1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 #include <linux/cc_platform.h> 29 30 #include <asm/apic.h> 31 #include <asm/perf_event.h> 32 #include <asm/tlbflush.h> 33 #include <asm/desc.h> 34 #include <asm/debugreg.h> 35 #include <asm/kvm_para.h> 36 #include <asm/irq_remapping.h> 37 #include <asm/spec-ctrl.h> 38 #include <asm/cpu_device_id.h> 39 #include <asm/traps.h> 40 #include <asm/fpu/api.h> 41 42 #include <asm/virtext.h> 43 #include "trace.h" 44 45 #include "svm.h" 46 #include "svm_ops.h" 47 48 #include "kvm_onhyperv.h" 49 #include "svm_onhyperv.h" 50 51 MODULE_AUTHOR("Qumranet"); 52 MODULE_LICENSE("GPL"); 53 54 #ifdef MODULE 55 static const struct x86_cpu_id svm_cpu_id[] = { 56 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 57 {} 58 }; 59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 60 #endif 61 62 #define SEG_TYPE_LDT 2 63 #define SEG_TYPE_BUSY_TSS16 3 64 65 #define SVM_FEATURE_LBRV (1 << 1) 66 #define SVM_FEATURE_SVML (1 << 2) 67 #define SVM_FEATURE_TSC_RATE (1 << 4) 68 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 69 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 70 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 71 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 72 73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 74 75 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 76 #define TSC_RATIO_MIN 0x0000000000000001ULL 77 #define TSC_RATIO_MAX 0x000000ffffffffffULL 78 79 static bool erratum_383_found __read_mostly; 80 81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 82 83 /* 84 * Set osvw_len to higher value when updated Revision Guides 85 * are published and we know what the new status bits are 86 */ 87 static uint64_t osvw_len = 4, osvw_status; 88 89 static DEFINE_PER_CPU(u64, current_tsc_ratio); 90 #define TSC_RATIO_DEFAULT 0x0100000000ULL 91 92 static const struct svm_direct_access_msrs { 93 u32 index; /* Index of the MSR */ 94 bool always; /* True if intercept is initially cleared */ 95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 96 { .index = MSR_STAR, .always = true }, 97 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 98 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 99 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 100 #ifdef CONFIG_X86_64 101 { .index = MSR_GS_BASE, .always = true }, 102 { .index = MSR_FS_BASE, .always = true }, 103 { .index = MSR_KERNEL_GS_BASE, .always = true }, 104 { .index = MSR_LSTAR, .always = true }, 105 { .index = MSR_CSTAR, .always = true }, 106 { .index = MSR_SYSCALL_MASK, .always = true }, 107 #endif 108 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 109 { .index = MSR_IA32_PRED_CMD, .always = false }, 110 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 111 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 112 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 113 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 114 { .index = MSR_EFER, .always = false }, 115 { .index = MSR_IA32_CR_PAT, .always = false }, 116 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 117 { .index = MSR_INVALID, .always = false }, 118 }; 119 120 /* 121 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 122 * pause_filter_count: On processors that support Pause filtering(indicated 123 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 124 * count value. On VMRUN this value is loaded into an internal counter. 125 * Each time a pause instruction is executed, this counter is decremented 126 * until it reaches zero at which time a #VMEXIT is generated if pause 127 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 128 * Intercept Filtering for more details. 129 * This also indicate if ple logic enabled. 130 * 131 * pause_filter_thresh: In addition, some processor families support advanced 132 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 133 * the amount of time a guest is allowed to execute in a pause loop. 134 * In this mode, a 16-bit pause filter threshold field is added in the 135 * VMCB. The threshold value is a cycle count that is used to reset the 136 * pause counter. As with simple pause filtering, VMRUN loads the pause 137 * count value from VMCB into an internal counter. Then, on each pause 138 * instruction the hardware checks the elapsed number of cycles since 139 * the most recent pause instruction against the pause filter threshold. 140 * If the elapsed cycle count is greater than the pause filter threshold, 141 * then the internal pause count is reloaded from the VMCB and execution 142 * continues. If the elapsed cycle count is less than the pause filter 143 * threshold, then the internal pause count is decremented. If the count 144 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 145 * triggered. If advanced pause filtering is supported and pause filter 146 * threshold field is set to zero, the filter will operate in the simpler, 147 * count only mode. 148 */ 149 150 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 151 module_param(pause_filter_thresh, ushort, 0444); 152 153 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 154 module_param(pause_filter_count, ushort, 0444); 155 156 /* Default doubles per-vcpu window every exit. */ 157 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 158 module_param(pause_filter_count_grow, ushort, 0444); 159 160 /* Default resets per-vcpu window every exit to pause_filter_count. */ 161 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 162 module_param(pause_filter_count_shrink, ushort, 0444); 163 164 /* Default is to compute the maximum so we can never overflow. */ 165 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 166 module_param(pause_filter_count_max, ushort, 0444); 167 168 /* 169 * Use nested page tables by default. Note, NPT may get forced off by 170 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 171 */ 172 bool npt_enabled = true; 173 module_param_named(npt, npt_enabled, bool, 0444); 174 175 /* allow nested virtualization in KVM/SVM */ 176 static int nested = true; 177 module_param(nested, int, S_IRUGO); 178 179 /* enable/disable Next RIP Save */ 180 static int nrips = true; 181 module_param(nrips, int, 0444); 182 183 /* enable/disable Virtual VMLOAD VMSAVE */ 184 static int vls = true; 185 module_param(vls, int, 0444); 186 187 /* enable/disable Virtual GIF */ 188 static int vgif = true; 189 module_param(vgif, int, 0444); 190 191 /* 192 * enable / disable AVIC. Because the defaults differ for APICv 193 * support between VMX and SVM we cannot use module_param_named. 194 */ 195 static bool avic; 196 module_param(avic, bool, 0444); 197 198 bool __read_mostly dump_invalid_vmcb; 199 module_param(dump_invalid_vmcb, bool, 0644); 200 201 202 bool intercept_smi = true; 203 module_param(intercept_smi, bool, 0444); 204 205 206 static bool svm_gp_erratum_intercept = true; 207 208 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 209 210 static unsigned long iopm_base; 211 212 struct kvm_ldttss_desc { 213 u16 limit0; 214 u16 base0; 215 unsigned base1:8, type:5, dpl:2, p:1; 216 unsigned limit1:4, zero0:3, g:1, base2:8; 217 u32 base3; 218 u32 zero1; 219 } __attribute__((packed)); 220 221 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 222 223 /* 224 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 225 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 226 * 227 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 228 * defer the restoration of TSC_AUX until the CPU returns to userspace. 229 */ 230 static int tsc_aux_uret_slot __read_mostly = -1; 231 232 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 233 234 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 235 #define MSRS_RANGE_SIZE 2048 236 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 237 238 u32 svm_msrpm_offset(u32 msr) 239 { 240 u32 offset; 241 int i; 242 243 for (i = 0; i < NUM_MSR_MAPS; i++) { 244 if (msr < msrpm_ranges[i] || 245 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 246 continue; 247 248 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 249 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 250 251 /* Now we have the u8 offset - but need the u32 offset */ 252 return offset / 4; 253 } 254 255 /* MSR not in any range */ 256 return MSR_INVALID; 257 } 258 259 #define MAX_INST_SIZE 15 260 261 static int get_max_npt_level(void) 262 { 263 #ifdef CONFIG_X86_64 264 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 265 #else 266 return PT32E_ROOT_LEVEL; 267 #endif 268 } 269 270 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 271 { 272 struct vcpu_svm *svm = to_svm(vcpu); 273 u64 old_efer = vcpu->arch.efer; 274 vcpu->arch.efer = efer; 275 276 if (!npt_enabled) { 277 /* Shadow paging assumes NX to be available. */ 278 efer |= EFER_NX; 279 280 if (!(efer & EFER_LMA)) 281 efer &= ~EFER_LME; 282 } 283 284 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 285 if (!(efer & EFER_SVME)) { 286 svm_leave_nested(svm); 287 svm_set_gif(svm, true); 288 /* #GP intercept is still needed for vmware backdoor */ 289 if (!enable_vmware_backdoor) 290 clr_exception_intercept(svm, GP_VECTOR); 291 292 /* 293 * Free the nested guest state, unless we are in SMM. 294 * In this case we will return to the nested guest 295 * as soon as we leave SMM. 296 */ 297 if (!is_smm(vcpu)) 298 svm_free_nested(svm); 299 300 } else { 301 int ret = svm_allocate_nested(svm); 302 303 if (ret) { 304 vcpu->arch.efer = old_efer; 305 return ret; 306 } 307 308 if (svm_gp_erratum_intercept) 309 set_exception_intercept(svm, GP_VECTOR); 310 } 311 } 312 313 svm->vmcb->save.efer = efer | EFER_SVME; 314 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 315 return 0; 316 } 317 318 static int is_external_interrupt(u32 info) 319 { 320 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 321 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 322 } 323 324 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 325 { 326 struct vcpu_svm *svm = to_svm(vcpu); 327 u32 ret = 0; 328 329 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 330 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 331 return ret; 332 } 333 334 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 335 { 336 struct vcpu_svm *svm = to_svm(vcpu); 337 338 if (mask == 0) 339 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 340 else 341 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 342 343 } 344 345 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 346 { 347 struct vcpu_svm *svm = to_svm(vcpu); 348 349 /* 350 * SEV-ES does not expose the next RIP. The RIP update is controlled by 351 * the type of exit and the #VC handler in the guest. 352 */ 353 if (sev_es_guest(vcpu->kvm)) 354 goto done; 355 356 if (nrips && svm->vmcb->control.next_rip != 0) { 357 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 358 svm->next_rip = svm->vmcb->control.next_rip; 359 } 360 361 if (!svm->next_rip) { 362 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 363 return 0; 364 } else { 365 kvm_rip_write(vcpu, svm->next_rip); 366 } 367 368 done: 369 svm_set_interrupt_shadow(vcpu, 0); 370 371 return 1; 372 } 373 374 static void svm_queue_exception(struct kvm_vcpu *vcpu) 375 { 376 struct vcpu_svm *svm = to_svm(vcpu); 377 unsigned nr = vcpu->arch.exception.nr; 378 bool has_error_code = vcpu->arch.exception.has_error_code; 379 u32 error_code = vcpu->arch.exception.error_code; 380 381 kvm_deliver_exception_payload(vcpu); 382 383 if (nr == BP_VECTOR && !nrips) { 384 unsigned long rip, old_rip = kvm_rip_read(vcpu); 385 386 /* 387 * For guest debugging where we have to reinject #BP if some 388 * INT3 is guest-owned: 389 * Emulate nRIP by moving RIP forward. Will fail if injection 390 * raises a fault that is not intercepted. Still better than 391 * failing in all cases. 392 */ 393 (void)skip_emulated_instruction(vcpu); 394 rip = kvm_rip_read(vcpu); 395 svm->int3_rip = rip + svm->vmcb->save.cs.base; 396 svm->int3_injected = rip - old_rip; 397 } 398 399 svm->vmcb->control.event_inj = nr 400 | SVM_EVTINJ_VALID 401 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 402 | SVM_EVTINJ_TYPE_EXEPT; 403 svm->vmcb->control.event_inj_err = error_code; 404 } 405 406 static void svm_init_erratum_383(void) 407 { 408 u32 low, high; 409 int err; 410 u64 val; 411 412 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 413 return; 414 415 /* Use _safe variants to not break nested virtualization */ 416 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 417 if (err) 418 return; 419 420 val |= (1ULL << 47); 421 422 low = lower_32_bits(val); 423 high = upper_32_bits(val); 424 425 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 426 427 erratum_383_found = true; 428 } 429 430 static void svm_init_osvw(struct kvm_vcpu *vcpu) 431 { 432 /* 433 * Guests should see errata 400 and 415 as fixed (assuming that 434 * HLT and IO instructions are intercepted). 435 */ 436 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 437 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 438 439 /* 440 * By increasing VCPU's osvw.length to 3 we are telling the guest that 441 * all osvw.status bits inside that length, including bit 0 (which is 442 * reserved for erratum 298), are valid. However, if host processor's 443 * osvw_len is 0 then osvw_status[0] carries no information. We need to 444 * be conservative here and therefore we tell the guest that erratum 298 445 * is present (because we really don't know). 446 */ 447 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 448 vcpu->arch.osvw.status |= 1; 449 } 450 451 static int has_svm(void) 452 { 453 const char *msg; 454 455 if (!cpu_has_svm(&msg)) { 456 printk(KERN_INFO "has_svm: %s\n", msg); 457 return 0; 458 } 459 460 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 461 pr_info("KVM is unsupported when running as an SEV guest\n"); 462 return 0; 463 } 464 465 return 1; 466 } 467 468 static void svm_hardware_disable(void) 469 { 470 /* Make sure we clean up behind us */ 471 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) 472 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 473 474 cpu_svm_disable(); 475 476 amd_pmu_disable_virt(); 477 } 478 479 static int svm_hardware_enable(void) 480 { 481 482 struct svm_cpu_data *sd; 483 uint64_t efer; 484 struct desc_struct *gdt; 485 int me = raw_smp_processor_id(); 486 487 rdmsrl(MSR_EFER, efer); 488 if (efer & EFER_SVME) 489 return -EBUSY; 490 491 if (!has_svm()) { 492 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 493 return -EINVAL; 494 } 495 sd = per_cpu(svm_data, me); 496 if (!sd) { 497 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 498 return -EINVAL; 499 } 500 501 sd->asid_generation = 1; 502 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 503 sd->next_asid = sd->max_asid + 1; 504 sd->min_asid = max_sev_asid + 1; 505 506 gdt = get_current_gdt_rw(); 507 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 508 509 wrmsrl(MSR_EFER, efer | EFER_SVME); 510 511 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); 512 513 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 514 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 515 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 516 } 517 518 519 /* 520 * Get OSVW bits. 521 * 522 * Note that it is possible to have a system with mixed processor 523 * revisions and therefore different OSVW bits. If bits are not the same 524 * on different processors then choose the worst case (i.e. if erratum 525 * is present on one processor and not on another then assume that the 526 * erratum is present everywhere). 