1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 #include <linux/cc_platform.h> 29 30 #include <asm/apic.h> 31 #include <asm/perf_event.h> 32 #include <asm/tlbflush.h> 33 #include <asm/desc.h> 34 #include <asm/debugreg.h> 35 #include <asm/kvm_para.h> 36 #include <asm/irq_remapping.h> 37 #include <asm/spec-ctrl.h> 38 #include <asm/cpu_device_id.h> 39 #include <asm/traps.h> 40 #include <asm/fpu/api.h> 41 42 #include <asm/virtext.h> 43 #include "trace.h" 44 45 #include "svm.h" 46 #include "svm_ops.h" 47 48 #include "kvm_onhyperv.h" 49 #include "svm_onhyperv.h" 50 51 MODULE_AUTHOR("Qumranet"); 52 MODULE_LICENSE("GPL"); 53 54 #ifdef MODULE 55 static const struct x86_cpu_id svm_cpu_id[] = { 56 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 57 {} 58 }; 59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 60 #endif 61 62 #define SEG_TYPE_LDT 2 63 #define SEG_TYPE_BUSY_TSS16 3 64 65 #define SVM_FEATURE_LBRV (1 << 1) 66 #define SVM_FEATURE_SVML (1 << 2) 67 #define SVM_FEATURE_TSC_RATE (1 << 4) 68 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 69 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 70 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 71 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 72 73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 74 75 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 76 #define TSC_RATIO_MIN 0x0000000000000001ULL 77 #define TSC_RATIO_MAX 0x000000ffffffffffULL 78 79 static bool erratum_383_found __read_mostly; 80 81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 82 83 /* 84 * Set osvw_len to higher value when updated Revision Guides 85 * are published and we know what the new status bits are 86 */ 87 static uint64_t osvw_len = 4, osvw_status; 88 89 static DEFINE_PER_CPU(u64, current_tsc_ratio); 90 #define TSC_RATIO_DEFAULT 0x0100000000ULL 91 92 static const struct svm_direct_access_msrs { 93 u32 index; /* Index of the MSR */ 94 bool always; /* True if intercept is initially cleared */ 95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 96 { .index = MSR_STAR, .always = true }, 97 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 98 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 99 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 100 #ifdef CONFIG_X86_64 101 { .index = MSR_GS_BASE, .always = true }, 102 { .index = MSR_FS_BASE, .always = true }, 103 { .index = MSR_KERNEL_GS_BASE, .always = true }, 104 { .index = MSR_LSTAR, .always = true }, 105 { .index = MSR_CSTAR, .always = true }, 106 { .index = MSR_SYSCALL_MASK, .always = true }, 107 #endif 108 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 109 { .index = MSR_IA32_PRED_CMD, .always = false }, 110 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 111 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 112 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 113 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 114 { .index = MSR_EFER, .always = false }, 115 { .index = MSR_IA32_CR_PAT, .always = false }, 116 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 117 { .index = MSR_INVALID, .always = false }, 118 }; 119 120 /* 121 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 122 * pause_filter_count: On processors that support Pause filtering(indicated 123 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 124 * count value. On VMRUN this value is loaded into an internal counter. 125 * Each time a pause instruction is executed, this counter is decremented 126 * until it reaches zero at which time a #VMEXIT is generated if pause 127 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 128 * Intercept Filtering for more details. 129 * This also indicate if ple logic enabled. 130 * 131 * pause_filter_thresh: In addition, some processor families support advanced 132 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 133 * the amount of time a guest is allowed to execute in a pause loop. 134 * In this mode, a 16-bit pause filter threshold field is added in the 135 * VMCB. The threshold value is a cycle count that is used to reset the 136 * pause counter. As with simple pause filtering, VMRUN loads the pause 137 * count value from VMCB into an internal counter. Then, on each pause 138 * instruction the hardware checks the elapsed number of cycles since 139 * the most recent pause instruction against the pause filter threshold. 140 * If the elapsed cycle count is greater than the pause filter threshold, 141 * then the internal pause count is reloaded from the VMCB and execution 142 * continues. If the elapsed cycle count is less than the pause filter 143 * threshold, then the internal pause count is decremented. If the count 144 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 145 * triggered. If advanced pause filtering is supported and pause filter 146 * threshold field is set to zero, the filter will operate in the simpler, 147 * count only mode. 148 */ 149 150 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 151 module_param(pause_filter_thresh, ushort, 0444); 152 153 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 154 module_param(pause_filter_count, ushort, 0444); 155 156 /* Default doubles per-vcpu window every exit. */ 157 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 158 module_param(pause_filter_count_grow, ushort, 0444); 159 160 /* Default resets per-vcpu window every exit to pause_filter_count. */ 161 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 162 module_param(pause_filter_count_shrink, ushort, 0444); 163 164 /* Default is to compute the maximum so we can never overflow. */ 165 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 166 module_param(pause_filter_count_max, ushort, 0444); 167 168 /* 169 * Use nested page tables by default. Note, NPT may get forced off by 170 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 171 */ 172 bool npt_enabled = true; 173 module_param_named(npt, npt_enabled, bool, 0444); 174 175 /* allow nested virtualization in KVM/SVM */ 176 static int nested = true; 177 module_param(nested, int, S_IRUGO); 178 179 /* enable/disable Next RIP Save */ 180 static int nrips = true; 181 module_param(nrips, int, 0444); 182 183 /* enable/disable Virtual VMLOAD VMSAVE */ 184 static int vls = true; 185 module_param(vls, int, 0444); 186 187 /* enable/disable Virtual GIF */ 188 static int vgif = true; 189 module_param(vgif, int, 0444); 190 191 /* enable/disable LBR virtualization */ 192 static int lbrv = true; 193 module_param(lbrv, int, 0444); 194 195 static int tsc_scaling = true; 196 module_param(tsc_scaling, int, 0444); 197 198 /* 199 * enable / disable AVIC. Because the defaults differ for APICv 200 * support between VMX and SVM we cannot use module_param_named. 201 */ 202 static bool avic; 203 module_param(avic, bool, 0444); 204 205 bool __read_mostly dump_invalid_vmcb; 206 module_param(dump_invalid_vmcb, bool, 0644); 207 208 209 bool intercept_smi = true; 210 module_param(intercept_smi, bool, 0444); 211 212 213 static bool svm_gp_erratum_intercept = true; 214 215 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 216 217 static unsigned long iopm_base; 218 219 struct kvm_ldttss_desc { 220 u16 limit0; 221 u16 base0; 222 unsigned base1:8, type:5, dpl:2, p:1; 223 unsigned limit1:4, zero0:3, g:1, base2:8; 224 u32 base3; 225 u32 zero1; 226 } __attribute__((packed)); 227 228 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 229 230 /* 231 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 232 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 233 * 234 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 235 * defer the restoration of TSC_AUX until the CPU returns to userspace. 236 */ 237 static int tsc_aux_uret_slot __read_mostly = -1; 238 239 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 240 241 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 242 #define MSRS_RANGE_SIZE 2048 243 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 244 245 u32 svm_msrpm_offset(u32 msr) 246 { 247 u32 offset; 248 int i; 249 250 for (i = 0; i < NUM_MSR_MAPS; i++) { 251 if (msr < msrpm_ranges[i] || 252 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 253 continue; 254 255 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 256 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 257 258 /* Now we have the u8 offset - but need the u32 offset */ 259 return offset / 4; 260 } 261 262 /* MSR not in any range */ 263 return MSR_INVALID; 264 } 265 266 #define MAX_INST_SIZE 15 267 268 static int get_max_npt_level(void) 269 { 270 #ifdef CONFIG_X86_64 271 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 272 #else 273 return PT32E_ROOT_LEVEL; 274 #endif 275 } 276 277 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 278 { 279 struct vcpu_svm *svm = to_svm(vcpu); 280 u64 old_efer = vcpu->arch.efer; 281 vcpu->arch.efer = efer; 282 283 if (!npt_enabled) { 284 /* Shadow paging assumes NX to be available. */ 285 efer |= EFER_NX; 286 287 if (!(efer & EFER_LMA)) 288 efer &= ~EFER_LME; 289 } 290 291 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 292 if (!(efer & EFER_SVME)) { 293 svm_leave_nested(svm); 294 svm_set_gif(svm, true); 295 /* #GP intercept is still needed for vmware backdoor */ 296 if (!enable_vmware_backdoor) 297 clr_exception_intercept(svm, GP_VECTOR); 298 299 /* 300 * Free the nested guest state, unless we are in SMM. 301 * In this case we will return to the nested guest 302 * as soon as we leave SMM. 303 */ 304 if (!is_smm(vcpu)) 305 svm_free_nested(svm); 306 307 } else { 308 int ret = svm_allocate_nested(svm); 309 310 if (ret) { 311 vcpu->arch.efer = old_efer; 312 return ret; 313 } 314 315 if (svm_gp_erratum_intercept) 316 set_exception_intercept(svm, GP_VECTOR); 317 } 318 } 319 320 svm->vmcb->save.efer = efer | EFER_SVME; 321 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 322 return 0; 323 } 324 325 static int is_external_interrupt(u32 info) 326 { 327 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 328 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 329 } 330 331 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 332 { 333 struct vcpu_svm *svm = to_svm(vcpu); 334 u32 ret = 0; 335 336 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 337 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 338 return ret; 339 } 340 341 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 342 { 343 struct vcpu_svm *svm = to_svm(vcpu); 344 345 if (mask == 0) 346 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 347 else 348 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 349 350 } 351 352 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 353 { 354 struct vcpu_svm *svm = to_svm(vcpu); 355 356 /* 357 * SEV-ES does not expose the next RIP. The RIP update is controlled by 358 * the type of exit and the #VC handler in the guest. 359 */ 360 if (sev_es_guest(vcpu->kvm)) 361 goto done; 362 363 if (nrips && svm->vmcb->control.next_rip != 0) { 364 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 365 svm->next_rip = svm->vmcb->control.next_rip; 366 } 367 368 if (!svm->next_rip) { 369 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 370 return 0; 371 } else { 372 kvm_rip_write(vcpu, svm->next_rip); 373 } 374 375 done: 376 svm_set_interrupt_shadow(vcpu, 0); 377 378 return 1; 379 } 380 381 static void svm_queue_exception(struct kvm_vcpu *vcpu) 382 { 383 struct vcpu_svm *svm = to_svm(vcpu); 384 unsigned nr = vcpu->arch.exception.nr; 385 bool has_error_code = vcpu->arch.exception.has_error_code; 386 u32 error_code = vcpu->arch.exception.error_code; 387 388 kvm_deliver_exception_payload(vcpu); 389 390 if (nr == BP_VECTOR && !nrips) { 391 unsigned long rip, old_rip = kvm_rip_read(vcpu); 392 393 /* 394 * For guest debugging where we have to reinject #BP if some 395 * INT3 is guest-owned: 396 * Emulate nRIP by moving RIP forward. Will fail if injection 397 * raises a fault that is not intercepted. Still better than 398 * failing in all cases. 399 */ 400 (void)skip_emulated_instruction(vcpu); 401 rip = kvm_rip_read(vcpu); 402 svm->int3_rip = rip + svm->vmcb->save.cs.base; 403 svm->int3_injected = rip - old_rip; 404 } 405 406 svm->vmcb->control.event_inj = nr 407 | SVM_EVTINJ_VALID 408 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 409 | SVM_EVTINJ_TYPE_EXEPT; 410 svm->vmcb->control.event_inj_err = error_code; 411 } 412 413 static void svm_init_erratum_383(void) 414 { 415 u32 low, high; 416 int err; 417 u64 val; 418 419 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 420 return; 421 422 /* Use _safe variants to not break nested virtualization */ 423 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 424 if (err) 425 return; 426 427 val |= (1ULL << 47); 428 429 low = lower_32_bits(val); 430 high = upper_32_bits(val); 431 432 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 433 434 erratum_383_found = true; 435 } 436 437 static void svm_init_osvw(struct kvm_vcpu *vcpu) 438 { 439 /* 440 * Guests should see errata 400 and 415 as fixed (assuming that 441 * HLT and IO instructions are intercepted). 442 */ 443 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 444 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 445 446 /* 447 * By increasing VCPU's osvw.length to 3 we are telling the guest that 448 * all osvw.status bits inside that length, including bit 0 (which is 449 * reserved for erratum 298), are valid. However, if host processor's 450 * osvw_len is 0 then osvw_status[0] carries no information. We need to 451 * be conservative here and therefore we tell the guest that erratum 298 452 * is present (because we really don't know). 453 */ 454 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 455 vcpu->arch.osvw.status |= 1; 456 } 457 458 static int has_svm(void) 459 { 460 const char *msg; 461 462 if (!cpu_has_svm(&msg)) { 463 printk(KERN_INFO "has_svm: %s\n", msg); 464 return 0; 465 } 466 467 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 468 pr_info("KVM is unsupported when running as an SEV guest\n"); 469 return 0; 470 } 471 472 return 1; 473 } 474 475 static void svm_hardware_disable(void) 476 { 477 /* Make sure we clean up behind us */ 478 if (tsc_scaling) 479 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 480 481 cpu_svm_disable(); 482 483 amd_pmu_disable_virt(); 484 } 485 486 static int svm_hardware_enable(void) 487 { 488 489 struct svm_cpu_data *sd; 490 uint64_t efer; 491 struct desc_struct *gdt; 492 int me = raw_smp_processor_id(); 493 494 rdmsrl(MSR_EFER, efer); 495 if (efer & EFER_SVME) 496 return -EBUSY; 497 498 if (!has_svm()) { 499 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 500 return -EINVAL; 501 } 502 sd = per_cpu(svm_data, me); 503 if (!sd) { 504 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 505 return -EINVAL; 506 } 507 508 sd->asid_generation = 1; 509 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 510 sd->next_asid = sd->max_asid + 1; 511 sd->min_asid = max_sev_asid + 1; 512 513 gdt = get_current_gdt_rw(); 514 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 515 516 wrmsrl(MSR_EFER, efer | EFER_SVME); 517 518 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); 519 520 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 521 /* 522 * Set the default value, even if we don't use TSC scaling 523 * to avoid having stale value in the msr 524 */ 525 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 526 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 527 } 528 529 530 /* 531 * Get OSVW bits. 532 * 533 * Note that it is possible to have a system with mixed processor 534 * revisions and therefore different OSVW bits. If bits are not the same 535 * on different processors then choose the worst case (i.e. if erratum 536 * is present on one processor and not on another then assume that the 537 * erratum is present everywhere). 