1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 29 #include <asm/apic.h> 30 #include <asm/perf_event.h> 31 #include <asm/tlbflush.h> 32 #include <asm/desc.h> 33 #include <asm/debugreg.h> 34 #include <asm/kvm_para.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/spec-ctrl.h> 37 #include <asm/cpu_device_id.h> 38 #include <asm/traps.h> 39 40 #include <asm/virtext.h> 41 #include "trace.h" 42 43 #include "svm.h" 44 45 #define __ex(x) __kvm_handle_fault_on_reboot(x) 46 47 MODULE_AUTHOR("Qumranet"); 48 MODULE_LICENSE("GPL"); 49 50 #ifdef MODULE 51 static const struct x86_cpu_id svm_cpu_id[] = { 52 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 53 {} 54 }; 55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 56 #endif 57 58 #define IOPM_ALLOC_ORDER 2 59 #define MSRPM_ALLOC_ORDER 1 60 61 #define SEG_TYPE_LDT 2 62 #define SEG_TYPE_BUSY_TSS16 3 63 64 #define SVM_FEATURE_LBRV (1 << 1) 65 #define SVM_FEATURE_SVML (1 << 2) 66 #define SVM_FEATURE_TSC_RATE (1 << 4) 67 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 68 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 69 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 70 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 71 72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 73 74 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 75 #define TSC_RATIO_MIN 0x0000000000000001ULL 76 #define TSC_RATIO_MAX 0x000000ffffffffffULL 77 78 static bool erratum_383_found __read_mostly; 79 80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 81 82 /* 83 * Set osvw_len to higher value when updated Revision Guides 84 * are published and we know what the new status bits are 85 */ 86 static uint64_t osvw_len = 4, osvw_status; 87 88 static DEFINE_PER_CPU(u64, current_tsc_ratio); 89 #define TSC_RATIO_DEFAULT 0x0100000000ULL 90 91 static const struct svm_direct_access_msrs { 92 u32 index; /* Index of the MSR */ 93 bool always; /* True if intercept is initially cleared */ 94 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 95 { .index = MSR_STAR, .always = true }, 96 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 97 #ifdef CONFIG_X86_64 98 { .index = MSR_GS_BASE, .always = true }, 99 { .index = MSR_FS_BASE, .always = true }, 100 { .index = MSR_KERNEL_GS_BASE, .always = true }, 101 { .index = MSR_LSTAR, .always = true }, 102 { .index = MSR_CSTAR, .always = true }, 103 { .index = MSR_SYSCALL_MASK, .always = true }, 104 #endif 105 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 106 { .index = MSR_IA32_PRED_CMD, .always = false }, 107 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 108 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 109 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 110 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 111 { .index = MSR_EFER, .always = false }, 112 { .index = MSR_IA32_CR_PAT, .always = false }, 113 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 114 { .index = MSR_INVALID, .always = false }, 115 }; 116 117 /* enable NPT for AMD64 and X86 with PAE */ 118 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 119 bool npt_enabled = true; 120 #else 121 bool npt_enabled; 122 #endif 123 124 /* 125 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 126 * pause_filter_count: On processors that support Pause filtering(indicated 127 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 128 * count value. On VMRUN this value is loaded into an internal counter. 129 * Each time a pause instruction is executed, this counter is decremented 130 * until it reaches zero at which time a #VMEXIT is generated if pause 131 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 132 * Intercept Filtering for more details. 133 * This also indicate if ple logic enabled. 134 * 135 * pause_filter_thresh: In addition, some processor families support advanced 136 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 137 * the amount of time a guest is allowed to execute in a pause loop. 138 * In this mode, a 16-bit pause filter threshold field is added in the 139 * VMCB. The threshold value is a cycle count that is used to reset the 140 * pause counter. As with simple pause filtering, VMRUN loads the pause 141 * count value from VMCB into an internal counter. Then, on each pause 142 * instruction the hardware checks the elapsed number of cycles since 143 * the most recent pause instruction against the pause filter threshold. 144 * If the elapsed cycle count is greater than the pause filter threshold, 145 * then the internal pause count is reloaded from the VMCB and execution 146 * continues. If the elapsed cycle count is less than the pause filter 147 * threshold, then the internal pause count is decremented. If the count 148 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 149 * triggered. If advanced pause filtering is supported and pause filter 150 * threshold field is set to zero, the filter will operate in the simpler, 151 * count only mode. 152 */ 153 154 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 155 module_param(pause_filter_thresh, ushort, 0444); 156 157 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 158 module_param(pause_filter_count, ushort, 0444); 159 160 /* Default doubles per-vcpu window every exit. */ 161 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 162 module_param(pause_filter_count_grow, ushort, 0444); 163 164 /* Default resets per-vcpu window every exit to pause_filter_count. */ 165 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 166 module_param(pause_filter_count_shrink, ushort, 0444); 167 168 /* Default is to compute the maximum so we can never overflow. */ 169 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 170 module_param(pause_filter_count_max, ushort, 0444); 171 172 /* allow nested paging (virtualized MMU) for all guests */ 173 static int npt = true; 174 module_param(npt, int, S_IRUGO); 175 176 /* allow nested virtualization in KVM/SVM */ 177 static int nested = true; 178 module_param(nested, int, S_IRUGO); 179 180 /* enable/disable Next RIP Save */ 181 static int nrips = true; 182 module_param(nrips, int, 0444); 183 184 /* enable/disable Virtual VMLOAD VMSAVE */ 185 static int vls = true; 186 module_param(vls, int, 0444); 187 188 /* enable/disable Virtual GIF */ 189 static int vgif = true; 190 module_param(vgif, int, 0444); 191 192 /* enable/disable SEV support */ 193 int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); 194 module_param(sev, int, 0444); 195 196 /* enable/disable SEV-ES support */ 197 int sev_es = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); 198 module_param(sev_es, int, 0444); 199 200 bool __read_mostly dump_invalid_vmcb; 201 module_param(dump_invalid_vmcb, bool, 0644); 202 203 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 204 205 static void svm_complete_interrupts(struct vcpu_svm *svm); 206 207 static unsigned long iopm_base; 208 209 struct kvm_ldttss_desc { 210 u16 limit0; 211 u16 base0; 212 unsigned base1:8, type:5, dpl:2, p:1; 213 unsigned limit1:4, zero0:3, g:1, base2:8; 214 u32 base3; 215 u32 zero1; 216 } __attribute__((packed)); 217 218 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 219 220 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 221 222 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 223 #define MSRS_RANGE_SIZE 2048 224 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 225 226 u32 svm_msrpm_offset(u32 msr) 227 { 228 u32 offset; 229 int i; 230 231 for (i = 0; i < NUM_MSR_MAPS; i++) { 232 if (msr < msrpm_ranges[i] || 233 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 234 continue; 235 236 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 237 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 238 239 /* Now we have the u8 offset - but need the u32 offset */ 240 return offset / 4; 241 } 242 243 /* MSR not in any range */ 244 return MSR_INVALID; 245 } 246 247 #define MAX_INST_SIZE 15 248 249 static inline void clgi(void) 250 { 251 asm volatile (__ex("clgi")); 252 } 253 254 static inline void stgi(void) 255 { 256 asm volatile (__ex("stgi")); 257 } 258 259 static inline void invlpga(unsigned long addr, u32 asid) 260 { 261 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr)); 262 } 263 264 static int get_max_npt_level(void) 265 { 266 #ifdef CONFIG_X86_64 267 return PT64_ROOT_4LEVEL; 268 #else 269 return PT32E_ROOT_LEVEL; 270 #endif 271 } 272 273 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 274 { 275 struct vcpu_svm *svm = to_svm(vcpu); 276 u64 old_efer = vcpu->arch.efer; 277 vcpu->arch.efer = efer; 278 279 if (!npt_enabled) { 280 /* Shadow paging assumes NX to be available. */ 281 efer |= EFER_NX; 282 283 if (!