xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision 910499e1)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 #include <asm/traps.h>
39 
40 #include <asm/virtext.h>
41 #include "trace.h"
42 
43 #include "svm.h"
44 #include "svm_ops.h"
45 
46 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47 
48 MODULE_AUTHOR("Qumranet");
49 MODULE_LICENSE("GPL");
50 
51 #ifdef MODULE
52 static const struct x86_cpu_id svm_cpu_id[] = {
53 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
54 	{}
55 };
56 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
57 #endif
58 
59 #define IOPM_ALLOC_ORDER 2
60 #define MSRPM_ALLOC_ORDER 1
61 
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64 
65 #define SVM_FEATURE_LBRV           (1 <<  1)
66 #define SVM_FEATURE_SVML           (1 <<  2)
67 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
68 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
69 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
70 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
71 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
72 
73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
74 
75 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
76 #define TSC_RATIO_MIN		0x0000000000000001ULL
77 #define TSC_RATIO_MAX		0x000000ffffffffffULL
78 
79 static bool erratum_383_found __read_mostly;
80 
81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
82 
83 /*
84  * Set osvw_len to higher value when updated Revision Guides
85  * are published and we know what the new status bits are
86  */
87 static uint64_t osvw_len = 4, osvw_status;
88 
89 static DEFINE_PER_CPU(u64, current_tsc_ratio);
90 #define TSC_RATIO_DEFAULT	0x0100000000ULL
91 
92 static const struct svm_direct_access_msrs {
93 	u32 index;   /* Index of the MSR */
94 	bool always; /* True if intercept is initially cleared */
95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
96 	{ .index = MSR_STAR,				.always = true  },
97 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
98 #ifdef CONFIG_X86_64
99 	{ .index = MSR_GS_BASE,				.always = true  },
100 	{ .index = MSR_FS_BASE,				.always = true  },
101 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
102 	{ .index = MSR_LSTAR,				.always = true  },
103 	{ .index = MSR_CSTAR,				.always = true  },
104 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
105 #endif
106 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
107 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
108 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
109 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
110 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
111 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
112 	{ .index = MSR_EFER,				.always = false },
113 	{ .index = MSR_IA32_CR_PAT,			.always = false },
114 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
115 	{ .index = MSR_INVALID,				.always = false },
116 };
117 
118 /* enable NPT for AMD64 and X86 with PAE */
119 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
120 bool npt_enabled = true;
121 #else
122 bool npt_enabled;
123 #endif
124 
125 /*
126  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
127  * pause_filter_count: On processors that support Pause filtering(indicated
128  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
129  *	count value. On VMRUN this value is loaded into an internal counter.
130  *	Each time a pause instruction is executed, this counter is decremented
131  *	until it reaches zero at which time a #VMEXIT is generated if pause
132  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
133  *	Intercept Filtering for more details.
134  *	This also indicate if ple logic enabled.
135  *
136  * pause_filter_thresh: In addition, some processor families support advanced
137  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
138  *	the amount of time a guest is allowed to execute in a pause loop.
139  *	In this mode, a 16-bit pause filter threshold field is added in the
140  *	VMCB. The threshold value is a cycle count that is used to reset the
141  *	pause counter. As with simple pause filtering, VMRUN loads the pause
142  *	count value from VMCB into an internal counter. Then, on each pause
143  *	instruction the hardware checks the elapsed number of cycles since
144  *	the most recent pause instruction against the pause filter threshold.
145  *	If the elapsed cycle count is greater than the pause filter threshold,
146  *	then the internal pause count is reloaded from the VMCB and execution
147  *	continues. If the elapsed cycle count is less than the pause filter
148  *	threshold, then the internal pause count is decremented. If the count
149  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
150  *	triggered. If advanced pause filtering is supported and pause filter
151  *	threshold field is set to zero, the filter will operate in the simpler,
152  *	count only mode.
153  */
154 
155 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
156 module_param(pause_filter_thresh, ushort, 0444);
157 
158 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
159 module_param(pause_filter_count, ushort, 0444);
160 
161 /* Default doubles per-vcpu window every exit. */
162 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
163 module_param(pause_filter_count_grow, ushort, 0444);
164 
165 /* Default resets per-vcpu window every exit to pause_filter_count. */
166 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
167 module_param(pause_filter_count_shrink, ushort, 0444);
168 
169 /* Default is to compute the maximum so we can never overflow. */
170 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
171 module_param(pause_filter_count_max, ushort, 0444);
172 
173 /* allow nested paging (virtualized MMU) for all guests */
174 static int npt = true;
175 module_param(npt, int, S_IRUGO);
176 
177 /* allow nested virtualization in KVM/SVM */
178 static int nested = true;
179 module_param(nested, int, S_IRUGO);
180 
181 /* enable/disable Next RIP Save */
182 static int nrips = true;
183 module_param(nrips, int, 0444);
184 
185 /* enable/disable Virtual VMLOAD VMSAVE */
186 static int vls = true;
187 module_param(vls, int, 0444);
188 
189 /* enable/disable Virtual GIF */
190 static int vgif = true;
191 module_param(vgif, int, 0444);
192 
193 /* enable/disable SEV support */
194 int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
195 module_param(sev, int, 0444);
196 
197 /* enable/disable SEV-ES support */
198 int sev_es = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
199 module_param(sev_es, int, 0444);
200 
201 bool __read_mostly dump_invalid_vmcb;
202 module_param(dump_invalid_vmcb, bool, 0644);
203 
204 static bool svm_gp_erratum_intercept = true;
205 
206 static u8 rsm_ins_bytes[] = "\x0f\xaa";
207 
208 static unsigned long iopm_base;
209 
210 struct kvm_ldttss_desc {
211 	u16 limit0;
212 	u16 base0;
213 	unsigned base1:8, type:5, dpl:2, p:1;
214 	unsigned limit1:4, zero0:3, g:1, base2:8;
215 	u32 base3;
216 	u32 zero1;
217 } __attribute__((packed));
218 
219 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
220 
221 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
222 
223 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
224 #define MSRS_RANGE_SIZE 2048
225 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
226 
227 u32 svm_msrpm_offset(u32 msr)
228 {
229 	u32 offset;
230 	int i;
231 
232 	for (i = 0; i < NUM_MSR_MAPS; i++) {
233 		if (msr < msrpm_ranges[i] ||
234 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
235 			continue;
236 
237 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
238 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
239 
240 		/* Now we have the u8 offset - but need the u32 offset */
241 		return offset / 4;
242 	}
243 
244 	/* MSR not in any range */
245 	return MSR_INVALID;
246 }
247 
248 #define MAX_INST_SIZE 15
249 
250 static int get_max_npt_level(void)
251 {
252 #ifdef CONFIG_X86_64
253 	return PT64_ROOT_4LEVEL;
254 #else
255 	return PT32E_ROOT_LEVEL;
256 #endif
257 }
258 
259 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
260 {
261 	struct vcpu_svm *svm = to_svm(vcpu);
262 	u64 old_efer = vcpu->arch.efer;
263 	vcpu->arch.efer = efer;
264 
265 	if (!npt_enabled) {
266 		/* Shadow paging assumes NX to be available.  */
267 		efer |= EFER_NX;
268 
269 		if (!(efer & EFER_LMA))
270 			efer &= ~EFER_LME;
271 	}
272 
273 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
274 		if (!(efer & EFER_SVME)) {
275 			svm_leave_nested(svm);
276 			svm_set_gif(svm, true);
277 			/* #GP intercept is still needed for vmware backdoor */
278 			if (!enable_vmware_backdoor)
279 				clr_exception_intercept(svm, GP_VECTOR);
280 
281 			/*
282 			 * Free the nested guest state, unless we are in SMM.
283 			 * In this case we will return to the nested guest
284 			 * as soon as we leave SMM.
285 			 */
286 			if (!is_smm(&svm->vcpu))
287 				svm_free_nested(svm);
288 
289 		} else {
290 			int ret = svm_allocate_nested(svm);
291 
292 			if (ret) {
293 				vcpu->arch.efer = old_efer;
294 				return ret;
295 			}
296 
297 			if (svm_gp_erratum_intercept)
298 				set_exception_intercept(svm, GP_VECTOR);
299 		}
300 	}
301 
302 	svm->vmcb->save.efer = efer | EFER_SVME;
303 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
304 	return 0;
305 }
306 
307 static int is_external_interrupt(u32 info)
308 {
309 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
310 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
311 }
312 
313 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
314 {
315 	struct vcpu_svm *svm = to_svm(vcpu);
316 	u32 ret = 0;
317 
318 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
319 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
320 	return ret;
321 }
322 
323 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
324 {
325 	struct vcpu_svm *svm = to_svm(vcpu);
326 
327 	if (mask == 0)
328 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
329 	else
330 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
331 
332 }
333 
334 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
335 {
336 	struct vcpu_svm *svm = to_svm(vcpu);
337 
338 	/*
339 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
340 	 * the type of exit and the #VC handler in the guest.
341 	 */
342 	if (sev_es_guest(vcpu->kvm))
343 		goto done;
344 
345 	if (nrips && svm->vmcb->control.next_rip != 0) {
346 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
347 		svm->next_rip = svm->vmcb->control.next_rip;
348 	}
349 
350 	if (!svm->next_rip) {
351 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
352 			return 0;
353 	} else {
354 		kvm_rip_write(vcpu, svm->next_rip);
355 	}
356 
357 done:
358 	svm_set_interrupt_shadow(vcpu, 0);
359 
360 	return 1;
361 }
362 
363 static void svm_queue_exception(struct kvm_vcpu *vcpu)
364 {
365 	struct vcpu_svm *svm = to_svm(vcpu);
366 	unsigned nr = vcpu->arch.exception.nr;
367 	bool has_error_code = vcpu->arch.exception.has_error_code;
368 	u32 error_code = vcpu->arch.exception.error_code;
369 
370 	kvm_deliver_exception_payload(&svm->vcpu);
371 
372 	if (nr == BP_VECTOR && !nrips) {
373 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
374 
375 		/*
376 		 * For guest debugging where we have to reinject #BP if some
377 		 * INT3 is guest-owned:
378 		 * Emulate nRIP by moving RIP forward. Will fail if injection
379 		 * raises a fault that is not intercepted. Still better than
380 		 * failing in all cases.
381 		 */
382 		(void)skip_emulated_instruction(&svm->vcpu);
383 		rip = kvm_rip_read(&svm->vcpu);
384 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
385 		svm->int3_injected = rip - old_rip;
386 	}
387 
388 	svm->vmcb->control.event_inj = nr
389 		| SVM_EVTINJ_VALID
390 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
391 		| SVM_EVTINJ_TYPE_EXEPT;
392 	svm->vmcb->control.event_inj_err = error_code;
393 }
394 
395 static void svm_init_erratum_383(void)
396 {
397 	u32 low, high;
398 	int err;
399 	u64 val;
400 
401 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
402 		return;
403 
404 	/* Use _safe variants to not break nested virtualization */
405 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
406 	if (err)
407 		return;
408 
409 	val |= (1ULL << 47);
410 
411 	low  = lower_32_bits(val);
412 	high = upper_32_bits(val);
413 
414 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
415 
416 	erratum_383_found = true;
417 }
418 
419 static void svm_init_osvw(struct kvm_vcpu *vcpu)
420 {
421 	/*
422 	 * Guests should see errata 400 and 415 as fixed (assuming that
423 	 * HLT and IO instructions are intercepted).
424 	 */
425 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
426 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
427 
428 	/*
429 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
430 	 * all osvw.status bits inside that length, including bit 0 (which is
431 	 * reserved for erratum 298), are valid. However, if host processor's
432 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
433 	 * be conservative here and therefore we tell the guest that erratum 298
434 	 * is present (because we really don't know).
435 	 */
436 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
437 		vcpu->arch.osvw.status |= 1;
438 }
439 
440 static int has_svm(void)
441 {
442 	const char *msg;
443 
444 	if (!cpu_has_svm(&msg)) {
445 		printk(KERN_INFO "has_svm: %s\n", msg);
446 		return 0;
447 	}
448 
449 	if (sev_active()) {
450 		pr_info("KVM is unsupported when running as an SEV guest\n");
451 		return 0;
452 	}
453 
454 	return 1;
455 }
456 
457 static void svm_hardware_disable(void)
458 {
459 	/* Make sure we clean up behind us */
460 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
461 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
462 
463 	cpu_svm_disable();
464 
465 	amd_pmu_disable_virt();
466 }
467 
468 static int svm_hardware_enable(void)
469 {
470 
471 	struct svm_cpu_data *sd;
472 	uint64_t efer;
473 	struct desc_struct *gdt;
474 	int me = raw_smp_processor_id();
475 
476 	rdmsrl(MSR_EFER, efer);
477 	if (efer & EFER_SVME)
478 		return -EBUSY;
479 
480 	if (!has_svm()) {
481 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
482 		return -EINVAL;
483 	}
484 	sd = per_cpu(svm_data, me);
485 	if (!sd) {
486 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
487 		return -EINVAL;
488 	}
489 
490 	sd->asid_generation = 1;
491 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
492 	sd->next_asid = sd->max_asid + 1;
493 	sd->min_asid = max_sev_asid + 1;
494 
495 	gdt = get_current_gdt_rw();
496 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
497 
498 	wrmsrl(MSR_EFER, efer | EFER_SVME);
499 
500 	wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
501 
502 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
503 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
504 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
505 	}
506 
507 
508 	/*
509 	 * Get OSVW bits.
510 	 *
511 	 * Note that it is possible to have a system with mixed processor
512 	 * revisions and therefore different OSVW bits. If bits are not the same
513 	 * on different processors then choose the worst case (i.e. if erratum
514 	 * is present on one processor and not on another then assume that the
515 	 * erratum is present everywhere).
516 	 */
517 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
518 		uint64_t len, status = 0;
519 		int err;
520 
521 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
522 		if (!err)
523 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
524 						      &err);
525 
526 		if (err)
527 			osvw_status = osvw_len = 0;
528 		else {
529 			if (len < osvw_len)
530 				osvw_len = len;
531 			osvw_status |= status;
532 			osvw_status &= (1ULL << osvw_len) - 1;
533 		}
534 	} else
535 		osvw_status = osvw_len = 0;
536 
537 	svm_init_erratum_383();
538 
539 	amd_pmu_enable_virt();
540 
541 	return 0;
542 }
543 
544 static void svm_cpu_uninit(int cpu)
545 {
546 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
547 
548 	if (!sd)
549 		return;
550 
551 	per_cpu(svm_data, cpu) = NULL;
552 	kfree(sd->sev_vmcbs);
553 	__free_page(sd->save_area);
554 	kfree(sd);
555 }
556 
557 static int svm_cpu_init(int cpu)
558 {
559 	struct svm_cpu_data *sd;
560 
561 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
562 	if (!sd)
563 		return -ENOMEM;
564 	sd->cpu = cpu;
565 	sd->save_area = alloc_page(GFP_KERNEL);
566 	if (!sd->save_area)
567 		goto free_cpu_data;
568 	clear_page(page_address(sd->save_area));
569 
570 	if (svm_sev_enabled()) {
571 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
572 					      sizeof(void *),
573 					      GFP_KERNEL);
574 		if (!sd->sev_vmcbs)
575 			goto free_save_area;
576 	}
577 
578 	per_cpu(svm_data, cpu) = sd;
579 
580 	return 0;
581 
582 free_save_area:
583 	__free_page(sd->save_area);
584 free_cpu_data:
585 	kfree(sd);
586 	return -ENOMEM;
587 
588 }
589 
590 static int direct_access_msr_slot(u32 msr)
591 {
592 	u32 i;
593 
594 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
595 		if (direct_access_msrs[i].index == msr)
596 			return i;
597 
598 	return -ENOENT;
599 }
600 
601 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
602 				     int write)
603 {
604 	struct vcpu_svm *svm = to_svm(vcpu);
605 	int slot = direct_access_msr_slot(msr);
606 
607 	if (slot == -ENOENT)
608 		return;
609 
610 	/* Set the shadow bitmaps to the desired intercept states */
611 	if (read)
612 		set_bit(slot, svm->shadow_msr_intercept.read);
613 	else
614 		clear_bit(slot, svm->shadow_msr_intercept.read);
615 
616 	if (write)
617 		set_bit(slot, svm->shadow_msr_intercept.write);
618 	else
619 		clear_bit(slot, svm->shadow_msr_intercept.write);
620 }
621 
622 static bool valid_msr_intercept(u32 index)
623 {
624 	return direct_access_msr_slot(index) != -ENOENT;
625 }
626 
627 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
628 {
629 	u8 bit_write;
630 	unsigned long tmp;
631 	u32 offset;
632 	u32 *msrpm;
633 
634 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
635 				      to_svm(vcpu)->msrpm;
636 
637 	offset    = svm_msrpm_offset(msr);
638 	bit_write = 2 * (msr & 0x0f) + 1;
639 	tmp       = msrpm[offset];
640 
641 	BUG_ON(offset == MSR_INVALID);
642 
643 	return !!test_bit(bit_write,  &tmp);
644 }
645 
646 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
647 					u32 msr, int read, int write)
648 {
649 	u8 bit_read, bit_write;
650 	unsigned long tmp;
651 	u32 offset;
652 
653 	/*
654 	 * If this warning triggers extend the direct_access_msrs list at the
655 	 * beginning of the file
656 	 */
657 	WARN_ON(!valid_msr_intercept(msr));
658 
659 	/* Enforce non allowed MSRs to trap */
660 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
661 		read = 0;
662 
663 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
664 		write = 0;
665 
666 	offset    = svm_msrpm_offset(msr);
667 	bit_read  = 2 * (msr & 0x0f);
668 	bit_write = 2 * (msr & 0x0f) + 1;
669 	tmp       = msrpm[offset];
670 
671 	BUG_ON(offset == MSR_INVALID);
672 
673 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
674 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
675 
676 	msrpm[offset] = tmp;
677 }
678 
679 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
680 			  int read, int write)
681 {
682 	set_shadow_msr_intercept(vcpu, msr, read, write);
683 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
684 }
685 
686 u32 *svm_vcpu_alloc_msrpm(void)
687 {
688 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
689 	u32 *msrpm;
690 
691 	if (!pages)
692 		return NULL;
693 
694 	msrpm = page_address(pages);
695 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
696 
697 	return msrpm;
698 }
699 
700 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
701 {
702 	int i;
703 
704 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
705 		if (!direct_access_msrs[i].always)
706 			continue;
707 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
708 	}
709 }
710 
711 
712 void svm_vcpu_free_msrpm(u32 *msrpm)
713 {
714 	__free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
715 }
716 
717 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
718 {
719 	struct vcpu_svm *svm = to_svm(vcpu);
720 	u32 i;
721 
722 	/*
723 	 * Set intercept permissions for all direct access MSRs again. They
724 	 * will automatically get filtered through the MSR filter, so we are
725 	 * back in sync after this.
