struct vcpu_svm *svm)
1812 {
1813 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1814 	u64 error_code = svm->vmcb->control.exit_info_1;
1815 
1816 	trace_kvm_page_fault(fault_address, error_code);
1817 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1818 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1819 			svm->vmcb->control.insn_bytes : NULL,
1820 			svm->vmcb->control.insn_len);
1821 }
1822 
1823 static int db_interception(struct vcpu_svm *svm)
1824 {
1825 	struct kvm_run *kvm_run = svm->vcpu.run;
1826 	struct kvm_vcpu *vcpu = &svm->vcpu;
1827 
1828 	if (!(svm->vcpu.guest_debug &
1829 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1830 		!svm->nmi_singlestep) {
1831 		u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1832 		kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1833 		return 1;
1834 	}
1835 
1836 	if (svm->nmi_singlestep) {
1837 		disable_nmi_singlestep(svm);
1838 		/* Make sure we check for pending NMIs upon entry */
1839 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1840 	}
1841 
1842 	if (svm->vcpu.guest_debug &
1843 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1844 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1845 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1846 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1847 		kvm_run->debug.arch.pc =
1848 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1849 		kvm_run->debug.arch.exception = DB_VECTOR;
1850 		return 0;
1851 	}
1852 
1853 	return 1;
1854 }
1855 
1856 static int bp_interception(struct vcpu_svm *svm)
1857 {
1858 	struct kvm_run *kvm_run = svm->vcpu.run;
1859 
1860 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1861 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1862 	kvm_run->debug.arch.exception = BP_VECTOR;
1863 	return 0;
1864 }
1865 
1866 static int ud_interception(struct vcpu_svm *svm)
1867 {
1868 	return handle_ud(&svm->vcpu);
1869 }
1870 
1871 static int ac_interception(struct vcpu_svm *svm)
1872 {
1873 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1874 	return 1;
1875 }
1876 
1877 static int gp_interception(struct vcpu_svm *svm)
1878 {
1879 	struct kvm_vcpu *vcpu = &svm->vcpu;
1880 	u32 error_code = svm->vmcb->control.exit_info_1;
1881 
1882 	WARN_ON_ONCE(!enable_vmware_backdoor);
1883 
1884 	/*
1885 	 * VMware backdoor emulation on #GP interception only handles IN{S},
1886 	 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1887 	 */
1888 	if (error_code) {
1889 		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1890 		return 1;
1891 	}
1892 	return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1893 }
1894 
1895 static bool is_erratum_383(void)
1896 {
1897 	int err, i;
1898 	u64 value;
1899 
1900 	if (!erratum_383_found)
1901 		return false;
1902 
1903 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1904 	if (err)
1905 		return false;
1906 
1907 	/* Bit 62 may or may not be set for this mce */
1908 	value &= ~(1ULL << 62);
1909 
1910 	if (value != 0xb600000000010015ULL)
1911 		return false;
1912 
1913 	/* Clear MCi_STATUS registers */
1914 	for (i = 0; i < 6; ++i)
1915 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1916 
1917 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1918 	if (!err) {
1919 		u32 low, high;
1920 
1921 		value &= ~(1ULL << 2);
1922 		low    = lower_32_bits(value);
1923 		high   = upper_32_bits(value);
1924 
1925 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1926 	}
1927 
1928 	/* Flush tlb to evict multi-match entries */
1929 	__flush_tlb_all();
1930 
1931 	return true;
1932 }
1933 
1934 /*
1935  * Trigger machine check on the host. We assume all the MSRs are already set up
1936  * by the CPU and that we still run on the same CPU as the MCE occurred on.
1937  * We pass a fake environment to the machine check handler because we want
1938  * the guest to be always treated like user space, no matter what context
1939  * it used internally.
1940  */
1941 static void kvm_machine_check(void)
1942 {
1943 #if defined(CONFIG_X86_MCE)
1944 	struct pt_regs regs = {
1945 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
1946 		.flags = X86_EFLAGS_IF,
1947 	};
1948 
1949 	do_machine_check(&regs);
1950 #endif
1951 }
1952 
1953 static void svm_handle_mce(struct vcpu_svm *svm)
1954 {
1955 	if (is_erratum_383()) {
1956 		/*
1957 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1958 		 * guest.
1959 		 */
1960 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
1961 
1962 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1963 
1964 		return;
1965 	}
1966 
1967 	/*
1968 	 * On an #MC intercept the MCE handler is not called automatically in
1969 	 * the host. So do it by hand here.
1970 	 */
1971 	kvm_machine_check();
1972 }
1973 
1974 static int mc_interception(struct vcpu_svm *svm)
1975 {
1976 	return 1;
1977 }
1978 
1979 static int shutdown_interception(struct vcpu_svm *svm)
1980 {
1981 	struct kvm_run *kvm_run = svm->vcpu.run;
1982 
1983 	/*
1984 	 * VMCB is undefined after a SHUTDOWN intercept
1985 	 * so reinitialize it.
1986 	 */
1987 	clear_page(svm->vmcb);
1988 	init_vmcb(svm);
1989 
1990 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1991 	return 0;
1992 }
1993 
1994 static int io_interception(struct vcpu_svm *svm)
1995 {
1996 	struct kvm_vcpu *vcpu = &svm->vcpu;
1997 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1998 	int size, in, string;
1999 	unsigned port;
2000 
2001 	++svm->vcpu.stat.io_exits;
2002 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2003 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2004 	if (string)
2005 		return kvm_emulate_instruction(vcpu, 0);
2006 
2007 	port = io_info >> 16;
2008 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2009 	svm->next_rip = svm->vmcb->control.exit_info_2;
2010 
2011 	return kvm_fast_pio(&svm->vcpu, size, port, in);
2012 }
2013 
2014 static int nmi_interception(struct vcpu_svm *svm)
2015 {
2016 	return 1;
2017 }
2018 
2019 static int intr_interception(struct vcpu_svm *svm)
2020 {
2021 	++svm->vcpu.stat.irq_exits;
2022 	return 1;
2023 }
2024 
2025 static int nop_on_interception(struct vcpu_svm *svm)
2026 {
2027 	return 1;
2028 }
2029 
2030 static int halt_interception(struct vcpu_svm *svm)
2031 {
2032 	return kvm_emulate_halt(&svm->vcpu);
2033 }
2034 
2035 static int vmmcall_interception(struct vcpu_svm *svm)
2036 {
2037 	return kvm_emulate_hypercall(&svm->vcpu);
2038 }
2039 
2040 static int vmload_interception(struct vcpu_svm *svm)
2041 {
2042 	struct vmcb *nested_vmcb;
2043 	struct kvm_host_map map;
2044 	int ret;
2045 
2046 	if (nested_svm_check_permissions(svm))
2047 		return 1;
2048 
2049 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2050 	if (ret) {
2051 		if (ret == -EINVAL)
2052 			kvm_inject_gp(&svm->vcpu, 0);
2053 		return 1;
2054 	}
2055 
2056 	nested_vmcb = map.hva;
2057 
2058 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2059 
2060 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2061 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2062 
2063 	return ret;
2064 }
2065 
2066 static int vmsave_interception(struct vcpu_svm *svm)
2067 {
2068 	struct vmcb *nested_vmcb;
2069 	struct kvm_host_map map;
2070 	int ret;
2071 
2072 	if (nested_svm_check_permissions(svm))
2073 		return 1;
2074 
2075 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2076 	if (ret) {
2077 		if (ret == -EINVAL)
2078 			kvm_inject_gp(&svm->vcpu, 0);
2079 		return 1;
2080 	}
2081 
2082 	nested_vmcb = map.hva;
2083 
2084 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2085 
2086 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2087 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2088 
2089 	return ret;
2090 }
2091 
2092 static int vmrun_interception(struct vcpu_svm *svm)
2093 {
2094 	if (nested_svm_check_permissions(svm))
2095 		return 1;
2096 
2097 	return nested_svm_vmrun(svm);
2098 }
2099 
2100 void svm_set_gif(struct vcpu_svm *svm, bool value)
2101 {
2102 	if (value) {
2103 		/*
2104 		 * If VGIF is enabled, the STGI intercept is only added to
2105 		 * detect the opening of the SMI/NMI window; remove it now.
2106 		 * Likewise, clear the VINTR intercept, we will set it
2107 		 * again while processing KVM_REQ_EVENT if needed.
2108 		 */
2109 		if (vgif_enabled(svm))
2110 			svm_clr_intercept(svm, INTERCEPT_STGI);
2111 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2112 			svm_clear_vintr(svm);
2113 
2114 		enable_gif(svm);
2115 		if (svm->vcpu.arch.smi_pending ||
2116 		    svm->vcpu.arch.nmi_pending ||
2117 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2118 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2119 	} else {
2120 		disable_gif(svm);
2121 
2122 		/*
2123 		 * After a CLGI no interrupts should come.  But if vGIF is
2124 		 * in use, we still rely on the VINTR intercept (rather than
2125 		 * STGI) to detect an open interrupt window.
