xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision 8ffdff6a)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 #include <asm/traps.h>
39 
40 #include <asm/virtext.h>
41 #include "trace.h"
42 
43 #include "svm.h"
44 #include "svm_ops.h"
45 
46 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47 
48 MODULE_AUTHOR("Qumranet");
49 MODULE_LICENSE("GPL");
50 
51 #ifdef MODULE
52 static const struct x86_cpu_id svm_cpu_id[] = {
53 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
54 	{}
55 };
56 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
57 #endif
58 
59 #define IOPM_ALLOC_ORDER 2
60 #define MSRPM_ALLOC_ORDER 1
61 
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64 
65 #define SVM_FEATURE_LBRV           (1 <<  1)
66 #define SVM_FEATURE_SVML           (1 <<  2)
67 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
68 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
69 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
70 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
71 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
72 
73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
74 
75 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
76 #define TSC_RATIO_MIN		0x0000000000000001ULL
77 #define TSC_RATIO_MAX		0x000000ffffffffffULL
78 
79 static bool erratum_383_found __read_mostly;
80 
81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
82 
83 /*
84  * Set osvw_len to higher value when updated Revision Guides
85  * are published and we know what the new status bits are
86  */
87 static uint64_t osvw_len = 4, osvw_status;
88 
89 static DEFINE_PER_CPU(u64, current_tsc_ratio);
90 #define TSC_RATIO_DEFAULT	0x0100000000ULL
91 
92 static const struct svm_direct_access_msrs {
93 	u32 index;   /* Index of the MSR */
94 	bool always; /* True if intercept is initially cleared */
95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
96 	{ .index = MSR_STAR,				.always = true  },
97 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
98 #ifdef CONFIG_X86_64
99 	{ .index = MSR_GS_BASE,				.always = true  },
100 	{ .index = MSR_FS_BASE,				.always = true  },
101 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
102 	{ .index = MSR_LSTAR,				.always = true  },
103 	{ .index = MSR_CSTAR,				.always = true  },
104 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
105 #endif
106 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
107 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
108 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
109 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
110 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
111 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
112 	{ .index = MSR_EFER,				.always = false },
113 	{ .index = MSR_IA32_CR_PAT,			.always = false },
114 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
115 	{ .index = MSR_INVALID,				.always = false },
116 };
117 
118 /*
119  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
120  * pause_filter_count: On processors that support Pause filtering(indicated
121  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
122  *	count value. On VMRUN this value is loaded into an internal counter.
123  *	Each time a pause instruction is executed, this counter is decremented
124  *	until it reaches zero at which time a #VMEXIT is generated if pause
125  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
126  *	Intercept Filtering for more details.
127  *	This also indicate if ple logic enabled.
128  *
129  * pause_filter_thresh: In addition, some processor families support advanced
130  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
131  *	the amount of time a guest is allowed to execute in a pause loop.
132  *	In this mode, a 16-bit pause filter threshold field is added in the
133  *	VMCB. The threshold value is a cycle count that is used to reset the
134  *	pause counter. As with simple pause filtering, VMRUN loads the pause
135  *	count value from VMCB into an internal counter. Then, on each pause
136  *	instruction the hardware checks the elapsed number of cycles since
137  *	the most recent pause instruction against the pause filter threshold.
138  *	If the elapsed cycle count is greater than the pause filter threshold,
139  *	then the internal pause count is reloaded from the VMCB and execution
140  *	continues. If the elapsed cycle count is less than the pause filter
141  *	threshold, then the internal pause count is decremented. If the count
142  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
143  *	triggered. If advanced pause filtering is supported and pause filter
144  *	threshold field is set to zero, the filter will operate in the simpler,
145  *	count only mode.
146  */
147 
148 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
149 module_param(pause_filter_thresh, ushort, 0444);
150 
151 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
152 module_param(pause_filter_count, ushort, 0444);
153 
154 /* Default doubles per-vcpu window every exit. */
155 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
156 module_param(pause_filter_count_grow, ushort, 0444);
157 
158 /* Default resets per-vcpu window every exit to pause_filter_count. */
159 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
160 module_param(pause_filter_count_shrink, ushort, 0444);
161 
162 /* Default is to compute the maximum so we can never overflow. */
163 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
164 module_param(pause_filter_count_max, ushort, 0444);
165 
166 /*
167  * Use nested page tables by default.  Note, NPT may get forced off by
168  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
169  */
170 bool npt_enabled = true;
171 module_param_named(npt, npt_enabled, bool, 0444);
172 
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176 
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180 
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184 
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188 
189 /* enable/disable SEV support */
190 int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
191 module_param(sev, int, 0444);
192 
193 /* enable/disable SEV-ES support */
194 int sev_es = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
195 module_param(sev_es, int, 0444);
196 
197 bool __read_mostly dump_invalid_vmcb;
198 module_param(dump_invalid_vmcb, bool, 0644);
199 
200 static bool svm_gp_erratum_intercept = true;
201 
202 static u8 rsm_ins_bytes[] = "\x0f\xaa";
203 
204 static unsigned long iopm_base;
205 
206 struct kvm_ldttss_desc {
207 	u16 limit0;
208 	u16 base0;
209 	unsigned base1:8, type:5, dpl:2, p:1;
210 	unsigned limit1:4, zero0:3, g:1, base2:8;
211 	u32 base3;
212 	u32 zero1;
213 } __attribute__((packed));
214 
215 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
216 
217 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
218 
219 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
220 #define MSRS_RANGE_SIZE 2048
221 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
222 
223 u32 svm_msrpm_offset(u32 msr)
224 {
225 	u32 offset;
226 	int i;
227 
228 	for (i = 0; i < NUM_MSR_MAPS; i++) {
229 		if (msr < msrpm_ranges[i] ||
230 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
231 			continue;
232 
233 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
234 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
235 
236 		/* Now we have the u8 offset - but need the u32 offset */
237 		return offset / 4;
238 	}
239 
240 	/* MSR not in any range */
241 	return MSR_INVALID;
242 }
243 
244 #define MAX_INST_SIZE 15
245 
246 static int get_max_npt_level(void)
247 {
248 #ifdef CONFIG_X86_64
249 	return PT64_ROOT_4LEVEL;
250 #else
251 	return PT32E_ROOT_LEVEL;
252 #endif
253 }
254 
255 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
256 {
257 	struct vcpu_svm *svm = to_svm(vcpu);
258 	u64 old_efer = vcpu->arch.efer;
259 	vcpu->arch.efer = efer;
260 
261 	if (!npt_enabled) {
262 		/* Shadow paging assumes NX to be available.  */
263 		efer |= EFER_NX;
264 
265 		if (!(efer & EFER_LMA))
266 			efer &= ~EFER_LME;
267 	}
268 
269 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
270 		if (!(efer & EFER_SVME)) {
271 			svm_leave_nested(svm);
272 			svm_set_gif(svm, true);
273 			/* #GP intercept is still needed for vmware backdoor */
274 			if (!enable_vmware_backdoor)
275 				clr_exception_intercept(svm, GP_VECTOR);
276 
277 			/*
278 			 * Free the nested guest state, unless we are in SMM.
279 			 * In this case we will return to the nested guest
280 			 * as soon as we leave SMM.
281 			 */
282 			if (!is_smm(&svm->vcpu))
283 				svm_free_nested(svm);
284 
285 		} else {
286 			int ret = svm_allocate_nested(svm);
287 
288 			if (ret) {
289 				vcpu->arch.efer = old_efer;
290 				return ret;
291 			}
292 
293 			if (svm_gp_erratum_intercept)
294 				set_exception_intercept(svm, GP_VECTOR);
295 		}
296 	}
297 
298 	svm->vmcb->save.efer = efer | EFER_SVME;
299 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
300 	return 0;
301 }
302 
303 static int is_external_interrupt(u32 info)
304 {
305 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
306 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
307 }
308 
309 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
310 {
311 	struct vcpu_svm *svm = to_svm(vcpu);
312 	u32 ret = 0;
313 
314 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
315 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
316 	return ret;
317 }
318 
319 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
320 {
321 	struct vcpu_svm *svm = to_svm(vcpu);
322 
323 	if (mask == 0)
324 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
325 	else
326 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
327 
328 }
329 
330 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
331 {
332 	struct vcpu_svm *svm = to_svm(vcpu);
333 
334 	/*
335 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
336 	 * the type of exit and the #VC handler in the guest.
337 	 */
338 	if (sev_es_guest(vcpu->kvm))
339 		goto done;
340 
341 	if (nrips && svm->vmcb->control.next_rip != 0) {
342 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
343 		svm->next_rip = svm->vmcb->control.next_rip;
344 	}
345 
346 	if (!svm->next_rip) {
347 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
348 			return 0;
349 	} else {
350 		kvm_rip_write(vcpu, svm->next_rip);
351 	}
352 
353 done:
354 	svm_set_interrupt_shadow(vcpu, 0);
355 
356 	return 1;
357 }
358 
359 static void svm_queue_exception(struct kvm_vcpu *vcpu)
360 {
361 	struct vcpu_svm *svm = to_svm(vcpu);
362 	unsigned nr = vcpu->arch.exception.nr;
363 	bool has_error_code = vcpu->arch.exception.has_error_code;
364 	u32 error_code = vcpu->arch.exception.error_code;
365 
366 	kvm_deliver_exception_payload(&svm->vcpu);
367 
368 	if (nr == BP_VECTOR && !nrips) {
369 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
370 
371 		/*
372 		 * For guest debugging where we have to reinject #BP if some
373 		 * INT3 is guest-owned:
374 		 * Emulate nRIP by moving RIP forward. Will fail if injection
375 		 * raises a fault that is not intercepted. Still better than
376 		 * failing in all cases.
377 		 */
378 		(void)skip_emulated_instruction(&svm->vcpu);
379 		rip = kvm_rip_read(&svm->vcpu);
380 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
381 		svm->int3_injected = rip - old_rip;
382 	}
383 
384 	svm->vmcb->control.event_inj = nr
385 		| SVM_EVTINJ_VALID
386 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
387 		| SVM_EVTINJ_TYPE_EXEPT;
388 	svm->vmcb->control.event_inj_err = error_code;
389 }
390 
391 static void svm_init_erratum_383(void)
392 {
393 	u32 low, high;
394 	int err;
395 	u64 val;
396 
397 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
398 		return;
399 
400 	/* Use _safe variants to not break nested virtualization */
401 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
402 	if (err)
403 		return;
404 
405 	val |= (1ULL << 47);
406 
407 	low  = lower_32_bits(val);
408 	high = upper_32_bits(val);
409 
410 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
411 
412 	erratum_383_found = true;
413 }
414 
415 static void svm_init_osvw(struct kvm_vcpu *vcpu)
416 {
417 	/*
418 	 * Guests should see errata 400 and 415 as fixed (assuming that
419 	 * HLT and IO instructions are intercepted).
420 	 */
421 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
422 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
423 
424 	/*
425 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
426 	 * all osvw.status bits inside that length, including bit 0 (which is
427 	 * reserved for erratum 298), are valid. However, if host processor's
428 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
429 	 * be conservative here and therefore we tell the guest that erratum 298
430 	 * is present (because we really don't know).
431 	 */
432 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
433 		vcpu->arch.osvw.status |= 1;
434 }
435 
436 static int has_svm(void)
437 {
438 	const char *msg;
439 
440 	if (!cpu_has_svm(&msg)) {
441 		printk(KERN_INFO "has_svm: %s\n", msg);
442 		return 0;
443 	}
444 
445 	if (sev_active()) {
446 		pr_info("KVM is unsupported when running as an SEV guest\n");
447 		return 0;
448 	}
449 
450 	return 1;
451 }
452 
453 static void svm_hardware_disable(void)
454 {
455 	/* Make sure we clean up behind us */
456 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
457 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
458 
459 	cpu_svm_disable();
460 
461 	amd_pmu_disable_virt();
462 }
463 
464 static int svm_hardware_enable(void)
465 {
466 
467 	struct svm_cpu_data *sd;
468 	uint64_t efer;
469 	struct desc_struct *gdt;
470 	int me = raw_smp_processor_id();
471 
472 	rdmsrl(MSR_EFER, efer);
473 	if (efer & EFER_SVME)
474 		return -EBUSY;
475 
476 	if (!has_svm()) {
477 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
478 		return -EINVAL;
479 	}
480 	sd = per_cpu(svm_data, me);
481 	if (!sd) {
482 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
483 		return -EINVAL;
484 	}
485 
486 	sd->asid_generation = 1;
487 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
488 	sd->next_asid = sd->max_asid + 1;
489 	sd->min_asid = max_sev_asid + 1;
490 
491 	gdt = get_current_gdt_rw();
492 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
493 
494 	wrmsrl(MSR_EFER, efer | EFER_SVME);
495 
496 	wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
497 
498 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
499 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
500 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
501 	}
502 
503 
504 	/*
505 	 * Get OSVW bits.
506 	 *
507 	 * Note that it is possible to have a system with mixed processor
508 	 * revisions and therefore different OSVW bits. If bits are not the same
509 	 * on different processors then choose the worst case (i.e. if erratum
510 	 * is present on one processor and not on another then assume that the
511 	 * erratum is present everywhere).
512 	 */
513 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
514 		uint64_t len, status = 0;
515 		int err;
516 
517 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
518 		if (!err)
519 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
520 						      &err);
521 
522 		if (err)
523 			osvw_status = osvw_len = 0;
524 		else {
525 			if (len < osvw_len)
526 				osvw_len = len;
527 			osvw_status |= status;
528 			osvw_status &= (1ULL << osvw_len) - 1;
529 		}
530 	} else
531 		osvw_status = osvw_len = 0;
532 
533 	svm_init_erratum_383();
534 
535 	amd_pmu_enable_virt();
536 
537 	return 0;
538 }
539 
540 static void svm_cpu_uninit(int cpu)
541 {
542 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
543 
544 	if (!sd)
545 		return;
546 
547 	per_cpu(svm_data, cpu) = NULL;
548 	kfree(sd->sev_vmcbs);
549 	__free_page(sd->save_area);
550 	kfree(sd);
551 }
552 
553 static int svm_cpu_init(int cpu)
554 {
555 	struct svm_cpu_data *sd;
556 
557 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
558 	if (!sd)
559 		return -ENOMEM;
560 	sd->cpu = cpu;
561 	sd->save_area = alloc_page(GFP_KERNEL);
562 	if (!sd->save_area)
563 		goto free_cpu_data;
564 	clear_page(page_address(sd->save_area));
565 
566 	if (svm_sev_enabled()) {
567 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
568 					      sizeof(void *),
569 					      GFP_KERNEL);
570 		if (!sd->sev_vmcbs)
571 			goto free_save_area;
572 	}
573 
574 	per_cpu(svm_data, cpu) = sd;
575 
576 	return 0;
577 
578 free_save_area:
579 	__free_page(sd->save_area);
580 free_cpu_data:
581 	kfree(sd);
582 	return -ENOMEM;
583 
584 }
585 
586 static int direct_access_msr_slot(u32 msr)
587 {
588 	u32 i;
589 
590 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
591 		if (direct_access_msrs[i].index == msr)
592 			return i;
593 
594 	return -ENOENT;
595 }
596 
597 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
598 				     int write)
599 {
600 	struct vcpu_svm *svm = to_svm(vcpu);
601 	int slot = direct_access_msr_slot(msr);
602 
603 	if (slot == -ENOENT)
604 		return;
605 
606 	/* Set the shadow bitmaps to the desired intercept states */
607 	if (read)
608 		set_bit(slot, svm->shadow_msr_intercept.read);
609 	else
610 		clear_bit(slot, svm->shadow_msr_intercept.read);
611 
612 	if (write)
613 		set_bit(slot, svm->shadow_msr_intercept.write);
614 	else
615 		clear_bit(slot, svm->shadow_msr_intercept.write);
616 }
617 
618 static bool valid_msr_intercept(u32 index)
619 {
620 	return direct_access_msr_slot(index) != -ENOENT;
621 }
622 
623 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
624 {
625 	u8 bit_write;
626 	unsigned long tmp;
627 	u32 offset;
628 	u32 *msrpm;
629 
630 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
631 				      to_svm(vcpu)->msrpm;
632 
633 	offset    = svm_msrpm_offset(msr);
634 	bit_write = 2 * (msr & 0x0f) + 1;
635 	tmp       = msrpm[offset];
636 
637 	BUG_ON(offset == MSR_INVALID);
638 
639 	return !!test_bit(bit_write,  &tmp);
640 }
641 
642 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
643 					u32 msr, int read, int write)
644 {
645 	u8 bit_read, bit_write;
646 	unsigned long tmp;
647 	u32 offset;
648 
649 	/*
650 	 * If this warning triggers extend the direct_access_msrs list at the
651 	 * beginning of the file
652 	 */
653 	WARN_ON(!valid_msr_intercept(msr));
654 
655 	/* Enforce non allowed MSRs to trap */
656 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
657 		read = 0;
658 
659 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
660 		write = 0;
661 
662 	offset    = svm_msrpm_offset(msr);
663 	bit_read  = 2 * (msr & 0x0f);
664 	bit_write = 2 * (msr & 0x0f) + 1;
665 	tmp       = msrpm[offset];
666 
667 	BUG_ON(offset == MSR_INVALID);
668 
669 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
670 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
671 
672 	msrpm[offset] = tmp;
673 }
674 
675 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
676 			  int read, int write)
677 {
678 	set_shadow_msr_intercept(vcpu, msr, read, write);
679 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
680 }
681 
682 u32 *svm_vcpu_alloc_msrpm(void)
683 {
684 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
685 	u32 *msrpm;
686 
687 	if (!pages)
688 		return NULL;
689 
690 	msrpm = page_address(pages);
691 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
692 
693 	return msrpm;
694 }
695 
696 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
697 {
698 	int i;
699 
700 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
701 		if (!direct_access_msrs[i].always)
702 			continue;
703 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
704 	}
705 }
706 
707 
708 void svm_vcpu_free_msrpm(u32 *msrpm)
709 {
710 	__free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
711 }
712 
713 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
714 {
715 	struct vcpu_svm *svm = to_svm(vcpu);
716 	u32 i;
717 
718 	/*
719 	 * Set intercept permissions for all direct access MSRs again. They
720 	 * will automatically get filtered through the MSR filter, so we are
721 	 * back in sync after this.