(efer & EFER_LMA)) 284 efer &= ~EFER_LME; 285 } 286 287 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 288 if (!(efer & EFER_SVME)) { 289 svm_leave_nested(svm); 290 svm_set_gif(svm, true); 291 292 /* 293 * Free the nested guest state, unless we are in SMM. 294 * In this case we will return to the nested guest 295 * as soon as we leave SMM. 296 */ 297 if (!is_smm(&svm->vcpu)) 298 svm_free_nested(svm); 299 300 } else { 301 int ret = svm_allocate_nested(svm); 302 303 if (ret) { 304 vcpu->arch.efer = old_efer; 305 return ret; 306 } 307 } 308 } 309 310 svm->vmcb->save.efer = efer | EFER_SVME; 311 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 312 return 0; 313 } 314 315 static int is_external_interrupt(u32 info) 316 { 317 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 318 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 319 } 320 321 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 322 { 323 struct vcpu_svm *svm = to_svm(vcpu); 324 u32 ret = 0; 325 326 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 327 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 328 return ret; 329 } 330 331 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 332 { 333 struct vcpu_svm *svm = to_svm(vcpu); 334 335 if (mask == 0) 336 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 337 else 338 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 339 340 } 341 342 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 343 { 344 struct vcpu_svm *svm = to_svm(vcpu); 345 346 /* 347 * SEV-ES does not expose the next RIP. The RIP update is controlled by 348 * the type of exit and the #VC handler in the guest. 349 */ 350 if (sev_es_guest(vcpu->kvm)) 351 goto done; 352 353 if (nrips && svm->vmcb->control.next_rip != 0) { 354 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 355 svm->next_rip = svm->vmcb->control.next_rip; 356 } 357 358 if (!svm->next_rip) { 359 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 360 return 0; 361 } else { 362 kvm_rip_write(vcpu, svm->next_rip); 363 } 364 365 done: 366 svm_set_interrupt_shadow(vcpu, 0); 367 368 return 1; 369 } 370 371 static void svm_queue_exception(struct kvm_vcpu *vcpu) 372 { 373 struct vcpu_svm *svm = to_svm(vcpu); 374 unsigned nr = vcpu->arch.exception.nr; 375 bool has_error_code = vcpu->arch.exception.has_error_code; 376 u32 error_code = vcpu->arch.exception.error_code; 377 378 kvm_deliver_exception_payload(&svm->vcpu); 379 380 if (nr == BP_VECTOR && !nrips) { 381 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); 382 383 /* 384 * For guest debugging where we have to reinject #BP if some 385 * INT3 is guest-owned: 386 * Emulate nRIP by moving RIP forward. Will fail if injection 387 * raises a fault that is not intercepted. Still better than 388 * failing in all cases. 389 */ 390 (void)skip_emulated_instruction(&svm->vcpu); 391 rip = kvm_rip_read(&svm->vcpu); 392 svm->int3_rip = rip + svm->vmcb->save.cs.base; 393 svm->int3_injected = rip - old_rip; 394 } 395 396 svm->vmcb->control.event_inj = nr 397 | SVM_EVTINJ_VALID 398 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 399 | SVM_EVTINJ_TYPE_EXEPT; 400 svm->vmcb->control.event_inj_err = error_code; 401 } 402 403 static void svm_init_erratum_383(void) 404 { 405 u32 low, high; 406 int err; 407 u64 val; 408 409 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 410 return; 411 412 /* Use _safe variants to not break nested virtualization */ 413 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 414 if (err) 415 return; 416 417 val |= (1ULL << 47); 418 419 low = lower_32_bits(val); 420 high = upper_32_bits(val); 421 422 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 423 424 erratum_383_found = true; 425 } 426 427 static void svm_init_osvw(struct kvm_vcpu *vcpu) 428 { 429 /* 430 * Guests should see errata 400 and 415 as fixed (assuming that 431 * HLT and IO instructions are intercepted). 432 */ 433 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 434 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 435 436 /* 437 * By increasing VCPU's osvw.length to 3 we are telling the guest that 438 * all osvw.status bits inside that length, including bit 0 (which is 439 * reserved for erratum 298), are valid. However, if host processor's 440 * osvw_len is 0 then osvw_status[0] carries no information. We need to 441 * be conservative here and therefore we tell the guest that erratum 298 442 * is present (because we really don't know). 443 */ 444 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 445 vcpu->arch.osvw.status |= 1; 446 } 447 448 static int has_svm(void) 449 { 450 const char *msg; 451 452 if (!cpu_has_svm(&msg)) { 453 printk(KERN_INFO "has_svm: %s\n", msg); 454 return 0; 455 } 456 457 return 1; 458 } 459 460 static void svm_hardware_disable(void) 461 { 462 /* Make sure we clean up behind us */ 463 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) 464 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 465 466 cpu_svm_disable(); 467 468 amd_pmu_disable_virt(); 469 } 470 471 static int svm_hardware_enable(void) 472 { 473 474 struct svm_cpu_data *sd; 475 uint64_t efer; 476 struct desc_struct *gdt; 477 int me = raw_smp_processor_id(); 478 479 rdmsrl(MSR_EFER, efer); 480 if (efer & EFER_SVME) 481 return -EBUSY; 482 483 if (!has_svm()) { 484 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 485 return -EINVAL; 486 } 487 sd = per_cpu(svm_data, me); 488 if (!sd) { 489 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 490 return -EINVAL; 491 } 492 493 sd->asid_generation = 1; 494 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 495 sd->next_asid = sd->max_asid + 1; 496 sd->min_asid = max_sev_asid + 1; 497 498 gdt = get_current_gdt_rw(); 499 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 500 501 wrmsrl(MSR_EFER, efer | EFER_SVME); 502 503 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); 504 505 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 506 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 507 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 508 } 509 510 511 /* 512 * Get OSVW bits. 513 * 514 * Note that it is possible to have a system with mixed processor 515 * revisions and therefore different OSVW bits. If bits are not the same 516 * on different processors then choose the worst case (i.e. if erratum 517 * is present on one processor and not on another then assume that the 518 * erratum is present everywhere). 