527 */ 528 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 529 uint64_t len, status = 0; 530 int err; 531 532 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 533 if (!err) 534 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 535 &err); 536 537 if (err) 538 osvw_status = osvw_len = 0; 539 else { 540 if (len < osvw_len) 541 osvw_len = len; 542 osvw_status |= status; 543 osvw_status &= (1ULL << osvw_len) - 1; 544 } 545 } else 546 osvw_status = osvw_len = 0; 547 548 svm_init_erratum_383(); 549 550 amd_pmu_enable_virt(); 551 552 return 0; 553 } 554 555 static void svm_cpu_uninit(int cpu) 556 { 557 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 558 559 if (!sd) 560 return; 561 562 per_cpu(svm_data, cpu) = NULL; 563 kfree(sd->sev_vmcbs); 564 __free_page(sd->save_area); 565 kfree(sd); 566 } 567 568 static int svm_cpu_init(int cpu) 569 { 570 struct svm_cpu_data *sd; 571 int ret = -ENOMEM; 572 573 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 574 if (!sd) 575 return ret; 576 sd->cpu = cpu; 577 sd->save_area = alloc_page(GFP_KERNEL); 578 if (!sd->save_area) 579 goto free_cpu_data; 580 581 clear_page(page_address(sd->save_area)); 582 583 ret = sev_cpu_init(sd); 584 if (ret) 585 goto free_save_area; 586 587 per_cpu(svm_data, cpu) = sd; 588 589 return 0; 590 591 free_save_area: 592 __free_page(sd->save_area); 593 free_cpu_data: 594 kfree(sd); 595 return ret; 596 597 } 598 599 static int direct_access_msr_slot(u32 msr) 600 { 601 u32 i; 602 603 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 604 if (direct_access_msrs[i].index == msr) 605 return i; 606 607 return -ENOENT; 608 } 609 610 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 611 int write) 612 { 613 struct vcpu_svm *svm = to_svm(vcpu); 614 int slot = direct_access_msr_slot(msr); 615 616 if (slot == -ENOENT) 617 return; 618 619 /* Set the shadow bitmaps to the desired intercept states */ 620 if (read) 621 set_bit(slot, svm->shadow_msr_intercept.read); 622 else 623 clear_bit(slot, svm->shadow_msr_intercept.read); 624 625 if (write) 626 set_bit(slot, svm->shadow_msr_intercept.write); 627 else 628 clear_bit(slot, svm->shadow_msr_intercept.write); 629 } 630 631 static bool valid_msr_intercept(u32 index) 632 { 633 return direct_access_msr_slot(index) != -ENOENT; 634 } 635 636 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 637 { 638 u8 bit_write; 639 unsigned long tmp; 640 u32 offset; 641 u32 *msrpm; 642 643 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 644 to_svm(vcpu)->msrpm; 645 646 offset = svm_msrpm_offset(msr); 647 bit_write = 2 * (msr & 0x0f) + 1; 648 tmp = msrpm[offset]; 649 650 BUG_ON(offset == MSR_INVALID); 651 652 return !!test_bit(bit_write, &tmp); 653 } 654 655 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 656 u32 msr, int read, int write) 657 { 658 u8 bit_read, bit_write; 659 unsigned long tmp; 660 u32 offset; 661 662 /* 663 * If this warning triggers extend the direct_access_msrs list at the 664 * beginning of the file 665 */ 666 WARN_ON(!valid_msr_intercept(msr)); 667 668 /* Enforce non allowed MSRs to trap */ 669 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 670 read = 0; 671 672 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 673 write = 0; 674 675 offset = svm_msrpm_offset(msr); 676 bit_read = 2 * (msr & 0x0f); 677 bit_write = 2 * (msr & 0x0f) + 1; 678 tmp = msrpm[offset]; 679 680 BUG_ON(offset == MSR_INVALID); 681 682 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 683 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 684 685 msrpm[offset] = tmp; 686 687 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 688 689 } 690 691 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 692 int read, int write) 693 { 694 set_shadow_msr_intercept(vcpu, msr, read, write); 695 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 696 } 697 698 u32 *svm_vcpu_alloc_msrpm(void) 699 { 700 unsigned int order = get_order(MSRPM_SIZE); 701 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 702 u32 *msrpm; 703 704 if (!pages) 705 return NULL; 706 707 msrpm = page_address(pages); 708 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 709 710 return msrpm; 711 } 712 713 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 714 { 715 int i; 716 717 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 718 if (!direct_access_msrs[i].always) 719 continue; 720 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 721 } 722 } 723 724 725 void svm_vcpu_free_msrpm(u32 *msrpm) 726 { 727 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 728 } 729 730 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 731 { 732 struct vcpu_svm *svm = to_svm(vcpu); 733 u32 i; 734 735 /* 736 * Set intercept permissions for all direct access MSRs again. They 737 * will automatically get filtered through the MSR filter, so we are 738 * back in sync after this. 739 */ 740 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 741 u32 msr = direct_access_msrs[i].index; 742 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 743 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 744 745 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 746 } 747 } 748 749 static void add_msr_offset(u32 offset) 750 { 751 int i; 752 753 for (i = 0; i < MSRPM_OFFSETS; ++i) { 754 755 /* Offset already in list? */ 756 if (msrpm_offsets[i] == offset) 757 return; 758 759 /* Slot used by another offset? */ 760 if (msrpm_offsets[i] != MSR_INVALID) 761 continue; 762 763 /* Add offset to list */ 764 msrpm_offsets[i] = offset; 765 766 return; 767 } 768 769 /* 770 * If this BUG triggers the msrpm_offsets table has an overflow. Just 771 * increase MSRPM_OFFSETS in this case. 772 */ 773 BUG(); 774 } 775 776 static void init_msrpm_offsets(void) 777 { 778 int i; 779 780 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 781 782 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 783 u32 offset; 784 785 offset = svm_msrpm_offset(direct_access_msrs[i].index); 786 BUG_ON(offset == MSR_INVALID); 787 788 add_msr_offset(offset); 789 } 790 } 791 792 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 793 { 794 struct vcpu_svm *svm = to_svm(vcpu); 795 796 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 797 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 798 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 799 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 800 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 801 } 802 803 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 804 { 805 struct vcpu_svm *svm = to_svm(vcpu); 806 807 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 808 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 809 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 810 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 811 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 812 } 813 814 void disable_nmi_singlestep(struct vcpu_svm *svm) 815 { 816 svm->nmi_singlestep = false; 817 818 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 819 /* Clear our flags if they were not set by the guest */ 820 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 821 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 822 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 823 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 824 } 825 } 826 827 static void grow_ple_window(struct kvm_vcpu *vcpu) 828 { 829 struct vcpu_svm *svm = to_svm(vcpu); 830 struct vmcb_control_area *control = &svm->vmcb->control; 831 int old = control->pause_filter_count; 832 833 control->pause_filter_count = __grow_ple_window(old, 834 pause_filter_count, 835 pause_filter_count_grow, 836 pause_filter_count_max); 837 838 if (control->pause_filter_count != old) { 839 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 840 trace_kvm_ple_window_update(vcpu->vcpu_id, 841 control->pause_filter_count, old); 842 } 843 } 844 845 static void shrink_ple_window(struct kvm_vcpu *vcpu) 846 { 847 struct vcpu_svm *svm = to_svm(vcpu); 848 struct vmcb_control_area *control = &svm->vmcb->control; 849 int old = control->pause_filter_count; 850 851 control->pause_filter_count = 852 __shrink_ple_window(old, 853 pause_filter_count, 854 pause_filter_count_shrink, 855 pause_filter_count); 856 if (control->pause_filter_count != old) { 857 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 858 trace_kvm_ple_window_update(vcpu->vcpu_id, 859 control->pause_filter_count, old); 860 } 861 } 862 863 /* 864 * The default MMIO mask is a single bit (excluding the present bit), 865 * which could conflict with the memory encryption bit. Check for 866 * memory encryption support and override the default MMIO mask if 867 * memory encryption is enabled. 868 */ 869 static __init void svm_adjust_mmio_mask(void) 870 { 871 unsigned int enc_bit, mask_bit; 872 u64 msr, mask; 873 874 /* If there is no memory encryption support, use existing mask */ 875 if (cpuid_eax(0x80000000) < 0x8000001f) 876 return; 877 878 /* If memory encryption is not enabled, use existing mask */ 879 rdmsrl(MSR_AMD64_SYSCFG, msr); 880 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 881 return; 882 883 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 884 mask_bit = boot_cpu_data.x86_phys_bits; 885 886 /* Increment the mask bit if it is the same as the encryption bit */ 887 if (enc_bit == mask_bit) 888 mask_bit++; 889 890 /* 891 * If the mask bit location is below 52, then some bits above the 892 * physical addressing limit will always be reserved, so use the 893 * rsvd_bits() function to generate the mask. This mask, along with 894 * the present bit, will be used to generate a page fault with 895 * PFER.RSV = 1. 896 * 897 * If the mask bit location is 52 (or above), then clear the mask. 898 */ 899 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 900 901 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 902 } 903 904 static void svm_hardware_teardown(void) 905 { 906 int cpu; 907 908 sev_hardware_teardown(); 909 910 for_each_possible_cpu(cpu) 911 svm_cpu_uninit(cpu); 912 913 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 914 get_order(IOPM_SIZE)); 915 iopm_base = 0; 916 } 917 918 static __init void svm_set_cpu_caps(void) 919 { 920 kvm_set_cpu_caps(); 921 922 supported_xss = 0; 923 924 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 925 if (nested) { 926 kvm_cpu_cap_set(X86_FEATURE_SVM); 927 928 if (nrips) 929 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 930 931 if (npt_enabled) 932 kvm_cpu_cap_set(X86_FEATURE_NPT); 933 934 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 935 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 936 } 937 938 /* CPUID 0x80000008 */ 939 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 940 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 941 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 942 943 /* CPUID 0x8000001F (SME/SEV features) */ 944 sev_set_cpu_caps(); 945 } 946 947 static __init int svm_hardware_setup(void) 948 { 949 int cpu; 950 struct page *iopm_pages; 951 void *iopm_va; 952 int r; 953 unsigned int order = get_order(IOPM_SIZE); 954 955 /* 956 * NX is required for shadow paging and for NPT if the NX huge pages 957 * mitigation is enabled. 958 */ 959 if (!boot_cpu_has(X86_FEATURE_NX)) { 960 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 961 return -EOPNOTSUPP; 962 } 963 kvm_enable_efer_bits(EFER_NX); 964 965 iopm_pages = alloc_pages(GFP_KERNEL, order); 966 967 if (!iopm_pages) 968 return -ENOMEM; 969 970 iopm_va = page_address(iopm_pages); 971 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 972 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 973 974 init_msrpm_offsets(); 975 976 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 977 978 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 979 kvm_enable_efer_bits(EFER_FFXSR); 980 981 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 982 kvm_has_tsc_control = true; 983 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 984 kvm_tsc_scaling_ratio_frac_bits = 32; 985 } 986 987 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 988 989 /* Check for pause filtering support */ 990 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 991 pause_filter_count = 0; 992 pause_filter_thresh = 0; 993 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 994 pause_filter_thresh = 0; 995 } 996 997 if (nested) { 998 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 999 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 1000 } 1001 1002 /* 1003 * KVM's MMU doesn't support using 2-level paging for itself, and thus 1004 * NPT isn't supported if the host is using 2-level paging since host 1005 * CR4 is unchanged on VMRUN. 1006 */ 1007 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 1008 npt_enabled = false; 1009 1010 if (!boot_cpu_has(X86_FEATURE_NPT)) 1011 npt_enabled = false; 1012 1013 /* Force VM NPT level equal to the host's max NPT level */ 1014 kvm_configure_mmu(npt_enabled, get_max_npt_level(), 1015 get_max_npt_level(), PG_LEVEL_1G); 1016 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 1017 1018 /* Note, SEV setup consumes npt_enabled. */ 1019 sev_hardware_setup(); 1020 1021 svm_hv_hardware_setup(); 1022 1023 svm_adjust_mmio_mask(); 1024 1025 for_each_possible_cpu(cpu) { 1026 r = svm_cpu_init(cpu); 1027 if (r) 1028 goto err; 1029 } 1030 1031 if (nrips) { 1032 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 1033 nrips = false; 1034 } 1035 1036 enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC); 1037 1038 if (enable_apicv) { 1039 pr_info("AVIC enabled\n"); 1040 1041 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 1042 } 1043 1044 if (vls) { 1045 if (!npt_enabled || 1046 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 1047 !IS_ENABLED(CONFIG_X86_64)) { 1048 vls = false; 1049 } else { 1050 pr_info("Virtual VMLOAD VMSAVE supported\n"); 1051 } 1052 } 1053 1054 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 1055 svm_gp_erratum_intercept = false; 1056 1057 if (vgif) { 1058 if (!boot_cpu_has(X86_FEATURE_VGIF)) 1059 vgif = false; 1060 else 1061 pr_info("Virtual GIF supported\n"); 1062 } 1063 1064 svm_set_cpu_caps(); 1065 1066 /* 1067 * It seems that on AMD processors PTE's accessed bit is 1068 * being set by the CPU hardware before the NPF vmexit. 1069 * This is not expected behaviour and our tests fail because 1070 * of it. 1071 * A workaround here is to disable support for 1072 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 1073 * In this case userspace can know if there is support using 1074 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 1075 * it 1076 * If future AMD CPU models change the behaviour described above, 1077 * this variable can be changed accordingly 1078 */ 1079 allow_smaller_maxphyaddr = !npt_enabled; 1080 1081 return 0; 1082 1083 err: 1084 svm_hardware_teardown(); 1085 return r; 1086 } 1087 1088 static void init_seg(struct vmcb_seg *seg) 1089 { 1090 seg->selector = 0; 1091 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1092 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1093 seg->limit = 0xffff; 1094 seg->base = 0; 1095 } 1096 1097 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1098 { 1099 seg->selector = 0; 1100 seg->attrib = SVM_SELECTOR_P_MASK | type; 1101 seg->limit = 0xffff; 1102 seg->base = 0; 1103 } 1104 1105 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1106 { 1107 struct vcpu_svm *svm = to_svm(vcpu); 1108 1109 return svm->nested.ctl.tsc_offset; 1110 } 1111 1112 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1113 { 1114 return kvm_default_tsc_scaling_ratio; 1115 } 1116 1117 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1118 { 1119 struct vcpu_svm *svm = to_svm(vcpu); 1120 1121 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1122 svm->vmcb->control.tsc_offset = offset; 1123 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1124 } 1125 1126 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1127 { 1128 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 1129 } 1130 1131 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1132 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1133 struct vcpu_svm *svm) 1134 { 1135 /* 1136 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1137 * roots, or if INVPCID is disabled in the guest to inject #UD. 1138 */ 1139 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1140 if (!npt_enabled || 1141 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1142 svm_set_intercept(svm, INTERCEPT_INVPCID); 1143 else 1144 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1145 } 1146 1147 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1148 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1149 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1150 else 1151 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1152 } 1153 } 1154 1155 static void init_vmcb(struct kvm_vcpu *vcpu) 1156 { 1157 struct vcpu_svm *svm = to_svm(vcpu); 1158 struct vmcb_control_area *control = &svm->vmcb->control; 1159 struct vmcb_save_area *save = &svm->vmcb->save; 1160 1161 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1162 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1163 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1164 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1165 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1166 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1167 if (!kvm_vcpu_apicv_active(vcpu)) 1168 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1169 1170 set_dr_intercepts(svm); 1171 1172 set_exception_intercept(svm, PF_VECTOR); 1173 set_exception_intercept(svm, UD_VECTOR); 1174 set_exception_intercept(svm, MC_VECTOR); 1175 set_exception_intercept(svm, AC_VECTOR); 1176 set_exception_intercept(svm, DB_VECTOR); 1177 /* 1178 * Guest access to VMware backdoor ports could legitimately 1179 * trigger #GP because of TSS I/O permission bitmap. 