722 	 */
723 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
724 		u32 msr = direct_access_msrs[i].index;
725 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
726 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
727 
728 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
729 	}
730 }
731 
732 static void add_msr_offset(u32 offset)
733 {
734 	int i;
735 
736 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
737 
738 		/* Offset already in list? */
739 		if (msrpm_offsets[i] == offset)
740 			return;
741 
742 		/* Slot used by another offset? */
743 		if (msrpm_offsets[i] != MSR_INVALID)
744 			continue;
745 
746 		/* Add offset to list */
747 		msrpm_offsets[i] = offset;
748 
749 		return;
750 	}
751 
752 	/*
753 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
754 	 * increase MSRPM_OFFSETS in this case.
755 	 */
756 	BUG();
757 }
758 
759 static void init_msrpm_offsets(void)
760 {
761 	int i;
762 
763 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
764 
765 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
766 		u32 offset;
767 
768 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
769 		BUG_ON(offset == MSR_INVALID);
770 
771 		add_msr_offset(offset);
772 	}
773 }
774 
775 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
776 {
777 	struct vcpu_svm *svm = to_svm(vcpu);
778 
779 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
780 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
781 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
782 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
783 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
784 }
785 
786 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
787 {
788 	struct vcpu_svm *svm = to_svm(vcpu);
789 
790 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
791 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
792 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
793 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
794 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
795 }
796 
797 void disable_nmi_singlestep(struct vcpu_svm *svm)
798 {
799 	svm->nmi_singlestep = false;
800 
801 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
802 		/* Clear our flags if they were not set by the guest */
803 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
804 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
805 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
806 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
807 	}
808 }
809 
810 static void grow_ple_window(struct kvm_vcpu *vcpu)
811 {
812 	struct vcpu_svm *svm = to_svm(vcpu);
813 	struct vmcb_control_area *control = &svm->vmcb->control;
814 	int old = control->pause_filter_count;
815 
816 	control->pause_filter_count = __grow_ple_window(old,
817 							pause_filter_count,
818 							pause_filter_count_grow,
819 							pause_filter_count_max);
820 
821 	if (control->pause_filter_count != old) {
822 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
823 		trace_kvm_ple_window_update(vcpu->vcpu_id,
824 					    control->pause_filter_count, old);
825 	}
826 }
827 
828 static void shrink_ple_window(struct kvm_vcpu *vcpu)
829 {
830 	struct vcpu_svm *svm = to_svm(vcpu);
831 	struct vmcb_control_area *control = &svm->vmcb->control;
832 	int old = control->pause_filter_count;
833 
834 	control->pause_filter_count =
835 				__shrink_ple_window(old,
836 						    pause_filter_count,
837 						    pause_filter_count_shrink,
838 						    pause_filter_count);
839 	if (control->pause_filter_count != old) {
840 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
841 		trace_kvm_ple_window_update(vcpu->vcpu_id,
842 					    control->pause_filter_count, old);
843 	}
844 }
845 
846 /*
847  * The default MMIO mask is a single bit (excluding the present bit),
848  * which could conflict with the memory encryption bit. Check for
849  * memory encryption support and override the default MMIO mask if
850  * memory encryption is enabled.
851  */
852 static __init void svm_adjust_mmio_mask(void)
853 {
854 	unsigned int enc_bit, mask_bit;
855 	u64 msr, mask;
856 
857 	/* If there is no memory encryption support, use existing mask */
858 	if (cpuid_eax(0x80000000) < 0x8000001f)
859 		return;
860 
861 	/* If memory encryption is not enabled, use existing mask */
862 	rdmsrl(MSR_K8_SYSCFG, msr);
863 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
864 		return;
865 
866 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
867 	mask_bit = boot_cpu_data.x86_phys_bits;
868 
869 	/* Increment the mask bit if it is the same as the encryption bit */
870 	if (enc_bit == mask_bit)
871 		mask_bit++;
872 
873 	/*
874 	 * If the mask bit location is below 52, then some bits above the
875 	 * physical addressing limit will always be reserved, so use the
876 	 * rsvd_bits() function to generate the mask. This mask, along with
877 	 * the present bit, will be used to generate a page fault with
878 	 * PFER.RSV = 1.
879 	 *
880 	 * If the mask bit location is 52 (or above), then clear the mask.
881 	 */
882 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
883 
884 	kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
885 }
886 
887 static void svm_hardware_teardown(void)
888 {
889 	int cpu;
890 
891 	if (svm_sev_enabled())
892 		sev_hardware_teardown();
893 
894 	for_each_possible_cpu(cpu)
895 		svm_cpu_uninit(cpu);
896 
897 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
898 	iopm_base = 0;
899 }
900 
901 static __init void svm_set_cpu_caps(void)
902 {
903 	kvm_set_cpu_caps();
904 
905 	supported_xss = 0;
906 
907 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
908 	if (nested) {
909 		kvm_cpu_cap_set(X86_FEATURE_SVM);
910 
911 		if (nrips)
912 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
913 
914 		if (npt_enabled)
915 			kvm_cpu_cap_set(X86_FEATURE_NPT);
916 
917 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
918 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
919 	}
920 
921 	/* CPUID 0x80000008 */
922 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
923 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
924 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
925 }
926 
927 static __init int svm_hardware_setup(void)
928 {
929 	int cpu;
930 	struct page *iopm_pages;
931 	void *iopm_va;
932 	int r;
933 
934 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
935 
936 	if (!iopm_pages)
937 		return -ENOMEM;
938 
939 	iopm_va = page_address(iopm_pages);
940 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
941 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
942 
943 	init_msrpm_offsets();
944 
945 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
946 
947 	if (boot_cpu_has(X86_FEATURE_NX))
948 		kvm_enable_efer_bits(EFER_NX);
949 
950 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
951 		kvm_enable_efer_bits(EFER_FFXSR);
952 
953 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
954 		kvm_has_tsc_control = true;
955 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
956 		kvm_tsc_scaling_ratio_frac_bits = 32;
957 	}
958 
959 	/* Check for pause filtering support */
960 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
961 		pause_filter_count = 0;
962 		pause_filter_thresh = 0;
963 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
964 		pause_filter_thresh = 0;
965 	}
966 
967 	if (nested) {
968 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
969 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
970 	}
971 
972 	if (IS_ENABLED(CONFIG_KVM_AMD_SEV) && sev) {
973 		sev_hardware_setup();
974 	} else {
975 		sev = false;
976 		sev_es = false;
977 	}
978 
979 	svm_adjust_mmio_mask();
980 
981 	for_each_possible_cpu(cpu) {
982 		r = svm_cpu_init(cpu);
983 		if (r)
984 			goto err;
985 	}
986 
987 	/*
988 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
989 	 * NPT isn't supported if the host is using 2-level paging since host
990 	 * CR4 is unchanged on VMRUN.
991 	 */
992 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
993 		npt_enabled = false;
994 
995 	if (!boot_cpu_has(X86_FEATURE_NPT))
996 		npt_enabled = false;
997 
998 	kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
999 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
1000 
1001 	if (nrips) {
1002 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
1003 			nrips = false;
1004 	}
1005 
1006 	if (avic) {
1007 		if (!npt_enabled ||
1008 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
1009 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1010 			avic = false;
1011 		} else {
1012 			pr_info("AVIC enabled\n");
1013 
1014 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1015 		}
1016 	}
1017 
1018 	if (vls) {
1019 		if (!npt_enabled ||
1020 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1021 		    !IS_ENABLED(CONFIG_X86_64)) {
1022 			vls = false;
1023 		} else {
1024 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1025 		}
1026 	}
1027 
1028 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
1029 		svm_gp_erratum_intercept = false;
1030 
1031 	if (vgif) {
1032 		if (!boot_cpu_has(X86_FEATURE_VGIF))
1033 			vgif = false;
1034 		else
1035 			pr_info("Virtual GIF supported\n");
1036 	}
1037 
1038 	svm_set_cpu_caps();
1039 
1040 	/*
1041 	 * It seems that on AMD processors PTE's accessed bit is
1042 	 * being set by the CPU hardware before the NPF vmexit.
1043 	 * This is not expected behaviour and our tests fail because
1044 	 * of it.
1045 	 * A workaround here is to disable support for
1046 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1047 	 * In this case userspace can know if there is support using
1048 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1049 	 * it
1050 	 * If future AMD CPU models change the behaviour described above,
1051 	 * this variable can be changed accordingly
1052 	 */
1053 	allow_smaller_maxphyaddr = !npt_enabled;
1054 
1055 	return 0;
1056 
1057 err:
1058 	svm_hardware_teardown();
1059 	return r;
1060 }
1061 
1062 static void init_seg(struct vmcb_seg *seg)
1063 {
1064 	seg->selector = 0;
1065 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1066 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1067 	seg->limit = 0xffff;
1068 	seg->base = 0;
1069 }
1070 
1071 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1072 {
1073 	seg->selector = 0;
1074 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1075 	seg->limit = 0xffff;
1076 	seg->base = 0;
1077 }
1078 
1079 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1080 {
1081 	struct vcpu_svm *svm = to_svm(vcpu);
1082 	u64 g_tsc_offset = 0;
1083 
1084 	if (is_guest_mode(vcpu)) {
1085 		/* Write L1's TSC offset.  */
1086 		g_tsc_offset = svm->vmcb->control.tsc_offset -
1087 			       svm->nested.hsave->control.tsc_offset;
1088 		svm->nested.hsave->control.tsc_offset = offset;
1089 	}
1090 
1091 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1092 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
1093 				   offset);
1094 
1095 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1096 
1097 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1098 	return svm->vmcb->control.tsc_offset;
1099 }
1100 
1101 static void svm_check_invpcid(struct vcpu_svm *svm)
1102 {
1103 	/*
1104 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1105 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1106 	 */
1107 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1108 		if (!npt_enabled ||
1109 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1110 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1111 		else
1112 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1113 	}
1114 }
1115 
1116 static void init_vmcb(struct vcpu_svm *svm)
1117 {
1118 	struct vmcb_control_area *control = &svm->vmcb->control;
1119 	struct vmcb_save_area *save = &svm->vmcb->save;
1120 
1121 	svm->vcpu.arch.hflags = 0;
1122 
1123 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1124 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1125 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1126 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1127 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1128 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1129 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1130 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1131 
1132 	set_dr_intercepts(svm);
1133 
1134 	set_exception_intercept(svm, PF_VECTOR);
1135 	set_exception_intercept(svm, UD_VECTOR);
1136 	set_exception_intercept(svm, MC_VECTOR);
1137 	set_exception_intercept(svm, AC_VECTOR);
1138 	set_exception_intercept(svm, DB_VECTOR);
1139 	/*
1140 	 * Guest access to VMware backdoor ports could legitimately
1141 	 * trigger #GP because of TSS I/O permission bitmap.
1142 	 * We intercept those #GP and allow access to them anyway
1143 	 * as VMware does.
1144 	 */
1145 	if (enable_vmware_backdoor)
1146 		set_exception_intercept(svm, GP_VECTOR);
1147 
1148 	svm_set_intercept(svm, INTERCEPT_INTR);
1149 	svm_set_intercept(svm, INTERCEPT_NMI);
1150 	svm_set_intercept(svm, INTERCEPT_SMI);
1151 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1152 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1153 	svm_set_intercept(svm, INTERCEPT_CPUID);
1154 	svm_set_intercept(svm, INTERCEPT_INVD);
1155 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1156 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1157 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1158 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1159 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1160 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1161 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1162 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1163 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1164 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1165 	svm_set_intercept(svm, INTERCEPT_STGI);
1166 	svm_set_intercept(svm, INTERCEPT_CLGI);
1167 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1168 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1169 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1170 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1171 	svm_set_intercept(svm, INTERCEPT_RSM);
1172 
1173 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1174 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1175 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1176 	}
1177 
1178 	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1179 		svm_set_intercept(svm, INTERCEPT_HLT);
1180 
1181 	control->iopm_base_pa = __sme_set(iopm_base);
1182 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1183 	control->int_ctl = V_INTR_MASKING_MASK;
1184 
1185 	init_seg(&save->es);
1186 	init_seg(&save->ss);
1187 	init_seg(&save->ds);
1188 	init_seg(&save->fs);
1189 	init_seg(&save->gs);
1190 
1191 	save->cs.selector = 0xf000;
1192 	save->cs.base = 0xffff0000;
1193 	/* Executable/Readable Code Segment */
1194 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1195 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1196 	save->cs.limit = 0xffff;
1197 
1198 	save->gdtr.limit = 0xffff;
1199 	save->idtr.limit = 0xffff;
1200 
1201 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1202 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1203 
1204 	svm_set_cr4(&svm->vcpu, 0);
1205 	svm_set_efer(&svm->vcpu, 0);
1206 	save->dr6 = 0xffff0ff0;
1207 	kvm_set_rflags(&svm->vcpu, X86_EFLAGS_FIXED);
1208 	save->rip = 0x0000fff0;
1209 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1210 
1211 	/*
1212 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1213 	 * It also updates the guest-visible cr0 value.
1214 	 */
1215 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1216 	kvm_mmu_reset_context(&svm->vcpu);
1217 
1218 	save->cr4 = X86_CR4_PAE;
1219 	/* rdx = ?? */
1220 
1221 	if (npt_enabled) {
1222 		/* Setup VMCB for Nested Paging */
1223 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1224 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1225 		clr_exception_intercept(svm, PF_VECTOR);
1226 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1227 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1228 		save->g_pat = svm->vcpu.arch.pat;
1229 		save->cr3 = 0;
1230 		save->cr4 = 0;
1231 	}
1232 	svm->asid_generation = 0;
1233 	svm->asid = 0;
1234 
1235 	svm->nested.vmcb12_gpa = 0;
1236 	svm->vcpu.arch.hflags = 0;
1237 
1238 	if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1239 		control->pause_filter_count = pause_filter_count;
1240 		if (pause_filter_thresh)
1241 			control->pause_filter_thresh = pause_filter_thresh;
1242 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1243 	} else {
1244 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1245 	}
1246 
1247 	svm_check_invpcid(svm);
1248 
1249 	if (kvm_vcpu_apicv_active(&svm->vcpu))
1250 		avic_init_vmcb(svm);
1251 
1252 	/*
1253 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1254 	 * in VMCB and clear intercepts to avoid #VMEXIT.
1255 	 */
1256 	if (vls) {
1257 		svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1258 		svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1259 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1260 	}
1261 
1262 	if (vgif) {
1263 		svm_clr_intercept(svm, INTERCEPT_STGI);
1264 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1265 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1266 	}
1267 
1268 	if (sev_guest(svm->vcpu.kvm)) {
1269 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1270 		clr_exception_intercept(svm, UD_VECTOR);
1271 
1272 		if (sev_es_guest(svm->vcpu.kvm)) {
1273 			/* Perform SEV-ES specific VMCB updates */
1274 			sev_es_init_vmcb(svm);
1275 		}
1276 	}
1277 
1278 	vmcb_mark_all_dirty(svm->vmcb);
1279 
1280 	enable_gif(svm);
1281 
1282 }
1283 
1284 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1285 {
1286 	struct vcpu_svm *svm = to_svm(vcpu);
1287 	u32 dummy;
1288 	u32 eax = 1;
1289 
1290 	svm->spec_ctrl = 0;
1291 	svm->virt_spec_ctrl = 0;
1292 
1293 	if (!init_event) {
1294 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1295 					   MSR_IA32_APICBASE_ENABLE;
1296 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1297 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1298 	}
1299 	init_vmcb(svm);
1300 
1301 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1302 	kvm_rdx_write(vcpu, eax);
1303 
1304 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1305 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1306 }
1307 
1308 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1309 {
1310 	struct vcpu_svm *svm;
1311 	struct page *vmcb_page;
1312 	struct page *vmsa_page = NULL;
1313 	int err;
1314 
1315 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1316 	svm = to_svm(vcpu);
1317 
1318 	err = -ENOMEM;
1319 	vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1320 	if (!vmcb_page)
1321 		goto out;
1322 
1323 	if (sev_es_guest(svm->vcpu.kvm)) {
1324 		/*
1325 		 * SEV-ES guests require a separate VMSA page used to contain
1326 		 * the encrypted register state of the guest.