2126 		*/
2127 		if (!vgif_enabled(svm))
2128 			svm_clear_vintr(svm);
2129 	}
2130 }
2131 
2132 static int stgi_interception(struct vcpu_svm *svm)
2133 {
2134 	int ret;
2135 
2136 	if (nested_svm_check_permissions(svm))
2137 		return 1;
2138 
2139 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2140 	svm_set_gif(svm, true);
2141 	return ret;
2142 }
2143 
2144 static int clgi_interception(struct vcpu_svm *svm)
2145 {
2146 	int ret;
2147 
2148 	if (nested_svm_check_permissions(svm))
2149 		return 1;
2150 
2151 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2152 	svm_set_gif(svm, false);
2153 	return ret;
2154 }
2155 
2156 static int invlpga_interception(struct vcpu_svm *svm)
2157 {
2158 	struct kvm_vcpu *vcpu = &svm->vcpu;
2159 
2160 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2161 			  kvm_rax_read(&svm->vcpu));
2162 
2163 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2164 	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2165 
2166 	return kvm_skip_emulated_instruction(&svm->vcpu);
2167 }
2168 
2169 static int skinit_interception(struct vcpu_svm *svm)
2170 {
2171 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2172 
2173 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2174 	return 1;
2175 }
2176 
2177 static int wbinvd_interception(struct vcpu_svm *svm)
2178 {
2179 	return kvm_emulate_wbinvd(&svm->vcpu);
2180 }
2181 
2182 static int xsetbv_interception(struct vcpu_svm *svm)
2183 {
2184 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2185 	u32 index = kvm_rcx_read(&svm->vcpu);
2186 
2187 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2188 		return kvm_skip_emulated_instruction(&svm->vcpu);
2189 	}
2190 
2191 	return 1;
2192 }
2193 
2194 static int rdpru_interception(struct vcpu_svm *svm)
2195 {
2196 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2197 	return 1;
2198 }
2199 
2200 static int task_switch_interception(struct vcpu_svm *svm)
2201 {
2202 	u16 tss_selector;
2203 	int reason;
2204 	int int_type = svm->vmcb->control.exit_int_info &
2205 		SVM_EXITINTINFO_TYPE_MASK;
2206 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2207 	uint32_t type =
2208 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2209 	uint32_t idt_v =
2210 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2211 	bool has_error_code = false;
2212 	u32 error_code = 0;
2213 
2214 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2215 
2216 	if (svm->vmcb->control.exit_info_2 &
2217 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2218 		reason = TASK_SWITCH_IRET;
2219 	else if (svm->vmcb->control.exit_info_2 &
2220 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2221 		reason = TASK_SWITCH_JMP;
2222 	else if (idt_v)
2223 		reason = TASK_SWITCH_GATE;
2224 	else
2225 		reason = TASK_SWITCH_CALL;
2226 
2227 	if (reason == TASK_SWITCH_GATE) {
2228 		switch (type) {
2229 		case SVM_EXITINTINFO_TYPE_NMI:
2230 			svm->vcpu.arch.nmi_injected = false;
2231 			break;
2232 		case SVM_EXITINTINFO_TYPE_EXEPT:
2233 			if (svm->vmcb->control.exit_info_2 &
2234 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2235 				has_error_code = true;
2236 				error_code =
2237 					(u32)svm->vmcb->control.exit_info_2;
2238 			}
2239 			kvm_clear_exception_queue(&svm->vcpu);
2240 			break;
2241 		case SVM_EXITINTINFO_TYPE_INTR:
2242 			kvm_clear_interrupt_queue(&svm->vcpu);
2243 			break;
2244 		default:
2245 			break;
2246 		}
2247 	}
2248 
2249 	if (reason != TASK_SWITCH_GATE ||
2250 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2251 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2252 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2253 		if (!skip_emulated_instruction(&svm->vcpu))
2254 			return 0;
2255 	}
2256 
2257 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2258 		int_vec = -1;
2259 
2260 	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2261 			       has_error_code, error_code);
2262 }
2263 
2264 static int cpuid_interception(struct vcpu_svm *svm)
2265 {
2266 	return kvm_emulate_cpuid(&svm->vcpu);
2267 }
2268 
2269 static int iret_interception(struct vcpu_svm *svm)
2270 {
2271 	++svm->vcpu.stat.nmi_window_exits;
2272 	svm_clr_intercept(svm, INTERCEPT_IRET);
2273 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2274 	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2275 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2276 	return 1;
2277 }
2278 
2279 static int invd_interception(struct vcpu_svm *svm)
2280 {
2281 	/* Treat an INVD instruction as a NOP and just skip it. */
2282 	return kvm_skip_emulated_instruction(&svm->vcpu);
2283 }
2284 
2285 static int invlpg_interception(struct vcpu_svm *svm)
2286 {
2287 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2288 		return kvm_emulate_instruction(&svm->vcpu, 0);
2289 
2290 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2291 	return kvm_skip_emulated_instruction(&svm->vcpu);
2292 }
2293 
2294 static int emulate_on_interception(struct vcpu_svm *svm)
2295 {
2296 	return kvm_emulate_instruction(&svm->vcpu, 0);
2297 }
2298 
2299 static int rsm_interception(struct vcpu_svm *svm)
2300 {
2301 	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2302 }
2303 
2304 static int rdpmc_interception(struct vcpu_svm *svm)
2305 {
2306 	int err;
2307 
2308 	if (!nrips)
2309 		return emulate_on_interception(svm);
2310 
2311 	err = kvm_rdpmc(&svm->vcpu);
2312 	return kvm_complete_insn_gp(&svm->vcpu, err);
2313 }
2314 
2315 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2316 					    unsigned long val)
2317 {
2318 	unsigned long cr0 = svm->vcpu.arch.cr0;
2319 	bool ret = false;
2320 
2321 	if (!is_guest_mode(&svm->vcpu) ||
2322 	    (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2323 		return false;
2324 
2325 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2326 	val &= ~SVM_CR0_SELECTIVE_MASK;
2327 
2328 	if (cr0 ^ val) {
2329 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2330 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2331 	}
2332 
2333 	return ret;
2334 }
2335 
2336 #define CR_VALID (1ULL << 63)
2337 
2338 static int cr_interception(struct vcpu_svm *svm)
2339 {
2340 	int reg, cr;
2341 	unsigned long val;
2342 	int err;
2343 
2344 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2345 		return emulate_on_interception(svm);
2346 
2347 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2348 		return emulate_on_interception(svm);
2349 
2350 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2351 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2352 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2353 	else
2354 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2355 
2356 	err = 0;
2357 	if (cr >= 16) { /* mov to cr */
2358 		cr -= 16;
2359 		val = kvm_register_read(&svm->vcpu, reg);
2360 		trace_kvm_cr_write(cr, val);
2361 		switch (cr) {
2362 		case 0:
2363 			if (!check_selective_cr0_intercepted(svm, val))
2364 				err = kvm_set_cr0(&svm->vcpu, val);
2365 			else
2366 				return 1;
2367 
2368 			break;
2369 		case 3:
2370 			err = kvm_set_cr3(&svm->vcpu, val);
2371 			break;
2372 		case 4:
2373 			err = kvm_set_cr4(&svm->vcpu, val);
2374 			break;
2375 		case 8:
2376 			err = kvm_set_cr8(&svm->vcpu, val);
2377 			break;
2378 		default:
2379 			WARN(1, "unhandled write to CR%d", cr);
2380 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2381 			return 1;
2382 		}
2383 	} else { /* mov from cr */
2384 		switch (cr) {
2385 		case 0:
2386 			val = kvm_read_cr0(&svm->vcpu);
2387 			break;
2388 		case 2:
2389 			val = svm->vcpu.arch.cr2;
2390 			break;
2391 		case 3:
2392 			val = kvm_read_cr3(&svm->vcpu);
2393 			break;
2394 		case 4:
2395 			val = kvm_read_cr4(&svm->vcpu);
2396 			break;
2397 		case 8:
2398 			val = kvm_get_cr8(&svm->vcpu);
2399 			break;
2400 		default:
2401 			WARN(1, "unhandled read from CR%d", cr);
2402 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2403 			return 1;
2404 		}
2405 		kvm_register_write(&svm->vcpu, reg, val);
2406 		trace_kvm_cr_read(cr, val);
2407 	}
2408 	return kvm_complete_insn_gp(&svm->vcpu, err);
2409 }
2410 
2411 static int dr_interception(struct vcpu_svm *svm)
2412 {
2413 	int reg, dr;
2414 	unsigned long val;
2415 
2416 	if (svm->vcpu.guest_debug == 0) {
2417 		/*
2418 		 * No more DR vmexits; force a reload of the debug registers
2419 		 * and reenter on this instruction.  The next vmexit will
2420 		 * retrieve the full state of the debug registers.
2421 		 */
2422 		clr_dr_intercepts(svm);
2423 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2424 		return 1;
2425 	}
2426 
2427 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2428 		return emulate_on_interception(svm);
2429 
2430 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2431 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2432 
2433 	if (dr >= 16) { /* mov to DRn */
2434 		if (!kvm_require_dr(&svm->vcpu, dr - 16))
2435 			return 1;
2436 		val = kvm_register_read(&svm->vcpu, reg);
2437 		kvm_set_dr(&svm->vcpu, dr - 16, val);
2438 	} else {
2439 		if (!kvm_require_dr(&svm->vcpu, dr))
2440 			return 1;
2441 		kvm_get_dr(&svm->vcpu, dr, &val);
2442 		kvm_register_write(&svm->vcpu, reg, val);
2443 	}
2444 
2445 	return kvm_skip_emulated_instruction(&svm->vcpu);
2446 }
2447 
2448 static int cr8_write_interception(struct vcpu_svm *svm)
2449 {
2450 	struct kvm_run *kvm_run = svm->vcpu.run;
2451 	int r;
2452 
2453 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2454 	/* instruction emulation calls kvm_set_cr8() */
2455 	r = cr_interception(svm);
2456 	if (lapic_in_kernel(&svm->vcpu))
2457 		return r;
2458 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2459 		return r;
2460 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2461 	return 0;
2462 }
2463 
2464 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2465 {
2466 	msr->data = 0;
2467 
2468 	switch (msr->index) {
2469 	case MSR_F10H_DECFG:
2470 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2471 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2472 		break;
2473 	case MSR_IA32_PERF_CAPABILITIES:
2474 		return 0;
2475 	default:
2476 		return KVM_MSR_RET_INVALID;
2477 	}
2478 
2479 	return 0;
2480 }
2481 
2482 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2483 {
2484 	struct vcpu_svm *svm = to_svm(vcpu);
2485 
2486 	switch (msr_info->index) {
2487 	case MSR_STAR:
2488 		msr_info->data = svm->vmcb->save.star;
2489 		break;
2490 #ifdef CONFIG_X86_64
2491 	case MSR_LSTAR:
2492 		msr_info->data = svm->vmcb->save.lstar;
2493 		break;
2494 	case MSR_CSTAR:
2495 		msr_info->data = svm->vmcb->save.cstar;
2496 		break;
2497 	case MSR_KERNEL_GS_BASE:
2498 		msr_info->data = svm->vmcb->save.kernel_gs_base;
2499 		break;
2500 	case MSR_SYSCALL_MASK:
2501 		msr_info->data = svm->vmcb->save.sfmask;
2502 		break;
2503 #endif
2504 	case MSR_IA32_SYSENTER_CS:
2505 		msr_info->data = svm->vmcb->save.sysenter_cs;
2506 		break;
2507 	case MSR_IA32_SYSENTER_EIP:
2508 		msr_info->data = svm->sysenter_eip;
2509 		break;
2510 	case MSR_IA32_SYSENTER_ESP:
2511 		msr_info->data = svm->sysenter_esp;
2512 		break;
2513 	case MSR_TSC_AUX:
2514 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2515 			return 1;
2516 		msr_info->data = svm->tsc_aux;
2517 		break;
2518 	/*
2519 	 * Nobody will change the following 5 values in the VMCB so we can
2520 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2521 	 * implemented.