519 */ 520 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 521 uint64_t len, status = 0; 522 int err; 523 524 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 525 if (!err) 526 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 527 &err); 528 529 if (err) 530 osvw_status = osvw_len = 0; 531 else { 532 if (len < osvw_len) 533 osvw_len = len; 534 osvw_status |= status; 535 osvw_status &= (1ULL << osvw_len) - 1; 536 } 537 } else 538 osvw_status = osvw_len = 0; 539 540 svm_init_erratum_383(); 541 542 amd_pmu_enable_virt(); 543 544 return 0; 545 } 546 547 static void svm_cpu_uninit(int cpu) 548 { 549 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 550 551 if (!sd) 552 return; 553 554 per_cpu(svm_data, cpu) = NULL; 555 kfree(sd->sev_vmcbs); 556 __free_page(sd->save_area); 557 kfree(sd); 558 } 559 560 static int svm_cpu_init(int cpu) 561 { 562 struct svm_cpu_data *sd; 563 564 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 565 if (!sd) 566 return -ENOMEM; 567 sd->cpu = cpu; 568 sd->save_area = alloc_page(GFP_KERNEL); 569 if (!sd->save_area) 570 goto free_cpu_data; 571 clear_page(page_address(sd->save_area)); 572 573 if (svm_sev_enabled()) { 574 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1, 575 sizeof(void *), 576 GFP_KERNEL); 577 if (!sd->sev_vmcbs) 578 goto free_save_area; 579 } 580 581 per_cpu(svm_data, cpu) = sd; 582 583 return 0; 584 585 free_save_area: 586 __free_page(sd->save_area); 587 free_cpu_data: 588 kfree(sd); 589 return -ENOMEM; 590 591 } 592 593 static int direct_access_msr_slot(u32 msr) 594 { 595 u32 i; 596 597 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 598 if (direct_access_msrs[i].index == msr) 599 return i; 600 601 return -ENOENT; 602 } 603 604 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 605 int write) 606 { 607 struct vcpu_svm *svm = to_svm(vcpu); 608 int slot = direct_access_msr_slot(msr); 609 610 if (slot == -ENOENT) 611 return; 612 613 /* Set the shadow bitmaps to the desired intercept states */ 614 if (read) 615 set_bit(slot, svm->shadow_msr_intercept.read); 616 else 617 clear_bit(slot, svm->shadow_msr_intercept.read); 618 619 if (write) 620 set_bit(slot, svm->shadow_msr_intercept.write); 621 else 622 clear_bit(slot, svm->shadow_msr_intercept.write); 623 } 624 625 static bool valid_msr_intercept(u32 index) 626 { 627 return direct_access_msr_slot(index) != -ENOENT; 628 } 629 630 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 631 { 632 u8 bit_write; 633 unsigned long tmp; 634 u32 offset; 635 u32 *msrpm; 636 637 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 638 to_svm(vcpu)->msrpm; 639 640 offset = svm_msrpm_offset(msr); 641 bit_write = 2 * (msr & 0x0f) + 1; 642 tmp = msrpm[offset]; 643 644 BUG_ON(offset == MSR_INVALID); 645 646 return !!test_bit(bit_write, &tmp); 647 } 648 649 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 650 u32 msr, int read, int write) 651 { 652 u8 bit_read, bit_write; 653 unsigned long tmp; 654 u32 offset; 655 656 /* 657 * If this warning triggers extend the direct_access_msrs list at the 658 * beginning of the file 659 */ 660 WARN_ON(!valid_msr_intercept(msr)); 661 662 /* Enforce non allowed MSRs to trap */ 663 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 664 read = 0; 665 666 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 667 write = 0; 668 669 offset = svm_msrpm_offset(msr); 670 bit_read = 2 * (msr & 0x0f); 671 bit_write = 2 * (msr & 0x0f) + 1; 672 tmp = msrpm[offset]; 673 674 BUG_ON(offset == MSR_INVALID); 675 676 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 677 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 678 679 msrpm[offset] = tmp; 680 } 681 682 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 683 int read, int write) 684 { 685 set_shadow_msr_intercept(vcpu, msr, read, write); 686 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 687 } 688 689 u32 *svm_vcpu_alloc_msrpm(void) 690 { 691 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); 692 u32 *msrpm; 693 694 if (!pages) 695 return NULL; 696 697 msrpm = page_address(pages); 698 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); 699 700 return msrpm; 701 } 702 703 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 704 { 705 int i; 706 707 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 708 if (!direct_access_msrs[i].always) 709 continue; 710 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 711 } 712 } 713 714 715 void svm_vcpu_free_msrpm(u32 *msrpm) 716 { 717 __free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER); 718 } 719 720 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 721 { 722 struct vcpu_svm *svm = to_svm(vcpu); 723 u32 i; 724 725 /* 726 * Set intercept permissions for all direct access MSRs again. They 727 * will automatically get filtered through the MSR filter, so we are 728 * back in sync after this. 729 */ 730 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 731 u32 msr = direct_access_msrs[i].index; 732 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 733 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 734 735 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 736 } 737 } 738 739 static void add_msr_offset(u32 offset) 740 { 741 int i; 742 743 for (i = 0; i < MSRPM_OFFSETS; ++i) { 744 745 /* Offset already in list? */ 746 if (msrpm_offsets[i] == offset) 747 return; 748 749 /* Slot used by another offset? */ 750 if (msrpm_offsets[i] != MSR_INVALID) 751 continue; 752 753 /* Add offset to list */ 754 msrpm_offsets[i] = offset; 755 756 return; 757 } 758 759 /* 760 * If this BUG triggers the msrpm_offsets table has an overflow. Just 761 * increase MSRPM_OFFSETS in this case. 762 */ 763 BUG(); 764 } 765 766 static void init_msrpm_offsets(void) 767 { 768 int i; 769 770 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 771 772 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 773 u32 offset; 774 775 offset = svm_msrpm_offset(direct_access_msrs[i].index); 776 BUG_ON(offset == MSR_INVALID); 777 778 add_msr_offset(offset); 779 } 780 } 781 782 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 783 { 784 struct vcpu_svm *svm = to_svm(vcpu); 785 786 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 787 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 788 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 789 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 790 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 791 } 792 793 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 794 { 795 struct vcpu_svm *svm = to_svm(vcpu); 796 797 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 798 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 799 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 800 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 801 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 802 } 803 804 void disable_nmi_singlestep(struct vcpu_svm *svm) 805 { 806 svm->nmi_singlestep = false; 807 808 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 809 /* Clear our flags if they were not set by the guest */ 810 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 811 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 812 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 813 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 814 } 815 } 816 817 static void grow_ple_window(struct kvm_vcpu *vcpu) 818 { 819 struct vcpu_svm *svm = to_svm(vcpu); 820 struct vmcb_control_area *control = &svm->vmcb->control; 821 int old = control->pause_filter_count; 822 823 control->pause_filter_count = __grow_ple_window(old, 824 pause_filter_count, 825 pause_filter_count_grow, 826 pause_filter_count_max); 827 828 if (control->pause_filter_count != old) { 829 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 830 trace_kvm_ple_window_update(vcpu->vcpu_id, 831 control->pause_filter_count, old); 832 } 833 } 834 835 static void shrink_ple_window(struct kvm_vcpu *vcpu) 836 { 837 struct vcpu_svm *svm = to_svm(vcpu); 838 struct vmcb_control_area *control = &svm->vmcb->control; 839 int old = control->pause_filter_count; 840 841 control->pause_filter_count = 842 __shrink_ple_window(old, 843 pause_filter_count, 844 pause_filter_count_shrink, 845 pause_filter_count); 846 if (control->pause_filter_count != old) { 847 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 848 trace_kvm_ple_window_update(vcpu->vcpu_id, 849 control->pause_filter_count, old); 850 } 851 } 852 853 /* 854 * The default MMIO mask is a single bit (excluding the present bit), 855 * which could conflict with the memory encryption bit. Check for 856 * memory encryption support and override the default MMIO mask if 857 * memory encryption is enabled. 