538 */ 539 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 540 uint64_t len, status = 0; 541 int err; 542 543 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 544 if (!err) 545 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 546 &err); 547 548 if (err) 549 osvw_status = osvw_len = 0; 550 else { 551 if (len < osvw_len) 552 osvw_len = len; 553 osvw_status |= status; 554 osvw_status &= (1ULL << osvw_len) - 1; 555 } 556 } else 557 osvw_status = osvw_len = 0; 558 559 svm_init_erratum_383(); 560 561 amd_pmu_enable_virt(); 562 563 return 0; 564 } 565 566 static void svm_cpu_uninit(int cpu) 567 { 568 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 569 570 if (!sd) 571 return; 572 573 per_cpu(svm_data, cpu) = NULL; 574 kfree(sd->sev_vmcbs); 575 __free_page(sd->save_area); 576 kfree(sd); 577 } 578 579 static int svm_cpu_init(int cpu) 580 { 581 struct svm_cpu_data *sd; 582 int ret = -ENOMEM; 583 584 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 585 if (!sd) 586 return ret; 587 sd->cpu = cpu; 588 sd->save_area = alloc_page(GFP_KERNEL); 589 if (!sd->save_area) 590 goto free_cpu_data; 591 592 clear_page(page_address(sd->save_area)); 593 594 ret = sev_cpu_init(sd); 595 if (ret) 596 goto free_save_area; 597 598 per_cpu(svm_data, cpu) = sd; 599 600 return 0; 601 602 free_save_area: 603 __free_page(sd->save_area); 604 free_cpu_data: 605 kfree(sd); 606 return ret; 607 608 } 609 610 static int direct_access_msr_slot(u32 msr) 611 { 612 u32 i; 613 614 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 615 if (direct_access_msrs[i].index == msr) 616 return i; 617 618 return -ENOENT; 619 } 620 621 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 622 int write) 623 { 624 struct vcpu_svm *svm = to_svm(vcpu); 625 int slot = direct_access_msr_slot(msr); 626 627 if (slot == -ENOENT) 628 return; 629 630 /* Set the shadow bitmaps to the desired intercept states */ 631 if (read) 632 set_bit(slot, svm->shadow_msr_intercept.read); 633 else 634 clear_bit(slot, svm->shadow_msr_intercept.read); 635 636 if (write) 637 set_bit(slot, svm->shadow_msr_intercept.write); 638 else 639 clear_bit(slot, svm->shadow_msr_intercept.write); 640 } 641 642 static bool valid_msr_intercept(u32 index) 643 { 644 return direct_access_msr_slot(index) != -ENOENT; 645 } 646 647 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 648 { 649 u8 bit_write; 650 unsigned long tmp; 651 u32 offset; 652 u32 *msrpm; 653 654 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 655 to_svm(vcpu)->msrpm; 656 657 offset = svm_msrpm_offset(msr); 658 bit_write = 2 * (msr & 0x0f) + 1; 659 tmp = msrpm[offset]; 660 661 BUG_ON(offset == MSR_INVALID); 662 663 return !!test_bit(bit_write, &tmp); 664 } 665 666 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 667 u32 msr, int read, int write) 668 { 669 u8 bit_read, bit_write; 670 unsigned long tmp; 671 u32 offset; 672 673 /* 674 * If this warning triggers extend the direct_access_msrs list at the 675 * beginning of the file 676 */ 677 WARN_ON(!valid_msr_intercept(msr)); 678 679 /* Enforce non allowed MSRs to trap */ 680 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 681 read = 0; 682 683 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 684 write = 0; 685 686 offset = svm_msrpm_offset(msr); 687 bit_read = 2 * (msr & 0x0f); 688 bit_write = 2 * (msr & 0x0f) + 1; 689 tmp = msrpm[offset]; 690 691 BUG_ON(offset == MSR_INVALID); 692 693 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 694 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 695 696 msrpm[offset] = tmp; 697 698 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 699 700 } 701 702 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 703 int read, int write) 704 { 705 set_shadow_msr_intercept(vcpu, msr, read, write); 706 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 707 } 708 709 u32 *svm_vcpu_alloc_msrpm(void) 710 { 711 unsigned int order = get_order(MSRPM_SIZE); 712 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 713 u32 *msrpm; 714 715 if (!pages) 716 return NULL; 717 718 msrpm = page_address(pages); 719 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 720 721 return msrpm; 722 } 723 724 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 725 { 726 int i; 727 728 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 729 if (!direct_access_msrs[i].always) 730 continue; 731 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 732 } 733 } 734 735 736 void svm_vcpu_free_msrpm(u32 *msrpm) 737 { 738 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 739 } 740 741 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 742 { 743 struct vcpu_svm *svm = to_svm(vcpu); 744 u32 i; 745 746 /* 747 * Set intercept permissions for all direct access MSRs again. They 748 * will automatically get filtered through the MSR filter, so we are 749 * back in sync after this. 750 */ 751 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 752 u32 msr = direct_access_msrs[i].index; 753 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 754 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 755 756 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 757 } 758 } 759 760 static void add_msr_offset(u32 offset) 761 { 762 int i; 763 764 for (i = 0; i < MSRPM_OFFSETS; ++i) { 765 766 /* Offset already in list? */ 767 if (msrpm_offsets[i] == offset) 768 return; 769 770 /* Slot used by another offset? */ 771 if (msrpm_offsets[i] != MSR_INVALID) 772 continue; 773 774 /* Add offset to list */ 775 msrpm_offsets[i] = offset; 776 777 return; 778 } 779 780 /* 781 * If this BUG triggers the msrpm_offsets table has an overflow. Just 782 * increase MSRPM_OFFSETS in this case. 783 */ 784 BUG(); 785 } 786 787 static void init_msrpm_offsets(void) 788 { 789 int i; 790 791 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 792 793 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 794 u32 offset; 795 796 offset = svm_msrpm_offset(direct_access_msrs[i].index); 797 BUG_ON(offset == MSR_INVALID); 798 799 add_msr_offset(offset); 800 } 801 } 802 803 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 804 { 805 struct vcpu_svm *svm = to_svm(vcpu); 806 807 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 808 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 809 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 810 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 811 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 812 } 813 814 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 815 { 816 struct vcpu_svm *svm = to_svm(vcpu); 817 818 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 819 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 820 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 821 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 822 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 823 } 824 825 void disable_nmi_singlestep(struct vcpu_svm *svm) 826 { 827 svm->nmi_singlestep = false; 828 829 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 830 /* Clear our flags if they were not set by the guest */ 831 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 832 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 833 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 834 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 835 } 836 } 837 838 static void grow_ple_window(struct kvm_vcpu *vcpu) 839 { 840 struct vcpu_svm *svm = to_svm(vcpu); 841 struct vmcb_control_area *control = &svm->vmcb->control; 842 int old = control->pause_filter_count; 843 844 control->pause_filter_count = __grow_ple_window(old, 845 pause_filter_count, 846 pause_filter_count_grow, 847 pause_filter_count_max); 848 849 if (control->pause_filter_count != old) { 850 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 851 trace_kvm_ple_window_update(vcpu->vcpu_id, 852 control->pause_filter_count, old); 853 } 854 } 855 856 static void shrink_ple_window(struct kvm_vcpu *vcpu) 857 { 858 struct vcpu_svm *svm = to_svm(vcpu); 859 struct vmcb_control_area *control = &svm->vmcb->control; 860 int old = control->pause_filter_count; 861 862 control->pause_filter_count = 863 __shrink_ple_window(old, 864 pause_filter_count, 865 pause_filter_count_shrink, 866 pause_filter_count); 867 if (control->pause_filter_count != old) { 868 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 869 trace_kvm_ple_window_update(vcpu->vcpu_id, 870 control->pause_filter_count, old); 871 } 872 } 873 874 /* 875 * The default MMIO mask is a single bit (excluding the present bit), 876 * which could conflict with the memory encryption bit. Check for 877 * memory encryption support and override the default MMIO mask if 878 * memory encryption is enabled. 879 */ 880 static __init void svm_adjust_mmio_mask(void) 881 { 882 unsigned int enc_bit, mask_bit; 883 u64 msr, mask; 884 885 /* If there is no memory encryption support, use existing mask */ 886 if (cpuid_eax(0x80000000) < 0x8000001f) 887 return; 888 889 /* If memory encryption is not enabled, use existing mask */ 890 rdmsrl(MSR_AMD64_SYSCFG, msr); 891 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 892 return; 893 894 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 895 mask_bit = boot_cpu_data.x86_phys_bits; 896 897 /* Increment the mask bit if it is the same as the encryption bit */ 898 if (enc_bit == mask_bit) 899 mask_bit++; 900 901 /* 902 * If the mask bit location is below 52, then some bits above the 903 * physical addressing limit will always be reserved, so use the 904 * rsvd_bits() function to generate the mask. This mask, along with 905 * the present bit, will be used to generate a page fault with 906 * PFER.RSV = 1. 907 * 908 * If the mask bit location is 52 (or above), then clear the mask. 909 */ 910 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 911 912 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 913 } 914 915 static void svm_hardware_teardown(void) 916 { 917 int cpu; 918 919 sev_hardware_teardown(); 920 921 for_each_possible_cpu(cpu) 922 svm_cpu_uninit(cpu); 923 924 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 925 get_order(IOPM_SIZE)); 926 iopm_base = 0; 927 } 928 929 static __init void svm_set_cpu_caps(void) 930 { 931 kvm_set_cpu_caps(); 932 933 supported_xss = 0; 934 935 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 936 if (nested) { 937 kvm_cpu_cap_set(X86_FEATURE_SVM); 938 939 if (nrips) 940 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 941 942 if (npt_enabled) 943 kvm_cpu_cap_set(X86_FEATURE_NPT); 944 945 if (tsc_scaling) 946 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 947 948 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 949 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 950 } 951 952 /* CPUID 0x80000008 */ 953 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 954 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 955 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 956 957 /* CPUID 0x8000001F (SME/SEV features) */ 958 sev_set_cpu_caps(); 959 } 960 961 static __init int svm_hardware_setup(void) 962 { 963 int cpu; 964 struct page *iopm_pages; 965 void *iopm_va; 966 int r; 967 unsigned int order = get_order(IOPM_SIZE); 968 969 /* 970 * NX is required for shadow paging and for NPT if the NX huge pages 971 * mitigation is enabled. 972 */ 973 if (!boot_cpu_has(X86_FEATURE_NX)) { 974 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 975 return -EOPNOTSUPP; 976 } 977 kvm_enable_efer_bits(EFER_NX); 978 979 iopm_pages = alloc_pages(GFP_KERNEL, order); 980 981 if (!iopm_pages) 982 return -ENOMEM; 983 984 iopm_va = page_address(iopm_pages); 985 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 986 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 987 988 init_msrpm_offsets(); 989 990 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 991 992 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 993 kvm_enable_efer_bits(EFER_FFXSR); 994 995 if (tsc_scaling) { 996 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 997 tsc_scaling = false; 998 } else { 999 pr_info("TSC scaling supported\n"); 1000 kvm_has_tsc_control = true; 1001 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 1002 kvm_tsc_scaling_ratio_frac_bits = 32; 1003 } 1004 } 1005 1006 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 1007 1008 /* Check for pause filtering support */ 1009 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 1010 pause_filter_count = 0; 1011 pause_filter_thresh = 0; 1012 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 1013 pause_filter_thresh = 0; 1014 } 1015 1016 if (nested) { 1017 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 1018 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 1019 } 1020 1021 /* 1022 * KVM's MMU doesn't support using 2-level paging for itself, and thus 1023 * NPT isn't supported if the host is using 2-level paging since host 1024 * CR4 is unchanged on VMRUN. 1025 */ 1026 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 1027 npt_enabled = false; 1028 1029 if (!boot_cpu_has(X86_FEATURE_NPT)) 1030 npt_enabled = false; 1031 1032 /* Force VM NPT level equal to the host's max NPT level */ 1033 kvm_configure_mmu(npt_enabled, get_max_npt_level(), 1034 get_max_npt_level(), PG_LEVEL_1G); 1035 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 1036 1037 /* Note, SEV setup consumes npt_enabled. */ 1038 sev_hardware_setup(); 1039 1040 svm_hv_hardware_setup(); 1041 1042 svm_adjust_mmio_mask(); 1043 1044 for_each_possible_cpu(cpu) { 1045 r = svm_cpu_init(cpu); 1046 if (r) 1047 goto err; 1048 } 1049 1050 if (nrips) { 1051 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 1052 nrips = false; 1053 } 1054 1055 enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC); 1056 1057 if (enable_apicv) { 1058 pr_info("AVIC enabled\n"); 1059 1060 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 1061 } 1062 1063 if (vls) { 1064 if (!npt_enabled || 1065 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 1066 !IS_ENABLED(CONFIG_X86_64)) { 1067 vls = false; 1068 } else { 1069 pr_info("Virtual VMLOAD VMSAVE supported\n"); 1070 } 1071 } 1072 1073 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 1074 svm_gp_erratum_intercept = false; 1075 1076 if (vgif) { 1077 if (!boot_cpu_has(X86_FEATURE_VGIF)) 1078 vgif = false; 1079 else 1080 pr_info("Virtual GIF supported\n"); 1081 } 1082 1083 if (lbrv) { 1084 if (!boot_cpu_has(X86_FEATURE_LBRV)) 1085 lbrv = false; 1086 else 1087 pr_info("LBR virtualization supported\n"); 1088 } 1089 1090 svm_set_cpu_caps(); 1091 1092 /* 1093 * It seems that on AMD processors PTE's accessed bit is 1094 * being set by the CPU hardware before the NPF vmexit. 1095 * This is not expected behaviour and our tests fail because 1096 * of it. 1097 * A workaround here is to disable support for 1098 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 1099 * In this case userspace can know if there is support using 1100 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 1101 * it 1102 * If future AMD CPU models change the behaviour described above, 1103 * this variable can be changed accordingly 1104 */ 1105 allow_smaller_maxphyaddr = !npt_enabled; 1106 1107 return 0; 1108 1109 err: 1110 svm_hardware_teardown(); 1111 return r; 1112 } 1113 1114 static void init_seg(struct vmcb_seg *seg) 1115 { 1116 seg->selector = 0; 1117 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1118 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1119 seg->limit = 0xffff; 1120 seg->base = 0; 1121 } 1122 1123 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1124 { 1125 seg->selector = 0; 1126 seg->attrib = SVM_SELECTOR_P_MASK | type; 1127 seg->limit = 0xffff; 1128 seg->base = 0; 1129 } 1130 1131 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1132 { 1133 struct vcpu_svm *svm = to_svm(vcpu); 1134 1135 return svm->nested.ctl.tsc_offset; 1136 } 1137 1138 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1139 { 1140 struct vcpu_svm *svm = to_svm(vcpu); 1141 1142 return svm->tsc_ratio_msr; 1143 } 1144 1145 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1146 { 1147 struct vcpu_svm *svm = to_svm(vcpu); 1148 1149 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1150 svm->vmcb->control.tsc_offset = offset; 1151 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1152 } 1153 1154 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1155 { 1156 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 1157 } 1158 1159 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1160 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1161 struct vcpu_svm *svm) 1162 { 1163 /* 1164 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1165 * roots, or if INVPCID is disabled in the guest to inject #UD. 1166 */ 1167 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1168 if (!npt_enabled || 1169 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1170 svm_set_intercept(svm, INTERCEPT_INVPCID); 1171 else 1172 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1173 } 1174 1175 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1176 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1177 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1178 else 1179 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1180 } 1181 } 1182 1183 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1184 { 1185 struct vcpu_svm *svm = to_svm(vcpu); 1186 1187 if (guest_cpuid_is_intel(vcpu)) { 1188 /* 1189 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1190 * accesses because the processor only stores 32 bits. 1191 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1192 */ 1193 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1194 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1195 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1196 1197 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1198 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1199 } else { 1200 /* 1201 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1202 * in VMCB and clear intercepts to avoid #VMEXIT. 1203 */ 1204 if (vls) { 1205 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1206 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1207 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1208 } 1209 /* No need to intercept these MSRs */ 1210 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1211 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1212 } 1213 } 1214 1215 static void init_vmcb(struct kvm_vcpu *vcpu) 1216 { 1217 struct vcpu_svm *svm = to_svm(vcpu); 1218 struct vmcb_control_area *control = &svm->vmcb->control; 1219 struct vmcb_save_area *save = &svm->vmcb->save; 1220 1221 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1222 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1223 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1224 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1225 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1226 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1227 if (!kvm_vcpu_apicv_active(vcpu)) 1228 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1229 1230 set_dr_intercepts(svm); 1231 1232 set_exception_intercept(svm, PF_VECTOR); 1233 set_exception_intercept(svm, UD_VECTOR); 1234 set_exception_intercept(svm, MC_VECTOR); 1235 set_exception_intercept(svm, AC_VECTOR); 1236 set_exception_intercept(svm, DB_VECTOR); 1237 /* 1238 * Guest access to VMware backdoor ports could legitimately 1239 * trigger #GP because of TSS I/O permission bitmap. 