1327 		 */
1328 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1329 		if (!vmsa_page)
1330 			goto error_free_vmcb_page;
1331 
1332 		/*
1333 		 * SEV-ES guests maintain an encrypted version of their FPU
1334 		 * state which is restored and saved on VMRUN and VMEXIT.
1335 		 * Free the fpu structure to prevent KVM from attempting to
1336 		 * access the FPU state.
1337 		 */
1338 		kvm_free_guest_fpu(vcpu);
1339 	}
1340 
1341 	err = avic_init_vcpu(svm);
1342 	if (err)
1343 		goto error_free_vmsa_page;
1344 
1345 	/* We initialize this flag to true to make sure that the is_running
1346 	 * bit would be set the first time the vcpu is loaded.
1347 	 */
1348 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1349 		svm->avic_is_running = true;
1350 
1351 	svm->msrpm = svm_vcpu_alloc_msrpm();
1352 	if (!svm->msrpm) {
1353 		err = -ENOMEM;
1354 		goto error_free_vmsa_page;
1355 	}
1356 
1357 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1358 
1359 	svm->vmcb = page_address(vmcb_page);
1360 	svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
1361 
1362 	if (vmsa_page)
1363 		svm->vmsa = page_address(vmsa_page);
1364 
1365 	svm->asid_generation = 0;
1366 	svm->guest_state_loaded = false;
1367 	init_vmcb(svm);
1368 
1369 	svm_init_osvw(vcpu);
1370 	vcpu->arch.microcode_version = 0x01000065;
1371 
1372 	if (sev_es_guest(svm->vcpu.kvm))
1373 		/* Perform SEV-ES specific VMCB creation updates */
1374 		sev_es_create_vcpu(svm);
1375 
1376 	return 0;
1377 
1378 error_free_vmsa_page:
1379 	if (vmsa_page)
1380 		__free_page(vmsa_page);
1381 error_free_vmcb_page:
1382 	__free_page(vmcb_page);
1383 out:
1384 	return err;
1385 }
1386 
1387 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1388 {
1389 	int i;
1390 
1391 	for_each_online_cpu(i)
1392 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1393 }
1394 
1395 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1396 {
1397 	struct vcpu_svm *svm = to_svm(vcpu);
1398 
1399 	/*
1400 	 * The vmcb page can be recycled, causing a false negative in
1401 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1402 	 * vmcb page recorded as its current vmcb.
1403 	 */
1404 	svm_clear_current_vmcb(svm->vmcb);
1405 
1406 	svm_free_nested(svm);
1407 
1408 	sev_free_vcpu(vcpu);
1409 
1410 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1411 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1412 }
1413 
1414 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1415 {
1416 	struct vcpu_svm *svm = to_svm(vcpu);
1417 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1418 	unsigned int i;
1419 
1420 	if (svm->guest_state_loaded)
1421 		return;
1422 
1423 	/*
1424 	 * Certain MSRs are restored on VMEXIT (sev-es), or vmload of host save
1425 	 * area (non-sev-es). Save ones that aren't so we can restore them
1426 	 * individually later.
1427 	 */
1428 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1429 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1430 
1431 	/*
1432 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1433 	 * or subsequent vmload of host save area.
1434 	 */
1435 	if (sev_es_guest(svm->vcpu.kvm)) {
1436 		sev_es_prepare_guest_switch(svm, vcpu->cpu);
1437 	} else {
1438 		vmsave(__sme_page_pa(sd->save_area));
1439 	}
1440 
1441 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1442 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1443 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1444 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1445 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1446 		}
1447 	}
1448 
1449 	/* This assumes that the kernel never uses MSR_TSC_AUX */
1450 	if (static_cpu_has(X86_FEATURE_RDTSCP))
1451 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1452 
1453 	svm->guest_state_loaded = true;
1454 }
1455 
1456 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1457 {
1458 	struct vcpu_svm *svm = to_svm(vcpu);
1459 	unsigned int i;
1460 
1461 	if (!svm->guest_state_loaded)
1462 		return;
1463 
1464 	/*
1465 	 * Certain MSRs are restored on VMEXIT (sev-es), or vmload of host save
1466 	 * area (non-sev-es). Restore the ones that weren't.
1467 	 */
1468 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1469 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1470 
1471 	svm->guest_state_loaded = false;
1472 }
1473 
1474 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1475 {
1476 	struct vcpu_svm *svm = to_svm(vcpu);
1477 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1478 
1479 	if (unlikely(cpu != vcpu->cpu)) {
1480 		svm->asid_generation = 0;
1481 		vmcb_mark_all_dirty(svm->vmcb);
1482 	}
1483 
1484 	if (sd->current_vmcb != svm->vmcb) {
1485 		sd->current_vmcb = svm->vmcb;
1486 		indirect_branch_prediction_barrier();
1487 	}
1488 	avic_vcpu_load(vcpu, cpu);
1489 }
1490 
1491 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1492 {
1493 	avic_vcpu_put(vcpu);
1494 	svm_prepare_host_switch(vcpu);
1495 
1496 	++vcpu->stat.host_state_reload;
1497 }
1498 
1499 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1500 {
1501 	struct vcpu_svm *svm = to_svm(vcpu);
1502 	unsigned long rflags = svm->vmcb->save.rflags;
1503 
1504 	if (svm->nmi_singlestep) {
1505 		/* Hide our flags if they were not set by the guest */
1506 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1507 			rflags &= ~X86_EFLAGS_TF;
1508 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1509 			rflags &= ~X86_EFLAGS_RF;
1510 	}
1511 	return rflags;
1512 }
1513 
1514 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1515 {
1516 	if (to_svm(vcpu)->nmi_singlestep)
1517 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1518 
1519        /*
1520         * Any change of EFLAGS.VM is accompanied by a reload of SS
1521         * (caused by either a task switch or an inter-privilege IRET),
1522         * so we do not need to update the CPL here.
1523         */
1524 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1525 }
1526 
1527 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1528 {
1529 	switch (reg) {
1530 	case VCPU_EXREG_PDPTR:
1531 		BUG_ON(!npt_enabled);
1532 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1533 		break;
1534 	default:
1535 		WARN_ON_ONCE(1);
1536 	}
1537 }
1538 
1539 static void svm_set_vintr(struct vcpu_svm *svm)
1540 {
1541 	struct vmcb_control_area *control;
1542 
1543 	/* The following fields are ignored when AVIC is enabled */
1544 	WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1545 	svm_set_intercept(svm, INTERCEPT_VINTR);
1546 
1547 	/*
1548 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1549 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1550 	 */
1551 	control = &svm->vmcb->control;
1552 	control->int_vector = 0x0;
1553 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1554 	control->int_ctl |= V_IRQ_MASK |
1555 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1556 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1557 }
1558 
1559 static void svm_clear_vintr(struct vcpu_svm *svm)
1560 {
1561 	const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1562 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1563 
1564 	/* Drop int_ctl fields related to VINTR injection.  */
1565 	svm->vmcb->control.int_ctl &= mask;
1566 	if (is_guest_mode(&svm->vcpu)) {
1567 		svm->nested.hsave->control.int_ctl &= mask;
1568 
1569 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1570 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1571 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1572 	}
1573 
1574 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1575 }
1576 
1577 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1578 {
1579 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1580 
1581 	switch (seg) {
1582 	case VCPU_SREG_CS: return &save->cs;
1583 	case VCPU_SREG_DS: return &save->ds;
1584 	case VCPU_SREG_ES: return &save->es;
1585 	case VCPU_SREG_FS: return &save->fs;
1586 	case VCPU_SREG_GS: return &save->gs;
1587 	case VCPU_SREG_SS: return &save->ss;
1588 	case VCPU_SREG_TR: return &save->tr;
1589 	case VCPU_SREG_LDTR: return &save->ldtr;
1590 	}
1591 	BUG();
1592 	return NULL;
1593 }
1594 
1595 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1596 {
1597 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1598 
1599 	return s->base;
1600 }
1601 
1602 static void svm_get_segment(struct kvm_vcpu *vcpu,
1603 			    struct kvm_segment *var, int seg)
1604 {
1605 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1606 
1607 	var->base = s->base;
1608 	var->limit = s->limit;
1609 	var->selector = s->selector;
1610 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1611 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1612 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1613 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1614 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1615 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1616 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1617 
1618 	/*
1619 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1620 	 * However, the SVM spec states that the G bit is not observed by the
1621 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1622 	 * So let's synthesize a legal G bit for all segments, this helps
1623 	 * running KVM nested. It also helps cross-vendor migration, because
1624 	 * Intel's vmentry has a check on the 'G' bit.
1625 	 */
1626 	var->g = s->limit > 0xfffff;
1627 
1628 	/*
1629 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1630 	 * for cross vendor migration purposes by "not present"
1631 	 */
1632 	var->unusable = !var->present;
1633 
1634 	switch (seg) {
1635 	case VCPU_SREG_TR:
1636 		/*
1637 		 * Work around a bug where the busy flag in the tr selector
1638 		 * isn't exposed
1639 		 */
1640 		var->type |= 0x2;
1641 		break;
1642 	case VCPU_SREG_DS:
1643 	case VCPU_SREG_ES:
1644 	case VCPU_SREG_FS:
1645 	case VCPU_SREG_GS:
1646 		/*
1647 		 * The accessed bit must always be set in the segment
1648 		 * descriptor cache, although it can be cleared in the
1649 		 * descriptor, the cached bit always remains at 1. Since
1650 		 * Intel has a check on this, set it here to support
1651 		 * cross-vendor migration.
1652 		 */
1653 		if (!var->unusable)
1654 			var->type |= 0x1;
1655 		break;
1656 	case VCPU_SREG_SS:
1657 		/*
1658 		 * On AMD CPUs sometimes the DB bit in the segment
1659 		 * descriptor is left as 1, although the whole segment has
1660 		 * been made unusable. Clear it here to pass an Intel VMX
1661 		 * entry check when cross vendor migrating.
1662 		 */
1663 		if (var->unusable)
1664 			var->db = 0;
1665 		/* This is symmetric with svm_set_segment() */
1666 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1667 		break;
1668 	}
1669 }
1670 
1671 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1672 {
1673 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1674 
1675 	return save->cpl;
1676 }
1677 
1678 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1679 {
1680 	struct vcpu_svm *svm = to_svm(vcpu);
1681 
1682 	dt->size = svm->vmcb->save.idtr.limit;
1683 	dt->address = svm->vmcb->save.idtr.base;
1684 }
1685 
1686 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1687 {
1688 	struct vcpu_svm *svm = to_svm(vcpu);
1689 
1690 	svm->vmcb->save.idtr.limit = dt->size;
1691 	svm->vmcb->save.idtr.base = dt->address ;
1692 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1693 }
1694 
1695 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1696 {
1697 	struct vcpu_svm *svm = to_svm(vcpu);
1698 
1699 	dt->size = svm->vmcb->save.gdtr.limit;
1700 	dt->address = svm->vmcb->save.gdtr.base;
1701 }
1702 
1703 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1704 {
1705 	struct vcpu_svm *svm = to_svm(vcpu);
1706 
1707 	svm->vmcb->save.gdtr.limit = dt->size;
1708 	svm->vmcb->save.gdtr.base = dt->address ;
1709 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1710 }
1711 
1712 static void update_cr0_intercept(struct vcpu_svm *svm)
1713 {
1714 	ulong gcr0;
1715 	u64 *hcr0;
1716 
1717 	/*
1718 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1719 	 * tracking is done using the CR write traps.
1720 	 */
1721 	if (sev_es_guest(svm->vcpu.kvm))
1722 		return;
1723 
1724 	gcr0 = svm->vcpu.arch.cr0;
1725 	hcr0 = &svm->vmcb->save.cr0;
1726 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1727 		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1728 
1729 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1730 
1731 	if (gcr0 == *hcr0) {
1732 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1733 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1734 	} else {
1735 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1736 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1737 	}
1738 }
1739 
1740 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1741 {
1742 	struct vcpu_svm *svm = to_svm(vcpu);
1743 
1744 #ifdef CONFIG_X86_64
1745 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1746 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1747 			vcpu->arch.efer |= EFER_LMA;
1748 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1749 		}
1750 
1751 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1752 			vcpu->arch.efer &= ~EFER_LMA;
1753 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1754 		}
1755 	}
1756 #endif
1757 	vcpu->arch.cr0 = cr0;
1758 
1759 	if (!npt_enabled)
1760 		cr0 |= X86_CR0_PG | X86_CR0_WP;
1761 
1762 	/*
1763 	 * re-enable caching here because the QEMU bios
1764 	 * does not do it - this results in some delay at
1765 	 * reboot
1766 	 */
1767 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1768 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1769 	svm->vmcb->save.cr0 = cr0;
1770 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1771 	update_cr0_intercept(svm);
1772 }
1773 
1774 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1775 {
1776 	return true;
1777 }
1778 
1779 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1780 {
1781 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1782 	unsigned long old_cr4 = vcpu->arch.cr4;
1783 
1784 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1785 		svm_flush_tlb(vcpu);
1786 
1787 	vcpu->arch.cr4 = cr4;
1788 	if (!npt_enabled)
1789 		cr4 |= X86_CR4_PAE;
1790 	cr4 |= host_cr4_mce;
1791 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1792 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1793 
1794 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1795 		kvm_update_cpuid_runtime(vcpu);
1796 }
1797 
1798 static void svm_set_segment(struct kvm_vcpu *vcpu,
1799 			    struct kvm_segment *var, int seg)
1800 {
1801 	struct vcpu_svm *svm = to_svm(vcpu);
1802 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1803 
1804 	s->base = var->base;
1805 	s->limit = var->limit;
1806 	s->selector = var->selector;
1807 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1808 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1809 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1810 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1811 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1812 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1813 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1814 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1815 
1816 	/*
1817 	 * This is always accurate, except if SYSRET returned to a segment
1818 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1819 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1820 	 * would entail passing the CPL to userspace and back.
1821 	 */
1822 	if (seg == VCPU_SREG_SS)
1823 		/* This is symmetric with svm_get_segment() */
1824 		svm->vmcb->save.cpl = (var->dpl & 3);
1825 
1826 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1827 }
1828 
1829 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1830 {
1831 	struct vcpu_svm *svm = to_svm(vcpu);
1832 
1833 	clr_exception_intercept(svm, BP_VECTOR);
1834 
1835 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1836 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1837 			set_exception_intercept(svm, BP_VECTOR);
1838 	}
1839 }
1840 
1841 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1842 {
1843 	if (sd->next_asid > sd->max_asid) {
1844 		++sd->asid_generation;
1845 		sd->next_asid = sd->min_asid;
1846 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1847 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1848 	}
1849 
1850 	svm->asid_generation = sd->asid_generation;
1851 	svm->asid = sd->next_asid++;
1852 }
1853 
1854 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1855 {
1856 	struct vmcb *vmcb = svm->vmcb;
1857 
1858 	if (svm->vcpu.arch.guest_state_protected)
1859 		return;
1860 
1861 	if (unlikely(value != vmcb->save.dr6)) {
1862 		vmcb->save.dr6 = value;
1863 		vmcb_mark_dirty(vmcb, VMCB_DR);
1864 	}
1865 }
1866 
1867 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1868 {
1869 	struct vcpu_svm *svm = to_svm(vcpu);
1870 
1871 	if (vcpu->arch.guest_state_protected)
1872 		return;
1873 
1874 	get_debugreg(vcpu->arch.db[0], 0);
1875 	get_debugreg(vcpu->arch.db[1], 1);
1876 	get_debugreg(vcpu->arch.db[2], 2);
1877 	get_debugreg(vcpu->arch.db[3], 3);
1878 	/*
1879 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1880 	 * because db_interception might need it.  We can do it before vmentry.