858 */ 859 static __init void svm_adjust_mmio_mask(void) 860 { 861 unsigned int enc_bit, mask_bit; 862 u64 msr, mask; 863 864 /* If there is no memory encryption support, use existing mask */ 865 if (cpuid_eax(0x80000000) < 0x8000001f) 866 return; 867 868 /* If memory encryption is not enabled, use existing mask */ 869 rdmsrl(MSR_K8_SYSCFG, msr); 870 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) 871 return; 872 873 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 874 mask_bit = boot_cpu_data.x86_phys_bits; 875 876 /* Increment the mask bit if it is the same as the encryption bit */ 877 if (enc_bit == mask_bit) 878 mask_bit++; 879 880 /* 881 * If the mask bit location is below 52, then some bits above the 882 * physical addressing limit will always be reserved, so use the 883 * rsvd_bits() function to generate the mask. This mask, along with 884 * the present bit, will be used to generate a page fault with 885 * PFER.RSV = 1. 886 * 887 * If the mask bit location is 52 (or above), then clear the mask. 888 */ 889 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 890 891 kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK); 892 } 893 894 static void svm_hardware_teardown(void) 895 { 896 int cpu; 897 898 if (svm_sev_enabled()) 899 sev_hardware_teardown(); 900 901 for_each_possible_cpu(cpu) 902 svm_cpu_uninit(cpu); 903 904 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); 905 iopm_base = 0; 906 } 907 908 static __init void svm_set_cpu_caps(void) 909 { 910 kvm_set_cpu_caps(); 911 912 supported_xss = 0; 913 914 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 915 if (nested) { 916 kvm_cpu_cap_set(X86_FEATURE_SVM); 917 918 if (nrips) 919 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 920 921 if (npt_enabled) 922 kvm_cpu_cap_set(X86_FEATURE_NPT); 923 } 924 925 /* CPUID 0x80000008 */ 926 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 927 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 928 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 929 930 /* Enable INVPCID feature */ 931 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID); 932 } 933 934 static __init int svm_hardware_setup(void) 935 { 936 int cpu; 937 struct page *iopm_pages; 938 void *iopm_va; 939 int r; 940 941 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); 942 943 if (!iopm_pages) 944 return -ENOMEM; 945 946 iopm_va = page_address(iopm_pages); 947 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); 948 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 949 950 init_msrpm_offsets(); 951 952 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 953 954 if (boot_cpu_has(X86_FEATURE_NX)) 955 kvm_enable_efer_bits(EFER_NX); 956 957 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 958 kvm_enable_efer_bits(EFER_FFXSR); 959 960 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 961 kvm_has_tsc_control = true; 962 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 963 kvm_tsc_scaling_ratio_frac_bits = 32; 964 } 965 966 /* Check for pause filtering support */ 967 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 968 pause_filter_count = 0; 969 pause_filter_thresh = 0; 970 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 971 pause_filter_thresh = 0; 972 } 973 974 if (nested) { 975 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 976 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 977 } 978 979 if (IS_ENABLED(CONFIG_KVM_AMD_SEV) && sev) { 980 sev_hardware_setup(); 981 } else { 982 sev = false; 983 sev_es = false; 984 } 985 986 svm_adjust_mmio_mask(); 987 988 for_each_possible_cpu(cpu) { 989 r = svm_cpu_init(cpu); 990 if (r) 991 goto err; 992 } 993 994 if (!boot_cpu_has(X86_FEATURE_NPT)) 995 npt_enabled = false; 996 997 if (npt_enabled && !npt) 998 npt_enabled = false; 999 1000 kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G); 1001 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 1002 1003 if (nrips) { 1004 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 1005 nrips = false; 1006 } 1007 1008 if (avic) { 1009 if (!npt_enabled || 1010 !boot_cpu_has(X86_FEATURE_AVIC) || 1011 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { 1012 avic = false; 1013 } else { 1014 pr_info("AVIC enabled\n"); 1015 1016 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 1017 } 1018 } 1019 1020 if (vls) { 1021 if (!npt_enabled || 1022 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 1023 !IS_ENABLED(CONFIG_X86_64)) { 1024 vls = false; 1025 } else { 1026 pr_info("Virtual VMLOAD VMSAVE supported\n"); 1027 } 1028 } 1029 1030 if (vgif) { 1031 if (!boot_cpu_has(X86_FEATURE_VGIF)) 1032 vgif = false; 1033 else 1034 pr_info("Virtual GIF supported\n"); 1035 } 1036 1037 svm_set_cpu_caps(); 1038 1039 /* 1040 * It seems that on AMD processors PTE's accessed bit is 1041 * being set by the CPU hardware before the NPF vmexit. 1042 * This is not expected behaviour and our tests fail because 1043 * of it. 1044 * A workaround here is to disable support for 1045 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 1046 * In this case userspace can know if there is support using 1047 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 1048 * it 1049 * If future AMD CPU models change the behaviour described above, 1050 * this variable can be changed accordingly 1051 */ 1052 allow_smaller_maxphyaddr = !npt_enabled; 1053 1054 return 0; 1055 1056 err: 1057 svm_hardware_teardown(); 1058 return r; 1059 } 1060 1061 static void init_seg(struct vmcb_seg *seg) 1062 { 1063 seg->selector = 0; 1064 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1065 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1066 seg->limit = 0xffff; 1067 seg->base = 0; 1068 } 1069 1070 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1071 { 1072 seg->selector = 0; 1073 seg->attrib = SVM_SELECTOR_P_MASK | type; 1074 seg->limit = 0xffff; 1075 seg->base = 0; 1076 } 1077 1078 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1079 { 1080 struct vcpu_svm *svm = to_svm(vcpu); 1081 u64 g_tsc_offset = 0; 1082 1083 if (is_guest_mode(vcpu)) { 1084 /* Write L1's TSC offset. */ 1085 g_tsc_offset = svm->vmcb->control.tsc_offset - 1086 svm->nested.hsave->control.tsc_offset; 1087 svm->nested.hsave->control.tsc_offset = offset; 1088 } 1089 1090 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1091 svm->vmcb->control.tsc_offset - g_tsc_offset, 1092 offset); 1093 1094 svm->vmcb->control.tsc_offset = offset + g_tsc_offset; 1095 1096 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1097 return svm->vmcb->control.tsc_offset; 1098 } 1099 1100 static void svm_check_invpcid(struct vcpu_svm *svm) 1101 { 1102 /* 1103 * Intercept INVPCID instruction only if shadow page table is 1104 * enabled. Interception is not required with nested page table 1105 * enabled. 