xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision 9fa996c5)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 #include <asm/traps.h>
39 
40 #include <asm/virtext.h>
41 #include "trace.h"
42 
43 #include "svm.h"
44 #include "svm_ops.h"
45 
46 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47 
48 MODULE_AUTHOR("Qumranet");
49 MODULE_LICENSE("GPL");
50 
51 #ifdef MODULE
52 static const struct x86_cpu_id svm_cpu_id[] = {
53 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
54 	{}
55 };
56 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
57 #endif
58 
59 #define SEG_TYPE_LDT 2
60 #define SEG_TYPE_BUSY_TSS16 3
61 
62 #define SVM_FEATURE_LBRV           (1 <<  1)
63 #define SVM_FEATURE_SVML           (1 <<  2)
64 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
65 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
66 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
67 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
68 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
69 
70 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
71 
72 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
73 #define TSC_RATIO_MIN		0x0000000000000001ULL
74 #define TSC_RATIO_MAX		0x000000ffffffffffULL
75 
76 static bool erratum_383_found __read_mostly;
77 
78 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
79 
80 /*
81  * Set osvw_len to higher value when updated Revision Guides
82  * are published and we know what the new status bits are
83  */
84 static uint64_t osvw_len = 4, osvw_status;
85 
86 static DEFINE_PER_CPU(u64, current_tsc_ratio);
87 #define TSC_RATIO_DEFAULT	0x0100000000ULL
88 
89 static const struct svm_direct_access_msrs {
90 	u32 index;   /* Index of the MSR */
91 	bool always; /* True if intercept is initially cleared */
92 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
93 	{ .index = MSR_STAR,				.always = true  },
94 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
95 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
96 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
97 #ifdef CONFIG_X86_64
98 	{ .index = MSR_GS_BASE,				.always = true  },
99 	{ .index = MSR_FS_BASE,				.always = true  },
100 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
101 	{ .index = MSR_LSTAR,				.always = true  },
102 	{ .index = MSR_CSTAR,				.always = true  },
103 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
104 #endif
105 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
106 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
107 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
108 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
109 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
110 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
111 	{ .index = MSR_EFER,				.always = false },
112 	{ .index = MSR_IA32_CR_PAT,			.always = false },
113 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
114 	{ .index = MSR_INVALID,				.always = false },
115 };
116 
117 /*
118  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119  * pause_filter_count: On processors that support Pause filtering(indicated
120  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
121  *	count value. On VMRUN this value is loaded into an internal counter.
122  *	Each time a pause instruction is executed, this counter is decremented
123  *	until it reaches zero at which time a #VMEXIT is generated if pause
124  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
125  *	Intercept Filtering for more details.
126  *	This also indicate if ple logic enabled.
127  *
128  * pause_filter_thresh: In addition, some processor families support advanced
129  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
130  *	the amount of time a guest is allowed to execute in a pause loop.
131  *	In this mode, a 16-bit pause filter threshold field is added in the
132  *	VMCB. The threshold value is a cycle count that is used to reset the
133  *	pause counter. As with simple pause filtering, VMRUN loads the pause
134  *	count value from VMCB into an internal counter. Then, on each pause
135  *	instruction the hardware checks the elapsed number of cycles since
136  *	the most recent pause instruction against the pause filter threshold.
137  *	If the elapsed cycle count is greater than the pause filter threshold,
138  *	then the internal pause count is reloaded from the VMCB and execution
139  *	continues. If the elapsed cycle count is less than the pause filter
140  *	threshold, then the internal pause count is decremented. If the count
141  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
142  *	triggered. If advanced pause filtering is supported and pause filter
143  *	threshold field is set to zero, the filter will operate in the simpler,
144  *	count only mode.
145  */
146 
147 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
148 module_param(pause_filter_thresh, ushort, 0444);
149 
150 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
151 module_param(pause_filter_count, ushort, 0444);
152 
153 /* Default doubles per-vcpu window every exit. */
154 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
155 module_param(pause_filter_count_grow, ushort, 0444);
156 
157 /* Default resets per-vcpu window every exit to pause_filter_count. */
158 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
159 module_param(pause_filter_count_shrink, ushort, 0444);
160 
161 /* Default is to compute the maximum so we can never overflow. */
162 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
163 module_param(pause_filter_count_max, ushort, 0444);
164 
165 /*
166  * Use nested page tables by default.  Note, NPT may get forced off by
167  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
168  */
169 bool npt_enabled = true;
170 module_param_named(npt, npt_enabled, bool, 0444);
171 
172 /* allow nested virtualization in KVM/SVM */
173 static int nested = true;
174 module_param(nested, int, S_IRUGO);
175 
176 /* enable/disable Next RIP Save */
177 static int nrips = true;
178 module_param(nrips, int, 0444);
179 
180 /* enable/disable Virtual VMLOAD VMSAVE */
181 static int vls = true;
182 module_param(vls, int, 0444);
183 
184 /* enable/disable Virtual GIF */
185 static int vgif = true;
186 module_param(vgif, int, 0444);
187 
188 bool __read_mostly dump_invalid_vmcb;
189 module_param(dump_invalid_vmcb, bool, 0644);
190 
191 static bool svm_gp_erratum_intercept = true;
192 
193 static u8 rsm_ins_bytes[] = "\x0f\xaa";
194 
195 static unsigned long iopm_base;
196 
197 struct kvm_ldttss_desc {
198 	u16 limit0;
199 	u16 base0;
200 	unsigned base1:8, type:5, dpl:2, p:1;
201 	unsigned limit1:4, zero0:3, g:1, base2:8;
202 	u32 base3;
203 	u32 zero1;
204 } __attribute__((packed));
205 
206 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
207 
208 /*
209  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
210  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
211  *
212  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
213  * defer the restoration of TSC_AUX until the CPU returns to userspace.
214  */
215 #define TSC_AUX_URET_SLOT	0
216 
217 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
218 
219 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
220 #define MSRS_RANGE_SIZE 2048
221 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
222 
223 u32 svm_msrpm_offset(u32 msr)
224 {
225 	u32 offset;
226 	int i;
227 
228 	for (i = 0; i < NUM_MSR_MAPS; i++) {
229 		if (msr < msrpm_ranges[i] ||
230 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
231 			continue;
232 
233 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
234 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
235 
236 		/* Now we have the u8 offset - but need the u32 offset */
237 		return offset / 4;
238 	}
239 
240 	/* MSR not in any range */
241 	return MSR_INVALID;
242 }
243 
244 #define MAX_INST_SIZE 15
245 
246 static int get_max_npt_level(void)
247 {
248 #ifdef CONFIG_X86_64
249 	return PT64_ROOT_4LEVEL;
250 #else
251 	return PT32E_ROOT_LEVEL;
252 #endif
253 }
254 
255 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
256 {
257 	struct vcpu_svm *svm = to_svm(vcpu);
258 	u64 old_efer = vcpu->arch.efer;
259 	vcpu->arch.efer = efer;
260 
261 	if (!npt_enabled) {
262 		/* Shadow paging assumes NX to be available.  */
263 		efer |= EFER_NX;
264 
265 		if (!(efer & EFER_LMA))
266 			efer &= ~EFER_LME;
267 	}
268 
269 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
270 		if (!(efer & EFER_SVME)) {
271 			svm_leave_nested(svm);
272 			svm_set_gif(svm, true);
273 			/* #GP intercept is still needed for vmware backdoor */
274 			if (!enable_vmware_backdoor)
275 				clr_exception_intercept(svm, GP_VECTOR);
276 
277 			/*
278 			 * Free the nested guest state, unless we are in SMM.
279 			 * In this case we will return to the nested guest
280 			 * as soon as we leave SMM.
281 			 */
282 			if (!is_smm(vcpu))
283 				svm_free_nested(svm);
284 
285 		} else {
286 			int ret = svm_allocate_nested(svm);
287 
288 			if (ret) {
289 				vcpu->arch.efer = old_efer;
290 				return ret;
291 			}
292 
293 			if (svm_gp_erratum_intercept)
294 				set_exception_intercept(svm, GP_VECTOR);
295 		}
296 	}
297 
298 	svm->vmcb->save.efer = efer | EFER_SVME;
299 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
300 	return 0;
301 }
302 
303 static int is_external_interrupt(u32 info)
304 {
305 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
306 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
307 }
308 
309 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
310 {
311 	struct vcpu_svm *svm = to_svm(vcpu);
312 	u32 ret = 0;
313 
314 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
315 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
316 	return ret;
317 }
318 
319 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
320 {
321 	struct vcpu_svm *svm = to_svm(vcpu);
322 
323 	if (mask == 0)
324 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
325 	else
326 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
327 
328 }
329 
330 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
331 {
332 	struct vcpu_svm *svm = to_svm(vcpu);
333 
334 	/*
335 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
336 	 * the type of exit and the #VC handler in the guest.
337 	 */
338 	if (sev_es_guest(vcpu->kvm))
339 		goto done;
340 
341 	if (nrips && svm->vmcb->control.next_rip != 0) {
342 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
343 		svm->next_rip = svm->vmcb->control.next_rip;
344 	}
345 
346 	if (!svm->next_rip) {
347 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
348 			return 0;
349 	} else {
350 		kvm_rip_write(vcpu, svm->next_rip);
351 	}
352 
353 done:
354 	svm_set_interrupt_shadow(vcpu, 0);
355 
356 	return 1;
357 }
358 
359 static void svm_queue_exception(struct kvm_vcpu *vcpu)
360 {
361 	struct vcpu_svm *svm = to_svm(vcpu);
362 	unsigned nr = vcpu->arch.exception.nr;
363 	bool has_error_code = vcpu->arch.exception.has_error_code;
364 	u32 error_code = vcpu->arch.exception.error_code;
365 
366 	kvm_deliver_exception_payload(vcpu);
367 
368 	if (nr == BP_VECTOR && !nrips) {
369 		unsigned long rip, old_rip = kvm_rip_read(vcpu);
370 
371 		/*
372 		 * For guest debugging where we have to reinject #BP if some
373 		 * INT3 is guest-owned:
374 		 * Emulate nRIP by moving RIP forward. Will fail if injection
375 		 * raises a fault that is not intercepted. Still better than
376 		 * failing in all cases.
377 		 */
378 		(void)skip_emulated_instruction(vcpu);
379 		rip = kvm_rip_read(vcpu);
380 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
381 		svm->int3_injected = rip - old_rip;
382 	}
383 
384 	svm->vmcb->control.event_inj = nr
385 		| SVM_EVTINJ_VALID
386 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
387 		| SVM_EVTINJ_TYPE_EXEPT;
388 	svm->vmcb->control.event_inj_err = error_code;
389 }
390 
391 static void svm_init_erratum_383(void)
392 {
393 	u32 low, high;
394 	int err;
395 	u64 val;
396 
397 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
398 		return;
399 
400 	/* Use _safe variants to not break nested virtualization */
401 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
402 	if (err)
403 		return;
404 
405 	val |= (1ULL << 47);
406 
407 	low  = lower_32_bits(val);
408 	high = upper_32_bits(val);
409 
410 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
411 
412 	erratum_383_found = true;
413 }
414 
415 static void svm_init_osvw(struct kvm_vcpu *vcpu)
416 {
417 	/*
418 	 * Guests should see errata 400 and 415 as fixed (assuming that
419 	 * HLT and IO instructions are intercepted).
420 	 */
421 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
422 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
423 
424 	/*
425 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
426 	 * all osvw.status bits inside that length, including bit 0 (which is
427 	 * reserved for erratum 298), are valid. However, if host processor's
428 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
429 	 * be conservative here and therefore we tell the guest that erratum 298
430 	 * is present (because we really don't know).
431 	 */
432 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
433 		vcpu->arch.osvw.status |= 1;
434 }
435 
436 static int has_svm(void)
437 {
438 	const char *msg;
439 
440 	if (!cpu_has_svm(&msg)) {
441 		printk(KERN_INFO "has_svm: %s\n", msg);
442 		return 0;
443 	}
444 
445 	if (sev_active()) {
446 		pr_info("KVM is unsupported when running as an SEV guest\n");
447 		return 0;
448 	}
449 
450 	return 1;
451 }
452 
453 static void svm_hardware_disable(void)
454 {
455 	/* Make sure we clean up behind us */
456 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
457 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
458 
459 	cpu_svm_disable();
460 
461 	amd_pmu_disable_virt();
462 }
463 
464 static int svm_hardware_enable(void)
465 {
466 
467 	struct svm_cpu_data *sd;
468 	uint64_t efer;
469 	struct desc_struct *gdt;
470 	int me = raw_smp_processor_id();
471 
472 	rdmsrl(MSR_EFER, efer);
473 	if (efer & EFER_SVME)
474 		return -EBUSY;
475 
476 	if (!has_svm()) {
477 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
478 		return -EINVAL;
479 	}
480 	sd = per_cpu(svm_data, me);
481 	if (!sd) {
482 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
483 		return -EINVAL;
484 	}
485 
486 	sd->asid_generation = 1;
487 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
488 	sd->next_asid = sd->max_asid + 1;
489 	sd->min_asid = max_sev_asid + 1;
490 
491 	gdt = get_current_gdt_rw();
492 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
493 
494 	wrmsrl(MSR_EFER, efer | EFER_SVME);
495 
496 	wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
497 
498 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
499 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
500 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
501 	}
502 
503 
504 	/*
505 	 * Get OSVW bits.
506 	 *
507 	 * Note that it is possible to have a system with mixed processor
508 	 * revisions and therefore different OSVW bits. If bits are not the same
509 	 * on different processors then choose the worst case (i.e. if erratum
510 	 * is present on one processor and not on another then assume that the
511 	 * erratum is present everywhere).
512 	 */
513 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
514 		uint64_t len, status = 0;
515 		int err;
516 
517 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
518 		if (!err)
519 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
520 						      &err);
521 
522 		if (err)
523 			osvw_status = osvw_len = 0;
524 		else {
525 			if (len < osvw_len)
526 				osvw_len = len;
527 			osvw_status |= status;
528 			osvw_status &= (1ULL << osvw_len) - 1;
529 		}
530 	} else
531 		osvw_status = osvw_len = 0;
532 
533 	svm_init_erratum_383();
534 
535 	amd_pmu_enable_virt();
536 
537 	return 0;
538 }
539 
540 static void svm_cpu_uninit(int cpu)
541 {
542 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
543 
544 	if (!sd)
545 		return;
546 
547 	per_cpu(svm_data, cpu) = NULL;
548 	kfree(sd->sev_vmcbs);
549 	__free_page(sd->save_area);
550 	kfree(sd);
551 }
552 
553 static int svm_cpu_init(int cpu)
554 {
555 	struct svm_cpu_data *sd;
556 	int ret = -ENOMEM;
557 
558 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
559 	if (!sd)
560 		return ret;
561 	sd->cpu = cpu;
562 	sd->save_area = alloc_page(GFP_KERNEL);
563 	if (!sd->save_area)
564 		goto free_cpu_data;
565 
566 	clear_page(page_address(sd->save_area));
567 
568 	ret = sev_cpu_init(sd);
569 	if (ret)
570 		goto free_save_area;
571 
572 	per_cpu(svm_data, cpu) = sd;
573 
574 	return 0;
575 
576 free_save_area:
577 	__free_page(sd->save_area);
578 free_cpu_data:
579 	kfree(sd);
580 	return ret;
581 
582 }
583 
584 static int direct_access_msr_slot(u32 msr)
585 {
586 	u32 i;
587 
588 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
589 		if (direct_access_msrs[i].index == msr)
590 			return i;
591 
592 	return -ENOENT;
593 }
594 
595 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
596 				     int write)
597 {
598 	struct vcpu_svm *svm = to_svm(vcpu);
599 	int slot = direct_access_msr_slot(msr);
600 
601 	if (slot == -ENOENT)
602 		return;
603 
604 	/* Set the shadow bitmaps to the desired intercept states */
605 	if (read)
606 		set_bit(slot, svm->shadow_msr_intercept.read);
607 	else
608 		clear_bit(slot, svm->shadow_msr_intercept.read);
609 
610 	if (write)
611 		set_bit(slot, svm->shadow_msr_intercept.write);
612 	else
613 		clear_bit(slot, svm->shadow_msr_intercept.write);
614 }
615 
616 static bool valid_msr_intercept(u32 index)
617 {
618 	return direct_access_msr_slot(index) != -ENOENT;
619 }
620 
621 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
622 {
623 	u8 bit_write;
624 	unsigned long tmp;
625 	u32 offset;
626 	u32 *msrpm;
627 
628 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
629 				      to_svm(vcpu)->msrpm;
630 
631 	offset    = svm_msrpm_offset(msr);
632 	bit_write = 2 * (msr & 0x0f) + 1;
633 	tmp       = msrpm[offset];
634 
635 	BUG_ON(offset == MSR_INVALID);
636 
637 	return !!test_bit(bit_write,  &tmp);
638 }
639 
640 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
641 					u32 msr, int read, int write)
642 {
643 	u8 bit_read, bit_write;
644 	unsigned long tmp;
645 	u32 offset;
646 
647 	/*
648 	 * If this warning triggers extend the direct_access_msrs list at the
649 	 * beginning of the file
650 	 */
651 	WARN_ON(!valid_msr_intercept(msr));
652 
653 	/* Enforce non allowed MSRs to trap */
654 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
655 		read = 0;
656 
657 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
658 		write = 0;
659 
660 	offset    = svm_msrpm_offset(msr);
661 	bit_read  = 2 * (msr & 0x0f);
662 	bit_write = 2 * (msr & 0x0f) + 1;
663 	tmp       = msrpm[offset];
664 
665 	BUG_ON(offset == MSR_INVALID);
666 
667 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
668 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
669 
670 	msrpm[offset] = tmp;
671 }
672 
673 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
674 			  int read, int write)
675 {
676 	set_shadow_msr_intercept(vcpu, msr, read, write);
677 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
678 }
679 
680 u32 *svm_vcpu_alloc_msrpm(void)
681 {
682 	unsigned int order = get_order(MSRPM_SIZE);
683 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
684 	u32 *msrpm;
685 
686 	if (!pages)
687 		return NULL;
688 
689 	msrpm = page_address(pages);
690 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
691 
692 	return msrpm;
693 }
694 
695 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
696 {
697 	int i;
698 
699 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
700 		if (!direct_access_msrs[i].always)
701 			continue;
702 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
703 	}
704 }
705 
706 
707 void svm_vcpu_free_msrpm(u32 *msrpm)
708 {
709 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
710 }
711 
712 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
713 {
714 	struct vcpu_svm *svm = to_svm(vcpu);
715 	u32 i;
716 
717 	/*
718 	 * Set intercept permissions for all direct access MSRs again. They
719 	 * will automatically get filtered through the MSR filter, so we are
720 	 * back in sync after this.