1180 * We intercept those #GP and allow access to them anyway 1181 * as VMware does. 1182 */ 1183 if (enable_vmware_backdoor) 1184 set_exception_intercept(svm, GP_VECTOR); 1185 1186 svm_set_intercept(svm, INTERCEPT_INTR); 1187 svm_set_intercept(svm, INTERCEPT_NMI); 1188 1189 if (intercept_smi) 1190 svm_set_intercept(svm, INTERCEPT_SMI); 1191 1192 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1193 svm_set_intercept(svm, INTERCEPT_RDPMC); 1194 svm_set_intercept(svm, INTERCEPT_CPUID); 1195 svm_set_intercept(svm, INTERCEPT_INVD); 1196 svm_set_intercept(svm, INTERCEPT_INVLPG); 1197 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1198 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1199 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1200 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1201 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1202 svm_set_intercept(svm, INTERCEPT_VMRUN); 1203 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1204 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1205 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1206 svm_set_intercept(svm, INTERCEPT_STGI); 1207 svm_set_intercept(svm, INTERCEPT_CLGI); 1208 svm_set_intercept(svm, INTERCEPT_SKINIT); 1209 svm_set_intercept(svm, INTERCEPT_WBINVD); 1210 svm_set_intercept(svm, INTERCEPT_XSETBV); 1211 svm_set_intercept(svm, INTERCEPT_RDPRU); 1212 svm_set_intercept(svm, INTERCEPT_RSM); 1213 1214 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1215 svm_set_intercept(svm, INTERCEPT_MONITOR); 1216 svm_set_intercept(svm, INTERCEPT_MWAIT); 1217 } 1218 1219 if (!kvm_hlt_in_guest(vcpu->kvm)) 1220 svm_set_intercept(svm, INTERCEPT_HLT); 1221 1222 control->iopm_base_pa = __sme_set(iopm_base); 1223 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1224 control->int_ctl = V_INTR_MASKING_MASK; 1225 1226 init_seg(&save->es); 1227 init_seg(&save->ss); 1228 init_seg(&save->ds); 1229 init_seg(&save->fs); 1230 init_seg(&save->gs); 1231 1232 save->cs.selector = 0xf000; 1233 save->cs.base = 0xffff0000; 1234 /* Executable/Readable Code Segment */ 1235 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1236 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1237 save->cs.limit = 0xffff; 1238 1239 save->gdtr.base = 0; 1240 save->gdtr.limit = 0xffff; 1241 save->idtr.base = 0; 1242 save->idtr.limit = 0xffff; 1243 1244 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1245 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1246 1247 if (npt_enabled) { 1248 /* Setup VMCB for Nested Paging */ 1249 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1250 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1251 clr_exception_intercept(svm, PF_VECTOR); 1252 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1253 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1254 save->g_pat = vcpu->arch.pat; 1255 save->cr3 = 0; 1256 } 1257 svm->current_vmcb->asid_generation = 0; 1258 svm->asid = 0; 1259 1260 svm->nested.vmcb12_gpa = INVALID_GPA; 1261 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1262 1263 if (!kvm_pause_in_guest(vcpu->kvm)) { 1264 control->pause_filter_count = pause_filter_count; 1265 if (pause_filter_thresh) 1266 control->pause_filter_thresh = pause_filter_thresh; 1267 svm_set_intercept(svm, INTERCEPT_PAUSE); 1268 } else { 1269 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1270 } 1271 1272 svm_recalc_instruction_intercepts(vcpu, svm); 1273 1274 /* 1275 * If the host supports V_SPEC_CTRL then disable the interception 1276 * of MSR_IA32_SPEC_CTRL. 1277 */ 1278 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1279 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1280 1281 if (kvm_vcpu_apicv_active(vcpu)) 1282 avic_init_vmcb(svm); 1283 1284 if (vgif) { 1285 svm_clr_intercept(svm, INTERCEPT_STGI); 1286 svm_clr_intercept(svm, INTERCEPT_CLGI); 1287 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1288 } 1289 1290 if (sev_guest(vcpu->kvm)) { 1291 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1292 clr_exception_intercept(svm, UD_VECTOR); 1293 1294 if (sev_es_guest(vcpu->kvm)) { 1295 /* Perform SEV-ES specific VMCB updates */ 1296 sev_es_init_vmcb(svm); 1297 } 1298 } 1299 1300 svm_hv_init_vmcb(svm->vmcb); 1301 1302 vmcb_mark_all_dirty(svm->vmcb); 1303 1304 enable_gif(svm); 1305 1306 } 1307 1308 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1309 { 1310 struct vcpu_svm *svm = to_svm(vcpu); 1311 1312 svm->spec_ctrl = 0; 1313 svm->virt_spec_ctrl = 0; 1314 1315 init_vmcb(vcpu); 1316 } 1317 1318 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1319 { 1320 svm->current_vmcb = target_vmcb; 1321 svm->vmcb = target_vmcb->ptr; 1322 } 1323 1324 static int svm_create_vcpu(struct kvm_vcpu *vcpu) 1325 { 1326 struct vcpu_svm *svm; 1327 struct page *vmcb01_page; 1328 struct page *vmsa_page = NULL; 1329 int err; 1330 1331 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1332 svm = to_svm(vcpu); 1333 1334 err = -ENOMEM; 1335 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1336 if (!vmcb01_page) 1337 goto out; 1338 1339 if (sev_es_guest(vcpu->kvm)) { 1340 /* 1341 * SEV-ES guests require a separate VMSA page used to contain 1342 * the encrypted register state of the guest. 1343 */ 1344 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1345 if (!vmsa_page) 1346 goto error_free_vmcb_page; 1347 1348 /* 1349 * SEV-ES guests maintain an encrypted version of their FPU 1350 * state which is restored and saved on VMRUN and VMEXIT. 1351 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1352 * do xsave/xrstor on it. 1353 */ 1354 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1355 } 1356 1357 err = avic_init_vcpu(svm); 1358 if (err) 1359 goto error_free_vmsa_page; 1360 1361 /* We initialize this flag to true to make sure that the is_running 1362 * bit would be set the first time the vcpu is loaded. 1363 */ 1364 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) 1365 svm->avic_is_running = true; 1366 1367 svm->msrpm = svm_vcpu_alloc_msrpm(); 1368 if (!svm->msrpm) { 1369 err = -ENOMEM; 1370 goto error_free_vmsa_page; 1371 } 1372 1373 svm->vmcb01.ptr = page_address(vmcb01_page); 1374 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1375 1376 if (vmsa_page) 1377 svm->vmsa = page_address(vmsa_page); 1378 1379 svm->guest_state_loaded = false; 1380 1381 svm_switch_vmcb(svm, &svm->vmcb01); 1382 init_vmcb(vcpu); 1383 1384 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1385 1386 svm_init_osvw(vcpu); 1387 vcpu->arch.microcode_version = 0x01000065; 1388 1389 if (sev_es_guest(vcpu->kvm)) 1390 /* Perform SEV-ES specific VMCB creation updates */ 1391 sev_es_create_vcpu(svm); 1392 1393 return 0; 1394 1395 error_free_vmsa_page: 1396 if (vmsa_page) 1397 __free_page(vmsa_page); 1398 error_free_vmcb_page: 1399 __free_page(vmcb01_page); 1400 out: 1401 return err; 1402 } 1403 1404 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1405 { 1406 int i; 1407 1408 for_each_online_cpu(i) 1409 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1410 } 1411 1412 static void svm_free_vcpu(struct kvm_vcpu *vcpu) 1413 { 1414 struct vcpu_svm *svm = to_svm(vcpu); 1415 1416 /* 1417 * The vmcb page can be recycled, causing a false negative in 1418 * svm_vcpu_load(). So, ensure that no logical CPU has this 1419 * vmcb page recorded as its current vmcb. 1420 */ 1421 svm_clear_current_vmcb(svm->vmcb); 1422 1423 svm_free_nested(svm); 1424 1425 sev_free_vcpu(vcpu); 1426 1427 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1428 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1429 } 1430 1431 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) 1432 { 1433 struct vcpu_svm *svm = to_svm(vcpu); 1434 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 1435 1436 if (sev_es_guest(vcpu->kvm)) 1437 sev_es_unmap_ghcb(svm); 1438 1439 if (svm->guest_state_loaded) 1440 return; 1441 1442 /* 1443 * Save additional host state that will be restored on VMEXIT (sev-es) 1444 * or subsequent vmload of host save area. 1445 */ 1446 if (sev_es_guest(vcpu->kvm)) { 1447 sev_es_prepare_guest_switch(svm, vcpu->cpu); 1448 } else { 1449 vmsave(__sme_page_pa(sd->save_area)); 1450 } 1451 1452 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 1453 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1454 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1455 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1456 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1457 } 1458 } 1459 1460 if (likely(tsc_aux_uret_slot >= 0)) 1461 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1462 1463 svm->guest_state_loaded = true; 1464 } 1465 1466 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1467 { 1468 to_svm(vcpu)->guest_state_loaded = false; 1469 } 1470 1471 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1472 { 1473 struct vcpu_svm *svm = to_svm(vcpu); 1474 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1475 1476 if (sd->current_vmcb != svm->vmcb) { 1477 sd->current_vmcb = svm->vmcb; 1478 indirect_branch_prediction_barrier(); 1479 } 1480 if (kvm_vcpu_apicv_active(vcpu)) 1481 avic_vcpu_load(vcpu, cpu); 1482 } 1483 1484 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1485 { 1486 if (kvm_vcpu_apicv_active(vcpu)) 1487 avic_vcpu_put(vcpu); 1488 1489 svm_prepare_host_switch(vcpu); 1490 1491 ++vcpu->stat.host_state_reload; 1492 } 1493 1494 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1495 { 1496 struct vcpu_svm *svm = to_svm(vcpu); 1497 unsigned long rflags = svm->vmcb->save.rflags; 1498 1499 if (svm->nmi_singlestep) { 1500 /* Hide our flags if they were not set by the guest */ 1501 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1502 rflags &= ~X86_EFLAGS_TF; 1503 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1504 rflags &= ~X86_EFLAGS_RF; 1505 } 1506 return rflags; 1507 } 1508 1509 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1510 { 1511 if (to_svm(vcpu)->nmi_singlestep) 1512 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1513 1514 /* 1515 * Any change of EFLAGS.VM is accompanied by a reload of SS 1516 * (caused by either a task switch or an inter-privilege IRET), 1517 * so we do not need to update the CPL here. 1518 */ 1519 to_svm(vcpu)->vmcb->save.rflags = rflags; 1520 } 1521 1522 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1523 { 1524 switch (reg) { 1525 case VCPU_EXREG_PDPTR: 1526 BUG_ON(!npt_enabled); 1527 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 1528 break; 1529 default: 1530 KVM_BUG_ON(1, vcpu->kvm); 1531 } 1532 } 1533 1534 static void svm_set_vintr(struct vcpu_svm *svm) 1535 { 1536 struct vmcb_control_area *control; 1537 1538 /* 1539 * The following fields are ignored when AVIC is enabled 1540 */ 1541 WARN_ON(kvm_apicv_activated(svm->vcpu.kvm)); 1542 1543 svm_set_intercept(svm, INTERCEPT_VINTR); 1544 1545 /* 1546 * This is just a dummy VINTR to actually cause a vmexit to happen. 1547 * Actual injection of virtual interrupts happens through EVENTINJ. 1548 */ 1549 control = &svm->vmcb->control; 1550 control->int_vector = 0x0; 1551 control->int_ctl &= ~V_INTR_PRIO_MASK; 1552 control->int_ctl |= V_IRQ_MASK | 1553 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1554 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1555 } 1556 1557 static void svm_clear_vintr(struct vcpu_svm *svm) 1558 { 1559 svm_clr_intercept(svm, INTERCEPT_VINTR); 1560 1561 /* Drop int_ctl fields related to VINTR injection. */ 1562 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1563 if (is_guest_mode(&svm->vcpu)) { 1564 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1565 1566 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1567 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1568 1569 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1570 V_IRQ_INJECTION_BITS_MASK; 1571 1572 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1573 } 1574 1575 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1576 } 1577 1578 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1579 { 1580 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1581 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1582 1583 switch (seg) { 1584 case VCPU_SREG_CS: return &save->cs; 1585 case VCPU_SREG_DS: return &save->ds; 1586 case VCPU_SREG_ES: return &save->es; 1587 case VCPU_SREG_FS: return &save01->fs; 1588 case VCPU_SREG_GS: return &save01->gs; 1589 case VCPU_SREG_SS: return &save->ss; 1590 case VCPU_SREG_TR: return &save01->tr; 1591 case VCPU_SREG_LDTR: return &save01->ldtr; 1592 } 1593 BUG(); 1594 return NULL; 1595 } 1596 1597 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1598 { 1599 struct vmcb_seg *s = svm_seg(vcpu, seg); 1600 1601 return s->base; 1602 } 1603 1604 static void svm_get_segment(struct kvm_vcpu *vcpu, 1605 struct kvm_segment *var, int seg) 1606 { 1607 struct vmcb_seg *s = svm_seg(vcpu, seg); 1608 1609 var->base = s->base; 1610 var->limit = s->limit; 1611 var->selector = s->selector; 1612 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1613 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1614 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1615 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1616 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1617 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1618 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1619 1620 /* 1621 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1622 * However, the SVM spec states that the G bit is not observed by the 1623 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1624 * So let's synthesize a legal G bit for all segments, this helps 1625 * running KVM nested. It also helps cross-vendor migration, because 1626 * Intel's vmentry has a check on the 'G' bit. 1627 */ 1628 var->g = s->limit > 0xfffff; 1629 1630 /* 1631 * AMD's VMCB does not have an explicit unusable field, so emulate it 1632 * for cross vendor migration purposes by "not present" 1633 */ 1634 var->unusable = !var->present; 1635 1636 switch (seg) { 1637 case VCPU_SREG_TR: 1638 /* 1639 * Work around a bug where the busy flag in the tr selector 1640 * isn't exposed 1641 */ 1642 var->type |= 0x2; 1643 break; 1644 case VCPU_SREG_DS: 1645 case VCPU_SREG_ES: 1646 case VCPU_SREG_FS: 1647 case VCPU_SREG_GS: 1648 /* 1649 * The accessed bit must always be set in the segment 1650 * descriptor cache, although it can be cleared in the 1651 * descriptor, the cached bit always remains at 1. Since 1652 * Intel has a check on this, set it here to support 1653 * cross-vendor migration. 1654 */ 1655 if (!var->unusable) 1656 var->type |= 0x1; 1657 break; 1658 case VCPU_SREG_SS: 1659 /* 1660 * On AMD CPUs sometimes the DB bit in the segment 1661 * descriptor is left as 1, although the whole segment has 1662 * been made unusable. Clear it here to pass an Intel VMX 1663 * entry check when cross vendor migrating. 1664 */ 1665 if (var->unusable) 1666 var->db = 0; 1667 /* This is symmetric with svm_set_segment() */ 1668 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1669 break; 1670 } 1671 } 1672 1673 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1674 { 1675 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1676 1677 return save->cpl; 1678 } 1679 1680 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1681 { 1682 struct vcpu_svm *svm = to_svm(vcpu); 1683 1684 dt->size = svm->vmcb->save.idtr.limit; 1685 dt->address = svm->vmcb->save.idtr.base; 1686 } 1687 1688 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1689 { 1690 struct vcpu_svm *svm = to_svm(vcpu); 1691 1692 svm->vmcb->save.idtr.limit = dt->size; 1693 svm->vmcb->save.idtr.base = dt->address ; 1694 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1695 } 1696 1697 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1698 { 1699 struct vcpu_svm *svm = to_svm(vcpu); 1700 1701 dt->size = svm->vmcb->save.gdtr.limit; 1702 dt->address = svm->vmcb->save.gdtr.base; 1703 } 1704 1705 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1706 { 1707 struct vcpu_svm *svm = to_svm(vcpu); 1708 1709 svm->vmcb->save.gdtr.limit = dt->size; 1710 svm->vmcb->save.gdtr.base = dt->address ; 1711 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1712 } 1713 1714 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1715 { 1716 struct vcpu_svm *svm = to_svm(vcpu); 1717 u64 hcr0 = cr0; 1718 1719 #ifdef CONFIG_X86_64 1720 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1721 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1722 vcpu->arch.efer |= EFER_LMA; 1723 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1724 } 1725 1726 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1727 vcpu->arch.efer &= ~EFER_LMA; 1728 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1729 } 1730 } 1731 #endif 1732 vcpu->arch.cr0 = cr0; 1733 1734 if (!npt_enabled) 1735 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1736 1737 /* 1738 * re-enable caching here because the QEMU bios 1739 * does not do it - this results in some delay at 1740 * reboot 1741 */ 1742 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1743 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1744 1745 svm->vmcb->save.cr0 = hcr0; 1746 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1747 1748 /* 1749 * SEV-ES guests must always keep the CR intercepts cleared. CR 1750 * tracking is done using the CR write traps. 1751 */ 1752 if (sev_es_guest(vcpu->kvm)) 1753 return; 1754 1755 if (hcr0 == cr0) { 1756 /* Selective CR0 write remains on. */ 1757 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1758 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1759 } else { 1760 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1761 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1762 } 1763 } 1764 1765 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1766 { 1767 return true; 1768 } 1769 1770 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1771 { 1772 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1773 unsigned long old_cr4 = vcpu->arch.cr4; 1774 1775 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1776 svm_flush_tlb(vcpu); 1777 1778 vcpu->arch.cr4 = cr4; 1779 if (!npt_enabled) 1780 cr4 |= X86_CR4_PAE; 1781 cr4 |= host_cr4_mce; 1782 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1783 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1784 1785 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1786 kvm_update_cpuid_runtime(vcpu); 1787 } 1788 1789 static void svm_set_segment(struct kvm_vcpu *vcpu, 1790 struct kvm_segment *var, int seg) 1791 { 1792 struct vcpu_svm *svm = to_svm(vcpu); 1793 struct vmcb_seg *s = svm_seg(vcpu, seg); 1794 1795 s->base = var->base; 1796 s->limit = var->limit; 1797 s->selector = var->selector; 1798 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1799 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1800 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1801 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1802 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1803 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1804 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1805 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1806 1807 /* 1808 * This is always accurate, except if SYSRET returned to a segment 1809 * with SS.DPL != 3. Intel does not have this quirk, and always 1810 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1811 * would entail passing the CPL to userspace and back. 1812 */ 1813 if (seg == VCPU_SREG_SS) 1814 /* This is symmetric with svm_get_segment() */ 1815 svm->vmcb->save.cpl = (var->dpl & 3); 1816 1817 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1818 } 1819 1820 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1821 { 1822 struct vcpu_svm *svm = to_svm(vcpu); 1823 1824 clr_exception_intercept(svm, BP_VECTOR); 1825 1826 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1827 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1828 set_exception_intercept(svm, BP_VECTOR); 1829 } 1830 } 1831 1832 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1833 { 1834 if (sd->next_asid > sd->max_asid) { 1835 ++sd->asid_generation; 1836 sd->next_asid = sd->min_asid; 1837 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1838 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1839 } 1840 1841 svm->current_vmcb->asid_generation = sd->asid_generation; 1842 svm->asid = sd->next_asid++; 1843 } 1844 1845 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1846 { 1847 struct vmcb *vmcb = svm->vmcb; 1848 1849 if (svm->vcpu.arch.guest_state_protected) 1850 return; 1851 1852 if (unlikely(value != vmcb->save.dr6)) { 1853 vmcb->save.dr6 = value; 1854 vmcb_mark_dirty(vmcb, VMCB_DR); 1855 } 1856 } 1857 1858 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1859 { 1860 struct vcpu_svm *svm = to_svm(vcpu); 1861 1862 if (vcpu->arch.guest_state_protected) 1863 return; 1864 1865 get_debugreg(vcpu->arch.db[0], 0); 1866 get_debugreg(vcpu->arch.db[1], 1); 1867 get_debugreg(vcpu->arch.db[2], 2); 1868 get_debugreg(vcpu->arch.db[3], 3); 1869 /* 1870 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1871 * because db_interception might need it. We can do it before vmentry. 