1106 */ 1107 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1108 if (!npt_enabled) 1109 svm_set_intercept(svm, INTERCEPT_INVPCID); 1110 else 1111 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1112 } 1113 } 1114 1115 static void init_vmcb(struct vcpu_svm *svm) 1116 { 1117 struct vmcb_control_area *control = &svm->vmcb->control; 1118 struct vmcb_save_area *save = &svm->vmcb->save; 1119 1120 svm->vcpu.arch.hflags = 0; 1121 1122 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1123 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1124 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1125 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1126 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1127 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1128 if (!kvm_vcpu_apicv_active(&svm->vcpu)) 1129 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1130 1131 set_dr_intercepts(svm); 1132 1133 set_exception_intercept(svm, PF_VECTOR); 1134 set_exception_intercept(svm, UD_VECTOR); 1135 set_exception_intercept(svm, MC_VECTOR); 1136 set_exception_intercept(svm, AC_VECTOR); 1137 set_exception_intercept(svm, DB_VECTOR); 1138 /* 1139 * Guest access to VMware backdoor ports could legitimately 1140 * trigger #GP because of TSS I/O permission bitmap. 1141 * We intercept those #GP and allow access to them anyway 1142 * as VMware does. 1143 */ 1144 if (enable_vmware_backdoor) 1145 set_exception_intercept(svm, GP_VECTOR); 1146 1147 svm_set_intercept(svm, INTERCEPT_INTR); 1148 svm_set_intercept(svm, INTERCEPT_NMI); 1149 svm_set_intercept(svm, INTERCEPT_SMI); 1150 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1151 svm_set_intercept(svm, INTERCEPT_RDPMC); 1152 svm_set_intercept(svm, INTERCEPT_CPUID); 1153 svm_set_intercept(svm, INTERCEPT_INVD); 1154 svm_set_intercept(svm, INTERCEPT_INVLPG); 1155 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1156 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1157 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1158 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1159 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1160 svm_set_intercept(svm, INTERCEPT_VMRUN); 1161 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1162 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1163 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1164 svm_set_intercept(svm, INTERCEPT_STGI); 1165 svm_set_intercept(svm, INTERCEPT_CLGI); 1166 svm_set_intercept(svm, INTERCEPT_SKINIT); 1167 svm_set_intercept(svm, INTERCEPT_WBINVD); 1168 svm_set_intercept(svm, INTERCEPT_XSETBV); 1169 svm_set_intercept(svm, INTERCEPT_RDPRU); 1170 svm_set_intercept(svm, INTERCEPT_RSM); 1171 1172 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) { 1173 svm_set_intercept(svm, INTERCEPT_MONITOR); 1174 svm_set_intercept(svm, INTERCEPT_MWAIT); 1175 } 1176 1177 if (!kvm_hlt_in_guest(svm->vcpu.kvm)) 1178 svm_set_intercept(svm, INTERCEPT_HLT); 1179 1180 control->iopm_base_pa = __sme_set(iopm_base); 1181 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1182 control->int_ctl = V_INTR_MASKING_MASK; 1183 1184 init_seg(&save->es); 1185 init_seg(&save->ss); 1186 init_seg(&save->ds); 1187 init_seg(&save->fs); 1188 init_seg(&save->gs); 1189 1190 save->cs.selector = 0xf000; 1191 save->cs.base = 0xffff0000; 1192 /* Executable/Readable Code Segment */ 1193 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1194 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1195 save->cs.limit = 0xffff; 1196 1197 save->gdtr.limit = 0xffff; 1198 save->idtr.limit = 0xffff; 1199 1200 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1201 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1202 1203 svm_set_efer(&svm->vcpu, 0); 1204 save->dr6 = 0xffff0ff0; 1205 kvm_set_rflags(&svm->vcpu, 2); 1206 save->rip = 0x0000fff0; 1207 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; 1208 1209 /* 1210 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. 1211 * It also updates the guest-visible cr0 value. 1212 */ 1213 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); 1214 kvm_mmu_reset_context(&svm->vcpu); 1215 1216 save->cr4 = X86_CR4_PAE; 1217 /* rdx = ?? */ 1218 1219 if (npt_enabled) { 1220 /* Setup VMCB for Nested Paging */ 1221 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1222 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1223 clr_exception_intercept(svm, PF_VECTOR); 1224 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1225 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1226 save->g_pat = svm->vcpu.arch.pat; 1227 save->cr3 = 0; 1228 save->cr4 = 0; 1229 } 1230 svm->asid_generation = 0; 1231 svm->asid = 0; 1232 1233 svm->nested.vmcb12_gpa = 0; 1234 svm->vcpu.arch.hflags = 0; 1235 1236 if (!kvm_pause_in_guest(svm->vcpu.kvm)) { 1237 control->pause_filter_count = pause_filter_count; 1238 if (pause_filter_thresh) 1239 control->pause_filter_thresh = pause_filter_thresh; 1240 svm_set_intercept(svm, INTERCEPT_PAUSE); 1241 } else { 1242 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1243 } 1244 1245 svm_check_invpcid(svm); 1246 1247 if (kvm_vcpu_apicv_active(&svm->vcpu)) 1248 avic_init_vmcb(svm); 1249 1250 /* 1251 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1252 * in VMCB and clear intercepts to avoid #VMEXIT. 1253 */ 1254 if (vls) { 1255 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1256 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1257 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1258 } 1259 1260 if (vgif) { 1261 svm_clr_intercept(svm, INTERCEPT_STGI); 1262 svm_clr_intercept(svm, INTERCEPT_CLGI); 1263 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1264 } 1265 1266 if (sev_guest(svm->vcpu.kvm)) { 1267 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1268 clr_exception_intercept(svm, UD_VECTOR); 1269 1270 if (sev_es_guest(svm->vcpu.kvm)) { 1271 /* Perform SEV-ES specific VMCB updates */ 1272 sev_es_init_vmcb(svm); 1273 } 1274 } 1275 1276 vmcb_mark_all_dirty(svm->vmcb); 1277 1278 enable_gif(svm); 1279 1280 } 1281 1282 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1283 { 1284 struct vcpu_svm *svm = to_svm(vcpu); 1285 u32 dummy; 1286 u32 eax = 1; 1287 1288 svm->spec_ctrl = 0; 1289 svm->virt_spec_ctrl = 0; 1290 1291 if (!init_event) { 1292 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | 1293 MSR_IA32_APICBASE_ENABLE; 1294 if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) 1295 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; 1296 } 1297 init_vmcb(svm); 1298 1299 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false); 1300 kvm_rdx_write(vcpu, eax); 1301 1302 if (kvm_vcpu_apicv_active(vcpu) && !init_event) 1303 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); 1304 } 1305 1306 static int svm_create_vcpu(struct kvm_vcpu *vcpu) 1307 { 1308 struct vcpu_svm *svm; 1309 struct page *vmcb_page; 1310 struct page *vmsa_page = NULL; 1311 int err; 1312 1313 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1314 svm = to_svm(vcpu); 1315 1316 err = -ENOMEM; 1317 vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1318 if (!vmcb_page) 1319 goto out; 1320 1321 if (sev_es_guest(svm->vcpu.kvm)) { 1322 /* 1323 * SEV-ES guests require a separate VMSA page used to contain 1324 * the encrypted register state of the guest. 1325 */ 1326 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1327 if (!vmsa_page) 1328 goto error_free_vmcb_page; 1329 1330 /* 1331 * SEV-ES guests maintain an encrypted version of their FPU 1332 * state which is restored and saved on VMRUN and VMEXIT. 1333 * Free the fpu structure to prevent KVM from attempting to 1334 * access the FPU state. 1335 */ 1336 kvm_free_guest_fpu(vcpu); 1337 } 1338 1339 err = avic_init_vcpu(svm); 1340 if (err) 1341 goto error_free_vmsa_page; 1342 1343 /* We initialize this flag to true to make sure that the is_running 1344 * bit would be set the first time the vcpu is loaded. 