2522 	 */
2523 	case MSR_IA32_DEBUGCTLMSR:
2524 		msr_info->data = svm->vmcb->save.dbgctl;
2525 		break;
2526 	case MSR_IA32_LASTBRANCHFROMIP:
2527 		msr_info->data = svm->vmcb->save.br_from;
2528 		break;
2529 	case MSR_IA32_LASTBRANCHTOIP:
2530 		msr_info->data = svm->vmcb->save.br_to;
2531 		break;
2532 	case MSR_IA32_LASTINTFROMIP:
2533 		msr_info->data = svm->vmcb->save.last_excp_from;
2534 		break;
2535 	case MSR_IA32_LASTINTTOIP:
2536 		msr_info->data = svm->vmcb->save.last_excp_to;
2537 		break;
2538 	case MSR_VM_HSAVE_PA:
2539 		msr_info->data = svm->nested.hsave_msr;
2540 		break;
2541 	case MSR_VM_CR:
2542 		msr_info->data = svm->nested.vm_cr_msr;
2543 		break;
2544 	case MSR_IA32_SPEC_CTRL:
2545 		if (!msr_info->host_initiated &&
2546 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2547 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2548 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2549 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2550 			return 1;
2551 
2552 		msr_info->data = svm->spec_ctrl;
2553 		break;
2554 	case MSR_AMD64_VIRT_SPEC_CTRL:
2555 		if (!msr_info->host_initiated &&
2556 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2557 			return 1;
2558 
2559 		msr_info->data = svm->virt_spec_ctrl;
2560 		break;
2561 	case MSR_F15H_IC_CFG: {
2562 
2563 		int family, model;
2564 
2565 		family = guest_cpuid_family(vcpu);
2566 		model  = guest_cpuid_model(vcpu);
2567 
2568 		if (family < 0 || model < 0)
2569 			return kvm_get_msr_common(vcpu, msr_info);
2570 
2571 		msr_info->data = 0;
2572 
2573 		if (family == 0x15 &&
2574 		    (model >= 0x2 && model < 0x20))
2575 			msr_info->data = 0x1E;
2576 		}
2577 		break;
2578 	case MSR_F10H_DECFG:
2579 		msr_info->data = svm->msr_decfg;
2580 		break;
2581 	default:
2582 		return kvm_get_msr_common(vcpu, msr_info);
2583 	}
2584 	return 0;
2585 }
2586 
2587 static int rdmsr_interception(struct vcpu_svm *svm)
2588 {
2589 	return kvm_emulate_rdmsr(&svm->vcpu);
2590 }
2591 
2592 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2593 {
2594 	struct vcpu_svm *svm = to_svm(vcpu);
2595 	int svm_dis, chg_mask;
2596 
2597 	if (data & ~SVM_VM_CR_VALID_MASK)
2598 		return 1;
2599 
2600 	chg_mask = SVM_VM_CR_VALID_MASK;
2601 
2602 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2603 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2604 
2605 	svm->nested.vm_cr_msr &= ~chg_mask;
2606 	svm->nested.vm_cr_msr |= (data & chg_mask);
2607 
2608 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2609 
2610 	/* check for svm_disable while efer.svme is set */
2611 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2612 		return 1;
2613 
2614 	return 0;
2615 }
2616 
2617 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2618 {
2619 	struct vcpu_svm *svm = to_svm(vcpu);
2620 
2621 	u32 ecx = msr->index;
2622 	u64 data = msr->data;
2623 	switch (ecx) {
2624 	case MSR_IA32_CR_PAT:
2625 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2626 			return 1;
2627 		vcpu->arch.pat = data;
2628 		svm->vmcb->save.g_pat = data;
2629 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2630 		break;
2631 	case MSR_IA32_SPEC_CTRL:
2632 		if (!msr->host_initiated &&
2633 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2634 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2635 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2636 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2637 			return 1;
2638 
2639 		if (kvm_spec_ctrl_test_value(data))
2640 			return 1;
2641 
2642 		svm->spec_ctrl = data;
2643 		if (!data)
2644 			break;
2645 
2646 		/*
2647 		 * For non-nested:
2648 		 * When it's written (to non-zero) for the first time, pass
2649 		 * it through.
2650 		 *
2651 		 * For nested:
2652 		 * The handling of the MSR bitmap for L2 guests is done in
2653 		 * nested_svm_vmrun_msrpm.
2654 		 * We update the L1 MSR bit as well since it will end up
2655 		 * touching the MSR anyway now.
2656 		 */
2657 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2658 		break;
2659 	case MSR_IA32_PRED_CMD:
2660 		if (!msr->host_initiated &&
2661 		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
2662 			return 1;
2663 
2664 		if (data & ~PRED_CMD_IBPB)
2665 			return 1;
2666 		if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
2667 			return 1;
2668 		if (!data)
2669 			break;
2670 
2671 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2672 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2673 		break;
2674 	case MSR_AMD64_VIRT_SPEC_CTRL:
2675 		if (!msr->host_initiated &&
2676 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2677 			return 1;
2678 
2679 		if (data & ~SPEC_CTRL_SSBD)
2680 			return 1;
2681 
2682 		svm->virt_spec_ctrl = data;
2683 		break;
2684 	case MSR_STAR:
2685 		svm->vmcb->save.star = data;
2686 		break;
2687 #ifdef CONFIG_X86_64
2688 	case MSR_LSTAR:
2689 		svm->vmcb->save.lstar = data;
2690 		break;
2691 	case MSR_CSTAR:
2692 		svm->vmcb->save.cstar = data;
2693 		break;
2694 	case MSR_KERNEL_GS_BASE:
2695 		svm->vmcb->save.kernel_gs_base = data;
2696 		break;
2697 	case MSR_SYSCALL_MASK:
2698 		svm->vmcb->save.sfmask = data;
2699 		break;
2700 #endif
2701 	case MSR_IA32_SYSENTER_CS:
2702 		svm->vmcb->save.sysenter_cs = data;
2703 		break;
2704 	case MSR_IA32_SYSENTER_EIP:
2705 		svm->sysenter_eip = data;
2706 		svm->vmcb->save.sysenter_eip = data;
2707 		break;
2708 	case MSR_IA32_SYSENTER_ESP:
2709 		svm->sysenter_esp = data;
2710 		svm->vmcb->save.sysenter_esp = data;
2711 		break;
2712 	case MSR_TSC_AUX:
2713 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2714 			return 1;
2715 
2716 		/*
2717 		 * This is rare, so we update the MSR here instead of using
2718 		 * direct_access_msrs.  Doing that would require a rdmsr in
2719 		 * svm_vcpu_put.
2720 		 */
2721 		svm->tsc_aux = data;
2722 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2723 		break;
2724 	case MSR_IA32_DEBUGCTLMSR:
2725 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2726 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2727 				    __func__, data);
2728 			break;
2729 		}
2730 		if (data & DEBUGCTL_RESERVED_BITS)
2731 			return 1;
2732 
2733 		svm->vmcb->save.dbgctl = data;
2734 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2735 		if (data & (1ULL<<0))
2736 			svm_enable_lbrv(vcpu);
2737 		else
2738 			svm_disable_lbrv(vcpu);
2739 		break;
2740 	case MSR_VM_HSAVE_PA:
2741 		svm->nested.hsave_msr = data;
2742 		break;
2743 	case MSR_VM_CR:
2744 		return svm_set_vm_cr(vcpu, data);
2745 	case MSR_VM_IGNNE:
2746 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2747 		break;
2748 	case MSR_F10H_DECFG: {
2749 		struct kvm_msr_entry msr_entry;
2750 
2751 		msr_entry.index = msr->index;
2752 		if (svm_get_msr_feature(&msr_entry))
2753 			return 1;
2754 
2755 		/* Check the supported bits */
2756 		if (data & ~msr_entry.data)
2757 			return 1;
2758 
2759 		/* Don't allow the guest to change a bit, #GP */
2760 		if (!msr->host_initiated && (data ^ msr_entry.data))
2761 			return 1;
2762 
2763 		svm->msr_decfg = data;
2764 		break;
2765 	}
2766 	case MSR_IA32_APICBASE:
2767 		if (kvm_vcpu_apicv_active(vcpu))
2768 			avic_update_vapic_bar(to_svm(vcpu), data);
2769 		fallthrough;
2770 	default:
2771 		return kvm_set_msr_common(vcpu, msr);
2772 	}
2773 	return 0;
2774 }
2775 
2776 static int wrmsr_interception(struct vcpu_svm *svm)
2777 {
2778 	return kvm_emulate_wrmsr(&svm->vcpu);
2779 }
2780 
2781 static int msr_interception(struct vcpu_svm *svm)
2782 {
2783 	if (svm->vmcb->control.exit_info_1)
2784 		return wrmsr_interception(svm);
2785 	else
2786 		return rdmsr_interception(svm);
2787 }
2788 
2789 static int interrupt_window_interception(struct vcpu_svm *svm)
2790 {
2791 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2792 	svm_clear_vintr(svm);
2793 
2794 	/*
2795 	 * For AVIC, the only reason to end up here is ExtINTs.