726 	 */
727 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
728 		u32 msr = direct_access_msrs[i].index;
729 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
730 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
731 
732 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
733 	}
734 }
735 
736 static void add_msr_offset(u32 offset)
737 {
738 	int i;
739 
740 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
741 
742 		/* Offset already in list? */
743 		if (msrpm_offsets[i] == offset)
744 			return;
745 
746 		/* Slot used by another offset? */
747 		if (msrpm_offsets[i] != MSR_INVALID)
748 			continue;
749 
750 		/* Add offset to list */
751 		msrpm_offsets[i] = offset;
752 
753 		return;
754 	}
755 
756 	/*
757 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
758 	 * increase MSRPM_OFFSETS in this case.
759 	 */
760 	BUG();
761 }
762 
763 static void init_msrpm_offsets(void)
764 {
765 	int i;
766 
767 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
768 
769 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
770 		u32 offset;
771 
772 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
773 		BUG_ON(offset == MSR_INVALID);
774 
775 		add_msr_offset(offset);
776 	}
777 }
778 
779 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
780 {
781 	struct vcpu_svm *svm = to_svm(vcpu);
782 
783 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
784 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
785 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
786 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
787 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
788 }
789 
790 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
791 {
792 	struct vcpu_svm *svm = to_svm(vcpu);
793 
794 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
795 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
796 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
797 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
798 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
799 }
800 
801 void disable_nmi_singlestep(struct vcpu_svm *svm)
802 {
803 	svm->nmi_singlestep = false;
804 
805 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
806 		/* Clear our flags if they were not set by the guest */
807 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
808 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
809 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
810 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
811 	}
812 }
813 
814 static void grow_ple_window(struct kvm_vcpu *vcpu)
815 {
816 	struct vcpu_svm *svm = to_svm(vcpu);
817 	struct vmcb_control_area *control = &svm->vmcb->control;
818 	int old = control->pause_filter_count;
819 
820 	control->pause_filter_count = __grow_ple_window(old,
821 							pause_filter_count,
822 							pause_filter_count_grow,
823 							pause_filter_count_max);
824 
825 	if (control->pause_filter_count != old) {
826 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
827 		trace_kvm_ple_window_update(vcpu->vcpu_id,
828 					    control->pause_filter_count, old);
829 	}
830 }
831 
832 static void shrink_ple_window(struct kvm_vcpu *vcpu)
833 {
834 	struct vcpu_svm *svm = to_svm(vcpu);
835 	struct vmcb_control_area *control = &svm->vmcb->control;
836 	int old = control->pause_filter_count;
837 
838 	control->pause_filter_count =
839 				__shrink_ple_window(old,
840 						    pause_filter_count,
841 						    pause_filter_count_shrink,
842 						    pause_filter_count);
843 	if (control->pause_filter_count != old) {
844 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
845 		trace_kvm_ple_window_update(vcpu->vcpu_id,
846 					    control->pause_filter_count, old);
847 	}
848 }
849 
850 /*
851  * The default MMIO mask is a single bit (excluding the present bit),
852  * which could conflict with the memory encryption bit. Check for
853  * memory encryption support and override the default MMIO mask if
854  * memory encryption is enabled.
855  */
856 static __init void svm_adjust_mmio_mask(void)
857 {
858 	unsigned int enc_bit, mask_bit;
859 	u64 msr, mask;
860 
861 	/* If there is no memory encryption support, use existing mask */
862 	if (cpuid_eax(0x80000000) < 0x8000001f)
863 		return;
864 
865 	/* If memory encryption is not enabled, use existing mask */
866 	rdmsrl(MSR_K8_SYSCFG, msr);
867 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
868 		return;
869 
870 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
871 	mask_bit = boot_cpu_data.x86_phys_bits;
872 
873 	/* Increment the mask bit if it is the same as the encryption bit */
874 	if (enc_bit == mask_bit)
875 		mask_bit++;
876 
877 	/*
878 	 * If the mask bit location is below 52, then some bits above the
879 	 * physical addressing limit will always be reserved, so use the
880 	 * rsvd_bits() function to generate the mask. This mask, along with
881 	 * the present bit, will be used to generate a page fault with
882 	 * PFER.RSV = 1.
883 	 *
884 	 * If the mask bit location is 52 (or above), then clear the mask.
885 	 */
886 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
887 
888 	kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
889 }
890 
891 static void svm_hardware_teardown(void)
892 {
893 	int cpu;
894 
895 	if (svm_sev_enabled())
896 		sev_hardware_teardown();
897 
898 	for_each_possible_cpu(cpu)
899 		svm_cpu_uninit(cpu);
900 
901 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
902 	iopm_base = 0;
903 }
904 
905 static __init void svm_set_cpu_caps(void)
906 {
907 	kvm_set_cpu_caps();
908 
909 	supported_xss = 0;
910 
911 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
912 	if (nested) {
913 		kvm_cpu_cap_set(X86_FEATURE_SVM);
914 
915 		if (nrips)
916 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
917 
918 		if (npt_enabled)
919 			kvm_cpu_cap_set(X86_FEATURE_NPT);
920 
921 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
922 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
923 	}
924 
925 	/* CPUID 0x80000008 */
926 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
927 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
928 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
929 }
930 
931 static __init int svm_hardware_setup(void)
932 {
933 	int cpu;
934 	struct page *iopm_pages;
935 	void *iopm_va;
936 	int r;
937 
938 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
939 
940 	if (!iopm_pages)
941 		return -ENOMEM;
942 
943 	iopm_va = page_address(iopm_pages);
944 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
945 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
946 
947 	init_msrpm_offsets();
948 
949 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
950 
951 	if (boot_cpu_has(X86_FEATURE_NX))
952 		kvm_enable_efer_bits(EFER_NX);
953 
954 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
955 		kvm_enable_efer_bits(EFER_FFXSR);
956 
957 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
958 		kvm_has_tsc_control = true;
959 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
960 		kvm_tsc_scaling_ratio_frac_bits = 32;
961 	}
962 
963 	/* Check for pause filtering support */
964 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
965 		pause_filter_count = 0;
966 		pause_filter_thresh = 0;
967 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
968 		pause_filter_thresh = 0;
969 	}
970 
971 	if (nested) {
972 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
973 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
974 	}
975 
976 	if (IS_ENABLED(CONFIG_KVM_AMD_SEV) && sev) {
977 		sev_hardware_setup();
978 	} else {
979 		sev = false;
980 		sev_es = false;
981 	}
982 
983 	svm_adjust_mmio_mask();
984 
985 	for_each_possible_cpu(cpu) {
986 		r = svm_cpu_init(cpu);
987 		if (r)
988 			goto err;
989 	}
990 
991 	if (!boot_cpu_has(X86_FEATURE_NPT))
992 		npt_enabled = false;
993 
994 	if (npt_enabled && !npt)
995 		npt_enabled = false;
996 
997 	kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
998 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
999 
1000 	if (nrips) {
1001 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
1002 			nrips = false;
1003 	}
1004 
1005 	if (avic) {
1006 		if (!npt_enabled ||
1007 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
1008 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1009 			avic = false;
1010 		} else {
1011 			pr_info("AVIC enabled\n");
1012 
1013 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1014 		}
1015 	}
1016 
1017 	if (vls) {
1018 		if (!npt_enabled ||
1019 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1020 		    !IS_ENABLED(CONFIG_X86_64)) {
1021 			vls = false;
1022 		} else {
1023 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1024 		}
1025 	}
1026 
1027 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
1028 		svm_gp_erratum_intercept = false;
1029 
1030 	if (vgif) {
1031 		if (!boot_cpu_has(X86_FEATURE_VGIF))
1032 			vgif = false;
1033 		else
1034 			pr_info("Virtual GIF supported\n");
1035 	}
1036 
1037 	svm_set_cpu_caps();
1038 
1039 	/*
1040 	 * It seems that on AMD processors PTE's accessed bit is
1041 	 * being set by the CPU hardware before the NPF vmexit.
1042 	 * This is not expected behaviour and our tests fail because
1043 	 * of it.
1044 	 * A workaround here is to disable support for
1045 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1046 	 * In this case userspace can know if there is support using
1047 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1048 	 * it
1049 	 * If future AMD CPU models change the behaviour described above,
1050 	 * this variable can be changed accordingly
1051 	 */
1052 	allow_smaller_maxphyaddr = !npt_enabled;
1053 
1054 	return 0;
1055 
1056 err:
1057 	svm_hardware_teardown();
1058 	return r;
1059 }
1060 
1061 static void init_seg(struct vmcb_seg *seg)
1062 {
1063 	seg->selector = 0;
1064 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1065 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1066 	seg->limit = 0xffff;
1067 	seg->base = 0;
1068 }
1069 
1070 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1071 {
1072 	seg->selector = 0;
1073 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1074 	seg->limit = 0xffff;
1075 	seg->base = 0;
1076 }
1077 
1078 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1079 {
1080 	struct vcpu_svm *svm = to_svm(vcpu);
1081 	u64 g_tsc_offset = 0;
1082 
1083 	if (is_guest_mode(vcpu)) {
1084 		/* Write L1's TSC offset.  */
1085 		g_tsc_offset = svm->vmcb->control.tsc_offset -
1086 			       svm->nested.hsave->control.tsc_offset;
1087 		svm->nested.hsave->control.tsc_offset = offset;
1088 	}
1089 
1090 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1091 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
1092 				   offset);
1093 
1094 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1095 
1096 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1097 	return svm->vmcb->control.tsc_offset;
1098 }
1099 
1100 static void svm_check_invpcid(struct vcpu_svm *svm)
1101 {
1102 	/*
1103 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1104 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1105 	 */
1106 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1107 		if (!npt_enabled ||
1108 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1109 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1110 		else
1111 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1112 	}
1113 }
1114 
1115 static void init_vmcb(struct vcpu_svm *svm)
1116 {
1117 	struct vmcb_control_area *control = &svm->vmcb->control;
1118 	struct vmcb_save_area *save = &svm->vmcb->save;
1119 
1120 	svm->vcpu.arch.hflags = 0;
1121 
1122 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1123 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1124 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1125 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1126 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1127 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1128 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1129 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1130 
1131 	set_dr_intercepts(svm);
1132 
1133 	set_exception_intercept(svm, PF_VECTOR);
1134 	set_exception_intercept(svm, UD_VECTOR);
1135 	set_exception_intercept(svm, MC_VECTOR);
1136 	set_exception_intercept(svm, AC_VECTOR);
1137 	set_exception_intercept(svm, DB_VECTOR);
1138 	/*
1139 	 * Guest access to VMware backdoor ports could legitimately
1140 	 * trigger #GP because of TSS I/O permission bitmap.
1141 	 * We intercept those #GP and allow access to them anyway
1142 	 * as VMware does.
1143 	 */
1144 	if (enable_vmware_backdoor)
1145 		set_exception_intercept(svm, GP_VECTOR);
1146 
1147 	svm_set_intercept(svm, INTERCEPT_INTR);
1148 	svm_set_intercept(svm, INTERCEPT_NMI);
1149 	svm_set_intercept(svm, INTERCEPT_SMI);
1150 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1151 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1152 	svm_set_intercept(svm, INTERCEPT_CPUID);
1153 	svm_set_intercept(svm, INTERCEPT_INVD);
1154 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1155 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1156 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1157 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1158 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1159 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1160 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1161 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1162 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1163 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1164 	svm_set_intercept(svm, INTERCEPT_STGI);
1165 	svm_set_intercept(svm, INTERCEPT_CLGI);
1166 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1167 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1168 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1169 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1170 	svm_set_intercept(svm, INTERCEPT_RSM);
1171 
1172 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1173 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1174 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1175 	}
1176 
1177 	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1178 		svm_set_intercept(svm, INTERCEPT_HLT);
1179 
1180 	control->iopm_base_pa = __sme_set(iopm_base);
1181 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1182 	control->int_ctl = V_INTR_MASKING_MASK;
1183 
1184 	init_seg(&save->es);
1185 	init_seg(&save->ss);
1186 	init_seg(&save->ds);
1187 	init_seg(&save->fs);
1188 	init_seg(&save->gs);
1189 
1190 	save->cs.selector = 0xf000;
1191 	save->cs.base = 0xffff0000;
1192 	/* Executable/Readable Code Segment */
1193 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1194 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1195 	save->cs.limit = 0xffff;
1196 
1197 	save->gdtr.limit = 0xffff;
1198 	save->idtr.limit = 0xffff;
1199 
1200 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1201 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1202 
1203 	svm_set_efer(&svm->vcpu, 0);
1204 	save->dr6 = 0xffff0ff0;
1205 	kvm_set_rflags(&svm->vcpu, X86_EFLAGS_FIXED);
1206 	save->rip = 0x0000fff0;
1207 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1208 
1209 	/*
1210 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1211 	 * It also updates the guest-visible cr0 value.
1212 	 */
1213 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1214 	kvm_mmu_reset_context(&svm->vcpu);
1215 
1216 	save->cr4 = X86_CR4_PAE;
1217 	/* rdx = ?? */
1218 
1219 	if (npt_enabled) {
1220 		/* Setup VMCB for Nested Paging */
1221 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1222 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1223 		clr_exception_intercept(svm, PF_VECTOR);
1224 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1225 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1226 		save->g_pat = svm->vcpu.arch.pat;
1227 		save->cr3 = 0;
1228 		save->cr4 = 0;
1229 	}
1230 	svm->asid_generation = 0;
1231 	svm->asid = 0;
1232 
1233 	svm->nested.vmcb12_gpa = 0;
1234 	svm->vcpu.arch.hflags = 0;
1235 
1236 	if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1237 		control->pause_filter_count = pause_filter_count;
1238 		if (pause_filter_thresh)
1239 			control->pause_filter_thresh = pause_filter_thresh;
1240 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1241 	} else {
1242 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1243 	}
1244 
1245 	svm_check_invpcid(svm);
1246 
1247 	if (kvm_vcpu_apicv_active(&svm->vcpu))
1248 		avic_init_vmcb(svm);
1249 
1250 	/*
1251 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1252 	 * in VMCB and clear intercepts to avoid #VMEXIT.
1253 	 */
1254 	if (vls) {
1255 		svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1256 		svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1257 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1258 	}
1259 
1260 	if (vgif) {
1261 		svm_clr_intercept(svm, INTERCEPT_STGI);
1262 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1263 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1264 	}
1265 
1266 	if (sev_guest(svm->vcpu.kvm)) {
1267 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1268 		clr_exception_intercept(svm, UD_VECTOR);
1269 
1270 		if (sev_es_guest(svm->vcpu.kvm)) {
1271 			/* Perform SEV-ES specific VMCB updates */
1272 			sev_es_init_vmcb(svm);
1273 		}
1274 	}
1275 
1276 	vmcb_mark_all_dirty(svm->vmcb);
1277 
1278 	enable_gif(svm);
1279 
1280 }
1281 
1282 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1283 {
1284 	struct vcpu_svm *svm = to_svm(vcpu);
1285 	u32 dummy;
1286 	u32 eax = 1;
1287 
1288 	svm->spec_ctrl = 0;
1289 	svm->virt_spec_ctrl = 0;
1290 
1291 	if (!init_event) {
1292 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1293 					   MSR_IA32_APICBASE_ENABLE;
1294 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1295 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1296 	}
1297 	init_vmcb(svm);
1298 
1299 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1300 	kvm_rdx_write(vcpu, eax);
1301 
1302 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1303 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1304 }
1305 
1306 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1307 {
1308 	struct vcpu_svm *svm;
1309 	struct page *vmcb_page;
1310 	struct page *vmsa_page = NULL;
1311 	int err;
1312 
1313 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1314 	svm = to_svm(vcpu);
1315 
1316 	err = -ENOMEM;
1317 	vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1318 	if (!vmcb_page)
1319 		goto out;
1320 
1321 	if (sev_es_guest(svm->vcpu.kvm)) {
1322 		/*
1323 		 * SEV-ES guests require a separate VMSA page used to contain
1324 		 * the encrypted register state of the guest.