721 	 */
722 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
723 		u32 msr = direct_access_msrs[i].index;
724 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
725 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
726 
727 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
728 	}
729 }
730 
731 static void add_msr_offset(u32 offset)
732 {
733 	int i;
734 
735 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
736 
737 		/* Offset already in list? */
738 		if (msrpm_offsets[i] == offset)
739 			return;
740 
741 		/* Slot used by another offset? */
742 		if (msrpm_offsets[i] != MSR_INVALID)
743 			continue;
744 
745 		/* Add offset to list */
746 		msrpm_offsets[i] = offset;
747 
748 		return;
749 	}
750 
751 	/*
752 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
753 	 * increase MSRPM_OFFSETS in this case.
754 	 */
755 	BUG();
756 }
757 
758 static void init_msrpm_offsets(void)
759 {
760 	int i;
761 
762 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
763 
764 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
765 		u32 offset;
766 
767 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
768 		BUG_ON(offset == MSR_INVALID);
769 
770 		add_msr_offset(offset);
771 	}
772 }
773 
774 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
775 {
776 	struct vcpu_svm *svm = to_svm(vcpu);
777 
778 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
779 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
780 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
781 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
782 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
783 }
784 
785 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
786 {
787 	struct vcpu_svm *svm = to_svm(vcpu);
788 
789 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
790 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
791 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
792 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
793 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
794 }
795 
796 void disable_nmi_singlestep(struct vcpu_svm *svm)
797 {
798 	svm->nmi_singlestep = false;
799 
800 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
801 		/* Clear our flags if they were not set by the guest */
802 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
803 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
804 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
805 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
806 	}
807 }
808 
809 static void grow_ple_window(struct kvm_vcpu *vcpu)
810 {
811 	struct vcpu_svm *svm = to_svm(vcpu);
812 	struct vmcb_control_area *control = &svm->vmcb->control;
813 	int old = control->pause_filter_count;
814 
815 	control->pause_filter_count = __grow_ple_window(old,
816 							pause_filter_count,
817 							pause_filter_count_grow,
818 							pause_filter_count_max);
819 
820 	if (control->pause_filter_count != old) {
821 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
822 		trace_kvm_ple_window_update(vcpu->vcpu_id,
823 					    control->pause_filter_count, old);
824 	}
825 }
826 
827 static void shrink_ple_window(struct kvm_vcpu *vcpu)
828 {
829 	struct vcpu_svm *svm = to_svm(vcpu);
830 	struct vmcb_control_area *control = &svm->vmcb->control;
831 	int old = control->pause_filter_count;
832 
833 	control->pause_filter_count =
834 				__shrink_ple_window(old,
835 						    pause_filter_count,
836 						    pause_filter_count_shrink,
837 						    pause_filter_count);
838 	if (control->pause_filter_count != old) {
839 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
840 		trace_kvm_ple_window_update(vcpu->vcpu_id,
841 					    control->pause_filter_count, old);
842 	}
843 }
844 
845 /*
846  * The default MMIO mask is a single bit (excluding the present bit),
847  * which could conflict with the memory encryption bit. Check for
848  * memory encryption support and override the default MMIO mask if
849  * memory encryption is enabled.
850  */
851 static __init void svm_adjust_mmio_mask(void)
852 {
853 	unsigned int enc_bit, mask_bit;
854 	u64 msr, mask;
855 
856 	/* If there is no memory encryption support, use existing mask */
857 	if (cpuid_eax(0x80000000) < 0x8000001f)
858 		return;
859 
860 	/* If memory encryption is not enabled, use existing mask */
861 	rdmsrl(MSR_K8_SYSCFG, msr);
862 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
863 		return;
864 
865 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
866 	mask_bit = boot_cpu_data.x86_phys_bits;
867 
868 	/* Increment the mask bit if it is the same as the encryption bit */
869 	if (enc_bit == mask_bit)
870 		mask_bit++;
871 
872 	/*
873 	 * If the mask bit location is below 52, then some bits above the
874 	 * physical addressing limit will always be reserved, so use the
875 	 * rsvd_bits() function to generate the mask. This mask, along with
876 	 * the present bit, will be used to generate a page fault with
877 	 * PFER.RSV = 1.
878 	 *
879 	 * If the mask bit location is 52 (or above), then clear the mask.
880 	 */
881 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
882 
883 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
884 }
885 
886 static void svm_hardware_teardown(void)
887 {
888 	int cpu;
889 
890 	sev_hardware_teardown();
891 
892 	for_each_possible_cpu(cpu)
893 		svm_cpu_uninit(cpu);
894 
895 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
896 	get_order(IOPM_SIZE));
897 	iopm_base = 0;
898 }
899 
900 static __init void svm_set_cpu_caps(void)
901 {
902 	kvm_set_cpu_caps();
903 
904 	supported_xss = 0;
905 
906 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
907 	if (nested) {
908 		kvm_cpu_cap_set(X86_FEATURE_SVM);
909 
910 		if (nrips)
911 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
912 
913 		if (npt_enabled)
914 			kvm_cpu_cap_set(X86_FEATURE_NPT);
915 
916 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
917 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
918 	}
919 
920 	/* CPUID 0x80000008 */
921 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
922 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
923 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
924 
925 	/* CPUID 0x8000001F (SME/SEV features) */
926 	sev_set_cpu_caps();
927 }
928 
929 static __init int svm_hardware_setup(void)
930 {
931 	int cpu;
932 	struct page *iopm_pages;
933 	void *iopm_va;
934 	int r;
935 	unsigned int order = get_order(IOPM_SIZE);
936 
937 	iopm_pages = alloc_pages(GFP_KERNEL, order);
938 
939 	if (!iopm_pages)
940 		return -ENOMEM;
941 
942 	iopm_va = page_address(iopm_pages);
943 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
944 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
945 
946 	init_msrpm_offsets();
947 
948 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
949 
950 	if (boot_cpu_has(X86_FEATURE_NX))
951 		kvm_enable_efer_bits(EFER_NX);
952 
953 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
954 		kvm_enable_efer_bits(EFER_FFXSR);
955 
956 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
957 		kvm_has_tsc_control = true;
958 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
959 		kvm_tsc_scaling_ratio_frac_bits = 32;
960 	}
961 
962 	if (boot_cpu_has(X86_FEATURE_RDTSCP))
963 		kvm_define_user_return_msr(TSC_AUX_URET_SLOT, MSR_TSC_AUX);
964 
965 	/* Check for pause filtering support */
966 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
967 		pause_filter_count = 0;
968 		pause_filter_thresh = 0;
969 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
970 		pause_filter_thresh = 0;
971 	}
972 
973 	if (nested) {
974 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
975 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
976 	}
977 
978 	/*
979 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
980 	 * NPT isn't supported if the host is using 2-level paging since host
981 	 * CR4 is unchanged on VMRUN.
982 	 */
983 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
984 		npt_enabled = false;
985 
986 	if (!boot_cpu_has(X86_FEATURE_NPT))
987 		npt_enabled = false;
988 
989 	kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
990 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
991 
992 	/* Note, SEV setup consumes npt_enabled. */
993 	sev_hardware_setup();
994 
995 	svm_adjust_mmio_mask();
996 
997 	for_each_possible_cpu(cpu) {
998 		r = svm_cpu_init(cpu);
999 		if (r)
1000 			goto err;
1001 	}
1002 
1003 	if (nrips) {
1004 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
1005 			nrips = false;
1006 	}
1007 
1008 	if (avic) {
1009 		if (!npt_enabled ||
1010 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
1011 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1012 			avic = false;
1013 		} else {
1014 			pr_info("AVIC enabled\n");
1015 
1016 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1017 		}
1018 	}
1019 
1020 	if (vls) {
1021 		if (!npt_enabled ||
1022 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1023 		    !IS_ENABLED(CONFIG_X86_64)) {
1024 			vls = false;
1025 		} else {
1026 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1027 		}
1028 	}
1029 
1030 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
1031 		svm_gp_erratum_intercept = false;
1032 
1033 	if (vgif) {
1034 		if (!boot_cpu_has(X86_FEATURE_VGIF))
1035 			vgif = false;
1036 		else
1037 			pr_info("Virtual GIF supported\n");
1038 	}
1039 
1040 	svm_set_cpu_caps();
1041 
1042 	/*
1043 	 * It seems that on AMD processors PTE's accessed bit is
1044 	 * being set by the CPU hardware before the NPF vmexit.
1045 	 * This is not expected behaviour and our tests fail because
1046 	 * of it.
1047 	 * A workaround here is to disable support for
1048 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1049 	 * In this case userspace can know if there is support using
1050 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1051 	 * it
1052 	 * If future AMD CPU models change the behaviour described above,
1053 	 * this variable can be changed accordingly
1054 	 */
1055 	allow_smaller_maxphyaddr = !npt_enabled;
1056 
1057 	return 0;
1058 
1059 err:
1060 	svm_hardware_teardown();
1061 	return r;
1062 }
1063 
1064 static void init_seg(struct vmcb_seg *seg)
1065 {
1066 	seg->selector = 0;
1067 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1068 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1069 	seg->limit = 0xffff;
1070 	seg->base = 0;
1071 }
1072 
1073 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1074 {
1075 	seg->selector = 0;
1076 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1077 	seg->limit = 0xffff;
1078 	seg->base = 0;
1079 }
1080 
1081 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1082 {
1083 	struct vcpu_svm *svm = to_svm(vcpu);
1084 	u64 g_tsc_offset = 0;
1085 
1086 	if (is_guest_mode(vcpu)) {
1087 		/* Write L1's TSC offset.  */
1088 		g_tsc_offset = svm->vmcb->control.tsc_offset -
1089 			       svm->vmcb01.ptr->control.tsc_offset;
1090 		svm->vmcb01.ptr->control.tsc_offset = offset;
1091 	}
1092 
1093 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1094 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
1095 				   offset);
1096 
1097 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1098 
1099 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1100 	return svm->vmcb->control.tsc_offset;
1101 }
1102 
1103 static void svm_check_invpcid(struct vcpu_svm *svm)
1104 {
1105 	/*
1106 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1107 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1108 	 */
1109 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1110 		if (!npt_enabled ||
1111 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1112 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1113 		else
1114 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1115 	}
1116 }
1117 
1118 static void init_vmcb(struct kvm_vcpu *vcpu)
1119 {
1120 	struct vcpu_svm *svm = to_svm(vcpu);
1121 	struct vmcb_control_area *control = &svm->vmcb->control;
1122 	struct vmcb_save_area *save = &svm->vmcb->save;
1123 
1124 	vcpu->arch.hflags = 0;
1125 
1126 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1127 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1128 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1129 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1130 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1131 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1132 	if (!kvm_vcpu_apicv_active(vcpu))
1133 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1134 
1135 	set_dr_intercepts(svm);
1136 
1137 	set_exception_intercept(svm, PF_VECTOR);
1138 	set_exception_intercept(svm, UD_VECTOR);
1139 	set_exception_intercept(svm, MC_VECTOR);
1140 	set_exception_intercept(svm, AC_VECTOR);
1141 	set_exception_intercept(svm, DB_VECTOR);
1142 	/*
1143 	 * Guest access to VMware backdoor ports could legitimately
1144 	 * trigger #GP because of TSS I/O permission bitmap.
1145 	 * We intercept those #GP and allow access to them anyway
1146 	 * as VMware does.
1147 	 */
1148 	if (enable_vmware_backdoor)
1149 		set_exception_intercept(svm, GP_VECTOR);
1150 
1151 	svm_set_intercept(svm, INTERCEPT_INTR);
1152 	svm_set_intercept(svm, INTERCEPT_NMI);
1153 	svm_set_intercept(svm, INTERCEPT_SMI);
1154 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1155 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1156 	svm_set_intercept(svm, INTERCEPT_CPUID);
1157 	svm_set_intercept(svm, INTERCEPT_INVD);
1158 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1159 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1160 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1161 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1162 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1163 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1164 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1165 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1166 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1167 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1168 	svm_set_intercept(svm, INTERCEPT_STGI);
1169 	svm_set_intercept(svm, INTERCEPT_CLGI);
1170 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1171 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1172 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1173 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1174 	svm_set_intercept(svm, INTERCEPT_RSM);
1175 
1176 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1177 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1178 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1179 	}
1180 
1181 	if (!kvm_hlt_in_guest(vcpu->kvm))
1182 		svm_set_intercept(svm, INTERCEPT_HLT);
1183 
1184 	control->iopm_base_pa = __sme_set(iopm_base);
1185 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1186 	control->int_ctl = V_INTR_MASKING_MASK;
1187 
1188 	init_seg(&save->es);
1189 	init_seg(&save->ss);
1190 	init_seg(&save->ds);
1191 	init_seg(&save->fs);
1192 	init_seg(&save->gs);
1193 
1194 	save->cs.selector = 0xf000;
1195 	save->cs.base = 0xffff0000;
1196 	/* Executable/Readable Code Segment */
1197 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1198 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1199 	save->cs.limit = 0xffff;
1200 
1201 	save->gdtr.limit = 0xffff;
1202 	save->idtr.limit = 0xffff;
1203 
1204 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1205 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1206 
1207 	svm_set_cr4(vcpu, 0);
1208 	svm_set_efer(vcpu, 0);
1209 	save->dr6 = 0xffff0ff0;
1210 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
1211 	save->rip = 0x0000fff0;
1212 	vcpu->arch.regs[VCPU_REGS_RIP] = save->rip;
1213 
1214 	/*
1215 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1216 	 * It also updates the guest-visible cr0 value.
1217 	 */
1218 	svm_set_cr0(vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1219 	kvm_mmu_reset_context(vcpu);
1220 
1221 	save->cr4 = X86_CR4_PAE;
1222 	/* rdx = ?? */
1223 
1224 	if (npt_enabled) {
1225 		/* Setup VMCB for Nested Paging */
1226 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1227 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1228 		clr_exception_intercept(svm, PF_VECTOR);
1229 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1230 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1231 		save->g_pat = vcpu->arch.pat;
1232 		save->cr3 = 0;
1233 		save->cr4 = 0;
1234 	}
1235 	svm->current_vmcb->asid_generation = 0;
1236 	svm->asid = 0;
1237 
1238 	svm->nested.vmcb12_gpa = 0;
1239 	svm->nested.last_vmcb12_gpa = 0;
1240 	vcpu->arch.hflags = 0;
1241 
1242 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1243 		control->pause_filter_count = pause_filter_count;
1244 		if (pause_filter_thresh)
1245 			control->pause_filter_thresh = pause_filter_thresh;
1246 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1247 	} else {
1248 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1249 	}
1250 
1251 	svm_check_invpcid(svm);
1252 
1253 	/*
1254 	 * If the host supports V_SPEC_CTRL then disable the interception
1255 	 * of MSR_IA32_SPEC_CTRL.