2796 	 * In this case AVIC was temporarily disabled for
2797 	 * requesting the IRQ window and we have to re-enable it.
2798 	 */
2799 	svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2800 
2801 	++svm->vcpu.stat.irq_window_exits;
2802 	return 1;
2803 }
2804 
2805 static int pause_interception(struct vcpu_svm *svm)
2806 {
2807 	struct kvm_vcpu *vcpu = &svm->vcpu;
2808 	bool in_kernel = (svm_get_cpl(vcpu) == 0);
2809 
2810 	if (!kvm_pause_in_guest(vcpu->kvm))
2811 		grow_ple_window(vcpu);
2812 
2813 	kvm_vcpu_on_spin(vcpu, in_kernel);
2814 	return 1;
2815 }
2816 
2817 static int nop_interception(struct vcpu_svm *svm)
2818 {
2819 	return kvm_skip_emulated_instruction(&(svm->vcpu));
2820 }
2821 
2822 static int monitor_interception(struct vcpu_svm *svm)
2823 {
2824 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2825 	return nop_interception(svm);
2826 }
2827 
2828 static int mwait_interception(struct vcpu_svm *svm)
2829 {
2830 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2831 	return nop_interception(svm);
2832 }
2833 
2834 static int invpcid_interception(struct vcpu_svm *svm)
2835 {
2836 	struct kvm_vcpu *vcpu = &svm->vcpu;
2837 	unsigned long type;
2838 	gva_t gva;
2839 
2840 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
2841 		kvm_queue_exception(vcpu, UD_VECTOR);
2842 		return 1;
2843 	}
2844 
2845 	/*
2846 	 * For an INVPCID intercept:
2847 	 * EXITINFO1 provides the linear address of the memory operand.
2848 	 * EXITINFO2 provides the contents of the register operand.
2849 	 */
2850 	type = svm->vmcb->control.exit_info_2;
2851 	gva = svm->vmcb->control.exit_info_1;
2852 
2853 	if (type > 3) {
2854 		kvm_inject_gp(vcpu, 0);
2855 		return 1;
2856 	}
2857 
2858 	return kvm_handle_invpcid(vcpu, type, gva);
2859 }
2860 
2861 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2862 	[SVM_EXIT_READ_CR0]			= cr_interception,
2863 	[SVM_EXIT_READ_CR3]			= cr_interception,
2864 	[SVM_EXIT_READ_CR4]			= cr_interception,
2865 	[SVM_EXIT_READ_CR8]			= cr_interception,
2866 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
2867 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
2868 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
2869 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
2870 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
2871 	[SVM_EXIT_READ_DR0]			= dr_interception,
2872 	[SVM_EXIT_READ_DR1]			= dr_interception,
2873 	[SVM_EXIT_READ_DR2]			= dr_interception,
2874 	[SVM_EXIT_READ_DR3]			= dr_interception,
2875 	[SVM_EXIT_READ_DR4]			= dr_interception,
2876 	[SVM_EXIT_READ_DR5]			= dr_interception,
2877 	[SVM_EXIT_READ_DR6]			= dr_interception,
2878 	[SVM_EXIT_READ_DR7]			= dr_interception,
2879 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
2880 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
2881 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
2882 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
2883 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
2884 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
2885 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
2886 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
2887 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
2888 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
2889 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
2890 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
2891 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
2892 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
2893 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
2894 	[SVM_EXIT_INTR]				= intr_interception,
2895 	[SVM_EXIT_NMI]				= nmi_interception,
2896 	[SVM_EXIT_SMI]				= nop_on_interception,
2897 	[SVM_EXIT_INIT]				= nop_on_interception,
2898 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
2899 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
2900 	[SVM_EXIT_CPUID]			= cpuid_interception,
2901 	[SVM_EXIT_IRET]                         = iret_interception,
2902 	[SVM_EXIT_INVD]                         = invd_interception,
2903 	[SVM_EXIT_PAUSE]			= pause_interception,
2904 	[SVM_EXIT_HLT]				= halt_interception,
2905 	[SVM_EXIT_INVLPG]			= invlpg_interception,
2906 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
2907 	[SVM_EXIT_IOIO]				= io_interception,
2908 	[SVM_EXIT_MSR]				= msr_interception,
2909 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
2910 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
2911 	[SVM_EXIT_VMRUN]			= vmrun_interception,
2912 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
2913 	[SVM_EXIT_VMLOAD]			= vmload_interception,
2914 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
2915 	[SVM_EXIT_STGI]				= stgi_interception,
2916 	[SVM_EXIT_CLGI]				= clgi_interception,
2917 	[SVM_EXIT_SKINIT]			= skinit_interception,
2918 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
2919 	[SVM_EXIT_MONITOR]			= monitor_interception,
2920 	[SVM_EXIT_MWAIT]			= mwait_interception,
2921 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
2922 	[SVM_EXIT_RDPRU]			= rdpru_interception,
2923 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
2924 	[SVM_EXIT_NPF]				= npf_interception,
2925 	[SVM_EXIT_RSM]                          = rsm_interception,
2926 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
2927 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
2928 };
2929 
2930 static void dump_vmcb(struct kvm_vcpu *vcpu)
2931 {
2932 	struct vcpu_svm *svm = to_svm(vcpu);
2933 	struct vmcb_control_area *control = &svm->vmcb->control;
2934 	struct vmcb_save_area *save = &svm->vmcb->save;
2935 
2936 	if (!dump_invalid_vmcb) {
2937 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2938 		return;
2939 	}
2940 
2941 	pr_err("VMCB Control Area:\n");
2942 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
2943 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
2944 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
2945 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
2946 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
2947 	pr_err("%-20s%08x %08x\n", "intercepts:",
2948               control->intercepts[INTERCEPT_WORD3],
2949 	       control->intercepts[INTERCEPT_WORD4]);
2950 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2951 	pr_err("%-20s%d\n", "pause filter threshold:",
2952 	       control->pause_filter_thresh);
2953 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2954 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
2955 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
2956 	pr_err("%-20s%d\n", "asid:", control->asid);
2957 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
2958 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
2959 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
2960 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
2961 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
2962 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
2963 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
2964 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
2965 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
2966 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
2967 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
2968 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
2969 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
2970 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
2971 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
2972 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
2973 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
2974 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
2975 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
2976 	pr_err("VMCB State Save Area:\n");
2977 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2978 	       "es:",
2979 	       save->es.selector, save->es.attrib,
2980 	       save->es.limit, save->es.base);
2981 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2982 	       "cs:",
2983 	       save->cs.selector, save->cs.attrib,
2984 	       save->cs.limit, save->cs.base);
2985 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2986 	       "ss:",
2987 	       save->ss.selector, save->ss.attrib,
2988 	       save->ss.limit, save->ss.base);
2989 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2990 	       "ds:",
2991 	       save->ds.selector, save->ds.attrib,
2992 	       save->ds.limit, save->ds.base);
2993 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2994 	       "fs:",
2995 	       save->fs.selector, save->fs.attrib,
2996 	       save->fs.limit, save->fs.base);
2997 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2998 	       "gs:",
2999 	       save->gs.selector, save->gs.attrib,
3000 	       save->gs.limit, save->gs.base);
3001 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3002 	       "gdtr:",
3003 	       save->gdtr.selector, save->gdtr.attrib,
3004 	       save->gdtr.limit, save->gdtr.base);
3005 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3006 	       "ldtr:",
3007 	       save->ldtr.selector, save->ldtr.attrib,
3008 	       save->ldtr.limit, save->ldtr.base);
3009 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3010 	       "idtr:",
3011 	       save->idtr.selector, save->idtr.attrib,
3012 	       save->idtr.limit, save->idtr.base);
3013 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3014 	       "tr:",
3015 	       save->tr.selector, save->tr.attrib,
3016 	       save->tr.limit, save->tr.base);
3017 	pr_err("cpl:            %d                efer:         %016llx\n",
3018 		save->cpl, save->efer);
3019 	pr_err("%-15s %016llx %-13s %016llx\n",
3020 	       "cr0:", save->cr0, "cr2:", save->cr2);
3021 	pr_err("%-15s %016llx %-13s %016llx\n",
3022 	       "cr3:", save->cr3, "cr4:", save->cr4);
3023 	pr_err("%-15s %016llx %-13s %016llx\n",
3024 	       "dr6:", save->dr6, "dr7:", save->dr7);
3025 	pr_err("%-15s %016llx %-13s %016llx\n",
3026 	       "rip:", save->rip, "rflags:", save->rflags);
3027 	pr_err("%-15s %016llx %-13s %016llx\n",
3028 	       "rsp:", save->rsp, "rax:", save->rax);
3029 	pr_err("%-15s %016llx %-13s %016llx\n",
3030 	       "star:", save->star, "lstar:", save->lstar);
3031 	pr_err("%-15s %016llx %-13s %016llx\n",
3032 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
3033 	pr_err("%-15s %016llx %-13s %016llx\n",