1325 		 */
1326 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1327 		if (!vmsa_page)
1328 			goto error_free_vmcb_page;
1329 
1330 		/*
1331 		 * SEV-ES guests maintain an encrypted version of their FPU
1332 		 * state which is restored and saved on VMRUN and VMEXIT.
1333 		 * Free the fpu structure to prevent KVM from attempting to
1334 		 * access the FPU state.
1335 		 */
1336 		kvm_free_guest_fpu(vcpu);
1337 	}
1338 
1339 	err = avic_init_vcpu(svm);
1340 	if (err)
1341 		goto error_free_vmsa_page;
1342 
1343 	/* We initialize this flag to true to make sure that the is_running
1344 	 * bit would be set the first time the vcpu is loaded.
1345 	 */
1346 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1347 		svm->avic_is_running = true;
1348 
1349 	svm->msrpm = svm_vcpu_alloc_msrpm();
1350 	if (!svm->msrpm) {
1351 		err = -ENOMEM;
1352 		goto error_free_vmsa_page;
1353 	}
1354 
1355 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1356 
1357 	svm->vmcb = page_address(vmcb_page);
1358 	svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
1359 
1360 	if (vmsa_page)
1361 		svm->vmsa = page_address(vmsa_page);
1362 
1363 	svm->asid_generation = 0;
1364 	svm->guest_state_loaded = false;
1365 	init_vmcb(svm);
1366 
1367 	svm_init_osvw(vcpu);
1368 	vcpu->arch.microcode_version = 0x01000065;
1369 
1370 	if (sev_es_guest(svm->vcpu.kvm))
1371 		/* Perform SEV-ES specific VMCB creation updates */
1372 		sev_es_create_vcpu(svm);
1373 
1374 	return 0;
1375 
1376 error_free_vmsa_page:
1377 	if (vmsa_page)
1378 		__free_page(vmsa_page);
1379 error_free_vmcb_page:
1380 	__free_page(vmcb_page);
1381 out:
1382 	return err;
1383 }
1384 
1385 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1386 {
1387 	int i;
1388 
1389 	for_each_online_cpu(i)
1390 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1391 }
1392 
1393 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1394 {
1395 	struct vcpu_svm *svm = to_svm(vcpu);
1396 
1397 	/*
1398 	 * The vmcb page can be recycled, causing a false negative in
1399 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1400 	 * vmcb page recorded as its current vmcb.
1401 	 */
1402 	svm_clear_current_vmcb(svm->vmcb);
1403 
1404 	svm_free_nested(svm);
1405 
1406 	sev_free_vcpu(vcpu);
1407 
1408 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1409 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1410 }
1411 
1412 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1413 {
1414 	struct vcpu_svm *svm = to_svm(vcpu);
1415 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1416 	unsigned int i;
1417 
1418 	if (svm->guest_state_loaded)
1419 		return;
1420 
1421 	/*
1422 	 * Certain MSRs are restored on VMEXIT (sev-es), or vmload of host save
1423 	 * area (non-sev-es). Save ones that aren't so we can restore them
1424 	 * individually later.
1425 	 */
1426 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1427 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1428 
1429 	/*
1430 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1431 	 * or subsequent vmload of host save area.
1432 	 */
1433 	if (sev_es_guest(svm->vcpu.kvm)) {
1434 		sev_es_prepare_guest_switch(svm, vcpu->cpu);
1435 	} else {
1436 		vmsave(__sme_page_pa(sd->save_area));
1437 	}
1438 
1439 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1440 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1441 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1442 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1443 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1444 		}
1445 	}
1446 
1447 	/* This assumes that the kernel never uses MSR_TSC_AUX */
1448 	if (static_cpu_has(X86_FEATURE_RDTSCP))
1449 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1450 
1451 	svm->guest_state_loaded = true;
1452 }
1453 
1454 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1455 {
1456 	struct vcpu_svm *svm = to_svm(vcpu);
1457 	unsigned int i;
1458 
1459 	if (!svm->guest_state_loaded)
1460 		return;
1461 
1462 	/*
1463 	 * Certain MSRs are restored on VMEXIT (sev-es), or vmload of host save
1464 	 * area (non-sev-es). Restore the ones that weren't.
1465 	 */
1466 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1467 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1468 
1469 	svm->guest_state_loaded = false;
1470 }
1471 
1472 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1473 {
1474 	struct vcpu_svm *svm = to_svm(vcpu);
1475 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1476 
1477 	if (unlikely(cpu != vcpu->cpu)) {
1478 		svm->asid_generation = 0;
1479 		vmcb_mark_all_dirty(svm->vmcb);
1480 	}
1481 
1482 	if (sd->current_vmcb != svm->vmcb) {
1483 		sd->current_vmcb = svm->vmcb;
1484 		indirect_branch_prediction_barrier();
1485 	}
1486 	avic_vcpu_load(vcpu, cpu);
1487 }
1488 
1489 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1490 {
1491 	avic_vcpu_put(vcpu);
1492 	svm_prepare_host_switch(vcpu);
1493 
1494 	++vcpu->stat.host_state_reload;
1495 }
1496 
1497 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1498 {
1499 	struct vcpu_svm *svm = to_svm(vcpu);
1500 	unsigned long rflags = svm->vmcb->save.rflags;
1501 
1502 	if (svm->nmi_singlestep) {
1503 		/* Hide our flags if they were not set by the guest */
1504 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1505 			rflags &= ~X86_EFLAGS_TF;
1506 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1507 			rflags &= ~X86_EFLAGS_RF;
1508 	}
1509 	return rflags;
1510 }
1511 
1512 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1513 {
1514 	if (to_svm(vcpu)->nmi_singlestep)
1515 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1516 
1517        /*
1518         * Any change of EFLAGS.VM is accompanied by a reload of SS
1519         * (caused by either a task switch or an inter-privilege IRET),
1520         * so we do not need to update the CPL here.
1521         */
1522 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1523 }
1524 
1525 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1526 {
1527 	switch (reg) {
1528 	case VCPU_EXREG_PDPTR:
1529 		BUG_ON(!npt_enabled);
1530 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1531 		break;
1532 	default:
1533 		WARN_ON_ONCE(1);
1534 	}
1535 }
1536 
1537 static void svm_set_vintr(struct vcpu_svm *svm)
1538 {
1539 	struct vmcb_control_area *control;
1540 
1541 	/* The following fields are ignored when AVIC is enabled */
1542 	WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1543 	svm_set_intercept(svm, INTERCEPT_VINTR);
1544 
1545 	/*
1546 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1547 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1548 	 */
1549 	control = &svm->vmcb->control;
1550 	control->int_vector = 0x0;
1551 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1552 	control->int_ctl |= V_IRQ_MASK |
1553 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1554 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1555 }
1556 
1557 static void svm_clear_vintr(struct vcpu_svm *svm)
1558 {
1559 	const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1560 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1561 
1562 	/* Drop int_ctl fields related to VINTR injection.  */
1563 	svm->vmcb->control.int_ctl &= mask;
1564 	if (is_guest_mode(&svm->vcpu)) {
1565 		svm->nested.hsave->control.int_ctl &= mask;
1566 
1567 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1568 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1569 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1570 	}
1571 
1572 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1573 }
1574 
1575 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1576 {
1577 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1578 
1579 	switch (seg) {
1580 	case VCPU_SREG_CS: return &save->cs;
1581 	case VCPU_SREG_DS: return &save->ds;
1582 	case VCPU_SREG_ES: return &save->es;
1583 	case VCPU_SREG_FS: return &save->fs;
1584 	case VCPU_SREG_GS: return &save->gs;
1585 	case VCPU_SREG_SS: return &save->ss;
1586 	case VCPU_SREG_TR: return &save->tr;
1587 	case VCPU_SREG_LDTR: return &save->ldtr;
1588 	}
1589 	BUG();
1590 	return NULL;
1591 }
1592 
1593 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1594 {
1595 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1596 
1597 	return s->base;
1598 }
1599 
1600 static void svm_get_segment(struct kvm_vcpu *vcpu,
1601 			    struct kvm_segment *var, int seg)
1602 {
1603 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1604 
1605 	var->base = s->base;
1606 	var->limit = s->limit;
1607 	var->selector = s->selector;
1608 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1609 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1610 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1611 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1612 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1613 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1614 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1615 
1616 	/*
1617 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1618 	 * However, the SVM spec states that the G bit is not observed by the
1619 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1620 	 * So let's synthesize a legal G bit for all segments, this helps
1621 	 * running KVM nested. It also helps cross-vendor migration, because
1622 	 * Intel's vmentry has a check on the 'G' bit.
1623 	 */
1624 	var->g = s->limit > 0xfffff;
1625 
1626 	/*
1627 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1628 	 * for cross vendor migration purposes by "not present"
1629 	 */
1630 	var->unusable = !var->present;
1631 
1632 	switch (seg) {
1633 	case VCPU_SREG_TR:
1634 		/*
1635 		 * Work around a bug where the busy flag in the tr selector
1636 		 * isn't exposed
1637 		 */
1638 		var->type |= 0x2;
1639 		break;
1640 	case VCPU_SREG_DS:
1641 	case VCPU_SREG_ES:
1642 	case VCPU_SREG_FS:
1643 	case VCPU_SREG_GS:
1644 		/*
1645 		 * The accessed bit must always be set in the segment
1646 		 * descriptor cache, although it can be cleared in the
1647 		 * descriptor, the cached bit always remains at 1. Since
1648 		 * Intel has a check on this, set it here to support
1649 		 * cross-vendor migration.
1650 		 */
1651 		if (!var->unusable)
1652 			var->type |= 0x1;
1653 		break;
1654 	case VCPU_SREG_SS:
1655 		/*
1656 		 * On AMD CPUs sometimes the DB bit in the segment
1657 		 * descriptor is left as 1, although the whole segment has
1658 		 * been made unusable. Clear it here to pass an Intel VMX
1659 		 * entry check when cross vendor migrating.
1660 		 */
1661 		if (var->unusable)
1662 			var->db = 0;
1663 		/* This is symmetric with svm_set_segment() */
1664 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1665 		break;
1666 	}
1667 }
1668 
1669 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1670 {
1671 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1672 
1673 	return save->cpl;
1674 }
1675 
1676 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1677 {
1678 	struct vcpu_svm *svm = to_svm(vcpu);
1679 
1680 	dt->size = svm->vmcb->save.idtr.limit;
1681 	dt->address = svm->vmcb->save.idtr.base;
1682 }
1683 
1684 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1685 {
1686 	struct vcpu_svm *svm = to_svm(vcpu);
1687 
1688 	svm->vmcb->save.idtr.limit = dt->size;
1689 	svm->vmcb->save.idtr.base = dt->address ;
1690 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1691 }
1692 
1693 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1694 {
1695 	struct vcpu_svm *svm = to_svm(vcpu);
1696 
1697 	dt->size = svm->vmcb->save.gdtr.limit;
1698 	dt->address = svm->vmcb->save.gdtr.base;
1699 }
1700 
1701 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1702 {
1703 	struct vcpu_svm *svm = to_svm(vcpu);
1704 
1705 	svm->vmcb->save.gdtr.limit = dt->size;
1706 	svm->vmcb->save.gdtr.base = dt->address ;
1707 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1708 }
1709 
1710 static void update_cr0_intercept(struct vcpu_svm *svm)
1711 {
1712 	ulong gcr0;
1713 	u64 *hcr0;
1714 
1715 	/*
1716 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1717 	 * tracking is done using the CR write traps.
1718 	 */
1719 	if (sev_es_guest(svm->vcpu.kvm))
1720 		return;
1721 
1722 	gcr0 = svm->vcpu.arch.cr0;
1723 	hcr0 = &svm->vmcb->save.cr0;
1724 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1725 		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1726 
1727 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1728 
1729 	if (gcr0 == *hcr0) {
1730 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1731 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1732 	} else {
1733 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1734 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1735 	}
1736 }
1737 
1738 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1739 {
1740 	struct vcpu_svm *svm = to_svm(vcpu);
1741 
1742 #ifdef CONFIG_X86_64
1743 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1744 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1745 			vcpu->arch.efer |= EFER_LMA;
1746 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1747 		}
1748 
1749 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1750 			vcpu->arch.efer &= ~EFER_LMA;
1751 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1752 		}
1753 	}
1754 #endif
1755 	vcpu->arch.cr0 = cr0;
1756 
1757 	if (!npt_enabled)
1758 		cr0 |= X86_CR0_PG | X86_CR0_WP;
1759 
1760 	/*
1761 	 * re-enable caching here because the QEMU bios
1762 	 * does not do it - this results in some delay at
1763 	 * reboot
1764 	 */
1765 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1766 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1767 	svm->vmcb->save.cr0 = cr0;
1768 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1769 	update_cr0_intercept(svm);
1770 }
1771 
1772 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1773 {
1774 	return true;
1775 }
1776 
1777 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1778 {
1779 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1780 	unsigned long old_cr4 = vcpu->arch.cr4;
1781 
1782 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1783 		svm_flush_tlb(vcpu);
1784 
1785 	vcpu->arch.cr4 = cr4;
1786 	if (!npt_enabled)
1787 		cr4 |= X86_CR4_PAE;
1788 	cr4 |= host_cr4_mce;
1789 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1790 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1791 
1792 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1793 		kvm_update_cpuid_runtime(vcpu);
1794 }
1795 
1796 static void svm_set_segment(struct kvm_vcpu *vcpu,
1797 			    struct kvm_segment *var, int seg)
1798 {
1799 	struct vcpu_svm *svm = to_svm(vcpu);
1800 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1801 
1802 	s->base = var->base;
1803 	s->limit = var->limit;
1804 	s->selector = var->selector;
1805 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1806 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1807 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1808 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1809 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1810 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1811 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1812 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1813 
1814 	/*
1815 	 * This is always accurate, except if SYSRET returned to a segment
1816 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1817 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1818 	 * would entail passing the CPL to userspace and back.
1819 	 */
1820 	if (seg == VCPU_SREG_SS)
1821 		/* This is symmetric with svm_get_segment() */
1822 		svm->vmcb->save.cpl = (var->dpl & 3);
1823 
1824 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1825 }
1826 
1827 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1828 {
1829 	struct vcpu_svm *svm = to_svm(vcpu);
1830 
1831 	clr_exception_intercept(svm, BP_VECTOR);
1832 
1833 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1834 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1835 			set_exception_intercept(svm, BP_VECTOR);
1836 	}
1837 }
1838 
1839 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1840 {
1841 	if (sd->next_asid > sd->max_asid) {
1842 		++sd->asid_generation;
1843 		sd->next_asid = sd->min_asid;
1844 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1845 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1846 	}
1847 
1848 	svm->asid_generation = sd->asid_generation;
1849 	svm->asid = sd->next_asid++;
1850 }
1851 
1852 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1853 {
1854 	struct vmcb *vmcb = svm->vmcb;
1855 
1856 	if (svm->vcpu.arch.guest_state_protected)
1857 		return;
1858 
1859 	if (unlikely(value != vmcb->save.dr6)) {
1860 		vmcb->save.dr6 = value;
1861 		vmcb_mark_dirty(vmcb, VMCB_DR);
1862 	}
1863 }
1864 
1865 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1866 {
1867 	struct vcpu_svm *svm = to_svm(vcpu);
1868 
1869 	if (vcpu->arch.guest_state_protected)
1870 		return;
1871 
1872 	get_debugreg(vcpu->arch.db[0], 0);
1873 	get_debugreg(vcpu->arch.db[1], 1);
1874 	get_debugreg(vcpu->arch.db[2], 2);
1875 	get_debugreg(vcpu->arch.db[3], 3);
1876 	/*
1877 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1878 	 * because db_interception might need it.  We can do it before vmentry.