1256 	 */
1257 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1258 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1259 
1260 	if (kvm_vcpu_apicv_active(vcpu))
1261 		avic_init_vmcb(svm);
1262 
1263 	if (vgif) {
1264 		svm_clr_intercept(svm, INTERCEPT_STGI);
1265 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1266 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1267 	}
1268 
1269 	if (sev_guest(vcpu->kvm)) {
1270 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1271 		clr_exception_intercept(svm, UD_VECTOR);
1272 
1273 		if (sev_es_guest(vcpu->kvm)) {
1274 			/* Perform SEV-ES specific VMCB updates */
1275 			sev_es_init_vmcb(svm);
1276 		}
1277 	}
1278 
1279 	vmcb_mark_all_dirty(svm->vmcb);
1280 
1281 	enable_gif(svm);
1282 
1283 }
1284 
1285 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1286 {
1287 	struct vcpu_svm *svm = to_svm(vcpu);
1288 	u32 dummy;
1289 	u32 eax = 1;
1290 
1291 	svm->spec_ctrl = 0;
1292 	svm->virt_spec_ctrl = 0;
1293 
1294 	if (!init_event) {
1295 		vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1296 				       MSR_IA32_APICBASE_ENABLE;
1297 		if (kvm_vcpu_is_reset_bsp(vcpu))
1298 			vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP;
1299 	}
1300 	init_vmcb(vcpu);
1301 
1302 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1303 	kvm_rdx_write(vcpu, eax);
1304 
1305 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1306 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1307 }
1308 
1309 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1310 {
1311 	svm->current_vmcb = target_vmcb;
1312 	svm->vmcb = target_vmcb->ptr;
1313 }
1314 
1315 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1316 {
1317 	struct vcpu_svm *svm;
1318 	struct page *vmcb01_page;
1319 	struct page *vmsa_page = NULL;
1320 	int err;
1321 
1322 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1323 	svm = to_svm(vcpu);
1324 
1325 	err = -ENOMEM;
1326 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1327 	if (!vmcb01_page)
1328 		goto out;
1329 
1330 	if (sev_es_guest(vcpu->kvm)) {
1331 		/*
1332 		 * SEV-ES guests require a separate VMSA page used to contain
1333 		 * the encrypted register state of the guest.
1334 		 */
1335 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1336 		if (!vmsa_page)
1337 			goto error_free_vmcb_page;
1338 
1339 		/*
1340 		 * SEV-ES guests maintain an encrypted version of their FPU
1341 		 * state which is restored and saved on VMRUN and VMEXIT.
1342 		 * Free the fpu structure to prevent KVM from attempting to
1343 		 * access the FPU state.
1344 		 */
1345 		kvm_free_guest_fpu(vcpu);
1346 	}
1347 
1348 	err = avic_init_vcpu(svm);
1349 	if (err)
1350 		goto error_free_vmsa_page;
1351 
1352 	/* We initialize this flag to true to make sure that the is_running
1353 	 * bit would be set the first time the vcpu is loaded.
1354 	 */
1355 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1356 		svm->avic_is_running = true;
1357 
1358 	svm->msrpm = svm_vcpu_alloc_msrpm();
1359 	if (!svm->msrpm) {
1360 		err = -ENOMEM;
1361 		goto error_free_vmsa_page;
1362 	}
1363 
1364 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1365 
1366 	svm->vmcb01.ptr = page_address(vmcb01_page);
1367 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1368 
1369 	if (vmsa_page)
1370 		svm->vmsa = page_address(vmsa_page);
1371 
1372 	svm->guest_state_loaded = false;
1373 
1374 	svm_switch_vmcb(svm, &svm->vmcb01);
1375 	init_vmcb(vcpu);
1376 
1377 	svm_init_osvw(vcpu);
1378 	vcpu->arch.microcode_version = 0x01000065;
1379 
1380 	if (sev_es_guest(vcpu->kvm))
1381 		/* Perform SEV-ES specific VMCB creation updates */
1382 		sev_es_create_vcpu(svm);
1383 
1384 	return 0;
1385 
1386 error_free_vmsa_page:
1387 	if (vmsa_page)
1388 		__free_page(vmsa_page);
1389 error_free_vmcb_page:
1390 	__free_page(vmcb01_page);
1391 out:
1392 	return err;
1393 }
1394 
1395 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1396 {
1397 	int i;
1398 
1399 	for_each_online_cpu(i)
1400 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1401 }
1402 
1403 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1404 {
1405 	struct vcpu_svm *svm = to_svm(vcpu);
1406 
1407 	/*
1408 	 * The vmcb page can be recycled, causing a false negative in
1409 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1410 	 * vmcb page recorded as its current vmcb.
1411 	 */
1412 	svm_clear_current_vmcb(svm->vmcb);
1413 
1414 	svm_free_nested(svm);
1415 
1416 	sev_free_vcpu(vcpu);
1417 
1418 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1419 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1420 }
1421 
1422 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1423 {
1424 	struct vcpu_svm *svm = to_svm(vcpu);
1425 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1426 
1427 	if (svm->guest_state_loaded)
1428 		return;
1429 
1430 	/*
1431 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1432 	 * or subsequent vmload of host save area.
1433 	 */
1434 	if (sev_es_guest(vcpu->kvm)) {
1435 		sev_es_prepare_guest_switch(svm, vcpu->cpu);
1436 	} else {
1437 		vmsave(__sme_page_pa(sd->save_area));
1438 	}
1439 
1440 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1441 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1442 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1443 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1444 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1445 		}
1446 	}
1447 
1448 	if (static_cpu_has(X86_FEATURE_RDTSCP))
1449 		kvm_set_user_return_msr(TSC_AUX_URET_SLOT, svm->tsc_aux, -1ull);
1450 
1451 	svm->guest_state_loaded = true;
1452 }
1453 
1454 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1455 {
1456 	to_svm(vcpu)->guest_state_loaded = false;
1457 }
1458 
1459 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1460 {
1461 	struct vcpu_svm *svm = to_svm(vcpu);
1462 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1463 
1464 	if (sd->current_vmcb != svm->vmcb) {
1465 		sd->current_vmcb = svm->vmcb;
1466 		indirect_branch_prediction_barrier();
1467 	}
1468 	avic_vcpu_load(vcpu, cpu);
1469 }
1470 
1471 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1472 {
1473 	avic_vcpu_put(vcpu);
1474 	svm_prepare_host_switch(vcpu);
1475 
1476 	++vcpu->stat.host_state_reload;
1477 }
1478 
1479 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1480 {
1481 	struct vcpu_svm *svm = to_svm(vcpu);
1482 	unsigned long rflags = svm->vmcb->save.rflags;
1483 
1484 	if (svm->nmi_singlestep) {
1485 		/* Hide our flags if they were not set by the guest */
1486 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1487 			rflags &= ~X86_EFLAGS_TF;
1488 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1489 			rflags &= ~X86_EFLAGS_RF;
1490 	}
1491 	return rflags;
1492 }
1493 
1494 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1495 {
1496 	if (to_svm(vcpu)->nmi_singlestep)
1497 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1498 
1499        /*
1500         * Any change of EFLAGS.VM is accompanied by a reload of SS
1501         * (caused by either a task switch or an inter-privilege IRET),
1502         * so we do not need to update the CPL here.
1503         */
1504 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1505 }
1506 
1507 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1508 {
1509 	switch (reg) {
1510 	case VCPU_EXREG_PDPTR:
1511 		BUG_ON(!npt_enabled);
1512 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1513 		break;
1514 	default:
1515 		WARN_ON_ONCE(1);
1516 	}
1517 }
1518 
1519 static void svm_set_vintr(struct vcpu_svm *svm)
1520 {
1521 	struct vmcb_control_area *control;
1522 
1523 	/* The following fields are ignored when AVIC is enabled */
1524 	WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1525 	svm_set_intercept(svm, INTERCEPT_VINTR);
1526 
1527 	/*
1528 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1529 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1530 	 */
1531 	control = &svm->vmcb->control;
1532 	control->int_vector = 0x0;
1533 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1534 	control->int_ctl |= V_IRQ_MASK |
1535 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1536 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1537 }
1538 
1539 static void svm_clear_vintr(struct vcpu_svm *svm)
1540 {
1541 	const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1542 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1543 
1544 	/* Drop int_ctl fields related to VINTR injection.  */
1545 	svm->vmcb->control.int_ctl &= mask;
1546 	if (is_guest_mode(&svm->vcpu)) {
1547 		svm->vmcb01.ptr->control.int_ctl &= mask;
1548 
1549 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1550 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1551 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1552 	}
1553 
1554 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1555 }
1556 
1557 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1558 {
1559 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1560 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1561 
1562 	switch (seg) {
1563 	case VCPU_SREG_CS: return &save->cs;
1564 	case VCPU_SREG_DS: return &save->ds;
1565 	case VCPU_SREG_ES: return &save->es;
1566 	case VCPU_SREG_FS: return &save01->fs;
1567 	case VCPU_SREG_GS: return &save01->gs;
1568 	case VCPU_SREG_SS: return &save->ss;
1569 	case VCPU_SREG_TR: return &save01->tr;
1570 	case VCPU_SREG_LDTR: return &save01->ldtr;
1571 	}
1572 	BUG();
1573 	return NULL;
1574 }
1575 
1576 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1577 {
1578 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1579 
1580 	return s->base;
1581 }
1582 
1583 static void svm_get_segment(struct kvm_vcpu *vcpu,
1584 			    struct kvm_segment *var, int seg)
1585 {
1586 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1587 
1588 	var->base = s->base;
1589 	var->limit = s->limit;
1590 	var->selector = s->selector;
1591 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1592 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1593 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1594 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1595 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1596 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1597 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1598 
1599 	/*
1600 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1601 	 * However, the SVM spec states that the G bit is not observed by the
1602 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1603 	 * So let's synthesize a legal G bit for all segments, this helps
1604 	 * running KVM nested. It also helps cross-vendor migration, because
1605 	 * Intel's vmentry has a check on the 'G' bit.
1606 	 */
1607 	var->g = s->limit > 0xfffff;
1608 
1609 	/*
1610 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1611 	 * for cross vendor migration purposes by "not present"
1612 	 */
1613 	var->unusable = !var->present;
1614 
1615 	switch (seg) {
1616 	case VCPU_SREG_TR:
1617 		/*
1618 		 * Work around a bug where the busy flag in the tr selector
1619 		 * isn't exposed
1620 		 */
1621 		var->type |= 0x2;
1622 		break;
1623 	case VCPU_SREG_DS:
1624 	case VCPU_SREG_ES:
1625 	case VCPU_SREG_FS:
1626 	case VCPU_SREG_GS:
1627 		/*
1628 		 * The accessed bit must always be set in the segment
1629 		 * descriptor cache, although it can be cleared in the
1630 		 * descriptor, the cached bit always remains at 1. Since
1631 		 * Intel has a check on this, set it here to support
1632 		 * cross-vendor migration.
1633 		 */
1634 		if (!var->unusable)
1635 			var->type |= 0x1;
1636 		break;
1637 	case VCPU_SREG_SS:
1638 		/*
1639 		 * On AMD CPUs sometimes the DB bit in the segment
1640 		 * descriptor is left as 1, although the whole segment has
1641 		 * been made unusable. Clear it here to pass an Intel VMX
1642 		 * entry check when cross vendor migrating.
1643 		 */
1644 		if (var->unusable)
1645 			var->db = 0;
1646 		/* This is symmetric with svm_set_segment() */
1647 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1648 		break;
1649 	}
1650 }
1651 
1652 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1653 {
1654 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1655 
1656 	return save->cpl;
1657 }
1658 
1659 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1660 {
1661 	struct vcpu_svm *svm = to_svm(vcpu);
1662 
1663 	dt->size = svm->vmcb->save.idtr.limit;
1664 	dt->address = svm->vmcb->save.idtr.base;
1665 }
1666 
1667 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1668 {
1669 	struct vcpu_svm *svm = to_svm(vcpu);
1670 
1671 	svm->vmcb->save.idtr.limit = dt->size;
1672 	svm->vmcb->save.idtr.base = dt->address ;
1673 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1674 }
1675 
1676 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1677 {
1678 	struct vcpu_svm *svm = to_svm(vcpu);
1679 
1680 	dt->size = svm->vmcb->save.gdtr.limit;
1681 	dt->address = svm->vmcb->save.gdtr.base;
1682 }
1683 
1684 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1685 {
1686 	struct vcpu_svm *svm = to_svm(vcpu);
1687 
1688 	svm->vmcb->save.gdtr.limit = dt->size;
1689 	svm->vmcb->save.gdtr.base = dt->address ;
1690 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1691 }
1692 
1693 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1694 {
1695 	struct vcpu_svm *svm = to_svm(vcpu);
1696 	u64 hcr0 = cr0;
1697 
1698 #ifdef CONFIG_X86_64
1699 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1700 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1701 			vcpu->arch.efer |= EFER_LMA;
1702 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1703 		}
1704 
1705 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1706 			vcpu->arch.efer &= ~EFER_LMA;
1707 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1708 		}
1709 	}
1710 #endif
1711 	vcpu->arch.cr0 = cr0;
1712 
1713 	if (!npt_enabled)
1714 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1715 
1716 	/*
1717 	 * re-enable caching here because the QEMU bios
1718 	 * does not do it - this results in some delay at
1719 	 * reboot
1720 	 */
1721 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1722 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1723 
1724 	svm->vmcb->save.cr0 = hcr0;
1725 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1726 
1727 	/*
1728 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1729 	 * tracking is done using the CR write traps.
1730 	 */
1731 	if (sev_es_guest(vcpu->kvm))
1732 		return;
1733 
1734 	if (hcr0 == cr0) {
1735 		/* Selective CR0 write remains on.  */
1736 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1737 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1738 	} else {
1739 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1740 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1741 	}
1742 }
1743 
1744 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1745 {
1746 	return true;
1747 }
1748 
1749 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1750 {
1751 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1752 	unsigned long old_cr4 = vcpu->arch.cr4;
1753 
1754 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1755 		svm_flush_tlb(vcpu);
1756 
1757 	vcpu->arch.cr4 = cr4;
1758 	if (!npt_enabled)
1759 		cr4 |= X86_CR4_PAE;
1760 	cr4 |= host_cr4_mce;
1761 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1762 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1763 
1764 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1765 		kvm_update_cpuid_runtime(vcpu);
1766 }
1767 
1768 static void svm_set_segment(struct kvm_vcpu *vcpu,
1769 			    struct kvm_segment *var, int seg)
1770 {
1771 	struct vcpu_svm *svm = to_svm(vcpu);
1772 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1773 
1774 	s->base = var->base;
1775 	s->limit = var->limit;
1776 	s->selector = var->selector;
1777 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1778 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1779 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1780 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1781 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1782 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1783 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1784 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1785 
1786 	/*
1787 	 * This is always accurate, except if SYSRET returned to a segment
1788 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1789 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1790 	 * would entail passing the CPL to userspace and back.
1791 	 */
1792 	if (seg == VCPU_SREG_SS)
1793 		/* This is symmetric with svm_get_segment() */
1794 		svm->vmcb->save.cpl = (var->dpl & 3);
1795 
1796 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1797 }
1798 
1799 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1800 {
1801 	struct vcpu_svm *svm = to_svm(vcpu);
1802 
1803 	clr_exception_intercept(svm, BP_VECTOR);
1804 
1805 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1806 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1807 			set_exception_intercept(svm, BP_VECTOR);
1808 	}
1809 }
1810 
1811 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1812 {
1813 	if (sd->next_asid > sd->max_asid) {
1814 		++sd->asid_generation;
1815 		sd->next_asid = sd->min_asid;
1816 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1817 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1818 	}
1819 
1820 	svm->current_vmcb->asid_generation = sd->asid_generation;
1821 	svm->asid = sd->next_asid++;
1822 }
1823 
1824 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1825 {
1826 	struct vmcb *vmcb = svm->vmcb;
1827 
1828 	if (svm->vcpu.arch.guest_state_protected)
1829 		return;
1830 
1831 	if (unlikely(value != vmcb->save.dr6)) {
1832 		vmcb->save.dr6 = value;
1833 		vmcb_mark_dirty(vmcb, VMCB_DR);
1834 	}
1835 }
1836 
1837 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1838 {
1839 	struct vcpu_svm *svm = to_svm(vcpu);
1840 
1841 	if (vcpu->arch.guest_state_protected)
1842 		return;
1843 
1844 	get_debugreg(vcpu->arch.db[0], 0);
1845 	get_debugreg(vcpu->arch.db[1], 1);
1846 	get_debugreg(vcpu->arch.db[2], 2);
1847 	get_debugreg(vcpu->arch.db[3], 3);
1848 	/*
1849 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1850 	 * because db_interception might need it.  We can do it before vmentry.