1872 */ 1873 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1874 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1875 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1876 set_dr_intercepts(svm); 1877 } 1878 1879 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1880 { 1881 struct vcpu_svm *svm = to_svm(vcpu); 1882 1883 if (vcpu->arch.guest_state_protected) 1884 return; 1885 1886 svm->vmcb->save.dr7 = value; 1887 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1888 } 1889 1890 static int pf_interception(struct kvm_vcpu *vcpu) 1891 { 1892 struct vcpu_svm *svm = to_svm(vcpu); 1893 1894 u64 fault_address = svm->vmcb->control.exit_info_2; 1895 u64 error_code = svm->vmcb->control.exit_info_1; 1896 1897 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1898 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1899 svm->vmcb->control.insn_bytes : NULL, 1900 svm->vmcb->control.insn_len); 1901 } 1902 1903 static int npf_interception(struct kvm_vcpu *vcpu) 1904 { 1905 struct vcpu_svm *svm = to_svm(vcpu); 1906 1907 u64 fault_address = svm->vmcb->control.exit_info_2; 1908 u64 error_code = svm->vmcb->control.exit_info_1; 1909 1910 trace_kvm_page_fault(fault_address, error_code); 1911 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 1912 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1913 svm->vmcb->control.insn_bytes : NULL, 1914 svm->vmcb->control.insn_len); 1915 } 1916 1917 static int db_interception(struct kvm_vcpu *vcpu) 1918 { 1919 struct kvm_run *kvm_run = vcpu->run; 1920 struct vcpu_svm *svm = to_svm(vcpu); 1921 1922 if (!(vcpu->guest_debug & 1923 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1924 !svm->nmi_singlestep) { 1925 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1926 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1927 return 1; 1928 } 1929 1930 if (svm->nmi_singlestep) { 1931 disable_nmi_singlestep(svm); 1932 /* Make sure we check for pending NMIs upon entry */ 1933 kvm_make_request(KVM_REQ_EVENT, vcpu); 1934 } 1935 1936 if (vcpu->guest_debug & 1937 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1938 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1939 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1940 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1941 kvm_run->debug.arch.pc = 1942 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1943 kvm_run->debug.arch.exception = DB_VECTOR; 1944 return 0; 1945 } 1946 1947 return 1; 1948 } 1949 1950 static int bp_interception(struct kvm_vcpu *vcpu) 1951 { 1952 struct vcpu_svm *svm = to_svm(vcpu); 1953 struct kvm_run *kvm_run = vcpu->run; 1954 1955 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1956 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1957 kvm_run->debug.arch.exception = BP_VECTOR; 1958 return 0; 1959 } 1960 1961 static int ud_interception(struct kvm_vcpu *vcpu) 1962 { 1963 return handle_ud(vcpu); 1964 } 1965 1966 static int ac_interception(struct kvm_vcpu *vcpu) 1967 { 1968 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 1969 return 1; 1970 } 1971 1972 static bool is_erratum_383(void) 1973 { 1974 int err, i; 1975 u64 value; 1976 1977 if (!erratum_383_found) 1978 return false; 1979 1980 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 1981 if (err) 1982 return false; 1983 1984 /* Bit 62 may or may not be set for this mce */ 1985 value &= ~(1ULL << 62); 1986 1987 if (value != 0xb600000000010015ULL) 1988 return false; 1989 1990 /* Clear MCi_STATUS registers */ 1991 for (i = 0; i < 6; ++i) 1992 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 1993 1994 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 1995 if (!err) { 1996 u32 low, high; 1997 1998 value &= ~(1ULL << 2); 1999 low = lower_32_bits(value); 2000 high = upper_32_bits(value); 2001 2002 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2003 } 2004 2005 /* Flush tlb to evict multi-match entries */ 2006 __flush_tlb_all(); 2007 2008 return true; 2009 } 2010 2011 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2012 { 2013 if (is_erratum_383()) { 2014 /* 2015 * Erratum 383 triggered. Guest state is corrupt so kill the 2016 * guest. 2017 */ 2018 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 2019 2020 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2021 2022 return; 2023 } 2024 2025 /* 2026 * On an #MC intercept the MCE handler is not called automatically in 2027 * the host. So do it by hand here. 2028 */ 2029 kvm_machine_check(); 2030 } 2031 2032 static int mc_interception(struct kvm_vcpu *vcpu) 2033 { 2034 return 1; 2035 } 2036 2037 static int shutdown_interception(struct kvm_vcpu *vcpu) 2038 { 2039 struct kvm_run *kvm_run = vcpu->run; 2040 struct vcpu_svm *svm = to_svm(vcpu); 2041 2042 /* 2043 * The VM save area has already been encrypted so it 2044 * cannot be reinitialized - just terminate. 2045 */ 2046 if (sev_es_guest(vcpu->kvm)) 2047 return -EINVAL; 2048 2049 /* 2050 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2051 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2052 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2053 * userspace. At a platform view, INIT is acceptable behavior as 2054 * there exist bare metal platforms that automatically INIT the CPU 2055 * in response to shutdown. 2056 */ 2057 clear_page(svm->vmcb); 2058 kvm_vcpu_reset(vcpu, true); 2059 2060 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2061 return 0; 2062 } 2063 2064 static int io_interception(struct kvm_vcpu *vcpu) 2065 { 2066 struct vcpu_svm *svm = to_svm(vcpu); 2067 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2068 int size, in, string; 2069 unsigned port; 2070 2071 ++vcpu->stat.io_exits; 2072 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2073 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2074 port = io_info >> 16; 2075 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2076 2077 if (string) { 2078 if (sev_es_guest(vcpu->kvm)) 2079 return sev_es_string_io(svm, size, port, in); 2080 else 2081 return kvm_emulate_instruction(vcpu, 0); 2082 } 2083 2084 svm->next_rip = svm->vmcb->control.exit_info_2; 2085 2086 return kvm_fast_pio(vcpu, size, port, in); 2087 } 2088 2089 static int nmi_interception(struct kvm_vcpu *vcpu) 2090 { 2091 return 1; 2092 } 2093 2094 static int smi_interception(struct kvm_vcpu *vcpu) 2095 { 2096 return 1; 2097 } 2098 2099 static int intr_interception(struct kvm_vcpu *vcpu) 2100 { 2101 ++vcpu->stat.irq_exits; 2102 return 1; 2103 } 2104 2105 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2106 { 2107 struct vcpu_svm *svm = to_svm(vcpu); 2108 struct vmcb *vmcb12; 2109 struct kvm_host_map map; 2110 int ret; 2111 2112 if (nested_svm_check_permissions(vcpu)) 2113 return 1; 2114 2115 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2116 if (ret) { 2117 if (ret == -EINVAL) 2118 kvm_inject_gp(vcpu, 0); 2119 return 1; 2120 } 2121 2122 vmcb12 = map.hva; 2123 2124 ret = kvm_skip_emulated_instruction(vcpu); 2125 2126 if (vmload) { 2127 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2128 svm->sysenter_eip_hi = 0; 2129 svm->sysenter_esp_hi = 0; 2130 } else { 2131 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2132 } 2133 2134 kvm_vcpu_unmap(vcpu, &map, true); 2135 2136 return ret; 2137 } 2138 2139 static int vmload_interception(struct kvm_vcpu *vcpu) 2140 { 2141 return vmload_vmsave_interception(vcpu, true); 2142 } 2143 2144 static int vmsave_interception(struct kvm_vcpu *vcpu) 2145 { 2146 return vmload_vmsave_interception(vcpu, false); 2147 } 2148 2149 static int vmrun_interception(struct kvm_vcpu *vcpu) 2150 { 2151 if (nested_svm_check_permissions(vcpu)) 2152 return 1; 2153 2154 return nested_svm_vmrun(vcpu); 2155 } 2156 2157 enum { 2158 NONE_SVM_INSTR, 2159 SVM_INSTR_VMRUN, 2160 SVM_INSTR_VMLOAD, 2161 SVM_INSTR_VMSAVE, 2162 }; 2163 2164 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2165 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2166 { 2167 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2168 2169 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2170 return NONE_SVM_INSTR; 2171 2172 switch (ctxt->modrm) { 2173 case 0xd8: /* VMRUN */ 2174 return SVM_INSTR_VMRUN; 2175 case 0xda: /* VMLOAD */ 2176 return SVM_INSTR_VMLOAD; 2177 case 0xdb: /* VMSAVE */ 2178 return SVM_INSTR_VMSAVE; 2179 default: 2180 break; 2181 } 2182 2183 return NONE_SVM_INSTR; 2184 } 2185 2186 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2187 { 2188 const int guest_mode_exit_codes[] = { 2189 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2190 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2191 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2192 }; 2193 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2194 [SVM_INSTR_VMRUN] = vmrun_interception, 2195 [SVM_INSTR_VMLOAD] = vmload_interception, 2196 [SVM_INSTR_VMSAVE] = vmsave_interception, 2197 }; 2198 struct vcpu_svm *svm = to_svm(vcpu); 2199 int ret; 2200 2201 if (is_guest_mode(vcpu)) { 2202 /* Returns '1' or -errno on failure, '0' on success. */ 2203 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2204 if (ret) 2205 return ret; 2206 return 1; 2207 } 2208 return svm_instr_handlers[opcode](vcpu); 2209 } 2210 2211 /* 2212 * #GP handling code. Note that #GP can be triggered under the following two 2213 * cases: 2214 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2215 * some AMD CPUs when EAX of these instructions are in the reserved memory 2216 * regions (e.g. SMM memory on host). 2217 * 2) VMware backdoor 2218 */ 2219 static int gp_interception(struct kvm_vcpu *vcpu) 2220 { 2221 struct vcpu_svm *svm = to_svm(vcpu); 2222 u32 error_code = svm->vmcb->control.exit_info_1; 2223 int opcode; 2224 2225 /* Both #GP cases have zero error_code */ 2226 if (error_code) 2227 goto reinject; 2228 2229 /* All SVM instructions expect page aligned RAX */ 2230 if (svm->vmcb->save.rax & ~PAGE_MASK) 2231 goto reinject; 2232 2233 /* Decode the instruction for usage later */ 2234 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2235 goto reinject; 2236 2237 opcode = svm_instr_opcode(vcpu); 2238 2239 if (opcode == NONE_SVM_INSTR) { 2240 if (!enable_vmware_backdoor) 2241 goto reinject; 2242 2243 /* 2244 * VMware backdoor emulation on #GP interception only handles 2245 * IN{S}, OUT{S}, and RDPMC. 2246 */ 2247 if (!is_guest_mode(vcpu)) 2248 return kvm_emulate_instruction(vcpu, 2249 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2250 } else 2251 return emulate_svm_instr(vcpu, opcode); 2252 2253 reinject: 2254 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2255 return 1; 2256 } 2257 2258 void svm_set_gif(struct vcpu_svm *svm, bool value) 2259 { 2260 if (value) { 2261 /* 2262 * If VGIF is enabled, the STGI intercept is only added to 2263 * detect the opening of the SMI/NMI window; remove it now. 2264 * Likewise, clear the VINTR intercept, we will set it 2265 * again while processing KVM_REQ_EVENT if needed. 2266 */ 2267 if (vgif_enabled(svm)) 2268 svm_clr_intercept(svm, INTERCEPT_STGI); 2269 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2270 svm_clear_vintr(svm); 2271 2272 enable_gif(svm); 2273 if (svm->vcpu.arch.smi_pending || 2274 svm->vcpu.arch.nmi_pending || 2275 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2276 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2277 } else { 2278 disable_gif(svm); 2279 2280 /* 2281 * After a CLGI no interrupts should come. But if vGIF is 2282 * in use, we still rely on the VINTR intercept (rather than 2283 * STGI) to detect an open interrupt window. 2284 */ 2285 if (!vgif_enabled(svm)) 2286 svm_clear_vintr(svm); 2287 } 2288 } 2289 2290 static int stgi_interception(struct kvm_vcpu *vcpu) 2291 { 2292 int ret; 2293 2294 if (nested_svm_check_permissions(vcpu)) 2295 return 1; 2296 2297 ret = kvm_skip_emulated_instruction(vcpu); 2298 svm_set_gif(to_svm(vcpu), true); 2299 return ret; 2300 } 2301 2302 static int clgi_interception(struct kvm_vcpu *vcpu) 2303 { 2304 int ret; 2305 2306 if (nested_svm_check_permissions(vcpu)) 2307 return 1; 2308 2309 ret = kvm_skip_emulated_instruction(vcpu); 2310 svm_set_gif(to_svm(vcpu), false); 2311 return ret; 2312 } 2313 2314 static int invlpga_interception(struct kvm_vcpu *vcpu) 2315 { 2316 gva_t gva = kvm_rax_read(vcpu); 2317 u32 asid = kvm_rcx_read(vcpu); 2318 2319 /* FIXME: Handle an address size prefix. */ 2320 if (!is_long_mode(vcpu)) 2321 gva = (u32)gva; 2322 2323 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2324 2325 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2326 kvm_mmu_invlpg(vcpu, gva); 2327 2328 return kvm_skip_emulated_instruction(vcpu); 2329 } 2330 2331 static int skinit_interception(struct kvm_vcpu *vcpu) 2332 { 2333 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2334 2335 kvm_queue_exception(vcpu, UD_VECTOR); 2336 return 1; 2337 } 2338 2339 static int task_switch_interception(struct kvm_vcpu *vcpu) 2340 { 2341 struct vcpu_svm *svm = to_svm(vcpu); 2342 u16 tss_selector; 2343 int reason; 2344 int int_type = svm->vmcb->control.exit_int_info & 2345 SVM_EXITINTINFO_TYPE_MASK; 2346 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2347 uint32_t type = 2348 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2349 uint32_t idt_v = 2350 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2351 bool has_error_code = false; 2352 u32 error_code = 0; 2353 2354 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2355 2356 if (svm->vmcb->control.exit_info_2 & 2357 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2358 reason = TASK_SWITCH_IRET; 2359 else if (svm->vmcb->control.exit_info_2 & 2360 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2361 reason = TASK_SWITCH_JMP; 2362 else if (idt_v) 2363 reason = TASK_SWITCH_GATE; 2364 else 2365 reason = TASK_SWITCH_CALL; 2366 2367 if (reason == TASK_SWITCH_GATE) { 2368 switch (type) { 2369 case SVM_EXITINTINFO_TYPE_NMI: 2370 vcpu->arch.nmi_injected = false; 2371 break; 2372 case SVM_EXITINTINFO_TYPE_EXEPT: 2373 if (svm->vmcb->control.exit_info_2 & 2374 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2375 has_error_code = true; 2376 error_code = 2377 (u32)svm->vmcb->control.exit_info_2; 2378 } 2379 kvm_clear_exception_queue(vcpu); 2380 break; 2381 case SVM_EXITINTINFO_TYPE_INTR: 2382 kvm_clear_interrupt_queue(vcpu); 2383 break; 2384 default: 2385 break; 2386 } 2387 } 2388 2389 if (reason != TASK_SWITCH_GATE || 2390 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2391 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2392 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2393 if (!skip_emulated_instruction(vcpu)) 2394 return 0; 2395 } 2396 2397 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2398 int_vec = -1; 2399 2400 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2401 has_error_code, error_code); 2402 } 2403 2404 static int iret_interception(struct kvm_vcpu *vcpu) 2405 { 2406 struct vcpu_svm *svm = to_svm(vcpu); 2407 2408 ++vcpu->stat.nmi_window_exits; 2409 vcpu->arch.hflags |= HF_IRET_MASK; 2410 if (!sev_es_guest(vcpu->kvm)) { 2411 svm_clr_intercept(svm, INTERCEPT_IRET); 2412 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2413 } 2414 kvm_make_request(KVM_REQ_EVENT, vcpu); 2415 return 1; 2416 } 2417 2418 static int invlpg_interception(struct kvm_vcpu *vcpu) 2419 { 2420 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2421 return kvm_emulate_instruction(vcpu, 0); 2422 2423 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2424 return kvm_skip_emulated_instruction(vcpu); 2425 } 2426 2427 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2428 { 2429 return kvm_emulate_instruction(vcpu, 0); 2430 } 2431 2432 static int rsm_interception(struct kvm_vcpu *vcpu) 2433 { 2434 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2435 } 2436 2437 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2438 unsigned long val) 2439 { 2440 struct vcpu_svm *svm = to_svm(vcpu); 2441 unsigned long cr0 = vcpu->arch.cr0; 2442 bool ret = false; 2443 2444 if (!is_guest_mode(vcpu) || 2445 (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2446 