1881 	 */
1882 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1883 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1884 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1885 	set_dr_intercepts(svm);
1886 }
1887 
1888 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1889 {
1890 	struct vcpu_svm *svm = to_svm(vcpu);
1891 
1892 	if (vcpu->arch.guest_state_protected)
1893 		return;
1894 
1895 	svm->vmcb->save.dr7 = value;
1896 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1897 }
1898 
1899 static int pf_interception(struct vcpu_svm *svm)
1900 {
1901 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1902 	u64 error_code = svm->vmcb->control.exit_info_1;
1903 
1904 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1905 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1906 			svm->vmcb->control.insn_bytes : NULL,
1907 			svm->vmcb->control.insn_len);
1908 }
1909 
1910 static int npf_interception(struct vcpu_svm *svm)
1911 {
1912 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1913 	u64 error_code = svm->vmcb->control.exit_info_1;
1914 
1915 	trace_kvm_page_fault(fault_address, error_code);
1916 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1917 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1918 			svm->vmcb->control.insn_bytes : NULL,
1919 			svm->vmcb->control.insn_len);
1920 }
1921 
1922 static int db_interception(struct vcpu_svm *svm)
1923 {
1924 	struct kvm_run *kvm_run = svm->vcpu.run;
1925 	struct kvm_vcpu *vcpu = &svm->vcpu;
1926 
1927 	if (!(svm->vcpu.guest_debug &
1928 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1929 		!svm->nmi_singlestep) {
1930 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1931 		kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1932 		return 1;
1933 	}
1934 
1935 	if (svm->nmi_singlestep) {
1936 		disable_nmi_singlestep(svm);
1937 		/* Make sure we check for pending NMIs upon entry */
1938 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1939 	}
1940 
1941 	if (svm->vcpu.guest_debug &
1942 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1943 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1944 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1945 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1946 		kvm_run->debug.arch.pc =
1947 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1948 		kvm_run->debug.arch.exception = DB_VECTOR;
1949 		return 0;
1950 	}
1951 
1952 	return 1;
1953 }
1954 
1955 static int bp_interception(struct vcpu_svm *svm)
1956 {
1957 	struct kvm_run *kvm_run = svm->vcpu.run;
1958 
1959 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1960 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1961 	kvm_run->debug.arch.exception = BP_VECTOR;
1962 	return 0;
1963 }
1964 
1965 static int ud_interception(struct vcpu_svm *svm)
1966 {
1967 	return handle_ud(&svm->vcpu);
1968 }
1969 
1970 static int ac_interception(struct vcpu_svm *svm)
1971 {
1972 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1973 	return 1;
1974 }
1975 
1976 static bool is_erratum_383(void)
1977 {
1978 	int err, i;
1979 	u64 value;
1980 
1981 	if (!erratum_383_found)
1982 		return false;
1983 
1984 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1985 	if (err)
1986 		return false;
1987 
1988 	/* Bit 62 may or may not be set for this mce */
1989 	value &= ~(1ULL << 62);
1990 
1991 	if (value != 0xb600000000010015ULL)
1992 		return false;
1993 
1994 	/* Clear MCi_STATUS registers */
1995 	for (i = 0; i < 6; ++i)
1996 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1997 
1998 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1999 	if (!err) {
2000 		u32 low, high;
2001 
2002 		value &= ~(1ULL << 2);
2003 		low    = lower_32_bits(value);
2004 		high   = upper_32_bits(value);
2005 
2006 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2007 	}
2008 
2009 	/* Flush tlb to evict multi-match entries */
2010 	__flush_tlb_all();
2011 
2012 	return true;
2013 }
2014 
2015 static void svm_handle_mce(struct vcpu_svm *svm)
2016 {
2017 	if (is_erratum_383()) {
2018 		/*
2019 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2020 		 * guest.
2021 		 */
2022 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2023 
2024 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2025 
2026 		return;
2027 	}
2028 
2029 	/*
2030 	 * On an #MC intercept the MCE handler is not called automatically in
2031 	 * the host. So do it by hand here.
2032 	 */
2033 	kvm_machine_check();
2034 }
2035 
2036 static int mc_interception(struct vcpu_svm *svm)
2037 {
2038 	return 1;
2039 }
2040 
2041 static int shutdown_interception(struct vcpu_svm *svm)
2042 {
2043 	struct kvm_run *kvm_run = svm->vcpu.run;
2044 
2045 	/*
2046 	 * The VM save area has already been encrypted so it
2047 	 * cannot be reinitialized - just terminate.
2048 	 */
2049 	if (sev_es_guest(svm->vcpu.kvm))
2050 		return -EINVAL;
2051 
2052 	/*
2053 	 * VMCB is undefined after a SHUTDOWN intercept
2054 	 * so reinitialize it.
2055 	 */
2056 	clear_page(svm->vmcb);
2057 	init_vmcb(svm);
2058 
2059 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2060 	return 0;
2061 }
2062 
2063 static int io_interception(struct vcpu_svm *svm)
2064 {
2065 	struct kvm_vcpu *vcpu = &svm->vcpu;
2066 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2067 	int size, in, string;
2068 	unsigned port;
2069 
2070 	++svm->vcpu.stat.io_exits;
2071 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2072 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2073 	port = io_info >> 16;
2074 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2075 
2076 	if (string) {
2077 		if (sev_es_guest(vcpu->kvm))
2078 			return sev_es_string_io(svm, size, port, in);
2079 		else
2080 			return kvm_emulate_instruction(vcpu, 0);
2081 	}
2082 
2083 	svm->next_rip = svm->vmcb->control.exit_info_2;
2084 
2085 	return kvm_fast_pio(&svm->vcpu, size, port, in);
2086 }
2087 
2088 static int nmi_interception(struct vcpu_svm *svm)
2089 {
2090 	return 1;
2091 }
2092 
2093 static int intr_interception(struct vcpu_svm *svm)
2094 {
2095 	++svm->vcpu.stat.irq_exits;
2096 	return 1;
2097 }
2098 
2099 static int nop_on_interception(struct vcpu_svm *svm)
2100 {
2101 	return 1;
2102 }
2103 
2104 static int halt_interception(struct vcpu_svm *svm)
2105 {
2106 	return kvm_emulate_halt(&svm->vcpu);
2107 }
2108 
2109 static int vmmcall_interception(struct vcpu_svm *svm)
2110 {
2111 	return kvm_emulate_hypercall(&svm->vcpu);
2112 }
2113 
2114 static int vmload_interception(struct vcpu_svm *svm)
2115 {
2116 	struct vmcb *nested_vmcb;
2117 	struct kvm_host_map map;
2118 	int ret;
2119 
2120 	if (nested_svm_check_permissions(svm))
2121 		return 1;
2122 
2123 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2124 	if (ret) {
2125 		if (ret == -EINVAL)
2126 			kvm_inject_gp(&svm->vcpu, 0);
2127 		return 1;
2128 	}
2129 
2130 	nested_vmcb = map.hva;
2131 
2132 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2133 
2134 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2135 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2136 
2137 	return ret;
2138 }
2139 
2140 static int vmsave_interception(struct vcpu_svm *svm)
2141 {
2142 	struct vmcb *nested_vmcb;
2143 	struct kvm_host_map map;
2144 	int ret;
2145 
2146 	if (nested_svm_check_permissions(svm))
2147 		return 1;
2148 
2149 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2150 	if (ret) {
2151 		if (ret == -EINVAL)
2152 			kvm_inject_gp(&svm->vcpu, 0);
2153 		return 1;
2154 	}
2155 
2156 	nested_vmcb = map.hva;
2157 
2158 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2159 
2160 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2161 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2162 
2163 	return ret;
2164 }
2165 
2166 static int vmrun_interception(struct vcpu_svm *svm)
2167 {
2168 	if (nested_svm_check_permissions(svm))
2169 		return 1;
2170 
2171 	return nested_svm_vmrun(svm);
2172 }
2173 
2174 enum {
2175 	NONE_SVM_INSTR,
2176 	SVM_INSTR_VMRUN,
2177 	SVM_INSTR_VMLOAD,
2178 	SVM_INSTR_VMSAVE,
2179 };
2180 
2181 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2182 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2183 {
2184 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2185 
2186 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2187 		return NONE_SVM_INSTR;
2188 
2189 	switch (ctxt->modrm) {
2190 	case 0xd8: /* VMRUN */
2191 		return SVM_INSTR_VMRUN;
2192 	case 0xda: /* VMLOAD */
2193 		return SVM_INSTR_VMLOAD;
2194 	case 0xdb: /* VMSAVE */
2195 		return SVM_INSTR_VMSAVE;
2196 	default:
2197 		break;
2198 	}
2199 
2200 	return NONE_SVM_INSTR;
2201 }
2202 
2203 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2204 {
2205 	const int guest_mode_exit_codes[] = {
2206 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2207 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2208 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2209 	};
2210 	int (*const svm_instr_handlers[])(struct vcpu_svm *svm) = {
2211 		[SVM_INSTR_VMRUN] = vmrun_interception,
2212 		[SVM_INSTR_VMLOAD] = vmload_interception,
2213 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2214 	};
2215 	struct vcpu_svm *svm = to_svm(vcpu);
2216 	int ret;
2217 
2218 	if (is_guest_mode(vcpu)) {
2219 		svm->vmcb->control.exit_code = guest_mode_exit_codes[opcode];
2220 		svm->vmcb->control.exit_info_1 = 0;
2221 		svm->vmcb->control.exit_info_2 = 0;
2222 
2223 		/* Returns '1' or -errno on failure, '0' on success. */
2224 		ret = nested_svm_vmexit(svm);
2225 		if (ret)
2226 			return ret;
2227 		return 1;
2228 	}
2229 	return svm_instr_handlers[opcode](svm);
2230 }
2231 
2232 /*
2233  * #GP handling code. Note that #GP can be triggered under the following two
2234  * cases:
2235  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2236  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2237  *      regions (e.g. SMM memory on host).
2238  *   2) VMware backdoor
2239  */
2240 static int gp_interception(struct vcpu_svm *svm)
2241 {
2242 	struct kvm_vcpu *vcpu = &svm->vcpu;
2243 	u32 error_code = svm->vmcb->control.exit_info_1;
2244 	int opcode;
2245 
2246 	/* Both #GP cases have zero error_code */
2247 	if (error_code)
2248 		goto reinject;
2249 
2250 	/* Decode the instruction for usage later */
2251 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2252 		goto reinject;
2253 
2254 	opcode = svm_instr_opcode(vcpu);
2255 
2256 	if (opcode == NONE_SVM_INSTR) {
2257 		if (!enable_vmware_backdoor)
2258 			goto reinject;
2259 
2260 		/*
2261 		 * VMware backdoor emulation on #GP interception only handles
2262 		 * IN{S}, OUT{S}, and RDPMC.
2263 		 */
2264 		if (!is_guest_mode(vcpu))
2265 			return kvm_emulate_instruction(vcpu,
2266 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2267 	} else
2268 		return emulate_svm_instr(vcpu, opcode);
2269 
2270 reinject:
2271 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2272 	return 1;
2273 }
2274 
2275 void svm_set_gif(struct vcpu_svm *svm, bool value)
2276 {
2277 	if (value) {
2278 		/*
2279 		 * If VGIF is enabled, the STGI intercept is only added to
2280 		 * detect the opening of the SMI/NMI window; remove it now.
2281 		 * Likewise, clear the VINTR intercept, we will set it
2282 		 * again while processing KVM_REQ_EVENT if needed.
2283 		 */
2284 		if (vgif_enabled(svm))
2285 			svm_clr_intercept(svm, INTERCEPT_STGI);
2286 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2287 			svm_clear_vintr(svm);
2288 
2289 		enable_gif(svm);
2290 		if (svm->vcpu.arch.smi_pending ||
2291 		    svm->vcpu.arch.nmi_pending ||
2292 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2293 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2294 	} else {
2295 		disable_gif(svm);
2296 
2297 		/*
2298 		 * After a CLGI no interrupts should come.  But if vGIF is
2299 		 * in use, we still rely on the VINTR intercept (rather than
2300 		 * STGI) to detect an open interrupt window.
2301 		*/
2302 		if (!vgif_enabled(svm))
2303 			svm_clear_vintr(svm);
2304 	}
2305 }
2306 
2307 static int stgi_interception(struct vcpu_svm *svm)
2308 {
2309 	int ret;
2310 
2311 	if (nested_svm_check_permissions(svm))
2312 		return 1;
2313 
2314 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2315 	svm_set_gif(svm, true);
2316 	return ret;
2317 }
2318 
2319 static int clgi_interception(struct vcpu_svm *svm)
2320 {
2321 	int ret;
2322 
2323 	if (nested_svm_check_permissions(svm))
2324 		return 1;
2325 
2326 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2327 	svm_set_gif(svm, false);
2328 	return ret;
2329 }
2330 
2331 static int invlpga_interception(struct vcpu_svm *svm)
2332 {
2333 	struct kvm_vcpu *vcpu = &svm->vcpu;
2334 
2335 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2336 			  kvm_rax_read(&svm->vcpu));
2337 
2338 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2339 	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2340 
2341 	return kvm_skip_emulated_instruction(&svm->vcpu);
2342 }
2343 
2344 static int skinit_interception(struct vcpu_svm *svm)
2345 {
2346 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2347 
2348 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2349 	return 1;
2350 }
2351 
2352 static int wbinvd_interception(struct vcpu_svm *svm)
2353 {
2354 	return kvm_emulate_wbinvd(&svm->vcpu);
2355 }
2356 
2357 static int xsetbv_interception(struct vcpu_svm *svm)
2358 {
2359 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2360 	u32 index = kvm_rcx_read(&svm->vcpu);
2361 
2362 	int err = kvm_set_xcr(&svm->vcpu, index, new_bv);
2363 	return kvm_complete_insn_gp(&svm->vcpu, err);
2364 }
2365 
2366 static int rdpru_interception(struct vcpu_svm *svm)
2367 {
2368 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2369 	return 1;
2370 }
2371 
2372 static int task_switch_interception(struct vcpu_svm *svm)
2373 {
2374 	u16 tss_selector;
2375 	int reason;
2376 	int int_type = svm->vmcb->control.exit_int_info &
2377 		SVM_EXITINTINFO_TYPE_MASK;
2378 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2379 	uint32_t type =
2380 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2381 	uint32_t idt_v =
2382 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2383 	bool has_error_code = false;
2384 	u32 error_code = 0;
2385 
2386 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2387 
2388 	if (svm->vmcb->control.exit_info_2 &
2389 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2390 		reason = TASK_SWITCH_IRET;
2391 	else if (svm->vmcb->control.exit_info_2 &
2392 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2393 		reason = TASK_SWITCH_JMP;
2394 	else if (idt_v)
2395 		reason = TASK_SWITCH_GATE;
2396 	else
2397 		reason = TASK_SWITCH_CALL;
2398 
2399 	if (reason == TASK_SWITCH_GATE) {
2400 		switch (type) {
2401 		case SVM_EXITINTINFO_TYPE_NMI:
2402 			svm->vcpu.arch.nmi_injected = false;
2403 			break;
2404 		case SVM_EXITINTINFO_TYPE_EXEPT:
2405 			if (svm->vmcb->control.exit_info_2 &
2406 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2407 				has_error_code = true;
2408 				error_code =
2409 					(u32)svm->vmcb->control.exit_info_2;
2410 			}
2411 			kvm_clear_exception_queue(&svm->vcpu);
2412 			break;
2413 		case SVM_EXITINTINFO_TYPE_INTR:
2414 			kvm_clear_interrupt_queue(&svm->vcpu);
2415 			break;
2416 		default:
2417 			break;
2418 		}
2419 	}
2420 
2421 	if (reason != TASK_SWITCH_GATE ||
2422 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2423 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2424 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2425 		if (!skip_emulated_instruction(&svm->vcpu))
2426 			return 0;
2427 	}
2428 
2429 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2430 		int_vec = -1;
2431 
2432 	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2433 			       has_error_code, error_code);
2434 }
2435 
2436 static int cpuid_interception(struct vcpu_svm *svm)
2437 {
2438 	return kvm_emulate_cpuid(&svm->vcpu);
2439 }
2440 
2441 static int iret_interception(struct vcpu_svm *svm)
2442 {
2443 	++svm->vcpu.stat.nmi_window_exits;
2444 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2445 	if (!sev_es_guest(svm->vcpu.kvm)) {
2446 		svm_clr_intercept(svm, INTERCEPT_IRET);
2447 		svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2448 	}
2449 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2450 	return 1;
2451 }
2452 
2453 static int invd_interception(struct vcpu_svm *svm)
2454 {
2455 	/* Treat an INVD instruction as a NOP and just skip it. */
2456 	return kvm_skip_emulated_instruction(&svm->vcpu);
2457 }
2458 
2459 static int invlpg_interception(struct vcpu_svm *svm)
2460 {
2461 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2462 		return kvm_emulate_instruction(&svm->vcpu, 0);
2463 
2464 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2465 	return kvm_skip_emulated_instruction(&svm->vcpu);
2466 }
2467 
2468 static int emulate_on_interception(struct vcpu_svm *svm)
2469 {
2470 	return kvm_emulate_instruction(&svm->vcpu, 0);
2471 }
2472 
2473 static int rsm_interception(struct vcpu_svm *svm)
2474 {
2475 	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2476 }
2477 
2478 static int rdpmc_interception(struct vcpu_svm *svm)
2479 {
2480 	int err;
2481 
2482 	if (!nrips)
2483 		return emulate_on_interception(svm);
2484 
2485 	err = kvm_rdpmc(&svm->vcpu);
2486 	return kvm_complete_insn_gp(&svm->vcpu, err);
2487 }
2488 
2489 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2490 					    unsigned long val)
2491 {
2492 	unsigned long cr0 = svm->vcpu.arch.cr0;
2493 	bool ret = false;
2494 
2495 	if (!is_guest_mode(&svm->vcpu) ||
2496 	    (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2497 		return false;
2498 
2499 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2500 	val &= ~SVM_CR0_SELECTIVE_MASK;
2501 
2502 	if (cr0 ^ val) {
2503 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2504 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2505 	}
2506 
2507 	return ret;
2508 }
2509 
2510 #define CR_VALID (1ULL << 63)
2511 
2512 static int cr_interception(struct vcpu_svm *svm)
2513 {
2514 	int reg, cr;
2515 	unsigned long val;
2516 	int err;
2517 
2518 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2519 		return emulate_on_interception(svm);
2520 
2521 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2522 		return emulate_on_interception(svm);
2523 
2524 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2525 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2526 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2527 	else
2528 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2529 
2530 	err = 0;
2531 	if (cr >= 16) { /* mov to cr */
2532 		cr -= 16;
2533 		val = kvm_register_read(&svm->vcpu, reg);
2534 		trace_kvm_cr_write(cr, val);
2535 		switch (cr) {
2536 		case 0:
2537 			if (!check_selective_cr0_intercepted(svm, val))
2538 				err = kvm_set_cr0(&svm->vcpu, val);
2539 			else
2540 				return 1;
2541 
2542 			break;
2543 		case 3:
2544 			err = kvm_set_cr3(&svm->vcpu, val);
2545 			break;
2546 		case 4:
2547 			err = kvm_set_cr4(&svm->vcpu, val);
2548 			break;
2549 		case 8:
2550 			err = kvm_set_cr8(&svm->vcpu, val);
2551 			break;
2552 		default:
2553 			WARN(1, "unhandled write to CR%d", cr);
2554 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2555 			return 1;
2556 		}
2557 	} else { /* mov from cr */
2558 		switch (cr) {
2559 		case 0:
2560 			val = kvm_read_cr0(&svm->vcpu);
2561 			break;
2562 		case 2:
2563 			val = svm->vcpu.arch.cr2;
2564 			break;
2565 		case 3:
2566 			val = kvm_read_cr3(&svm->vcpu);
2567 			break;
2568 		case 4:
2569 			val = kvm_read_cr4(&svm->vcpu);
2570 			break;
2571 		case 8:
2572 			val = kvm_get_cr8(&svm->vcpu);
2573 			break;
2574 		default:
2575 			WARN(1, "unhandled read from CR%d", cr);
2576 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2577 			return 1;
2578 		}
2579 		kvm_register_write(&svm->vcpu, reg, val);
2580 		trace_kvm_cr_read(cr, val);
2581 	}
2582 	return kvm_complete_insn_gp(&svm->vcpu, err);
2583 }
2584 
2585 static int cr_trap(struct vcpu_svm *svm)
2586 {
2587 	struct kvm_vcpu *vcpu = &svm->vcpu;
2588 	unsigned long old_value, new_value;
2589 	unsigned int cr;
2590 	int ret = 0;
2591 
2592 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2593 
2594 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2595 	switch (cr) {
2596 	case 0:
2597 		old_value = kvm_read_cr0(vcpu);
2598 		svm_set_cr0(vcpu, new_value);
2599 
2600 		kvm_post_set_cr0(vcpu, old_value, new_value);
2601 		break;
2602 	case 4:
2603 		old_value = kvm_read_cr4(vcpu);
2604 		svm_set_cr4(vcpu, new_value);
2605 
2606 		kvm_post_set_cr4(vcpu, old_value, new_value);
2607 		break;
2608 	case 8:
2609 		ret = kvm_set_cr8(&svm->vcpu, new_value);
2610 		break;
2611 	default:
2612 		WARN(1, "unhandled CR%d write trap", cr);
2613 		kvm_queue_exception(vcpu, UD_VECTOR);
2614 		return 1;
2615 	}
2616 
2617 	return kvm_complete_insn_gp(vcpu, ret);
2618 }
2619 
2620 static int dr_interception(struct vcpu_svm *svm)
2621 {
2622 	int reg, dr;
2623 	unsigned long val;
2624 	int err = 0;
2625 
2626 	if (svm->vcpu.guest_debug == 0) {
2627 		/*
2628 		 * No more DR vmexits; force a reload of the debug registers
2629 		 * and reenter on this instruction.  The next vmexit will
2630 		 * retrieve the full state of the debug registers.