1879 	 */
1880 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1881 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1882 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1883 	set_dr_intercepts(svm);
1884 }
1885 
1886 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1887 {
1888 	struct vcpu_svm *svm = to_svm(vcpu);
1889 
1890 	if (vcpu->arch.guest_state_protected)
1891 		return;
1892 
1893 	svm->vmcb->save.dr7 = value;
1894 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1895 }
1896 
1897 static int pf_interception(struct vcpu_svm *svm)
1898 {
1899 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1900 	u64 error_code = svm->vmcb->control.exit_info_1;
1901 
1902 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1903 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1904 			svm->vmcb->control.insn_bytes : NULL,
1905 			svm->vmcb->control.insn_len);
1906 }
1907 
1908 static int npf_interception(struct vcpu_svm *svm)
1909 {
1910 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1911 	u64 error_code = svm->vmcb->control.exit_info_1;
1912 
1913 	trace_kvm_page_fault(fault_address, error_code);
1914 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1915 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1916 			svm->vmcb->control.insn_bytes : NULL,
1917 			svm->vmcb->control.insn_len);
1918 }
1919 
1920 static int db_interception(struct vcpu_svm *svm)
1921 {
1922 	struct kvm_run *kvm_run = svm->vcpu.run;
1923 	struct kvm_vcpu *vcpu = &svm->vcpu;
1924 
1925 	if (!(svm->vcpu.guest_debug &
1926 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1927 		!svm->nmi_singlestep) {
1928 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1929 		kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1930 		return 1;
1931 	}
1932 
1933 	if (svm->nmi_singlestep) {
1934 		disable_nmi_singlestep(svm);
1935 		/* Make sure we check for pending NMIs upon entry */
1936 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1937 	}
1938 
1939 	if (svm->vcpu.guest_debug &
1940 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1941 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1942 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1943 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1944 		kvm_run->debug.arch.pc =
1945 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1946 		kvm_run->debug.arch.exception = DB_VECTOR;
1947 		return 0;
1948 	}
1949 
1950 	return 1;
1951 }
1952 
1953 static int bp_interception(struct vcpu_svm *svm)
1954 {
1955 	struct kvm_run *kvm_run = svm->vcpu.run;
1956 
1957 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1958 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1959 	kvm_run->debug.arch.exception = BP_VECTOR;
1960 	return 0;
1961 }
1962 
1963 static int ud_interception(struct vcpu_svm *svm)
1964 {
1965 	return handle_ud(&svm->vcpu);
1966 }
1967 
1968 static int ac_interception(struct vcpu_svm *svm)
1969 {
1970 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1971 	return 1;
1972 }
1973 
1974 static bool is_erratum_383(void)
1975 {
1976 	int err, i;
1977 	u64 value;
1978 
1979 	if (!erratum_383_found)
1980 		return false;
1981 
1982 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1983 	if (err)
1984 		return false;
1985 
1986 	/* Bit 62 may or may not be set for this mce */
1987 	value &= ~(1ULL << 62);
1988 
1989 	if (value != 0xb600000000010015ULL)
1990 		return false;
1991 
1992 	/* Clear MCi_STATUS registers */
1993 	for (i = 0; i < 6; ++i)
1994 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1995 
1996 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1997 	if (!err) {
1998 		u32 low, high;
1999 
2000 		value &= ~(1ULL << 2);
2001 		low    = lower_32_bits(value);
2002 		high   = upper_32_bits(value);
2003 
2004 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2005 	}
2006 
2007 	/* Flush tlb to evict multi-match entries */
2008 	__flush_tlb_all();
2009 
2010 	return true;
2011 }
2012 
2013 static void svm_handle_mce(struct vcpu_svm *svm)
2014 {
2015 	if (is_erratum_383()) {
2016 		/*
2017 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2018 		 * guest.
2019 		 */
2020 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2021 
2022 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2023 
2024 		return;
2025 	}
2026 
2027 	/*
2028 	 * On an #MC intercept the MCE handler is not called automatically in
2029 	 * the host. So do it by hand here.
2030 	 */
2031 	kvm_machine_check();
2032 }
2033 
2034 static int mc_interception(struct vcpu_svm *svm)
2035 {
2036 	return 1;
2037 }
2038 
2039 static int shutdown_interception(struct vcpu_svm *svm)
2040 {
2041 	struct kvm_run *kvm_run = svm->vcpu.run;
2042 
2043 	/*
2044 	 * The VM save area has already been encrypted so it
2045 	 * cannot be reinitialized - just terminate.
2046 	 */
2047 	if (sev_es_guest(svm->vcpu.kvm))
2048 		return -EINVAL;
2049 
2050 	/*
2051 	 * VMCB is undefined after a SHUTDOWN intercept
2052 	 * so reinitialize it.
2053 	 */
2054 	clear_page(svm->vmcb);
2055 	init_vmcb(svm);
2056 
2057 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2058 	return 0;
2059 }
2060 
2061 static int io_interception(struct vcpu_svm *svm)
2062 {
2063 	struct kvm_vcpu *vcpu = &svm->vcpu;
2064 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2065 	int size, in, string;
2066 	unsigned port;
2067 
2068 	++svm->vcpu.stat.io_exits;
2069 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2070 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2071 	port = io_info >> 16;
2072 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2073 
2074 	if (string) {
2075 		if (sev_es_guest(vcpu->kvm))
2076 			return sev_es_string_io(svm, size, port, in);
2077 		else
2078 			return kvm_emulate_instruction(vcpu, 0);
2079 	}
2080 
2081 	svm->next_rip = svm->vmcb->control.exit_info_2;
2082 
2083 	return kvm_fast_pio(&svm->vcpu, size, port, in);
2084 }
2085 
2086 static int nmi_interception(struct vcpu_svm *svm)
2087 {
2088 	return 1;
2089 }
2090 
2091 static int intr_interception(struct vcpu_svm *svm)
2092 {
2093 	++svm->vcpu.stat.irq_exits;
2094 	return 1;
2095 }
2096 
2097 static int nop_on_interception(struct vcpu_svm *svm)
2098 {
2099 	return 1;
2100 }
2101 
2102 static int halt_interception(struct vcpu_svm *svm)
2103 {
2104 	return kvm_emulate_halt(&svm->vcpu);
2105 }
2106 
2107 static int vmmcall_interception(struct vcpu_svm *svm)
2108 {
2109 	return kvm_emulate_hypercall(&svm->vcpu);
2110 }
2111 
2112 static int vmload_interception(struct vcpu_svm *svm)
2113 {
2114 	struct vmcb *nested_vmcb;
2115 	struct kvm_host_map map;
2116 	int ret;
2117 
2118 	if (nested_svm_check_permissions(svm))
2119 		return 1;
2120 
2121 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2122 	if (ret) {
2123 		if (ret == -EINVAL)
2124 			kvm_inject_gp(&svm->vcpu, 0);
2125 		return 1;
2126 	}
2127 
2128 	nested_vmcb = map.hva;
2129 
2130 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2131 
2132 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2133 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2134 
2135 	return ret;
2136 }
2137 
2138 static int vmsave_interception(struct vcpu_svm *svm)
2139 {
2140 	struct vmcb *nested_vmcb;
2141 	struct kvm_host_map map;
2142 	int ret;
2143 
2144 	if (nested_svm_check_permissions(svm))
2145 		return 1;
2146 
2147 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2148 	if (ret) {
2149 		if (ret == -EINVAL)
2150 			kvm_inject_gp(&svm->vcpu, 0);
2151 		return 1;
2152 	}
2153 
2154 	nested_vmcb = map.hva;
2155 
2156 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2157 
2158 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2159 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2160 
2161 	return ret;
2162 }
2163 
2164 static int vmrun_interception(struct vcpu_svm *svm)
2165 {
2166 	if (nested_svm_check_permissions(svm))
2167 		return 1;
2168 
2169 	return nested_svm_vmrun(svm);
2170 }
2171 
2172 enum {
2173 	NONE_SVM_INSTR,
2174 	SVM_INSTR_VMRUN,
2175 	SVM_INSTR_VMLOAD,
2176 	SVM_INSTR_VMSAVE,
2177 };
2178 
2179 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2180 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2181 {
2182 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2183 
2184 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2185 		return NONE_SVM_INSTR;
2186 
2187 	switch (ctxt->modrm) {
2188 	case 0xd8: /* VMRUN */
2189 		return SVM_INSTR_VMRUN;
2190 	case 0xda: /* VMLOAD */
2191 		return SVM_INSTR_VMLOAD;
2192 	case 0xdb: /* VMSAVE */
2193 		return SVM_INSTR_VMSAVE;
2194 	default:
2195 		break;
2196 	}
2197 
2198 	return NONE_SVM_INSTR;
2199 }
2200 
2201 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2202 {
2203 	const int guest_mode_exit_codes[] = {
2204 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2205 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2206 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2207 	};
2208 	int (*const svm_instr_handlers[])(struct vcpu_svm *svm) = {
2209 		[SVM_INSTR_VMRUN] = vmrun_interception,
2210 		[SVM_INSTR_VMLOAD] = vmload_interception,
2211 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2212 	};
2213 	struct vcpu_svm *svm = to_svm(vcpu);
2214 	int ret;
2215 
2216 	if (is_guest_mode(vcpu)) {
2217 		svm->vmcb->control.exit_code = guest_mode_exit_codes[opcode];
2218 		svm->vmcb->control.exit_info_1 = 0;
2219 		svm->vmcb->control.exit_info_2 = 0;
2220 
2221 		/* Returns '1' or -errno on failure, '0' on success. */
2222 		ret = nested_svm_vmexit(svm);
2223 		if (ret)
2224 			return ret;
2225 		return 1;
2226 	}
2227 	return svm_instr_handlers[opcode](svm);
2228 }
2229 
2230 /*
2231  * #GP handling code. Note that #GP can be triggered under the following two
2232  * cases:
2233  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2234  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2235  *      regions (e.g. SMM memory on host).
2236  *   2) VMware backdoor
2237  */
2238 static int gp_interception(struct vcpu_svm *svm)
2239 {
2240 	struct kvm_vcpu *vcpu = &svm->vcpu;
2241 	u32 error_code = svm->vmcb->control.exit_info_1;
2242 	int opcode;
2243 
2244 	/* Both #GP cases have zero error_code */
2245 	if (error_code)
2246 		goto reinject;
2247 
2248 	/* Decode the instruction for usage later */
2249 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2250 		goto reinject;
2251 
2252 	opcode = svm_instr_opcode(vcpu);
2253 
2254 	if (opcode == NONE_SVM_INSTR) {
2255 		if (!enable_vmware_backdoor)
2256 			goto reinject;
2257 
2258 		/*
2259 		 * VMware backdoor emulation on #GP interception only handles
2260 		 * IN{S}, OUT{S}, and RDPMC.
2261 		 */
2262 		if (!is_guest_mode(vcpu))
2263 			return kvm_emulate_instruction(vcpu,
2264 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2265 	} else
2266 		return emulate_svm_instr(vcpu, opcode);
2267 
2268 reinject:
2269 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2270 	return 1;
2271 }
2272 
2273 void svm_set_gif(struct vcpu_svm *svm, bool value)
2274 {
2275 	if (value) {
2276 		/*
2277 		 * If VGIF is enabled, the STGI intercept is only added to
2278 		 * detect the opening of the SMI/NMI window; remove it now.
2279 		 * Likewise, clear the VINTR intercept, we will set it
2280 		 * again while processing KVM_REQ_EVENT if needed.
2281 		 */
2282 		if (vgif_enabled(svm))
2283 			svm_clr_intercept(svm, INTERCEPT_STGI);
2284 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2285 			svm_clear_vintr(svm);
2286 
2287 		enable_gif(svm);
2288 		if (svm->vcpu.arch.smi_pending ||
2289 		    svm->vcpu.arch.nmi_pending ||
2290 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2291 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2292 	} else {
2293 		disable_gif(svm);
2294 
2295 		/*
2296 		 * After a CLGI no interrupts should come.  But if vGIF is
2297 		 * in use, we still rely on the VINTR intercept (rather than
2298 		 * STGI) to detect an open interrupt window.
2299 		*/
2300 		if (!vgif_enabled(svm))
2301 			svm_clear_vintr(svm);
2302 	}
2303 }
2304 
2305 static int stgi_interception(struct vcpu_svm *svm)
2306 {
2307 	int ret;
2308 
2309 	if (nested_svm_check_permissions(svm))
2310 		return 1;
2311 
2312 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2313 	svm_set_gif(svm, true);
2314 	return ret;
2315 }
2316 
2317 static int clgi_interception(struct vcpu_svm *svm)
2318 {
2319 	int ret;
2320 
2321 	if (nested_svm_check_permissions(svm))
2322 		return 1;
2323 
2324 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2325 	svm_set_gif(svm, false);
2326 	return ret;
2327 }
2328 
2329 static int invlpga_interception(struct vcpu_svm *svm)
2330 {
2331 	struct kvm_vcpu *vcpu = &svm->vcpu;
2332 
2333 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2334 			  kvm_rax_read(&svm->vcpu));
2335 
2336 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2337 	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2338 
2339 	return kvm_skip_emulated_instruction(&svm->vcpu);
2340 }
2341 
2342 static int skinit_interception(struct vcpu_svm *svm)
2343 {
2344 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2345 
2346 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2347 	return 1;
2348 }
2349 
2350 static int wbinvd_interception(struct vcpu_svm *svm)
2351 {
2352 	return kvm_emulate_wbinvd(&svm->vcpu);
2353 }
2354 
2355 static int xsetbv_interception(struct vcpu_svm *svm)
2356 {
2357 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2358 	u32 index = kvm_rcx_read(&svm->vcpu);
2359 
2360 	int err = kvm_set_xcr(&svm->vcpu, index, new_bv);
2361 	return kvm_complete_insn_gp(&svm->vcpu, err);
2362 }
2363 
2364 static int rdpru_interception(struct vcpu_svm *svm)
2365 {
2366 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2367 	return 1;
2368 }
2369 
2370 static int task_switch_interception(struct vcpu_svm *svm)
2371 {
2372 	u16 tss_selector;
2373 	int reason;
2374 	int int_type = svm->vmcb->control.exit_int_info &
2375 		SVM_EXITINTINFO_TYPE_MASK;
2376 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2377 	uint32_t type =
2378 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2379 	uint32_t idt_v =
2380 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2381 	bool has_error_code = false;
2382 	u32 error_code = 0;
2383 
2384 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2385 
2386 	if (svm->vmcb->control.exit_info_2 &
2387 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2388 		reason = TASK_SWITCH_IRET;
2389 	else if (svm->vmcb->control.exit_info_2 &
2390 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2391 		reason = TASK_SWITCH_JMP;
2392 	else if (idt_v)
2393 		reason = TASK_SWITCH_GATE;
2394 	else
2395 		reason = TASK_SWITCH_CALL;
2396 
2397 	if (reason == TASK_SWITCH_GATE) {
2398 		switch (type) {
2399 		case SVM_EXITINTINFO_TYPE_NMI:
2400 			svm->vcpu.arch.nmi_injected = false;
2401 			break;
2402 		case SVM_EXITINTINFO_TYPE_EXEPT:
2403 			if (svm->vmcb->control.exit_info_2 &
2404 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2405 				has_error_code = true;
2406 				error_code =
2407 					(u32)svm->vmcb->control.exit_info_2;
2408 			}
2409 			kvm_clear_exception_queue(&svm->vcpu);
2410 			break;
2411 		case SVM_EXITINTINFO_TYPE_INTR:
2412 			kvm_clear_interrupt_queue(&svm->vcpu);
2413 			break;
2414 		default:
2415 			break;
2416 		}
2417 	}
2418 
2419 	if (reason != TASK_SWITCH_GATE ||
2420 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2421 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2422 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2423 		if (!skip_emulated_instruction(&svm->vcpu))
2424 			return 0;
2425 	}
2426 
2427 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2428 		int_vec = -1;
2429 
2430 	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2431 			       has_error_code, error_code);
2432 }
2433 
2434 static int cpuid_interception(struct vcpu_svm *svm)
2435 {
2436 	return kvm_emulate_cpuid(&svm->vcpu);
2437 }
2438 
2439 static int iret_interception(struct vcpu_svm *svm)
2440 {
2441 	++svm->vcpu.stat.nmi_window_exits;
2442 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2443 	if (!sev_es_guest(svm->vcpu.kvm)) {
2444 		svm_clr_intercept(svm, INTERCEPT_IRET);
2445 		svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2446 	}
2447 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2448 	return 1;
2449 }
2450 
2451 static int invd_interception(struct vcpu_svm *svm)
2452 {
2453 	/* Treat an INVD instruction as a NOP and just skip it. */
2454 	return kvm_skip_emulated_instruction(&svm->vcpu);
2455 }
2456 
2457 static int invlpg_interception(struct vcpu_svm *svm)
2458 {
2459 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2460 		return kvm_emulate_instruction(&svm->vcpu, 0);
2461 
2462 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2463 	return kvm_skip_emulated_instruction(&svm->vcpu);
2464 }
2465 
2466 static int emulate_on_interception(struct vcpu_svm *svm)
2467 {
2468 	return kvm_emulate_instruction(&svm->vcpu, 0);
2469 }
2470 
2471 static int rsm_interception(struct vcpu_svm *svm)
2472 {
2473 	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2474 }
2475 
2476 static int rdpmc_interception(struct vcpu_svm *svm)
2477 {
2478 	int err;
2479 
2480 	if (!nrips)
2481 		return emulate_on_interception(svm);
2482 
2483 	err = kvm_rdpmc(&svm->vcpu);
2484 	return kvm_complete_insn_gp(&svm->vcpu, err);
2485 }
2486 
2487 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2488 					    unsigned long val)
2489 {
2490 	unsigned long cr0 = svm->vcpu.arch.cr0;
2491 	bool ret = false;
2492 
2493 	if (!is_guest_mode(&svm->vcpu) ||
2494 	    (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2495 		return false;
2496 
2497 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2498 	val &= ~SVM_CR0_SELECTIVE_MASK;
2499 
2500 	if (cr0 ^ val) {
2501 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2502 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2503 	}
2504 
2505 	return ret;
2506 }
2507 
2508 #define CR_VALID (1ULL << 63)
2509 
2510 static int cr_interception(struct vcpu_svm *svm)
2511 {
2512 	int reg, cr;
2513 	unsigned long val;
2514 	int err;
2515 
2516 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2517 		return emulate_on_interception(svm);
2518 
2519 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2520 		return emulate_on_interception(svm);
2521 
2522 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2523 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2524 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2525 	else
2526 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2527 
2528 	err = 0;
2529 	if (cr >= 16) { /* mov to cr */
2530 		cr -= 16;
2531 		val = kvm_register_read(&svm->vcpu, reg);
2532 		trace_kvm_cr_write(cr, val);
2533 		switch (cr) {
2534 		case 0:
2535 			if (!check_selective_cr0_intercepted(svm, val))
2536 				err = kvm_set_cr0(&svm->vcpu, val);
2537 			else
2538 				return 1;
2539 
2540 			break;
2541 		case 3:
2542 			err = kvm_set_cr3(&svm->vcpu, val);
2543 			break;
2544 		case 4:
2545 			err = kvm_set_cr4(&svm->vcpu, val);
2546 			break;
2547 		case 8:
2548 			err = kvm_set_cr8(&svm->vcpu, val);
2549 			break;
2550 		default:
2551 			WARN(1, "unhandled write to CR%d", cr);
2552 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2553 			return 1;
2554 		}
2555 	} else { /* mov from cr */
2556 		switch (cr) {
2557 		case 0:
2558 			val = kvm_read_cr0(&svm->vcpu);
2559 			break;
2560 		case 2:
2561 			val = svm->vcpu.arch.cr2;
2562 			break;
2563 		case 3:
2564 			val = kvm_read_cr3(&svm->vcpu);
2565 			break;
2566 		case 4:
2567 			val = kvm_read_cr4(&svm->vcpu);
2568 			break;
2569 		case 8:
2570 			val = kvm_get_cr8(&svm->vcpu);
2571 			break;
2572 		default:
2573 			WARN(1, "unhandled read from CR%d", cr);
2574 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2575 			return 1;
2576 		}
2577 		kvm_register_write(&svm->vcpu, reg, val);
2578 		trace_kvm_cr_read(cr, val);
2579 	}
2580 	return kvm_complete_insn_gp(&svm->vcpu, err);
2581 }
2582 
2583 static int cr_trap(struct vcpu_svm *svm)
2584 {
2585 	struct kvm_vcpu *vcpu = &svm->vcpu;
2586 	unsigned long old_value, new_value;
2587 	unsigned int cr;
2588 	int ret = 0;
2589 
2590 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2591 
2592 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2593 	switch (cr) {
2594 	case 0:
2595 		old_value = kvm_read_cr0(vcpu);
2596 		svm_set_cr0(vcpu, new_value);
2597 
2598 		kvm_post_set_cr0(vcpu, old_value, new_value);
2599 		break;
2600 	case 4:
2601 		old_value = kvm_read_cr4(vcpu);
2602 		svm_set_cr4(vcpu, new_value);
2603 
2604 		kvm_post_set_cr4(vcpu, old_value, new_value);
2605 		break;
2606 	case 8:
2607 		ret = kvm_set_cr8(&svm->vcpu, new_value);
2608 		break;
2609 	default:
2610 		WARN(1, "unhandled CR%d write trap", cr);
2611 		kvm_queue_exception(vcpu, UD_VECTOR);
2612 		return 1;
2613 	}
2614 
2615 	return kvm_complete_insn_gp(vcpu, ret);
2616 }
2617 
2618 static int dr_interception(struct vcpu_svm *svm)
2619 {
2620 	int reg, dr;
2621 	unsigned long val;
2622 	int err = 0;
2623 
2624 	if (svm->vcpu.guest_debug == 0) {
2625 		/*
2626 		 * No more DR vmexits; force a reload of the debug registers
2627 		 * and reenter on this instruction.  The next vmexit will
2628 		 * retrieve the full state of the debug registers.