return false; 2447 2448 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2449 val &= ~SVM_CR0_SELECTIVE_MASK; 2450 2451 if (cr0 ^ val) { 2452 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2453 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2454 } 2455 2456 return ret; 2457 } 2458 2459 #define CR_VALID (1ULL << 63) 2460 2461 static int cr_interception(struct kvm_vcpu *vcpu) 2462 { 2463 struct vcpu_svm *svm = to_svm(vcpu); 2464 int reg, cr; 2465 unsigned long val; 2466 int err; 2467 2468 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2469 return emulate_on_interception(vcpu); 2470 2471 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2472 return emulate_on_interception(vcpu); 2473 2474 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2475 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2476 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2477 else 2478 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2479 2480 err = 0; 2481 if (cr >= 16) { /* mov to cr */ 2482 cr -= 16; 2483 val = kvm_register_read(vcpu, reg); 2484 trace_kvm_cr_write(cr, val); 2485 switch (cr) { 2486 case 0: 2487 if (!check_selective_cr0_intercepted(vcpu, val)) 2488 err = kvm_set_cr0(vcpu, val); 2489 else 2490 return 1; 2491 2492 break; 2493 case 3: 2494 err = kvm_set_cr3(vcpu, val); 2495 break; 2496 case 4: 2497 err = kvm_set_cr4(vcpu, val); 2498 break; 2499 case 8: 2500 err = kvm_set_cr8(vcpu, val); 2501 break; 2502 default: 2503 WARN(1, "unhandled write to CR%d", cr); 2504 kvm_queue_exception(vcpu, UD_VECTOR); 2505 return 1; 2506 } 2507 } else { /* mov from cr */ 2508 switch (cr) { 2509 case 0: 2510 val = kvm_read_cr0(vcpu); 2511 break; 2512 case 2: 2513 val = vcpu->arch.cr2; 2514 break; 2515 case 3: 2516 val = kvm_read_cr3(vcpu); 2517 break; 2518 case 4: 2519 val = kvm_read_cr4(vcpu); 2520 break; 2521 case 8: 2522 val = kvm_get_cr8(vcpu); 2523 break; 2524 default: 2525 WARN(1, "unhandled read from CR%d", cr); 2526 kvm_queue_exception(vcpu, UD_VECTOR); 2527 return 1; 2528 } 2529 kvm_register_write(vcpu, reg, val); 2530 trace_kvm_cr_read(cr, val); 2531 } 2532 return kvm_complete_insn_gp(vcpu, err); 2533 } 2534 2535 static int cr_trap(struct kvm_vcpu *vcpu) 2536 { 2537 struct vcpu_svm *svm = to_svm(vcpu); 2538 unsigned long old_value, new_value; 2539 unsigned int cr; 2540 int ret = 0; 2541 2542 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2543 2544 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2545 switch (cr) { 2546 case 0: 2547 old_value = kvm_read_cr0(vcpu); 2548 svm_set_cr0(vcpu, new_value); 2549 2550 kvm_post_set_cr0(vcpu, old_value, new_value); 2551 break; 2552 case 4: 2553 old_value = kvm_read_cr4(vcpu); 2554 svm_set_cr4(vcpu, new_value); 2555 2556 kvm_post_set_cr4(vcpu, old_value, new_value); 2557 break; 2558 case 8: 2559 ret = kvm_set_cr8(vcpu, new_value); 2560 break; 2561 default: 2562 WARN(1, "unhandled CR%d write trap", cr); 2563 kvm_queue_exception(vcpu, UD_VECTOR); 2564 return 1; 2565 } 2566 2567 return kvm_complete_insn_gp(vcpu, ret); 2568 } 2569 2570 static int dr_interception(struct kvm_vcpu *vcpu) 2571 { 2572 struct vcpu_svm *svm = to_svm(vcpu); 2573 int reg, dr; 2574 unsigned long val; 2575 int err = 0; 2576 2577 if (vcpu->guest_debug == 0) { 2578 /* 2579 * No more DR vmexits; force a reload of the debug registers 2580 * and reenter on this instruction. The next vmexit will 2581 * retrieve the full state of the debug registers. 2582 */ 2583 clr_dr_intercepts(svm); 2584 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2585 return 1; 2586 } 2587 2588 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2589 return emulate_on_interception(vcpu); 2590 2591 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2592 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2593 if (dr >= 16) { /* mov to DRn */ 2594 dr -= 16; 2595 val = kvm_register_read(vcpu, reg); 2596 err = kvm_set_dr(vcpu, dr, val); 2597 } else { 2598 kvm_get_dr(vcpu, dr, &val); 2599 kvm_register_write(vcpu, reg, val); 2600 } 2601 2602 return kvm_complete_insn_gp(vcpu, err); 2603 } 2604 2605 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2606 { 2607 int r; 2608 2609 u8 cr8_prev = kvm_get_cr8(vcpu); 2610 /* instruction emulation calls kvm_set_cr8() */ 2611 r = cr_interception(vcpu); 2612 if (lapic_in_kernel(vcpu)) 2613 return r; 2614 if (cr8_prev <= kvm_get_cr8(vcpu)) 2615 return r; 2616 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2617 return 0; 2618 } 2619 2620 static int efer_trap(struct kvm_vcpu *vcpu) 2621 { 2622 struct msr_data msr_info; 2623 int ret; 2624 2625 /* 2626 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2627 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2628 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2629 * the guest doesn't have X86_FEATURE_SVM. 2630 */ 2631 msr_info.host_initiated = false; 2632 msr_info.index = MSR_EFER; 2633 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2634 ret = kvm_set_msr_common(vcpu, &msr_info); 2635 2636 return kvm_complete_insn_gp(vcpu, ret); 2637 } 2638 2639 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2640 { 2641 msr->data = 0; 2642 2643 switch (msr->index) { 2644 case MSR_F10H_DECFG: 2645 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2646 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2647 break; 2648 case MSR_IA32_PERF_CAPABILITIES: 2649 return 0; 2650 default: 2651 return KVM_MSR_RET_INVALID; 2652 } 2653 2654 return 0; 2655 } 2656 2657 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2658 { 2659 struct vcpu_svm *svm = to_svm(vcpu); 2660 2661 switch (msr_info->index) { 2662 case MSR_STAR: 2663 msr_info->data = svm->vmcb01.ptr->save.star; 2664 break; 2665 #ifdef CONFIG_X86_64 2666 case MSR_LSTAR: 2667 msr_info->data = svm->vmcb01.ptr->save.lstar; 2668 break; 2669 case MSR_CSTAR: 2670 msr_info->data = svm->vmcb01.ptr->save.cstar; 2671 break; 2672 case MSR_KERNEL_GS_BASE: 2673 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2674 break; 2675 case MSR_SYSCALL_MASK: 2676 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2677 break; 2678 #endif 2679 case MSR_IA32_SYSENTER_CS: 2680 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2681 break; 2682 case MSR_IA32_SYSENTER_EIP: 2683 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2684 if (guest_cpuid_is_intel(vcpu)) 2685 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2686 break; 2687 case MSR_IA32_SYSENTER_ESP: 2688 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2689 if (guest_cpuid_is_intel(vcpu)) 2690 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2691 break; 2692 case MSR_TSC_AUX: 2693 msr_info->data = svm->tsc_aux; 2694 break; 2695 /* 2696 * Nobody will change the following 5 values in the VMCB so we can 2697 * safely return them on rdmsr. They will always be 0 until LBRV is 2698 * implemented. 2699 */ 2700 case MSR_IA32_DEBUGCTLMSR: 2701 msr_info->data = svm->vmcb->save.dbgctl; 2702 break; 2703 case MSR_IA32_LASTBRANCHFROMIP: 2704 msr_info->data = svm->vmcb->save.br_from; 2705 break; 2706 case MSR_IA32_LASTBRANCHTOIP: 2707 msr_info->data = svm->vmcb->save.br_to; 2708 break; 2709 case MSR_IA32_LASTINTFROMIP: 2710 msr_info->data = svm->vmcb->save.last_excp_from; 2711 break; 2712 case MSR_IA32_LASTINTTOIP: 2713 msr_info->data = svm->vmcb->save.last_excp_to; 2714 break; 2715 case MSR_VM_HSAVE_PA: 2716 msr_info->data = svm->nested.hsave_msr; 2717 break; 2718 case MSR_VM_CR: 2719 msr_info->data = svm->nested.vm_cr_msr; 2720 break; 2721 case MSR_IA32_SPEC_CTRL: 2722 if (!msr_info->host_initiated && 2723 !guest_has_spec_ctrl_msr(vcpu)) 2724 return 1; 2725 2726 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2727 msr_info->data = svm->vmcb->save.spec_ctrl; 2728 else 2729 msr_info->data = svm->spec_ctrl; 2730 break; 2731 case MSR_AMD64_VIRT_SPEC_CTRL: 2732 if (!msr_info->host_initiated && 2733 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2734 return 1; 2735 2736 msr_info->data = svm->virt_spec_ctrl; 2737 break; 2738 case MSR_F15H_IC_CFG: { 2739 2740 int family, model; 2741 2742 family = guest_cpuid_family(vcpu); 2743 model = guest_cpuid_model(vcpu); 2744 2745 if (family < 0 || model < 0) 2746 return kvm_get_msr_common(vcpu, msr_info); 2747 2748 msr_info->data = 0; 2749 2750 if (family == 0x15 && 2751 (model >= 0x2 && model < 0x20)) 2752 msr_info->data = 0x1E; 2753 } 2754 break; 2755 case MSR_F10H_DECFG: 2756 msr_info->data = svm->msr_decfg; 2757 break; 2758 default: 2759 return kvm_get_msr_common(vcpu, msr_info); 2760 } 2761 return 0; 2762 } 2763 2764 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2765 { 2766 struct vcpu_svm *svm = to_svm(vcpu); 2767 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->ghcb)) 2768 return kvm_complete_insn_gp(vcpu, err); 2769 2770 ghcb_set_sw_exit_info_1(svm->ghcb, 1); 2771 ghcb_set_sw_exit_info_2(svm->ghcb, 2772 X86_TRAP_GP | 2773 SVM_EVTINJ_TYPE_EXEPT | 2774 SVM_EVTINJ_VALID); 2775 return 1; 2776 } 2777 2778 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2779 { 2780 struct vcpu_svm *svm = to_svm(vcpu); 2781 int svm_dis, chg_mask; 2782 2783 if (data & ~SVM_VM_CR_VALID_MASK) 2784 return 1; 2785 2786 chg_mask = SVM_VM_CR_VALID_MASK; 2787 2788 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2789 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2790 2791 svm->nested.vm_cr_msr &= ~chg_mask; 2792 svm->nested.vm_cr_msr |= (data & chg_mask); 2793 2794 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2795 2796 /* check for svm_disable while efer.svme is set */ 2797 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2798 return 1; 2799 2800 return 0; 2801 } 2802 2803 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2804 { 2805 struct vcpu_svm *svm = to_svm(vcpu); 2806 int r; 2807 2808 u32 ecx = msr->index; 2809 u64 data = msr->data; 2810 switch (ecx) { 2811 case MSR_IA32_CR_PAT: 2812 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2813 return 1; 2814 vcpu->arch.pat = data; 2815 svm->vmcb01.ptr->save.g_pat = data; 2816 if (is_guest_mode(vcpu)) 2817 nested_vmcb02_compute_g_pat(svm); 2818 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2819 break; 2820 case MSR_IA32_SPEC_CTRL: 2821 if (!msr->host_initiated && 2822 !guest_has_spec_ctrl_msr(vcpu)) 2823 return 1; 2824 2825 if (kvm_spec_ctrl_test_value(data)) 2826 return 1; 2827 2828 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2829 svm->vmcb->save.spec_ctrl = data; 2830 else 2831 svm->spec_ctrl = data; 2832 if (!data) 2833 break; 2834 2835 /* 2836 * For non-nested: 2837 * When it's written (to non-zero) for the first time, pass 2838 * it through. 2839 * 2840 * For nested: 2841 * The handling of the MSR bitmap for L2 guests is done in 2842 * nested_svm_vmrun_msrpm. 2843 * We update the L1 MSR bit as well since it will end up 2844 * touching the MSR anyway now. 2845 */ 2846 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2847 break; 2848 case MSR_IA32_PRED_CMD: 2849 if (!msr->host_initiated && 2850 !guest_has_pred_cmd_msr(vcpu)) 2851 return 1; 2852 2853 if (data & ~PRED_CMD_IBPB) 2854 return 1; 2855 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2856 return 1; 2857 if (!data) 2858 break; 2859 2860 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2861 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2862 break; 2863 case MSR_AMD64_VIRT_SPEC_CTRL: 2864 if (!msr->host_initiated && 2865 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2866 return 1; 2867 2868 if (data & ~SPEC_CTRL_SSBD) 2869 return 1; 2870 2871 svm->virt_spec_ctrl = data; 2872 break; 2873 case MSR_STAR: 2874 svm->vmcb01.ptr->save.star = data; 2875 break; 2876 #ifdef CONFIG_X86_64 2877 case MSR_LSTAR: 2878 svm->vmcb01.ptr->save.lstar = data; 2879 break; 2880 case MSR_CSTAR: 2881 svm->vmcb01.ptr->save.cstar = data; 2882 break; 2883 case MSR_KERNEL_GS_BASE: 2884 svm->vmcb01.ptr->save.kernel_gs_base = data; 2885 break; 2886 case MSR_SYSCALL_MASK: 2887 svm->vmcb01.ptr->save.sfmask = data; 2888 break; 2889 #endif 2890 case MSR_IA32_SYSENTER_CS: 2891 svm->vmcb01.ptr->save.sysenter_cs = data; 2892 break; 2893 case MSR_IA32_SYSENTER_EIP: 2894 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2895 /* 2896 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2897 * when we spoof an Intel vendor ID (for cross vendor migration). 2898 * In this case we use this intercept to track the high 2899 * 32 bit part of these msrs to support Intel's 2900 * implementation of SYSENTER/SYSEXIT. 2901 */ 2902 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2903 break; 2904 case MSR_IA32_SYSENTER_ESP: 2905 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 2906 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2907 break; 2908 case MSR_TSC_AUX: 2909 /* 2910 * TSC_AUX is usually changed only during boot and never read 2911 * directly. Intercept TSC_AUX instead of exposing it to the 2912 * guest via direct_access_msrs, and switch it via user return. 2913 */ 2914 preempt_disable(); 2915 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 2916 preempt_enable(); 2917 if (r) 2918 return 1; 2919 2920 svm->tsc_aux = data; 2921 break; 2922 case MSR_IA32_DEBUGCTLMSR: 2923 if (!boot_cpu_has(X86_FEATURE_LBRV)) { 2924 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2925 __func__, data); 2926 break; 2927 } 2928 if (data & DEBUGCTL_RESERVED_BITS) 2929 return 1; 2930 2931 svm->vmcb->save.dbgctl = data; 2932 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 2933 if (data & (1ULL<<0)) 2934 svm_enable_lbrv(vcpu); 2935 else 2936 svm_disable_lbrv(vcpu); 2937 break; 2938 case MSR_VM_HSAVE_PA: 2939 /* 2940 * Old kernels did not validate the value written to 2941 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 2942 * value to allow live migrating buggy or malicious guests 2943 * originating from those kernels. 2944 */ 2945 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 2946 return 1; 2947 2948 svm->nested.hsave_msr = data & PAGE_MASK; 2949 break; 2950 case MSR_VM_CR: 2951 return svm_set_vm_cr(vcpu, data); 2952 case MSR_VM_IGNNE: 2953 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2954 break; 2955 case MSR_F10H_DECFG: { 2956 struct kvm_msr_entry msr_entry; 2957 2958 msr_entry.index = msr->index; 2959 if (svm_get_msr_feature(&msr_entry)) 2960 return 1; 2961 2962 /* Check the supported bits */ 2963 if (data & ~msr_entry.data) 2964 return 1; 2965 2966 /* Don't allow the guest to change a bit, #GP */ 2967 if (!msr->host_initiated && (data ^ msr_entry.data)) 2968 return 1; 2969 2970 svm->msr_decfg = data; 2971 break; 2972 } 2973 default: 2974 return kvm_set_msr_common(vcpu, msr); 2975 } 2976 return 0; 2977 } 2978 2979 static int msr_interception(struct kvm_vcpu *vcpu) 2980 { 2981 if (to_svm(vcpu)->vmcb->control.exit_info_1) 2982 return kvm_emulate_wrmsr(vcpu); 2983 else 2984 return kvm_emulate_rdmsr(vcpu); 2985 } 2986 2987 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 2988 { 2989 kvm_make_request(KVM_REQ_EVENT, vcpu); 2990 svm_clear_vintr(to_svm(vcpu)); 2991 2992 /* 2993 * For AVIC, the only reason to end up here is ExtINTs. 2994 * In this case AVIC was temporarily disabled for 2995 * requesting the IRQ window and we have to re-enable it. 2996 */ 2997 kvm_request_apicv_update(vcpu->kvm, true, APICV_INHIBIT_REASON_IRQWIN); 2998 2999 ++vcpu->stat.irq_window_exits; 3000 return 1; 3001 } 3002 3003 static int pause_interception(struct kvm_vcpu *vcpu) 3004 { 3005 bool in_kernel; 3006 3007 /* 3008 * CPL is not made available for an SEV-ES guest, therefore 3009 * vcpu->arch.preempted_in_kernel can never be true. Just 3010 * set in_kernel to false as well. 3011 */ 3012 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3013 3014 if (!kvm_pause_in_guest(vcpu->kvm)) 3015 grow_ple_window(vcpu); 3016 3017 kvm_vcpu_on_spin(vcpu, in_kernel); 3018 return kvm_skip_emulated_instruction(vcpu); 3019 } 3020 3021 static int invpcid_interception(struct kvm_vcpu *vcpu) 3022 { 3023 struct vcpu_svm *svm = to_svm(vcpu); 3024 unsigned long type; 3025 gva_t gva; 3026 3027 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3028 kvm_queue_exception(vcpu, UD_VECTOR); 3029 return 1; 3030 } 3031 3032 /* 3033 * For an INVPCID intercept: 3034 * EXITINFO1 provides the linear address of the memory operand. 3035 * EXITINFO2 provides the contents of the register operand. 