1240 * We intercept those #GP and allow access to them anyway 1241 * as VMware does. 1242 */ 1243 if (enable_vmware_backdoor) 1244 set_exception_intercept(svm, GP_VECTOR); 1245 1246 svm_set_intercept(svm, INTERCEPT_INTR); 1247 svm_set_intercept(svm, INTERCEPT_NMI); 1248 1249 if (intercept_smi) 1250 svm_set_intercept(svm, INTERCEPT_SMI); 1251 1252 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1253 svm_set_intercept(svm, INTERCEPT_RDPMC); 1254 svm_set_intercept(svm, INTERCEPT_CPUID); 1255 svm_set_intercept(svm, INTERCEPT_INVD); 1256 svm_set_intercept(svm, INTERCEPT_INVLPG); 1257 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1258 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1259 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1260 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1261 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1262 svm_set_intercept(svm, INTERCEPT_VMRUN); 1263 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1264 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1265 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1266 svm_set_intercept(svm, INTERCEPT_STGI); 1267 svm_set_intercept(svm, INTERCEPT_CLGI); 1268 svm_set_intercept(svm, INTERCEPT_SKINIT); 1269 svm_set_intercept(svm, INTERCEPT_WBINVD); 1270 svm_set_intercept(svm, INTERCEPT_XSETBV); 1271 svm_set_intercept(svm, INTERCEPT_RDPRU); 1272 svm_set_intercept(svm, INTERCEPT_RSM); 1273 1274 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1275 svm_set_intercept(svm, INTERCEPT_MONITOR); 1276 svm_set_intercept(svm, INTERCEPT_MWAIT); 1277 } 1278 1279 if (!kvm_hlt_in_guest(vcpu->kvm)) 1280 svm_set_intercept(svm, INTERCEPT_HLT); 1281 1282 control->iopm_base_pa = __sme_set(iopm_base); 1283 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1284 control->int_ctl = V_INTR_MASKING_MASK; 1285 1286 init_seg(&save->es); 1287 init_seg(&save->ss); 1288 init_seg(&save->ds); 1289 init_seg(&save->fs); 1290 init_seg(&save->gs); 1291 1292 save->cs.selector = 0xf000; 1293 save->cs.base = 0xffff0000; 1294 /* Executable/Readable Code Segment */ 1295 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1296 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1297 save->cs.limit = 0xffff; 1298 1299 save->gdtr.base = 0; 1300 save->gdtr.limit = 0xffff; 1301 save->idtr.base = 0; 1302 save->idtr.limit = 0xffff; 1303 1304 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1305 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1306 1307 if (npt_enabled) { 1308 /* Setup VMCB for Nested Paging */ 1309 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1310 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1311 clr_exception_intercept(svm, PF_VECTOR); 1312 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1313 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1314 save->g_pat = vcpu->arch.pat; 1315 save->cr3 = 0; 1316 } 1317 svm->current_vmcb->asid_generation = 0; 1318 svm->asid = 0; 1319 1320 svm->nested.vmcb12_gpa = INVALID_GPA; 1321 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1322 1323 if (!kvm_pause_in_guest(vcpu->kvm)) { 1324 control->pause_filter_count = pause_filter_count; 1325 if (pause_filter_thresh) 1326 control->pause_filter_thresh = pause_filter_thresh; 1327 svm_set_intercept(svm, INTERCEPT_PAUSE); 1328 } else { 1329 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1330 } 1331 1332 svm_recalc_instruction_intercepts(vcpu, svm); 1333 1334 /* 1335 * If the host supports V_SPEC_CTRL then disable the interception 1336 * of MSR_IA32_SPEC_CTRL. 1337 */ 1338 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1339 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1340 1341 if (kvm_vcpu_apicv_active(vcpu)) 1342 avic_init_vmcb(svm); 1343 1344 if (vgif) { 1345 svm_clr_intercept(svm, INTERCEPT_STGI); 1346 svm_clr_intercept(svm, INTERCEPT_CLGI); 1347 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1348 } 1349 1350 if (sev_guest(vcpu->kvm)) { 1351 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1352 clr_exception_intercept(svm, UD_VECTOR); 1353 1354 if (sev_es_guest(vcpu->kvm)) { 1355 /* Perform SEV-ES specific VMCB updates */ 1356 sev_es_init_vmcb(svm); 1357 } 1358 } 1359 1360 svm_hv_init_vmcb(svm->vmcb); 1361 init_vmcb_after_set_cpuid(vcpu); 1362 1363 vmcb_mark_all_dirty(svm->vmcb); 1364 1365 enable_gif(svm); 1366 } 1367 1368 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1369 { 1370 struct vcpu_svm *svm = to_svm(vcpu); 1371 1372 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1373 1374 svm_init_osvw(vcpu); 1375 vcpu->arch.microcode_version = 0x01000065; 1376 svm->tsc_ratio_msr = kvm_default_tsc_scaling_ratio; 1377 1378 if (sev_es_guest(vcpu->kvm)) 1379 sev_es_vcpu_reset(svm); 1380 } 1381 1382 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1383 { 1384 struct vcpu_svm *svm = to_svm(vcpu); 1385 1386 svm->spec_ctrl = 0; 1387 svm->virt_spec_ctrl = 0; 1388 1389 init_vmcb(vcpu); 1390 1391 if (!init_event) 1392 __svm_vcpu_reset(vcpu); 1393 } 1394 1395 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1396 { 1397 svm->current_vmcb = target_vmcb; 1398 svm->vmcb = target_vmcb->ptr; 1399 } 1400 1401 static int svm_create_vcpu(struct kvm_vcpu *vcpu) 1402 { 1403 struct vcpu_svm *svm; 1404 struct page *vmcb01_page; 1405 struct page *vmsa_page = NULL; 1406 int err; 1407 1408 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1409 svm = to_svm(vcpu); 1410 1411 err = -ENOMEM; 1412 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1413 if (!vmcb01_page) 1414 goto out; 1415 1416 if (sev_es_guest(vcpu->kvm)) { 1417 /* 1418 * SEV-ES guests require a separate VMSA page used to contain 1419 * the encrypted register state of the guest. 1420 */ 1421 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1422 if (!vmsa_page) 1423 goto error_free_vmcb_page; 1424 1425 /* 1426 * SEV-ES guests maintain an encrypted version of their FPU 1427 * state which is restored and saved on VMRUN and VMEXIT. 1428 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1429 * do xsave/xrstor on it. 1430 */ 1431 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1432 } 1433 1434 err = avic_init_vcpu(svm); 1435 if (err) 1436 goto error_free_vmsa_page; 1437 1438 /* We initialize this flag to true to make sure that the is_running 1439 * bit would be set the first time the vcpu is loaded. 1440 */ 1441 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) 1442 svm->avic_is_running = true; 1443 1444 svm->msrpm = svm_vcpu_alloc_msrpm(); 1445 if (!svm->msrpm) { 1446 err = -ENOMEM; 1447 goto error_free_vmsa_page; 1448 } 1449 1450 svm->vmcb01.ptr = page_address(vmcb01_page); 1451 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1452 svm_switch_vmcb(svm, &svm->vmcb01); 1453 1454 if (vmsa_page) 1455 svm->sev_es.vmsa = page_address(vmsa_page); 1456 1457 svm->guest_state_loaded = false; 1458 1459 return 0; 1460 1461 error_free_vmsa_page: 1462 if (vmsa_page) 1463 __free_page(vmsa_page); 1464 error_free_vmcb_page: 1465 __free_page(vmcb01_page); 1466 out: 1467 return err; 1468 } 1469 1470 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1471 { 1472 int i; 1473 1474 for_each_online_cpu(i) 1475 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1476 } 1477 1478 static void svm_free_vcpu(struct kvm_vcpu *vcpu) 1479 { 1480 struct vcpu_svm *svm = to_svm(vcpu); 1481 1482 /* 1483 * The vmcb page can be recycled, causing a false negative in 1484 * svm_vcpu_load(). So, ensure that no logical CPU has this 1485 * vmcb page recorded as its current vmcb. 1486 */ 1487 svm_clear_current_vmcb(svm->vmcb); 1488 1489 svm_free_nested(svm); 1490 1491 sev_free_vcpu(vcpu); 1492 1493 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1494 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1495 } 1496 1497 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) 1498 { 1499 struct vcpu_svm *svm = to_svm(vcpu); 1500 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 1501 1502 if (sev_es_guest(vcpu->kvm)) 1503 sev_es_unmap_ghcb(svm); 1504 1505 if (svm->guest_state_loaded) 1506 return; 1507 1508 /* 1509 * Save additional host state that will be restored on VMEXIT (sev-es) 1510 * or subsequent vmload of host save area. 1511 */ 1512 if (sev_es_guest(vcpu->kvm)) { 1513 sev_es_prepare_guest_switch(svm, vcpu->cpu); 1514 } else { 1515 vmsave(__sme_page_pa(sd->save_area)); 1516 } 1517 1518 if (tsc_scaling) { 1519 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1520 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1521 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1522 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1523 } 1524 } 1525 1526 if (likely(tsc_aux_uret_slot >= 0)) 1527 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1528 1529 svm->guest_state_loaded = true; 1530 } 1531 1532 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1533 { 1534 to_svm(vcpu)->guest_state_loaded = false; 1535 } 1536 1537 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1538 { 1539 struct vcpu_svm *svm = to_svm(vcpu); 1540 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1541 1542 if (sd->current_vmcb != svm->vmcb) { 1543 sd->current_vmcb = svm->vmcb; 1544 indirect_branch_prediction_barrier(); 1545 } 1546 if (kvm_vcpu_apicv_active(vcpu)) 1547 avic_vcpu_load(vcpu, cpu); 1548 } 1549 1550 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1551 { 1552 if (kvm_vcpu_apicv_active(vcpu)) 1553 avic_vcpu_put(vcpu); 1554 1555 svm_prepare_host_switch(vcpu); 1556 1557 ++vcpu->stat.host_state_reload; 1558 } 1559 1560 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1561 { 1562 struct vcpu_svm *svm = to_svm(vcpu); 1563 unsigned long rflags = svm->vmcb->save.rflags; 1564 1565 if (svm->nmi_singlestep) { 1566 /* Hide our flags if they were not set by the guest */ 1567 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1568 rflags &= ~X86_EFLAGS_TF; 1569 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1570 rflags &= ~X86_EFLAGS_RF; 1571 } 1572 return rflags; 1573 } 1574 1575 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1576 { 1577 if (to_svm(vcpu)->nmi_singlestep) 1578 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1579 1580 /* 1581 * Any change of EFLAGS.VM is accompanied by a reload of SS 1582 * (caused by either a task switch or an inter-privilege IRET), 1583 * so we do not need to update the CPL here. 1584 */ 1585 to_svm(vcpu)->vmcb->save.rflags = rflags; 1586 } 1587 1588 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1589 { 1590 switch (reg) { 1591 case VCPU_EXREG_PDPTR: 1592 BUG_ON(!npt_enabled); 1593 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 1594 break; 1595 default: 1596 KVM_BUG_ON(1, vcpu->kvm); 1597 } 1598 } 1599 1600 static void svm_set_vintr(struct vcpu_svm *svm) 1601 { 1602 struct vmcb_control_area *control; 1603 1604 /* 1605 * The following fields are ignored when AVIC is enabled 1606 */ 1607 WARN_ON(kvm_apicv_activated(svm->vcpu.kvm)); 1608 1609 svm_set_intercept(svm, INTERCEPT_VINTR); 1610 1611 /* 1612 * This is just a dummy VINTR to actually cause a vmexit to happen. 1613 * Actual injection of virtual interrupts happens through EVENTINJ. 1614 */ 1615 control = &svm->vmcb->control; 1616 control->int_vector = 0x0; 1617 control->int_ctl &= ~V_INTR_PRIO_MASK; 1618 control->int_ctl |= V_IRQ_MASK | 1619 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1620 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1621 } 1622 1623 static void svm_clear_vintr(struct vcpu_svm *svm) 1624 { 1625 svm_clr_intercept(svm, INTERCEPT_VINTR); 1626 1627 /* Drop int_ctl fields related to VINTR injection. */ 1628 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1629 if (is_guest_mode(&svm->vcpu)) { 1630 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1631 1632 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1633 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1634 1635 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1636 V_IRQ_INJECTION_BITS_MASK; 1637 1638 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1639 } 1640 1641 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1642 } 1643 1644 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1645 { 1646 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1647 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1648 1649 switch (seg) { 1650 case VCPU_SREG_CS: return &save->cs; 1651 case VCPU_SREG_DS: return &save->ds; 1652 case VCPU_SREG_ES: return &save->es; 1653 case VCPU_SREG_FS: return &save01->fs; 1654 case VCPU_SREG_GS: return &save01->gs; 1655 case VCPU_SREG_SS: return &save->ss; 1656 case VCPU_SREG_TR: return &save01->tr; 1657 case VCPU_SREG_LDTR: return &save01->ldtr; 1658 } 1659 BUG(); 1660 return NULL; 1661 } 1662 1663 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1664 { 1665 struct vmcb_seg *s = svm_seg(vcpu, seg); 1666 1667 return s->base; 1668 } 1669 1670 static void svm_get_segment(struct kvm_vcpu *vcpu, 1671 struct kvm_segment *var, int seg) 1672 { 1673 struct vmcb_seg *s = svm_seg(vcpu, seg); 1674 1675 var->base = s->base; 1676 var->limit = s->limit; 1677 var->selector = s->selector; 1678 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1679 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1680 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1681 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1682 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1683 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1684 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1685 1686 /* 1687 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1688 * However, the SVM spec states that the G bit is not observed by the 1689 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1690 * So let's synthesize a legal G bit for all segments, this helps 1691 * running KVM nested. It also helps cross-vendor migration, because 1692 * Intel's vmentry has a check on the 'G' bit. 1693 */ 1694 var->g = s->limit > 0xfffff; 1695 1696 /* 1697 * AMD's VMCB does not have an explicit unusable field, so emulate it 1698 * for cross vendor migration purposes by "not present" 1699 */ 1700 var->unusable = !var->present; 1701 1702 switch (seg) { 1703 case VCPU_SREG_TR: 1704 /* 1705 * Work around a bug where the busy flag in the tr selector 1706 * isn't exposed 1707 */ 1708 var->type |= 0x2; 1709 break; 1710 case VCPU_SREG_DS: 1711 case VCPU_SREG_ES: 1712 case VCPU_SREG_FS: 1713 case VCPU_SREG_GS: 1714 /* 1715 * The accessed bit must always be set in the segment 1716 * descriptor cache, although it can be cleared in the 1717 * descriptor, the cached bit always remains at 1. Since 1718 * Intel has a check on this, set it here to support 1719 * cross-vendor migration. 1720 */ 1721 if (!var->unusable) 1722 var->type |= 0x1; 1723 break; 1724 case VCPU_SREG_SS: 1725 /* 1726 * On AMD CPUs sometimes the DB bit in the segment 1727 * descriptor is left as 1, although the whole segment has 1728 * been made unusable. Clear it here to pass an Intel VMX 1729 * entry check when cross vendor migrating. 1730 */ 1731 if (var->unusable) 1732 var->db = 0; 1733 /* This is symmetric with svm_set_segment() */ 1734 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1735 break; 1736 } 1737 } 1738 1739 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1740 { 1741 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1742 1743 return save->cpl; 1744 } 1745 1746 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1747 { 1748 struct vcpu_svm *svm = to_svm(vcpu); 1749 1750 dt->size = svm->vmcb->save.idtr.limit; 1751 dt->address = svm->vmcb->save.idtr.base; 1752 } 1753 1754 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1755 { 1756 struct vcpu_svm *svm = to_svm(vcpu); 1757 1758 svm->vmcb->save.idtr.limit = dt->size; 1759 svm->vmcb->save.idtr.base = dt->address ; 1760 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1761 } 1762 1763 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1764 { 1765 struct vcpu_svm *svm = to_svm(vcpu); 1766 1767 dt->size = svm->vmcb->save.gdtr.limit; 1768 dt->address = svm->vmcb->save.gdtr.base; 1769 } 1770 1771 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1772 { 1773 struct vcpu_svm *svm = to_svm(vcpu); 1774 1775 svm->vmcb->save.gdtr.limit = dt->size; 1776 svm->vmcb->save.gdtr.base = dt->address ; 1777 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1778 } 1779 1780 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1781 { 1782 struct vcpu_svm *svm = to_svm(vcpu); 1783 u64 hcr0 = cr0; 1784 1785 #ifdef CONFIG_X86_64 1786 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1787 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1788 vcpu->arch.efer |= EFER_LMA; 1789 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1790 } 1791 1792 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1793 vcpu->arch.efer &= ~EFER_LMA; 1794 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1795 } 1796 } 1797 #endif 1798 vcpu->arch.cr0 = cr0; 1799 1800 if (!npt_enabled) 1801 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1802 1803 /* 1804 * re-enable caching here because the QEMU bios 1805 * does not do it - this results in some delay at 1806 * reboot 1807 */ 1808 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1809 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1810 1811 svm->vmcb->save.cr0 = hcr0; 1812 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1813 1814 /* 1815 * SEV-ES guests must always keep the CR intercepts cleared. CR 1816 * tracking is done using the CR write traps. 