2631 		 */
2632 		clr_dr_intercepts(svm);
2633 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2634 		return 1;
2635 	}
2636 
2637 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2638 		return emulate_on_interception(svm);
2639 
2640 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2641 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2642 	if (dr >= 16) { /* mov to DRn  */
2643 		dr -= 16;
2644 		val = kvm_register_read(&svm->vcpu, reg);
2645 		err = kvm_set_dr(&svm->vcpu, dr, val);
2646 	} else {
2647 		kvm_get_dr(&svm->vcpu, dr, &val);
2648 		kvm_register_write(&svm->vcpu, reg, val);
2649 	}
2650 
2651 	return kvm_complete_insn_gp(&svm->vcpu, err);
2652 }
2653 
2654 static int cr8_write_interception(struct vcpu_svm *svm)
2655 {
2656 	struct kvm_run *kvm_run = svm->vcpu.run;
2657 	int r;
2658 
2659 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2660 	/* instruction emulation calls kvm_set_cr8() */
2661 	r = cr_interception(svm);
2662 	if (lapic_in_kernel(&svm->vcpu))
2663 		return r;
2664 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2665 		return r;
2666 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2667 	return 0;
2668 }
2669 
2670 static int efer_trap(struct vcpu_svm *svm)
2671 {
2672 	struct msr_data msr_info;
2673 	int ret;
2674 
2675 	/*
2676 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2677 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2678 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2679 	 * the guest doesn't have X86_FEATURE_SVM.
2680 	 */
2681 	msr_info.host_initiated = false;
2682 	msr_info.index = MSR_EFER;
2683 	msr_info.data = svm->vmcb->control.exit_info_1 & ~EFER_SVME;
2684 	ret = kvm_set_msr_common(&svm->vcpu, &msr_info);
2685 
2686 	return kvm_complete_insn_gp(&svm->vcpu, ret);
2687 }
2688 
2689 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2690 {
2691 	msr->data = 0;
2692 
2693 	switch (msr->index) {
2694 	case MSR_F10H_DECFG:
2695 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2696 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2697 		break;
2698 	case MSR_IA32_PERF_CAPABILITIES:
2699 		return 0;
2700 	default:
2701 		return KVM_MSR_RET_INVALID;
2702 	}
2703 
2704 	return 0;
2705 }
2706 
2707 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2708 {
2709 	struct vcpu_svm *svm = to_svm(vcpu);
2710 
2711 	switch (msr_info->index) {
2712 	case MSR_STAR:
2713 		msr_info->data = svm->vmcb->save.star;
2714 		break;
2715 #ifdef CONFIG_X86_64
2716 	case MSR_LSTAR:
2717 		msr_info->data = svm->vmcb->save.lstar;
2718 		break;
2719 	case MSR_CSTAR:
2720 		msr_info->data = svm->vmcb->save.cstar;
2721 		break;
2722 	case MSR_KERNEL_GS_BASE:
2723 		msr_info->data = svm->vmcb->save.kernel_gs_base;
2724 		break;
2725 	case MSR_SYSCALL_MASK:
2726 		msr_info->data = svm->vmcb->save.sfmask;
2727 		break;
2728 #endif
2729 	case MSR_IA32_SYSENTER_CS:
2730 		msr_info->data = svm->vmcb->save.sysenter_cs;
2731 		break;
2732 	case MSR_IA32_SYSENTER_EIP:
2733 		msr_info->data = svm->sysenter_eip;
2734 		break;
2735 	case MSR_IA32_SYSENTER_ESP:
2736 		msr_info->data = svm->sysenter_esp;
2737 		break;
2738 	case MSR_TSC_AUX:
2739 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2740 			return 1;
2741 		msr_info->data = svm->tsc_aux;
2742 		break;
2743 	/*
2744 	 * Nobody will change the following 5 values in the VMCB so we can
2745 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2746 	 * implemented.
2747 	 */
2748 	case MSR_IA32_DEBUGCTLMSR:
2749 		msr_info->data = svm->vmcb->save.dbgctl;
2750 		break;
2751 	case MSR_IA32_LASTBRANCHFROMIP:
2752 		msr_info->data = svm->vmcb->save.br_from;
2753 		break;
2754 	case MSR_IA32_LASTBRANCHTOIP:
2755 		msr_info->data = svm->vmcb->save.br_to;
2756 		break;
2757 	case MSR_IA32_LASTINTFROMIP:
2758 		msr_info->data = svm->vmcb->save.last_excp_from;
2759 		break;
2760 	case MSR_IA32_LASTINTTOIP:
2761 		msr_info->data = svm->vmcb->save.last_excp_to;
2762 		break;
2763 	case MSR_VM_HSAVE_PA:
2764 		msr_info->data = svm->nested.hsave_msr;
2765 		break;
2766 	case MSR_VM_CR:
2767 		msr_info->data = svm->nested.vm_cr_msr;
2768 		break;
2769 	case MSR_IA32_SPEC_CTRL:
2770 		if (!msr_info->host_initiated &&
2771 		    !guest_has_spec_ctrl_msr(vcpu))
2772 			return 1;
2773 
2774 		msr_info->data = svm->spec_ctrl;
2775 		break;
2776 	case MSR_AMD64_VIRT_SPEC_CTRL:
2777 		if (!msr_info->host_initiated &&
2778 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2779 			return 1;
2780 
2781 		msr_info->data = svm->virt_spec_ctrl;
2782 		break;
2783 	case MSR_F15H_IC_CFG: {
2784 
2785 		int family, model;
2786 
2787 		family = guest_cpuid_family(vcpu);
2788 		model  = guest_cpuid_model(vcpu);
2789 
2790 		if (family < 0 || model < 0)
2791 			return kvm_get_msr_common(vcpu, msr_info);
2792 
2793 		msr_info->data = 0;
2794 
2795 		if (family == 0x15 &&
2796 		    (model >= 0x2 && model < 0x20))
2797 			msr_info->data = 0x1E;
2798 		}
2799 		break;
2800 	case MSR_F10H_DECFG:
2801 		msr_info->data = svm->msr_decfg;
2802 		break;
2803 	default:
2804 		return kvm_get_msr_common(vcpu, msr_info);
2805 	}
2806 	return 0;
2807 }
2808 
2809 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2810 {
2811 	struct vcpu_svm *svm = to_svm(vcpu);
2812 	if (!sev_es_guest(svm->vcpu.kvm) || !err)
2813 		return kvm_complete_insn_gp(&svm->vcpu, err);
2814 
2815 	ghcb_set_sw_exit_info_1(svm->ghcb, 1);
2816 	ghcb_set_sw_exit_info_2(svm->ghcb,
2817 				X86_TRAP_GP |
2818 				SVM_EVTINJ_TYPE_EXEPT |
2819 				SVM_EVTINJ_VALID);
2820 	return 1;
2821 }
2822 
2823 static int rdmsr_interception(struct vcpu_svm *svm)
2824 {
2825 	return kvm_emulate_rdmsr(&svm->vcpu);
2826 }
2827 
2828 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2829 {
2830 	struct vcpu_svm *svm = to_svm(vcpu);
2831 	int svm_dis, chg_mask;
2832 
2833 	if (data & ~SVM_VM_CR_VALID_MASK)
2834 		return 1;
2835 
2836 	chg_mask = SVM_VM_CR_VALID_MASK;
2837 
2838 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2839 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2840 
2841 	svm->nested.vm_cr_msr &= ~chg_mask;
2842 	svm->nested.vm_cr_msr |= (data & chg_mask);
2843 
2844 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2845 
2846 	/* check for svm_disable while efer.svme is set */
2847 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2848 		return 1;
2849 
2850 	return 0;
2851 }
2852 
2853 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2854 {
2855 	struct vcpu_svm *svm = to_svm(vcpu);
2856 
2857 	u32 ecx = msr->index;
2858 	u64 data = msr->data;
2859 	switch (ecx) {
2860 	case MSR_IA32_CR_PAT:
2861 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2862 			return 1;
2863 		vcpu->arch.pat = data;
2864 		svm->vmcb->save.g_pat = data;
2865 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2866 		break;
2867 	case MSR_IA32_SPEC_CTRL:
2868 		if (!msr->host_initiated &&
2869 		    !guest_has_spec_ctrl_msr(vcpu))
2870 			return 1;
2871 
2872 		if (kvm_spec_ctrl_test_value(data))
2873 			return 1;
2874 
2875 		svm->spec_ctrl = data;
2876 		if (!data)
2877 			break;
2878 
2879 		/*
2880 		 * For non-nested:
2881 		 * When it's written (to non-zero) for the first time, pass
2882 		 * it through.
2883 		 *
2884 		 * For nested:
2885 		 * The handling of the MSR bitmap for L2 guests is done in
2886 		 * nested_svm_vmrun_msrpm.
2887 		 * We update the L1 MSR bit as well since it will end up
2888 		 * touching the MSR anyway now.
2889 		 */
2890 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2891 		break;
2892 	case MSR_IA32_PRED_CMD:
2893 		if (!msr->host_initiated &&
2894 		    !guest_has_pred_cmd_msr(vcpu))
2895 			return 1;
2896 
2897 		if (data & ~PRED_CMD_IBPB)
2898 			return 1;
2899 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2900 			return 1;
2901 		if (!data)
2902 			break;
2903 
2904 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2905 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2906 		break;
2907 	case MSR_AMD64_VIRT_SPEC_CTRL:
2908 		if (!msr->host_initiated &&
2909 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2910 			return 1;
2911 
2912 		if (data & ~SPEC_CTRL_SSBD)
2913 			return 1;
2914 
2915 		svm->virt_spec_ctrl = data;
2916 		break;
2917 	case MSR_STAR:
2918 		svm->vmcb->save.star = data;
2919 		break;
2920 #ifdef CONFIG_X86_64
2921 	case MSR_LSTAR:
2922 		svm->vmcb->save.lstar = data;
2923 		break;
2924 	case MSR_CSTAR:
2925 		svm->vmcb->save.cstar = data;
2926 		break;
2927 	case MSR_KERNEL_GS_BASE:
2928 		svm->vmcb->save.kernel_gs_base = data;
2929 		break;
2930 	case MSR_SYSCALL_MASK:
2931 		svm->vmcb->save.sfmask = data;
2932 		break;
2933 #endif
2934 	case MSR_IA32_SYSENTER_CS:
2935 		svm->vmcb->save.sysenter_cs = data;
2936 		break;
2937 	case MSR_IA32_SYSENTER_EIP:
2938 		svm->sysenter_eip = data;
2939 		svm->vmcb->save.sysenter_eip = data;
2940 		break;
2941 	case MSR_IA32_SYSENTER_ESP:
2942 		svm->sysenter_esp = data;
2943 		svm->vmcb->save.sysenter_esp = data;
2944 		break;
2945 	case MSR_TSC_AUX:
2946 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2947 			return 1;
2948 
2949 		/*
2950 		 * This is rare, so we update the MSR here instead of using
2951 		 * direct_access_msrs.  Doing that would require a rdmsr in
2952 		 * svm_vcpu_put.
2953 		 */
2954 		svm->tsc_aux = data;
2955 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2956 		break;
2957 	case MSR_IA32_DEBUGCTLMSR:
2958 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2959 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2960 				    __func__, data);
2961 			break;
2962 		}
2963 		if (data & DEBUGCTL_RESERVED_BITS)
2964 			return 1;
2965 
2966 		svm->vmcb->save.dbgctl = data;
2967 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2968 		if (data & (1ULL<<0))
2969 			svm_enable_lbrv(vcpu);
2970 		else
2971 			svm_disable_lbrv(vcpu);
2972 		break;
2973 	case MSR_VM_HSAVE_PA:
2974 		svm->nested.hsave_msr = data;
2975 		break;
2976 	case MSR_VM_CR:
2977 		return svm_set_vm_cr(vcpu, data);
2978 	case MSR_VM_IGNNE:
2979 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2980 		break;
2981 	case MSR_F10H_DECFG: {
2982 		struct kvm_msr_entry msr_entry;
2983 
2984 		msr_entry.index = msr->index;
2985 		if (svm_get_msr_feature(&msr_entry))
2986 			return 1;
2987 
2988 		/* Check the supported bits */
2989 		if (data & ~msr_entry.data)
2990 			return 1;
2991 
2992 		/* Don't allow the guest to change a bit, #GP */
2993 		if (!msr->host_initiated && (data ^ msr_entry.data))
2994 			return 1;
2995 
2996 		svm->msr_decfg = data;
2997 		break;
2998 	}
2999 	case MSR_IA32_APICBASE:
3000 		if (kvm_vcpu_apicv_active(vcpu))
3001 			avic_update_vapic_bar(to_svm(vcpu), data);
3002 		fallthrough;
3003 	default:
3004 		return kvm_set_msr_common(vcpu, msr);
3005 	}
3006 	return 0;
3007 }
3008 
3009 static int wrmsr_interception(struct vcpu_svm *svm)
3010 {
3011 	return kvm_emulate_wrmsr(&svm->vcpu);
3012 }
3013 
3014 static int msr_interception(struct vcpu_svm *svm)
3015 {
3016 	if (svm->vmcb->control.exit_info_1)
3017 		return wrmsr_interception(svm);
3018 	else
3019 		return rdmsr_interception(svm);
3020 }
3021 
3022 static int interrupt_window_interception(struct vcpu_svm *svm)
3023 {
3024 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3025 	svm_clear_vintr(svm);
3026 
3027 	/*
3028 	 * For AVIC, the only reason to end up here is ExtINTs.