3036 */ 3037 type = svm->vmcb->control.exit_info_2; 3038 gva = svm->vmcb->control.exit_info_1; 3039 3040 if (type > 3) { 3041 kvm_inject_gp(vcpu, 0); 3042 return 1; 3043 } 3044 3045 return kvm_handle_invpcid(vcpu, type, gva); 3046 } 3047 3048 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3049 [SVM_EXIT_READ_CR0] = cr_interception, 3050 [SVM_EXIT_READ_CR3] = cr_interception, 3051 [SVM_EXIT_READ_CR4] = cr_interception, 3052 [SVM_EXIT_READ_CR8] = cr_interception, 3053 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3054 [SVM_EXIT_WRITE_CR0] = cr_interception, 3055 [SVM_EXIT_WRITE_CR3] = cr_interception, 3056 [SVM_EXIT_WRITE_CR4] = cr_interception, 3057 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3058 [SVM_EXIT_READ_DR0] = dr_interception, 3059 [SVM_EXIT_READ_DR1] = dr_interception, 3060 [SVM_EXIT_READ_DR2] = dr_interception, 3061 [SVM_EXIT_READ_DR3] = dr_interception, 3062 [SVM_EXIT_READ_DR4] = dr_interception, 3063 [SVM_EXIT_READ_DR5] = dr_interception, 3064 [SVM_EXIT_READ_DR6] = dr_interception, 3065 [SVM_EXIT_READ_DR7] = dr_interception, 3066 [SVM_EXIT_WRITE_DR0] = dr_interception, 3067 [SVM_EXIT_WRITE_DR1] = dr_interception, 3068 [SVM_EXIT_WRITE_DR2] = dr_interception, 3069 [SVM_EXIT_WRITE_DR3] = dr_interception, 3070 [SVM_EXIT_WRITE_DR4] = dr_interception, 3071 [SVM_EXIT_WRITE_DR5] = dr_interception, 3072 [SVM_EXIT_WRITE_DR6] = dr_interception, 3073 [SVM_EXIT_WRITE_DR7] = dr_interception, 3074 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3075 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3076 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3077 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3078 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3079 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3080 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3081 [SVM_EXIT_INTR] = intr_interception, 3082 [SVM_EXIT_NMI] = nmi_interception, 3083 [SVM_EXIT_SMI] = smi_interception, 3084 [SVM_EXIT_VINTR] = interrupt_window_interception, 3085 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3086 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3087 [SVM_EXIT_IRET] = iret_interception, 3088 [SVM_EXIT_INVD] = kvm_emulate_invd, 3089 [SVM_EXIT_PAUSE] = pause_interception, 3090 [SVM_EXIT_HLT] = kvm_emulate_halt, 3091 [SVM_EXIT_INVLPG] = invlpg_interception, 3092 [SVM_EXIT_INVLPGA] = invlpga_interception, 3093 [SVM_EXIT_IOIO] = io_interception, 3094 [SVM_EXIT_MSR] = msr_interception, 3095 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3096 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3097 [SVM_EXIT_VMRUN] = vmrun_interception, 3098 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3099 [SVM_EXIT_VMLOAD] = vmload_interception, 3100 [SVM_EXIT_VMSAVE] = vmsave_interception, 3101 [SVM_EXIT_STGI] = stgi_interception, 3102 [SVM_EXIT_CLGI] = clgi_interception, 3103 [SVM_EXIT_SKINIT] = skinit_interception, 3104 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3105 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3106 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3107 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3108 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3109 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3110 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3111 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3112 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3113 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3114 [SVM_EXIT_INVPCID] = invpcid_interception, 3115 [SVM_EXIT_NPF] = npf_interception, 3116 [SVM_EXIT_RSM] = rsm_interception, 3117 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3118 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3119 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3120 }; 3121 3122 static void dump_vmcb(struct kvm_vcpu *vcpu) 3123 { 3124 struct vcpu_svm *svm = to_svm(vcpu); 3125 struct vmcb_control_area *control = &svm->vmcb->control; 3126 struct vmcb_save_area *save = &svm->vmcb->save; 3127 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3128 3129 if (!dump_invalid_vmcb) { 3130 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3131 return; 3132 } 3133 3134 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3135 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3136 pr_err("VMCB Control Area:\n"); 3137 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3138 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3139 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3140 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3141 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3142 pr_err("%-20s%08x %08x\n", "intercepts:", 3143 control->intercepts[INTERCEPT_WORD3], 3144 control->intercepts[INTERCEPT_WORD4]); 3145 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3146 pr_err("%-20s%d\n", "pause filter threshold:", 3147 control->pause_filter_thresh); 3148 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3149 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3150 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3151 pr_err("%-20s%d\n", "asid:", control->asid); 3152 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3153 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3154 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3155 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3156 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3157 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3158 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3159 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3160 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3161 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3162 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3163 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3164 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3165 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3166 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3167 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3168 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3169 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3170 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3171 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3172 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3173 pr_err("VMCB State Save Area:\n"); 3174 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3175 "es:", 3176 save->es.selector, save->es.attrib, 3177 save->es.limit, save->es.base); 3178 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3179 "cs:", 3180 save->cs.selector, save->cs.attrib, 3181 save->cs.limit, save->cs.base); 3182 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3183 "ss:", 3184 save->ss.selector, save->ss.attrib, 3185 save->ss.limit, save->ss.base); 3186 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3187 "ds:", 3188 save->ds.selector, save->ds.attrib, 3189 save->ds.limit, save->ds.base); 3190 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3191 "fs:", 3192 save01->fs.selector, save01->fs.attrib, 3193 save01->fs.limit, save01->fs.base); 3194 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3195 "gs:", 3196 save01->gs.selector, save01->gs.attrib, 3197 save01->gs.limit, save01->gs.base); 3198 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3199 "gdtr:", 3200 save->gdtr.selector, save->gdtr.attrib, 3201 save->gdtr.limit, save->gdtr.base); 3202 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3203 "ldtr:", 3204 save01->ldtr.selector, save01->ldtr.attrib, 3205 save01->ldtr.limit, save01->ldtr.base); 3206 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3207 "idtr:", 3208 save->idtr.selector, save->idtr.attrib, 3209 save->idtr.limit, save->idtr.base); 3210 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3211 "tr:", 3212 save01->tr.selector, save01->tr.attrib, 3213 save01->tr.limit, save01->tr.base); 3214 pr_err("cpl: %d efer: %016llx\n", 3215 save->cpl, save->efer); 3216 pr_err("%-15s %016llx %-13s %016llx\n", 3217 "cr0:", save->cr0, "cr2:", save->cr2); 3218 pr_err("%-15s %016llx %-13s %016llx\n", 3219 "cr3:", save->cr3, "cr4:", save->cr4); 3220 pr_err("%-15s %016llx %-13s %016llx\n", 3221 "dr6:", save->dr6, "dr7:", save->dr7); 3222 pr_err("%-15s %016llx %-13s %016llx\n", 3223 "rip:", save->rip, "rflags:", save->rflags); 3224 pr_err("%-15s %016llx %-13s %016llx\n", 3225 "rsp:", save->rsp, "rax:", save->rax); 3226 pr_err("%-15s %016llx %-13s %016llx\n", 3227 "star:", save01->star, "lstar:", save01->lstar); 3228 pr_err("%-15s %016llx %-13s %016llx\n", 3229 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3230 pr_err("%-15s %016llx %-13s %016llx\n", 3231 "kernel_gs_base:", save01->kernel_gs_base, 3232 "sysenter_cs:", save01->sysenter_cs); 3233 pr_err("%-15s %016llx %-13s %016llx\n", 3234 "sysenter_esp:", save01->sysenter_esp, 3235 "sysenter_eip:", save01->sysenter_eip); 3236 pr_err("%-15s %016llx %-13s %016llx\n", 3237 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3238 pr_err("%-15s %016llx %-13s %016llx\n", 3239 "br_from:", save->br_from, "br_to:", save->br_to); 3240 pr_err("%-15s %016llx %-13s %016llx\n", 3241 "excp_from:", save->last_excp_from, 3242 "excp_to:", save->last_excp_to); 3243 } 3244 3245 static bool svm_check_exit_valid(struct kvm_vcpu *vcpu, u64 exit_code) 3246 { 3247 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3248 svm_exit_handlers[exit_code]); 3249 } 3250 3251 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3252 { 3253 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3254 dump_vmcb(vcpu); 3255 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3256 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3257 vcpu->run->internal.ndata = 2; 3258 vcpu->run->internal.data[0] = exit_code; 3259 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3260 return 0; 3261 } 3262 3263 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3264 { 3265 if (!svm_check_exit_valid(vcpu, exit_code)) 3266 return svm_handle_invalid_exit(vcpu, exit_code); 3267 3268 #ifdef CONFIG_RETPOLINE 3269 if (exit_code == SVM_EXIT_MSR) 3270 return msr_interception(vcpu); 3271 else if (exit_code == SVM_EXIT_VINTR) 3272 return interrupt_window_interception(vcpu); 3273 else if (exit_code == SVM_EXIT_INTR) 3274 return intr_interception(vcpu); 3275 else if (exit_code == SVM_EXIT_HLT) 3276 return kvm_emulate_halt(vcpu); 3277 else if (exit_code == SVM_EXIT_NPF) 3278 return npf_interception(vcpu); 3279 #endif 3280 return svm_exit_handlers[exit_code](vcpu); 3281 } 3282 3283 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 3284 u32 *intr_info, u32 *error_code) 3285 { 3286 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3287 3288 *info1 = control->exit_info_1; 3289 *info2 = control->exit_info_2; 3290 *intr_info = control->exit_int_info; 3291 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3292 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3293 *error_code = control->exit_int_info_err; 3294 else 3295 *error_code = 0; 3296 } 3297 3298 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3299 { 3300 struct vcpu_svm *svm = to_svm(vcpu); 3301 struct kvm_run *kvm_run = vcpu->run; 3302 u32 exit_code = svm->vmcb->control.exit_code; 3303 3304 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); 3305 3306 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3307 if (!sev_es_guest(vcpu->kvm)) { 3308 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3309 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3310 if (npt_enabled) 3311 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3312 } 3313 3314 if (is_guest_mode(vcpu)) { 3315 int vmexit; 3316 3317 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM); 3318 3319 vmexit = nested_svm_exit_special(svm); 3320 3321 if (vmexit == NESTED_EXIT_CONTINUE) 3322 vmexit = nested_svm_exit_handled(svm); 3323 3324 if (vmexit == NESTED_EXIT_DONE) 3325 return 1; 3326 } 3327 3328 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3329 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3330 kvm_run->fail_entry.hardware_entry_failure_reason 3331 = svm->vmcb->control.exit_code; 3332 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3333 dump_vmcb(vcpu); 3334 return 0; 3335 } 3336 3337 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3338 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3339 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3340 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3341 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3342 "exit_code 0x%x\n", 3343 __func__, svm->vmcb->control.exit_int_info, 3344 exit_code); 3345 3346 if (exit_fastpath != EXIT_FASTPATH_NONE) 3347 return 1; 3348 3349 return svm_invoke_exit_handler(vcpu, exit_code); 3350 } 3351 3352 static void reload_tss(struct kvm_vcpu *vcpu) 3353 { 3354 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3355 3356 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3357 load_TR_desc(); 3358 } 3359 3360 static void pre_svm_run(struct kvm_vcpu *vcpu) 3361 { 3362 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3363 struct vcpu_svm *svm = to_svm(vcpu); 3364 3365 /* 3366 * If the previous vmrun of the vmcb occurred on a different physical 3367 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3368 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3369 */ 3370 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3371 svm->current_vmcb->asid_generation = 0; 3372 vmcb_mark_all_dirty(svm->vmcb); 3373 svm->current_vmcb->cpu = vcpu->cpu; 3374 } 3375 3376 if (sev_guest(vcpu->kvm)) 3377 return pre_sev_run(svm, vcpu->cpu); 3378 3379 /* FIXME: handle wraparound of asid_generation */ 3380 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3381 new_asid(svm, sd); 3382 } 3383 3384 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3385 { 3386 struct vcpu_svm *svm = to_svm(vcpu); 3387 3388 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3389 vcpu->arch.hflags |= HF_NMI_MASK; 3390 if (!sev_es_guest(vcpu->kvm)) 3391 svm_set_intercept(svm, INTERCEPT_IRET); 3392 ++vcpu->stat.nmi_injections; 3393 } 3394 3395 static void svm_set_irq(struct kvm_vcpu *vcpu) 3396 { 3397 struct vcpu_svm *svm = to_svm(vcpu); 3398 3399 BUG_ON(!(gif_set(svm))); 3400 3401 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3402 ++vcpu->stat.irq_injections; 3403 3404 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3405 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3406 } 3407 3408 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3409 { 3410 struct vcpu_svm *svm = to_svm(vcpu); 3411 3412 /* 3413 * SEV-ES guests must always keep the CR intercepts cleared. CR 3414 * tracking is done using the CR write traps. 3415 */ 3416 if (sev_es_guest(vcpu->kvm)) 3417 return; 3418 3419 if (nested_svm_virtualize_tpr(vcpu)) 3420 return; 3421 3422 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3423 3424 if (irr == -1) 3425 return; 3426 3427 if (tpr >= irr) 3428 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3429 } 3430 3431 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3432 { 3433 struct vcpu_svm *svm = to_svm(vcpu); 3434 struct vmcb *vmcb = svm->vmcb; 3435 bool ret; 3436 3437 if (!gif_set(svm)) 3438 return true; 3439 3440 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3441 return false; 3442 3443 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3444 (vcpu->arch.hflags & HF_NMI_MASK); 3445 3446 return ret; 3447 } 3448 3449 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3450 { 3451 struct vcpu_svm *svm = to_svm(vcpu); 3452 if (svm->nested.nested_run_pending) 3453 return -EBUSY; 3454 3455 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3456 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3457 return -EBUSY; 3458 3459 return !svm_nmi_blocked(vcpu); 3460 } 3461 3462 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3463 { 3464 return !!(vcpu->arch.hflags & HF_NMI_MASK); 3465 } 3466 3467 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3468 { 3469 struct vcpu_svm *svm = to_svm(vcpu); 3470 3471 if (masked) { 3472 vcpu->arch.hflags |= HF_NMI_MASK; 3473 if (!sev_es_guest(vcpu->kvm)) 3474 svm_set_intercept(svm, INTERCEPT_IRET); 3475 } else { 3476 vcpu->arch.hflags &= ~HF_NMI_MASK; 3477 if (!sev_es_guest(vcpu->kvm)) 3478 svm_clr_intercept(svm, INTERCEPT_IRET); 3479 } 3480 } 3481 3482 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3483 { 3484 struct vcpu_svm *svm = to_svm(vcpu); 3485 struct vmcb *vmcb = svm->vmcb; 3486 3487 if (!gif_set(svm)) 3488 return true; 3489 3490 if (sev_es_guest(vcpu->kvm)) { 3491 /* 3492 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask 3493 * bit to determine the state of the IF flag. 3494 */ 3495 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK)) 3496 return true; 3497 } else if (is_guest_mode(vcpu)) { 3498 /* As long as interrupts are being delivered... */ 3499 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3500 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3501 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3502 return true; 3503 3504 /* ... vmexits aren't blocked by the interrupt shadow */ 3505 if (nested_exit_on_intr(svm)) 3506 return false; 3507 } else { 3508 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3509 return true; 3510 } 3511 3512 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3513 } 3514 3515 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3516 { 3517 struct vcpu_svm *svm = to_svm(vcpu); 3518 if (svm->nested.nested_run_pending) 3519 return -EBUSY; 3520 3521 /* 3522 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3523 * e.g. if the IRQ arrived asynchronously after checking nested events. 3524 */ 3525 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3526 return -EBUSY; 3527 3528 return !svm_interrupt_blocked(vcpu); 3529 } 3530 3531 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3532 { 3533 struct vcpu_svm *svm = to_svm(vcpu); 3534 3535 /* 3536 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3537 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3538 * get that intercept, this function will be called again though and 3539 * we'll get the vintr intercept. However, if the vGIF feature is 3540 * enabled, the STGI interception will not occur. Enable the irq 3541 * window under the assumption that the hardware will set the GIF. 3542 */ 3543 if (vgif_enabled(svm) || gif_set(svm)) { 3544 /* 3545 * IRQ window is not needed when AVIC is enabled, 3546 * unless we have pending ExtINT since it cannot be injected 3547 * via AVIC. In such case, we need to temporarily disable AVIC, 3548 * and fallback to injecting IRQ via V_IRQ. 3549 */ 3550 kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_IRQWIN); 3551 svm_set_vintr(svm); 3552 } 3553 } 3554 3555 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3556 { 3557 struct vcpu_svm *svm = to_svm(vcpu); 3558 3559 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) 3560 return; /* IRET will cause a vm exit */ 3561 3562 if (!gif_set(svm)) { 3563 if (vgif_enabled(svm)) 3564 svm_set_intercept(svm, INTERCEPT_STGI); 3565 return; /* STGI will cause a vm exit */ 3566 } 3567 3568 /* 3569 * Something prevents NMI from been injected. Single step over possible 3570 * problem (IRET or exception injection or interrupt shadow) 3571 */ 3572 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3573 svm->nmi_singlestep = true; 3574 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3575 } 3576 3577 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) 3578 { 3579 return 0; 3580 } 3581 3582 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 3583 { 3584 return 0; 3585 } 3586 3587 void svm_flush_tlb(struct kvm_vcpu *vcpu) 3588 { 3589 struct vcpu_svm *svm = to_svm(vcpu); 3590 3591 /* 3592 * Flush only the current ASID even if the TLB flush was invoked via 3593 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3594 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3595 * unconditionally does a TLB flush on both nested VM-Enter and nested 3596 * VM-Exit (via kvm_mmu_reset_context()). 