1817 */ 1818 if (sev_es_guest(vcpu->kvm)) 1819 return; 1820 1821 if (hcr0 == cr0) { 1822 /* Selective CR0 write remains on. */ 1823 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1824 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1825 } else { 1826 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1827 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1828 } 1829 } 1830 1831 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1832 { 1833 return true; 1834 } 1835 1836 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1837 { 1838 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1839 unsigned long old_cr4 = vcpu->arch.cr4; 1840 1841 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1842 svm_flush_tlb(vcpu); 1843 1844 vcpu->arch.cr4 = cr4; 1845 if (!npt_enabled) 1846 cr4 |= X86_CR4_PAE; 1847 cr4 |= host_cr4_mce; 1848 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1849 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1850 1851 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1852 kvm_update_cpuid_runtime(vcpu); 1853 } 1854 1855 static void svm_set_segment(struct kvm_vcpu *vcpu, 1856 struct kvm_segment *var, int seg) 1857 { 1858 struct vcpu_svm *svm = to_svm(vcpu); 1859 struct vmcb_seg *s = svm_seg(vcpu, seg); 1860 1861 s->base = var->base; 1862 s->limit = var->limit; 1863 s->selector = var->selector; 1864 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1865 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1866 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1867 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1868 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1869 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1870 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1871 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1872 1873 /* 1874 * This is always accurate, except if SYSRET returned to a segment 1875 * with SS.DPL != 3. Intel does not have this quirk, and always 1876 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1877 * would entail passing the CPL to userspace and back. 1878 */ 1879 if (seg == VCPU_SREG_SS) 1880 /* This is symmetric with svm_get_segment() */ 1881 svm->vmcb->save.cpl = (var->dpl & 3); 1882 1883 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1884 } 1885 1886 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1887 { 1888 struct vcpu_svm *svm = to_svm(vcpu); 1889 1890 clr_exception_intercept(svm, BP_VECTOR); 1891 1892 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1893 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1894 set_exception_intercept(svm, BP_VECTOR); 1895 } 1896 } 1897 1898 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1899 { 1900 if (sd->next_asid > sd->max_asid) { 1901 ++sd->asid_generation; 1902 sd->next_asid = sd->min_asid; 1903 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1904 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1905 } 1906 1907 svm->current_vmcb->asid_generation = sd->asid_generation; 1908 svm->asid = sd->next_asid++; 1909 } 1910 1911 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1912 { 1913 struct vmcb *vmcb = svm->vmcb; 1914 1915 if (svm->vcpu.arch.guest_state_protected) 1916 return; 1917 1918 if (unlikely(value != vmcb->save.dr6)) { 1919 vmcb->save.dr6 = value; 1920 vmcb_mark_dirty(vmcb, VMCB_DR); 1921 } 1922 } 1923 1924 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1925 { 1926 struct vcpu_svm *svm = to_svm(vcpu); 1927 1928 if (vcpu->arch.guest_state_protected) 1929 return; 1930 1931 get_debugreg(vcpu->arch.db[0], 0); 1932 get_debugreg(vcpu->arch.db[1], 1); 1933 get_debugreg(vcpu->arch.db[2], 2); 1934 get_debugreg(vcpu->arch.db[3], 3); 1935 /* 1936 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1937 * because db_interception might need it. We can do it before vmentry. 1938 */ 1939 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1940 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1941 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1942 set_dr_intercepts(svm); 1943 } 1944 1945 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1946 { 1947 struct vcpu_svm *svm = to_svm(vcpu); 1948 1949 if (vcpu->arch.guest_state_protected) 1950 return; 1951 1952 svm->vmcb->save.dr7 = value; 1953 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1954 } 1955 1956 static int pf_interception(struct kvm_vcpu *vcpu) 1957 { 1958 struct vcpu_svm *svm = to_svm(vcpu); 1959 1960 u64 fault_address = svm->vmcb->control.exit_info_2; 1961 u64 error_code = svm->vmcb->control.exit_info_1; 1962 1963 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1964 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1965 svm->vmcb->control.insn_bytes : NULL, 1966 svm->vmcb->control.insn_len); 1967 } 1968 1969 static int npf_interception(struct kvm_vcpu *vcpu) 1970 { 1971 struct vcpu_svm *svm = to_svm(vcpu); 1972 1973 u64 fault_address = svm->vmcb->control.exit_info_2; 1974 u64 error_code = svm->vmcb->control.exit_info_1; 1975 1976 trace_kvm_page_fault(fault_address, error_code); 1977 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 1978 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1979 svm->vmcb->control.insn_bytes : NULL, 1980 svm->vmcb->control.insn_len); 1981 } 1982 1983 static int db_interception(struct kvm_vcpu *vcpu) 1984 { 1985 struct kvm_run *kvm_run = vcpu->run; 1986 struct vcpu_svm *svm = to_svm(vcpu); 1987 1988 if (!(vcpu->guest_debug & 1989 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1990 !svm->nmi_singlestep) { 1991 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1992 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1993 return 1; 1994 } 1995 1996 if (svm->nmi_singlestep) { 1997 disable_nmi_singlestep(svm); 1998 /* Make sure we check for pending NMIs upon entry */ 1999 kvm_make_request(KVM_REQ_EVENT, vcpu); 2000 } 2001 2002 if (vcpu->guest_debug & 2003 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2004 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2005 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2006 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2007 kvm_run->debug.arch.pc = 2008 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2009 kvm_run->debug.arch.exception = DB_VECTOR; 2010 return 0; 2011 } 2012 2013 return 1; 2014 } 2015 2016 static int bp_interception(struct kvm_vcpu *vcpu) 2017 { 2018 struct vcpu_svm *svm = to_svm(vcpu); 2019 struct kvm_run *kvm_run = vcpu->run; 2020 2021 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2022 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2023 kvm_run->debug.arch.exception = BP_VECTOR; 2024 return 0; 2025 } 2026 2027 static int ud_interception(struct kvm_vcpu *vcpu) 2028 { 2029 return handle_ud(vcpu); 2030 } 2031 2032 static int ac_interception(struct kvm_vcpu *vcpu) 2033 { 2034 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2035 return 1; 2036 } 2037 2038 static bool is_erratum_383(void) 2039 { 2040 int err, i; 2041 u64 value; 2042 2043 if (!erratum_383_found) 2044 return false; 2045 2046 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2047 if (err) 2048 return false; 2049 2050 /* Bit 62 may or may not be set for this mce */ 2051 value &= ~(1ULL << 62); 2052 2053 if (value != 0xb600000000010015ULL) 2054 return false; 2055 2056 /* Clear MCi_STATUS registers */ 2057 for (i = 0; i < 6; ++i) 2058 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2059 2060 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2061 if (!err) { 2062 u32 low, high; 2063 2064 value &= ~(1ULL << 2); 2065 low = lower_32_bits(value); 2066 high = upper_32_bits(value); 2067 2068 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2069 } 2070 2071 /* Flush tlb to evict multi-match entries */ 2072 __flush_tlb_all(); 2073 2074 return true; 2075 } 2076 2077 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2078 { 2079 if (is_erratum_383()) { 2080 /* 2081 * Erratum 383 triggered. Guest state is corrupt so kill the 2082 * guest. 2083 */ 2084 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 2085 2086 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2087 2088 return; 2089 } 2090 2091 /* 2092 * On an #MC intercept the MCE handler is not called automatically in 2093 * the host. So do it by hand here. 2094 */ 2095 kvm_machine_check(); 2096 } 2097 2098 static int mc_interception(struct kvm_vcpu *vcpu) 2099 { 2100 return 1; 2101 } 2102 2103 static int shutdown_interception(struct kvm_vcpu *vcpu) 2104 { 2105 struct kvm_run *kvm_run = vcpu->run; 2106 struct vcpu_svm *svm = to_svm(vcpu); 2107 2108 /* 2109 * The VM save area has already been encrypted so it 2110 * cannot be reinitialized - just terminate. 2111 */ 2112 if (sev_es_guest(vcpu->kvm)) 2113 return -EINVAL; 2114 2115 /* 2116 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2117 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2118 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2119 * userspace. At a platform view, INIT is acceptable behavior as 2120 * there exist bare metal platforms that automatically INIT the CPU 2121 * in response to shutdown. 2122 */ 2123 clear_page(svm->vmcb); 2124 kvm_vcpu_reset(vcpu, true); 2125 2126 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2127 return 0; 2128 } 2129 2130 static int io_interception(struct kvm_vcpu *vcpu) 2131 { 2132 struct vcpu_svm *svm = to_svm(vcpu); 2133 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2134 int size, in, string; 2135 unsigned port; 2136 2137 ++vcpu->stat.io_exits; 2138 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2139 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2140 port = io_info >> 16; 2141 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2142 2143 if (string) { 2144 if (sev_es_guest(vcpu->kvm)) 2145 return sev_es_string_io(svm, size, port, in); 2146 else 2147 return kvm_emulate_instruction(vcpu, 0); 2148 } 2149 2150 svm->next_rip = svm->vmcb->control.exit_info_2; 2151 2152 return kvm_fast_pio(vcpu, size, port, in); 2153 } 2154 2155 static int nmi_interception(struct kvm_vcpu *vcpu) 2156 { 2157 return 1; 2158 } 2159 2160 static int smi_interception(struct kvm_vcpu *vcpu) 2161 { 2162 return 1; 2163 } 2164 2165 static int intr_interception(struct kvm_vcpu *vcpu) 2166 { 2167 ++vcpu->stat.irq_exits; 2168 return 1; 2169 } 2170 2171 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2172 { 2173 struct vcpu_svm *svm = to_svm(vcpu); 2174 struct vmcb *vmcb12; 2175 struct kvm_host_map map; 2176 int ret; 2177 2178 if (nested_svm_check_permissions(vcpu)) 2179 return 1; 2180 2181 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2182 if (ret) { 2183 if (ret == -EINVAL) 2184 kvm_inject_gp(vcpu, 0); 2185 return 1; 2186 } 2187 2188 vmcb12 = map.hva; 2189 2190 ret = kvm_skip_emulated_instruction(vcpu); 2191 2192 if (vmload) { 2193 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2194 svm->sysenter_eip_hi = 0; 2195 svm->sysenter_esp_hi = 0; 2196 } else { 2197 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2198 } 2199 2200 kvm_vcpu_unmap(vcpu, &map, true); 2201 2202 return ret; 2203 } 2204 2205 static int vmload_interception(struct kvm_vcpu *vcpu) 2206 { 2207 return vmload_vmsave_interception(vcpu, true); 2208 } 2209 2210 static int vmsave_interception(struct kvm_vcpu *vcpu) 2211 { 2212 return vmload_vmsave_interception(vcpu, false); 2213 } 2214 2215 static int vmrun_interception(struct kvm_vcpu *vcpu) 2216 { 2217 if (nested_svm_check_permissions(vcpu)) 2218 return 1; 2219 2220 return nested_svm_vmrun(vcpu); 2221 } 2222 2223 enum { 2224 NONE_SVM_INSTR, 2225 SVM_INSTR_VMRUN, 2226 SVM_INSTR_VMLOAD, 2227 SVM_INSTR_VMSAVE, 2228 }; 2229 2230 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2231 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2232 { 2233 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2234 2235 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2236 return NONE_SVM_INSTR; 2237 2238 switch (ctxt->modrm) { 2239 case 0xd8: /* VMRUN */ 2240 return SVM_INSTR_VMRUN; 2241 case 0xda: /* VMLOAD */ 2242 return SVM_INSTR_VMLOAD; 2243 case 0xdb: /* VMSAVE */ 2244 return SVM_INSTR_VMSAVE; 2245 default: 2246 break; 2247 } 2248 2249 return NONE_SVM_INSTR; 2250 } 2251 2252 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2253 { 2254 const int guest_mode_exit_codes[] = { 2255 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2256 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2257 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2258 }; 2259 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2260 [SVM_INSTR_VMRUN] = vmrun_interception, 2261 [SVM_INSTR_VMLOAD] = vmload_interception, 2262 [SVM_INSTR_VMSAVE] = vmsave_interception, 2263 }; 2264 struct vcpu_svm *svm = to_svm(vcpu); 2265 int ret; 2266 2267 if (is_guest_mode(vcpu)) { 2268 /* Returns '1' or -errno on failure, '0' on success. */ 2269 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2270 if (ret) 2271 return ret; 2272 return 1; 2273 } 2274 return svm_instr_handlers[opcode](vcpu); 2275 } 2276 2277 /* 2278 * #GP handling code. Note that #GP can be triggered under the following two 2279 * cases: 2280 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2281 * some AMD CPUs when EAX of these instructions are in the reserved memory 2282 * regions (e.g. SMM memory on host). 2283 * 2) VMware backdoor 2284 */ 2285 static int gp_interception(struct kvm_vcpu *vcpu) 2286 { 2287 struct vcpu_svm *svm = to_svm(vcpu); 2288 u32 error_code = svm->vmcb->control.exit_info_1; 2289 int opcode; 2290 2291 /* Both #GP cases have zero error_code */ 2292 if (error_code) 2293 goto reinject; 2294 2295 /* All SVM instructions expect page aligned RAX */ 2296 if (svm->vmcb->save.rax & ~PAGE_MASK) 2297 goto reinject; 2298 2299 /* Decode the instruction for usage later */ 2300 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2301 goto reinject; 2302 2303 opcode = svm_instr_opcode(vcpu); 2304 2305 if (opcode == NONE_SVM_INSTR) { 2306 if (!enable_vmware_backdoor) 2307 goto reinject; 2308 2309 /* 2310 * VMware backdoor emulation on #GP interception only handles 2311 * IN{S}, OUT{S}, and RDPMC. 2312 */ 2313 if (!is_guest_mode(vcpu)) 2314 return kvm_emulate_instruction(vcpu, 2315 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2316 } else 2317 return emulate_svm_instr(vcpu, opcode); 2318 2319 reinject: 2320 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2321 return 1; 2322 } 2323 2324 void svm_set_gif(struct vcpu_svm *svm, bool value) 2325 { 2326 if (value) { 2327 /* 2328 * If VGIF is enabled, the STGI intercept is only added to 2329 * detect the opening of the SMI/NMI window; remove it now. 2330 * Likewise, clear the VINTR intercept, we will set it 2331 * again while processing KVM_REQ_EVENT if needed. 2332 */ 2333 if (vgif_enabled(svm)) 2334 svm_clr_intercept(svm, INTERCEPT_STGI); 2335 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2336 svm_clear_vintr(svm); 2337 2338 enable_gif(svm); 2339 if (svm->vcpu.arch.smi_pending || 2340 svm->vcpu.arch.nmi_pending || 2341 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2342 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2343 } else { 2344 disable_gif(svm); 2345 2346 /* 2347 * After a CLGI no interrupts should come. But if vGIF is 2348 * in use, we still rely on the VINTR intercept (rather than 2349 * STGI) to detect an open interrupt window. 2350 */ 2351 if (!vgif_enabled(svm)) 2352 svm_clear_vintr(svm); 2353 } 2354 } 2355 2356 static int stgi_interception(struct kvm_vcpu *vcpu) 2357 { 2358 int ret; 2359 2360 if (nested_svm_check_permissions(vcpu)) 2361 return 1; 2362 2363 ret = kvm_skip_emulated_instruction(vcpu); 2364 svm_set_gif(to_svm(vcpu), true); 2365 return ret; 2366 } 2367 2368 static int clgi_interception(struct kvm_vcpu *vcpu) 2369 { 2370 int ret; 2371 2372 if (nested_svm_check_permissions(vcpu)) 2373 return 1; 2374 2375 ret = kvm_skip_emulated_instruction(vcpu); 2376 svm_set_gif(to_svm(vcpu), false); 2377 return ret; 2378 } 2379 2380 static int invlpga_interception(struct kvm_vcpu *vcpu) 2381 { 2382 gva_t gva = kvm_rax_read(vcpu); 2383 u32 asid = kvm_rcx_read(vcpu); 2384 2385 /* FIXME: Handle an address size prefix. */ 2386 if (!is_long_mode(vcpu)) 2387 gva = (u32)gva; 2388 2389 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2390 2391 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2392 kvm_mmu_invlpg(vcpu, gva); 2393 2394 return kvm_skip_emulated_instruction(vcpu); 2395 } 2396 2397 static int skinit_interception(struct kvm_vcpu *vcpu) 2398 { 2399 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2400 2401 kvm_queue_exception(vcpu, UD_VECTOR); 2402 return 1; 2403 } 2404 2405 static int task_switch_interception(struct kvm_vcpu *vcpu) 2406 { 2407 struct vcpu_svm *svm = to_svm(vcpu); 2408 u16 tss_selector; 2409 int reason; 2410 int int_type = svm->vmcb->control.exit_int_info & 2411 SVM_EXITINTINFO_TYPE_MASK; 2412 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2413 uint32_t type = 2414 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2415 uint32_t idt_v = 2416 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2417 bool has_error_code = false; 2418 u32 error_code = 0; 2419 2420 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2421 2422 if (svm->vmcb->control.exit_info_2 & 2423 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2424 reason = TASK_SWITCH_IRET; 2425 else if (svm->vmcb->control.exit_info_2 & 2426 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2427 reason = TASK_SWITCH_JMP; 2428 else if (idt_v) 2429 reason = TASK_SWITCH_GATE; 2430 else 2431 reason = TASK_SWITCH_CALL; 2432 2433 if (reason == TASK_SWITCH_GATE) { 2434 switch (type) { 2435 case SVM_EXITINTINFO_TYPE_NMI: 2436 vcpu->arch.nmi_injected = false; 2437 break; 2438 case SVM_EXITINTINFO_TYPE_EXEPT: 2439 if (svm->vmcb->control.exit_info_2 & 2440 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2441 has_error_code = true; 2442 error_code = 2443 (u32)svm->vmcb->control.exit_info_2; 2444 } 2445 kvm_clear_exception_queue(vcpu); 2446 break; 2447 case SVM_EXITINTINFO_TYPE_INTR: 2448 kvm_clear_interrupt_queue(vcpu); 2449 break; 2450 default: 2451 break; 2452 } 2453 } 2454 2455 if (reason != TASK_SWITCH_GATE || 2456 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2457 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2458 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2459 if (!skip_emulated_instruction(vcpu)) 2460 return 0; 2461 } 2462 2463 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2464 int_vec = -1; 2465 2466 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2467 has_error_code, error_code); 2468 } 2469 2470 static int