3029 	 * In this case AVIC was temporarily disabled for
3030 	 * requesting the IRQ window and we have to re-enable it.
3031 	 */
3032 	svm_toggle_avic_for_irq_window(&svm->vcpu, true);
3033 
3034 	++svm->vcpu.stat.irq_window_exits;
3035 	return 1;
3036 }
3037 
3038 static int pause_interception(struct vcpu_svm *svm)
3039 {
3040 	struct kvm_vcpu *vcpu = &svm->vcpu;
3041 	bool in_kernel;
3042 
3043 	/*
3044 	 * CPL is not made available for an SEV-ES guest, therefore
3045 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3046 	 * set in_kernel to false as well.
3047 	 */
3048 	in_kernel = !sev_es_guest(svm->vcpu.kvm) && svm_get_cpl(vcpu) == 0;
3049 
3050 	if (!kvm_pause_in_guest(vcpu->kvm))
3051 		grow_ple_window(vcpu);
3052 
3053 	kvm_vcpu_on_spin(vcpu, in_kernel);
3054 	return 1;
3055 }
3056 
3057 static int nop_interception(struct vcpu_svm *svm)
3058 {
3059 	return kvm_skip_emulated_instruction(&(svm->vcpu));
3060 }
3061 
3062 static int monitor_interception(struct vcpu_svm *svm)
3063 {
3064 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3065 	return nop_interception(svm);
3066 }
3067 
3068 static int mwait_interception(struct vcpu_svm *svm)
3069 {
3070 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3071 	return nop_interception(svm);
3072 }
3073 
3074 static int invpcid_interception(struct vcpu_svm *svm)
3075 {
3076 	struct kvm_vcpu *vcpu = &svm->vcpu;
3077 	unsigned long type;
3078 	gva_t gva;
3079 
3080 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3081 		kvm_queue_exception(vcpu, UD_VECTOR);
3082 		return 1;
3083 	}
3084 
3085 	/*
3086 	 * For an INVPCID intercept:
3087 	 * EXITINFO1 provides the linear address of the memory operand.
3088 	 * EXITINFO2 provides the contents of the register operand.
3089 	 */
3090 	type = svm->vmcb->control.exit_info_2;
3091 	gva = svm->vmcb->control.exit_info_1;
3092 
3093 	if (type > 3) {
3094 		kvm_inject_gp(vcpu, 0);
3095 		return 1;
3096 	}
3097 
3098 	return kvm_handle_invpcid(vcpu, type, gva);
3099 }
3100 
3101 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3102 	[SVM_EXIT_READ_CR0]			= cr_interception,
3103 	[SVM_EXIT_READ_CR3]			= cr_interception,
3104 	[SVM_EXIT_READ_CR4]			= cr_interception,
3105 	[SVM_EXIT_READ_CR8]			= cr_interception,
3106 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3107 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3108 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3109 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3110 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3111 	[SVM_EXIT_READ_DR0]			= dr_interception,
3112 	[SVM_EXIT_READ_DR1]			= dr_interception,
3113 	[SVM_EXIT_READ_DR2]			= dr_interception,
3114 	[SVM_EXIT_READ_DR3]			= dr_interception,
3115 	[SVM_EXIT_READ_DR4]			= dr_interception,
3116 	[SVM_EXIT_READ_DR5]			= dr_interception,
3117 	[SVM_EXIT_READ_DR6]			= dr_interception,
3118 	[SVM_EXIT_READ_DR7]			= dr_interception,
3119 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3120 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3121 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3122 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3123 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3124 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3125 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3126 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3127 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3128 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3129 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3130 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3131 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3132 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3133 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3134 	[SVM_EXIT_INTR]				= intr_interception,
3135 	[SVM_EXIT_NMI]				= nmi_interception,
3136 	[SVM_EXIT_SMI]				= nop_on_interception,
3137 	[SVM_EXIT_INIT]				= nop_on_interception,
3138 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3139 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
3140 	[SVM_EXIT_CPUID]			= cpuid_interception,
3141 	[SVM_EXIT_IRET]                         = iret_interception,
3142 	[SVM_EXIT_INVD]                         = invd_interception,
3143 	[SVM_EXIT_PAUSE]			= pause_interception,
3144 	[SVM_EXIT_HLT]				= halt_interception,
3145 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3146 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3147 	[SVM_EXIT_IOIO]				= io_interception,
3148 	[SVM_EXIT_MSR]				= msr_interception,
3149 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3150 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3151 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3152 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
3153 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3154 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3155 	[SVM_EXIT_STGI]				= stgi_interception,
3156 	[SVM_EXIT_CLGI]				= clgi_interception,
3157 	[SVM_EXIT_SKINIT]			= skinit_interception,
3158 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
3159 	[SVM_EXIT_MONITOR]			= monitor_interception,
3160 	[SVM_EXIT_MWAIT]			= mwait_interception,
3161 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
3162 	[SVM_EXIT_RDPRU]			= rdpru_interception,
3163 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3164 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3165 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3166 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3167 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3168 	[SVM_EXIT_NPF]				= npf_interception,
3169 	[SVM_EXIT_RSM]                          = rsm_interception,
3170 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3171 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3172 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3173 };
3174 
3175 static void dump_vmcb(struct kvm_vcpu *vcpu)
3176 {
3177 	struct vcpu_svm *svm = to_svm(vcpu);
3178 	struct vmcb_control_area *control = &svm->vmcb->control;
3179 	struct vmcb_save_area *save = &svm->vmcb->save;
3180 
3181 	if (!dump_invalid_vmcb) {
3182 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3183 		return;
3184 	}
3185 
3186 	pr_err("VMCB Control Area:\n");
3187 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3188 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3189 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3190 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3191 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3192 	pr_err("%-20s%08x %08x\n", "intercepts:",
3193               control->intercepts[INTERCEPT_WORD3],
3194 	       control->intercepts[INTERCEPT_WORD4]);
3195 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3196 	pr_err("%-20s%d\n", "pause filter threshold:",
3197 	       control->pause_filter_thresh);
3198 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3199 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3200 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3201 	pr_err("%-20s%d\n", "asid:", control->asid);
3202 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3203 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3204 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3205 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3206 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3207 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3208 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3209 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3210 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3211 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3212 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3213 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3214 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3215 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3216 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3217 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3218 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3219 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3220 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3221 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3222 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3223 	pr_err("VMCB State Save Area:\n");
3224 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3225 	       "es:",
3226 	       save->es.selector, save->es.attrib,
3227 	       save->es.limit, save->es.base);
3228 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3229 	       "cs:",
3230 	       save->cs.selector, save->cs.attrib,
3231 	       save->cs.limit, save->cs.base);
3232 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3233 	       "ss:",
3234 	       save->ss.selector, save->ss.attrib,
3235 	       save->ss.limit, save->ss.base);
3236 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3237 	       "ds:",
3238 	       save->ds.selector, save->ds.attrib,
3239 	       save->ds.limit, save->ds.base);
3240 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3241 	       "fs:",
3242 	       save->fs.selector, save->fs.attrib,
3243 	       save->fs.limit, save->fs.base);
3244 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3245 	       "gs:",
3246 	       save->gs.selector, save->gs.attrib,
3247 	       save->gs.limit, save->gs.base);
3248 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3249 	       "gdtr:",
3250 	       save->gdtr.selector, save->gdtr.attrib,
3251 	       save->gdtr.limit, save->gdtr.base);
3252 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3253 	       "ldtr:",
3254 	       save->ldtr.selector, save->ldtr.attrib,
3255 	       save->ldtr.limit, save->ldtr.base);
3256 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3257 	       "idtr:",
3258 	       save->idtr.selector, save->idtr.attrib,
3259 	       save->idtr.limit, save->idtr.base);
3260 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3261 	       "tr:",
3262 	       save->tr.selector, save->tr.attrib,
3263 	       save->tr.limit, save->tr.base);
3264 	pr_err("cpl:            %d                efer:         %016llx\n",
3265 		save->cpl, save->efer);
3266 	pr_err("%-15s %016llx %-13s %016llx\n",
3267 	       "cr0:", save->cr0, "cr2:", save->cr2);
3268 	pr_err("%-15s %016llx %-13s %016llx\n",
3269 	       "cr3:", save->cr3, "cr4:", save->cr4);
3270 	pr_err("%-15s %016llx %-13s %016llx\n",
3271 	       "dr6:", save->dr6, "dr7:", save->dr7);
3272 	pr_err("%-15s %016llx %-13s %016llx\n",
3273 	       "rip:", save->rip, "rflags:", save->rflags);
3274 	pr_err("%-15s %016llx %-13s %016llx\n",
3275 	       "rsp:", save->rsp, "rax:", save->rax);
3276 	pr_err("%-15s %016llx %-13s %016llx\n",
3277 	       "star:", save->star, "lstar:", save->lstar);
3278 	pr_err("%-15s %016llx %-13s %016llx\n",
3279 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
3280 	pr_err("%-15s %016llx %-13s %016llx\n",
3281 	       "kernel_gs_base:", save->kernel_gs_base,
3282 	       "sysenter_cs:", save->sysenter_cs);
3283 	pr_err("%-15s %016llx %-13s %016llx\n",
3284 	       "sysenter_esp:", save->sysenter_esp,
3285 	       "sysenter_eip:", save->sysenter_eip);
3286 	pr_err("%-15s %016llx %-13s %016llx\n",
3287 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3288 	pr_err("%-15s %016llx %-13s %016llx\n",
3289 	       "br_from:", save->br_from, "br_to:", save->br_to);
3290 	pr_err("%-15s %016llx %-13s %016llx\n",
3291 	       "excp_from:", save->last_excp_from,
3292 	       "excp_to:", save->last_excp_to);
3293 }
3294 
3295 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3296 {
3297 	if (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3298 	    svm_exit_handlers[exit_code])
3299 		return 0;
3300 
3301 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3302 	dump_vmcb(vcpu);
3303 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3304 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3305 	vcpu->run->internal.ndata = 2;
3306 	vcpu->run->internal.data[0] = exit_code;
3307 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3308 
3309 	return -EINVAL;
3310 }
3311 
3312 int svm_invoke_exit_handler(struct vcpu_svm *svm, u64 exit_code)
3313 {
3314 	if (svm_handle_invalid_exit(&svm->vcpu, exit_code))
3315 		return 0;
3316 
3317 #ifdef CONFIG_RETPOLINE
3318 	if (exit_code == SVM_EXIT_MSR)
3319 		return msr_interception(svm);
3320 	else if (exit_code == SVM_EXIT_VINTR)
3321 		return interrupt_window_interception(svm);
3322 	else if (exit_code == SVM_EXIT_INTR)
3323 		return intr_interception(svm);
3324 	else if (exit_code == SVM_EXIT_HLT)
3325 		return halt_interception(svm);
3326 	else if (exit_code == SVM_EXIT_NPF)
3327 		return npf_interception(svm);
3328 #endif
3329 	return svm_exit_handlers[exit_code](svm);
3330 }
3331 
3332 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3333 			      u32 *intr_info, u32 *error_code)
3334 {
3335 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3336 
3337 	*info1 = control->exit_info_1;
3338 	*info2 = control->exit_info_2;
3339 	*intr_info = control->exit_int_info;
3340 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3341 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3342 		*error_code = control->exit_int_info_err;
3343 	else
3344 		*error_code = 0;
3345 }
3346 
3347 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3348 {
3349 	struct vcpu_svm *svm = to_svm(vcpu);
3350 	struct kvm_run *kvm_run = vcpu->run;
3351 	u32 exit_code = svm->vmcb->control.exit_code;
3352 
3353 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3354 
3355 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3356 	if (!sev_es_guest(vcpu->kvm)) {
3357 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3358 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3359 		if (npt_enabled)
3360 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3361 	}
3362 
3363 	if (is_guest_mode(vcpu)) {
3364 		int vmexit;
3365 
3366 		trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3367 
3368 		vmexit = nested_svm_exit_special(svm);
3369 
3370 		if (vmexit == NESTED_EXIT_CONTINUE)
3371 			vmexit = nested_svm_exit_handled(svm);
3372 
3373 		if (vmexit == NESTED_EXIT_DONE)
3374 			return 1;
3375 	}
3376 
3377 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3378 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3379 		kvm_run->fail_entry.hardware_entry_failure_reason
3380 			= svm->vmcb->control.exit_code;
3381 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3382 		dump_vmcb(vcpu);
3383 		return 0;
3384 	}
3385 
3386 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3387 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3388 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3389 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3390 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3391 		       "exit_code 0x%x\n",
3392 		       __func__, svm->vmcb->control.exit_int_info,
3393 		       exit_code);
3394 
3395 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3396 		return 1;
3397 
3398 	return svm_invoke_exit_handler(svm, exit_code);
3399 }
3400 
3401 static void reload_tss(struct kvm_vcpu *vcpu)
3402 {
3403 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3404 
3405 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3406 	load_TR_desc();
3407 }
3408 
3409 static void pre_svm_run(struct vcpu_svm *svm)
3410 {
3411 	struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3412 
3413 	if (sev_guest(svm->vcpu.kvm))
3414 		return pre_sev_run(svm, svm->vcpu.cpu);
3415 
3416 	/* FIXME: handle wraparound of asid_generation */
3417 	if (svm->asid_generation != sd->asid_generation)
3418 		new_asid(svm, sd);
3419 }
3420 
3421 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3422 {
3423 	struct vcpu_svm *svm = to_svm(vcpu);
3424 
3425 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3426 	vcpu->arch.hflags |= HF_NMI_MASK;
3427 	if (!sev_es_guest(svm->vcpu.kvm))
3428 		svm_set_intercept(svm, INTERCEPT_IRET);
3429 	++vcpu->stat.nmi_injections;
3430 }
3431 
3432 static void svm_set_irq(struct kvm_vcpu *vcpu)
3433 {
3434 	struct vcpu_svm *svm = to_svm(vcpu);
3435 
3436 	BUG_ON(!(gif_set(svm)));
3437 
3438 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3439 	++vcpu->stat.irq_injections;
3440 
3441 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3442 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3443 }
3444 
3445 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3446 {
3447 	struct vcpu_svm *svm = to_svm(vcpu);
3448 
3449 	/*
3450 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3451 	 * tracking is done using the CR write traps.
3452 	 */
3453 	if (sev_es_guest(vcpu->kvm))
3454 		return;
3455 
3456 	if (nested_svm_virtualize_tpr(vcpu))
3457 		return;
3458 
3459 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3460 
3461 	if (irr == -1)
3462 		return;
3463 
3464 	if (tpr >= irr)
3465 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3466 }
3467 
3468 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3469 {
3470 	struct vcpu_svm *svm = to_svm(vcpu);
3471 	struct vmcb *vmcb = svm->vmcb;
3472 	bool ret;
3473 
3474 	if (!gif_set(svm))
3475 		return true;
3476 
3477 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3478 		return false;
3479 
3480 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3481 	      (svm->vcpu.arch.hflags & HF_NMI_MASK);
3482 
3483 	return ret;
3484 }
3485 
3486 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3487 {
3488 	struct vcpu_svm *svm = to_svm(vcpu);
3489 	if (svm->nested.nested_run_pending)
3490 		return -EBUSY;
3491 
3492 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3493 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3494 		return -EBUSY;
3495 
3496 	return !svm_nmi_blocked(vcpu);
3497 }
3498 
3499 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3500 {
3501 	struct vcpu_svm *svm = to_svm(vcpu);
3502 
3503 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3504 }
3505 
3506 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3507 {
3508 	struct vcpu_svm *svm = to_svm(vcpu);
3509 
3510 	if (masked) {
3511 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3512 		if (!sev_es_guest(svm->vcpu.kvm))
3513 			svm_set_intercept(svm, INTERCEPT_IRET);
3514 	} else {
3515 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3516 		if (!sev_es_guest(svm->vcpu.kvm))
3517 			svm_clr_intercept(svm, INTERCEPT_IRET);
3518 	}
3519 }
3520 
3521 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3522 {
3523 	struct vcpu_svm *svm = to_svm(vcpu);
3524 	struct vmcb *vmcb = svm->vmcb;
3525 
3526 	if (!gif_set(svm))
3527 		return true;
3528 
3529 	if (sev_es_guest(svm->vcpu.kvm)) {
3530 		/*
3531 		 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask
3532 		 * bit to determine the state of the IF flag.