3597 */ 3598 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3599 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3600 else 3601 svm->current_vmcb->asid_generation--; 3602 } 3603 3604 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3605 { 3606 struct vcpu_svm *svm = to_svm(vcpu); 3607 3608 invlpga(gva, svm->vmcb->control.asid); 3609 } 3610 3611 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3612 { 3613 struct vcpu_svm *svm = to_svm(vcpu); 3614 3615 if (nested_svm_virtualize_tpr(vcpu)) 3616 return; 3617 3618 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3619 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3620 kvm_set_cr8(vcpu, cr8); 3621 } 3622 } 3623 3624 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3625 { 3626 struct vcpu_svm *svm = to_svm(vcpu); 3627 u64 cr8; 3628 3629 if (nested_svm_virtualize_tpr(vcpu) || 3630 kvm_vcpu_apicv_active(vcpu)) 3631 return; 3632 3633 cr8 = kvm_get_cr8(vcpu); 3634 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3635 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3636 } 3637 3638 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3639 { 3640 struct vcpu_svm *svm = to_svm(vcpu); 3641 u8 vector; 3642 int type; 3643 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3644 unsigned int3_injected = svm->int3_injected; 3645 3646 svm->int3_injected = 0; 3647 3648 /* 3649 * If we've made progress since setting HF_IRET_MASK, we've 3650 * executed an IRET and can allow NMI injection. 3651 */ 3652 if ((vcpu->arch.hflags & HF_IRET_MASK) && 3653 (sev_es_guest(vcpu->kvm) || 3654 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { 3655 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3656 kvm_make_request(KVM_REQ_EVENT, vcpu); 3657 } 3658 3659 vcpu->arch.nmi_injected = false; 3660 kvm_clear_exception_queue(vcpu); 3661 kvm_clear_interrupt_queue(vcpu); 3662 3663 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3664 return; 3665 3666 kvm_make_request(KVM_REQ_EVENT, vcpu); 3667 3668 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3669 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3670 3671 switch (type) { 3672 case SVM_EXITINTINFO_TYPE_NMI: 3673 vcpu->arch.nmi_injected = true; 3674 break; 3675 case SVM_EXITINTINFO_TYPE_EXEPT: 3676 /* 3677 * Never re-inject a #VC exception. 3678 */ 3679 if (vector == X86_TRAP_VC) 3680 break; 3681 3682 /* 3683 * In case of software exceptions, do not reinject the vector, 3684 * but re-execute the instruction instead. Rewind RIP first 3685 * if we emulated INT3 before. 3686 */ 3687 if (kvm_exception_is_soft(vector)) { 3688 if (vector == BP_VECTOR && int3_injected && 3689 kvm_is_linear_rip(vcpu, svm->int3_rip)) 3690 kvm_rip_write(vcpu, 3691 kvm_rip_read(vcpu) - int3_injected); 3692 break; 3693 } 3694 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3695 u32 err = svm->vmcb->control.exit_int_info_err; 3696 kvm_requeue_exception_e(vcpu, vector, err); 3697 3698 } else 3699 kvm_requeue_exception(vcpu, vector); 3700 break; 3701 case SVM_EXITINTINFO_TYPE_INTR: 3702 kvm_queue_interrupt(vcpu, vector, false); 3703 break; 3704 default: 3705 break; 3706 } 3707 } 3708 3709 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3710 { 3711 struct vcpu_svm *svm = to_svm(vcpu); 3712 struct vmcb_control_area *control = &svm->vmcb->control; 3713 3714 control->exit_int_info = control->event_inj; 3715 control->exit_int_info_err = control->event_inj_err; 3716 control->event_inj = 0; 3717 svm_complete_interrupts(vcpu); 3718 } 3719 3720 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3721 { 3722 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3723 to_svm(vcpu)->vmcb->control.exit_info_1) 3724 return handle_fastpath_set_msr_irqoff(vcpu); 3725 3726 return EXIT_FASTPATH_NONE; 3727 } 3728 3729 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 3730 { 3731 struct vcpu_svm *svm = to_svm(vcpu); 3732 unsigned long vmcb_pa = svm->current_vmcb->pa; 3733 3734 kvm_guest_enter_irqoff(); 3735 3736 if (sev_es_guest(vcpu->kvm)) { 3737 __svm_sev_es_vcpu_run(vmcb_pa); 3738 } else { 3739 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3740 3741 /* 3742 * Use a single vmcb (vmcb01 because it's always valid) for 3743 * context switching guest state via VMLOAD/VMSAVE, that way 3744 * the state doesn't need to be copied between vmcb01 and 3745 * vmcb02 when switching vmcbs for nested virtualization. 3746 */ 3747 vmload(svm->vmcb01.pa); 3748 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs); 3749 vmsave(svm->vmcb01.pa); 3750 3751 vmload(__sme_page_pa(sd->save_area)); 3752 } 3753 3754 kvm_guest_exit_irqoff(); 3755 } 3756 3757 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3758 { 3759 struct vcpu_svm *svm = to_svm(vcpu); 3760 3761 trace_kvm_entry(vcpu); 3762 3763 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3764 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3765 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3766 3767 /* 3768 * Disable singlestep if we're injecting an interrupt/exception. 3769 * We don't want our modified rflags to be pushed on the stack where 3770 * we might not be able to easily reset them if we disabled NMI 3771 * singlestep later. 3772 */ 3773 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3774 /* 3775 * Event injection happens before external interrupts cause a 3776 * vmexit and interrupts are disabled here, so smp_send_reschedule 3777 * is enough to force an immediate vmexit. 3778 */ 3779 disable_nmi_singlestep(svm); 3780 smp_send_reschedule(vcpu->cpu); 3781 } 3782 3783 pre_svm_run(vcpu); 3784 3785 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu)); 3786 3787 sync_lapic_to_cr8(vcpu); 3788 3789 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3790 svm->vmcb->control.asid = svm->asid; 3791 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3792 } 3793 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3794 3795 svm_hv_update_vp_id(svm->vmcb, vcpu); 3796 3797 /* 3798 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3799 * of a #DB. 3800 */ 3801 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3802 svm_set_dr6(svm, vcpu->arch.dr6); 3803 else 3804 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3805 3806 clgi(); 3807 kvm_load_guest_xsave_state(vcpu); 3808 3809 kvm_wait_lapic_expire(vcpu); 3810 3811 /* 3812 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3813 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3814 * is no need to worry about the conditional branch over the wrmsr 3815 * being speculatively taken. 3816 */ 3817 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3818 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3819 3820 svm_vcpu_enter_exit(vcpu); 3821 3822 /* 3823 * We do not use IBRS in the kernel. If this vCPU has used the 3824 * SPEC_CTRL MSR it may have left it on; save the value and 3825 * turn it off. This is much more efficient than blindly adding 3826 * it to the atomic save/restore list. Especially as the former 3827 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3828 * 3829 * For non-nested case: 3830 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3831 * save it. 3832 * 3833 * For nested case: 3834 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3835 * save it. 3836 */ 3837 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) && 3838 unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3839 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3840 3841 if (!sev_es_guest(vcpu->kvm)) 3842 reload_tss(vcpu); 3843 3844 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3845 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3846 3847 if (!sev_es_guest(vcpu->kvm)) { 3848 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3849 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3850 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3851 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3852 } 3853 3854 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3855 kvm_before_interrupt(vcpu); 3856 3857 kvm_load_host_xsave_state(vcpu); 3858 stgi(); 3859 3860 /* Any pending NMI will happen here */ 3861 3862 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3863 kvm_after_interrupt(vcpu); 3864 3865 sync_cr8_to_lapic(vcpu); 3866 3867 svm->next_rip = 0; 3868 if (is_guest_mode(vcpu)) { 3869 nested_sync_control_from_vmcb02(svm); 3870 3871 /* Track VMRUNs that have made past consistency checking */ 3872 if (svm->nested.nested_run_pending && 3873 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 3874 ++vcpu->stat.nested_run; 3875 3876 svm->nested.nested_run_pending = 0; 3877 } 3878 3879 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3880 vmcb_mark_all_clean(svm->vmcb); 3881 3882 /* if exit due to PF check for async PF */ 3883 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3884 vcpu->arch.apf.host_apf_flags = 3885 kvm_read_and_reset_apf_flags(); 3886 3887 if (npt_enabled) 3888 kvm_register_clear_available(vcpu, VCPU_EXREG_PDPTR); 3889 3890 /* 3891 * We need to handle MC intercepts here before the vcpu has a chance to 3892 * change the physical cpu 3893 */ 3894 if (unlikely(svm->vmcb->control.exit_code == 3895 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3896 svm_handle_mce(vcpu); 3897 3898 svm_complete_interrupts(vcpu); 3899 3900 if (is_guest_mode(vcpu)) 3901 return EXIT_FASTPATH_NONE; 3902 3903 return svm_exit_handlers_fastpath(vcpu); 3904 } 3905 3906 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3907 int root_level) 3908 { 3909 struct vcpu_svm *svm = to_svm(vcpu); 3910 unsigned long cr3; 3911 3912 if (npt_enabled) { 3913 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 3914 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3915 3916 hv_track_root_tdp(vcpu, root_hpa); 3917 3918 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ 3919 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3920 return; 3921 cr3 = vcpu->arch.cr3; 3922 } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3923 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 3924 } else { 3925 /* PCID in the guest should be impossible with a 32-bit MMU. */ 3926 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 3927 cr3 = root_hpa; 3928 } 3929 3930 svm->vmcb->save.cr3 = cr3; 3931 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 3932 } 3933 3934 static int is_disabled(void) 3935 { 3936 u64 vm_cr; 3937 3938 rdmsrl(MSR_VM_CR, vm_cr); 3939 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3940 return 1; 3941 3942 return 0; 3943 } 3944 3945 static void 3946 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3947 { 3948 /* 3949 * Patch in the VMMCALL instruction: 3950 */ 3951 hypercall[0] = 0x0f; 3952 hypercall[1] = 0x01; 3953 hypercall[2] = 0xd9; 3954 } 3955 3956 static int __init svm_check_processor_compat(void) 3957 { 3958 return 0; 3959 } 3960 3961 static bool svm_cpu_has_accelerated_tpr(void) 3962 { 3963 return false; 3964 } 3965 3966 /* 3967 * The kvm parameter can be NULL (module initialization, or invocation before 3968 * VM creation). Be sure to check the kvm parameter before using it. 3969 */ 3970 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 3971 { 3972 switch (index) { 3973 case MSR_IA32_MCG_EXT_CTL: 3974 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 3975 return false; 3976 case MSR_IA32_SMBASE: 3977 /* SEV-ES guests do not support SMM, so report false */ 3978 if (kvm && sev_es_guest(kvm)) 3979 return false; 3980 break; 3981 default: 3982 break; 3983 } 3984 3985 return true; 3986 } 3987 3988 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 3989 { 3990 return 0; 3991 } 3992 3993 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 3994 { 3995 struct vcpu_svm *svm = to_svm(vcpu); 3996 struct kvm_cpuid_entry2 *best; 3997 3998 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3999 boot_cpu_has(X86_FEATURE_XSAVE) && 4000 boot_cpu_has(X86_FEATURE_XSAVES); 4001 4002 /* Update nrips enabled cache */ 4003 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 4004 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); 4005 4006 svm_recalc_instruction_intercepts(vcpu, svm); 4007 4008 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4009 if (sev_guest(vcpu->kvm)) { 4010 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); 4011 if (best) 4012 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4013 } 4014 4015 if (kvm_vcpu_apicv_active(vcpu)) { 4016 /* 4017 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 4018 * is exposed to the guest, disable AVIC. 4019 */ 4020 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 4021 kvm_request_apicv_update(vcpu->kvm, false, 4022 APICV_INHIBIT_REASON_X2APIC); 4023 4024 /* 4025 * Currently, AVIC does not work with nested virtualization. 4026 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 4027 */ 4028 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4029 kvm_request_apicv_update(vcpu->kvm, false, 4030 APICV_INHIBIT_REASON_NESTED); 4031 } 4032 4033 if (guest_cpuid_is_intel(vcpu)) { 4034 /* 4035 * We must intercept SYSENTER_EIP and SYSENTER_ESP 4036 * accesses because the processor only stores 32 bits. 4037 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 4038 */ 4039 svm_set_intercept(svm, INTERCEPT_VMLOAD); 4040 svm_set_intercept(svm, INTERCEPT_VMSAVE); 4041 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 4042 4043 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 4044 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 4045 } else { 4046 /* 4047 * If hardware supports Virtual VMLOAD VMSAVE then enable it 4048 * in VMCB and clear intercepts to avoid #VMEXIT. 4049 */ 4050 if (vls) { 4051 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 4052 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 4053 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 4054 } 4055 /* No need to intercept these MSRs */ 4056 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 4057 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 4058 } 4059 } 4060 4061 static bool svm_has_wbinvd_exit(void) 4062 { 4063 return true; 4064 } 4065 4066 #define PRE_EX(exit) { .exit_code = (exit), \ 4067 .stage = X86_ICPT_PRE_EXCEPT, } 4068 #define POST_EX(exit) { .exit_code = (exit), \ 4069 .stage = X86_ICPT_POST_EXCEPT, } 4070 #define POST_MEM(exit) { .exit_code = (exit), \ 4071 .stage = X86_ICPT_POST_MEMACCESS, } 4072 4073 static const struct __x86_intercept { 4074 u32 exit_code; 4075 enum x86_intercept_stage stage; 4076 } x86_intercept_map[] = { 4077 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4078 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4079 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4080 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4081 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4082 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4083 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4084 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4085 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4086 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4087 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4088 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4089 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4090 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4091 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4092 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4093 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4094 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4095 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4096 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4097 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4098 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4099 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4100 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4101 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4102 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4103 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4104 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4105 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4106 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4107 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4108 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4109 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4110 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4111 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4112 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4113 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4114 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4115 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4116 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4117 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4118 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4119 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4120 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4121 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4122 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4123 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4124 }; 4125 4126 #undef PRE_EX 4127 #undef POST_EX 4128 #undef POST_MEM 4129 4130 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4131 struct x86_instruction_info *info, 4132 enum x86_intercept_stage stage, 4133 struct x86_exception *exception) 4134 { 4135 struct vcpu_svm *svm = to_svm(vcpu); 4136 int vmexit, ret = X86EMUL_CONTINUE; 4137 struct __x86_intercept icpt_info; 4138 struct vmcb *vmcb = svm->vmcb; 4139 4140 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4141 goto out; 4142 4143 icpt_info = x86_intercept_map[info->intercept]; 4144 4145 if (stage != icpt_info.stage) 4146 goto out; 4147 4148 switch (icpt_info.exit_code) { 4149 case SVM_EXIT_READ_CR0: 4150 if (info->intercept == x86_intercept_cr_read) 4151 icpt_info.exit_code += info->modrm_reg; 4152 break; 4153 case SVM_EXIT_WRITE_CR0: { 4154 unsigned long cr0, val; 4155 4156 if (info->intercept == x86_intercept_cr_write) 4157 icpt_info.exit_code += info->modrm_reg; 4158 4159 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4160 info->intercept == x86_intercept_clts) 4161 break; 4162 4163 if (!