iret_interception(struct kvm_vcpu *vcpu) 2471 { 2472 struct vcpu_svm *svm = to_svm(vcpu); 2473 2474 ++vcpu->stat.nmi_window_exits; 2475 vcpu->arch.hflags |= HF_IRET_MASK; 2476 if (!sev_es_guest(vcpu->kvm)) { 2477 svm_clr_intercept(svm, INTERCEPT_IRET); 2478 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2479 } 2480 kvm_make_request(KVM_REQ_EVENT, vcpu); 2481 return 1; 2482 } 2483 2484 static int invlpg_interception(struct kvm_vcpu *vcpu) 2485 { 2486 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2487 return kvm_emulate_instruction(vcpu, 0); 2488 2489 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2490 return kvm_skip_emulated_instruction(vcpu); 2491 } 2492 2493 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2494 { 2495 return kvm_emulate_instruction(vcpu, 0); 2496 } 2497 2498 static int rsm_interception(struct kvm_vcpu *vcpu) 2499 { 2500 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2501 } 2502 2503 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2504 unsigned long val) 2505 { 2506 struct vcpu_svm *svm = to_svm(vcpu); 2507 unsigned long cr0 = vcpu->arch.cr0; 2508 bool ret = false; 2509 2510 if (!is_guest_mode(vcpu) || 2511 (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2512 return false; 2513 2514 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2515 val &= ~SVM_CR0_SELECTIVE_MASK; 2516 2517 if (cr0 ^ val) { 2518 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2519 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2520 } 2521 2522 return ret; 2523 } 2524 2525 #define CR_VALID (1ULL << 63) 2526 2527 static int cr_interception(struct kvm_vcpu *vcpu) 2528 { 2529 struct vcpu_svm *svm = to_svm(vcpu); 2530 int reg, cr; 2531 unsigned long val; 2532 int err; 2533 2534 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2535 return emulate_on_interception(vcpu); 2536 2537 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2538 return emulate_on_interception(vcpu); 2539 2540 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2541 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2542 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2543 else 2544 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2545 2546 err = 0; 2547 if (cr >= 16) { /* mov to cr */ 2548 cr -= 16; 2549 val = kvm_register_read(vcpu, reg); 2550 trace_kvm_cr_write(cr, val); 2551 switch (cr) { 2552 case 0: 2553 if (!check_selective_cr0_intercepted(vcpu, val)) 2554 err = kvm_set_cr0(vcpu, val); 2555 else 2556 return 1; 2557 2558 break; 2559 case 3: 2560 err = kvm_set_cr3(vcpu, val); 2561 break; 2562 case 4: 2563 err = kvm_set_cr4(vcpu, val); 2564 break; 2565 case 8: 2566 err = kvm_set_cr8(vcpu, val); 2567 break; 2568 default: 2569 WARN(1, "unhandled write to CR%d", cr); 2570 kvm_queue_exception(vcpu, UD_VECTOR); 2571 return 1; 2572 } 2573 } else { /* mov from cr */ 2574 switch (cr) { 2575 case 0: 2576 val = kvm_read_cr0(vcpu); 2577 break; 2578 case 2: 2579 val = vcpu->arch.cr2; 2580 break; 2581 case 3: 2582 val = kvm_read_cr3(vcpu); 2583 break; 2584 case 4: 2585 val = kvm_read_cr4(vcpu); 2586 break; 2587 case 8: 2588 val = kvm_get_cr8(vcpu); 2589 break; 2590 default: 2591 WARN(1, "unhandled read from CR%d", cr); 2592 kvm_queue_exception(vcpu, UD_VECTOR); 2593 return 1; 2594 } 2595 kvm_register_write(vcpu, reg, val); 2596 trace_kvm_cr_read(cr, val); 2597 } 2598 return kvm_complete_insn_gp(vcpu, err); 2599 } 2600 2601 static int cr_trap(struct kvm_vcpu *vcpu) 2602 { 2603 struct vcpu_svm *svm = to_svm(vcpu); 2604 unsigned long old_value, new_value; 2605 unsigned int cr; 2606 int ret = 0; 2607 2608 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2609 2610 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2611 switch (cr) { 2612 case 0: 2613 old_value = kvm_read_cr0(vcpu); 2614 svm_set_cr0(vcpu, new_value); 2615 2616 kvm_post_set_cr0(vcpu, old_value, new_value); 2617 break; 2618 case 4: 2619 old_value = kvm_read_cr4(vcpu); 2620 svm_set_cr4(vcpu, new_value); 2621 2622 kvm_post_set_cr4(vcpu, old_value, new_value); 2623 break; 2624 case 8: 2625 ret = kvm_set_cr8(vcpu, new_value); 2626 break; 2627 default: 2628 WARN(1, "unhandled CR%d write trap", cr); 2629 kvm_queue_exception(vcpu, UD_VECTOR); 2630 return 1; 2631 } 2632 2633 return kvm_complete_insn_gp(vcpu, ret); 2634 } 2635 2636 static int dr_interception(struct kvm_vcpu *vcpu) 2637 { 2638 struct vcpu_svm *svm = to_svm(vcpu); 2639 int reg, dr; 2640 unsigned long val; 2641 int err = 0; 2642 2643 if (vcpu->guest_debug == 0) { 2644 /* 2645 * No more DR vmexits; force a reload of the debug registers 2646 * and reenter on this instruction. The next vmexit will 2647 * retrieve the full state of the debug registers. 2648 */ 2649 clr_dr_intercepts(svm); 2650 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2651 return 1; 2652 } 2653 2654 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2655 return emulate_on_interception(vcpu); 2656 2657 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2658 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2659 if (dr >= 16) { /* mov to DRn */ 2660 dr -= 16; 2661 val = kvm_register_read(vcpu, reg); 2662 err = kvm_set_dr(vcpu, dr, val); 2663 } else { 2664 kvm_get_dr(vcpu, dr, &val); 2665 kvm_register_write(vcpu, reg, val); 2666 } 2667 2668 return kvm_complete_insn_gp(vcpu, err); 2669 } 2670 2671 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2672 { 2673 int r; 2674 2675 u8 cr8_prev = kvm_get_cr8(vcpu); 2676 /* instruction emulation calls kvm_set_cr8() */ 2677 r = cr_interception(vcpu); 2678 if (lapic_in_kernel(vcpu)) 2679 return r; 2680 if (cr8_prev <= kvm_get_cr8(vcpu)) 2681 return r; 2682 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2683 return 0; 2684 } 2685 2686 static int efer_trap(struct kvm_vcpu *vcpu) 2687 { 2688 struct msr_data msr_info; 2689 int ret; 2690 2691 /* 2692 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2693 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2694 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2695 * the guest doesn't have X86_FEATURE_SVM. 2696 */ 2697 msr_info.host_initiated = false; 2698 msr_info.index = MSR_EFER; 2699 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2700 ret = kvm_set_msr_common(vcpu, &msr_info); 2701 2702 return kvm_complete_insn_gp(vcpu, ret); 2703 } 2704 2705 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2706 { 2707 msr->data = 0; 2708 2709 switch (msr->index) { 2710 case MSR_F10H_DECFG: 2711 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2712 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2713 break; 2714 case MSR_IA32_PERF_CAPABILITIES: 2715 return 0; 2716 default: 2717 return KVM_MSR_RET_INVALID; 2718 } 2719 2720 return 0; 2721 } 2722 2723 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2724 { 2725 struct vcpu_svm *svm = to_svm(vcpu); 2726 2727 switch (msr_info->index) { 2728 case MSR_AMD64_TSC_RATIO: 2729 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled) 2730 return 1; 2731 msr_info->data = svm->tsc_ratio_msr; 2732 break; 2733 case MSR_STAR: 2734 msr_info->data = svm->vmcb01.ptr->save.star; 2735 break; 2736 #ifdef CONFIG_X86_64 2737 case MSR_LSTAR: 2738 msr_info->data = svm->vmcb01.ptr->save.lstar; 2739 break; 2740 case MSR_CSTAR: 2741 msr_info->data = svm->vmcb01.ptr->save.cstar; 2742 break; 2743 case MSR_KERNEL_GS_BASE: 2744 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2745 break; 2746 case MSR_SYSCALL_MASK: 2747 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2748 break; 2749 #endif 2750 case MSR_IA32_SYSENTER_CS: 2751 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2752 break; 2753 case MSR_IA32_SYSENTER_EIP: 2754 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2755 if (guest_cpuid_is_intel(vcpu)) 2756 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2757 break; 2758 case MSR_IA32_SYSENTER_ESP: 2759 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2760 if (guest_cpuid_is_intel(vcpu)) 2761 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2762 break; 2763 case MSR_TSC_AUX: 2764 msr_info->data = svm->tsc_aux; 2765 break; 2766 /* 2767 * Nobody will change the following 5 values in the VMCB so we can 2768 * safely return them on rdmsr. They will always be 0 until LBRV is 2769 * implemented. 2770 */ 2771 case MSR_IA32_DEBUGCTLMSR: 2772 msr_info->data = svm->vmcb->save.dbgctl; 2773 break; 2774 case MSR_IA32_LASTBRANCHFROMIP: 2775 msr_info->data = svm->vmcb->save.br_from; 2776 break; 2777 case MSR_IA32_LASTBRANCHTOIP: 2778 msr_info->data = svm->vmcb->save.br_to; 2779 break; 2780 case MSR_IA32_LASTINTFROMIP: 2781 msr_info->data = svm->vmcb->save.last_excp_from; 2782 break; 2783 case MSR_IA32_LASTINTTOIP: 2784 msr_info->data = svm->vmcb->save.last_excp_to; 2785 break; 2786 case MSR_VM_HSAVE_PA: 2787 msr_info->data = svm->nested.hsave_msr; 2788 break; 2789 case MSR_VM_CR: 2790 msr_info->data = svm->nested.vm_cr_msr; 2791 break; 2792 case MSR_IA32_SPEC_CTRL: 2793 if (!msr_info->host_initiated && 2794 !guest_has_spec_ctrl_msr(vcpu)) 2795 return 1; 2796 2797 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2798 msr_info->data = svm->vmcb->save.spec_ctrl; 2799 else 2800 msr_info->data = svm->spec_ctrl; 2801 break; 2802 case MSR_AMD64_VIRT_SPEC_CTRL: 2803 if (!msr_info->host_initiated && 2804 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2805 return 1; 2806 2807 msr_info->data = svm->virt_spec_ctrl; 2808 break; 2809 case MSR_F15H_IC_CFG: { 2810 2811 int family, model; 2812 2813 family = guest_cpuid_family(vcpu); 2814 model = guest_cpuid_model(vcpu); 2815 2816 if (family < 0 || model < 0) 2817 return kvm_get_msr_common(vcpu, msr_info); 2818 2819 msr_info->data = 0; 2820 2821 if (family == 0x15 && 2822 (model >= 0x2 && model < 0x20)) 2823 msr_info->data = 0x1E; 2824 } 2825 break; 2826 case MSR_F10H_DECFG: 2827 msr_info->data = svm->msr_decfg; 2828 break; 2829 default: 2830 return kvm_get_msr_common(vcpu, msr_info); 2831 } 2832 return 0; 2833 } 2834 2835 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2836 { 2837 struct vcpu_svm *svm = to_svm(vcpu); 2838 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2839 return kvm_complete_insn_gp(vcpu, err); 2840 2841 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2842 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2843 X86_TRAP_GP | 2844 SVM_EVTINJ_TYPE_EXEPT | 2845 SVM_EVTINJ_VALID); 2846 return 1; 2847 } 2848 2849 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2850 { 2851 struct vcpu_svm *svm = to_svm(vcpu); 2852 int svm_dis, chg_mask; 2853 2854 if (data & ~SVM_VM_CR_VALID_MASK) 2855 return 1; 2856 2857 chg_mask = SVM_VM_CR_VALID_MASK; 2858 2859 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2860 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2861 2862 svm->nested.vm_cr_msr &= ~chg_mask; 2863 svm->nested.vm_cr_msr |= (data & chg_mask); 2864 2865 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2866 2867 /* check for svm_disable while efer.svme is set */ 2868 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2869 return 1; 2870 2871 return 0; 2872 } 2873 2874 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2875 { 2876 struct vcpu_svm *svm = to_svm(vcpu); 2877 int r; 2878 2879 u32 ecx = msr->index; 2880 u64 data = msr->data; 2881 switch (ecx) { 2882 case MSR_AMD64_TSC_RATIO: 2883 if (!msr->host_initiated && !svm->tsc_scaling_enabled) 2884 return 1; 2885 2886 if (data & TSC_RATIO_RSVD) 2887 return 1; 2888 2889 svm->tsc_ratio_msr = data; 2890 2891 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu)) 2892 nested_svm_update_tsc_ratio_msr(vcpu); 2893 2894 break; 2895 case MSR_IA32_CR_PAT: 2896 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2897 return 1; 2898 vcpu->arch.pat = data; 2899 svm->vmcb01.ptr->save.g_pat = data; 2900 if (is_guest_mode(vcpu)) 2901 nested_vmcb02_compute_g_pat(svm); 2902 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2903 break; 2904 case MSR_IA32_SPEC_CTRL: 2905 if (!msr->host_initiated && 2906 !guest_has_spec_ctrl_msr(vcpu)) 2907 return 1; 2908 2909 if (kvm_spec_ctrl_test_value(data)) 2910 return 1; 2911 2912 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2913 svm->vmcb->save.spec_ctrl = data; 2914 else 2915 svm->spec_ctrl = data; 2916 if (!data) 2917 break; 2918 2919 /* 2920 * For non-nested: 2921 * When it's written (to non-zero) for the first time, pass 2922 * it through. 2923 * 2924 * For nested: 2925 * The handling of the MSR bitmap for L2 guests is done in 2926 * nested_svm_vmrun_msrpm. 2927 * We update the L1 MSR bit as well since it will end up 2928 * touching the MSR anyway now. 2929 */ 2930 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2931 break; 2932 case MSR_IA32_PRED_CMD: 2933 if (!msr->host_initiated && 2934 !guest_has_pred_cmd_msr(vcpu)) 2935 return 1; 2936 2937 if (data & ~PRED_CMD_IBPB) 2938 return 1; 2939 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2940 return 1; 2941 if (!data) 2942 break; 2943 2944 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2945 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2946 break; 2947 case MSR_AMD64_VIRT_SPEC_CTRL: 2948 if (!msr->host_initiated && 2949 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2950 return 1; 2951 2952 if (data & ~SPEC_CTRL_SSBD) 2953 return 1; 2954 2955 svm->virt_spec_ctrl = data; 2956 break; 2957 case MSR_STAR: 2958 svm->vmcb01.ptr->save.star = data; 2959 break; 2960 #ifdef CONFIG_X86_64 2961 case MSR_LSTAR: 2962 svm->vmcb01.ptr->save.lstar = data; 2963 break; 2964 case MSR_CSTAR: 2965 svm->vmcb01.ptr->save.cstar = data; 2966 break; 2967 case MSR_KERNEL_GS_BASE: 2968 svm->vmcb01.ptr->save.kernel_gs_base = data; 2969 break; 2970 case MSR_SYSCALL_MASK: 2971 svm->vmcb01.ptr->save.sfmask = data; 2972 break; 2973 #endif 2974 case MSR_IA32_SYSENTER_CS: 2975 svm->vmcb01.ptr->save.sysenter_cs = data; 2976 break; 2977 case MSR_IA32_SYSENTER_EIP: 2978 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2979 /* 2980 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2981 * when we spoof an Intel vendor ID (for cross vendor migration). 2982 * In this case we use this intercept to track the high 2983 * 32 bit part of these msrs to support Intel's 2984 * implementation of SYSENTER/SYSEXIT. 2985 */ 2986 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2987 break; 2988 case MSR_IA32_SYSENTER_ESP: 2989 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 2990 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2991 break; 2992 case MSR_TSC_AUX: 2993 /* 2994 * TSC_AUX is usually changed only during boot and never read 2995 * directly. Intercept TSC_AUX instead of exposing it to the 2996 * guest via direct_access_msrs, and switch it via user return. 2997 */ 2998 preempt_disable(); 2999 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3000 preempt_enable(); 3001 if (r) 3002 return 1; 3003 3004 svm->tsc_aux = data; 3005 break; 3006 case MSR_IA32_DEBUGCTLMSR: 3007 if (!lbrv) { 3008 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 3009 __func__, data); 3010 break; 3011 } 3012 if (data & DEBUGCTL_RESERVED_BITS) 3013 return 1; 3014 3015 svm->vmcb->save.dbgctl = data; 3016 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 3017 if (data & (1ULL<<0)) 3018 svm_enable_lbrv(vcpu); 3019 else 3020 svm_disable_lbrv(vcpu); 3021 break; 3022 case MSR_VM_HSAVE_PA: 3023 /* 3024 * Old kernels did not validate the value written to 3025 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3026 * value to allow live migrating buggy or malicious guests 3027 * originating from those kernels. 3028 */ 3029 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3030 return 1; 3031 3032 svm->nested.hsave_msr = data & PAGE_MASK; 3033 break; 3034 case MSR_VM_CR: 3035 return svm_set_vm_cr(vcpu, data); 3036 case MSR_VM_IGNNE: 3037 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 3038 break; 3039 case MSR_F10H_DECFG: { 3040 struct kvm_msr_entry msr_entry; 3041 3042 msr_entry.index = msr->index; 3043 if (svm_get_msr_feature(&msr_entry)) 3044 return 1; 3045 3046 /* Check the supported bits */ 3047 if (data & ~msr_entry.data) 3048 return 1; 3049 3050 /* Don't allow the guest to change a bit, #GP */ 3051 if (!msr->host_initiated && (data ^ msr_entry.data)) 3052 return 1; 3053 3054 svm->msr_decfg = data; 3055 break; 3056 } 3057 default: 3058 return kvm_set_msr_common(vcpu, msr); 3059 } 3060 return 0; 3061 } 3062 3063 static int msr_interception(struct kvm_vcpu *vcpu) 3064 { 3065 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3066 return kvm_emulate_wrmsr(vcpu); 3067 else 3068 return kvm_emulate_rdmsr(vcpu); 3069 } 3070 3071 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3072 { 3073 kvm_make_request(KVM_REQ_EVENT, vcpu); 3074 svm_clear_vintr(to_svm(vcpu)); 3075 3076 /* 3077 * For AVIC, the only reason to end up here is ExtINTs. 3078 * In this case AVIC was temporarily disabled for 3079 * requesting the IRQ window and we have to re-enable it. 3080 */ 3081 kvm_request_apicv_update(vcpu->kvm, true, APICV_INHIBIT_REASON_IRQWIN); 3082 3083 ++vcpu->stat.irq_window_exits; 3084 return 1; 3085 } 3086 3087 static int pause_interception(struct kvm_vcpu *vcpu) 3088 { 3089 bool in_kernel; 3090 3091 /* 3092 * CPL is not made available for an SEV-ES guest, therefore 3093 * vcpu->arch.preempted_in_kernel can never be true. Just 3094 * set in_kernel to false as well. 3095 */ 3096 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3097 3098 if (!kvm_pause_in_guest(vcpu->kvm)) 3099 grow_ple_window(vcpu); 3100 3101 kvm_vcpu_on_spin(vcpu, in_kernel); 3102 return kvm_skip_emulated_instruction(vcpu); 3103 } 3104 3105 static int invpcid_interception(struct kvm_vcpu *vcpu) 3106 { 3107 struct vcpu_svm *svm = to_svm(vcpu); 3108 unsigned long type; 3109 gva_t gva; 3110 3111 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3112 kvm_queue_exception(vcpu, UD_VECTOR); 3113 return 1; 3114 } 3115 3116 /* 3117 * For an INVPCID intercept: 3118 * EXITINFO1 provides the linear address of the memory operand. 