1851 	 */
1852 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1853 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1854 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1855 	set_dr_intercepts(svm);
1856 }
1857 
1858 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1859 {
1860 	struct vcpu_svm *svm = to_svm(vcpu);
1861 
1862 	if (vcpu->arch.guest_state_protected)
1863 		return;
1864 
1865 	svm->vmcb->save.dr7 = value;
1866 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1867 }
1868 
1869 static int pf_interception(struct kvm_vcpu *vcpu)
1870 {
1871 	struct vcpu_svm *svm = to_svm(vcpu);
1872 
1873 	u64 fault_address = svm->vmcb->control.exit_info_2;
1874 	u64 error_code = svm->vmcb->control.exit_info_1;
1875 
1876 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1877 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1878 			svm->vmcb->control.insn_bytes : NULL,
1879 			svm->vmcb->control.insn_len);
1880 }
1881 
1882 static int npf_interception(struct kvm_vcpu *vcpu)
1883 {
1884 	struct vcpu_svm *svm = to_svm(vcpu);
1885 
1886 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1887 	u64 error_code = svm->vmcb->control.exit_info_1;
1888 
1889 	trace_kvm_page_fault(fault_address, error_code);
1890 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1891 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1892 			svm->vmcb->control.insn_bytes : NULL,
1893 			svm->vmcb->control.insn_len);
1894 }
1895 
1896 static int db_interception(struct kvm_vcpu *vcpu)
1897 {
1898 	struct kvm_run *kvm_run = vcpu->run;
1899 	struct vcpu_svm *svm = to_svm(vcpu);
1900 
1901 	if (!(vcpu->guest_debug &
1902 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1903 		!svm->nmi_singlestep) {
1904 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1905 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1906 		return 1;
1907 	}
1908 
1909 	if (svm->nmi_singlestep) {
1910 		disable_nmi_singlestep(svm);
1911 		/* Make sure we check for pending NMIs upon entry */
1912 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1913 	}
1914 
1915 	if (vcpu->guest_debug &
1916 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1917 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1918 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1919 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1920 		kvm_run->debug.arch.pc =
1921 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1922 		kvm_run->debug.arch.exception = DB_VECTOR;
1923 		return 0;
1924 	}
1925 
1926 	return 1;
1927 }
1928 
1929 static int bp_interception(struct kvm_vcpu *vcpu)
1930 {
1931 	struct vcpu_svm *svm = to_svm(vcpu);
1932 	struct kvm_run *kvm_run = vcpu->run;
1933 
1934 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1935 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1936 	kvm_run->debug.arch.exception = BP_VECTOR;
1937 	return 0;
1938 }
1939 
1940 static int ud_interception(struct kvm_vcpu *vcpu)
1941 {
1942 	return handle_ud(vcpu);
1943 }
1944 
1945 static int ac_interception(struct kvm_vcpu *vcpu)
1946 {
1947 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1948 	return 1;
1949 }
1950 
1951 static bool is_erratum_383(void)
1952 {
1953 	int err, i;
1954 	u64 value;
1955 
1956 	if (!erratum_383_found)
1957 		return false;
1958 
1959 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1960 	if (err)
1961 		return false;
1962 
1963 	/* Bit 62 may or may not be set for this mce */
1964 	value &= ~(1ULL << 62);
1965 
1966 	if (value != 0xb600000000010015ULL)
1967 		return false;
1968 
1969 	/* Clear MCi_STATUS registers */
1970 	for (i = 0; i < 6; ++i)
1971 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1972 
1973 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1974 	if (!err) {
1975 		u32 low, high;
1976 
1977 		value &= ~(1ULL << 2);
1978 		low    = lower_32_bits(value);
1979 		high   = upper_32_bits(value);
1980 
1981 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1982 	}
1983 
1984 	/* Flush tlb to evict multi-match entries */
1985 	__flush_tlb_all();
1986 
1987 	return true;
1988 }
1989 
1990 static void svm_handle_mce(struct kvm_vcpu *vcpu)
1991 {
1992 	if (is_erratum_383()) {
1993 		/*
1994 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1995 		 * guest.
1996 		 */
1997 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
1998 
1999 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2000 
2001 		return;
2002 	}
2003 
2004 	/*
2005 	 * On an #MC intercept the MCE handler is not called automatically in
2006 	 * the host. So do it by hand here.
2007 	 */
2008 	kvm_machine_check();
2009 }
2010 
2011 static int mc_interception(struct kvm_vcpu *vcpu)
2012 {
2013 	return 1;
2014 }
2015 
2016 static int shutdown_interception(struct kvm_vcpu *vcpu)
2017 {
2018 	struct kvm_run *kvm_run = vcpu->run;
2019 	struct vcpu_svm *svm = to_svm(vcpu);
2020 
2021 	/*
2022 	 * The VM save area has already been encrypted so it
2023 	 * cannot be reinitialized - just terminate.
2024 	 */
2025 	if (sev_es_guest(vcpu->kvm))
2026 		return -EINVAL;
2027 
2028 	/*
2029 	 * VMCB is undefined after a SHUTDOWN intercept
2030 	 * so reinitialize it.
2031 	 */
2032 	clear_page(svm->vmcb);
2033 	init_vmcb(vcpu);
2034 
2035 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2036 	return 0;
2037 }
2038 
2039 static int io_interception(struct kvm_vcpu *vcpu)
2040 {
2041 	struct vcpu_svm *svm = to_svm(vcpu);
2042 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2043 	int size, in, string;
2044 	unsigned port;
2045 
2046 	++vcpu->stat.io_exits;
2047 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2048 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2049 	port = io_info >> 16;
2050 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2051 
2052 	if (string) {
2053 		if (sev_es_guest(vcpu->kvm))
2054 			return sev_es_string_io(svm, size, port, in);
2055 		else
2056 			return kvm_emulate_instruction(vcpu, 0);
2057 	}
2058 
2059 	svm->next_rip = svm->vmcb->control.exit_info_2;
2060 
2061 	return kvm_fast_pio(vcpu, size, port, in);
2062 }
2063 
2064 static int nmi_interception(struct kvm_vcpu *vcpu)
2065 {
2066 	return 1;
2067 }
2068 
2069 static int intr_interception(struct kvm_vcpu *vcpu)
2070 {
2071 	++vcpu->stat.irq_exits;
2072 	return 1;
2073 }
2074 
2075 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2076 {
2077 	struct vcpu_svm *svm = to_svm(vcpu);
2078 	struct vmcb *vmcb12;
2079 	struct kvm_host_map map;
2080 	int ret;
2081 
2082 	if (nested_svm_check_permissions(vcpu))
2083 		return 1;
2084 
2085 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2086 	if (ret) {
2087 		if (ret == -EINVAL)
2088 			kvm_inject_gp(vcpu, 0);
2089 		return 1;
2090 	}
2091 
2092 	vmcb12 = map.hva;
2093 
2094 	ret = kvm_skip_emulated_instruction(vcpu);
2095 
2096 	if (vmload) {
2097 		nested_svm_vmloadsave(vmcb12, svm->vmcb);
2098 		svm->sysenter_eip_hi = 0;
2099 		svm->sysenter_esp_hi = 0;
2100 	} else
2101 		nested_svm_vmloadsave(svm->vmcb, vmcb12);
2102 
2103 	kvm_vcpu_unmap(vcpu, &map, true);
2104 
2105 	return ret;
2106 }
2107 
2108 static int vmload_interception(struct kvm_vcpu *vcpu)
2109 {
2110 	return vmload_vmsave_interception(vcpu, true);
2111 }
2112 
2113 static int vmsave_interception(struct kvm_vcpu *vcpu)
2114 {
2115 	return vmload_vmsave_interception(vcpu, false);
2116 }
2117 
2118 static int vmrun_interception(struct kvm_vcpu *vcpu)
2119 {
2120 	if (nested_svm_check_permissions(vcpu))
2121 		return 1;
2122 
2123 	return nested_svm_vmrun(vcpu);
2124 }
2125 
2126 enum {
2127 	NONE_SVM_INSTR,
2128 	SVM_INSTR_VMRUN,
2129 	SVM_INSTR_VMLOAD,
2130 	SVM_INSTR_VMSAVE,
2131 };
2132 
2133 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2134 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2135 {
2136 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2137 
2138 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2139 		return NONE_SVM_INSTR;
2140 
2141 	switch (ctxt->modrm) {
2142 	case 0xd8: /* VMRUN */
2143 		return SVM_INSTR_VMRUN;
2144 	case 0xda: /* VMLOAD */
2145 		return SVM_INSTR_VMLOAD;
2146 	case 0xdb: /* VMSAVE */
2147 		return SVM_INSTR_VMSAVE;
2148 	default:
2149 		break;
2150 	}
2151 
2152 	return NONE_SVM_INSTR;
2153 }
2154 
2155 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2156 {
2157 	const int guest_mode_exit_codes[] = {
2158 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2159 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2160 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2161 	};
2162 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2163 		[SVM_INSTR_VMRUN] = vmrun_interception,
2164 		[SVM_INSTR_VMLOAD] = vmload_interception,
2165 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2166 	};
2167 	struct vcpu_svm *svm = to_svm(vcpu);
2168 	int ret;
2169 
2170 	if (is_guest_mode(vcpu)) {
2171 		/* Returns '1' or -errno on failure, '0' on success. */
2172 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2173 		if (ret)
2174 			return ret;
2175 		return 1;
2176 	}
2177 	return svm_instr_handlers[opcode](vcpu);
2178 }
2179 
2180 /*
2181  * #GP handling code. Note that #GP can be triggered under the following two
2182  * cases:
2183  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2184  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2185  *      regions (e.g. SMM memory on host).
2186  *   2) VMware backdoor
2187  */
2188 static int gp_interception(struct kvm_vcpu *vcpu)
2189 {
2190 	struct vcpu_svm *svm = to_svm(vcpu);
2191 	u32 error_code = svm->vmcb->control.exit_info_1;
2192 	int opcode;
2193 
2194 	/* Both #GP cases have zero error_code */
2195 	if (error_code)
2196 		goto reinject;
2197 
2198 	/* Decode the instruction for usage later */
2199 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2200 		goto reinject;
2201 
2202 	opcode = svm_instr_opcode(vcpu);
2203 
2204 	if (opcode == NONE_SVM_INSTR) {
2205 		if (!enable_vmware_backdoor)
2206 			goto reinject;
2207 
2208 		/*
2209 		 * VMware backdoor emulation on #GP interception only handles
2210 		 * IN{S}, OUT{S}, and RDPMC.
2211 		 */
2212 		if (!is_guest_mode(vcpu))
2213 			return kvm_emulate_instruction(vcpu,
2214 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2215 	} else
2216 		return emulate_svm_instr(vcpu, opcode);
2217 
2218 reinject:
2219 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2220 	return 1;
2221 }
2222 
2223 void svm_set_gif(struct vcpu_svm *svm, bool value)
2224 {
2225 	if (value) {
2226 		/*
2227 		 * If VGIF is enabled, the STGI intercept is only added to
2228 		 * detect the opening of the SMI/NMI window; remove it now.
2229 		 * Likewise, clear the VINTR intercept, we will set it
2230 		 * again while processing KVM_REQ_EVENT if needed.
2231 		 */
2232 		if (vgif_enabled(svm))
2233 			svm_clr_intercept(svm, INTERCEPT_STGI);
2234 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2235 			svm_clear_vintr(svm);
2236 
2237 		enable_gif(svm);
2238 		if (svm->vcpu.arch.smi_pending ||
2239 		    svm->vcpu.arch.nmi_pending ||
2240 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2241 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2242 	} else {
2243 		disable_gif(svm);
2244 
2245 		/*
2246 		 * After a CLGI no interrupts should come.  But if vGIF is
2247 		 * in use, we still rely on the VINTR intercept (rather than
2248 		 * STGI) to detect an open interrupt window.
2249 		*/
2250 		if (!vgif_enabled(svm))
2251 			svm_clear_vintr(svm);
2252 	}
2253 }
2254 
2255 static int stgi_interception(struct kvm_vcpu *vcpu)
2256 {
2257 	int ret;
2258 
2259 	if (nested_svm_check_permissions(vcpu))
2260 		return 1;
2261 
2262 	ret = kvm_skip_emulated_instruction(vcpu);
2263 	svm_set_gif(to_svm(vcpu), true);
2264 	return ret;
2265 }
2266 
2267 static int clgi_interception(struct kvm_vcpu *vcpu)
2268 {
2269 	int ret;
2270 
2271 	if (nested_svm_check_permissions(vcpu))
2272 		return 1;
2273 
2274 	ret = kvm_skip_emulated_instruction(vcpu);
2275 	svm_set_gif(to_svm(vcpu), false);
2276 	return ret;
2277 }
2278 
2279 static int invlpga_interception(struct kvm_vcpu *vcpu)
2280 {
2281 	gva_t gva = kvm_rax_read(vcpu);
2282 	u32 asid = kvm_rcx_read(vcpu);
2283 
2284 	/* FIXME: Handle an address size prefix. */
2285 	if (!is_long_mode(vcpu))
2286 		gva = (u32)gva;
2287 
2288 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2289 
2290 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2291 	kvm_mmu_invlpg(vcpu, gva);
2292 
2293 	return kvm_skip_emulated_instruction(vcpu);
2294 }
2295 
2296 static int skinit_interception(struct kvm_vcpu *vcpu)
2297 {
2298 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2299 
2300 	kvm_queue_exception(vcpu, UD_VECTOR);
2301 	return 1;
2302 }
2303 
2304 static int task_switch_interception(struct kvm_vcpu *vcpu)
2305 {
2306 	struct vcpu_svm *svm = to_svm(vcpu);
2307 	u16 tss_selector;
2308 	int reason;
2309 	int int_type = svm->vmcb->control.exit_int_info &
2310 		SVM_EXITINTINFO_TYPE_MASK;
2311 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2312 	uint32_t type =
2313 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2314 	uint32_t idt_v =
2315 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2316 	bool has_error_code = false;
2317 	u32 error_code = 0;
2318 
2319 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2320 
2321 	if (svm->vmcb->control.exit_info_2 &
2322 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2323 		reason = TASK_SWITCH_IRET;
2324 	else if (svm->vmcb->control.exit_info_2 &
2325 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2326 		reason = TASK_SWITCH_JMP;
2327 	else if (idt_v)
2328 		reason = TASK_SWITCH_GATE;
2329 	else
2330 		reason = TASK_SWITCH_CALL;
2331 
2332 	if (reason == TASK_SWITCH_GATE) {
2333 		switch (type) {
2334 		case SVM_EXITINTINFO_TYPE_NMI:
2335 			vcpu->arch.nmi_injected = false;
2336 			break;
2337 		case SVM_EXITINTINFO_TYPE_EXEPT:
2338 			if (svm->vmcb->control.exit_info_2 &
2339 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2340 				has_error_code = true;
2341 				error_code =
2342 					(u32)svm->vmcb->control.exit_info_2;
2343 			}
2344 			kvm_clear_exception_queue(vcpu);
2345 			break;
2346 		case SVM_EXITINTINFO_TYPE_INTR:
2347 			kvm_clear_interrupt_queue(vcpu);
2348 			break;
2349 		default:
2350 			break;
2351 		}
2352 	}
2353 
2354 	if (reason != TASK_SWITCH_GATE ||
2355 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2356 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2357 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2358 		if (!skip_emulated_instruction(vcpu))
2359 			return 0;
2360 	}
2361 
2362 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2363 		int_vec = -1;
2364 
2365 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2366 			       has_error_code, error_code);
2367 }
2368 
2369 static int iret_interception(struct kvm_vcpu *vcpu)
2370 {
2371 	struct vcpu_svm *svm = to_svm(vcpu);
2372 
2373 	++vcpu->stat.nmi_window_exits;
2374 	vcpu->arch.hflags |= HF_IRET_MASK;
2375 	if (!sev_es_guest(vcpu->kvm)) {
2376 		svm_clr_intercept(svm, INTERCEPT_IRET);
2377 		svm->nmi_iret_rip = kvm_rip_read(vcpu);
2378 	}
2379 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2380 	return 1;
2381 }
2382 
2383 static int invlpg_interception(struct kvm_vcpu *vcpu)
2384 {
2385 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2386 		return kvm_emulate_instruction(vcpu, 0);
2387 
2388 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2389 	return kvm_skip_emulated_instruction(vcpu);
2390 }
2391 
2392 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2393 {
2394 	return kvm_emulate_instruction(vcpu, 0);
2395 }
2396 
2397 static int rsm_interception(struct kvm_vcpu *vcpu)
2398 {
2399 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2400 }
2401 
2402 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2403 					    unsigned long val)
2404 {
2405 	struct vcpu_svm *svm = to_svm(vcpu);
2406 	unsigned long cr0 = vcpu->arch.cr0;
2407 	bool ret = false;
2408 
2409 	if (!is_guest_mode(vcpu) ||
2410 	    (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2411 		return false;
2412 
2413 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2414 	val &= ~SVM_CR0_SELECTIVE_MASK;
2415 
2416 	if (cr0 ^ val) {
2417 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2418 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2419 	}
2420 
2421 	return ret;
2422 }
2423 
2424 #define CR_VALID (1ULL << 63)
2425 
2426 static int cr_interception(struct kvm_vcpu *vcpu)
2427 {
2428 	struct vcpu_svm *svm = to_svm(vcpu);
2429 	int reg, cr;
2430 	unsigned long val;
2431 	int err;
2432 
2433 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2434 		return emulate_on_interception(vcpu);
2435 
2436 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2437 		return emulate_on_interception(vcpu);
2438 
2439 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2440 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2441 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2442 	else
2443 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2444 
2445 	err = 0;
2446 	if (cr >= 16) { /* mov to cr */
2447 		cr -= 16;
2448 		val = kvm_register_read(vcpu, reg);
2449 		trace_kvm_cr_write(cr, val);
2450 		switch (cr) {
2451 		case 0:
2452 			if (!check_selective_cr0_intercepted(vcpu, val))
2453 				err = kvm_set_cr0(vcpu, val);
2454 			else
2455 				return 1;
2456 
2457 			break;
2458 		case 3:
2459 			err = kvm_set_cr3(vcpu, val);
2460 			break;
2461 		case 4:
2462 			err = kvm_set_cr4(vcpu, val);
2463 			break;
2464 		case 8:
2465 			err = kvm_set_cr8(vcpu, val);
2466 			break;
2467 		default:
2468 			WARN(1, "unhandled write to CR%d", cr);
2469 			kvm_queue_exception(vcpu, UD_VECTOR);
2470 			return 1;
2471 		}
2472 	} else { /* mov from cr */
2473 		switch (cr) {
2474 		case 0:
2475 			val = kvm_read_cr0(vcpu);
2476 			break;
2477 		case 2:
2478 			val = vcpu->arch.cr2;
2479 			break;
2480 		case 3:
2481 			val = kvm_read_cr3(vcpu);
2482 			break;
2483 		case 4:
2484 			val = kvm_read_cr4(vcpu);
2485 			break;
2486 		case 8:
2487 			val = kvm_get_cr8(vcpu);
2488 			break;
2489 		default:
2490 			WARN(1, "unhandled read from CR%d", cr);
2491 			kvm_queue_exception(vcpu, UD_VECTOR);
2492 			return 1;
2493 		}
2494 		kvm_register_write(vcpu, reg, val);
2495 		trace_kvm_cr_read(cr, val);
2496 	}
2497 	return kvm_complete_insn_gp(vcpu, err);
2498 }
2499 
2500 static int cr_trap(struct kvm_vcpu *vcpu)
2501 {
2502 	struct vcpu_svm *svm = to_svm(vcpu);
2503 	unsigned long old_value, new_value;
2504 	unsigned int cr;
2505 	int ret = 0;
2506 
2507 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2508 
2509 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2510 	switch (cr) {
2511 	case 0:
2512 		old_value = kvm_read_cr0(vcpu);
2513 		svm_set_cr0(vcpu, new_value);
2514 
2515 		kvm_post_set_cr0(vcpu, old_value, new_value);
2516 		break;
2517 	case 4:
2518 		old_value = kvm_read_cr4(vcpu);
2519 		svm_set_cr4(vcpu, new_value);
2520 
2521 		kvm_post_set_cr4(vcpu, old_value, new_value);
2522 		break;
2523 	case 8:
2524 		ret = kvm_set_cr8(vcpu, new_value);
2525 		break;
2526 	default:
2527 		WARN(1, "unhandled CR%d write trap", cr);
2528 		kvm_queue_exception(vcpu, UD_VECTOR);
2529 		return 1;
2530 	}
2531 
2532 	return kvm_complete_insn_gp(vcpu, ret);
2533 }
2534 
2535 static int dr_interception(struct kvm_vcpu *vcpu)
2536 {
2537 	struct vcpu_svm *svm = to_svm(vcpu);
2538 	int reg, dr;
2539 	unsigned long val;
2540 	int err = 0;
2541 
2542 	if (vcpu->guest_debug == 0) {
2543 		/*
2544 		 * No more DR vmexits; force a reload of the debug registers
2545 		 * and reenter on this instruction.  The next vmexit will
2546 		 * retrieve the full state of the debug registers.