1345 */ 1346 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) 1347 svm->avic_is_running = true; 1348 1349 svm->msrpm = svm_vcpu_alloc_msrpm(); 1350 if (!svm->msrpm) { 1351 err = -ENOMEM; 1352 goto error_free_vmsa_page; 1353 } 1354 1355 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1356 1357 svm->vmcb = page_address(vmcb_page); 1358 svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT); 1359 1360 if (vmsa_page) 1361 svm->vmsa = page_address(vmsa_page); 1362 1363 svm->asid_generation = 0; 1364 init_vmcb(svm); 1365 1366 svm_init_osvw(vcpu); 1367 vcpu->arch.microcode_version = 0x01000065; 1368 1369 if (sev_es_guest(svm->vcpu.kvm)) 1370 /* Perform SEV-ES specific VMCB creation updates */ 1371 sev_es_create_vcpu(svm); 1372 1373 return 0; 1374 1375 error_free_vmsa_page: 1376 if (vmsa_page) 1377 __free_page(vmsa_page); 1378 error_free_vmcb_page: 1379 __free_page(vmcb_page); 1380 out: 1381 return err; 1382 } 1383 1384 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1385 { 1386 int i; 1387 1388 for_each_online_cpu(i) 1389 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1390 } 1391 1392 static void svm_free_vcpu(struct kvm_vcpu *vcpu) 1393 { 1394 struct vcpu_svm *svm = to_svm(vcpu); 1395 1396 /* 1397 * The vmcb page can be recycled, causing a false negative in 1398 * svm_vcpu_load(). So, ensure that no logical CPU has this 1399 * vmcb page recorded as its current vmcb. 1400 */ 1401 svm_clear_current_vmcb(svm->vmcb); 1402 1403 svm_free_nested(svm); 1404 1405 sev_free_vcpu(vcpu); 1406 1407 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); 1408 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); 1409 } 1410 1411 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1412 { 1413 struct vcpu_svm *svm = to_svm(vcpu); 1414 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1415 int i; 1416 1417 if (unlikely(cpu != vcpu->cpu)) { 1418 svm->asid_generation = 0; 1419 vmcb_mark_all_dirty(svm->vmcb); 1420 } 1421 1422 if (sev_es_guest(svm->vcpu.kvm)) { 1423 sev_es_vcpu_load(svm, cpu); 1424 } else { 1425 #ifdef CONFIG_X86_64 1426 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base); 1427 #endif 1428 savesegment(fs, svm->host.fs); 1429 savesegment(gs, svm->host.gs); 1430 svm->host.ldt = kvm_read_ldt(); 1431 1432 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) 1433 rdmsrl(host_save_user_msrs[i].index, 1434 svm->host_user_msrs[i]); 1435 } 1436 1437 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 1438 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1439 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1440 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1441 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1442 } 1443 } 1444 /* This assumes that the kernel never uses MSR_TSC_AUX */ 1445 if (static_cpu_has(X86_FEATURE_RDTSCP)) 1446 wrmsrl(MSR_TSC_AUX, svm->tsc_aux); 1447 1448 if (sd->current_vmcb != svm->vmcb) { 1449 sd->current_vmcb = svm->vmcb; 1450 indirect_branch_prediction_barrier(); 1451 } 1452 avic_vcpu_load(vcpu, cpu); 1453 } 1454 1455 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1456 { 1457 struct vcpu_svm *svm = to_svm(vcpu); 1458 int i; 1459 1460 avic_vcpu_put(vcpu); 1461 1462 ++vcpu->stat.host_state_reload; 1463 if (sev_es_guest(svm->vcpu.kvm)) { 1464 sev_es_vcpu_put(svm); 1465 } else { 1466 kvm_load_ldt(svm->host.ldt); 1467 #ifdef CONFIG_X86_64 1468 loadsegment(fs, svm->host.fs); 1469 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase); 1470 load_gs_index(svm->host.gs); 1471 #else 1472 #ifdef CONFIG_X86_32_LAZY_GS 1473 loadsegment(gs, svm->host.gs); 1474 #endif 1475 #endif 1476 1477 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) 1478 wrmsrl(host_save_user_msrs[i].index, 1479 svm->host_user_msrs[i]); 1480 } 1481 } 1482 1483 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1484 { 1485 struct vcpu_svm *svm = to_svm(vcpu); 1486 unsigned long rflags = svm->vmcb->save.rflags; 1487 1488 if (svm->nmi_singlestep) { 1489 /* Hide our flags if they were not set by the guest */ 1490 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1491 rflags &= ~X86_EFLAGS_TF; 1492 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1493 rflags &= ~X86_EFLAGS_RF; 1494 } 1495 return rflags; 1496 } 1497 1498 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1499 { 1500 if (to_svm(vcpu)->nmi_singlestep) 1501 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1502 1503 /* 1504 * Any change of EFLAGS.VM is accompanied by a reload of SS 1505 * (caused by either a task switch or an inter-privilege IRET), 1506 * so we do not need to update the CPL here. 1507 */ 1508 to_svm(vcpu)->vmcb->save.rflags = rflags; 1509 } 1510 1511 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1512 { 1513 switch (reg) { 1514 case VCPU_EXREG_PDPTR: 1515 BUG_ON(!npt_enabled); 1516 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 1517 break; 1518 default: 1519 WARN_ON_ONCE(1); 1520 } 1521 } 1522 1523 static void svm_set_vintr(struct vcpu_svm *svm) 1524 { 1525 struct vmcb_control_area *control; 1526 1527 /* The following fields are ignored when AVIC is enabled */ 1528 WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu)); 1529 svm_set_intercept(svm, INTERCEPT_VINTR); 1530 1531 /* 1532 * This is just a dummy VINTR to actually cause a vmexit to happen. 1533 * Actual injection of virtual interrupts happens through EVENTINJ. 1534 */ 1535 control = &svm->vmcb->control; 1536 control->int_vector = 0x0; 1537 control->int_ctl &= ~V_INTR_PRIO_MASK; 1538 control->int_ctl |= V_IRQ_MASK | 1539 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1540 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1541 } 1542 1543 static void svm_clear_vintr(struct vcpu_svm *svm) 1544 { 1545 const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK; 1546 svm_clr_intercept(svm, INTERCEPT_VINTR); 1547 1548 /* Drop int_ctl fields related to VINTR injection. */ 1549 svm->vmcb->control.int_ctl &= mask; 1550 if (is_guest_mode(&svm->vcpu)) { 1551 svm->nested.hsave->control.int_ctl &= mask; 1552 1553 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1554 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1555 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask; 1556 } 1557 1558 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1559 } 1560 1561 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1562 { 1563 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1564 1565 switch (seg) { 1566 case VCPU_SREG_CS: return &save->cs; 1567 case VCPU_SREG_DS: return &save->ds; 1568 case VCPU_SREG_ES: return &save->es; 1569 case VCPU_SREG_FS: return &save->fs; 1570 case VCPU_SREG_GS: return &save->gs; 1571 case VCPU_SREG_SS: return &save->ss; 1572 case VCPU_SREG_TR: return &save->tr; 1573 case VCPU_SREG_LDTR: return &save->ldtr; 1574 } 1575 BUG(); 1576 return NULL; 1577 } 1578 1579 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1580 { 1581 struct vmcb_seg *s = svm_seg(vcpu, seg); 1582 1583 return s->base; 1584 } 1585 1586 static void svm_get_segment(struct kvm_vcpu *vcpu, 1587 struct kvm_segment *var, int seg) 1588 { 1589 struct vmcb_seg *s = svm_seg(vcpu, seg); 1590 1591 var->base = s->base; 1592 var->limit = s->limit; 1593 var->selector = s->selector; 1594 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1595 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1596 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1597 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1598 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1599 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1600 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1601 1602 /* 1603 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1604 * However, the SVM spec states that the G bit is not observed by the 1605 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1606 * So let's synthesize a legal G bit for all segments, this helps 1607 * running KVM nested. It also helps cross-vendor migration, because 1608 * Intel's vmentry has a check on the 'G' bit. 1609 */ 1610 var->g = s->limit > 0xfffff; 1611 1612 /* 1613 * AMD's VMCB does not have an explicit unusable field, so emulate it 1614 * for cross vendor migration purposes by "not present" 1615 */ 1616 var->unusable = !var->present; 1617 1618 switch (seg) { 1619 case VCPU_SREG_TR: 1620 /* 1621 * Work around a bug where the busy flag in the tr selector 1622 * isn't exposed 1623 */ 1624 var->type |= 0x2; 1625 break; 1626 case VCPU_SREG_DS: 1627 case VCPU_SREG_ES: 1628 case VCPU_SREG_FS: 1629 case VCPU_SREG_GS: 1630 /* 1631 * The accessed bit must always be set in the segment 1632 * descriptor cache, although it can be cleared in the 1633 * descriptor, the cached bit always remains at 1. Since 1634 * Intel has a check on this, set it here to support 1635 * cross-vendor migration. 