3119 * EXITINFO2 provides the contents of the register operand. 3120 */ 3121 type = svm->vmcb->control.exit_info_2; 3122 gva = svm->vmcb->control.exit_info_1; 3123 3124 return kvm_handle_invpcid(vcpu, type, gva); 3125 } 3126 3127 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3128 [SVM_EXIT_READ_CR0] = cr_interception, 3129 [SVM_EXIT_READ_CR3] = cr_interception, 3130 [SVM_EXIT_READ_CR4] = cr_interception, 3131 [SVM_EXIT_READ_CR8] = cr_interception, 3132 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3133 [SVM_EXIT_WRITE_CR0] = cr_interception, 3134 [SVM_EXIT_WRITE_CR3] = cr_interception, 3135 [SVM_EXIT_WRITE_CR4] = cr_interception, 3136 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3137 [SVM_EXIT_READ_DR0] = dr_interception, 3138 [SVM_EXIT_READ_DR1] = dr_interception, 3139 [SVM_EXIT_READ_DR2] = dr_interception, 3140 [SVM_EXIT_READ_DR3] = dr_interception, 3141 [SVM_EXIT_READ_DR4] = dr_interception, 3142 [SVM_EXIT_READ_DR5] = dr_interception, 3143 [SVM_EXIT_READ_DR6] = dr_interception, 3144 [SVM_EXIT_READ_DR7] = dr_interception, 3145 [SVM_EXIT_WRITE_DR0] = dr_interception, 3146 [SVM_EXIT_WRITE_DR1] = dr_interception, 3147 [SVM_EXIT_WRITE_DR2] = dr_interception, 3148 [SVM_EXIT_WRITE_DR3] = dr_interception, 3149 [SVM_EXIT_WRITE_DR4] = dr_interception, 3150 [SVM_EXIT_WRITE_DR5] = dr_interception, 3151 [SVM_EXIT_WRITE_DR6] = dr_interception, 3152 [SVM_EXIT_WRITE_DR7] = dr_interception, 3153 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3154 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3155 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3156 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3157 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3158 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3159 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3160 [SVM_EXIT_INTR] = intr_interception, 3161 [SVM_EXIT_NMI] = nmi_interception, 3162 [SVM_EXIT_SMI] = smi_interception, 3163 [SVM_EXIT_VINTR] = interrupt_window_interception, 3164 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3165 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3166 [SVM_EXIT_IRET] = iret_interception, 3167 [SVM_EXIT_INVD] = kvm_emulate_invd, 3168 [SVM_EXIT_PAUSE] = pause_interception, 3169 [SVM_EXIT_HLT] = kvm_emulate_halt, 3170 [SVM_EXIT_INVLPG] = invlpg_interception, 3171 [SVM_EXIT_INVLPGA] = invlpga_interception, 3172 [SVM_EXIT_IOIO] = io_interception, 3173 [SVM_EXIT_MSR] = msr_interception, 3174 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3175 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3176 [SVM_EXIT_VMRUN] = vmrun_interception, 3177 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3178 [SVM_EXIT_VMLOAD] = vmload_interception, 3179 [SVM_EXIT_VMSAVE] = vmsave_interception, 3180 [SVM_EXIT_STGI] = stgi_interception, 3181 [SVM_EXIT_CLGI] = clgi_interception, 3182 [SVM_EXIT_SKINIT] = skinit_interception, 3183 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3184 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3185 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3186 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3187 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3188 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3189 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3190 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3191 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3192 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3193 [SVM_EXIT_INVPCID] = invpcid_interception, 3194 [SVM_EXIT_NPF] = npf_interception, 3195 [SVM_EXIT_RSM] = rsm_interception, 3196 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3197 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3198 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3199 }; 3200 3201 static void dump_vmcb(struct kvm_vcpu *vcpu) 3202 { 3203 struct vcpu_svm *svm = to_svm(vcpu); 3204 struct vmcb_control_area *control = &svm->vmcb->control; 3205 struct vmcb_save_area *save = &svm->vmcb->save; 3206 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3207 3208 if (!dump_invalid_vmcb) { 3209 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3210 return; 3211 } 3212 3213 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3214 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3215 pr_err("VMCB Control Area:\n"); 3216 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3217 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3218 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3219 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3220 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3221 pr_err("%-20s%08x %08x\n", "intercepts:", 3222 control->intercepts[INTERCEPT_WORD3], 3223 control->intercepts[INTERCEPT_WORD4]); 3224 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3225 pr_err("%-20s%d\n", "pause filter threshold:", 3226 control->pause_filter_thresh); 3227 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3228 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3229 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3230 pr_err("%-20s%d\n", "asid:", control->asid); 3231 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3232 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3233 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3234 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3235 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3236 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3237 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3238 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3239 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3240 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3241 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3242 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3243 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3244 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3245 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3246 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3247 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3248 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3249 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3250 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3251 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3252 pr_err("VMCB State Save Area:\n"); 3253 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3254 "es:", 3255 save->es.selector, save->es.attrib, 3256 save->es.limit, save->es.base); 3257 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3258 "cs:", 3259 save->cs.selector, save->cs.attrib, 3260 save->cs.limit, save->cs.base); 3261 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3262 "ss:", 3263 save->ss.selector, save->ss.attrib, 3264 save->ss.limit, save->ss.base); 3265 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3266 "ds:", 3267 save->ds.selector, save->ds.attrib, 3268 save->ds.limit, save->ds.base); 3269 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3270 "fs:", 3271 save01->fs.selector, save01->fs.attrib, 3272 save01->fs.limit, save01->fs.base); 3273 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3274 "gs:", 3275 save01->gs.selector, save01->gs.attrib, 3276 save01->gs.limit, save01->gs.base); 3277 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3278 "gdtr:", 3279 save->gdtr.selector, save->gdtr.attrib, 3280 save->gdtr.limit, save->gdtr.base); 3281 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3282 "ldtr:", 3283 save01->ldtr.selector, save01->ldtr.attrib, 3284 save01->ldtr.limit, save01->ldtr.base); 3285 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3286 "idtr:", 3287 save->idtr.selector, save->idtr.attrib, 3288 save->idtr.limit, save->idtr.base); 3289 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3290 "tr:", 3291 save01->tr.selector, save01->tr.attrib, 3292 save01->tr.limit, save01->tr.base); 3293 pr_err("cpl: %d efer: %016llx\n", 3294 save->cpl, save->efer); 3295 pr_err("%-15s %016llx %-13s %016llx\n", 3296 "cr0:", save->cr0, "cr2:", save->cr2); 3297 pr_err("%-15s %016llx %-13s %016llx\n", 3298 "cr3:", save->cr3, "cr4:", save->cr4); 3299 pr_err("%-15s %016llx %-13s %016llx\n", 3300 "dr6:", save->dr6, "dr7:", save->dr7); 3301 pr_err("%-15s %016llx %-13s %016llx\n", 3302 "rip:", save->rip, "rflags:", save->rflags); 3303 pr_err("%-15s %016llx %-13s %016llx\n", 3304 "rsp:", save->rsp, "rax:", save->rax); 3305 pr_err("%-15s %016llx %-13s %016llx\n", 3306 "star:", save01->star, "lstar:", save01->lstar); 3307 pr_err("%-15s %016llx %-13s %016llx\n", 3308 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3309 pr_err("%-15s %016llx %-13s %016llx\n", 3310 "kernel_gs_base:", save01->kernel_gs_base, 3311 "sysenter_cs:", save01->sysenter_cs); 3312 pr_err("%-15s %016llx %-13s %016llx\n", 3313 "sysenter_esp:", save01->sysenter_esp, 3314 "sysenter_eip:", save01->sysenter_eip); 3315 pr_err("%-15s %016llx %-13s %016llx\n", 3316 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3317 pr_err("%-15s %016llx %-13s %016llx\n", 3318 "br_from:", save->br_from, "br_to:", save->br_to); 3319 pr_err("%-15s %016llx %-13s %016llx\n", 3320 "excp_from:", save->last_excp_from, 3321 "excp_to:", save->last_excp_to); 3322 } 3323 3324 static bool svm_check_exit_valid(struct kvm_vcpu *vcpu, u64 exit_code) 3325 { 3326 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3327 svm_exit_handlers[exit_code]); 3328 } 3329 3330 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3331 { 3332 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3333 dump_vmcb(vcpu); 3334 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3335 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3336 vcpu->run->internal.ndata = 2; 3337 vcpu->run->internal.data[0] = exit_code; 3338 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3339 return 0; 3340 } 3341 3342 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3343 { 3344 if (!svm_check_exit_valid(vcpu, exit_code)) 3345 return svm_handle_invalid_exit(vcpu, exit_code); 3346 3347 #ifdef CONFIG_RETPOLINE 3348 if (exit_code == SVM_EXIT_MSR) 3349 return msr_interception(vcpu); 3350 else if (exit_code == SVM_EXIT_VINTR) 3351 return interrupt_window_interception(vcpu); 3352 else if (exit_code == SVM_EXIT_INTR) 3353 return intr_interception(vcpu); 3354 else if (exit_code == SVM_EXIT_HLT) 3355 return kvm_emulate_halt(vcpu); 3356 else if (exit_code == SVM_EXIT_NPF) 3357 return npf_interception(vcpu); 3358 #endif 3359 return svm_exit_handlers[exit_code](vcpu); 3360 } 3361 3362 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3363 u64 *info1, u64 *info2, 3364 u32 *intr_info, u32 *error_code) 3365 { 3366 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3367 3368 *reason = control->exit_code; 3369 *info1 = control->exit_info_1; 3370 *info2 = control->exit_info_2; 3371 *intr_info = control->exit_int_info; 3372 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3373 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3374 *error_code = control->exit_int_info_err; 3375 else 3376 *error_code = 0; 3377 } 3378 3379 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3380 { 3381 struct vcpu_svm *svm = to_svm(vcpu); 3382 struct kvm_run *kvm_run = vcpu->run; 3383 u32 exit_code = svm->vmcb->control.exit_code; 3384 3385 trace_kvm_exit(vcpu, KVM_ISA_SVM); 3386 3387 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3388 if (!sev_es_guest(vcpu->kvm)) { 3389 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3390 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3391 if (npt_enabled) 3392 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3393 } 3394 3395 if (is_guest_mode(vcpu)) { 3396 int vmexit; 3397 3398 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3399 3400 vmexit = nested_svm_exit_special(svm); 3401 3402 if (vmexit == NESTED_EXIT_CONTINUE) 3403 vmexit = nested_svm_exit_handled(svm); 3404 3405 if (vmexit == NESTED_EXIT_DONE) 3406 return 1; 3407 } 3408 3409 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3410 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3411 kvm_run->fail_entry.hardware_entry_failure_reason 3412 = svm->vmcb->control.exit_code; 3413 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3414 dump_vmcb(vcpu); 3415 return 0; 3416 } 3417 3418 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3419 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3420 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3421 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3422 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3423 "exit_code 0x%x\n", 3424 __func__, svm->vmcb->control.exit_int_info, 3425 exit_code); 3426 3427 if (exit_fastpath != EXIT_FASTPATH_NONE) 3428 return 1; 3429 3430 return svm_invoke_exit_handler(vcpu, exit_code); 3431 } 3432 3433 static void reload_tss(struct kvm_vcpu *vcpu) 3434 { 3435 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3436 3437 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3438 load_TR_desc(); 3439 } 3440 3441 static void pre_svm_run(struct kvm_vcpu *vcpu) 3442 { 3443 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3444 struct vcpu_svm *svm = to_svm(vcpu); 3445 3446 /* 3447 * If the previous vmrun of the vmcb occurred on a different physical 3448 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3449 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3450 */ 3451 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3452 svm->current_vmcb->asid_generation = 0; 3453 vmcb_mark_all_dirty(svm->vmcb); 3454 svm->current_vmcb->cpu = vcpu->cpu; 3455 } 3456 3457 if (sev_guest(vcpu->kvm)) 3458 return pre_sev_run(svm, vcpu->cpu); 3459 3460 /* FIXME: handle wraparound of asid_generation */ 3461 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3462 new_asid(svm, sd); 3463 } 3464 3465 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3466 { 3467 struct vcpu_svm *svm = to_svm(vcpu); 3468 3469 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3470 vcpu->arch.hflags |= HF_NMI_MASK; 3471 if (!sev_es_guest(vcpu->kvm)) 3472 svm_set_intercept(svm, INTERCEPT_IRET); 3473 ++vcpu->stat.nmi_injections; 3474 } 3475 3476 static void svm_set_irq(struct kvm_vcpu *vcpu) 3477 { 3478 struct vcpu_svm *svm = to_svm(vcpu); 3479 3480 BUG_ON(!(gif_set(svm))); 3481 3482 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3483 ++vcpu->stat.irq_injections; 3484 3485 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3486 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3487 } 3488 3489 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3490 { 3491 struct vcpu_svm *svm = to_svm(vcpu); 3492 3493 /* 3494 * SEV-ES guests must always keep the CR intercepts cleared. CR 3495 * tracking is done using the CR write traps. 3496 */ 3497 if (sev_es_guest(vcpu->kvm)) 3498 return; 3499 3500 if (nested_svm_virtualize_tpr(vcpu)) 3501 return; 3502 3503 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3504 3505 if (irr == -1) 3506 return; 3507 3508 if (tpr >= irr) 3509 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3510 } 3511 3512 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3513 { 3514 struct vcpu_svm *svm = to_svm(vcpu); 3515 struct vmcb *vmcb = svm->vmcb; 3516 bool ret; 3517 3518 if (!gif_set(svm)) 3519 return true; 3520 3521 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3522 return false; 3523 3524 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3525 (vcpu->arch.hflags & HF_NMI_MASK); 3526 3527 return ret; 3528 } 3529 3530 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3531 { 3532 struct vcpu_svm *svm = to_svm(vcpu); 3533 if (svm->nested.nested_run_pending) 3534 return -EBUSY; 3535 3536 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3537 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3538 return -EBUSY; 3539 3540 return !svm_nmi_blocked(vcpu); 3541 } 3542 3543 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3544 { 3545 return !!(vcpu->arch.hflags & HF_NMI_MASK); 3546 } 3547 3548 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3549 { 3550 struct vcpu_svm *svm = to_svm(vcpu); 3551 3552 if (masked) { 3553 vcpu->arch.hflags |= HF_NMI_MASK; 3554 if (!sev_es_guest(vcpu->kvm)) 3555 svm_set_intercept(svm, INTERCEPT_IRET); 3556 } else { 3557 vcpu->arch.hflags &= ~HF_NMI_MASK; 3558 if (!sev_es_guest(vcpu->kvm)) 3559 svm_clr_intercept(svm, INTERCEPT_IRET); 3560 } 3561 } 3562 3563 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3564 { 3565 struct vcpu_svm *svm = to_svm(vcpu); 3566 struct vmcb *vmcb = svm->vmcb; 3567 3568 if (!gif_set(svm)) 3569 return true; 3570 3571 if (sev_es_guest(vcpu->kvm)) { 3572 /* 3573 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask 3574 * bit to determine the state of the IF flag. 3575 */ 3576 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK)) 3577 return true; 3578 } else if (is_guest_mode(vcpu)) { 3579 /* As long as interrupts are being delivered... */ 3580 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3581 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3582 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3583 return true; 3584 3585 /* ... vmexits aren't blocked by the interrupt shadow */ 3586 if (nested_exit_on_intr(svm)) 3587 return false; 3588 } else { 3589 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3590 return true; 3591 } 3592 3593 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3594 } 3595 3596 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3597 { 3598 struct vcpu_svm *svm = to_svm(vcpu); 3599 if (svm->nested.nested_run_pending) 3600 return -EBUSY; 3601 3602 /* 3603 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3604 * e.g. if the IRQ arrived asynchronously after checking nested events. 