3034 	       "kernel_gs_base:", save->kernel_gs_base,
3035 	       "sysenter_cs:", save->sysenter_cs);
3036 	pr_err("%-15s %016llx %-13s %016llx\n",
3037 	       "sysenter_esp:", save->sysenter_esp,
3038 	       "sysenter_eip:", save->sysenter_eip);
3039 	pr_err("%-15s %016llx %-13s %016llx\n",
3040 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3041 	pr_err("%-15s %016llx %-13s %016llx\n",
3042 	       "br_from:", save->br_from, "br_to:", save->br_to);
3043 	pr_err("%-15s %016llx %-13s %016llx\n",
3044 	       "excp_from:", save->last_excp_from,
3045 	       "excp_to:", save->last_excp_to);
3046 }
3047 
3048 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3049 			      u32 *intr_info, u32 *error_code)
3050 {
3051 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3052 
3053 	*info1 = control->exit_info_1;
3054 	*info2 = control->exit_info_2;
3055 	*intr_info = control->exit_int_info;
3056 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3057 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3058 		*error_code = control->exit_int_info_err;
3059 	else
3060 		*error_code = 0;
3061 }
3062 
3063 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3064 {
3065 	struct vcpu_svm *svm = to_svm(vcpu);
3066 	struct kvm_run *kvm_run = vcpu->run;
3067 	u32 exit_code = svm->vmcb->control.exit_code;
3068 
3069 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3070 
3071 	if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3072 		vcpu->arch.cr0 = svm->vmcb->save.cr0;
3073 	if (npt_enabled)
3074 		vcpu->arch.cr3 = svm->vmcb->save.cr3;
3075 
3076 	if (is_guest_mode(vcpu)) {
3077 		int vmexit;
3078 
3079 		trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3080 
3081 		vmexit = nested_svm_exit_special(svm);
3082 
3083 		if (vmexit == NESTED_EXIT_CONTINUE)
3084 			vmexit = nested_svm_exit_handled(svm);
3085 
3086 		if (vmexit == NESTED_EXIT_DONE)
3087 			return 1;
3088 	}
3089 
3090 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3091 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3092 		kvm_run->fail_entry.hardware_entry_failure_reason
3093 			= svm->vmcb->control.exit_code;
3094 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3095 		dump_vmcb(vcpu);
3096 		return 0;
3097 	}
3098 
3099 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3100 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3101 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3102 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3103 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3104 		       "exit_code 0x%x\n",
3105 		       __func__, svm->vmcb->control.exit_int_info,
3106 		       exit_code);
3107 
3108 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3109 		return 1;
3110 
3111 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3112 	    || !svm_exit_handlers[exit_code]) {
3113 		vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
3114 		dump_vmcb(vcpu);
3115 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3116 		vcpu->run->internal.suberror =
3117 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3118 		vcpu->run->internal.ndata = 2;
3119 		vcpu->run->internal.data[0] = exit_code;
3120 		vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3121 		return 0;
3122 	}
3123 
3124 #ifdef CONFIG_RETPOLINE
3125 	if (exit_code == SVM_EXIT_MSR)
3126 		return msr_interception(svm);
3127 	else if (exit_code == SVM_EXIT_VINTR)
3128 		return interrupt_window_interception(svm);
3129 	else if (exit_code == SVM_EXIT_INTR)
3130 		return intr_interception(svm);
3131 	else if (exit_code == SVM_EXIT_HLT)
3132 		return halt_interception(svm);
3133 	else if (exit_code == SVM_EXIT_NPF)
3134 		return npf_interception(svm);
3135 #endif
3136 	return svm_exit_handlers[exit_code](svm);
3137 }
3138 
3139 static void reload_tss(struct kvm_vcpu *vcpu)
3140 {
3141 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3142 
3143 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3144 	load_TR_desc();
3145 }
3146 
3147 static void pre_svm_run(struct vcpu_svm *svm)
3148 {
3149 	struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3150 
3151 	if (sev_guest(svm->vcpu.kvm))
3152 		return pre_sev_run(svm, svm->vcpu.cpu);
3153 
3154 	/* FIXME: handle wraparound of asid_generation */
3155 	if (svm->asid_generation != sd->asid_generation)
3156 		new_asid(svm, sd);
3157 }
3158 
3159 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3160 {
3161 	struct vcpu_svm *svm = to_svm(vcpu);
3162 
3163 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3164 	vcpu->arch.hflags |= HF_NMI_MASK;
3165 	svm_set_intercept(svm, INTERCEPT_IRET);
3166 	++vcpu->stat.nmi_injections;
3167 }
3168 
3169 static void svm_set_irq(struct kvm_vcpu *vcpu)
3170 {
3171 	struct vcpu_svm *svm = to_svm(vcpu);
3172 
3173 	BUG_ON(!(gif_set(svm)));
3174 
3175 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3176 	++vcpu->stat.irq_injections;
3177 
3178 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3179 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3180 }
3181 
3182 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3183 {
3184 	struct vcpu_svm *svm = to_svm(vcpu);
3185 
3186 	if (nested_svm_virtualize_tpr(vcpu))
3187 		return;
3188 
3189 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3190 
3191 	if (irr == -1)
3192 		return;
3193 
3194 	if (tpr >= irr)
3195 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3196 }
3197 
3198 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3199 {
3200 	struct vcpu_svm *svm = to_svm(vcpu);
3201 	struct vmcb *vmcb = svm->vmcb;
3202 	bool ret;
3203 
3204 	if (!gif_set(svm))
3205 		return true;
3206 
3207 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3208 		return false;
3209 
3210 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3211 	      (svm->vcpu.arch.hflags & HF_NMI_MASK);
3212 
3213 	return ret;
3214 }
3215 
3216 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3217 {
3218 	struct vcpu_svm *svm = to_svm(vcpu);
3219 	if (svm->nested.nested_run_pending)
3220 		return -EBUSY;
3221 
3222 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3223 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3224 		return -EBUSY;
3225 
3226 	return !svm_nmi_blocked(vcpu);
3227 }
3228 
3229 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3230 {
3231 	struct vcpu_svm *svm = to_svm(vcpu);
3232 
3233 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3234 }
3235 
3236 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3237 {
3238 	struct vcpu_svm *svm = to_svm(vcpu);
3239 
3240 	if (masked) {
3241 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3242 		svm_set_intercept(svm, INTERCEPT_IRET);
3243 	} else {
3244 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3245 		svm_clr_intercept(svm, INTERCEPT_IRET);
3246 	}
3247 }
3248 
3249 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3250 {
3251 	struct vcpu_svm *svm = to_svm(vcpu);
3252 	struct vmcb *vmcb = svm->vmcb;
3253 
3254 	if (!gif_set(svm))
3255 		return true;
3256 
3257 	if (is_guest_mode(vcpu)) {
3258 		/* As long as interrupts are being delivered...  */
3259 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3260 		    ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3261 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3262 			return true;
3263 
3264 		/* ... vmexits aren't blocked by the interrupt shadow  */
3265 		if (nested_exit_on_intr(svm))
3266 			return false;
3267 	} else {
3268 		if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3269 			return true;
3270 	}
3271 
3272 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3273 }
3274 
3275 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3276 {
3277 	struct vcpu_svm *svm = to_svm(vcpu);
3278 	if (svm->nested.nested_run_pending)
3279 		return -EBUSY;
3280 
3281 	/*
3282 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3283 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3284 	 */
3285 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3286 		return -EBUSY;
3287 
3288 	return !svm_interrupt_blocked(vcpu);
3289 }
3290 
3291 static void enable_irq_window(struct kvm_vcpu *vcpu)
3292 {
3293 	struct vcpu_svm *svm = to_svm(vcpu);
3294 
3295 	/*
3296 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3297 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3298 	 * get that intercept, this function will be called again though and
3299 	 * we'll get the vintr intercept. However, if the vGIF feature is
3300 	 * enabled, the STGI interception will not occur. Enable the irq
3301 	 * window under the assumption that the hardware will set the GIF.
3302 	 */
3303 	if (vgif_enabled(svm) || gif_set(svm)) {
3304 		/*
3305 		 * IRQ window is not needed when AVIC is enabled,
3306 		 * unless we have pending ExtINT since it cannot be injected
3307 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3308 		 * and fallback to injecting IRQ via V_IRQ.
3309 		 */
3310 		svm_toggle_avic_for_irq_window(vcpu, false);
3311 		svm_set_vintr(svm);
3312 	}
3313 }
3314 
3315 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3316 {
3317 	struct vcpu_svm *svm = to_svm(vcpu);
3318 
3319 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3320 	    == HF_NMI_MASK)
3321 		return; /* IRET will cause a vm exit */
3322 
3323 	if (!gif_set(svm)) {
3324 		if (vgif_enabled(svm))
3325 			svm_set_intercept(svm, INTERCEPT_STGI);
3326 		return; /* STGI will cause a vm exit */
3327 	}
3328 
3329 	/*
3330 	 * Something prevents NMI from been injected. Single step over possible
3331 	 * problem (IRET or exception injection or interrupt shadow)
3332 	 */
3333 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3334 	svm->nmi_singlestep = true;
3335 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3336 }
3337 
3338 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3339 {
3340 	return 0;
3341 }
3342 
3343 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3344 {
3345 	return 0;
3346 }
3347 
3348 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3349 {
3350 	struct vcpu_svm *svm = to_svm(vcpu);
3351 
3352 	/*
3353 	 * Flush only the current ASID even if the TLB flush was invoked via
3354 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3355 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3356 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3357 	 * VM-Exit (via kvm_mmu_reset_context()).