2629 		 */
2630 		clr_dr_intercepts(svm);
2631 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2632 		return 1;
2633 	}
2634 
2635 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2636 		return emulate_on_interception(svm);
2637 
2638 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2639 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2640 	if (dr >= 16) { /* mov to DRn  */
2641 		dr -= 16;
2642 		val = kvm_register_read(&svm->vcpu, reg);
2643 		err = kvm_set_dr(&svm->vcpu, dr, val);
2644 	} else {
2645 		kvm_get_dr(&svm->vcpu, dr, &val);
2646 		kvm_register_write(&svm->vcpu, reg, val);
2647 	}
2648 
2649 	return kvm_complete_insn_gp(&svm->vcpu, err);
2650 }
2651 
2652 static int cr8_write_interception(struct vcpu_svm *svm)
2653 {
2654 	struct kvm_run *kvm_run = svm->vcpu.run;
2655 	int r;
2656 
2657 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2658 	/* instruction emulation calls kvm_set_cr8() */
2659 	r = cr_interception(svm);
2660 	if (lapic_in_kernel(&svm->vcpu))
2661 		return r;
2662 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2663 		return r;
2664 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2665 	return 0;
2666 }
2667 
2668 static int efer_trap(struct vcpu_svm *svm)
2669 {
2670 	struct msr_data msr_info;
2671 	int ret;
2672 
2673 	/*
2674 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2675 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2676 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2677 	 * the guest doesn't have X86_FEATURE_SVM.
2678 	 */
2679 	msr_info.host_initiated = false;
2680 	msr_info.index = MSR_EFER;
2681 	msr_info.data = svm->vmcb->control.exit_info_1 & ~EFER_SVME;
2682 	ret = kvm_set_msr_common(&svm->vcpu, &msr_info);
2683 
2684 	return kvm_complete_insn_gp(&svm->vcpu, ret);
2685 }
2686 
2687 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2688 {
2689 	msr->data = 0;
2690 
2691 	switch (msr->index) {
2692 	case MSR_F10H_DECFG:
2693 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2694 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2695 		break;
2696 	case MSR_IA32_PERF_CAPABILITIES:
2697 		return 0;
2698 	default:
2699 		return KVM_MSR_RET_INVALID;
2700 	}
2701 
2702 	return 0;
2703 }
2704 
2705 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2706 {
2707 	struct vcpu_svm *svm = to_svm(vcpu);
2708 
2709 	switch (msr_info->index) {
2710 	case MSR_STAR:
2711 		msr_info->data = svm->vmcb->save.star;
2712 		break;
2713 #ifdef CONFIG_X86_64
2714 	case MSR_LSTAR:
2715 		msr_info->data = svm->vmcb->save.lstar;
2716 		break;
2717 	case MSR_CSTAR:
2718 		msr_info->data = svm->vmcb->save.cstar;
2719 		break;
2720 	case MSR_KERNEL_GS_BASE:
2721 		msr_info->data = svm->vmcb->save.kernel_gs_base;
2722 		break;
2723 	case MSR_SYSCALL_MASK:
2724 		msr_info->data = svm->vmcb->save.sfmask;
2725 		break;
2726 #endif
2727 	case MSR_IA32_SYSENTER_CS:
2728 		msr_info->data = svm->vmcb->save.sysenter_cs;
2729 		break;
2730 	case MSR_IA32_SYSENTER_EIP:
2731 		msr_info->data = svm->sysenter_eip;
2732 		break;
2733 	case MSR_IA32_SYSENTER_ESP:
2734 		msr_info->data = svm->sysenter_esp;
2735 		break;
2736 	case MSR_TSC_AUX:
2737 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2738 			return 1;
2739 		msr_info->data = svm->tsc_aux;
2740 		break;
2741 	/*
2742 	 * Nobody will change the following 5 values in the VMCB so we can
2743 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2744 	 * implemented.
2745 	 */
2746 	case MSR_IA32_DEBUGCTLMSR:
2747 		msr_info->data = svm->vmcb->save.dbgctl;
2748 		break;
2749 	case MSR_IA32_LASTBRANCHFROMIP:
2750 		msr_info->data = svm->vmcb->save.br_from;
2751 		break;
2752 	case MSR_IA32_LASTBRANCHTOIP:
2753 		msr_info->data = svm->vmcb->save.br_to;
2754 		break;
2755 	case MSR_IA32_LASTINTFROMIP:
2756 		msr_info->data = svm->vmcb->save.last_excp_from;
2757 		break;
2758 	case MSR_IA32_LASTINTTOIP:
2759 		msr_info->data = svm->vmcb->save.last_excp_to;
2760 		break;
2761 	case MSR_VM_HSAVE_PA:
2762 		msr_info->data = svm->nested.hsave_msr;
2763 		break;
2764 	case MSR_VM_CR:
2765 		msr_info->data = svm->nested.vm_cr_msr;
2766 		break;
2767 	case MSR_IA32_SPEC_CTRL:
2768 		if (!msr_info->host_initiated &&
2769 		    !guest_has_spec_ctrl_msr(vcpu))
2770 			return 1;
2771 
2772 		msr_info->data = svm->spec_ctrl;
2773 		break;
2774 	case MSR_AMD64_VIRT_SPEC_CTRL:
2775 		if (!msr_info->host_initiated &&
2776 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2777 			return 1;
2778 
2779 		msr_info->data = svm->virt_spec_ctrl;
2780 		break;
2781 	case MSR_F15H_IC_CFG: {
2782 
2783 		int family, model;
2784 
2785 		family = guest_cpuid_family(vcpu);
2786 		model  = guest_cpuid_model(vcpu);
2787 
2788 		if (family < 0 || model < 0)
2789 			return kvm_get_msr_common(vcpu, msr_info);
2790 
2791 		msr_info->data = 0;
2792 
2793 		if (family == 0x15 &&
2794 		    (model >= 0x2 && model < 0x20))
2795 			msr_info->data = 0x1E;
2796 		}
2797 		break;
2798 	case MSR_F10H_DECFG:
2799 		msr_info->data = svm->msr_decfg;
2800 		break;
2801 	default:
2802 		return kvm_get_msr_common(vcpu, msr_info);
2803 	}
2804 	return 0;
2805 }
2806 
2807 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2808 {
2809 	struct vcpu_svm *svm = to_svm(vcpu);
2810 	if (!sev_es_guest(svm->vcpu.kvm) || !err)
2811 		return kvm_complete_insn_gp(&svm->vcpu, err);
2812 
2813 	ghcb_set_sw_exit_info_1(svm->ghcb, 1);
2814 	ghcb_set_sw_exit_info_2(svm->ghcb,
2815 				X86_TRAP_GP |
2816 				SVM_EVTINJ_TYPE_EXEPT |
2817 				SVM_EVTINJ_VALID);
2818 	return 1;
2819 }
2820 
2821 static int rdmsr_interception(struct vcpu_svm *svm)
2822 {
2823 	return kvm_emulate_rdmsr(&svm->vcpu);
2824 }
2825 
2826 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2827 {
2828 	struct vcpu_svm *svm = to_svm(vcpu);
2829 	int svm_dis, chg_mask;
2830 
2831 	if (data & ~SVM_VM_CR_VALID_MASK)
2832 		return 1;
2833 
2834 	chg_mask = SVM_VM_CR_VALID_MASK;
2835 
2836 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2837 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2838 
2839 	svm->nested.vm_cr_msr &= ~chg_mask;
2840 	svm->nested.vm_cr_msr |= (data & chg_mask);
2841 
2842 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2843 
2844 	/* check for svm_disable while efer.svme is set */
2845 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2846 		return 1;
2847 
2848 	return 0;
2849 }
2850 
2851 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2852 {
2853 	struct vcpu_svm *svm = to_svm(vcpu);
2854 
2855 	u32 ecx = msr->index;
2856 	u64 data = msr->data;
2857 	switch (ecx) {
2858 	case MSR_IA32_CR_PAT:
2859 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2860 			return 1;
2861 		vcpu->arch.pat = data;
2862 		svm->vmcb->save.g_pat = data;
2863 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2864 		break;
2865 	case MSR_IA32_SPEC_CTRL:
2866 		if (!msr->host_initiated &&
2867 		    !guest_has_spec_ctrl_msr(vcpu))
2868 			return 1;
2869 
2870 		if (kvm_spec_ctrl_test_value(data))
2871 			return 1;
2872 
2873 		svm->spec_ctrl = data;
2874 		if (!data)
2875 			break;
2876 
2877 		/*
2878 		 * For non-nested:
2879 		 * When it's written (to non-zero) for the first time, pass
2880 		 * it through.
2881 		 *
2882 		 * For nested:
2883 		 * The handling of the MSR bitmap for L2 guests is done in
2884 		 * nested_svm_vmrun_msrpm.
2885 		 * We update the L1 MSR bit as well since it will end up
2886 		 * touching the MSR anyway now.
2887 		 */
2888 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2889 		break;
2890 	case MSR_IA32_PRED_CMD:
2891 		if (!msr->host_initiated &&
2892 		    !guest_has_pred_cmd_msr(vcpu))
2893 			return 1;
2894 
2895 		if (data & ~PRED_CMD_IBPB)
2896 			return 1;
2897 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2898 			return 1;
2899 		if (!data)
2900 			break;
2901 
2902 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2903 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2904 		break;
2905 	case MSR_AMD64_VIRT_SPEC_CTRL:
2906 		if (!msr->host_initiated &&
2907 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2908 			return 1;
2909 
2910 		if (data & ~SPEC_CTRL_SSBD)
2911 			return 1;
2912 
2913 		svm->virt_spec_ctrl = data;
2914 		break;
2915 	case MSR_STAR:
2916 		svm->vmcb->save.star = data;
2917 		break;
2918 #ifdef CONFIG_X86_64
2919 	case MSR_LSTAR:
2920 		svm->vmcb->save.lstar = data;
2921 		break;
2922 	case MSR_CSTAR:
2923 		svm->vmcb->save.cstar = data;
2924 		break;
2925 	case MSR_KERNEL_GS_BASE:
2926 		svm->vmcb->save.kernel_gs_base = data;
2927 		break;
2928 	case MSR_SYSCALL_MASK:
2929 		svm->vmcb->save.sfmask = data;
2930 		break;
2931 #endif
2932 	case MSR_IA32_SYSENTER_CS:
2933 		svm->vmcb->save.sysenter_cs = data;
2934 		break;
2935 	case MSR_IA32_SYSENTER_EIP:
2936 		svm->sysenter_eip = data;
2937 		svm->vmcb->save.sysenter_eip = data;
2938 		break;
2939 	case MSR_IA32_SYSENTER_ESP:
2940 		svm->sysenter_esp = data;
2941 		svm->vmcb->save.sysenter_esp = data;
2942 		break;
2943 	case MSR_TSC_AUX:
2944 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2945 			return 1;
2946 
2947 		/*
2948 		 * This is rare, so we update the MSR here instead of using
2949 		 * direct_access_msrs.  Doing that would require a rdmsr in
2950 		 * svm_vcpu_put.
2951 		 */
2952 		svm->tsc_aux = data;
2953 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2954 		break;
2955 	case MSR_IA32_DEBUGCTLMSR:
2956 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2957 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2958 				    __func__, data);
2959 			break;
2960 		}
2961 		if (data & DEBUGCTL_RESERVED_BITS)
2962 			return 1;
2963 
2964 		svm->vmcb->save.dbgctl = data;
2965 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2966 		if (data & (1ULL<<0))
2967 			svm_enable_lbrv(vcpu);
2968 		else
2969 			svm_disable_lbrv(vcpu);
2970 		break;
2971 	case MSR_VM_HSAVE_PA:
2972 		svm->nested.hsave_msr = data;
2973 		break;
2974 	case MSR_VM_CR:
2975 		return svm_set_vm_cr(vcpu, data);
2976 	case MSR_VM_IGNNE:
2977 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2978 		break;
2979 	case MSR_F10H_DECFG: {
2980 		struct kvm_msr_entry msr_entry;
2981 
2982 		msr_entry.index = msr->index;
2983 		if (svm_get_msr_feature(&msr_entry))
2984 			return 1;
2985 
2986 		/* Check the supported bits */
2987 		if (data & ~msr_entry.data)
2988 			return 1;
2989 
2990 		/* Don't allow the guest to change a bit, #GP */
2991 		if (!msr->host_initiated && (data ^ msr_entry.data))
2992 			return 1;
2993 
2994 		svm->msr_decfg = data;
2995 		break;
2996 	}
2997 	case MSR_IA32_APICBASE:
2998 		if (kvm_vcpu_apicv_active(vcpu))
2999 			avic_update_vapic_bar(to_svm(vcpu), data);
3000 		fallthrough;
3001 	default:
3002 		return kvm_set_msr_common(vcpu, msr);
3003 	}
3004 	return 0;
3005 }
3006 
3007 static int wrmsr_interception(struct vcpu_svm *svm)
3008 {
3009 	return kvm_emulate_wrmsr(&svm->vcpu);
3010 }
3011 
3012 static int msr_interception(struct vcpu_svm *svm)
3013 {
3014 	if (svm->vmcb->control.exit_info_1)
3015 		return wrmsr_interception(svm);
3016 	else
3017 		return rdmsr_interception(svm);
3018 }
3019 
3020 static int interrupt_window_interception(struct vcpu_svm *svm)
3021 {
3022 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3023 	svm_clear_vintr(svm);
3024 
3025 	/*
3026 	 * For AVIC, the only reason to end up here is ExtINTs.