(vmcb_is_intercept(&svm->nested.ctl, 4164 INTERCEPT_SELECTIVE_CR0))) 4165 break; 4166 4167 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4168 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4169 4170 if (info->intercept == x86_intercept_lmsw) { 4171 cr0 &= 0xfUL; 4172 val &= 0xfUL; 4173 /* lmsw can't clear PE - catch this here */ 4174 if (cr0 & X86_CR0_PE) 4175 val |= X86_CR0_PE; 4176 } 4177 4178 if (cr0 ^ val) 4179 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4180 4181 break; 4182 } 4183 case SVM_EXIT_READ_DR0: 4184 case SVM_EXIT_WRITE_DR0: 4185 icpt_info.exit_code += info->modrm_reg; 4186 break; 4187 case SVM_EXIT_MSR: 4188 if (info->intercept == x86_intercept_wrmsr) 4189 vmcb->control.exit_info_1 = 1; 4190 else 4191 vmcb->control.exit_info_1 = 0; 4192 break; 4193 case SVM_EXIT_PAUSE: 4194 /* 4195 * We get this for NOP only, but pause 4196 * is rep not, check this here 4197 */ 4198 if (info->rep_prefix != REPE_PREFIX) 4199 goto out; 4200 break; 4201 case SVM_EXIT_IOIO: { 4202 u64 exit_info; 4203 u32 bytes; 4204 4205 if (info->intercept == x86_intercept_in || 4206 info->intercept == x86_intercept_ins) { 4207 exit_info = ((info->src_val & 0xffff) << 16) | 4208 SVM_IOIO_TYPE_MASK; 4209 bytes = info->dst_bytes; 4210 } else { 4211 exit_info = (info->dst_val & 0xffff) << 16; 4212 bytes = info->src_bytes; 4213 } 4214 4215 if (info->intercept == x86_intercept_outs || 4216 info->intercept == x86_intercept_ins) 4217 exit_info |= SVM_IOIO_STR_MASK; 4218 4219 if (info->rep_prefix) 4220 exit_info |= SVM_IOIO_REP_MASK; 4221 4222 bytes = min(bytes, 4u); 4223 4224 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4225 4226 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4227 4228 vmcb->control.exit_info_1 = exit_info; 4229 vmcb->control.exit_info_2 = info->next_rip; 4230 4231 break; 4232 } 4233 default: 4234 break; 4235 } 4236 4237 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4238 if (static_cpu_has(X86_FEATURE_NRIPS)) 4239 vmcb->control.next_rip = info->next_rip; 4240 vmcb->control.exit_code = icpt_info.exit_code; 4241 vmexit = nested_svm_exit_handled(svm); 4242 4243 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4244 : X86EMUL_CONTINUE; 4245 4246 out: 4247 return ret; 4248 } 4249 4250 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4251 { 4252 } 4253 4254 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4255 { 4256 if (!kvm_pause_in_guest(vcpu->kvm)) 4257 shrink_ple_window(vcpu); 4258 } 4259 4260 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4261 { 4262 /* [63:9] are reserved. */ 4263 vcpu->arch.mcg_cap &= 0x1ff; 4264 } 4265 4266 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4267 { 4268 struct vcpu_svm *svm = to_svm(vcpu); 4269 4270 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4271 if (!gif_set(svm)) 4272 return true; 4273 4274 return is_smm(vcpu); 4275 } 4276 4277 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4278 { 4279 struct vcpu_svm *svm = to_svm(vcpu); 4280 if (svm->nested.nested_run_pending) 4281 return -EBUSY; 4282 4283 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4284 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4285 return -EBUSY; 4286 4287 return !svm_smi_blocked(vcpu); 4288 } 4289 4290 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4291 { 4292 struct vcpu_svm *svm = to_svm(vcpu); 4293 struct kvm_host_map map_save; 4294 int ret; 4295 4296 if (!is_guest_mode(vcpu)) 4297 return 0; 4298 4299 /* FED8h - SVM Guest */ 4300 put_smstate(u64, smstate, 0x7ed8, 1); 4301 /* FEE0h - SVM Guest VMCB Physical Address */ 4302 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4303 4304 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4305 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4306 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4307 4308 ret = nested_svm_vmexit(svm); 4309 if (ret) 4310 return ret; 4311 4312 /* 4313 * KVM uses VMCB01 to store L1 host state while L2 runs but 4314 * VMCB01 is going to be used during SMM and thus the state will 4315 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4316 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4317 * format of the area is identical to guest save area offsetted 4318 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4319 * within 'struct vmcb'). Note: HSAVE area may also be used by 4320 * L1 hypervisor to save additional host context (e.g. KVM does 4321 * that, see svm_prepare_guest_switch()) which must be 4322 * preserved. 4323 */ 4324 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), 4325 &map_save) == -EINVAL) 4326 return 1; 4327 4328 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4329 4330 svm_copy_vmrun_state(map_save.hva + 0x400, 4331 &svm->vmcb01.ptr->save); 4332 4333 kvm_vcpu_unmap(vcpu, &map_save, true); 4334 return 0; 4335 } 4336 4337 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4338 { 4339 struct vcpu_svm *svm = to_svm(vcpu); 4340 struct kvm_host_map map, map_save; 4341 u64 saved_efer, vmcb12_gpa; 4342 struct vmcb *vmcb12; 4343 int ret; 4344 4345 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4346 return 0; 4347 4348 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4349 if (!GET_SMSTATE(u64, smstate, 0x7ed8)) 4350 return 0; 4351 4352 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4353 return 1; 4354 4355 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4356 if (!(saved_efer & EFER_SVME)) 4357 return 1; 4358 4359 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4360 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4361 return 1; 4362 4363 ret = 1; 4364 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL) 4365 goto unmap_map; 4366 4367 if (svm_allocate_nested(svm)) 4368 goto unmap_save; 4369 4370 /* 4371 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4372 * used during SMM (see svm_enter_smm()) 4373 */ 4374 4375 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4376 4377 /* 4378 * Enter the nested guest now 4379 */ 4380 4381 vmcb12 = map.hva; 4382 nested_load_control_from_vmcb12(svm, &vmcb12->control); 4383 ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false); 4384 4385 unmap_save: 4386 kvm_vcpu_unmap(vcpu, &map_save, true); 4387 unmap_map: 4388 kvm_vcpu_unmap(vcpu, &map, true); 4389 return ret; 4390 } 4391 4392 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4393 { 4394 struct vcpu_svm *svm = to_svm(vcpu); 4395 4396 if (!gif_set(svm)) { 4397 if (vgif_enabled(svm)) 4398 svm_set_intercept(svm, INTERCEPT_STGI); 4399 /* STGI will cause a vm exit */ 4400 } else { 4401 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4402 } 4403 } 4404 4405 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 4406 { 4407 bool smep, smap, is_user; 4408 unsigned long cr4; 4409 4410 /* 4411 * When the guest is an SEV-ES guest, emulation is not possible. 4412 */ 4413 if (sev_es_guest(vcpu->kvm)) 4414 return false; 4415 4416 /* 4417 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4418 * 4419 * Errata: 4420 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is 4421 * possible that CPU microcode implementing DecodeAssist will fail 4422 * to read bytes of instruction which caused #NPF. In this case, 4423 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly 4424 * return 0 instead of the correct guest instruction bytes. 4425 * 4426 * This happens because CPU microcode reading instruction bytes 4427 * uses a special opcode which attempts to read data using CPL=0 4428 * privileges. The microcode reads CS:RIP and if it hits a SMAP 4429 * fault, it gives up and returns no instruction bytes. 4430 * 4431 * Detection: 4432 * We reach here in case CPU supports DecodeAssist, raised #NPF and 4433 * returned 0 in GuestIntrBytes field of the VMCB. 4434 * First, errata can only be triggered in case vCPU CR4.SMAP=1. 4435 * Second, if vCPU CR4.SMEP=1, errata could only be triggered 4436 * in case vCPU CPL==3 (Because otherwise guest would have triggered 4437 * a SMEP fault instead of #NPF). 4438 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. 4439 * As most guests enable SMAP if they have also enabled SMEP, use above 4440 * logic in order to attempt minimize false-positive of detecting errata 4441 * while still preserving all cases semantic correctness. 4442 * 4443 * Workaround: 4444 * To determine what instruction the guest was executing, the hypervisor 4445 * will have to decode the instruction at the instruction pointer. 4446 * 4447 * In non SEV guest, hypervisor will be able to read the guest 4448 * memory to decode the instruction pointer when insn_len is zero 4449 * so we return true to indicate that decoding is possible. 4450 * 4451 * But in the SEV guest, the guest memory is encrypted with the 4452 * guest specific key and hypervisor will not be able to decode the 4453 * instruction pointer so we will not able to workaround it. Lets 4454 * print the error and request to kill the guest. 4455 */ 4456 if (likely(!insn || insn_len)) 4457 return true; 4458 4459 /* 4460 * If RIP is invalid, go ahead with emulation which will cause an 4461 * internal error exit. 4462 */ 4463 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT)) 4464 return true; 4465 4466 cr4 = kvm_read_cr4(vcpu); 4467 smep = cr4 & X86_CR4_SMEP; 4468 smap = cr4 & X86_CR4_SMAP; 4469 is_user = svm_get_cpl(vcpu) == 3; 4470 if (smap && (!smep || is_user)) { 4471 if (!sev_guest(vcpu->kvm)) 4472 return true; 4473 4474 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4475 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4476 } 4477 4478 return false; 4479 } 4480 4481 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4482 { 4483 struct vcpu_svm *svm = to_svm(vcpu); 4484 4485 /* 4486 * TODO: Last condition latch INIT signals on vCPU when 4487 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4488 * To properly emulate the INIT intercept, 4489 * svm_check_nested_events() should call nested_svm_vmexit() 4490 * if an INIT signal is pending. 4491 */ 4492 return !gif_set(svm) || 4493 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); 4494 } 4495 4496 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4497 { 4498 if (!sev_es_guest(vcpu->kvm)) 4499 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4500 4501 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4502 } 4503 4504 static void svm_vm_destroy(struct kvm *kvm) 4505 { 4506 avic_vm_destroy(kvm); 4507 sev_vm_destroy(kvm); 4508 } 4509 4510 static int svm_vm_init(struct kvm *kvm) 4511 { 4512 if (!pause_filter_count || !pause_filter_thresh) 4513 kvm->arch.pause_in_guest = true; 4514 4515 if (enable_apicv) { 4516 int ret = avic_vm_init(kvm); 4517 if (ret) 4518 return ret; 4519 } 4520 4521 return 0; 4522 } 4523 4524 static struct kvm_x86_ops svm_x86_ops __initdata = { 4525 .hardware_unsetup = svm_hardware_teardown, 4526 .hardware_enable = svm_hardware_enable, 4527 .hardware_disable = svm_hardware_disable, 4528 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, 4529 .has_emulated_msr = svm_has_emulated_msr, 4530 4531 .vcpu_create = svm_create_vcpu, 4532 .vcpu_free = svm_free_vcpu, 4533 .vcpu_reset = svm_vcpu_reset, 4534 4535 .vm_size = sizeof(struct kvm_svm), 4536 .vm_init = svm_vm_init, 4537 .vm_destroy = svm_vm_destroy, 4538 4539 .prepare_guest_switch = svm_prepare_guest_switch, 4540 .vcpu_load = svm_vcpu_load, 4541 .vcpu_put = svm_vcpu_put, 4542 .vcpu_blocking = svm_vcpu_blocking, 4543 .vcpu_unblocking = svm_vcpu_unblocking, 4544 4545 .update_exception_bitmap = svm_update_exception_bitmap, 4546 .get_msr_feature = svm_get_msr_feature, 4547 .get_msr = svm_get_msr, 4548 .set_msr = svm_set_msr, 4549 .get_segment_base = svm_get_segment_base, 4550 .get_segment = svm_get_segment, 4551 .set_segment = svm_set_segment, 4552 .get_cpl = svm_get_cpl, 4553 .get_cs_db_l_bits = kvm_get_cs_db_l_bits, 4554 .set_cr0 = svm_set_cr0, 4555 .is_valid_cr4 = svm_is_valid_cr4, 4556 .set_cr4 = svm_set_cr4, 4557 .set_efer = svm_set_efer, 4558 .get_idt = svm_get_idt, 4559 .set_idt = svm_set_idt, 4560 .get_gdt = svm_get_gdt, 4561 .set_gdt = svm_set_gdt, 4562 .set_dr7 = svm_set_dr7, 4563 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4564 .cache_reg = svm_cache_reg, 4565 .get_rflags = svm_get_rflags, 4566 .set_rflags = svm_set_rflags, 4567 4568 .tlb_flush_all = svm_flush_tlb, 4569 .tlb_flush_current = svm_flush_tlb, 4570 .tlb_flush_gva = svm_flush_tlb_gva, 4571 .tlb_flush_guest = svm_flush_tlb, 4572 4573 .run = svm_vcpu_run, 4574 .handle_exit = handle_exit, 4575 .skip_emulated_instruction = skip_emulated_instruction, 4576 .update_emulated_instruction = NULL, 4577 .set_interrupt_shadow = svm_set_interrupt_shadow, 4578 .get_interrupt_shadow = svm_get_interrupt_shadow, 4579 .patch_hypercall = svm_patch_hypercall, 4580 .set_irq = svm_set_irq, 4581 .set_nmi = svm_inject_nmi, 4582 .queue_exception = svm_queue_exception, 4583 .cancel_injection = svm_cancel_injection, 4584 .interrupt_allowed = svm_interrupt_allowed, 4585 .nmi_allowed = svm_nmi_allowed, 4586 .get_nmi_mask = svm_get_nmi_mask, 4587 .set_nmi_mask = svm_set_nmi_mask, 4588 .enable_nmi_window = svm_enable_nmi_window, 4589 .enable_irq_window = svm_enable_irq_window, 4590 .update_cr8_intercept = svm_update_cr8_intercept, 4591 .set_virtual_apic_mode = svm_set_virtual_apic_mode, 4592 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, 4593 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, 4594 .load_eoi_exitmap = svm_load_eoi_exitmap, 4595 .hwapic_irr_update = svm_hwapic_irr_update, 4596 .hwapic_isr_update = svm_hwapic_isr_update, 4597 .sync_pir_to_irr = kvm_lapic_find_highest_irr, 4598 .apicv_post_state_restore = avic_post_state_restore, 4599 4600 .set_tss_addr = svm_set_tss_addr, 4601 .set_identity_map_addr = svm_set_identity_map_addr, 4602 .get_mt_mask = svm_get_mt_mask, 4603 4604 .get_exit_info = svm_get_exit_info, 4605 4606 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4607 4608 .has_wbinvd_exit = svm_has_wbinvd_exit, 4609 4610 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4611 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4612 .write_tsc_offset = svm_write_tsc_offset, 4613 .write_tsc_multiplier = svm_write_tsc_multiplier, 4614 4615 .load_mmu_pgd = svm_load_mmu_pgd, 4616 4617 .check_intercept = svm_check_intercept, 4618 .handle_exit_irqoff = svm_handle_exit_irqoff, 4619 4620 .request_immediate_exit = __kvm_request_immediate_exit, 4621 4622 .sched_in = svm_sched_in, 4623 4624 .pmu_ops = &amd_pmu_ops, 4625 .nested_ops = &svm_nested_ops, 4626 4627 .deliver_posted_interrupt = svm_deliver_avic_intr, 4628 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, 4629 .update_pi_irte = svm_update_pi_irte, 4630 .setup_mce = svm_setup_mce, 4631 4632 .smi_allowed = svm_smi_allowed, 4633 .enter_smm = svm_enter_smm, 4634 .leave_smm = svm_leave_smm, 4635 .enable_smi_window = svm_enable_smi_window, 4636 4637 .mem_enc_op = svm_mem_enc_op, 4638 .mem_enc_reg_region = svm_register_enc_region, 4639 .mem_enc_unreg_region = svm_unregister_enc_region, 4640 4641 .vm_copy_enc_context_from = svm_vm_copy_asid_from, 4642 4643 .can_emulate_instruction = svm_can_emulate_instruction, 4644 4645 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4646 4647 .msr_filter_changed = svm_msr_filter_changed, 4648 .complete_emulated_msr = svm_complete_emulated_msr, 4649 4650 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4651 }; 4652 4653 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4654 .cpu_has_kvm_support = has_svm, 4655 .disabled_by_bios = is_disabled, 4656 .hardware_setup = svm_hardware_setup, 4657 .check_processor_compatibility = svm_check_processor_compat, 4658 4659 .runtime_ops = &svm_x86_ops, 4660 }; 4661 4662 static int __init svm_init(void) 4663 { 4664 __unused_size_checks(); 4665 4666 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4667 __alignof__(struct vcpu_svm), THIS_MODULE); 4668 } 4669 4670 static void __exit svm_exit(void) 4671 { 4672 kvm_exit(); 4673 } 4674 4675 module_init(svm_init) 4676 module_exit(svm_exit) 4677