2547 		 */
2548 		clr_dr_intercepts(svm);
2549 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2550 		return 1;
2551 	}
2552 
2553 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2554 		return emulate_on_interception(vcpu);
2555 
2556 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2557 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2558 	if (dr >= 16) { /* mov to DRn  */
2559 		dr -= 16;
2560 		val = kvm_register_read(vcpu, reg);
2561 		err = kvm_set_dr(vcpu, dr, val);
2562 	} else {
2563 		kvm_get_dr(vcpu, dr, &val);
2564 		kvm_register_write(vcpu, reg, val);
2565 	}
2566 
2567 	return kvm_complete_insn_gp(vcpu, err);
2568 }
2569 
2570 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2571 {
2572 	int r;
2573 
2574 	u8 cr8_prev = kvm_get_cr8(vcpu);
2575 	/* instruction emulation calls kvm_set_cr8() */
2576 	r = cr_interception(vcpu);
2577 	if (lapic_in_kernel(vcpu))
2578 		return r;
2579 	if (cr8_prev <= kvm_get_cr8(vcpu))
2580 		return r;
2581 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2582 	return 0;
2583 }
2584 
2585 static int efer_trap(struct kvm_vcpu *vcpu)
2586 {
2587 	struct msr_data msr_info;
2588 	int ret;
2589 
2590 	/*
2591 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2592 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2593 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2594 	 * the guest doesn't have X86_FEATURE_SVM.
2595 	 */
2596 	msr_info.host_initiated = false;
2597 	msr_info.index = MSR_EFER;
2598 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2599 	ret = kvm_set_msr_common(vcpu, &msr_info);
2600 
2601 	return kvm_complete_insn_gp(vcpu, ret);
2602 }
2603 
2604 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2605 {
2606 	msr->data = 0;
2607 
2608 	switch (msr->index) {
2609 	case MSR_F10H_DECFG:
2610 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2611 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2612 		break;
2613 	case MSR_IA32_PERF_CAPABILITIES:
2614 		return 0;
2615 	default:
2616 		return KVM_MSR_RET_INVALID;
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2623 {
2624 	struct vcpu_svm *svm = to_svm(vcpu);
2625 
2626 	switch (msr_info->index) {
2627 	case MSR_STAR:
2628 		msr_info->data = svm->vmcb01.ptr->save.star;
2629 		break;
2630 #ifdef CONFIG_X86_64
2631 	case MSR_LSTAR:
2632 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2633 		break;
2634 	case MSR_CSTAR:
2635 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2636 		break;
2637 	case MSR_KERNEL_GS_BASE:
2638 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2639 		break;
2640 	case MSR_SYSCALL_MASK:
2641 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2642 		break;
2643 #endif
2644 	case MSR_IA32_SYSENTER_CS:
2645 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2646 		break;
2647 	case MSR_IA32_SYSENTER_EIP:
2648 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2649 		if (guest_cpuid_is_intel(vcpu))
2650 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2651 		break;
2652 	case MSR_IA32_SYSENTER_ESP:
2653 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2654 		if (guest_cpuid_is_intel(vcpu))
2655 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2656 		break;
2657 	case MSR_TSC_AUX:
2658 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2659 			return 1;
2660 		if (!msr_info->host_initiated &&
2661 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2662 			return 1;
2663 		msr_info->data = svm->tsc_aux;
2664 		break;
2665 	/*
2666 	 * Nobody will change the following 5 values in the VMCB so we can
2667 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2668 	 * implemented.
2669 	 */
2670 	case MSR_IA32_DEBUGCTLMSR:
2671 		msr_info->data = svm->vmcb->save.dbgctl;
2672 		break;
2673 	case MSR_IA32_LASTBRANCHFROMIP:
2674 		msr_info->data = svm->vmcb->save.br_from;
2675 		break;
2676 	case MSR_IA32_LASTBRANCHTOIP:
2677 		msr_info->data = svm->vmcb->save.br_to;
2678 		break;
2679 	case MSR_IA32_LASTINTFROMIP:
2680 		msr_info->data = svm->vmcb->save.last_excp_from;
2681 		break;
2682 	case MSR_IA32_LASTINTTOIP:
2683 		msr_info->data = svm->vmcb->save.last_excp_to;
2684 		break;
2685 	case MSR_VM_HSAVE_PA:
2686 		msr_info->data = svm->nested.hsave_msr;
2687 		break;
2688 	case MSR_VM_CR:
2689 		msr_info->data = svm->nested.vm_cr_msr;
2690 		break;
2691 	case MSR_IA32_SPEC_CTRL:
2692 		if (!msr_info->host_initiated &&
2693 		    !guest_has_spec_ctrl_msr(vcpu))
2694 			return 1;
2695 
2696 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2697 			msr_info->data = svm->vmcb->save.spec_ctrl;
2698 		else
2699 			msr_info->data = svm->spec_ctrl;
2700 		break;
2701 	case MSR_AMD64_VIRT_SPEC_CTRL:
2702 		if (!msr_info->host_initiated &&
2703 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2704 			return 1;
2705 
2706 		msr_info->data = svm->virt_spec_ctrl;
2707 		break;
2708 	case MSR_F15H_IC_CFG: {
2709 
2710 		int family, model;
2711 
2712 		family = guest_cpuid_family(vcpu);
2713 		model  = guest_cpuid_model(vcpu);
2714 
2715 		if (family < 0 || model < 0)
2716 			return kvm_get_msr_common(vcpu, msr_info);
2717 
2718 		msr_info->data = 0;
2719 
2720 		if (family == 0x15 &&
2721 		    (model >= 0x2 && model < 0x20))
2722 			msr_info->data = 0x1E;
2723 		}
2724 		break;
2725 	case MSR_F10H_DECFG:
2726 		msr_info->data = svm->msr_decfg;
2727 		break;
2728 	default:
2729 		return kvm_get_msr_common(vcpu, msr_info);
2730 	}
2731 	return 0;
2732 }
2733 
2734 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2735 {
2736 	struct vcpu_svm *svm = to_svm(vcpu);
2737 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->ghcb))
2738 		return kvm_complete_insn_gp(vcpu, err);
2739 
2740 	ghcb_set_sw_exit_info_1(svm->ghcb, 1);
2741 	ghcb_set_sw_exit_info_2(svm->ghcb,
2742 				X86_TRAP_GP |
2743 				SVM_EVTINJ_TYPE_EXEPT |
2744 				SVM_EVTINJ_VALID);
2745 	return 1;
2746 }
2747 
2748 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2749 {
2750 	struct vcpu_svm *svm = to_svm(vcpu);
2751 	int svm_dis, chg_mask;
2752 
2753 	if (data & ~SVM_VM_CR_VALID_MASK)
2754 		return 1;
2755 
2756 	chg_mask = SVM_VM_CR_VALID_MASK;
2757 
2758 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2759 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2760 
2761 	svm->nested.vm_cr_msr &= ~chg_mask;
2762 	svm->nested.vm_cr_msr |= (data & chg_mask);
2763 
2764 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2765 
2766 	/* check for svm_disable while efer.svme is set */
2767 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2768 		return 1;
2769 
2770 	return 0;
2771 }
2772 
2773 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2774 {
2775 	struct vcpu_svm *svm = to_svm(vcpu);
2776 	int r;
2777 
2778 	u32 ecx = msr->index;
2779 	u64 data = msr->data;
2780 	switch (ecx) {
2781 	case MSR_IA32_CR_PAT:
2782 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2783 			return 1;
2784 		vcpu->arch.pat = data;
2785 		svm->vmcb01.ptr->save.g_pat = data;
2786 		if (is_guest_mode(vcpu))
2787 			nested_vmcb02_compute_g_pat(svm);
2788 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2789 		break;
2790 	case MSR_IA32_SPEC_CTRL:
2791 		if (!msr->host_initiated &&
2792 		    !guest_has_spec_ctrl_msr(vcpu))
2793 			return 1;
2794 
2795 		if (kvm_spec_ctrl_test_value(data))
2796 			return 1;
2797 
2798 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2799 			svm->vmcb->save.spec_ctrl = data;
2800 		else
2801 			svm->spec_ctrl = data;
2802 		if (!data)
2803 			break;
2804 
2805 		/*
2806 		 * For non-nested:
2807 		 * When it's written (to non-zero) for the first time, pass
2808 		 * it through.
2809 		 *
2810 		 * For nested:
2811 		 * The handling of the MSR bitmap for L2 guests is done in
2812 		 * nested_svm_vmrun_msrpm.
2813 		 * We update the L1 MSR bit as well since it will end up
2814 		 * touching the MSR anyway now.
2815 		 */
2816 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2817 		break;
2818 	case MSR_IA32_PRED_CMD:
2819 		if (!msr->host_initiated &&
2820 		    !guest_has_pred_cmd_msr(vcpu))
2821 			return 1;
2822 
2823 		if (data & ~PRED_CMD_IBPB)
2824 			return 1;
2825 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2826 			return 1;
2827 		if (!data)
2828 			break;
2829 
2830 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2831 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2832 		break;
2833 	case MSR_AMD64_VIRT_SPEC_CTRL:
2834 		if (!msr->host_initiated &&
2835 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2836 			return 1;
2837 
2838 		if (data & ~SPEC_CTRL_SSBD)
2839 			return 1;
2840 
2841 		svm->virt_spec_ctrl = data;
2842 		break;
2843 	case MSR_STAR:
2844 		svm->vmcb01.ptr->save.star = data;
2845 		break;
2846 #ifdef CONFIG_X86_64
2847 	case MSR_LSTAR:
2848 		svm->vmcb01.ptr->save.lstar = data;
2849 		break;
2850 	case MSR_CSTAR:
2851 		svm->vmcb01.ptr->save.cstar = data;
2852 		break;
2853 	case MSR_KERNEL_GS_BASE:
2854 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2855 		break;
2856 	case MSR_SYSCALL_MASK:
2857 		svm->vmcb01.ptr->save.sfmask = data;
2858 		break;
2859 #endif
2860 	case MSR_IA32_SYSENTER_CS:
2861 		svm->vmcb01.ptr->save.sysenter_cs = data;
2862 		break;
2863 	case MSR_IA32_SYSENTER_EIP:
2864 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2865 		/*
2866 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2867 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2868 		 * In this case we use this intercept to track the high
2869 		 * 32 bit part of these msrs to support Intel's
2870 		 * implementation of SYSENTER/SYSEXIT.
2871 		 */
2872 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2873 		break;
2874 	case MSR_IA32_SYSENTER_ESP:
2875 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2876 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2877 		break;
2878 	case MSR_TSC_AUX:
2879 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2880 			return 1;
2881 
2882 		if (!msr->host_initiated &&
2883 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2884 			return 1;
2885 
2886 		/*
2887 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
2888 		 * incomplete and conflicting architectural behavior.  Current
2889 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
2890 		 * reserved and always read as zeros.  Emulate AMD CPU behavior
2891 		 * to avoid explosions if the vCPU is migrated from an AMD host
2892 		 * to an Intel host.
2893 		 */
2894 		data = (u32)data;
2895 
2896 		/*
2897 		 * TSC_AUX is usually changed only during boot and never read
2898 		 * directly.  Intercept TSC_AUX instead of exposing it to the
2899 		 * guest via direct_access_msrs, and switch it via user return.
2900 		 */
2901 		preempt_disable();
2902 		r = kvm_set_user_return_msr(TSC_AUX_URET_SLOT, data, -1ull);
2903 		preempt_enable();
2904 		if (r)
2905 			return 1;
2906 
2907 		svm->tsc_aux = data;
2908 		break;
2909 	case MSR_IA32_DEBUGCTLMSR:
2910 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2911 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2912 				    __func__, data);
2913 			break;
2914 		}
2915 		if (data & DEBUGCTL_RESERVED_BITS)
2916 			return 1;
2917 
2918 		svm->vmcb->save.dbgctl = data;
2919 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2920 		if (data & (1ULL<<0))
2921 			svm_enable_lbrv(vcpu);
2922 		else
2923 			svm_disable_lbrv(vcpu);
2924 		break;
2925 	case MSR_VM_HSAVE_PA:
2926 		svm->nested.hsave_msr = data;
2927 		break;
2928 	case MSR_VM_CR:
2929 		return svm_set_vm_cr(vcpu, data);
2930 	case MSR_VM_IGNNE:
2931 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2932 		break;
2933 	case MSR_F10H_DECFG: {
2934 		struct kvm_msr_entry msr_entry;
2935 
2936 		msr_entry.index = msr->index;
2937 		if (svm_get_msr_feature(&msr_entry))
2938 			return 1;
2939 
2940 		/* Check the supported bits */
2941 		if (data & ~msr_entry.data)
2942 			return 1;
2943 
2944 		/* Don't allow the guest to change a bit, #GP */
2945 		if (!msr->host_initiated && (data ^ msr_entry.data))
2946 			return 1;
2947 
2948 		svm->msr_decfg = data;
2949 		break;
2950 	}
2951 	case MSR_IA32_APICBASE:
2952 		if (kvm_vcpu_apicv_active(vcpu))
2953 			avic_update_vapic_bar(to_svm(vcpu), data);
2954 		fallthrough;
2955 	default:
2956 		return kvm_set_msr_common(vcpu, msr);
2957 	}
2958 	return 0;
2959 }
2960 
2961 static int msr_interception(struct kvm_vcpu *vcpu)
2962 {
2963 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
2964 		return kvm_emulate_wrmsr(vcpu);
2965 	else
2966 		return kvm_emulate_rdmsr(vcpu);
2967 }
2968 
2969 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
2970 {
2971 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2972 	svm_clear_vintr(to_svm(vcpu));
2973 
2974 	/*
2975 	 * For AVIC, the only reason to end up here is ExtINTs.