3533 		 */
3534 		if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK))
3535 			return true;
3536 	} else if (is_guest_mode(vcpu)) {
3537 		/* As long as interrupts are being delivered...  */
3538 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3539 		    ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3540 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3541 			return true;
3542 
3543 		/* ... vmexits aren't blocked by the interrupt shadow  */
3544 		if (nested_exit_on_intr(svm))
3545 			return false;
3546 	} else {
3547 		if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3548 			return true;
3549 	}
3550 
3551 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3552 }
3553 
3554 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3555 {
3556 	struct vcpu_svm *svm = to_svm(vcpu);
3557 	if (svm->nested.nested_run_pending)
3558 		return -EBUSY;
3559 
3560 	/*
3561 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3562 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3563 	 */
3564 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3565 		return -EBUSY;
3566 
3567 	return !svm_interrupt_blocked(vcpu);
3568 }
3569 
3570 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3571 {
3572 	struct vcpu_svm *svm = to_svm(vcpu);
3573 
3574 	/*
3575 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3576 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3577 	 * get that intercept, this function will be called again though and
3578 	 * we'll get the vintr intercept. However, if the vGIF feature is
3579 	 * enabled, the STGI interception will not occur. Enable the irq
3580 	 * window under the assumption that the hardware will set the GIF.
3581 	 */
3582 	if (vgif_enabled(svm) || gif_set(svm)) {
3583 		/*
3584 		 * IRQ window is not needed when AVIC is enabled,
3585 		 * unless we have pending ExtINT since it cannot be injected
3586 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3587 		 * and fallback to injecting IRQ via V_IRQ.
3588 		 */
3589 		svm_toggle_avic_for_irq_window(vcpu, false);
3590 		svm_set_vintr(svm);
3591 	}
3592 }
3593 
3594 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3595 {
3596 	struct vcpu_svm *svm = to_svm(vcpu);
3597 
3598 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3599 	    == HF_NMI_MASK)
3600 		return; /* IRET will cause a vm exit */
3601 
3602 	if (!gif_set(svm)) {
3603 		if (vgif_enabled(svm))
3604 			svm_set_intercept(svm, INTERCEPT_STGI);
3605 		return; /* STGI will cause a vm exit */
3606 	}
3607 
3608 	/*
3609 	 * Something prevents NMI from been injected. Single step over possible
3610 	 * problem (IRET or exception injection or interrupt shadow)
3611 	 */
3612 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3613 	svm->nmi_singlestep = true;
3614 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3615 }
3616 
3617 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3618 {
3619 	return 0;
3620 }
3621 
3622 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3623 {
3624 	return 0;
3625 }
3626 
3627 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3628 {
3629 	struct vcpu_svm *svm = to_svm(vcpu);
3630 
3631 	/*
3632 	 * Flush only the current ASID even if the TLB flush was invoked via
3633 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3634 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3635 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3636 	 * VM-Exit (via kvm_mmu_reset_context()).
3637 	 */
3638 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3639 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3640 	else
3641 		svm->asid_generation--;
3642 }
3643 
3644 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3645 {
3646 	struct vcpu_svm *svm = to_svm(vcpu);
3647 
3648 	invlpga(gva, svm->vmcb->control.asid);
3649 }
3650 
3651 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3652 {
3653 	struct vcpu_svm *svm = to_svm(vcpu);
3654 
3655 	if (nested_svm_virtualize_tpr(vcpu))
3656 		return;
3657 
3658 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3659 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3660 		kvm_set_cr8(vcpu, cr8);
3661 	}
3662 }
3663 
3664 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3665 {
3666 	struct vcpu_svm *svm = to_svm(vcpu);
3667 	u64 cr8;
3668 
3669 	if (nested_svm_virtualize_tpr(vcpu) ||
3670 	    kvm_vcpu_apicv_active(vcpu))
3671 		return;
3672 
3673 	cr8 = kvm_get_cr8(vcpu);
3674 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3675 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3676 }
3677 
3678 static void svm_complete_interrupts(struct vcpu_svm *svm)
3679 {
3680 	u8 vector;
3681 	int type;
3682 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3683 	unsigned int3_injected = svm->int3_injected;
3684 
3685 	svm->int3_injected = 0;
3686 
3687 	/*
3688 	 * If we've made progress since setting HF_IRET_MASK, we've
3689 	 * executed an IRET and can allow NMI injection.
3690 	 */
3691 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK) &&
3692 	    (sev_es_guest(svm->vcpu.kvm) ||
3693 	     kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip)) {
3694 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3695 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3696 	}
3697 
3698 	svm->vcpu.arch.nmi_injected = false;
3699 	kvm_clear_exception_queue(&svm->vcpu);
3700 	kvm_clear_interrupt_queue(&svm->vcpu);
3701 
3702 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3703 		return;
3704 
3705 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3706 
3707 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3708 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3709 
3710 	switch (type) {
3711 	case SVM_EXITINTINFO_TYPE_NMI:
3712 		svm->vcpu.arch.nmi_injected = true;
3713 		break;
3714 	case SVM_EXITINTINFO_TYPE_EXEPT:
3715 		/*
3716 		 * Never re-inject a #VC exception.
3717 		 */
3718 		if (vector == X86_TRAP_VC)
3719 			break;
3720 
3721 		/*
3722 		 * In case of software exceptions, do not reinject the vector,
3723 		 * but re-execute the instruction instead. Rewind RIP first
3724 		 * if we emulated INT3 before.
3725 		 */
3726 		if (kvm_exception_is_soft(vector)) {
3727 			if (vector == BP_VECTOR && int3_injected &&
3728 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3729 				kvm_rip_write(&svm->vcpu,
3730 					      kvm_rip_read(&svm->vcpu) -
3731 					      int3_injected);
3732 			break;
3733 		}
3734 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3735 			u32 err = svm->vmcb->control.exit_int_info_err;
3736 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3737 
3738 		} else
3739 			kvm_requeue_exception(&svm->vcpu, vector);
3740 		break;
3741 	case SVM_EXITINTINFO_TYPE_INTR:
3742 		kvm_queue_interrupt(&svm->vcpu, vector, false);
3743 		break;
3744 	default:
3745 		break;
3746 	}
3747 }
3748 
3749 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3750 {
3751 	struct vcpu_svm *svm = to_svm(vcpu);
3752 	struct vmcb_control_area *control = &svm->vmcb->control;
3753 
3754 	control->exit_int_info = control->event_inj;
3755 	control->exit_int_info_err = control->event_inj_err;
3756 	control->event_inj = 0;
3757 	svm_complete_interrupts(svm);
3758 }
3759 
3760 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3761 {
3762 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3763 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3764 		return handle_fastpath_set_msr_irqoff(vcpu);
3765 
3766 	return EXIT_FASTPATH_NONE;
3767 }
3768 
3769 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3770 					struct vcpu_svm *svm)
3771 {
3772 	/*
3773 	 * VMENTER enables interrupts (host state), but the kernel state is
3774 	 * interrupts disabled when this is invoked. Also tell RCU about
3775 	 * it. This is the same logic as for exit_to_user_mode().
3776 	 *
3777 	 * This ensures that e.g. latency analysis on the host observes
3778 	 * guest mode as interrupt enabled.
3779 	 *
3780 	 * guest_enter_irqoff() informs context tracking about the
3781 	 * transition to guest mode and if enabled adjusts RCU state
3782 	 * accordingly.
3783 	 */
3784 	instrumentation_begin();
3785 	trace_hardirqs_on_prepare();
3786 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3787 	instrumentation_end();
3788 
3789 	guest_enter_irqoff();
3790 	lockdep_hardirqs_on(CALLER_ADDR0);
3791 
3792 	if (sev_es_guest(svm->vcpu.kvm)) {
3793 		__svm_sev_es_vcpu_run(svm->vmcb_pa);
3794 	} else {
3795 		struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3796 
3797 		__svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3798 
3799 		vmload(__sme_page_pa(sd->save_area));
3800 	}
3801 
3802 	/*
3803 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
3804 	 * have them in state 'on' as recorded before entering guest mode.
3805 	 * Same as enter_from_user_mode().
3806 	 *
3807 	 * guest_exit_irqoff() restores host context and reinstates RCU if
3808 	 * enabled and required.
3809 	 *
3810 	 * This needs to be done before the below as native_read_msr()
3811 	 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3812 	 * into world and some more.
3813 	 */
3814 	lockdep_hardirqs_off(CALLER_ADDR0);
3815 	guest_exit_irqoff();
3816 
3817 	instrumentation_begin();
3818 	trace_hardirqs_off_finish();
3819 	instrumentation_end();
3820 }
3821 
3822 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3823 {
3824 	struct vcpu_svm *svm = to_svm(vcpu);
3825 
3826 	trace_kvm_entry(vcpu);
3827 
3828 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3829 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3830 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3831 
3832 	/*
3833 	 * Disable singlestep if we're injecting an interrupt/exception.
3834 	 * We don't want our modified rflags to be pushed on the stack where
3835 	 * we might not be able to easily reset them if we disabled NMI
3836 	 * singlestep later.
3837 	 */
3838 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3839 		/*
3840 		 * Event injection happens before external interrupts cause a
3841 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3842 		 * is enough to force an immediate vmexit.
3843 		 */
3844 		disable_nmi_singlestep(svm);
3845 		smp_send_reschedule(vcpu->cpu);
3846 	}
3847 
3848 	pre_svm_run(svm);
3849 
3850 	sync_lapic_to_cr8(vcpu);
3851 
3852 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3853 		svm->vmcb->control.asid = svm->asid;
3854 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3855 	}
3856 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3857 
3858 	/*
3859 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3860 	 * of a #DB.
3861 	 */
3862 	if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3863 		svm_set_dr6(svm, vcpu->arch.dr6);
3864 	else
3865 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
3866 
3867 	clgi();
3868 	kvm_load_guest_xsave_state(vcpu);
3869 
3870 	kvm_wait_lapic_expire(vcpu);
3871 
3872 	/*
3873 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3874 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3875 	 * is no need to worry about the conditional branch over the wrmsr
3876 	 * being speculatively taken.
3877 	 */
3878 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3879 
3880 	svm_vcpu_enter_exit(vcpu, svm);
3881 
3882 	/*
3883 	 * We do not use IBRS in the kernel. If this vCPU has used the
3884 	 * SPEC_CTRL MSR it may have left it on; save the value and
3885 	 * turn it off. This is much more efficient than blindly adding
3886 	 * it to the atomic save/restore list. Especially as the former
3887 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3888 	 *
3889 	 * For non-nested case:
3890 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3891 	 * save it.
3892 	 *
3893 	 * For nested case:
3894 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3895 	 * save it.
3896 	 */
3897 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3898 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3899 
3900 	if (!sev_es_guest(svm->vcpu.kvm))
3901 		reload_tss(vcpu);
3902 
3903 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3904 
3905 	if (!sev_es_guest(svm->vcpu.kvm)) {
3906 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
3907 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3908 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3909 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3910 	}
3911 
3912 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3913 		kvm_before_interrupt(&svm->vcpu);
3914 
3915 	kvm_load_host_xsave_state(vcpu);
3916 	stgi();
3917 
3918 	/* Any pending NMI will happen here */
3919 
3920 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3921 		kvm_after_interrupt(&svm->vcpu);
3922 
3923 	sync_cr8_to_lapic(vcpu);
3924 
3925 	svm->next_rip = 0;
3926 	if (is_guest_mode(&svm->vcpu)) {
3927 		sync_nested_vmcb_control(svm);
3928 		svm->nested.nested_run_pending = 0;
3929 	}
3930 
3931 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3932 	vmcb_mark_all_clean(svm->vmcb);
3933 
3934 	/* if exit due to PF check for async PF */
3935 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3936 		svm->vcpu.arch.apf.host_apf_flags =
3937 			kvm_read_and_reset_apf_flags();
3938 
3939 	if (npt_enabled) {
3940 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3941 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3942 	}
3943 
3944 	/*
3945 	 * We need to handle MC intercepts here before the vcpu has a chance to
3946 	 * change the physical cpu
3947 	 */
3948 	if (unlikely(svm->vmcb->control.exit_code ==
3949 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3950 		svm_handle_mce(svm);
3951 
3952 	svm_complete_interrupts(svm);
3953 
3954 	if (is_guest_mode(vcpu))
3955 		return EXIT_FASTPATH_NONE;
3956 
3957 	return svm_exit_handlers_fastpath(vcpu);
3958 }
3959 
3960 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3961 			     int root_level)
3962 {
3963 	struct vcpu_svm *svm = to_svm(vcpu);
3964 	unsigned long cr3;
3965 
3966 	cr3 = __sme_set(root);
3967 	if (npt_enabled) {
3968 		svm->vmcb->control.nested_cr3 = cr3;
3969 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3970 
3971 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3972 		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3973 			return;
3974 		cr3 = vcpu->arch.cr3;
3975 	}
3976 
3977 	svm->vmcb->save.cr3 = cr3;
3978 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3979 }
3980 
3981 static int is_disabled(void)
3982 {
3983 	u64 vm_cr;
3984 
3985 	rdmsrl(MSR_VM_CR, vm_cr);
3986 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3987 		return 1;
3988 
3989 	return 0;
3990 }
3991 
3992 static void
3993 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3994 {
3995 	/*
3996 	 * Patch in the VMMCALL instruction:
3997 	 */
3998 	hypercall[0] = 0x0f;
3999 	hypercall[1] = 0x01;
4000 	hypercall[2] = 0xd9;
4001 }
4002 
4003 static int __init svm_check_processor_compat(void)
4004 {
4005 	return 0;
4006 }
4007 
4008 static bool svm_cpu_has_accelerated_tpr(void)
4009 {
4010 	return false;
4011 }
4012 
4013 /*
4014  * The kvm parameter can be NULL (module initialization, or invocation before
4015  * VM creation). Be sure to check the kvm parameter before using it.
4016  */
4017 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4018 {
4019 	switch (index) {
4020 	case MSR_IA32_MCG_EXT_CTL:
4021 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4022 		return false;
4023 	case MSR_IA32_SMBASE:
4024 		/* SEV-ES guests do not support SMM, so report false */
4025 		if (kvm && sev_es_guest(kvm))
4026 			return false;
4027 		break;
4028 	default:
4029 		break;
4030 	}
4031 
4032 	return true;
4033 }
4034 
4035 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4036 {
4037 	return 0;
4038 }
4039 
4040 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4041 {
4042 	struct vcpu_svm *svm = to_svm(vcpu);
4043 	struct kvm_cpuid_entry2 *best;
4044 
4045 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4046 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
4047 				    boot_cpu_has(X86_FEATURE_XSAVES);
4048 
4049 	/* Update nrips enabled cache */
4050 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4051 			     guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
4052 
4053 	/* Check again if INVPCID interception if required */
4054 	svm_check_invpcid(svm);
4055 
4056 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4057 	if (sev_guest(vcpu->kvm)) {
4058 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
4059 		if (best)
4060 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4061 	}
4062 
4063 	if (!kvm_vcpu_apicv_active(vcpu))
4064 		return;
4065 
4066 	/*
4067 	 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
4068 	 * is exposed to the guest, disable AVIC.
4069 	 */
4070 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
4071 		kvm_request_apicv_update(vcpu->kvm, false,
4072 					 APICV_INHIBIT_REASON_X2APIC);
4073 
4074 	/*
4075 	 * Currently, AVIC does not work with nested virtualization.