3027 	 * In this case AVIC was temporarily disabled for
3028 	 * requesting the IRQ window and we have to re-enable it.
3029 	 */
3030 	svm_toggle_avic_for_irq_window(&svm->vcpu, true);
3031 
3032 	++svm->vcpu.stat.irq_window_exits;
3033 	return 1;
3034 }
3035 
3036 static int pause_interception(struct vcpu_svm *svm)
3037 {
3038 	struct kvm_vcpu *vcpu = &svm->vcpu;
3039 	bool in_kernel;
3040 
3041 	/*
3042 	 * CPL is not made available for an SEV-ES guest, therefore
3043 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3044 	 * set in_kernel to false as well.
3045 	 */
3046 	in_kernel = !sev_es_guest(svm->vcpu.kvm) && svm_get_cpl(vcpu) == 0;
3047 
3048 	if (!kvm_pause_in_guest(vcpu->kvm))
3049 		grow_ple_window(vcpu);
3050 
3051 	kvm_vcpu_on_spin(vcpu, in_kernel);
3052 	return 1;
3053 }
3054 
3055 static int nop_interception(struct vcpu_svm *svm)
3056 {
3057 	return kvm_skip_emulated_instruction(&(svm->vcpu));
3058 }
3059 
3060 static int monitor_interception(struct vcpu_svm *svm)
3061 {
3062 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3063 	return nop_interception(svm);
3064 }
3065 
3066 static int mwait_interception(struct vcpu_svm *svm)
3067 {
3068 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3069 	return nop_interception(svm);
3070 }
3071 
3072 static int invpcid_interception(struct vcpu_svm *svm)
3073 {
3074 	struct kvm_vcpu *vcpu = &svm->vcpu;
3075 	unsigned long type;
3076 	gva_t gva;
3077 
3078 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3079 		kvm_queue_exception(vcpu, UD_VECTOR);
3080 		return 1;
3081 	}
3082 
3083 	/*
3084 	 * For an INVPCID intercept:
3085 	 * EXITINFO1 provides the linear address of the memory operand.
3086 	 * EXITINFO2 provides the contents of the register operand.
3087 	 */
3088 	type = svm->vmcb->control.exit_info_2;
3089 	gva = svm->vmcb->control.exit_info_1;
3090 
3091 	if (type > 3) {
3092 		kvm_inject_gp(vcpu, 0);
3093 		return 1;
3094 	}
3095 
3096 	return kvm_handle_invpcid(vcpu, type, gva);
3097 }
3098 
3099 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3100 	[SVM_EXIT_READ_CR0]			= cr_interception,
3101 	[SVM_EXIT_READ_CR3]			= cr_interception,
3102 	[SVM_EXIT_READ_CR4]			= cr_interception,
3103 	[SVM_EXIT_READ_CR8]			= cr_interception,
3104 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3105 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3106 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3107 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3108 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3109 	[SVM_EXIT_READ_DR0]			= dr_interception,
3110 	[SVM_EXIT_READ_DR1]			= dr_interception,
3111 	[SVM_EXIT_READ_DR2]			= dr_interception,
3112 	[SVM_EXIT_READ_DR3]			= dr_interception,
3113 	[SVM_EXIT_READ_DR4]			= dr_interception,
3114 	[SVM_EXIT_READ_DR5]			= dr_interception,
3115 	[SVM_EXIT_READ_DR6]			= dr_interception,
3116 	[SVM_EXIT_READ_DR7]			= dr_interception,
3117 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3118 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3119 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3120 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3121 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3122 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3123 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3124 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3125 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3126 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3127 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3128 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3129 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3130 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3131 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3132 	[SVM_EXIT_INTR]				= intr_interception,
3133 	[SVM_EXIT_NMI]				= nmi_interception,
3134 	[SVM_EXIT_SMI]				= nop_on_interception,
3135 	[SVM_EXIT_INIT]				= nop_on_interception,
3136 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3137 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
3138 	[SVM_EXIT_CPUID]			= cpuid_interception,
3139 	[SVM_EXIT_IRET]                         = iret_interception,
3140 	[SVM_EXIT_INVD]                         = invd_interception,
3141 	[SVM_EXIT_PAUSE]			= pause_interception,
3142 	[SVM_EXIT_HLT]				= halt_interception,
3143 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3144 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3145 	[SVM_EXIT_IOIO]				= io_interception,
3146 	[SVM_EXIT_MSR]				= msr_interception,
3147 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3148 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3149 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3150 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
3151 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3152 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3153 	[SVM_EXIT_STGI]				= stgi_interception,
3154 	[SVM_EXIT_CLGI]				= clgi_interception,
3155 	[SVM_EXIT_SKINIT]			= skinit_interception,
3156 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
3157 	[SVM_EXIT_MONITOR]			= monitor_interception,
3158 	[SVM_EXIT_MWAIT]			= mwait_interception,
3159 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
3160 	[SVM_EXIT_RDPRU]			= rdpru_interception,
3161 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3162 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3163 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3164 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3165 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3166 	[SVM_EXIT_NPF]				= npf_interception,
3167 	[SVM_EXIT_RSM]                          = rsm_interception,
3168 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3169 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3170 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3171 };
3172 
3173 static void dump_vmcb(struct kvm_vcpu *vcpu)
3174 {
3175 	struct vcpu_svm *svm = to_svm(vcpu);
3176 	struct vmcb_control_area *control = &svm->vmcb->control;
3177 	struct vmcb_save_area *save = &svm->vmcb->save;
3178 
3179 	if (!dump_invalid_vmcb) {
3180 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3181 		return;
3182 	}
3183 
3184 	pr_err("VMCB Control Area:\n");
3185 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3186 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3187 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3188 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3189 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3190 	pr_err("%-20s%08x %08x\n", "intercepts:",
3191               control->intercepts[INTERCEPT_WORD3],
3192 	       control->intercepts[INTERCEPT_WORD4]);
3193 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3194 	pr_err("%-20s%d\n", "pause filter threshold:",
3195 	       control->pause_filter_thresh);
3196 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3197 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3198 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3199 	pr_err("%-20s%d\n", "asid:", control->asid);
3200 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3201 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3202 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3203 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3204 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3205 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3206 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3207 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3208 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3209 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3210 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3211 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3212 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3213 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3214 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3215 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3216 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3217 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3218 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3219 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3220 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3221 	pr_err("VMCB State Save Area:\n");
3222 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3223 	       "es:",
3224 	       save->es.selector, save->es.attrib,
3225 	       save->es.limit, save->es.base);
3226 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3227 	       "cs:",
3228 	       save->cs.selector, save->cs.attrib,
3229 	       save->cs.limit, save->cs.base);
3230 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3231 	       "ss:",
3232 	       save->ss.selector, save->ss.attrib,
3233 	       save->ss.limit, save->ss.base);
3234 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3235 	       "ds:",
3236 	       save->ds.selector, save->ds.attrib,
3237 	       save->ds.limit, save->ds.base);
3238 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3239 	       "fs:",
3240 	       save->fs.selector, save->fs.attrib,
3241 	       save->fs.limit, save->fs.base);
3242 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3243 	       "gs:",
3244 	       save->gs.selector, save->gs.attrib,
3245 	       save->gs.limit, save->gs.base);
3246 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3247 	       "gdtr:",
3248 	       save->gdtr.selector, save->gdtr.attrib,
3249 	       save->gdtr.limit, save->gdtr.base);
3250 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3251 	       "ldtr:",
3252 	       save->ldtr.selector, save->ldtr.attrib,
3253 	       save->ldtr.limit, save->ldtr.base);
3254 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3255 	       "idtr:",
3256 	       save->idtr.selector, save->idtr.attrib,
3257 	       save->idtr.limit, save->idtr.base);
3258 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3259 	       "tr:",
3260 	       save->tr.selector, save->tr.attrib,
3261 	       save->tr.limit, save->tr.base);
3262 	pr_err("cpl:            %d                efer:         %016llx\n",
3263 		save->cpl, save->efer);
3264 	pr_err("%-15s %016llx %-13s %016llx\n",
3265 	       "cr0:", save->cr0, "cr2:", save->cr2);
3266 	pr_err("%-15s %016llx %-13s %016llx\n",
3267 	       "cr3:", save->cr3, "cr4:", save->cr4);
3268 	pr_err("%-15s %016llx %-13s %016llx\n",
3269 	       "dr6:", save->dr6, "dr7:", save->dr7);
3270 	pr_err("%-15s %016llx %-13s %016llx\n",
3271 	       "rip:", save->rip, "rflags:", save->rflags);
3272 	pr_err("%-15s %016llx %-13s %016llx\n",
3273 	       "rsp:", save->rsp, "rax:", save->rax);
3274 	pr_err("%-15s %016llx %-13s %016llx\n",
3275 	       "star:", save->star, "lstar:", save->lstar);
3276 	pr_err("%-15s %016llx %-13s %016llx\n",
3277 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
3278 	pr_err("%-15s %016llx %-13s %016llx\n",
3279 	       "kernel_gs_base:", save->kernel_gs_base,
3280 	       "sysenter_cs:", save->sysenter_cs);
3281 	pr_err("%-15s %016llx %-13s %016llx\n",
3282 	       "sysenter_esp:", save->sysenter_esp,
3283 	       "sysenter_eip:", save->sysenter_eip);
3284 	pr_err("%-15s %016llx %-13s %016llx\n",
3285 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3286 	pr_err("%-15s %016llx %-13s %016llx\n",
3287 	       "br_from:", save->br_from, "br_to:", save->br_to);
3288 	pr_err("%-15s %016llx %-13s %016llx\n",
3289 	       "excp_from:", save->last_excp_from,
3290 	       "excp_to:", save->last_excp_to);
3291 }
3292 
3293 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3294 {
3295 	if (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3296 	    svm_exit_handlers[exit_code])
3297 		return 0;
3298 
3299 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3300 	dump_vmcb(vcpu);
3301 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3302 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3303 	vcpu->run->internal.ndata = 2;
3304 	vcpu->run->internal.data[0] = exit_code;
3305 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3306 
3307 	return -EINVAL;
3308 }
3309 
3310 int svm_invoke_exit_handler(struct vcpu_svm *svm, u64 exit_code)
3311 {
3312 	if (svm_handle_invalid_exit(&svm->vcpu, exit_code))
3313 		return 0;
3314 
3315 #ifdef CONFIG_RETPOLINE
3316 	if (exit_code == SVM_EXIT_MSR)
3317 		return msr_interception(svm);
3318 	else if (exit_code == SVM_EXIT_VINTR)
3319 		return interrupt_window_interception(svm);
3320 	else if (exit_code == SVM_EXIT_INTR)
3321 		return intr_interception(svm);
3322 	else if (exit_code == SVM_EXIT_HLT)
3323 		return halt_interception(svm);
3324 	else if (exit_code == SVM_EXIT_NPF)
3325 		return npf_interception(svm);
3326 #endif
3327 	return svm_exit_handlers[exit_code](svm);
3328 }
3329 
3330 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3331 			      u32 *intr_info, u32 *error_code)
3332 {
3333 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3334 
3335 	*info1 = control->exit_info_1;
3336 	*info2 = control->exit_info_2;
3337 	*intr_info = control->exit_int_info;
3338 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3339 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3340 		*error_code = control->exit_int_info_err;
3341 	else
3342 		*error_code = 0;
3343 }
3344 
3345 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3346 {
3347 	struct vcpu_svm *svm = to_svm(vcpu);
3348 	struct kvm_run *kvm_run = vcpu->run;
3349 	u32 exit_code = svm->vmcb->control.exit_code;
3350 
3351 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3352 
3353 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3354 	if (!sev_es_guest(vcpu->kvm)) {
3355 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3356 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3357 		if (npt_enabled)
3358 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3359 	}
3360 
3361 	if (is_guest_mode(vcpu)) {
3362 		int vmexit;
3363 
3364 		trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3365 
3366 		vmexit = nested_svm_exit_special(svm);
3367 
3368 		if (vmexit == NESTED_EXIT_CONTINUE)
3369 			vmexit = nested_svm_exit_handled(svm);
3370 
3371 		if (vmexit == NESTED_EXIT_DONE)
3372 			return 1;
3373 	}
3374 
3375 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3376 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3377 		kvm_run->fail_entry.hardware_entry_failure_reason
3378 			= svm->vmcb->control.exit_code;
3379 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3380 		dump_vmcb(vcpu);
3381 		return 0;
3382 	}
3383 
3384 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3385 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3386 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3387 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3388 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3389 		       "exit_code 0x%x\n",
3390 		       __func__, svm->vmcb->control.exit_int_info,
3391 		       exit_code);
3392 
3393 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3394 		return 1;
3395 
3396 	return svm_invoke_exit_handler(svm, exit_code);
3397 }
3398 
3399 static void reload_tss(struct kvm_vcpu *vcpu)
3400 {
3401 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3402 
3403 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3404 	load_TR_desc();
3405 }
3406 
3407 static void pre_svm_run(struct vcpu_svm *svm)
3408 {
3409 	struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3410 
3411 	if (sev_guest(svm->vcpu.kvm))
3412 		return pre_sev_run(svm, svm->vcpu.cpu);
3413 
3414 	/* FIXME: handle wraparound of asid_generation */
3415 	if (svm->asid_generation != sd->asid_generation)
3416 		new_asid(svm, sd);
3417 }
3418 
3419 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3420 {
3421 	struct vcpu_svm *svm = to_svm(vcpu);
3422 
3423 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3424 	vcpu->arch.hflags |= HF_NMI_MASK;
3425 	if (!sev_es_guest(svm->vcpu.kvm))
3426 		svm_set_intercept(svm, INTERCEPT_IRET);
3427 	++vcpu->stat.nmi_injections;
3428 }
3429 
3430 static void svm_set_irq(struct kvm_vcpu *vcpu)
3431 {
3432 	struct vcpu_svm *svm = to_svm(vcpu);
3433 
3434 	BUG_ON(!(gif_set(svm)));
3435 
3436 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3437 	++vcpu->stat.irq_injections;
3438 
3439 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3440 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3441 }
3442 
3443 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3444 {
3445 	struct vcpu_svm *svm = to_svm(vcpu);
3446 
3447 	/*
3448 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3449 	 * tracking is done using the CR write traps.
3450 	 */
3451 	if (sev_es_guest(vcpu->kvm))
3452 		return;
3453 
3454 	if (nested_svm_virtualize_tpr(vcpu))
3455 		return;
3456 
3457 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3458 
3459 	if (irr == -1)
3460 		return;
3461 
3462 	if (tpr >= irr)
3463 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3464 }
3465 
3466 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3467 {
3468 	struct vcpu_svm *svm = to_svm(vcpu);
3469 	struct vmcb *vmcb = svm->vmcb;
3470 	bool ret;
3471 
3472 	if (!gif_set(svm))
3473 		return true;
3474 
3475 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3476 		return false;
3477 
3478 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3479 	      (svm->vcpu.arch.hflags & HF_NMI_MASK);
3480 
3481 	return ret;
3482 }
3483 
3484 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3485 {
3486 	struct vcpu_svm *svm = to_svm(vcpu);
3487 	if (svm->nested.nested_run_pending)
3488 		return -EBUSY;
3489 
3490 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3491 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3492 		return -EBUSY;
3493 
3494 	return !svm_nmi_blocked(vcpu);
3495 }
3496 
3497 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3498 {
3499 	struct vcpu_svm *svm = to_svm(vcpu);
3500 
3501 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3502 }
3503 
3504 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3505 {
3506 	struct vcpu_svm *svm = to_svm(vcpu);
3507 
3508 	if (masked) {
3509 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3510 		if (!sev_es_guest(svm->vcpu.kvm))
3511 			svm_set_intercept(svm, INTERCEPT_IRET);
3512 	} else {
3513 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3514 		if (!sev_es_guest(svm->vcpu.kvm))
3515 			svm_clr_intercept(svm, INTERCEPT_IRET);
3516 	}
3517 }
3518 
3519 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3520 {
3521 	struct vcpu_svm *svm = to_svm(vcpu);
3522 	struct vmcb *vmcb = svm->vmcb;
3523 
3524 	if (!gif_set(svm))
3525 		return true;
3526 
3527 	if (sev_es_guest(svm->vcpu.kvm)) {
3528 		/*
3529 		 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask
3530 		 * bit to determine the state of the IF flag.