2976 	 * In this case AVIC was temporarily disabled for
2977 	 * requesting the IRQ window and we have to re-enable it.
2978 	 */
2979 	svm_toggle_avic_for_irq_window(vcpu, true);
2980 
2981 	++vcpu->stat.irq_window_exits;
2982 	return 1;
2983 }
2984 
2985 static int pause_interception(struct kvm_vcpu *vcpu)
2986 {
2987 	bool in_kernel;
2988 
2989 	/*
2990 	 * CPL is not made available for an SEV-ES guest, therefore
2991 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
2992 	 * set in_kernel to false as well.
2993 	 */
2994 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
2995 
2996 	if (!kvm_pause_in_guest(vcpu->kvm))
2997 		grow_ple_window(vcpu);
2998 
2999 	kvm_vcpu_on_spin(vcpu, in_kernel);
3000 	return kvm_skip_emulated_instruction(vcpu);
3001 }
3002 
3003 static int invpcid_interception(struct kvm_vcpu *vcpu)
3004 {
3005 	struct vcpu_svm *svm = to_svm(vcpu);
3006 	unsigned long type;
3007 	gva_t gva;
3008 
3009 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3010 		kvm_queue_exception(vcpu, UD_VECTOR);
3011 		return 1;
3012 	}
3013 
3014 	/*
3015 	 * For an INVPCID intercept:
3016 	 * EXITINFO1 provides the linear address of the memory operand.
3017 	 * EXITINFO2 provides the contents of the register operand.
3018 	 */
3019 	type = svm->vmcb->control.exit_info_2;
3020 	gva = svm->vmcb->control.exit_info_1;
3021 
3022 	if (type > 3) {
3023 		kvm_inject_gp(vcpu, 0);
3024 		return 1;
3025 	}
3026 
3027 	return kvm_handle_invpcid(vcpu, type, gva);
3028 }
3029 
3030 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3031 	[SVM_EXIT_READ_CR0]			= cr_interception,
3032 	[SVM_EXIT_READ_CR3]			= cr_interception,
3033 	[SVM_EXIT_READ_CR4]			= cr_interception,
3034 	[SVM_EXIT_READ_CR8]			= cr_interception,
3035 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3036 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3037 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3038 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3039 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3040 	[SVM_EXIT_READ_DR0]			= dr_interception,
3041 	[SVM_EXIT_READ_DR1]			= dr_interception,
3042 	[SVM_EXIT_READ_DR2]			= dr_interception,
3043 	[SVM_EXIT_READ_DR3]			= dr_interception,
3044 	[SVM_EXIT_READ_DR4]			= dr_interception,
3045 	[SVM_EXIT_READ_DR5]			= dr_interception,
3046 	[SVM_EXIT_READ_DR6]			= dr_interception,
3047 	[SVM_EXIT_READ_DR7]			= dr_interception,
3048 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3049 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3050 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3051 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3052 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3053 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3054 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3055 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3056 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3057 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3058 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3059 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3060 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3061 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3062 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3063 	[SVM_EXIT_INTR]				= intr_interception,
3064 	[SVM_EXIT_NMI]				= nmi_interception,
3065 	[SVM_EXIT_SMI]				= kvm_emulate_as_nop,
3066 	[SVM_EXIT_INIT]				= kvm_emulate_as_nop,
3067 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3068 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3069 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3070 	[SVM_EXIT_IRET]                         = iret_interception,
3071 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3072 	[SVM_EXIT_PAUSE]			= pause_interception,
3073 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3074 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3075 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3076 	[SVM_EXIT_IOIO]				= io_interception,
3077 	[SVM_EXIT_MSR]				= msr_interception,
3078 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3079 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3080 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3081 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3082 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3083 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3084 	[SVM_EXIT_STGI]				= stgi_interception,
3085 	[SVM_EXIT_CLGI]				= clgi_interception,
3086 	[SVM_EXIT_SKINIT]			= skinit_interception,
3087 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3088 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3089 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3090 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3091 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3092 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3093 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3094 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3095 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3096 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3097 	[SVM_EXIT_NPF]				= npf_interception,
3098 	[SVM_EXIT_RSM]                          = rsm_interception,
3099 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3100 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3101 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3102 };
3103 
3104 static void dump_vmcb(struct kvm_vcpu *vcpu)
3105 {
3106 	struct vcpu_svm *svm = to_svm(vcpu);
3107 	struct vmcb_control_area *control = &svm->vmcb->control;
3108 	struct vmcb_save_area *save = &svm->vmcb->save;
3109 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3110 
3111 	if (!dump_invalid_vmcb) {
3112 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3113 		return;
3114 	}
3115 
3116 	pr_err("VMCB Control Area:\n");
3117 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3118 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3119 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3120 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3121 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3122 	pr_err("%-20s%08x %08x\n", "intercepts:",
3123               control->intercepts[INTERCEPT_WORD3],
3124 	       control->intercepts[INTERCEPT_WORD4]);
3125 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3126 	pr_err("%-20s%d\n", "pause filter threshold:",
3127 	       control->pause_filter_thresh);
3128 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3129 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3130 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3131 	pr_err("%-20s%d\n", "asid:", control->asid);
3132 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3133 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3134 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3135 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3136 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3137 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3138 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3139 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3140 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3141 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3142 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3143 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3144 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3145 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3146 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3147 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3148 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3149 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3150 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3151 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3152 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3153 	pr_err("VMCB State Save Area:\n");
3154 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3155 	       "es:",
3156 	       save->es.selector, save->es.attrib,
3157 	       save->es.limit, save->es.base);
3158 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3159 	       "cs:",
3160 	       save->cs.selector, save->cs.attrib,
3161 	       save->cs.limit, save->cs.base);
3162 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3163 	       "ss:",
3164 	       save->ss.selector, save->ss.attrib,
3165 	       save->ss.limit, save->ss.base);
3166 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3167 	       "ds:",
3168 	       save->ds.selector, save->ds.attrib,
3169 	       save->ds.limit, save->ds.base);
3170 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3171 	       "fs:",
3172 	       save01->fs.selector, save01->fs.attrib,
3173 	       save01->fs.limit, save01->fs.base);
3174 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3175 	       "gs:",
3176 	       save01->gs.selector, save01->gs.attrib,
3177 	       save01->gs.limit, save01->gs.base);
3178 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3179 	       "gdtr:",
3180 	       save->gdtr.selector, save->gdtr.attrib,
3181 	       save->gdtr.limit, save->gdtr.base);
3182 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3183 	       "ldtr:",
3184 	       save01->ldtr.selector, save01->ldtr.attrib,
3185 	       save01->ldtr.limit, save01->ldtr.base);
3186 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3187 	       "idtr:",
3188 	       save->idtr.selector, save->idtr.attrib,
3189 	       save->idtr.limit, save->idtr.base);
3190 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3191 	       "tr:",
3192 	       save01->tr.selector, save01->tr.attrib,
3193 	       save01->tr.limit, save01->tr.base);
3194 	pr_err("cpl:            %d                efer:         %016llx\n",
3195 		save->cpl, save->efer);
3196 	pr_err("%-15s %016llx %-13s %016llx\n",
3197 	       "cr0:", save->cr0, "cr2:", save->cr2);
3198 	pr_err("%-15s %016llx %-13s %016llx\n",
3199 	       "cr3:", save->cr3, "cr4:", save->cr4);
3200 	pr_err("%-15s %016llx %-13s %016llx\n",
3201 	       "dr6:", save->dr6, "dr7:", save->dr7);
3202 	pr_err("%-15s %016llx %-13s %016llx\n",
3203 	       "rip:", save->rip, "rflags:", save->rflags);
3204 	pr_err("%-15s %016llx %-13s %016llx\n",
3205 	       "rsp:", save->rsp, "rax:", save->rax);
3206 	pr_err("%-15s %016llx %-13s %016llx\n",
3207 	       "star:", save01->star, "lstar:", save01->lstar);
3208 	pr_err("%-15s %016llx %-13s %016llx\n",
3209 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3210 	pr_err("%-15s %016llx %-13s %016llx\n",
3211 	       "kernel_gs_base:", save01->kernel_gs_base,
3212 	       "sysenter_cs:", save01->sysenter_cs);
3213 	pr_err("%-15s %016llx %-13s %016llx\n",
3214 	       "sysenter_esp:", save01->sysenter_esp,
3215 	       "sysenter_eip:", save01->sysenter_eip);
3216 	pr_err("%-15s %016llx %-13s %016llx\n",
3217 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3218 	pr_err("%-15s %016llx %-13s %016llx\n",
3219 	       "br_from:", save->br_from, "br_to:", save->br_to);
3220 	pr_err("%-15s %016llx %-13s %016llx\n",
3221 	       "excp_from:", save->last_excp_from,
3222 	       "excp_to:", save->last_excp_to);
3223 }
3224 
3225 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3226 {
3227 	if (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3228 	    svm_exit_handlers[exit_code])
3229 		return 0;
3230 
3231 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3232 	dump_vmcb(vcpu);
3233 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3234 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3235 	vcpu->run->internal.ndata = 2;
3236 	vcpu->run->internal.data[0] = exit_code;
3237 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3238 
3239 	return -EINVAL;
3240 }
3241 
3242 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3243 {
3244 	if (svm_handle_invalid_exit(vcpu, exit_code))
3245 		return 0;
3246 
3247 #ifdef CONFIG_RETPOLINE
3248 	if (exit_code == SVM_EXIT_MSR)
3249 		return msr_interception(vcpu);
3250 	else if (exit_code == SVM_EXIT_VINTR)
3251 		return interrupt_window_interception(vcpu);
3252 	else if (exit_code == SVM_EXIT_INTR)
3253 		return intr_interception(vcpu);
3254 	else if (exit_code == SVM_EXIT_HLT)
3255 		return kvm_emulate_halt(vcpu);
3256 	else if (exit_code == SVM_EXIT_NPF)
3257 		return npf_interception(vcpu);
3258 #endif
3259 	return svm_exit_handlers[exit_code](vcpu);
3260 }
3261 
3262 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3263 			      u32 *intr_info, u32 *error_code)
3264 {
3265 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3266 
3267 	*info1 = control->exit_info_1;
3268 	*info2 = control->exit_info_2;
3269 	*intr_info = control->exit_int_info;
3270 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3271 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3272 		*error_code = control->exit_int_info_err;
3273 	else
3274 		*error_code = 0;
3275 }
3276 
3277 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3278 {
3279 	struct vcpu_svm *svm = to_svm(vcpu);
3280 	struct kvm_run *kvm_run = vcpu->run;
3281 	u32 exit_code = svm->vmcb->control.exit_code;
3282 
3283 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3284 
3285 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3286 	if (!sev_es_guest(vcpu->kvm)) {
3287 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3288 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3289 		if (npt_enabled)
3290 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3291 	}
3292 
3293 	if (is_guest_mode(vcpu)) {
3294 		int vmexit;
3295 
3296 		trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3297 
3298 		vmexit = nested_svm_exit_special(svm);
3299 
3300 		if (vmexit == NESTED_EXIT_CONTINUE)
3301 			vmexit = nested_svm_exit_handled(svm);
3302 
3303 		if (vmexit == NESTED_EXIT_DONE)
3304 			return 1;
3305 	}
3306 
3307 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3308 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3309 		kvm_run->fail_entry.hardware_entry_failure_reason
3310 			= svm->vmcb->control.exit_code;
3311 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3312 		dump_vmcb(vcpu);
3313 		return 0;
3314 	}
3315 
3316 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3317 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3318 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3319 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3320 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3321 		       "exit_code 0x%x\n",
3322 		       __func__, svm->vmcb->control.exit_int_info,
3323 		       exit_code);
3324 
3325 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3326 		return 1;
3327 
3328 	return svm_invoke_exit_handler(vcpu, exit_code);
3329 }
3330 
3331 static void reload_tss(struct kvm_vcpu *vcpu)
3332 {
3333 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3334 
3335 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3336 	load_TR_desc();
3337 }
3338 
3339 static void pre_svm_run(struct kvm_vcpu *vcpu)
3340 {
3341 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3342 	struct vcpu_svm *svm = to_svm(vcpu);
3343 
3344 	/*
3345 	 * If the previous vmrun of the vmcb occurred on a different physical
3346 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3347 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3348 	 */
3349 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3350 		svm->current_vmcb->asid_generation = 0;
3351 		vmcb_mark_all_dirty(svm->vmcb);
3352 		svm->current_vmcb->cpu = vcpu->cpu;
3353         }
3354 
3355 	if (sev_guest(vcpu->kvm))
3356 		return pre_sev_run(svm, vcpu->cpu);
3357 
3358 	/* FIXME: handle wraparound of asid_generation */
3359 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3360 		new_asid(svm, sd);
3361 }
3362 
3363 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3364 {
3365 	struct vcpu_svm *svm = to_svm(vcpu);
3366 
3367 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3368 	vcpu->arch.hflags |= HF_NMI_MASK;
3369 	if (!sev_es_guest(vcpu->kvm))
3370 		svm_set_intercept(svm, INTERCEPT_IRET);
3371 	++vcpu->stat.nmi_injections;
3372 }
3373 
3374 static void svm_set_irq(struct kvm_vcpu *vcpu)
3375 {
3376 	struct vcpu_svm *svm = to_svm(vcpu);
3377 
3378 	BUG_ON(!(gif_set(svm)));
3379 
3380 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3381 	++vcpu->stat.irq_injections;
3382 
3383 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3384 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3385 }
3386 
3387 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3388 {
3389 	struct vcpu_svm *svm = to_svm(vcpu);
3390 
3391 	/*
3392 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3393 	 * tracking is done using the CR write traps.
3394 	 */
3395 	if (sev_es_guest(vcpu->kvm))
3396 		return;
3397 
3398 	if (nested_svm_virtualize_tpr(vcpu))
3399 		return;
3400 
3401 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3402 
3403 	if (irr == -1)
3404 		return;
3405 
3406 	if (tpr >= irr)
3407 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3408 }
3409 
3410 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3411 {
3412 	struct vcpu_svm *svm = to_svm(vcpu);
3413 	struct vmcb *vmcb = svm->vmcb;
3414 	bool ret;
3415 
3416 	if (!gif_set(svm))
3417 		return true;
3418 
3419 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3420 		return false;
3421 
3422 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3423 	      (vcpu->arch.hflags & HF_NMI_MASK);
3424 
3425 	return ret;
3426 }
3427 
3428 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3429 {
3430 	struct vcpu_svm *svm = to_svm(vcpu);
3431 	if (svm->nested.nested_run_pending)
3432 		return -EBUSY;
3433 
3434 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3435 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3436 		return -EBUSY;
3437 
3438 	return !svm_nmi_blocked(vcpu);
3439 }
3440 
3441 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3442 {
3443 	return !!(vcpu->arch.hflags & HF_NMI_MASK);
3444 }
3445 
3446 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3447 {
3448 	struct vcpu_svm *svm = to_svm(vcpu);
3449 
3450 	if (masked) {
3451 		vcpu->arch.hflags |= HF_NMI_MASK;
3452 		if (!sev_es_guest(vcpu->kvm))
3453 			svm_set_intercept(svm, INTERCEPT_IRET);
3454 	} else {
3455 		vcpu->arch.hflags &= ~HF_NMI_MASK;
3456 		if (!sev_es_guest(vcpu->kvm))
3457 			svm_clr_intercept(svm, INTERCEPT_IRET);
3458 	}
3459 }
3460 
3461 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3462 {
3463 	struct vcpu_svm *svm = to_svm(vcpu);
3464 	struct vmcb *vmcb = svm->vmcb;
3465 
3466 	if (!gif_set(svm))
3467 		return true;
3468 
3469 	if (sev_es_guest(vcpu->kvm)) {
3470 		/*
3471 		 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask
3472 		 * bit to determine the state of the IF flag.