4076 	 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
4077 	 */
4078 	if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4079 		kvm_request_apicv_update(vcpu->kvm, false,
4080 					 APICV_INHIBIT_REASON_NESTED);
4081 }
4082 
4083 static bool svm_has_wbinvd_exit(void)
4084 {
4085 	return true;
4086 }
4087 
4088 #define PRE_EX(exit)  { .exit_code = (exit), \
4089 			.stage = X86_ICPT_PRE_EXCEPT, }
4090 #define POST_EX(exit) { .exit_code = (exit), \
4091 			.stage = X86_ICPT_POST_EXCEPT, }
4092 #define POST_MEM(exit) { .exit_code = (exit), \
4093 			.stage = X86_ICPT_POST_MEMACCESS, }
4094 
4095 static const struct __x86_intercept {
4096 	u32 exit_code;
4097 	enum x86_intercept_stage stage;
4098 } x86_intercept_map[] = {
4099 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4100 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4101 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4102 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4103 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4104 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4105 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4106 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4107 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4108 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4109 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4110 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4111 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4112 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4113 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4114 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4115 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4116 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4117 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4118 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4119 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4120 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4121 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4122 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4123 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4124 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4125 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4126 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4127 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4128 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4129 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4130 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4131 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4132 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4133 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4134 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4135 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4136 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4137 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4138 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4139 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4140 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4141 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4142 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4143 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4144 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4145 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4146 };
4147 
4148 #undef PRE_EX
4149 #undef POST_EX
4150 #undef POST_MEM
4151 
4152 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4153 			       struct x86_instruction_info *info,
4154 			       enum x86_intercept_stage stage,
4155 			       struct x86_exception *exception)
4156 {
4157 	struct vcpu_svm *svm = to_svm(vcpu);
4158 	int vmexit, ret = X86EMUL_CONTINUE;
4159 	struct __x86_intercept icpt_info;
4160 	struct vmcb *vmcb = svm->vmcb;
4161 
4162 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4163 		goto out;
4164 
4165 	icpt_info = x86_intercept_map[info->intercept];
4166 
4167 	if (stage != icpt_info.stage)
4168 		goto out;
4169 
4170 	switch (icpt_info.exit_code) {
4171 	case SVM_EXIT_READ_CR0:
4172 		if (info->intercept == x86_intercept_cr_read)
4173 			icpt_info.exit_code += info->modrm_reg;
4174 		break;
4175 	case SVM_EXIT_WRITE_CR0: {
4176 		unsigned long cr0, val;
4177 
4178 		if (info->intercept == x86_intercept_cr_write)
4179 			icpt_info.exit_code += info->modrm_reg;
4180 
4181 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4182 		    info->intercept == x86_intercept_clts)
4183 			break;
4184 
4185 		if (!(vmcb_is_intercept(&svm->nested.ctl,
4186 					INTERCEPT_SELECTIVE_CR0)))
4187 			break;
4188 
4189 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4190 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4191 
4192 		if (info->intercept == x86_intercept_lmsw) {
4193 			cr0 &= 0xfUL;
4194 			val &= 0xfUL;
4195 			/* lmsw can't clear PE - catch this here */
4196 			if (cr0 & X86_CR0_PE)
4197 				val |= X86_CR0_PE;
4198 		}
4199 
4200 		if (cr0 ^ val)
4201 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4202 
4203 		break;
4204 	}
4205 	case SVM_EXIT_READ_DR0:
4206 	case SVM_EXIT_WRITE_DR0:
4207 		icpt_info.exit_code += info->modrm_reg;
4208 		break;
4209 	case SVM_EXIT_MSR:
4210 		if (info->intercept == x86_intercept_wrmsr)
4211 			vmcb->control.exit_info_1 = 1;
4212 		else
4213 			vmcb->control.exit_info_1 = 0;
4214 		break;
4215 	case SVM_EXIT_PAUSE:
4216 		/*
4217 		 * We get this for NOP only, but pause
4218 		 * is rep not, check this here
4219 		 */
4220 		if (info->rep_prefix != REPE_PREFIX)
4221 			goto out;
4222 		break;
4223 	case SVM_EXIT_IOIO: {
4224 		u64 exit_info;
4225 		u32 bytes;
4226 
4227 		if (info->intercept == x86_intercept_in ||
4228 		    info->intercept == x86_intercept_ins) {
4229 			exit_info = ((info->src_val & 0xffff) << 16) |
4230 				SVM_IOIO_TYPE_MASK;
4231 			bytes = info->dst_bytes;
4232 		} else {
4233 			exit_info = (info->dst_val & 0xffff) << 16;
4234 			bytes = info->src_bytes;
4235 		}
4236 
4237 		if (info->intercept == x86_intercept_outs ||
4238 		    info->intercept == x86_intercept_ins)
4239 			exit_info |= SVM_IOIO_STR_MASK;
4240 
4241 		if (info->rep_prefix)
4242 			exit_info |= SVM_IOIO_REP_MASK;
4243 
4244 		bytes = min(bytes, 4u);
4245 
4246 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4247 
4248 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4249 
4250 		vmcb->control.exit_info_1 = exit_info;
4251 		vmcb->control.exit_info_2 = info->next_rip;
4252 
4253 		break;
4254 	}
4255 	default:
4256 		break;
4257 	}
4258 
4259 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4260 	if (static_cpu_has(X86_FEATURE_NRIPS))
4261 		vmcb->control.next_rip  = info->next_rip;
4262 	vmcb->control.exit_code = icpt_info.exit_code;
4263 	vmexit = nested_svm_exit_handled(svm);
4264 
4265 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4266 					   : X86EMUL_CONTINUE;
4267 
4268 out:
4269 	return ret;
4270 }
4271 
4272 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4273 {
4274 }
4275 
4276 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4277 {
4278 	if (!kvm_pause_in_guest(vcpu->kvm))
4279 		shrink_ple_window(vcpu);
4280 }
4281 
4282 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4283 {
4284 	/* [63:9] are reserved. */
4285 	vcpu->arch.mcg_cap &= 0x1ff;
4286 }
4287 
4288 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4289 {
4290 	struct vcpu_svm *svm = to_svm(vcpu);
4291 
4292 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4293 	if (!gif_set(svm))
4294 		return true;
4295 
4296 	return is_smm(vcpu);
4297 }
4298 
4299 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4300 {
4301 	struct vcpu_svm *svm = to_svm(vcpu);
4302 	if (svm->nested.nested_run_pending)
4303 		return -EBUSY;
4304 
4305 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4306 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4307 		return -EBUSY;
4308 
4309 	return !svm_smi_blocked(vcpu);
4310 }
4311 
4312 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4313 {
4314 	struct vcpu_svm *svm = to_svm(vcpu);
4315 	int ret;
4316 
4317 	if (is_guest_mode(vcpu)) {
4318 		/* FED8h - SVM Guest */
4319 		put_smstate(u64, smstate, 0x7ed8, 1);
4320 		/* FEE0h - SVM Guest VMCB Physical Address */
4321 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4322 
4323 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4324 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4325 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4326 
4327 		ret = nested_svm_vmexit(svm);
4328 		if (ret)
4329 			return ret;
4330 	}
4331 	return 0;
4332 }
4333 
4334 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4335 {
4336 	struct vcpu_svm *svm = to_svm(vcpu);
4337 	struct kvm_host_map map;
4338 	int ret = 0;
4339 
4340 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4341 		u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4342 		u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4343 		u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4344 
4345 		if (guest) {
4346 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4347 				return 1;
4348 
4349 			if (!(saved_efer & EFER_SVME))
4350 				return 1;
4351 
4352 			if (kvm_vcpu_map(&svm->vcpu,
4353 					 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4354 				return 1;
4355 
4356 			if (svm_allocate_nested(svm))
4357 				return 1;
4358 
4359 			ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
4360 			kvm_vcpu_unmap(&svm->vcpu, &map, true);
4361 		}
4362 	}
4363 
4364 	return ret;
4365 }
4366 
4367 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4368 {
4369 	struct vcpu_svm *svm = to_svm(vcpu);
4370 
4371 	if (!gif_set(svm)) {
4372 		if (vgif_enabled(svm))
4373 			svm_set_intercept(svm, INTERCEPT_STGI);
4374 		/* STGI will cause a vm exit */
4375 	} else {
4376 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4377 	}
4378 }
4379 
4380 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4381 {
4382 	bool smep, smap, is_user;
4383 	unsigned long cr4;
4384 
4385 	/*
4386 	 * When the guest is an SEV-ES guest, emulation is not possible.
4387 	 */
4388 	if (sev_es_guest(vcpu->kvm))
4389 		return false;
4390 
4391 	/*
4392 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4393 	 *
4394 	 * Errata:
4395 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4396 	 * possible that CPU microcode implementing DecodeAssist will fail
4397 	 * to read bytes of instruction which caused #NPF. In this case,
4398 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4399 	 * return 0 instead of the correct guest instruction bytes.
4400 	 *
4401 	 * This happens because CPU microcode reading instruction bytes
4402 	 * uses a special opcode which attempts to read data using CPL=0
4403 	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
4404 	 * fault, it gives up and returns no instruction bytes.
4405 	 *
4406 	 * Detection:
4407 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4408 	 * returned 0 in GuestIntrBytes field of the VMCB.
4409 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4410 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4411 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4412 	 * a SMEP fault instead of #NPF).
4413 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4414 	 * As most guests enable SMAP if they have also enabled SMEP, use above
4415 	 * logic in order to attempt minimize false-positive of detecting errata
4416 	 * while still preserving all cases semantic correctness.
4417 	 *
4418 	 * Workaround:
4419 	 * To determine what instruction the guest was executing, the hypervisor
4420 	 * will have to decode the instruction at the instruction pointer.
4421 	 *
4422 	 * In non SEV guest, hypervisor will be able to read the guest
4423 	 * memory to decode the instruction pointer when insn_len is zero
4424 	 * so we return true to indicate that decoding is possible.
4425 	 *
4426 	 * But in the SEV guest, the guest memory is encrypted with the
4427 	 * guest specific key and hypervisor will not be able to decode the
4428 	 * instruction pointer so we will not able to workaround it. Lets
4429 	 * print the error and request to kill the guest.
4430 	 */
4431 	if (likely(!insn || insn_len))
4432 		return true;
4433 
4434 	/*
4435 	 * If RIP is invalid, go ahead with emulation which will cause an
4436 	 * internal error exit.
4437 	 */
4438 	if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4439 		return true;
4440 
4441 	cr4 = kvm_read_cr4(vcpu);
4442 	smep = cr4 & X86_CR4_SMEP;
4443 	smap = cr4 & X86_CR4_SMAP;
4444 	is_user = svm_get_cpl(vcpu) == 3;
4445 	if (smap && (!smep || is_user)) {
4446 		if (!sev_guest(vcpu->kvm))
4447 			return true;
4448 
4449 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4450 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4451 	}
4452 
4453 	return false;
4454 }
4455 
4456 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4457 {
4458 	struct vcpu_svm *svm = to_svm(vcpu);
4459 
4460 	/*
4461 	 * TODO: Last condition latch INIT signals on vCPU when
4462 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4463 	 * To properly emulate the INIT intercept,
4464 	 * svm_check_nested_events() should call nested_svm_vmexit()
4465 	 * if an INIT signal is pending.
4466 	 */
4467 	return !gif_set(svm) ||
4468 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4469 }
4470 
4471 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4472 {
4473 	if (!sev_es_guest(vcpu->kvm))
4474 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4475 
4476 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4477 }
4478 
4479 static void svm_vm_destroy(struct kvm *kvm)
4480 {
4481 	avic_vm_destroy(kvm);
4482 	sev_vm_destroy(kvm);
4483 }
4484 
4485 static int svm_vm_init(struct kvm *kvm)
4486 {
4487 	if (!pause_filter_count || !pause_filter_thresh)
4488 		kvm->arch.pause_in_guest = true;
4489 
4490 	if (avic) {
4491 		int ret = avic_vm_init(kvm);
4492 		if (ret)
4493 			return ret;
4494 	}
4495 
4496 	kvm_apicv_init(kvm, avic);
4497 	return 0;
4498 }
4499 
4500 static struct kvm_x86_ops svm_x86_ops __initdata = {
4501 	.hardware_unsetup = svm_hardware_teardown,
4502 	.hardware_enable = svm_hardware_enable,
4503 	.hardware_disable = svm_hardware_disable,
4504 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4505 	.has_emulated_msr = svm_has_emulated_msr,
4506 
4507 	.vcpu_create = svm_create_vcpu,
4508 	.vcpu_free = svm_free_vcpu,
4509 	.vcpu_reset = svm_vcpu_reset,
4510 
4511 	.vm_size = sizeof(struct kvm_svm),
4512 	.vm_init = svm_vm_init,
4513 	.vm_destroy = svm_vm_destroy,
4514 
4515 	.prepare_guest_switch = svm_prepare_guest_switch,
4516 	.vcpu_load = svm_vcpu_load,
4517 	.vcpu_put = svm_vcpu_put,
4518 	.vcpu_blocking = svm_vcpu_blocking,
4519 	.vcpu_unblocking = svm_vcpu_unblocking,
4520 
4521 	.update_exception_bitmap = svm_update_exception_bitmap,
4522 	.get_msr_feature = svm_get_msr_feature,
4523 	.get_msr = svm_get_msr,
4524 	.set_msr = svm_set_msr,
4525 	.get_segment_base = svm_get_segment_base,
4526 	.get_segment = svm_get_segment,
4527 	.set_segment = svm_set_segment,
4528 	.get_cpl = svm_get_cpl,
4529 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4530 	.set_cr0 = svm_set_cr0,
4531 	.is_valid_cr4 = svm_is_valid_cr4,
4532 	.set_cr4 = svm_set_cr4,
4533 	.set_efer = svm_set_efer,
4534 	.get_idt = svm_get_idt,
4535 	.set_idt = svm_set_idt,
4536 	.get_gdt = svm_get_gdt,
4537 	.set_gdt = svm_set_gdt,
4538 	.set_dr7 = svm_set_dr7,
4539 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4540 	.cache_reg = svm_cache_reg,
4541 	.get_rflags = svm_get_rflags,
4542 	.set_rflags = svm_set_rflags,
4543 
4544 	.tlb_flush_all = svm_flush_tlb,
4545 	.tlb_flush_current = svm_flush_tlb,
4546 	.tlb_flush_gva = svm_flush_tlb_gva,
4547 	.tlb_flush_guest = svm_flush_tlb,
4548 
4549 	.run = svm_vcpu_run,
4550 	.handle_exit = handle_exit,
4551 	.skip_emulated_instruction = skip_emulated_instruction,
4552 	.update_emulated_instruction = NULL,
4553 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4554 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4555 	.patch_hypercall = svm_patch_hypercall,
4556 	.set_irq = svm_set_irq,
4557 	.set_nmi = svm_inject_nmi,
4558 	.queue_exception = svm_queue_exception,
4559 	.cancel_injection = svm_cancel_injection,
4560 	.interrupt_allowed = svm_interrupt_allowed,
4561 	.nmi_allowed = svm_nmi_allowed,
4562 	.get_nmi_mask = svm_get_nmi_mask,
4563 	.set_nmi_mask = svm_set_nmi_mask,
4564 	.enable_nmi_window = svm_enable_nmi_window,
4565 	.enable_irq_window = svm_enable_irq_window,
4566 	.update_cr8_intercept = svm_update_cr8_intercept,
4567 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
4568 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4569 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4570 	.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4571 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4572 	.hwapic_irr_update = svm_hwapic_irr_update,
4573 	.hwapic_isr_update = svm_hwapic_isr_update,
4574 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
4575 	.apicv_post_state_restore = avic_post_state_restore,
4576 
4577 	.set_tss_addr = svm_set_tss_addr,
4578 	.set_identity_map_addr = svm_set_identity_map_addr,
4579 	.get_mt_mask = svm_get_mt_mask,
4580 
4581 	.get_exit_info = svm_get_exit_info,
4582 
4583 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4584 
4585 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4586 
4587 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
4588 
4589 	.load_mmu_pgd = svm_load_mmu_pgd,
4590 
4591 	.check_intercept = svm_check_intercept,
4592 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4593 
4594 	.request_immediate_exit = __kvm_request_immediate_exit,
4595 
4596 	.sched_in = svm_sched_in,
4597 
4598 	.pmu_ops = &amd_pmu_ops,
4599 	.nested_ops = &svm_nested_ops,
4600 
4601 	.deliver_posted_interrupt = svm_deliver_avic_intr,
4602 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4603 	.update_pi_irte = svm_update_pi_irte,
4604 	.setup_mce = svm_setup_mce,
4605 
4606 	.smi_allowed = svm_smi_allowed,
4607 	.pre_enter_smm = svm_pre_enter_smm,
4608 	.pre_leave_smm = svm_pre_leave_smm,
4609 	.enable_smi_window = svm_enable_smi_window,
4610 
4611 	.mem_enc_op = svm_mem_enc_op,
4612 	.mem_enc_reg_region = svm_register_enc_region,
4613 	.mem_enc_unreg_region = svm_unregister_enc_region,
4614 
4615 	.can_emulate_instruction = svm_can_emulate_instruction,
4616 
4617 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4618 
4619 	.msr_filter_changed = svm_msr_filter_changed,
4620 	.complete_emulated_msr = svm_complete_emulated_msr,
4621 
4622 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4623 };
4624 
4625 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4626 	.cpu_has_kvm_support = has_svm,
4627 	.disabled_by_bios = is_disabled,
4628 	.hardware_setup = svm_hardware_setup,
4629 	.check_processor_compatibility = svm_check_processor_compat,
4630 
4631 	.runtime_ops = &svm_x86_ops,
4632 };
4633 
4634 static int __init svm_init(void)
4635 {
4636 	__unused_size_checks();
4637 
4638 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4639 			__alignof__(struct vcpu_svm), THIS_MODULE);
4640 }
4641 
4642 static void __exit svm_exit(void)
4643 {
4644 	kvm_exit();
4645 }
4646 
4647 module_init(svm_init)
4648 module_exit(svm_exit)
4649