3358 	 */
3359 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3360 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3361 	else
3362 		svm->asid_generation--;
3363 }
3364 
3365 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3366 {
3367 	struct vcpu_svm *svm = to_svm(vcpu);
3368 
3369 	invlpga(gva, svm->vmcb->control.asid);
3370 }
3371 
3372 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3373 {
3374 }
3375 
3376 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3377 {
3378 	struct vcpu_svm *svm = to_svm(vcpu);
3379 
3380 	if (nested_svm_virtualize_tpr(vcpu))
3381 		return;
3382 
3383 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3384 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3385 		kvm_set_cr8(vcpu, cr8);
3386 	}
3387 }
3388 
3389 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3390 {
3391 	struct vcpu_svm *svm = to_svm(vcpu);
3392 	u64 cr8;
3393 
3394 	if (nested_svm_virtualize_tpr(vcpu) ||
3395 	    kvm_vcpu_apicv_active(vcpu))
3396 		return;
3397 
3398 	cr8 = kvm_get_cr8(vcpu);
3399 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3400 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3401 }
3402 
3403 static void svm_complete_interrupts(struct vcpu_svm *svm)
3404 {
3405 	u8 vector;
3406 	int type;
3407 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3408 	unsigned int3_injected = svm->int3_injected;
3409 
3410 	svm->int3_injected = 0;
3411 
3412 	/*
3413 	 * If we've made progress since setting HF_IRET_MASK, we've
3414 	 * executed an IRET and can allow NMI injection.
3415 	 */
3416 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3417 	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3418 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3419 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3420 	}
3421 
3422 	svm->vcpu.arch.nmi_injected = false;
3423 	kvm_clear_exception_queue(&svm->vcpu);
3424 	kvm_clear_interrupt_queue(&svm->vcpu);
3425 
3426 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3427 		return;
3428 
3429 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3430 
3431 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3432 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3433 
3434 	switch (type) {
3435 	case SVM_EXITINTINFO_TYPE_NMI:
3436 		svm->vcpu.arch.nmi_injected = true;
3437 		break;
3438 	case SVM_EXITINTINFO_TYPE_EXEPT:
3439 		/*
3440 		 * In case of software exceptions, do not reinject the vector,
3441 		 * but re-execute the instruction instead. Rewind RIP first
3442 		 * if we emulated INT3 before.
3443 		 */
3444 		if (kvm_exception_is_soft(vector)) {
3445 			if (vector == BP_VECTOR && int3_injected &&
3446 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3447 				kvm_rip_write(&svm->vcpu,
3448 					      kvm_rip_read(&svm->vcpu) -
3449 					      int3_injected);
3450 			break;
3451 		}
3452 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3453 			u32 err = svm->vmcb->control.exit_int_info_err;
3454 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3455 
3456 		} else
3457 			kvm_requeue_exception(&svm->vcpu, vector);
3458 		break;
3459 	case SVM_EXITINTINFO_TYPE_INTR:
3460 		kvm_queue_interrupt(&svm->vcpu, vector, false);
3461 		break;
3462 	default:
3463 		break;
3464 	}
3465 }
3466 
3467 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3468 {
3469 	struct vcpu_svm *svm = to_svm(vcpu);
3470 	struct vmcb_control_area *control = &svm->vmcb->control;
3471 
3472 	control->exit_int_info = control->event_inj;
3473 	control->exit_int_info_err = control->event_inj_err;
3474 	control->event_inj = 0;
3475 	svm_complete_interrupts(svm);
3476 }
3477 
3478 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3479 {
3480 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3481 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3482 		return handle_fastpath_set_msr_irqoff(vcpu);
3483 
3484 	return EXIT_FASTPATH_NONE;
3485 }
3486 
3487 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3488 
3489 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3490 					struct vcpu_svm *svm)
3491 {
3492 	/*
3493 	 * VMENTER enables interrupts (host state), but the kernel state is
3494 	 * interrupts disabled when this is invoked. Also tell RCU about
3495 	 * it. This is the same logic as for exit_to_user_mode().
3496 	 *
3497 	 * This ensures that e.g. latency analysis on the host observes
3498 	 * guest mode as interrupt enabled.
3499 	 *
3500 	 * guest_enter_irqoff() informs context tracking about the
3501 	 * transition to guest mode and if enabled adjusts RCU state
3502 	 * accordingly.
3503 	 */
3504 	instrumentation_begin();
3505 	trace_hardirqs_on_prepare();
3506 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3507 	instrumentation_end();
3508 
3509 	guest_enter_irqoff();
3510 	lockdep_hardirqs_on(CALLER_ADDR0);
3511 
3512 	__svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3513 
3514 #ifdef CONFIG_X86_64
3515 	native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3516 #else
3517 	loadsegment(fs, svm->host.fs);
3518 #ifndef CONFIG_X86_32_LAZY_GS
3519 	loadsegment(gs, svm->host.gs);
3520 #endif
3521 #endif
3522 
3523 	/*
3524 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
3525 	 * have them in state 'on' as recorded before entering guest mode.
3526 	 * Same as enter_from_user_mode().
3527 	 *
3528 	 * guest_exit_irqoff() restores host context and reinstates RCU if
3529 	 * enabled and required.
3530 	 *
3531 	 * This needs to be done before the below as native_read_msr()
3532 	 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3533 	 * into world and some more.
3534 	 */
3535 	lockdep_hardirqs_off(CALLER_ADDR0);
3536 	guest_exit_irqoff();
3537 
3538 	instrumentation_begin();
3539 	trace_hardirqs_off_finish();
3540 	instrumentation_end();
3541 }
3542 
3543 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3544 {
3545 	struct vcpu_svm *svm = to_svm(vcpu);
3546 
3547 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3548 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3549 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3550 
3551 	/*
3552 	 * Disable singlestep if we're injecting an interrupt/exception.
3553 	 * We don't want our modified rflags to be pushed on the stack where
3554 	 * we might not be able to easily reset them if we disabled NMI
3555 	 * singlestep later.
3556 	 */
3557 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3558 		/*
3559 		 * Event injection happens before external interrupts cause a
3560 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3561 		 * is enough to force an immediate vmexit.
3562 		 */
3563 		disable_nmi_singlestep(svm);
3564 		smp_send_reschedule(vcpu->cpu);
3565 	}
3566 
3567 	pre_svm_run(svm);
3568 
3569 	sync_lapic_to_cr8(vcpu);
3570 
3571 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3572 
3573 	/*
3574 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3575 	 * of a #DB.
3576 	 */
3577 	if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3578 		svm_set_dr6(svm, vcpu->arch.dr6);
3579 	else
3580 		svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3581 
3582 	clgi();
3583 	kvm_load_guest_xsave_state(vcpu);
3584 
3585 	kvm_wait_lapic_expire(vcpu);
3586 
3587 	/*
3588 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3589 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3590 	 * is no need to worry about the conditional branch over the wrmsr
3591 	 * being speculatively taken.
3592 	 */
3593 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3594 
3595 	svm_vcpu_enter_exit(vcpu, svm);
3596 
3597 	/*
3598 	 * We do not use IBRS in the kernel. If this vCPU has used the
3599 	 * SPEC_CTRL MSR it may have left it on; save the value and
3600 	 * turn it off. This is much more efficient than blindly adding
3601 	 * it to the atomic save/restore list. Especially as the former
3602 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3603 	 *
3604 	 * For non-nested case:
3605 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3606 	 * save it.
3607 	 *
3608 	 * For nested case:
3609 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3610 	 * save it.
3611 	 */
3612 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3613 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3614 
3615 	reload_tss(vcpu);
3616 
3617 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3618 
3619 	vcpu->arch.cr2 = svm->vmcb->save.cr2;
3620 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3621 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3622 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3623 
3624 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3625 		kvm_before_interrupt(&svm->vcpu);
3626 
3627 	kvm_load_host_xsave_state(vcpu);
3628 	stgi();
3629 
3630 	/* Any pending NMI will happen here */
3631 
3632 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3633 		kvm_after_interrupt(&svm->vcpu);
3634 
3635 	sync_cr8_to_lapic(vcpu);
3636 
3637 	svm->next_rip = 0;
3638 	if (is_guest_mode(&svm->vcpu)) {
3639 		sync_nested_vmcb_control(svm);
3640 		svm->nested.nested_run_pending = 0;
3641 	}
3642 
3643 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3644 	vmcb_mark_all_clean(svm->vmcb);
3645 
3646 	/* if exit due to PF check for async PF */
3647 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3648 		svm->vcpu.arch.apf.host_apf_flags =
3649 			kvm_read_and_reset_apf_flags();
3650 
3651 	if (npt_enabled) {
3652 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3653 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3654 	}
3655 
3656 	/*
3657 	 * We need to handle MC intercepts here before the vcpu has a chance to
3658 	 * change the physical cpu
3659 	 */
3660 	if (unlikely(svm->vmcb->control.exit_code ==
3661 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3662 		svm_handle_mce(svm);
3663 
3664 	svm_complete_interrupts(svm);
3665 
3666 	if (is_guest_mode(vcpu))
3667 		return EXIT_FASTPATH_NONE;
3668 
3669 	return svm_exit_handlers_fastpath(vcpu);
3670 }
3671 
3672 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3673 			     int root_level)
3674 {
3675 	struct vcpu_svm *svm = to_svm(vcpu);
3676 	unsigned long cr3;
3677 
3678 	cr3 = __sme_set(root);
3679 	if (npt_enabled) {
3680 		svm->vmcb->control.nested_cr3 = cr3;
3681 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3682 
3683 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3684 		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3685 			return;
3686 		cr3 = vcpu->arch.cr3;
3687 	}
3688 
3689 	svm->vmcb->save.cr3 = cr3;
3690 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3691 }
3692 
3693 static int is_disabled(void)
3694 {
3695 	u64 vm_cr;
3696 
3697 	rdmsrl(MSR_VM_CR, vm_cr);
3698 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3699 		return 1;
3700 
3701 	return 0;
3702 }
3703 
3704 static void
3705 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3706 {
3707 	/*
3708 	 * Patch in the VMMCALL instruction:
3709 	 */
3710 	hypercall[0] = 0x0f;
3711 	hypercall[1] = 0x01;
3712 	hypercall[2] = 0xd9;
3713 }
3714 
3715 static int __init svm_check_processor_compat(void)
3716 {
3717 	return 0;
3718 }
3719 
3720 static bool svm_cpu_has_accelerated_tpr(void)
3721 {
3722 	return false;
3723 }
3724 
3725 static bool svm_has_emulated_msr(u32 index)
3726 {
3727 	switch (index) {
3728 	case MSR_IA32_MCG_EXT_CTL:
3729 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3730 		return false;
3731 	default:
3732 		break;
3733 	}
3734 
3735 	return true;
3736 }
3737 
3738 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3739 {
3740 	return 0;
3741 }
3742 
3743 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3744 {
3745 	struct vcpu_svm *svm = to_svm(vcpu);
3746 	struct kvm_cpuid_entry2 *best;
3747 
3748 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3749 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
3750 				    boot_cpu_has(X86_FEATURE_XSAVES);
3751 
3752 	/* Update nrips enabled cache */
3753 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3754 			     guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3755 
3756 	/* Check again if INVPCID interception if required */
3757 	svm_check_invpcid(svm);
3758 
3759 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
3760 	if (sev_guest(vcpu->kvm)) {
3761 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3762 		if (best)
3763 			vcpu->arch.cr3_lm_rsvd_bits &= ~(1UL << (best->ebx & 0x3f));
3764 	}
3765 
3766 	if (!kvm_vcpu_apicv_active(vcpu))
3767 		return;
3768 
3769 	/*
3770 	 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3771 	 * is exposed to the guest, disable AVIC.