3473 		 */
3474 		if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK))
3475 			return true;
3476 	} else if (is_guest_mode(vcpu)) {
3477 		/* As long as interrupts are being delivered...  */
3478 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3479 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3480 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3481 			return true;
3482 
3483 		/* ... vmexits aren't blocked by the interrupt shadow  */
3484 		if (nested_exit_on_intr(svm))
3485 			return false;
3486 	} else {
3487 		if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3488 			return true;
3489 	}
3490 
3491 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3492 }
3493 
3494 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3495 {
3496 	struct vcpu_svm *svm = to_svm(vcpu);
3497 	if (svm->nested.nested_run_pending)
3498 		return -EBUSY;
3499 
3500 	/*
3501 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3502 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3503 	 */
3504 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3505 		return -EBUSY;
3506 
3507 	return !svm_interrupt_blocked(vcpu);
3508 }
3509 
3510 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3511 {
3512 	struct vcpu_svm *svm = to_svm(vcpu);
3513 
3514 	/*
3515 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3516 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3517 	 * get that intercept, this function will be called again though and
3518 	 * we'll get the vintr intercept. However, if the vGIF feature is
3519 	 * enabled, the STGI interception will not occur. Enable the irq
3520 	 * window under the assumption that the hardware will set the GIF.
3521 	 */
3522 	if (vgif_enabled(svm) || gif_set(svm)) {
3523 		/*
3524 		 * IRQ window is not needed when AVIC is enabled,
3525 		 * unless we have pending ExtINT since it cannot be injected
3526 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3527 		 * and fallback to injecting IRQ via V_IRQ.
3528 		 */
3529 		svm_toggle_avic_for_irq_window(vcpu, false);
3530 		svm_set_vintr(svm);
3531 	}
3532 }
3533 
3534 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3535 {
3536 	struct vcpu_svm *svm = to_svm(vcpu);
3537 
3538 	if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3539 		return; /* IRET will cause a vm exit */
3540 
3541 	if (!gif_set(svm)) {
3542 		if (vgif_enabled(svm))
3543 			svm_set_intercept(svm, INTERCEPT_STGI);
3544 		return; /* STGI will cause a vm exit */
3545 	}
3546 
3547 	/*
3548 	 * Something prevents NMI from been injected. Single step over possible
3549 	 * problem (IRET or exception injection or interrupt shadow)
3550 	 */
3551 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3552 	svm->nmi_singlestep = true;
3553 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3554 }
3555 
3556 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3557 {
3558 	return 0;
3559 }
3560 
3561 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3562 {
3563 	return 0;
3564 }
3565 
3566 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3567 {
3568 	struct vcpu_svm *svm = to_svm(vcpu);
3569 
3570 	/*
3571 	 * Flush only the current ASID even if the TLB flush was invoked via
3572 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3573 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3574 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3575 	 * VM-Exit (via kvm_mmu_reset_context()).
3576 	 */
3577 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3578 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3579 	else
3580 		svm->current_vmcb->asid_generation--;
3581 }
3582 
3583 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3584 {
3585 	struct vcpu_svm *svm = to_svm(vcpu);
3586 
3587 	invlpga(gva, svm->vmcb->control.asid);
3588 }
3589 
3590 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3591 {
3592 	struct vcpu_svm *svm = to_svm(vcpu);
3593 
3594 	if (nested_svm_virtualize_tpr(vcpu))
3595 		return;
3596 
3597 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3598 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3599 		kvm_set_cr8(vcpu, cr8);
3600 	}
3601 }
3602 
3603 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3604 {
3605 	struct vcpu_svm *svm = to_svm(vcpu);
3606 	u64 cr8;
3607 
3608 	if (nested_svm_virtualize_tpr(vcpu) ||
3609 	    kvm_vcpu_apicv_active(vcpu))
3610 		return;
3611 
3612 	cr8 = kvm_get_cr8(vcpu);
3613 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3614 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3615 }
3616 
3617 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3618 {
3619 	struct vcpu_svm *svm = to_svm(vcpu);
3620 	u8 vector;
3621 	int type;
3622 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3623 	unsigned int3_injected = svm->int3_injected;
3624 
3625 	svm->int3_injected = 0;
3626 
3627 	/*
3628 	 * If we've made progress since setting HF_IRET_MASK, we've
3629 	 * executed an IRET and can allow NMI injection.
3630 	 */
3631 	if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3632 	    (sev_es_guest(vcpu->kvm) ||
3633 	     kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3634 		vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3635 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3636 	}
3637 
3638 	vcpu->arch.nmi_injected = false;
3639 	kvm_clear_exception_queue(vcpu);
3640 	kvm_clear_interrupt_queue(vcpu);
3641 
3642 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3643 		return;
3644 
3645 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3646 
3647 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3648 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3649 
3650 	switch (type) {
3651 	case SVM_EXITINTINFO_TYPE_NMI:
3652 		vcpu->arch.nmi_injected = true;
3653 		break;
3654 	case SVM_EXITINTINFO_TYPE_EXEPT:
3655 		/*
3656 		 * Never re-inject a #VC exception.
3657 		 */
3658 		if (vector == X86_TRAP_VC)
3659 			break;
3660 
3661 		/*
3662 		 * In case of software exceptions, do not reinject the vector,
3663 		 * but re-execute the instruction instead. Rewind RIP first
3664 		 * if we emulated INT3 before.
3665 		 */
3666 		if (kvm_exception_is_soft(vector)) {
3667 			if (vector == BP_VECTOR && int3_injected &&
3668 			    kvm_is_linear_rip(vcpu, svm->int3_rip))
3669 				kvm_rip_write(vcpu,
3670 					      kvm_rip_read(vcpu) - int3_injected);
3671 			break;
3672 		}
3673 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3674 			u32 err = svm->vmcb->control.exit_int_info_err;
3675 			kvm_requeue_exception_e(vcpu, vector, err);
3676 
3677 		} else
3678 			kvm_requeue_exception(vcpu, vector);
3679 		break;
3680 	case SVM_EXITINTINFO_TYPE_INTR:
3681 		kvm_queue_interrupt(vcpu, vector, false);
3682 		break;
3683 	default:
3684 		break;
3685 	}
3686 }
3687 
3688 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3689 {
3690 	struct vcpu_svm *svm = to_svm(vcpu);
3691 	struct vmcb_control_area *control = &svm->vmcb->control;
3692 
3693 	control->exit_int_info = control->event_inj;
3694 	control->exit_int_info_err = control->event_inj_err;
3695 	control->event_inj = 0;
3696 	svm_complete_interrupts(vcpu);
3697 }
3698 
3699 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3700 {
3701 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3702 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3703 		return handle_fastpath_set_msr_irqoff(vcpu);
3704 
3705 	return EXIT_FASTPATH_NONE;
3706 }
3707 
3708 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3709 {
3710 	struct vcpu_svm *svm = to_svm(vcpu);
3711 	unsigned long vmcb_pa = svm->current_vmcb->pa;
3712 
3713 	kvm_guest_enter_irqoff();
3714 
3715 	if (sev_es_guest(vcpu->kvm)) {
3716 		__svm_sev_es_vcpu_run(vmcb_pa);
3717 	} else {
3718 		struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3719 
3720 		/*
3721 		 * Use a single vmcb (vmcb01 because it's always valid) for
3722 		 * context switching guest state via VMLOAD/VMSAVE, that way
3723 		 * the state doesn't need to be copied between vmcb01 and
3724 		 * vmcb02 when switching vmcbs for nested virtualization.
3725 		 */
3726 		vmload(svm->vmcb01.pa);
3727 		__svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3728 		vmsave(svm->vmcb01.pa);
3729 
3730 		vmload(__sme_page_pa(sd->save_area));
3731 	}
3732 
3733 	kvm_guest_exit_irqoff();
3734 }
3735 
3736 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3737 {
3738 	struct vcpu_svm *svm = to_svm(vcpu);
3739 
3740 	trace_kvm_entry(vcpu);
3741 
3742 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3743 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3744 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3745 
3746 	/*
3747 	 * Disable singlestep if we're injecting an interrupt/exception.
3748 	 * We don't want our modified rflags to be pushed on the stack where
3749 	 * we might not be able to easily reset them if we disabled NMI
3750 	 * singlestep later.
3751 	 */
3752 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3753 		/*
3754 		 * Event injection happens before external interrupts cause a
3755 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3756 		 * is enough to force an immediate vmexit.
3757 		 */
3758 		disable_nmi_singlestep(svm);
3759 		smp_send_reschedule(vcpu->cpu);
3760 	}
3761 
3762 	pre_svm_run(vcpu);
3763 
3764 	sync_lapic_to_cr8(vcpu);
3765 
3766 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3767 		svm->vmcb->control.asid = svm->asid;
3768 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3769 	}
3770 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3771 
3772 	/*
3773 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3774 	 * of a #DB.
3775 	 */
3776 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3777 		svm_set_dr6(svm, vcpu->arch.dr6);
3778 	else
3779 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
3780 
3781 	clgi();
3782 	kvm_load_guest_xsave_state(vcpu);
3783 
3784 	kvm_wait_lapic_expire(vcpu);
3785 
3786 	/*
3787 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3788 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3789 	 * is no need to worry about the conditional branch over the wrmsr
3790 	 * being speculatively taken.
3791 	 */
3792 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3793 		x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3794 
3795 	svm_vcpu_enter_exit(vcpu);
3796 
3797 	/*
3798 	 * We do not use IBRS in the kernel. If this vCPU has used the
3799 	 * SPEC_CTRL MSR it may have left it on; save the value and
3800 	 * turn it off. This is much more efficient than blindly adding
3801 	 * it to the atomic save/restore list. Especially as the former
3802 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3803 	 *
3804 	 * For non-nested case:
3805 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3806 	 * save it.
3807 	 *
3808 	 * For nested case:
3809 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3810 	 * save it.
3811 	 */
3812 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
3813 	    unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3814 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3815 
3816 	if (!sev_es_guest(vcpu->kvm))
3817 		reload_tss(vcpu);
3818 
3819 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3820 		x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3821 
3822 	if (!sev_es_guest(vcpu->kvm)) {
3823 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
3824 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3825 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3826 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3827 	}
3828 
3829 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3830 		kvm_before_interrupt(vcpu);
3831 
3832 	kvm_load_host_xsave_state(vcpu);
3833 	stgi();
3834 
3835 	/* Any pending NMI will happen here */
3836 
3837 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3838 		kvm_after_interrupt(vcpu);
3839 
3840 	sync_cr8_to_lapic(vcpu);
3841 
3842 	svm->next_rip = 0;
3843 	if (is_guest_mode(vcpu)) {
3844 		nested_sync_control_from_vmcb02(svm);
3845 		svm->nested.nested_run_pending = 0;
3846 	}
3847 
3848 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3849 	vmcb_mark_all_clean(svm->vmcb);
3850 
3851 	/* if exit due to PF check for async PF */
3852 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3853 		vcpu->arch.apf.host_apf_flags =
3854 			kvm_read_and_reset_apf_flags();
3855 
3856 	if (npt_enabled) {
3857 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3858 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3859 	}
3860 
3861 	/*
3862 	 * We need to handle MC intercepts here before the vcpu has a chance to
3863 	 * change the physical cpu
3864 	 */
3865 	if (unlikely(svm->vmcb->control.exit_code ==
3866 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3867 		svm_handle_mce(vcpu);
3868 
3869 	svm_complete_interrupts(vcpu);
3870 
3871 	if (is_guest_mode(vcpu))
3872 		return EXIT_FASTPATH_NONE;
3873 
3874 	return svm_exit_handlers_fastpath(vcpu);
3875 }
3876 
3877 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3878 			     int root_level)
3879 {
3880 	struct vcpu_svm *svm = to_svm(vcpu);
3881 	unsigned long cr3;
3882 
3883 	if (npt_enabled) {
3884 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
3885 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3886 
3887 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3888 		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3889 			return;
3890 		cr3 = vcpu->arch.cr3;
3891 	} else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3892 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
3893 	} else {
3894 		/* PCID in the guest should be impossible with a 32-bit MMU. */
3895 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
3896 		cr3 = root_hpa;
3897 	}
3898 
3899 	svm->vmcb->save.cr3 = cr3;
3900 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3901 }
3902 
3903 static int is_disabled(void)
3904 {
3905 	u64 vm_cr;
3906 
3907 	rdmsrl(MSR_VM_CR, vm_cr);
3908 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3909 		return 1;
3910 
3911 	return 0;
3912 }
3913 
3914 static void
3915 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3916 {
3917 	/*
3918 	 * Patch in the VMMCALL instruction:
3919 	 */
3920 	hypercall[0] = 0x0f;
3921 	hypercall[1] = 0x01;
3922 	hypercall[2] = 0xd9;
3923 }
3924 
3925 static int __init svm_check_processor_compat(void)
3926 {
3927 	return 0;
3928 }
3929 
3930 static bool svm_cpu_has_accelerated_tpr(void)
3931 {
3932 	return false;
3933 }
3934 
3935 /*
3936  * The kvm parameter can be NULL (module initialization, or invocation before
3937  * VM creation). Be sure to check the kvm parameter before using it.
3938  */
3939 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3940 {
3941 	switch (index) {
3942 	case MSR_IA32_MCG_EXT_CTL:
3943 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3944 		return false;
3945 	case MSR_IA32_SMBASE:
3946 		/* SEV-ES guests do not support SMM, so report false */
3947 		if (kvm && sev_es_guest(kvm))
3948 			return false;
3949 		break;
3950 	default:
3951 		break;
3952 	}
3953 
3954 	return true;
3955 }
3956 
3957 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3958 {
3959 	return 0;
3960 }
3961 
3962 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3963 {
3964 	struct vcpu_svm *svm = to_svm(vcpu);
3965 	struct kvm_cpuid_entry2 *best;
3966 
3967 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3968 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
3969 				    boot_cpu_has(X86_FEATURE_XSAVES);
3970 
3971 	/* Update nrips enabled cache */
3972 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3973 			     guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
3974 
3975 	/* Check again if INVPCID interception if required */
3976 	svm_check_invpcid(svm);
3977 
3978 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
3979 	if (sev_guest(vcpu->kvm)) {
3980 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3981 		if (best)
3982 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
3983 	}
3984 
3985 	if (kvm_vcpu_apicv_active(vcpu)) {
3986 		/*
3987 		 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3988 		 * is exposed to the guest, disable AVIC.
3989 		 */
3990 		if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3991 			kvm_request_apicv_update(vcpu->kvm, false,
3992 						 APICV_INHIBIT_REASON_X2APIC);
3993 
3994 		/*
3995 		 * Currently, AVIC does not work with nested virtualization.
3996 		 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3997 		 */
3998 		if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3999 			kvm_request_apicv_update(vcpu->kvm, false,
4000 						 APICV_INHIBIT_REASON_NESTED);
4001 	}
4002 
4003 	if (guest_cpuid_is_intel(vcpu)) {
4004 		/*
4005 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
4006 		 * accesses because the processor only stores 32 bits.
4007 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
4008 		 */
4009 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
4010 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
4011 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4012 
4013 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
4014 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
4015 	} else {
4016 		/*
4017 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
4018 		 * in VMCB and clear intercepts to avoid #VMEXIT.