3605 */ 3606 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3607 return -EBUSY; 3608 3609 return !svm_interrupt_blocked(vcpu); 3610 } 3611 3612 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3613 { 3614 struct vcpu_svm *svm = to_svm(vcpu); 3615 3616 /* 3617 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3618 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3619 * get that intercept, this function will be called again though and 3620 * we'll get the vintr intercept. However, if the vGIF feature is 3621 * enabled, the STGI interception will not occur. Enable the irq 3622 * window under the assumption that the hardware will set the GIF. 3623 */ 3624 if (vgif_enabled(svm) || gif_set(svm)) { 3625 /* 3626 * IRQ window is not needed when AVIC is enabled, 3627 * unless we have pending ExtINT since it cannot be injected 3628 * via AVIC. In such case, we need to temporarily disable AVIC, 3629 * and fallback to injecting IRQ via V_IRQ. 3630 */ 3631 kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_IRQWIN); 3632 svm_set_vintr(svm); 3633 } 3634 } 3635 3636 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3637 { 3638 struct vcpu_svm *svm = to_svm(vcpu); 3639 3640 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) 3641 return; /* IRET will cause a vm exit */ 3642 3643 if (!gif_set(svm)) { 3644 if (vgif_enabled(svm)) 3645 svm_set_intercept(svm, INTERCEPT_STGI); 3646 return; /* STGI will cause a vm exit */ 3647 } 3648 3649 /* 3650 * Something prevents NMI from been injected. Single step over possible 3651 * problem (IRET or exception injection or interrupt shadow) 3652 */ 3653 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3654 svm->nmi_singlestep = true; 3655 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3656 } 3657 3658 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) 3659 { 3660 return 0; 3661 } 3662 3663 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 3664 { 3665 return 0; 3666 } 3667 3668 void svm_flush_tlb(struct kvm_vcpu *vcpu) 3669 { 3670 struct vcpu_svm *svm = to_svm(vcpu); 3671 3672 /* 3673 * Flush only the current ASID even if the TLB flush was invoked via 3674 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3675 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3676 * unconditionally does a TLB flush on both nested VM-Enter and nested 3677 * VM-Exit (via kvm_mmu_reset_context()). 3678 */ 3679 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3680 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3681 else 3682 svm->current_vmcb->asid_generation--; 3683 } 3684 3685 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3686 { 3687 struct vcpu_svm *svm = to_svm(vcpu); 3688 3689 invlpga(gva, svm->vmcb->control.asid); 3690 } 3691 3692 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3693 { 3694 struct vcpu_svm *svm = to_svm(vcpu); 3695 3696 if (nested_svm_virtualize_tpr(vcpu)) 3697 return; 3698 3699 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3700 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3701 kvm_set_cr8(vcpu, cr8); 3702 } 3703 } 3704 3705 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3706 { 3707 struct vcpu_svm *svm = to_svm(vcpu); 3708 u64 cr8; 3709 3710 if (nested_svm_virtualize_tpr(vcpu) || 3711 kvm_vcpu_apicv_active(vcpu)) 3712 return; 3713 3714 cr8 = kvm_get_cr8(vcpu); 3715 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3716 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3717 } 3718 3719 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3720 { 3721 struct vcpu_svm *svm = to_svm(vcpu); 3722 u8 vector; 3723 int type; 3724 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3725 unsigned int3_injected = svm->int3_injected; 3726 3727 svm->int3_injected = 0; 3728 3729 /* 3730 * If we've made progress since setting HF_IRET_MASK, we've 3731 * executed an IRET and can allow NMI injection. 3732 */ 3733 if ((vcpu->arch.hflags & HF_IRET_MASK) && 3734 (sev_es_guest(vcpu->kvm) || 3735 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { 3736 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3737 kvm_make_request(KVM_REQ_EVENT, vcpu); 3738 } 3739 3740 vcpu->arch.nmi_injected = false; 3741 kvm_clear_exception_queue(vcpu); 3742 kvm_clear_interrupt_queue(vcpu); 3743 3744 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3745 return; 3746 3747 kvm_make_request(KVM_REQ_EVENT, vcpu); 3748 3749 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3750 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3751 3752 switch (type) { 3753 case SVM_EXITINTINFO_TYPE_NMI: 3754 vcpu->arch.nmi_injected = true; 3755 break; 3756 case SVM_EXITINTINFO_TYPE_EXEPT: 3757 /* 3758 * Never re-inject a #VC exception. 3759 */ 3760 if (vector == X86_TRAP_VC) 3761 break; 3762 3763 /* 3764 * In case of software exceptions, do not reinject the vector, 3765 * but re-execute the instruction instead. Rewind RIP first 3766 * if we emulated INT3 before. 3767 */ 3768 if (kvm_exception_is_soft(vector)) { 3769 if (vector == BP_VECTOR && int3_injected && 3770 kvm_is_linear_rip(vcpu, svm->int3_rip)) 3771 kvm_rip_write(vcpu, 3772 kvm_rip_read(vcpu) - int3_injected); 3773 break; 3774 } 3775 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3776 u32 err = svm->vmcb->control.exit_int_info_err; 3777 kvm_requeue_exception_e(vcpu, vector, err); 3778 3779 } else 3780 kvm_requeue_exception(vcpu, vector); 3781 break; 3782 case SVM_EXITINTINFO_TYPE_INTR: 3783 kvm_queue_interrupt(vcpu, vector, false); 3784 break; 3785 default: 3786 break; 3787 } 3788 } 3789 3790 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3791 { 3792 struct vcpu_svm *svm = to_svm(vcpu); 3793 struct vmcb_control_area *control = &svm->vmcb->control; 3794 3795 control->exit_int_info = control->event_inj; 3796 control->exit_int_info_err = control->event_inj_err; 3797 control->event_inj = 0; 3798 svm_complete_interrupts(vcpu); 3799 } 3800 3801 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3802 { 3803 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3804 to_svm(vcpu)->vmcb->control.exit_info_1) 3805 return handle_fastpath_set_msr_irqoff(vcpu); 3806 3807 return EXIT_FASTPATH_NONE; 3808 } 3809 3810 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 3811 { 3812 struct vcpu_svm *svm = to_svm(vcpu); 3813 unsigned long vmcb_pa = svm->current_vmcb->pa; 3814 3815 kvm_guest_enter_irqoff(); 3816 3817 if (sev_es_guest(vcpu->kvm)) { 3818 __svm_sev_es_vcpu_run(vmcb_pa); 3819 } else { 3820 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3821 3822 /* 3823 * Use a single vmcb (vmcb01 because it's always valid) for 3824 * context switching guest state via VMLOAD/VMSAVE, that way 3825 * the state doesn't need to be copied between vmcb01 and 3826 * vmcb02 when switching vmcbs for nested virtualization. 3827 */ 3828 vmload(svm->vmcb01.pa); 3829 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs); 3830 vmsave(svm->vmcb01.pa); 3831 3832 vmload(__sme_page_pa(sd->save_area)); 3833 } 3834 3835 kvm_guest_exit_irqoff(); 3836 } 3837 3838 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3839 { 3840 struct vcpu_svm *svm = to_svm(vcpu); 3841 3842 trace_kvm_entry(vcpu); 3843 3844 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3845 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3846 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3847 3848 /* 3849 * Disable singlestep if we're injecting an interrupt/exception. 3850 * We don't want our modified rflags to be pushed on the stack where 3851 * we might not be able to easily reset them if we disabled NMI 3852 * singlestep later. 3853 */ 3854 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3855 /* 3856 * Event injection happens before external interrupts cause a 3857 * vmexit and interrupts are disabled here, so smp_send_reschedule 3858 * is enough to force an immediate vmexit. 3859 */ 3860 disable_nmi_singlestep(svm); 3861 smp_send_reschedule(vcpu->cpu); 3862 } 3863 3864 pre_svm_run(vcpu); 3865 3866 sync_lapic_to_cr8(vcpu); 3867 3868 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3869 svm->vmcb->control.asid = svm->asid; 3870 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3871 } 3872 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3873 3874 svm_hv_update_vp_id(svm->vmcb, vcpu); 3875 3876 /* 3877 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3878 * of a #DB. 3879 */ 3880 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3881 svm_set_dr6(svm, vcpu->arch.dr6); 3882 else 3883 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3884 3885 clgi(); 3886 kvm_load_guest_xsave_state(vcpu); 3887 3888 kvm_wait_lapic_expire(vcpu); 3889 3890 /* 3891 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3892 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3893 * is no need to worry about the conditional branch over the wrmsr 3894 * being speculatively taken. 3895 */ 3896 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3897 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3898 3899 svm_vcpu_enter_exit(vcpu); 3900 3901 /* 3902 * We do not use IBRS in the kernel. If this vCPU has used the 3903 * SPEC_CTRL MSR it may have left it on; save the value and 3904 * turn it off. This is much more efficient than blindly adding 3905 * it to the atomic save/restore list. Especially as the former 3906 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3907 * 3908 * For non-nested case: 3909 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3910 * save it. 3911 * 3912 * For nested case: 3913 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3914 * save it. 3915 */ 3916 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) && 3917 unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3918 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3919 3920 if (!sev_es_guest(vcpu->kvm)) 3921 reload_tss(vcpu); 3922 3923 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3924 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3925 3926 if (!sev_es_guest(vcpu->kvm)) { 3927 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3928 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3929 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3930 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3931 } 3932 3933 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3934 kvm_before_interrupt(vcpu); 3935 3936 kvm_load_host_xsave_state(vcpu); 3937 stgi(); 3938 3939 /* Any pending NMI will happen here */ 3940 3941 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3942 kvm_after_interrupt(vcpu); 3943 3944 sync_cr8_to_lapic(vcpu); 3945 3946 svm->next_rip = 0; 3947 if (is_guest_mode(vcpu)) { 3948 nested_sync_control_from_vmcb02(svm); 3949 3950 /* Track VMRUNs that have made past consistency checking */ 3951 if (svm->nested.nested_run_pending && 3952 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 3953 ++vcpu->stat.nested_run; 3954 3955 svm->nested.nested_run_pending = 0; 3956 } 3957 3958 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3959 vmcb_mark_all_clean(svm->vmcb); 3960 3961 /* if exit due to PF check for async PF */ 3962 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3963 vcpu->arch.apf.host_apf_flags = 3964 kvm_read_and_reset_apf_flags(); 3965 3966 if (npt_enabled) 3967 kvm_register_clear_available(vcpu, VCPU_EXREG_PDPTR); 3968 3969 /* 3970 * We need to handle MC intercepts here before the vcpu has a chance to 3971 * change the physical cpu 3972 */ 3973 if (unlikely(svm->vmcb->control.exit_code == 3974 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3975 svm_handle_mce(vcpu); 3976 3977 svm_complete_interrupts(vcpu); 3978 3979 if (is_guest_mode(vcpu)) 3980 return EXIT_FASTPATH_NONE; 3981 3982 return svm_exit_handlers_fastpath(vcpu); 3983 } 3984 3985 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3986 int root_level) 3987 { 3988 struct vcpu_svm *svm = to_svm(vcpu); 3989 unsigned long cr3; 3990 3991 if (npt_enabled) { 3992 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 3993 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3994 3995 hv_track_root_tdp(vcpu, root_hpa); 3996 3997 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ 3998 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3999 return; 4000 cr3 = vcpu->arch.cr3; 4001 } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 4002 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4003 } else { 4004 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4005 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4006 cr3 = root_hpa; 4007 } 4008 4009 svm->vmcb->save.cr3 = cr3; 4010 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4011 } 4012 4013 static int is_disabled(void) 4014 { 4015 u64 vm_cr; 4016 4017 rdmsrl(MSR_VM_CR, vm_cr); 4018 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 4019 return 1; 4020 4021 return 0; 4022 } 4023 4024 static void 4025 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4026 { 4027 /* 4028 * Patch in the VMMCALL instruction: 4029 */ 4030 hypercall[0] = 0x0f; 4031 hypercall[1] = 0x01; 4032 hypercall[2] = 0xd9; 4033 } 4034 4035 static int __init svm_check_processor_compat(void) 4036 { 4037 return 0; 4038 } 4039 4040 static bool svm_cpu_has_accelerated_tpr(void) 4041 { 4042 return false; 4043 } 4044 4045 /* 4046 * The kvm parameter can be NULL (module initialization, or invocation before 4047 * VM creation). Be sure to check the kvm parameter before using it. 4048 */ 4049 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4050 { 4051 switch (index) { 4052 case MSR_IA32_MCG_EXT_CTL: 4053 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 4054 return false; 4055 case MSR_IA32_SMBASE: 4056 /* SEV-ES guests do not support SMM, so report false */ 4057 if (kvm && sev_es_guest(kvm)) 4058 return false; 4059 break; 4060 default: 4061 break; 4062 } 4063 4064 return true; 4065 } 4066 4067 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 4068 { 4069 return 0; 4070 } 4071 4072 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4073 { 4074 struct vcpu_svm *svm = to_svm(vcpu); 4075 struct kvm_cpuid_entry2 *best; 4076 4077 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4078 boot_cpu_has(X86_FEATURE_XSAVE) && 4079 boot_cpu_has(X86_FEATURE_XSAVES); 4080 4081 /* Update nrips enabled cache */ 4082 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 4083 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); 4084 4085 svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR); 4086 4087 svm_recalc_instruction_intercepts(vcpu, svm); 4088 4089 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4090 if (sev_guest(vcpu->kvm)) { 4091 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); 4092 if (best) 4093 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4094 } 4095 4096 if (kvm_vcpu_apicv_active(vcpu)) { 4097 /* 4098 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 4099 * is exposed to the guest, disable AVIC. 4100 */ 4101 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 4102 kvm_request_apicv_update(vcpu->kvm, false, 4103 APICV_INHIBIT_REASON_X2APIC); 4104 4105 /* 4106 * Currently, AVIC does not work with nested virtualization. 4107 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 4108 */ 4109 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4110 kvm_request_apicv_update(vcpu->kvm, false, 4111 APICV_INHIBIT_REASON_NESTED); 4112 } 4113 init_vmcb_after_set_cpuid(vcpu); 4114 } 4115 4116 static bool svm_has_wbinvd_exit(void) 4117 { 4118 return true; 4119 } 4120 4121 #define PRE_EX(exit) { .exit_code = (exit), \ 4122 .stage = X86_ICPT_PRE_EXCEPT, } 4123 #define POST_EX(exit) { .exit_code = (exit), \ 4124 .stage = X86_ICPT_POST_EXCEPT, } 4125 #define POST_MEM(exit) { .exit_code = (exit), \ 4126 .stage = X86_ICPT_POST_MEMACCESS, } 4127 4128 static const struct __x86_intercept { 4129 u32 exit_code; 4130 enum x86_intercept_stage stage; 4131 } x86_intercept_map[] = { 4132 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4133 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4134 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4135 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4136 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4137 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4138 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4139 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4140 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4141 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4142 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4143 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4144 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4145 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4146 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4147 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4148 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4149 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4150 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4151 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4152 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4153 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4154 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4155 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4156 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4157 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4158 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4159 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4160 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4161 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4162 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4163 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4164 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4165 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4166 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4167 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4168 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4169 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4170 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4171 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4172 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4173 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4174 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4175 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4176 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4177 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4178 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4179 }; 4180 4181 #undef PRE_EX 4182 #undef POST_EX 4183 #undef POST_MEM 4184 4185 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4186 struct x86_instruction_info *info, 4187 enum x86_intercept_stage stage, 4188 struct x86_exception *exception) 4189 { 4190 struct vcpu_svm *svm = to_svm(vcpu); 4191 int vmexit, ret = X86EMUL_CONTINUE; 4192 struct __x86_intercept icpt_info; 4193 struct vmcb *vmcb = svm->vmcb; 4194 4195 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4196 goto out; 4197 4198 icpt_info = x86_intercept_map[info->intercept]; 4199 4200 if (stage != icpt_info.stage) 4201 goto out; 4202 4203 switch (icpt_info.exit_code) { 4204 case SVM_EXIT_READ_CR0: 4205 if (info->intercept == x86_intercept_cr_read) 4206 icpt_info.exit_code += info->modrm_reg; 4207 break; 4208 case SVM_EXIT_WRITE_CR0: { 4209 unsigned long cr0, val; 4210 4211 if (info->intercept == x86_intercept_cr_write) 4212 icpt_info.exit_code += info->modrm_reg; 4213 4214 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4215 info->intercept == x86_intercept_clts) 4216 break; 4217 4218 if (!