3772 	 */
3773 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3774 		kvm_request_apicv_update(vcpu->kvm, false,
3775 					 APICV_INHIBIT_REASON_X2APIC);
3776 
3777 	/*
3778 	 * Currently, AVIC does not work with nested virtualization.
3779 	 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3780 	 */
3781 	if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3782 		kvm_request_apicv_update(vcpu->kvm, false,
3783 					 APICV_INHIBIT_REASON_NESTED);
3784 }
3785 
3786 static bool svm_has_wbinvd_exit(void)
3787 {
3788 	return true;
3789 }
3790 
3791 #define PRE_EX(exit)  { .exit_code = (exit), \
3792 			.stage = X86_ICPT_PRE_EXCEPT, }
3793 #define POST_EX(exit) { .exit_code = (exit), \
3794 			.stage = X86_ICPT_POST_EXCEPT, }
3795 #define POST_MEM(exit) { .exit_code = (exit), \
3796 			.stage = X86_ICPT_POST_MEMACCESS, }
3797 
3798 static const struct __x86_intercept {
3799 	u32 exit_code;
3800 	enum x86_intercept_stage stage;
3801 } x86_intercept_map[] = {
3802 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
3803 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
3804 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
3805 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
3806 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
3807 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
3808 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
3809 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
3810 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
3811 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
3812 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
3813 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
3814 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
3815 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
3816 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
3817 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
3818 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
3819 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
3820 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
3821 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
3822 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
3823 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
3824 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
3825 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
3826 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
3827 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
3828 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
3829 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
3830 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
3831 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
3832 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
3833 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
3834 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
3835 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
3836 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
3837 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
3838 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
3839 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
3840 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
3841 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
3842 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
3843 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
3844 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
3845 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
3846 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
3847 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
3848 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
3849 };
3850 
3851 #undef PRE_EX
3852 #undef POST_EX
3853 #undef POST_MEM
3854 
3855 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3856 			       struct x86_instruction_info *info,
3857 			       enum x86_intercept_stage stage,
3858 			       struct x86_exception *exception)
3859 {
3860 	struct vcpu_svm *svm = to_svm(vcpu);
3861 	int vmexit, ret = X86EMUL_CONTINUE;
3862 	struct __x86_intercept icpt_info;
3863 	struct vmcb *vmcb = svm->vmcb;
3864 
3865 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3866 		goto out;
3867 
3868 	icpt_info = x86_intercept_map[info->intercept];
3869 
3870 	if (stage != icpt_info.stage)
3871 		goto out;
3872 
3873 	switch (icpt_info.exit_code) {
3874 	case SVM_EXIT_READ_CR0:
3875 		if (info->intercept == x86_intercept_cr_read)
3876 			icpt_info.exit_code += info->modrm_reg;
3877 		break;
3878 	case SVM_EXIT_WRITE_CR0: {
3879 		unsigned long cr0, val;
3880 
3881 		if (info->intercept == x86_intercept_cr_write)
3882 			icpt_info.exit_code += info->modrm_reg;
3883 
3884 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3885 		    info->intercept == x86_intercept_clts)
3886 			break;
3887 
3888 		if (!(vmcb_is_intercept(&svm->nested.ctl,
3889 					INTERCEPT_SELECTIVE_CR0)))
3890 			break;
3891 
3892 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3893 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
3894 
3895 		if (info->intercept == x86_intercept_lmsw) {
3896 			cr0 &= 0xfUL;
3897 			val &= 0xfUL;
3898 			/* lmsw can't clear PE - catch this here */
3899 			if (cr0 & X86_CR0_PE)
3900 				val |= X86_CR0_PE;
3901 		}
3902 
3903 		if (cr0 ^ val)
3904 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3905 
3906 		break;
3907 	}
3908 	case SVM_EXIT_READ_DR0:
3909 	case SVM_EXIT_WRITE_DR0:
3910 		icpt_info.exit_code += info->modrm_reg;
3911 		break;
3912 	case SVM_EXIT_MSR:
3913 		if (info->intercept == x86_intercept_wrmsr)
3914 			vmcb->control.exit_info_1 = 1;
3915 		else
3916 			vmcb->control.exit_info_1 = 0;
3917 		break;
3918 	case SVM_EXIT_PAUSE:
3919 		/*
3920 		 * We get this for NOP only, but pause
3921 		 * is rep not, check this here
3922 		 */
3923 		if (info->rep_prefix != REPE_PREFIX)
3924 			goto out;
3925 		break;
3926 	case SVM_EXIT_IOIO: {
3927 		u64 exit_info;
3928 		u32 bytes;
3929 
3930 		if (info->intercept == x86_intercept_in ||
3931 		    info->intercept == x86_intercept_ins) {
3932 			exit_info = ((info->src_val & 0xffff) << 16) |
3933 				SVM_IOIO_TYPE_MASK;
3934 			bytes = info->dst_bytes;
3935 		} else {
3936 			exit_info = (info->dst_val & 0xffff) << 16;
3937 			bytes = info->src_bytes;
3938 		}
3939 
3940 		if (info->intercept == x86_intercept_outs ||
3941 		    info->intercept == x86_intercept_ins)
3942 			exit_info |= SVM_IOIO_STR_MASK;
3943 
3944 		if (info->rep_prefix)
3945 			exit_info |= SVM_IOIO_REP_MASK;
3946 
3947 		bytes = min(bytes, 4u);
3948 
3949 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
3950 
3951 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
3952 
3953 		vmcb->control.exit_info_1 = exit_info;
3954 		vmcb->control.exit_info_2 = info->next_rip;
3955 
3956 		break;
3957 	}
3958 	default:
3959 		break;
3960 	}
3961 
3962 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3963 	if (static_cpu_has(X86_FEATURE_NRIPS))
3964 		vmcb->control.next_rip  = info->next_rip;
3965 	vmcb->control.exit_code = icpt_info.exit_code;
3966 	vmexit = nested_svm_exit_handled(svm);
3967 
3968 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
3969 					   : X86EMUL_CONTINUE;
3970 
3971 out:
3972 	return ret;
3973 }
3974 
3975 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
3976 {
3977 }
3978 
3979 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
3980 {
3981 	if (!kvm_pause_in_guest(vcpu->kvm))
3982 		shrink_ple_window(vcpu);
3983 }
3984 
3985 static void svm_setup_mce(struct kvm_vcpu *vcpu)
3986 {
3987 	/* [63:9] are reserved. */
3988 	vcpu->arch.mcg_cap &= 0x1ff;
3989 }
3990 
3991 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
3992 {
3993 	struct vcpu_svm *svm = to_svm(vcpu);
3994 
3995 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
3996 	if (!gif_set(svm))
3997 		return true;
3998 
3999 	return is_smm(vcpu);
4000 }
4001 
4002 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4003 {
4004 	struct vcpu_svm *svm = to_svm(vcpu);
4005 	if (svm->nested.nested_run_pending)
4006 		return -EBUSY;
4007 
4008 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4009 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4010 		return -EBUSY;
4011 
4012 	return !svm_smi_blocked(vcpu);
4013 }
4014 
4015 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4016 {
4017 	struct vcpu_svm *svm = to_svm(vcpu);
4018 	int ret;
4019 
4020 	if (is_guest_mode(vcpu)) {
4021 		/* FED8h - SVM Guest */
4022 		put_smstate(u64, smstate, 0x7ed8, 1);
4023 		/* FEE0h - SVM Guest VMCB Physical Address */
4024 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4025 
4026 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4027 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4028 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4029 
4030 		ret = nested_svm_vmexit(svm);
4031 		if (ret)
4032 			return ret;
4033 	}
4034 	return 0;
4035 }
4036 
4037 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4038 {
4039 	struct vcpu_svm *svm = to_svm(vcpu);
4040 	struct kvm_host_map map;
4041 	int ret = 0;
4042 
4043 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4044 		u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4045 		u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4046 		u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4047 
4048 		if (guest) {
4049 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4050 				return 1;
4051 
4052 			if (!(saved_efer & EFER_SVME))
4053 				return 1;
4054 
4055 			if (kvm_vcpu_map(&svm->vcpu,
4056 					 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4057 				return 1;
4058 
4059 			if (svm_allocate_nested(svm))
4060 				return 1;
4061 
4062 			ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
4063 			kvm_vcpu_unmap(&svm->vcpu, &map, true);
4064 		}
4065 	}
4066 
4067 	return ret;
4068 }
4069 
4070 static void enable_smi_window(struct kvm_vcpu *vcpu)
4071 {
4072 	struct vcpu_svm *svm = to_svm(vcpu);
4073 
4074 	if (!gif_set(svm)) {
4075 		if (vgif_enabled(svm))
4076 			svm_set_intercept(svm, INTERCEPT_STGI);
4077 		/* STGI will cause a vm exit */
4078 	} else {
4079 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4080 	}
4081 }
4082 
4083 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4084 {
4085 	bool smep, smap, is_user;
4086 	unsigned long cr4;
4087 
4088 	/*
4089 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4090 	 *
4091 	 * Errata:
4092 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4093 	 * possible that CPU microcode implementing DecodeAssist will fail
4094 	 * to read bytes of instruction which caused #NPF. In this case,
4095 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4096 	 * return 0 instead of the correct guest instruction bytes.