1636 */ 1637 if (!var->unusable) 1638 var->type |= 0x1; 1639 break; 1640 case VCPU_SREG_SS: 1641 /* 1642 * On AMD CPUs sometimes the DB bit in the segment 1643 * descriptor is left as 1, although the whole segment has 1644 * been made unusable. Clear it here to pass an Intel VMX 1645 * entry check when cross vendor migrating. 1646 */ 1647 if (var->unusable) 1648 var->db = 0; 1649 /* This is symmetric with svm_set_segment() */ 1650 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1651 break; 1652 } 1653 } 1654 1655 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1656 { 1657 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1658 1659 return save->cpl; 1660 } 1661 1662 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1663 { 1664 struct vcpu_svm *svm = to_svm(vcpu); 1665 1666 dt->size = svm->vmcb->save.idtr.limit; 1667 dt->address = svm->vmcb->save.idtr.base; 1668 } 1669 1670 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1671 { 1672 struct vcpu_svm *svm = to_svm(vcpu); 1673 1674 svm->vmcb->save.idtr.limit = dt->size; 1675 svm->vmcb->save.idtr.base = dt->address ; 1676 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1677 } 1678 1679 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1680 { 1681 struct vcpu_svm *svm = to_svm(vcpu); 1682 1683 dt->size = svm->vmcb->save.gdtr.limit; 1684 dt->address = svm->vmcb->save.gdtr.base; 1685 } 1686 1687 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1688 { 1689 struct vcpu_svm *svm = to_svm(vcpu); 1690 1691 svm->vmcb->save.gdtr.limit = dt->size; 1692 svm->vmcb->save.gdtr.base = dt->address ; 1693 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1694 } 1695 1696 static void update_cr0_intercept(struct vcpu_svm *svm) 1697 { 1698 ulong gcr0; 1699 u64 *hcr0; 1700 1701 /* 1702 * SEV-ES guests must always keep the CR intercepts cleared. CR 1703 * tracking is done using the CR write traps. 1704 */ 1705 if (sev_es_guest(svm->vcpu.kvm)) 1706 return; 1707 1708 gcr0 = svm->vcpu.arch.cr0; 1709 hcr0 = &svm->vmcb->save.cr0; 1710 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) 1711 | (gcr0 & SVM_CR0_SELECTIVE_MASK); 1712 1713 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1714 1715 if (gcr0 == *hcr0) { 1716 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1717 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1718 } else { 1719 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1720 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1721 } 1722 } 1723 1724 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1725 { 1726 struct vcpu_svm *svm = to_svm(vcpu); 1727 1728 #ifdef CONFIG_X86_64 1729 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1730 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1731 vcpu->arch.efer |= EFER_LMA; 1732 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1733 } 1734 1735 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1736 vcpu->arch.efer &= ~EFER_LMA; 1737 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1738 } 1739 } 1740 #endif 1741 vcpu->arch.cr0 = cr0; 1742 1743 if (!npt_enabled) 1744 cr0 |= X86_CR0_PG | X86_CR0_WP; 1745 1746 /* 1747 * re-enable caching here because the QEMU bios 1748 * does not do it - this results in some delay at 1749 * reboot 1750 */ 1751 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1752 cr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1753 svm->vmcb->save.cr0 = cr0; 1754 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1755 update_cr0_intercept(svm); 1756 } 1757 1758 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1759 { 1760 return true; 1761 } 1762 1763 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1764 { 1765 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1766 unsigned long old_cr4 = vcpu->arch.cr4; 1767 1768 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1769 svm_flush_tlb(vcpu); 1770 1771 vcpu->arch.cr4 = cr4; 1772 if (!npt_enabled) 1773 cr4 |= X86_CR4_PAE; 1774 cr4 |= host_cr4_mce; 1775 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1776 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1777 1778 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1779 kvm_update_cpuid_runtime(vcpu); 1780 } 1781 1782 static void svm_set_segment(struct kvm_vcpu *vcpu, 1783 struct kvm_segment *var, int seg) 1784 { 1785 struct vcpu_svm *svm = to_svm(vcpu); 1786 struct vmcb_seg *s = svm_seg(vcpu, seg); 1787 1788 s->base = var->base; 1789 s->limit = var->limit; 1790 s->selector = var->selector; 1791 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1792 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1793 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1794 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1795 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1796 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1797 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1798 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1799 1800 /* 1801 * This is always accurate, except if SYSRET returned to a segment 1802 * with SS.DPL != 3. Intel does not have this quirk, and always 1803 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1804 * would entail passing the CPL to userspace and back. 1805 */ 1806 if (seg == VCPU_SREG_SS) 1807 /* This is symmetric with svm_get_segment() */ 1808 svm->vmcb->save.cpl = (var->dpl & 3); 1809 1810 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1811 } 1812 1813 static void update_exception_bitmap(struct kvm_vcpu *vcpu) 1814 { 1815 struct vcpu_svm *svm = to_svm(vcpu); 1816 1817 clr_exception_intercept(svm, BP_VECTOR); 1818 1819 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1820 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1821 set_exception_intercept(svm, BP_VECTOR); 1822 } 1823 } 1824 1825 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1826 { 1827 if (sd->next_asid > sd->max_asid) { 1828 ++sd->asid_generation; 1829 sd->next_asid = sd->min_asid; 1830 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1831 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1832 } 1833 1834 svm->asid_generation = sd->asid_generation; 1835 svm->asid = sd->next_asid++; 1836 } 1837 1838 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1839 { 1840 struct vmcb *vmcb = svm->vmcb; 1841 1842 if (svm->vcpu.arch.guest_state_protected) 1843 return; 1844 1845 if (unlikely(value != vmcb->save.dr6)) { 1846 vmcb->save.dr6 = value; 1847 vmcb_mark_dirty(vmcb, VMCB_DR); 1848 } 1849 } 1850 1851 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1852 { 1853 struct vcpu_svm *svm = to_svm(vcpu); 1854 1855 if (vcpu->arch.guest_state_protected) 1856 return; 1857 1858 get_debugreg(vcpu->arch.db[0], 0); 1859 get_debugreg(vcpu->arch.db[1], 1); 1860 get_debugreg(vcpu->arch.db[2], 2); 1861 get_debugreg(vcpu->arch.db[3], 3); 1862 /* 1863 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here, 1864 * because db_interception might need it. We can do it before vmentry. 