3531 		 */
3532 		if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK))
3533 			return true;
3534 	} else if (is_guest_mode(vcpu)) {
3535 		/* As long as interrupts are being delivered...  */
3536 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3537 		    ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3538 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3539 			return true;
3540 
3541 		/* ... vmexits aren't blocked by the interrupt shadow  */
3542 		if (nested_exit_on_intr(svm))
3543 			return false;
3544 	} else {
3545 		if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3546 			return true;
3547 	}
3548 
3549 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3550 }
3551 
3552 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3553 {
3554 	struct vcpu_svm *svm = to_svm(vcpu);
3555 	if (svm->nested.nested_run_pending)
3556 		return -EBUSY;
3557 
3558 	/*
3559 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3560 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3561 	 */
3562 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3563 		return -EBUSY;
3564 
3565 	return !svm_interrupt_blocked(vcpu);
3566 }
3567 
3568 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3569 {
3570 	struct vcpu_svm *svm = to_svm(vcpu);
3571 
3572 	/*
3573 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3574 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3575 	 * get that intercept, this function will be called again though and
3576 	 * we'll get the vintr intercept. However, if the vGIF feature is
3577 	 * enabled, the STGI interception will not occur. Enable the irq
3578 	 * window under the assumption that the hardware will set the GIF.
3579 	 */
3580 	if (vgif_enabled(svm) || gif_set(svm)) {
3581 		/*
3582 		 * IRQ window is not needed when AVIC is enabled,
3583 		 * unless we have pending ExtINT since it cannot be injected
3584 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3585 		 * and fallback to injecting IRQ via V_IRQ.
3586 		 */
3587 		svm_toggle_avic_for_irq_window(vcpu, false);
3588 		svm_set_vintr(svm);
3589 	}
3590 }
3591 
3592 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3593 {
3594 	struct vcpu_svm *svm = to_svm(vcpu);
3595 
3596 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3597 	    == HF_NMI_MASK)
3598 		return; /* IRET will cause a vm exit */
3599 
3600 	if (!gif_set(svm)) {
3601 		if (vgif_enabled(svm))
3602 			svm_set_intercept(svm, INTERCEPT_STGI);
3603 		return; /* STGI will cause a vm exit */
3604 	}
3605 
3606 	/*
3607 	 * Something prevents NMI from been injected. Single step over possible
3608 	 * problem (IRET or exception injection or interrupt shadow)
3609 	 */
3610 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3611 	svm->nmi_singlestep = true;
3612 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3613 }
3614 
3615 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3616 {
3617 	return 0;
3618 }
3619 
3620 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3621 {
3622 	return 0;
3623 }
3624 
3625 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3626 {
3627 	struct vcpu_svm *svm = to_svm(vcpu);
3628 
3629 	/*
3630 	 * Flush only the current ASID even if the TLB flush was invoked via
3631 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3632 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3633 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3634 	 * VM-Exit (via kvm_mmu_reset_context()).
3635 	 */
3636 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3637 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3638 	else
3639 		svm->asid_generation--;
3640 }
3641 
3642 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3643 {
3644 	struct vcpu_svm *svm = to_svm(vcpu);
3645 
3646 	invlpga(gva, svm->vmcb->control.asid);
3647 }
3648 
3649 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3650 {
3651 	struct vcpu_svm *svm = to_svm(vcpu);
3652 
3653 	if (nested_svm_virtualize_tpr(vcpu))
3654 		return;
3655 
3656 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3657 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3658 		kvm_set_cr8(vcpu, cr8);
3659 	}
3660 }
3661 
3662 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3663 {
3664 	struct vcpu_svm *svm = to_svm(vcpu);
3665 	u64 cr8;
3666 
3667 	if (nested_svm_virtualize_tpr(vcpu) ||
3668 	    kvm_vcpu_apicv_active(vcpu))
3669 		return;
3670 
3671 	cr8 = kvm_get_cr8(vcpu);
3672 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3673 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3674 }
3675 
3676 static void svm_complete_interrupts(struct vcpu_svm *svm)
3677 {
3678 	u8 vector;
3679 	int type;
3680 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3681 	unsigned int3_injected = svm->int3_injected;
3682 
3683 	svm->int3_injected = 0;
3684 
3685 	/*
3686 	 * If we've made progress since setting HF_IRET_MASK, we've
3687 	 * executed an IRET and can allow NMI injection.
3688 	 */
3689 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK) &&
3690 	    (sev_es_guest(svm->vcpu.kvm) ||
3691 	     kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip)) {
3692 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3693 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3694 	}
3695 
3696 	svm->vcpu.arch.nmi_injected = false;
3697 	kvm_clear_exception_queue(&svm->vcpu);
3698 	kvm_clear_interrupt_queue(&svm->vcpu);
3699 
3700 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3701 		return;
3702 
3703 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3704 
3705 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3706 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3707 
3708 	switch (type) {
3709 	case SVM_EXITINTINFO_TYPE_NMI:
3710 		svm->vcpu.arch.nmi_injected = true;
3711 		break;
3712 	case SVM_EXITINTINFO_TYPE_EXEPT:
3713 		/*
3714 		 * Never re-inject a #VC exception.
3715 		 */
3716 		if (vector == X86_TRAP_VC)
3717 			break;
3718 
3719 		/*
3720 		 * In case of software exceptions, do not reinject the vector,
3721 		 * but re-execute the instruction instead. Rewind RIP first
3722 		 * if we emulated INT3 before.
3723 		 */
3724 		if (kvm_exception_is_soft(vector)) {
3725 			if (vector == BP_VECTOR && int3_injected &&
3726 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3727 				kvm_rip_write(&svm->vcpu,
3728 					      kvm_rip_read(&svm->vcpu) -
3729 					      int3_injected);
3730 			break;
3731 		}
3732 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3733 			u32 err = svm->vmcb->control.exit_int_info_err;
3734 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3735 
3736 		} else
3737 			kvm_requeue_exception(&svm->vcpu, vector);
3738 		break;
3739 	case SVM_EXITINTINFO_TYPE_INTR:
3740 		kvm_queue_interrupt(&svm->vcpu, vector, false);
3741 		break;
3742 	default:
3743 		break;
3744 	}
3745 }
3746 
3747 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3748 {
3749 	struct vcpu_svm *svm = to_svm(vcpu);
3750 	struct vmcb_control_area *control = &svm->vmcb->control;
3751 
3752 	control->exit_int_info = control->event_inj;
3753 	control->exit_int_info_err = control->event_inj_err;
3754 	control->event_inj = 0;
3755 	svm_complete_interrupts(svm);
3756 }
3757 
3758 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3759 {
3760 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3761 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3762 		return handle_fastpath_set_msr_irqoff(vcpu);
3763 
3764 	return EXIT_FASTPATH_NONE;
3765 }
3766 
3767 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3768 					struct vcpu_svm *svm)
3769 {
3770 	/*
3771 	 * VMENTER enables interrupts (host state), but the kernel state is
3772 	 * interrupts disabled when this is invoked. Also tell RCU about
3773 	 * it. This is the same logic as for exit_to_user_mode().
3774 	 *
3775 	 * This ensures that e.g. latency analysis on the host observes
3776 	 * guest mode as interrupt enabled.
3777 	 *
3778 	 * guest_enter_irqoff() informs context tracking about the
3779 	 * transition to guest mode and if enabled adjusts RCU state
3780 	 * accordingly.
3781 	 */
3782 	instrumentation_begin();
3783 	trace_hardirqs_on_prepare();
3784 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3785 	instrumentation_end();
3786 
3787 	guest_enter_irqoff();
3788 	lockdep_hardirqs_on(CALLER_ADDR0);
3789 
3790 	if (sev_es_guest(svm->vcpu.kvm)) {
3791 		__svm_sev_es_vcpu_run(svm->vmcb_pa);
3792 	} else {
3793 		struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3794 
3795 		__svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3796 
3797 		vmload(__sme_page_pa(sd->save_area));
3798 	}
3799 
3800 	/*
3801 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
3802 	 * have them in state 'on' as recorded before entering guest mode.
3803 	 * Same as enter_from_user_mode().
3804 	 *
3805 	 * guest_exit_irqoff() restores host context and reinstates RCU if
3806 	 * enabled and required.
3807 	 *
3808 	 * This needs to be done before the below as native_read_msr()
3809 	 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3810 	 * into world and some more.
3811 	 */
3812 	lockdep_hardirqs_off(CALLER_ADDR0);
3813 	guest_exit_irqoff();
3814 
3815 	instrumentation_begin();
3816 	trace_hardirqs_off_finish();
3817 	instrumentation_end();
3818 }
3819 
3820 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3821 {
3822 	struct vcpu_svm *svm = to_svm(vcpu);
3823 
3824 	trace_kvm_entry(vcpu);
3825 
3826 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3827 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3828 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3829 
3830 	/*
3831 	 * Disable singlestep if we're injecting an interrupt/exception.
3832 	 * We don't want our modified rflags to be pushed on the stack where
3833 	 * we might not be able to easily reset them if we disabled NMI
3834 	 * singlestep later.
3835 	 */
3836 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3837 		/*
3838 		 * Event injection happens before external interrupts cause a
3839 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3840 		 * is enough to force an immediate vmexit.
3841 		 */
3842 		disable_nmi_singlestep(svm);
3843 		smp_send_reschedule(vcpu->cpu);
3844 	}
3845 
3846 	pre_svm_run(svm);
3847 
3848 	sync_lapic_to_cr8(vcpu);
3849 
3850 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3851 		svm->vmcb->control.asid = svm->asid;
3852 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3853 	}
3854 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3855 
3856 	/*
3857 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3858 	 * of a #DB.
3859 	 */
3860 	if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3861 		svm_set_dr6(svm, vcpu->arch.dr6);
3862 	else
3863 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
3864 
3865 	clgi();
3866 	kvm_load_guest_xsave_state(vcpu);
3867 
3868 	kvm_wait_lapic_expire(vcpu);
3869 
3870 	/*
3871 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3872 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3873 	 * is no need to worry about the conditional branch over the wrmsr
3874 	 * being speculatively taken.
3875 	 */
3876 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3877 
3878 	svm_vcpu_enter_exit(vcpu, svm);
3879 
3880 	/*
3881 	 * We do not use IBRS in the kernel. If this vCPU has used the
3882 	 * SPEC_CTRL MSR it may have left it on; save the value and
3883 	 * turn it off. This is much more efficient than blindly adding
3884 	 * it to the atomic save/restore list. Especially as the former
3885 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3886 	 *
3887 	 * For non-nested case:
3888 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3889 	 * save it.
3890 	 *
3891 	 * For nested case:
3892 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3893 	 * save it.
3894 	 */
3895 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3896 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3897 
3898 	if (!sev_es_guest(svm->vcpu.kvm))
3899 		reload_tss(vcpu);
3900 
3901 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3902 
3903 	if (!sev_es_guest(svm->vcpu.kvm)) {
3904 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
3905 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3906 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3907 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3908 	}
3909 
3910 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3911 		kvm_before_interrupt(&svm->vcpu);
3912 
3913 	kvm_load_host_xsave_state(vcpu);
3914 	stgi();
3915 
3916 	/* Any pending NMI will happen here */
3917 
3918 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3919 		kvm_after_interrupt(&svm->vcpu);
3920 
3921 	sync_cr8_to_lapic(vcpu);
3922 
3923 	svm->next_rip = 0;
3924 	if (is_guest_mode(&svm->vcpu)) {
3925 		sync_nested_vmcb_control(svm);
3926 		svm->nested.nested_run_pending = 0;
3927 	}
3928 
3929 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3930 	vmcb_mark_all_clean(svm->vmcb);
3931 
3932 	/* if exit due to PF check for async PF */
3933 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3934 		svm->vcpu.arch.apf.host_apf_flags =
3935 			kvm_read_and_reset_apf_flags();
3936 
3937 	if (npt_enabled) {
3938 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3939 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3940 	}
3941 
3942 	/*
3943 	 * We need to handle MC intercepts here before the vcpu has a chance to
3944 	 * change the physical cpu
3945 	 */
3946 	if (unlikely(svm->vmcb->control.exit_code ==
3947 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3948 		svm_handle_mce(svm);
3949 
3950 	svm_complete_interrupts(svm);
3951 
3952 	if (is_guest_mode(vcpu))
3953 		return EXIT_FASTPATH_NONE;
3954 
3955 	return svm_exit_handlers_fastpath(vcpu);
3956 }
3957 
3958 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3959 			     int root_level)
3960 {
3961 	struct vcpu_svm *svm = to_svm(vcpu);
3962 	unsigned long cr3;
3963 
3964 	cr3 = __sme_set(root);
3965 	if (npt_enabled) {
3966 		svm->vmcb->control.nested_cr3 = cr3;
3967 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3968 
3969 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3970 		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3971 			return;
3972 		cr3 = vcpu->arch.cr3;
3973 	}
3974 
3975 	svm->vmcb->save.cr3 = cr3;
3976 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3977 }
3978 
3979 static int is_disabled(void)
3980 {
3981 	u64 vm_cr;
3982 
3983 	rdmsrl(MSR_VM_CR, vm_cr);
3984 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3985 		return 1;
3986 
3987 	return 0;
3988 }
3989 
3990 static void
3991 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3992 {
3993 	/*
3994 	 * Patch in the VMMCALL instruction:
3995 	 */
3996 	hypercall[0] = 0x0f;
3997 	hypercall[1] = 0x01;
3998 	hypercall[2] = 0xd9;
3999 }
4000 
4001 static int __init svm_check_processor_compat(void)
4002 {
4003 	return 0;
4004 }
4005 
4006 static bool svm_cpu_has_accelerated_tpr(void)
4007 {
4008 	return false;
4009 }
4010 
4011 /*
4012  * The kvm parameter can be NULL (module initialization, or invocation before
4013  * VM creation). Be sure to check the kvm parameter before using it.
4014  */
4015 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4016 {
4017 	switch (index) {
4018 	case MSR_IA32_MCG_EXT_CTL:
4019 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4020 		return false;
4021 	case MSR_IA32_SMBASE:
4022 		/* SEV-ES guests do not support SMM, so report false */
4023 		if (kvm && sev_es_guest(kvm))
4024 			return false;
4025 		break;
4026 	default:
4027 		break;
4028 	}
4029 
4030 	return true;
4031 }
4032 
4033 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4034 {
4035 	return 0;
4036 }
4037 
4038 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4039 {
4040 	struct vcpu_svm *svm = to_svm(vcpu);
4041 	struct kvm_cpuid_entry2 *best;
4042 
4043 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4044 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
4045 				    boot_cpu_has(X86_FEATURE_XSAVES);
4046 
4047 	/* Update nrips enabled cache */
4048 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4049 			     guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
4050 
4051 	/* Check again if INVPCID interception if required */
4052 	svm_check_invpcid(svm);
4053 
4054 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4055 	if (sev_guest(vcpu->kvm)) {
4056 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
4057 		if (best)
4058 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4059 	}
4060 
4061 	if (!kvm_vcpu_apicv_active(vcpu))
4062 		return;
4063 
4064 	/*
4065 	 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
4066 	 * is exposed to the guest, disable AVIC.
4067 	 */
4068 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
4069 		kvm_request_apicv_update(vcpu->kvm, false,
4070 					 APICV_INHIBIT_REASON_X2APIC);
4071 
4072 	/*
4073 	 * Currently, AVIC does not work with nested virtualization.