4097 	 *
4098 	 * This happens because CPU microcode reading instruction bytes
4099 	 * uses a special opcode which attempts to read data using CPL=0
4100 	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
4101 	 * fault, it gives up and returns no instruction bytes.
4102 	 *
4103 	 * Detection:
4104 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4105 	 * returned 0 in GuestIntrBytes field of the VMCB.
4106 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4107 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4108 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4109 	 * a SMEP fault instead of #NPF).
4110 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4111 	 * As most guests enable SMAP if they have also enabled SMEP, use above
4112 	 * logic in order to attempt minimize false-positive of detecting errata
4113 	 * while still preserving all cases semantic correctness.
4114 	 *
4115 	 * Workaround:
4116 	 * To determine what instruction the guest was executing, the hypervisor
4117 	 * will have to decode the instruction at the instruction pointer.
4118 	 *
4119 	 * In non SEV guest, hypervisor will be able to read the guest
4120 	 * memory to decode the instruction pointer when insn_len is zero
4121 	 * so we return true to indicate that decoding is possible.
4122 	 *
4123 	 * But in the SEV guest, the guest memory is encrypted with the
4124 	 * guest specific key and hypervisor will not be able to decode the
4125 	 * instruction pointer so we will not able to workaround it. Lets
4126 	 * print the error and request to kill the guest.
4127 	 */
4128 	if (likely(!insn || insn_len))
4129 		return true;
4130 
4131 	/*
4132 	 * If RIP is invalid, go ahead with emulation which will cause an
4133 	 * internal error exit.
4134 	 */
4135 	if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4136 		return true;
4137 
4138 	cr4 = kvm_read_cr4(vcpu);
4139 	smep = cr4 & X86_CR4_SMEP;
4140 	smap = cr4 & X86_CR4_SMAP;
4141 	is_user = svm_get_cpl(vcpu) == 3;
4142 	if (smap && (!smep || is_user)) {
4143 		if (!sev_guest(vcpu->kvm))
4144 			return true;
4145 
4146 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4147 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4148 	}
4149 
4150 	return false;
4151 }
4152 
4153 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4154 {
4155 	struct vcpu_svm *svm = to_svm(vcpu);
4156 
4157 	/*
4158 	 * TODO: Last condition latch INIT signals on vCPU when
4159 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4160 	 * To properly emulate the INIT intercept,
4161 	 * svm_check_nested_events() should call nested_svm_vmexit()
4162 	 * if an INIT signal is pending.
4163 	 */
4164 	return !gif_set(svm) ||
4165 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4166 }
4167 
4168 static void svm_vm_destroy(struct kvm *kvm)
4169 {
4170 	avic_vm_destroy(kvm);
4171 	sev_vm_destroy(kvm);
4172 }
4173 
4174 static int svm_vm_init(struct kvm *kvm)
4175 {
4176 	if (!pause_filter_count || !pause_filter_thresh)
4177 		kvm->arch.pause_in_guest = true;
4178 
4179 	if (avic) {
4180 		int ret = avic_vm_init(kvm);
4181 		if (ret)
4182 			return ret;
4183 	}
4184 
4185 	kvm_apicv_init(kvm, avic);
4186 	return 0;
4187 }
4188 
4189 static struct kvm_x86_ops svm_x86_ops __initdata = {
4190 	.hardware_unsetup = svm_hardware_teardown,
4191 	.hardware_enable = svm_hardware_enable,
4192 	.hardware_disable = svm_hardware_disable,
4193 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4194 	.has_emulated_msr = svm_has_emulated_msr,
4195 
4196 	.vcpu_create = svm_create_vcpu,
4197 	.vcpu_free = svm_free_vcpu,
4198 	.vcpu_reset = svm_vcpu_reset,
4199 
4200 	.vm_size = sizeof(struct kvm_svm),
4201 	.vm_init = svm_vm_init,
4202 	.vm_destroy = svm_vm_destroy,
4203 
4204 	.prepare_guest_switch = svm_prepare_guest_switch,
4205 	.vcpu_load = svm_vcpu_load,
4206 	.vcpu_put = svm_vcpu_put,
4207 	.vcpu_blocking = svm_vcpu_blocking,
4208 	.vcpu_unblocking = svm_vcpu_unblocking,
4209 
4210 	.update_exception_bitmap = update_exception_bitmap,
4211 	.get_msr_feature = svm_get_msr_feature,
4212 	.get_msr = svm_get_msr,
4213 	.set_msr = svm_set_msr,
4214 	.get_segment_base = svm_get_segment_base,
4215 	.get_segment = svm_get_segment,
4216 	.set_segment = svm_set_segment,
4217 	.get_cpl = svm_get_cpl,
4218 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4219 	.set_cr0 = svm_set_cr0,
4220 	.set_cr4 = svm_set_cr4,
4221 	.set_efer = svm_set_efer,
4222 	.get_idt = svm_get_idt,
4223 	.set_idt = svm_set_idt,
4224 	.get_gdt = svm_get_gdt,
4225 	.set_gdt = svm_set_gdt,
4226 	.set_dr7 = svm_set_dr7,
4227 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4228 	.cache_reg = svm_cache_reg,
4229 	.get_rflags = svm_get_rflags,
4230 	.set_rflags = svm_set_rflags,
4231 
4232 	.tlb_flush_all = svm_flush_tlb,
4233 	.tlb_flush_current = svm_flush_tlb,
4234 	.tlb_flush_gva = svm_flush_tlb_gva,
4235 	.tlb_flush_guest = svm_flush_tlb,
4236 
4237 	.run = svm_vcpu_run,
4238 	.handle_exit = handle_exit,
4239 	.skip_emulated_instruction = skip_emulated_instruction,
4240 	.update_emulated_instruction = NULL,
4241 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4242 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4243 	.patch_hypercall = svm_patch_hypercall,
4244 	.set_irq = svm_set_irq,
4245 	.set_nmi = svm_inject_nmi,
4246 	.queue_exception = svm_queue_exception,
4247 	.cancel_injection = svm_cancel_injection,
4248 	.interrupt_allowed = svm_interrupt_allowed,
4249 	.nmi_allowed = svm_nmi_allowed,
4250 	.get_nmi_mask = svm_get_nmi_mask,
4251 	.set_nmi_mask = svm_set_nmi_mask,
4252 	.enable_nmi_window = enable_nmi_window,
4253 	.enable_irq_window = enable_irq_window,
4254 	.update_cr8_intercept = update_cr8_intercept,
4255 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
4256 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4257 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4258 	.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4259 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4260 	.hwapic_irr_update = svm_hwapic_irr_update,
4261 	.hwapic_isr_update = svm_hwapic_isr_update,
4262 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
4263 	.apicv_post_state_restore = avic_post_state_restore,
4264 
4265 	.set_tss_addr = svm_set_tss_addr,
4266 	.set_identity_map_addr = svm_set_identity_map_addr,
4267 	.get_mt_mask = svm_get_mt_mask,
4268 
4269 	.get_exit_info = svm_get_exit_info,
4270 
4271 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4272 
4273 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4274 
4275 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
4276 
4277 	.load_mmu_pgd = svm_load_mmu_pgd,
4278 
4279 	.check_intercept = svm_check_intercept,
4280 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4281 
4282 	.request_immediate_exit = __kvm_request_immediate_exit,
4283 
4284 	.sched_in = svm_sched_in,
4285 
4286 	.pmu_ops = &amd_pmu_ops,
4287 	.nested_ops = &svm_nested_ops,
4288 
4289 	.deliver_posted_interrupt = svm_deliver_avic_intr,
4290 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4291 	.update_pi_irte = svm_update_pi_irte,
4292 	.setup_mce = svm_setup_mce,
4293 
4294 	.smi_allowed = svm_smi_allowed,
4295 	.pre_enter_smm = svm_pre_enter_smm,
4296 	.pre_leave_smm = svm_pre_leave_smm,
4297 	.enable_smi_window = enable_smi_window,
4298 
4299 	.mem_enc_op = svm_mem_enc_op,
4300 	.mem_enc_reg_region = svm_register_enc_region,
4301 	.mem_enc_unreg_region = svm_unregister_enc_region,
4302 
4303 	.can_emulate_instruction = svm_can_emulate_instruction,
4304 
4305 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4306 
4307 	.msr_filter_changed = svm_msr_filter_changed,
4308 };
4309 
4310 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4311 	.cpu_has_kvm_support = has_svm,
4312 	.disabled_by_bios = is_disabled,
4313 	.hardware_setup = svm_hardware_setup,
4314 	.check_processor_compatibility = svm_check_processor_compat,
4315 
4316 	.runtime_ops = &svm_x86_ops,
4317 };
4318 
4319 static int __init svm_init(void)
4320 {
4321 	__unused_size_checks();
4322 
4323 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4324 			__alignof__(struct vcpu_svm), THIS_MODULE);
4325 }
4326 
4327 static void __exit svm_exit(void)
4328 {
4329 	kvm_exit();
4330 }
4331 
4332 module_init(svm_init)
4333 module_exit(svm_exit)
4334