(vmcb_is_intercept(&svm->nested.ctl, 4219 INTERCEPT_SELECTIVE_CR0))) 4220 break; 4221 4222 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4223 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4224 4225 if (info->intercept == x86_intercept_lmsw) { 4226 cr0 &= 0xfUL; 4227 val &= 0xfUL; 4228 /* lmsw can't clear PE - catch this here */ 4229 if (cr0 & X86_CR0_PE) 4230 val |= X86_CR0_PE; 4231 } 4232 4233 if (cr0 ^ val) 4234 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4235 4236 break; 4237 } 4238 case SVM_EXIT_READ_DR0: 4239 case SVM_EXIT_WRITE_DR0: 4240 icpt_info.exit_code += info->modrm_reg; 4241 break; 4242 case SVM_EXIT_MSR: 4243 if (info->intercept == x86_intercept_wrmsr) 4244 vmcb->control.exit_info_1 = 1; 4245 else 4246 vmcb->control.exit_info_1 = 0; 4247 break; 4248 case SVM_EXIT_PAUSE: 4249 /* 4250 * We get this for NOP only, but pause 4251 * is rep not, check this here 4252 */ 4253 if (info->rep_prefix != REPE_PREFIX) 4254 goto out; 4255 break; 4256 case SVM_EXIT_IOIO: { 4257 u64 exit_info; 4258 u32 bytes; 4259 4260 if (info->intercept == x86_intercept_in || 4261 info->intercept == x86_intercept_ins) { 4262 exit_info = ((info->src_val & 0xffff) << 16) | 4263 SVM_IOIO_TYPE_MASK; 4264 bytes = info->dst_bytes; 4265 } else { 4266 exit_info = (info->dst_val & 0xffff) << 16; 4267 bytes = info->src_bytes; 4268 } 4269 4270 if (info->intercept == x86_intercept_outs || 4271 info->intercept == x86_intercept_ins) 4272 exit_info |= SVM_IOIO_STR_MASK; 4273 4274 if (info->rep_prefix) 4275 exit_info |= SVM_IOIO_REP_MASK; 4276 4277 bytes = min(bytes, 4u); 4278 4279 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4280 4281 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4282 4283 vmcb->control.exit_info_1 = exit_info; 4284 vmcb->control.exit_info_2 = info->next_rip; 4285 4286 break; 4287 } 4288 default: 4289 break; 4290 } 4291 4292 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4293 if (static_cpu_has(X86_FEATURE_NRIPS)) 4294 vmcb->control.next_rip = info->next_rip; 4295 vmcb->control.exit_code = icpt_info.exit_code; 4296 vmexit = nested_svm_exit_handled(svm); 4297 4298 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4299 : X86EMUL_CONTINUE; 4300 4301 out: 4302 return ret; 4303 } 4304 4305 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4306 { 4307 } 4308 4309 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4310 { 4311 if (!kvm_pause_in_guest(vcpu->kvm)) 4312 shrink_ple_window(vcpu); 4313 } 4314 4315 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4316 { 4317 /* [63:9] are reserved. */ 4318 vcpu->arch.mcg_cap &= 0x1ff; 4319 } 4320 4321 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4322 { 4323 struct vcpu_svm *svm = to_svm(vcpu); 4324 4325 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4326 if (!gif_set(svm)) 4327 return true; 4328 4329 return is_smm(vcpu); 4330 } 4331 4332 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4333 { 4334 struct vcpu_svm *svm = to_svm(vcpu); 4335 if (svm->nested.nested_run_pending) 4336 return -EBUSY; 4337 4338 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4339 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4340 return -EBUSY; 4341 4342 return !svm_smi_blocked(vcpu); 4343 } 4344 4345 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4346 { 4347 struct vcpu_svm *svm = to_svm(vcpu); 4348 struct kvm_host_map map_save; 4349 int ret; 4350 4351 if (!is_guest_mode(vcpu)) 4352 return 0; 4353 4354 /* FED8h - SVM Guest */ 4355 put_smstate(u64, smstate, 0x7ed8, 1); 4356 /* FEE0h - SVM Guest VMCB Physical Address */ 4357 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4358 4359 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4360 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4361 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4362 4363 ret = nested_svm_vmexit(svm); 4364 if (ret) 4365 return ret; 4366 4367 /* 4368 * KVM uses VMCB01 to store L1 host state while L2 runs but 4369 * VMCB01 is going to be used during SMM and thus the state will 4370 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4371 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4372 * format of the area is identical to guest save area offsetted 4373 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4374 * within 'struct vmcb'). Note: HSAVE area may also be used by 4375 * L1 hypervisor to save additional host context (e.g. KVM does 4376 * that, see svm_prepare_guest_switch()) which must be 4377 * preserved. 4378 */ 4379 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), 4380 &map_save) == -EINVAL) 4381 return 1; 4382 4383 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4384 4385 svm_copy_vmrun_state(map_save.hva + 0x400, 4386 &svm->vmcb01.ptr->save); 4387 4388 kvm_vcpu_unmap(vcpu, &map_save, true); 4389 return 0; 4390 } 4391 4392 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4393 { 4394 struct vcpu_svm *svm = to_svm(vcpu); 4395 struct kvm_host_map map, map_save; 4396 u64 saved_efer, vmcb12_gpa; 4397 struct vmcb *vmcb12; 4398 int ret; 4399 4400 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4401 return 0; 4402 4403 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4404 if (!GET_SMSTATE(u64, smstate, 0x7ed8)) 4405 return 0; 4406 4407 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4408 return 1; 4409 4410 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4411 if (!(saved_efer & EFER_SVME)) 4412 return 1; 4413 4414 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4415 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4416 return 1; 4417 4418 ret = 1; 4419 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL) 4420 goto unmap_map; 4421 4422 if (svm_allocate_nested(svm)) 4423 goto unmap_save; 4424 4425 /* 4426 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4427 * used during SMM (see svm_enter_smm()) 4428 */ 4429 4430 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4431 4432 /* 4433 * Enter the nested guest now 4434 */ 4435 4436 vmcb12 = map.hva; 4437 nested_load_control_from_vmcb12(svm, &vmcb12->control); 4438 ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false); 4439 4440 unmap_save: 4441 kvm_vcpu_unmap(vcpu, &map_save, true); 4442 unmap_map: 4443 kvm_vcpu_unmap(vcpu, &map, true); 4444 return ret; 4445 } 4446 4447 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4448 { 4449 struct vcpu_svm *svm = to_svm(vcpu); 4450 4451 if (!gif_set(svm)) { 4452 if (vgif_enabled(svm)) 4453 svm_set_intercept(svm, INTERCEPT_STGI); 4454 /* STGI will cause a vm exit */ 4455 } else { 4456 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4457 } 4458 } 4459 4460 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 4461 { 4462 bool smep, smap, is_user; 4463 unsigned long cr4; 4464 4465 /* 4466 * When the guest is an SEV-ES guest, emulation is not possible. 4467 */ 4468 if (sev_es_guest(vcpu->kvm)) 4469 return false; 4470 4471 /* 4472 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4473 * 4474 * Errata: 4475 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is 4476 * possible that CPU microcode implementing DecodeAssist will fail 4477 * to read bytes of instruction which caused #NPF. In this case, 4478 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly 4479 * return 0 instead of the correct guest instruction bytes. 4480 * 4481 * This happens because CPU microcode reading instruction bytes 4482 * uses a special opcode which attempts to read data using CPL=0 4483 * privileges. The microcode reads CS:RIP and if it hits a SMAP 4484 * fault, it gives up and returns no instruction bytes. 4485 * 4486 * Detection: 4487 * We reach here in case CPU supports DecodeAssist, raised #NPF and 4488 * returned 0 in GuestIntrBytes field of the VMCB. 4489 * First, errata can only be triggered in case vCPU CR4.SMAP=1. 4490 * Second, if vCPU CR4.SMEP=1, errata could only be triggered 4491 * in case vCPU CPL==3 (Because otherwise guest would have triggered 4492 * a SMEP fault instead of #NPF). 4493 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. 4494 * As most guests enable SMAP if they have also enabled SMEP, use above 4495 * logic in order to attempt minimize false-positive of detecting errata 4496 * while still preserving all cases semantic correctness. 4497 * 4498 * Workaround: 4499 * To determine what instruction the guest was executing, the hypervisor 4500 * will have to decode the instruction at the instruction pointer. 4501 * 4502 * In non SEV guest, hypervisor will be able to read the guest 4503 * memory to decode the instruction pointer when insn_len is zero 4504 * so we return true to indicate that decoding is possible. 4505 * 4506 * But in the SEV guest, the guest memory is encrypted with the 4507 * guest specific key and hypervisor will not be able to decode the 4508 * instruction pointer so we will not able to workaround it. Lets 4509 * print the error and request to kill the guest. 4510 */ 4511 if (likely(!insn || insn_len)) 4512 return true; 4513 4514 /* 4515 * If RIP is invalid, go ahead with emulation which will cause an 4516 * internal error exit. 4517 */ 4518 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT)) 4519 return true; 4520 4521 cr4 = kvm_read_cr4(vcpu); 4522 smep = cr4 & X86_CR4_SMEP; 4523 smap = cr4 & X86_CR4_SMAP; 4524 is_user = svm_get_cpl(vcpu) == 3; 4525 if (smap && (!smep || is_user)) { 4526 if (!sev_guest(vcpu->kvm)) 4527 return true; 4528 4529 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4530 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4531 } 4532 4533 return false; 4534 } 4535 4536 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4537 { 4538 struct vcpu_svm *svm = to_svm(vcpu); 4539 4540 /* 4541 * TODO: Last condition latch INIT signals on vCPU when 4542 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4543 * To properly emulate the INIT intercept, 4544 * svm_check_nested_events() should call nested_svm_vmexit() 4545 * if an INIT signal is pending. 4546 */ 4547 return !gif_set(svm) || 4548 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); 4549 } 4550 4551 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4552 { 4553 if (!sev_es_guest(vcpu->kvm)) 4554 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4555 4556 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4557 } 4558 4559 static void svm_vm_destroy(struct kvm *kvm) 4560 { 4561 avic_vm_destroy(kvm); 4562 sev_vm_destroy(kvm); 4563 } 4564 4565 static int svm_vm_init(struct kvm *kvm) 4566 { 4567 if (!pause_filter_count || !pause_filter_thresh) 4568 kvm->arch.pause_in_guest = true; 4569 4570 if (enable_apicv) { 4571 int ret = avic_vm_init(kvm); 4572 if (ret) 4573 return ret; 4574 } 4575 4576 return 0; 4577 } 4578 4579 static struct kvm_x86_ops svm_x86_ops __initdata = { 4580 .name = "kvm_amd", 4581 4582 .hardware_unsetup = svm_hardware_teardown, 4583 .hardware_enable = svm_hardware_enable, 4584 .hardware_disable = svm_hardware_disable, 4585 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, 4586 .has_emulated_msr = svm_has_emulated_msr, 4587 4588 .vcpu_create = svm_create_vcpu, 4589 .vcpu_free = svm_free_vcpu, 4590 .vcpu_reset = svm_vcpu_reset, 4591 4592 .vm_size = sizeof(struct kvm_svm), 4593 .vm_init = svm_vm_init, 4594 .vm_destroy = svm_vm_destroy, 4595 4596 .prepare_guest_switch = svm_prepare_guest_switch, 4597 .vcpu_load = svm_vcpu_load, 4598 .vcpu_put = svm_vcpu_put, 4599 .vcpu_blocking = svm_vcpu_blocking, 4600 .vcpu_unblocking = svm_vcpu_unblocking, 4601 4602 .update_exception_bitmap = svm_update_exception_bitmap, 4603 .get_msr_feature = svm_get_msr_feature, 4604 .get_msr = svm_get_msr, 4605 .set_msr = svm_set_msr, 4606 .get_segment_base = svm_get_segment_base, 4607 .get_segment = svm_get_segment, 4608 .set_segment = svm_set_segment, 4609 .get_cpl = svm_get_cpl, 4610 .get_cs_db_l_bits = kvm_get_cs_db_l_bits, 4611 .set_cr0 = svm_set_cr0, 4612 .is_valid_cr4 = svm_is_valid_cr4, 4613 .set_cr4 = svm_set_cr4, 4614 .set_efer = svm_set_efer, 4615 .get_idt = svm_get_idt, 4616 .set_idt = svm_set_idt, 4617 .get_gdt = svm_get_gdt, 4618 .set_gdt = svm_set_gdt, 4619 .set_dr7 = svm_set_dr7, 4620 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4621 .cache_reg = svm_cache_reg, 4622 .get_rflags = svm_get_rflags, 4623 .set_rflags = svm_set_rflags, 4624 4625 .tlb_flush_all = svm_flush_tlb, 4626 .tlb_flush_current = svm_flush_tlb, 4627 .tlb_flush_gva = svm_flush_tlb_gva, 4628 .tlb_flush_guest = svm_flush_tlb, 4629 4630 .run = svm_vcpu_run, 4631 .handle_exit = handle_exit, 4632 .skip_emulated_instruction = skip_emulated_instruction, 4633 .update_emulated_instruction = NULL, 4634 .set_interrupt_shadow = svm_set_interrupt_shadow, 4635 .get_interrupt_shadow = svm_get_interrupt_shadow, 4636 .patch_hypercall = svm_patch_hypercall, 4637 .set_irq = svm_set_irq, 4638 .set_nmi = svm_inject_nmi, 4639 .queue_exception = svm_queue_exception, 4640 .cancel_injection = svm_cancel_injection, 4641 .interrupt_allowed = svm_interrupt_allowed, 4642 .nmi_allowed = svm_nmi_allowed, 4643 .get_nmi_mask = svm_get_nmi_mask, 4644 .set_nmi_mask = svm_set_nmi_mask, 4645 .enable_nmi_window = svm_enable_nmi_window, 4646 .enable_irq_window = svm_enable_irq_window, 4647 .update_cr8_intercept = svm_update_cr8_intercept, 4648 .set_virtual_apic_mode = svm_set_virtual_apic_mode, 4649 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, 4650 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, 4651 .load_eoi_exitmap = svm_load_eoi_exitmap, 4652 .hwapic_irr_update = svm_hwapic_irr_update, 4653 .hwapic_isr_update = svm_hwapic_isr_update, 4654 .sync_pir_to_irr = kvm_lapic_find_highest_irr, 4655 .apicv_post_state_restore = avic_post_state_restore, 4656 4657 .set_tss_addr = svm_set_tss_addr, 4658 .set_identity_map_addr = svm_set_identity_map_addr, 4659 .get_mt_mask = svm_get_mt_mask, 4660 4661 .get_exit_info = svm_get_exit_info, 4662 4663 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4664 4665 .has_wbinvd_exit = svm_has_wbinvd_exit, 4666 4667 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4668 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4669 .write_tsc_offset = svm_write_tsc_offset, 4670 .write_tsc_multiplier = svm_write_tsc_multiplier, 4671 4672 .load_mmu_pgd = svm_load_mmu_pgd, 4673 4674 .check_intercept = svm_check_intercept, 4675 .handle_exit_irqoff = svm_handle_exit_irqoff, 4676 4677 .request_immediate_exit = __kvm_request_immediate_exit, 4678 4679 .sched_in = svm_sched_in, 4680 4681 .pmu_ops = &amd_pmu_ops, 4682 .nested_ops = &svm_nested_ops, 4683 4684 .deliver_posted_interrupt = svm_deliver_avic_intr, 4685 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, 4686 .update_pi_irte = svm_update_pi_irte, 4687 .setup_mce = svm_setup_mce, 4688 4689 .smi_allowed = svm_smi_allowed, 4690 .enter_smm = svm_enter_smm, 4691 .leave_smm = svm_leave_smm, 4692 .enable_smi_window = svm_enable_smi_window, 4693 4694 .mem_enc_op = svm_mem_enc_op, 4695 .mem_enc_reg_region = svm_register_enc_region, 4696 .mem_enc_unreg_region = svm_unregister_enc_region, 4697 4698 .vm_copy_enc_context_from = svm_vm_copy_asid_from, 4699 .vm_move_enc_context_from = svm_vm_migrate_from, 4700 4701 .can_emulate_instruction = svm_can_emulate_instruction, 4702 4703 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4704 4705 .msr_filter_changed = svm_msr_filter_changed, 4706 .complete_emulated_msr = svm_complete_emulated_msr, 4707 4708 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4709 }; 4710 4711 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4712 .cpu_has_kvm_support = has_svm, 4713 .disabled_by_bios = is_disabled, 4714 .hardware_setup = svm_hardware_setup, 4715 .check_processor_compatibility = svm_check_processor_compat, 4716 4717 .runtime_ops = &svm_x86_ops, 4718 }; 4719 4720 static int __init svm_init(void) 4721 { 4722 __unused_size_checks(); 4723 4724 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4725 __alignof__(struct vcpu_svm), THIS_MODULE); 4726 } 4727 4728 static void __exit svm_exit(void) 4729 { 4730 kvm_exit(); 4731 } 4732 4733 module_init(svm_init) 4734 module_exit(svm_exit) 4735