4019 		 */
4020 		if (vls) {
4021 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
4022 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
4023 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4024 		}
4025 		/* No need to intercept these MSRs */
4026 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
4027 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
4028 	}
4029 }
4030 
4031 static bool svm_has_wbinvd_exit(void)
4032 {
4033 	return true;
4034 }
4035 
4036 #define PRE_EX(exit)  { .exit_code = (exit), \
4037 			.stage = X86_ICPT_PRE_EXCEPT, }
4038 #define POST_EX(exit) { .exit_code = (exit), \
4039 			.stage = X86_ICPT_POST_EXCEPT, }
4040 #define POST_MEM(exit) { .exit_code = (exit), \
4041 			.stage = X86_ICPT_POST_MEMACCESS, }
4042 
4043 static const struct __x86_intercept {
4044 	u32 exit_code;
4045 	enum x86_intercept_stage stage;
4046 } x86_intercept_map[] = {
4047 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4048 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4049 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4050 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4051 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4052 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4053 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4054 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4055 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4056 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4057 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4058 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4059 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4060 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4061 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4062 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4063 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4064 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4065 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4066 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4067 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4068 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4069 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4070 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4071 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4072 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4073 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4074 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4075 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4076 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4077 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4078 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4079 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4080 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4081 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4082 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4083 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4084 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4085 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4086 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4087 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4088 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4089 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4090 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4091 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4092 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4093 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4094 };
4095 
4096 #undef PRE_EX
4097 #undef POST_EX
4098 #undef POST_MEM
4099 
4100 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4101 			       struct x86_instruction_info *info,
4102 			       enum x86_intercept_stage stage,
4103 			       struct x86_exception *exception)
4104 {
4105 	struct vcpu_svm *svm = to_svm(vcpu);
4106 	int vmexit, ret = X86EMUL_CONTINUE;
4107 	struct __x86_intercept icpt_info;
4108 	struct vmcb *vmcb = svm->vmcb;
4109 
4110 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4111 		goto out;
4112 
4113 	icpt_info = x86_intercept_map[info->intercept];
4114 
4115 	if (stage != icpt_info.stage)
4116 		goto out;
4117 
4118 	switch (icpt_info.exit_code) {
4119 	case SVM_EXIT_READ_CR0:
4120 		if (info->intercept == x86_intercept_cr_read)
4121 			icpt_info.exit_code += info->modrm_reg;
4122 		break;
4123 	case SVM_EXIT_WRITE_CR0: {
4124 		unsigned long cr0, val;
4125 
4126 		if (info->intercept == x86_intercept_cr_write)
4127 			icpt_info.exit_code += info->modrm_reg;
4128 
4129 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4130 		    info->intercept == x86_intercept_clts)
4131 			break;
4132 
4133 		if (!(vmcb_is_intercept(&svm->nested.ctl,
4134 					INTERCEPT_SELECTIVE_CR0)))
4135 			break;
4136 
4137 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4138 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4139 
4140 		if (info->intercept == x86_intercept_lmsw) {
4141 			cr0 &= 0xfUL;
4142 			val &= 0xfUL;
4143 			/* lmsw can't clear PE - catch this here */
4144 			if (cr0 & X86_CR0_PE)
4145 				val |= X86_CR0_PE;
4146 		}
4147 
4148 		if (cr0 ^ val)
4149 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4150 
4151 		break;
4152 	}
4153 	case SVM_EXIT_READ_DR0:
4154 	case SVM_EXIT_WRITE_DR0:
4155 		icpt_info.exit_code += info->modrm_reg;
4156 		break;
4157 	case SVM_EXIT_MSR:
4158 		if (info->intercept == x86_intercept_wrmsr)
4159 			vmcb->control.exit_info_1 = 1;
4160 		else
4161 			vmcb->control.exit_info_1 = 0;
4162 		break;
4163 	case SVM_EXIT_PAUSE:
4164 		/*
4165 		 * We get this for NOP only, but pause
4166 		 * is rep not, check this here
4167 		 */
4168 		if (info->rep_prefix != REPE_PREFIX)
4169 			goto out;
4170 		break;
4171 	case SVM_EXIT_IOIO: {
4172 		u64 exit_info;
4173 		u32 bytes;
4174 
4175 		if (info->intercept == x86_intercept_in ||
4176 		    info->intercept == x86_intercept_ins) {
4177 			exit_info = ((info->src_val & 0xffff) << 16) |
4178 				SVM_IOIO_TYPE_MASK;
4179 			bytes = info->dst_bytes;
4180 		} else {
4181 			exit_info = (info->dst_val & 0xffff) << 16;
4182 			bytes = info->src_bytes;
4183 		}
4184 
4185 		if (info->intercept == x86_intercept_outs ||
4186 		    info->intercept == x86_intercept_ins)
4187 			exit_info |= SVM_IOIO_STR_MASK;
4188 
4189 		if (info->rep_prefix)
4190 			exit_info |= SVM_IOIO_REP_MASK;
4191 
4192 		bytes = min(bytes, 4u);
4193 
4194 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4195 
4196 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4197 
4198 		vmcb->control.exit_info_1 = exit_info;
4199 		vmcb->control.exit_info_2 = info->next_rip;
4200 
4201 		break;
4202 	}
4203 	default:
4204 		break;
4205 	}
4206 
4207 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4208 	if (static_cpu_has(X86_FEATURE_NRIPS))
4209 		vmcb->control.next_rip  = info->next_rip;
4210 	vmcb->control.exit_code = icpt_info.exit_code;
4211 	vmexit = nested_svm_exit_handled(svm);
4212 
4213 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4214 					   : X86EMUL_CONTINUE;
4215 
4216 out:
4217 	return ret;
4218 }
4219 
4220 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4221 {
4222 }
4223 
4224 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4225 {
4226 	if (!kvm_pause_in_guest(vcpu->kvm))
4227 		shrink_ple_window(vcpu);
4228 }
4229 
4230 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4231 {
4232 	/* [63:9] are reserved. */
4233 	vcpu->arch.mcg_cap &= 0x1ff;
4234 }
4235 
4236 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4237 {
4238 	struct vcpu_svm *svm = to_svm(vcpu);
4239 
4240 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4241 	if (!gif_set(svm))
4242 		return true;
4243 
4244 	return is_smm(vcpu);
4245 }
4246 
4247 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4248 {
4249 	struct vcpu_svm *svm = to_svm(vcpu);
4250 	if (svm->nested.nested_run_pending)
4251 		return -EBUSY;
4252 
4253 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4254 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4255 		return -EBUSY;
4256 
4257 	return !svm_smi_blocked(vcpu);
4258 }
4259 
4260 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4261 {
4262 	struct vcpu_svm *svm = to_svm(vcpu);
4263 	int ret;
4264 
4265 	if (is_guest_mode(vcpu)) {
4266 		/* FED8h - SVM Guest */
4267 		put_smstate(u64, smstate, 0x7ed8, 1);
4268 		/* FEE0h - SVM Guest VMCB Physical Address */
4269 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4270 
4271 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4272 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4273 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4274 
4275 		ret = nested_svm_vmexit(svm);
4276 		if (ret)
4277 			return ret;
4278 	}
4279 	return 0;
4280 }
4281 
4282 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4283 {
4284 	struct vcpu_svm *svm = to_svm(vcpu);
4285 	struct kvm_host_map map;
4286 	int ret = 0;
4287 
4288 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4289 		u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4290 		u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4291 		u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4292 
4293 		if (guest) {
4294 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4295 				return 1;
4296 
4297 			if (!(saved_efer & EFER_SVME))
4298 				return 1;
4299 
4300 			if (kvm_vcpu_map(vcpu,
4301 					 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4302 				return 1;
4303 
4304 			if (svm_allocate_nested(svm))
4305 				return 1;
4306 
4307 			ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, map.hva);
4308 			kvm_vcpu_unmap(vcpu, &map, true);
4309 		}
4310 	}
4311 
4312 	return ret;
4313 }
4314 
4315 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4316 {
4317 	struct vcpu_svm *svm = to_svm(vcpu);
4318 
4319 	if (!gif_set(svm)) {
4320 		if (vgif_enabled(svm))
4321 			svm_set_intercept(svm, INTERCEPT_STGI);
4322 		/* STGI will cause a vm exit */
4323 	} else {
4324 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4325 	}
4326 }
4327 
4328 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4329 {
4330 	bool smep, smap, is_user;
4331 	unsigned long cr4;
4332 
4333 	/*
4334 	 * When the guest is an SEV-ES guest, emulation is not possible.
4335 	 */
4336 	if (sev_es_guest(vcpu->kvm))
4337 		return false;
4338 
4339 	/*
4340 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4341 	 *
4342 	 * Errata:
4343 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4344 	 * possible that CPU microcode implementing DecodeAssist will fail
4345 	 * to read bytes of instruction which caused #NPF. In this case,
4346 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4347 	 * return 0 instead of the correct guest instruction bytes.
4348 	 *
4349 	 * This happens because CPU microcode reading instruction bytes
4350 	 * uses a special opcode which attempts to read data using CPL=0
4351 	 * privileges. The microcode reads CS:RIP and if it hits a SMAP
4352 	 * fault, it gives up and returns no instruction bytes.
4353 	 *
4354 	 * Detection:
4355 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4356 	 * returned 0 in GuestIntrBytes field of the VMCB.
4357 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4358 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4359 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4360 	 * a SMEP fault instead of #NPF).
4361 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4362 	 * As most guests enable SMAP if they have also enabled SMEP, use above
4363 	 * logic in order to attempt minimize false-positive of detecting errata
4364 	 * while still preserving all cases semantic correctness.
4365 	 *
4366 	 * Workaround:
4367 	 * To determine what instruction the guest was executing, the hypervisor
4368 	 * will have to decode the instruction at the instruction pointer.
4369 	 *
4370 	 * In non SEV guest, hypervisor will be able to read the guest
4371 	 * memory to decode the instruction pointer when insn_len is zero
4372 	 * so we return true to indicate that decoding is possible.
4373 	 *
4374 	 * But in the SEV guest, the guest memory is encrypted with the
4375 	 * guest specific key and hypervisor will not be able to decode the
4376 	 * instruction pointer so we will not able to workaround it. Lets
4377 	 * print the error and request to kill the guest.
4378 	 */
4379 	if (likely(!insn || insn_len))
4380 		return true;
4381 
4382 	/*
4383 	 * If RIP is invalid, go ahead with emulation which will cause an
4384 	 * internal error exit.
4385 	 */
4386 	if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4387 		return true;
4388 
4389 	cr4 = kvm_read_cr4(vcpu);
4390 	smep = cr4 & X86_CR4_SMEP;
4391 	smap = cr4 & X86_CR4_SMAP;
4392 	is_user = svm_get_cpl(vcpu) == 3;
4393 	if (smap && (!smep || is_user)) {
4394 		if (!sev_guest(vcpu->kvm))
4395 			return true;
4396 
4397 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4398 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4399 	}
4400 
4401 	return false;
4402 }
4403 
4404 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4405 {
4406 	struct vcpu_svm *svm = to_svm(vcpu);
4407 
4408 	/*
4409 	 * TODO: Last condition latch INIT signals on vCPU when
4410 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4411 	 * To properly emulate the INIT intercept,
4412 	 * svm_check_nested_events() should call nested_svm_vmexit()
4413 	 * if an INIT signal is pending.
4414 	 */
4415 	return !gif_set(svm) ||
4416 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4417 }
4418 
4419 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4420 {
4421 	if (!sev_es_guest(vcpu->kvm))
4422 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4423 
4424 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4425 }
4426 
4427 static void svm_vm_destroy(struct kvm *kvm)
4428 {
4429 	avic_vm_destroy(kvm);
4430 	sev_vm_destroy(kvm);
4431 }
4432 
4433 static int svm_vm_init(struct kvm *kvm)
4434 {
4435 	if (!pause_filter_count || !pause_filter_thresh)
4436 		kvm->arch.pause_in_guest = true;
4437 
4438 	if (avic) {
4439 		int ret = avic_vm_init(kvm);
4440 		if (ret)
4441 			return ret;
4442 	}
4443 
4444 	kvm_apicv_init(kvm, avic);
4445 	return 0;
4446 }
4447 
4448 static struct kvm_x86_ops svm_x86_ops __initdata = {
4449 	.hardware_unsetup = svm_hardware_teardown,
4450 	.hardware_enable = svm_hardware_enable,
4451 	.hardware_disable = svm_hardware_disable,
4452 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4453 	.has_emulated_msr = svm_has_emulated_msr,
4454 
4455 	.vcpu_create = svm_create_vcpu,
4456 	.vcpu_free = svm_free_vcpu,
4457 	.vcpu_reset = svm_vcpu_reset,
4458 
4459 	.vm_size = sizeof(struct kvm_svm),
4460 	.vm_init = svm_vm_init,
4461 	.vm_destroy = svm_vm_destroy,
4462 
4463 	.prepare_guest_switch = svm_prepare_guest_switch,
4464 	.vcpu_load = svm_vcpu_load,
4465 	.vcpu_put = svm_vcpu_put,
4466 	.vcpu_blocking = svm_vcpu_blocking,
4467 	.vcpu_unblocking = svm_vcpu_unblocking,
4468 
4469 	.update_exception_bitmap = svm_update_exception_bitmap,
4470 	.get_msr_feature = svm_get_msr_feature,
4471 	.get_msr = svm_get_msr,
4472 	.set_msr = svm_set_msr,
4473 	.get_segment_base = svm_get_segment_base,
4474 	.get_segment = svm_get_segment,
4475 	.set_segment = svm_set_segment,
4476 	.get_cpl = svm_get_cpl,
4477 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4478 	.set_cr0 = svm_set_cr0,
4479 	.is_valid_cr4 = svm_is_valid_cr4,
4480 	.set_cr4 = svm_set_cr4,
4481 	.set_efer = svm_set_efer,
4482 	.get_idt = svm_get_idt,
4483 	.set_idt = svm_set_idt,
4484 	.get_gdt = svm_get_gdt,
4485 	.set_gdt = svm_set_gdt,
4486 	.set_dr7 = svm_set_dr7,
4487 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4488 	.cache_reg = svm_cache_reg,
4489 	.get_rflags = svm_get_rflags,
4490 	.set_rflags = svm_set_rflags,
4491 
4492 	.tlb_flush_all = svm_flush_tlb,
4493 	.tlb_flush_current = svm_flush_tlb,
4494 	.tlb_flush_gva = svm_flush_tlb_gva,
4495 	.tlb_flush_guest = svm_flush_tlb,
4496 
4497 	.run = svm_vcpu_run,
4498 	.handle_exit = handle_exit,
4499 	.skip_emulated_instruction = skip_emulated_instruction,
4500 	.update_emulated_instruction = NULL,
4501 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4502 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4503 	.patch_hypercall = svm_patch_hypercall,
4504 	.set_irq = svm_set_irq,
4505 	.set_nmi = svm_inject_nmi,
4506 	.queue_exception = svm_queue_exception,
4507 	.cancel_injection = svm_cancel_injection,
4508 	.interrupt_allowed = svm_interrupt_allowed,
4509 	.nmi_allowed = svm_nmi_allowed,
4510 	.get_nmi_mask = svm_get_nmi_mask,
4511 	.set_nmi_mask = svm_set_nmi_mask,
4512 	.enable_nmi_window = svm_enable_nmi_window,
4513 	.enable_irq_window = svm_enable_irq_window,
4514 	.update_cr8_intercept = svm_update_cr8_intercept,
4515 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
4516 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4517 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4518 	.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4519 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4520 	.hwapic_irr_update = svm_hwapic_irr_update,
4521 	.hwapic_isr_update = svm_hwapic_isr_update,
4522 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
4523 	.apicv_post_state_restore = avic_post_state_restore,
4524 
4525 	.set_tss_addr = svm_set_tss_addr,
4526 	.set_identity_map_addr = svm_set_identity_map_addr,
4527 	.get_mt_mask = svm_get_mt_mask,
4528 
4529 	.get_exit_info = svm_get_exit_info,
4530 
4531 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4532 
4533 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4534 
4535 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
4536 
4537 	.load_mmu_pgd = svm_load_mmu_pgd,
4538 
4539 	.check_intercept = svm_check_intercept,
4540 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4541 
4542 	.request_immediate_exit = __kvm_request_immediate_exit,
4543 
4544 	.sched_in = svm_sched_in,
4545 
4546 	.pmu_ops = &amd_pmu_ops,
4547 	.nested_ops = &svm_nested_ops,
4548 
4549 	.deliver_posted_interrupt = svm_deliver_avic_intr,
4550 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4551 	.update_pi_irte = svm_update_pi_irte,
4552 	.setup_mce = svm_setup_mce,
4553 
4554 	.smi_allowed = svm_smi_allowed,
4555 	.pre_enter_smm = svm_pre_enter_smm,
4556 	.pre_leave_smm = svm_pre_leave_smm,
4557 	.enable_smi_window = svm_enable_smi_window,
4558 
4559 	.mem_enc_op = svm_mem_enc_op,
4560 	.mem_enc_reg_region = svm_register_enc_region,
4561 	.mem_enc_unreg_region = svm_unregister_enc_region,
4562 
4563 	.vm_copy_enc_context_from = svm_vm_copy_asid_from,
4564 
4565 	.can_emulate_instruction = svm_can_emulate_instruction,
4566 
4567 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4568 
4569 	.msr_filter_changed = svm_msr_filter_changed,
4570 	.complete_emulated_msr = svm_complete_emulated_msr,
4571 
4572 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4573 };
4574 
4575 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4576 	.cpu_has_kvm_support = has_svm,
4577 	.disabled_by_bios = is_disabled,
4578 	.hardware_setup = svm_hardware_setup,
4579 	.check_processor_compatibility = svm_check_processor_compat,
4580 
4581 	.runtime_ops = &svm_x86_ops,
4582 };
4583 
4584 static int __init svm_init(void)
4585 {
4586 	__unused_size_checks();
4587 
4588 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4589 			__alignof__(struct vcpu_svm), THIS_MODULE);
4590 }
4591 
4592 static void __exit svm_exit(void)
4593 {
4594 	kvm_exit();
4595 }
4596 
4597 module_init(svm_init)
4598 module_exit(svm_exit)
4599