4074 	 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
4075 	 */
4076 	if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4077 		kvm_request_apicv_update(vcpu->kvm, false,
4078 					 APICV_INHIBIT_REASON_NESTED);
4079 }
4080 
4081 static bool svm_has_wbinvd_exit(void)
4082 {
4083 	return true;
4084 }
4085 
4086 #define PRE_EX(exit)  { .exit_code = (exit), \
4087 			.stage = X86_ICPT_PRE_EXCEPT, }
4088 #define POST_EX(exit) { .exit_code = (exit), \
4089 			.stage = X86_ICPT_POST_EXCEPT, }
4090 #define POST_MEM(exit) { .exit_code = (exit), \
4091 			.stage = X86_ICPT_POST_MEMACCESS, }
4092 
4093 static const struct __x86_intercept {
4094 	u32 exit_code;
4095 	enum x86_intercept_stage stage;
4096 } x86_intercept_map[] = {
4097 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4098 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4099 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4100 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4101 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4102 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4103 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4104 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4105 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4106 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4107 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4108 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4109 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4110 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4111 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4112 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4113 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4114 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4115 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4116 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4117 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4118 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4119 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4120 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4121 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4122 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4123 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4124 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4125 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4126 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4127 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4128 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4129 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4130 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4131 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4132 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4133 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4134 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4135 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4136 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4137 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4138 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4139 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4140 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4141 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4142 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4143 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4144 };
4145 
4146 #undef PRE_EX
4147 #undef POST_EX
4148 #undef POST_MEM
4149 
4150 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4151 			       struct x86_instruction_info *info,
4152 			       enum x86_intercept_stage stage,
4153 			       struct x86_exception *exception)
4154 {
4155 	struct vcpu_svm *svm = to_svm(vcpu);
4156 	int vmexit, ret = X86EMUL_CONTINUE;
4157 	struct __x86_intercept icpt_info;
4158 	struct vmcb *vmcb = svm->vmcb;
4159 
4160 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4161 		goto out;
4162 
4163 	icpt_info = x86_intercept_map[info->intercept];
4164 
4165 	if (stage != icpt_info.stage)
4166 		goto out;
4167 
4168 	switch (icpt_info.exit_code) {
4169 	case SVM_EXIT_READ_CR0:
4170 		if (info->intercept == x86_intercept_cr_read)
4171 			icpt_info.exit_code += info->modrm_reg;
4172 		break;
4173 	case SVM_EXIT_WRITE_CR0: {
4174 		unsigned long cr0, val;
4175 
4176 		if (info->intercept == x86_intercept_cr_write)
4177 			icpt_info.exit_code += info->modrm_reg;
4178 
4179 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4180 		    info->intercept == x86_intercept_clts)
4181 			break;
4182 
4183 		if (!(vmcb_is_intercept(&svm->nested.ctl,
4184 					INTERCEPT_SELECTIVE_CR0)))
4185 			break;
4186 
4187 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4188 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4189 
4190 		if (info->intercept == x86_intercept_lmsw) {
4191 			cr0 &= 0xfUL;
4192 			val &= 0xfUL;
4193 			/* lmsw can't clear PE - catch this here */
4194 			if (cr0 & X86_CR0_PE)
4195 				val |= X86_CR0_PE;
4196 		}
4197 
4198 		if (cr0 ^ val)
4199 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4200 
4201 		break;
4202 	}
4203 	case SVM_EXIT_READ_DR0:
4204 	case SVM_EXIT_WRITE_DR0:
4205 		icpt_info.exit_code += info->modrm_reg;
4206 		break;
4207 	case SVM_EXIT_MSR:
4208 		if (info->intercept == x86_intercept_wrmsr)
4209 			vmcb->control.exit_info_1 = 1;
4210 		else
4211 			vmcb->control.exit_info_1 = 0;
4212 		break;
4213 	case SVM_EXIT_PAUSE:
4214 		/*
4215 		 * We get this for NOP only, but pause
4216 		 * is rep not, check this here
4217 		 */
4218 		if (info->rep_prefix != REPE_PREFIX)
4219 			goto out;
4220 		break;
4221 	case SVM_EXIT_IOIO: {
4222 		u64 exit_info;
4223 		u32 bytes;
4224 
4225 		if (info->intercept == x86_intercept_in ||
4226 		    info->intercept == x86_intercept_ins) {
4227 			exit_info = ((info->src_val & 0xffff) << 16) |
4228 				SVM_IOIO_TYPE_MASK;
4229 			bytes = info->dst_bytes;
4230 		} else {
4231 			exit_info = (info->dst_val & 0xffff) << 16;
4232 			bytes = info->src_bytes;
4233 		}
4234 
4235 		if (info->intercept == x86_intercept_outs ||
4236 		    info->intercept == x86_intercept_ins)
4237 			exit_info |= SVM_IOIO_STR_MASK;
4238 
4239 		if (info->rep_prefix)
4240 			exit_info |= SVM_IOIO_REP_MASK;
4241 
4242 		bytes = min(bytes, 4u);
4243 
4244 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4245 
4246 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4247 
4248 		vmcb->control.exit_info_1 = exit_info;
4249 		vmcb->control.exit_info_2 = info->next_rip;
4250 
4251 		break;
4252 	}
4253 	default:
4254 		break;
4255 	}
4256 
4257 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4258 	if (static_cpu_has(X86_FEATURE_NRIPS))
4259 		vmcb->control.next_rip  = info->next_rip;
4260 	vmcb->control.exit_code = icpt_info.exit_code;
4261 	vmexit = nested_svm_exit_handled(svm);
4262 
4263 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4264 					   : X86EMUL_CONTINUE;
4265 
4266 out:
4267 	return ret;
4268 }
4269 
4270 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4271 {
4272 }
4273 
4274 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4275 {
4276 	if (!kvm_pause_in_guest(vcpu->kvm))
4277 		shrink_ple_window(vcpu);
4278 }
4279 
4280 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4281 {
4282 	/* [63:9] are reserved. */
4283 	vcpu->arch.mcg_cap &= 0x1ff;
4284 }
4285 
4286 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4287 {
4288 	struct vcpu_svm *svm = to_svm(vcpu);
4289 
4290 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4291 	if (!gif_set(svm))
4292 		return true;
4293 
4294 	return is_smm(vcpu);
4295 }
4296 
4297 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4298 {
4299 	struct vcpu_svm *svm = to_svm(vcpu);
4300 	if (svm->nested.nested_run_pending)
4301 		return -EBUSY;
4302 
4303 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4304 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4305 		return -EBUSY;
4306 
4307 	return !svm_smi_blocked(vcpu);
4308 }
4309 
4310 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4311 {
4312 	struct vcpu_svm *svm = to_svm(vcpu);
4313 	int ret;
4314 
4315 	if (is_guest_mode(vcpu)) {
4316 		/* FED8h - SVM Guest */
4317 		put_smstate(u64, smstate, 0x7ed8, 1);
4318 		/* FEE0h - SVM Guest VMCB Physical Address */
4319 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4320 
4321 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4322 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4323 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4324 
4325 		ret = nested_svm_vmexit(svm);
4326 		if (ret)
4327 			return ret;
4328 	}
4329 	return 0;
4330 }
4331 
4332 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4333 {
4334 	struct vcpu_svm *svm = to_svm(vcpu);
4335 	struct kvm_host_map map;
4336 	int ret = 0;
4337 
4338 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4339 		u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4340 		u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4341 		u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4342 
4343 		if (guest) {
4344 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4345 				return 1;
4346 
4347 			if (!(saved_efer & EFER_SVME))
4348 				return 1;
4349 
4350 			if (kvm_vcpu_map(&svm->vcpu,
4351 					 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4352 				return 1;
4353 
4354 			if (svm_allocate_nested(svm))
4355 				return 1;
4356 
4357 			ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
4358 			kvm_vcpu_unmap(&svm->vcpu, &map, true);
4359 		}
4360 	}
4361 
4362 	return ret;
4363 }
4364 
4365 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4366 {
4367 	struct vcpu_svm *svm = to_svm(vcpu);
4368 
4369 	if (!gif_set(svm)) {
4370 		if (vgif_enabled(svm))
4371 			svm_set_intercept(svm, INTERCEPT_STGI);
4372 		/* STGI will cause a vm exit */
4373 	} else {
4374 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4375 	}
4376 }
4377 
4378 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4379 {
4380 	bool smep, smap, is_user;
4381 	unsigned long cr4;
4382 
4383 	/*
4384 	 * When the guest is an SEV-ES guest, emulation is not possible.
4385 	 */
4386 	if (sev_es_guest(vcpu->kvm))
4387 		return false;
4388 
4389 	/*
4390 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4391 	 *
4392 	 * Errata:
4393 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4394 	 * possible that CPU microcode implementing DecodeAssist will fail
4395 	 * to read bytes of instruction which caused #NPF. In this case,
4396 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4397 	 * return 0 instead of the correct guest instruction bytes.
4398 	 *
4399 	 * This happens because CPU microcode reading instruction bytes
4400 	 * uses a special opcode which attempts to read data using CPL=0
4401 	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
4402 	 * fault, it gives up and returns no instruction bytes.
4403 	 *
4404 	 * Detection:
4405 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4406 	 * returned 0 in GuestIntrBytes field of the VMCB.
4407 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4408 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4409 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4410 	 * a SMEP fault instead of #NPF).
4411 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4412 	 * As most guests enable SMAP if they have also enabled SMEP, use above
4413 	 * logic in order to attempt minimize false-positive of detecting errata
4414 	 * while still preserving all cases semantic correctness.
4415 	 *
4416 	 * Workaround:
4417 	 * To determine what instruction the guest was executing, the hypervisor
4418 	 * will have to decode the instruction at the instruction pointer.
4419 	 *
4420 	 * In non SEV guest, hypervisor will be able to read the guest
4421 	 * memory to decode the instruction pointer when insn_len is zero
4422 	 * so we return true to indicate that decoding is possible.
4423 	 *
4424 	 * But in the SEV guest, the guest memory is encrypted with the
4425 	 * guest specific key and hypervisor will not be able to decode the
4426 	 * instruction pointer so we will not able to workaround it. Lets
4427 	 * print the error and request to kill the guest.
4428 	 */
4429 	if (likely(!insn || insn_len))
4430 		return true;
4431 
4432 	/*
4433 	 * If RIP is invalid, go ahead with emulation which will cause an
4434 	 * internal error exit.
4435 	 */
4436 	if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4437 		return true;
4438 
4439 	cr4 = kvm_read_cr4(vcpu);
4440 	smep = cr4 & X86_CR4_SMEP;
4441 	smap = cr4 & X86_CR4_SMAP;
4442 	is_user = svm_get_cpl(vcpu) == 3;
4443 	if (smap && (!smep || is_user)) {
4444 		if (!sev_guest(vcpu->kvm))
4445 			return true;
4446 
4447 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4448 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4449 	}
4450 
4451 	return false;
4452 }
4453 
4454 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4455 {
4456 	struct vcpu_svm *svm = to_svm(vcpu);
4457 
4458 	/*
4459 	 * TODO: Last condition latch INIT signals on vCPU when
4460 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4461 	 * To properly emulate the INIT intercept,
4462 	 * svm_check_nested_events() should call nested_svm_vmexit()
4463 	 * if an INIT signal is pending.
4464 	 */
4465 	return !gif_set(svm) ||
4466 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4467 }
4468 
4469 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4470 {
4471 	if (!sev_es_guest(vcpu->kvm))
4472 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4473 
4474 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4475 }
4476 
4477 static void svm_vm_destroy(struct kvm *kvm)
4478 {
4479 	avic_vm_destroy(kvm);
4480 	sev_vm_destroy(kvm);
4481 }
4482 
4483 static int svm_vm_init(struct kvm *kvm)
4484 {
4485 	if (!pause_filter_count || !pause_filter_thresh)
4486 		kvm->arch.pause_in_guest = true;
4487 
4488 	if (avic) {
4489 		int ret = avic_vm_init(kvm);
4490 		if (ret)
4491 			return ret;
4492 	}
4493 
4494 	kvm_apicv_init(kvm, avic);
4495 	return 0;
4496 }
4497 
4498 static struct kvm_x86_ops svm_x86_ops __initdata = {
4499 	.hardware_unsetup = svm_hardware_teardown,
4500 	.hardware_enable = svm_hardware_enable,
4501 	.hardware_disable = svm_hardware_disable,
4502 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4503 	.has_emulated_msr = svm_has_emulated_msr,
4504 
4505 	.vcpu_create = svm_create_vcpu,
4506 	.vcpu_free = svm_free_vcpu,
4507 	.vcpu_reset = svm_vcpu_reset,
4508 
4509 	.vm_size = sizeof(struct kvm_svm),
4510 	.vm_init = svm_vm_init,
4511 	.vm_destroy = svm_vm_destroy,
4512 
4513 	.prepare_guest_switch = svm_prepare_guest_switch,
4514 	.vcpu_load = svm_vcpu_load,
4515 	.vcpu_put = svm_vcpu_put,
4516 	.vcpu_blocking = svm_vcpu_blocking,
4517 	.vcpu_unblocking = svm_vcpu_unblocking,
4518 
4519 	.update_exception_bitmap = svm_update_exception_bitmap,
4520 	.get_msr_feature = svm_get_msr_feature,
4521 	.get_msr = svm_get_msr,
4522 	.set_msr = svm_set_msr,
4523 	.get_segment_base = svm_get_segment_base,
4524 	.get_segment = svm_get_segment,
4525 	.set_segment = svm_set_segment,
4526 	.get_cpl = svm_get_cpl,
4527 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4528 	.set_cr0 = svm_set_cr0,
4529 	.is_valid_cr4 = svm_is_valid_cr4,
4530 	.set_cr4 = svm_set_cr4,
4531 	.set_efer = svm_set_efer,
4532 	.get_idt = svm_get_idt,
4533 	.set_idt = svm_set_idt,
4534 	.get_gdt = svm_get_gdt,
4535 	.set_gdt = svm_set_gdt,
4536 	.set_dr7 = svm_set_dr7,
4537 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4538 	.cache_reg = svm_cache_reg,
4539 	.get_rflags = svm_get_rflags,
4540 	.set_rflags = svm_set_rflags,
4541 
4542 	.tlb_flush_all = svm_flush_tlb,
4543 	.tlb_flush_current = svm_flush_tlb,
4544 	.tlb_flush_gva = svm_flush_tlb_gva,
4545 	.tlb_flush_guest = svm_flush_tlb,
4546 
4547 	.run = svm_vcpu_run,
4548 	.handle_exit = handle_exit,
4549 	.skip_emulated_instruction = skip_emulated_instruction,
4550 	.update_emulated_instruction = NULL,
4551 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4552 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4553 	.patch_hypercall = svm_patch_hypercall,
4554 	.set_irq = svm_set_irq,
4555 	.set_nmi = svm_inject_nmi,
4556 	.queue_exception = svm_queue_exception,
4557 	.cancel_injection = svm_cancel_injection,
4558 	.interrupt_allowed = svm_interrupt_allowed,
4559 	.nmi_allowed = svm_nmi_allowed,
4560 	.get_nmi_mask = svm_get_nmi_mask,
4561 	.set_nmi_mask = svm_set_nmi_mask,
4562 	.enable_nmi_window = svm_enable_nmi_window,
4563 	.enable_irq_window = svm_enable_irq_window,
4564 	.update_cr8_intercept = svm_update_cr8_intercept,
4565 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
4566 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4567 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4568 	.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4569 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4570 	.hwapic_irr_update = svm_hwapic_irr_update,
4571 	.hwapic_isr_update = svm_hwapic_isr_update,
4572 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
4573 	.apicv_post_state_restore = avic_post_state_restore,
4574 
4575 	.set_tss_addr = svm_set_tss_addr,
4576 	.set_identity_map_addr = svm_set_identity_map_addr,
4577 	.get_mt_mask = svm_get_mt_mask,
4578 
4579 	.get_exit_info = svm_get_exit_info,
4580 
4581 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4582 
4583 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4584 
4585 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
4586 
4587 	.load_mmu_pgd = svm_load_mmu_pgd,
4588 
4589 	.check_intercept = svm_check_intercept,
4590 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4591 
4592 	.request_immediate_exit = __kvm_request_immediate_exit,
4593 
4594 	.sched_in = svm_sched_in,
4595 
4596 	.pmu_ops = &amd_pmu_ops,
4597 	.nested_ops = &svm_nested_ops,
4598 
4599 	.deliver_posted_interrupt = svm_deliver_avic_intr,
4600 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4601 	.update_pi_irte = svm_update_pi_irte,
4602 	.setup_mce = svm_setup_mce,
4603 
4604 	.smi_allowed = svm_smi_allowed,
4605 	.pre_enter_smm = svm_pre_enter_smm,
4606 	.pre_leave_smm = svm_pre_leave_smm,
4607 	.enable_smi_window = svm_enable_smi_window,
4608 
4609 	.mem_enc_op = svm_mem_enc_op,
4610 	.mem_enc_reg_region = svm_register_enc_region,
4611 	.mem_enc_unreg_region = svm_unregister_enc_region,
4612 
4613 	.can_emulate_instruction = svm_can_emulate_instruction,
4614 
4615 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4616 
4617 	.msr_filter_changed = svm_msr_filter_changed,
4618 	.complete_emulated_msr = svm_complete_emulated_msr,
4619 
4620 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4621 };
4622 
4623 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4624 	.cpu_has_kvm_support = has_svm,
4625 	.disabled_by_bios = is_disabled,
4626 	.hardware_setup = svm_hardware_setup,
4627 	.check_processor_compatibility = svm_check_processor_compat,
4628 
4629 	.runtime_ops = &svm_x86_ops,
4630 };
4631 
4632 static int __init svm_init(void)
4633 {
4634 	__unused_size_checks();
4635 
4636 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4637 			__alignof__(struct vcpu_svm), THIS_MODULE);
4638 }
4639 
4640 static void __exit svm_exit(void)
4641 {
4642 	kvm_exit();
4643 }
4644 
4645 module_init(svm_init)
4646 module_exit(svm_exit)
4647