1865 */ 1866 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1867 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1868 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1869 set_dr_intercepts(svm); 1870 } 1871 1872 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1873 { 1874 struct vcpu_svm *svm = to_svm(vcpu); 1875 1876 if (vcpu->arch.guest_state_protected) 1877 return; 1878 1879 svm->vmcb->save.dr7 = value; 1880 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1881 } 1882 1883 static int pf_interception(struct vcpu_svm *svm) 1884 { 1885 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1886 u64 error_code = svm->vmcb->control.exit_info_1; 1887 1888 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address, 1889 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1890 svm->vmcb->control.insn_bytes : NULL, 1891 svm->vmcb->control.insn_len); 1892 } 1893 1894 static int npf_interception(struct vcpu_svm *svm) 1895 { 1896 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1897 u64 error_code = svm->vmcb->control.exit_info_1; 1898 1899 trace_kvm_page_fault(fault_address, error_code); 1900 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, 1901 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1902 svm->vmcb->control.insn_bytes : NULL, 1903 svm->vmcb->control.insn_len); 1904 } 1905 1906 static int db_interception(struct vcpu_svm *svm) 1907 { 1908 struct kvm_run *kvm_run = svm->vcpu.run; 1909 struct kvm_vcpu *vcpu = &svm->vcpu; 1910 1911 if (!(svm->vcpu.guest_debug & 1912 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1913 !svm->nmi_singlestep) { 1914 u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1; 1915 kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload); 1916 return 1; 1917 } 1918 1919 if (svm->nmi_singlestep) { 1920 disable_nmi_singlestep(svm); 1921 /* Make sure we check for pending NMIs upon entry */ 1922 kvm_make_request(KVM_REQ_EVENT, vcpu); 1923 } 1924 1925 if (svm->vcpu.guest_debug & 1926 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1927 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1928 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1929 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1930 kvm_run->debug.arch.pc = 1931 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1932 kvm_run->debug.arch.exception = DB_VECTOR; 1933 return 0; 1934 } 1935 1936 return 1; 1937 } 1938 1939 static int bp_interception(struct vcpu_svm *svm) 1940 { 1941 struct kvm_run *kvm_run = svm->vcpu.run; 1942 1943 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1944 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1945 kvm_run->debug.arch.exception = BP_VECTOR; 1946 return 0; 1947 } 1948 1949 static int ud_interception(struct vcpu_svm *svm) 1950 { 1951 return handle_ud(&svm->vcpu); 1952 } 1953 1954 static int ac_interception(struct vcpu_svm *svm) 1955 { 1956 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0); 1957 return 1; 1958 } 1959 1960 static int gp_interception(struct vcpu_svm *svm) 1961 { 1962 struct kvm_vcpu *vcpu = &svm->vcpu; 1963 u32 error_code = svm->vmcb->control.exit_info_1; 1964 1965 WARN_ON_ONCE(!enable_vmware_backdoor); 1966 1967 /* 1968 * VMware backdoor emulation on #GP interception only handles IN{S}, 1969 * OUT{S}, and RDPMC, none of which generate a non-zero error code. 1970 */ 1971 if (error_code) { 1972 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 1973 return 1; 1974 } 1975 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 1976 } 1977 1978 static bool is_erratum_383(void) 1979 { 1980 int err, i; 1981 u64 value; 1982 1983 if (!erratum_383_found) 1984 return false; 1985 1986 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 1987 if (err) 1988 return false; 1989 1990 /* Bit 62 may or may not be set for this mce */ 1991 value &= ~(1ULL << 62); 1992 1993 if (value != 0xb600000000010015ULL) 1994 return false; 1995 1996 /* Clear MCi_STATUS registers */ 1997 for (i = 0; i < 6; ++i) 1998 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 1999 2000 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2001 if (!err) { 2002 u32 low, high; 2003 2004 value &= ~(1ULL << 2); 2005 low = lower_32_bits(value); 2006 high = upper_32_bits(value); 2007 2008 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2009 } 2010 2011 /* Flush tlb to evict multi-match entries */ 2012 __flush_tlb_all(); 2013 2014 return true; 2015 } 2016 2017 static void svm_handle_mce(struct vcpu_svm *svm) 2018 { 2019 if (is_erratum_383()) { 2020 /* 2021 * Erratum 383 triggered. Guest state is corrupt so kill the 2022 * guest. 2023 */ 2024 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 2025 2026 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); 2027 2028 return; 2029 } 2030 2031 /* 2032 * On an #MC intercept the MCE handler is not called automatically in 2033 * the host. So do it by hand here. 2034 */ 2035 kvm_machine_check(); 2036 } 2037 2038 static int mc_interception(struct vcpu_svm *svm) 2039 { 2040 return 1; 2041 } 2042 2043 static int shutdown_interception(struct vcpu_svm *svm) 2044 { 2045 struct kvm_run *kvm_run = svm->vcpu.run; 2046 2047 /* 2048 * The VM save area has already been encrypted so it 2049 * cannot be reinitialized - just terminate. 2050 */ 2051 if (sev_es_guest(svm->vcpu.kvm)) 2052 return -EINVAL; 2053 2054 /* 2055 * VMCB is undefined after a SHUTDOWN intercept 2056 * so reinitialize it. 2057 */ 2058 clear_page(svm->vmcb); 2059 init_vmcb(svm); 2060 2061 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2062 return 0; 2063 } 2064 2065 static int io_interception(struct vcpu_svm *svm) 2066 { 2067 struct kvm_vcpu *vcpu = &svm->vcpu; 2068 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2069 int size, in, string; 2070 unsigned port; 2071 2072 ++svm->vcpu.stat.io_exits; 2073 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2074 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2075 port = io_info >> 16; 2076 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2077 2078 if (string) { 2079 if (sev_es_guest(vcpu->kvm)) 2080 return sev_es_string_io(svm, size, port, in); 2081 else 2082 return kvm_emulate_instruction(vcpu, 0); 2083 } 2084 2085 svm->next_rip = svm->vmcb->control.exit_info_2; 2086 2087 return kvm_fast_pio(&svm->vcpu, size, port, in); 2088 } 2089 2090 static int nmi_interception(struct vcpu_svm *svm) 2091 { 2092 return 1; 2093 } 2094 2095 static int intr_interception(struct vcpu_svm *svm) 2096 { 2097 ++svm->vcpu.stat.irq_exits; 2098 return 1; 2099 } 2100 2101 static int nop_on_interception(struct vcpu_svm *svm) 2102 { 2103 return 1; 2104 } 2105 2106 static int halt_interception(struct vcpu_svm *svm) 2107 { 2108 return kvm_emulate_halt(&svm->vcpu); 2109 } 2110 2111 static int vmmcall_interception(struct vcpu_svm *svm) 2112 { 2113 return kvm_emulate_hypercall(&svm->vcpu); 2114 } 2115 2116 static int vmload_interception(struct vcpu_svm *svm) 2117 { 2118 struct vmcb *nested_vmcb; 2119 struct kvm_host_map map; 2120 int ret; 2121 2122 if (nested_svm_check_permissions(svm)) 2123 return 1; 2124 2125 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2126 if (ret) { 2127 if (ret == -EINVAL) 2128 kvm_inject_gp(&svm->vcpu, 0); 2129 return 1; 2130 } 2131 2132 nested_vmcb = map.hva; 2133 2134 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2135 2136 nested_svm_vmloadsave(nested_vmcb, svm->vmcb); 2137 kvm_vcpu_unmap(&svm->vcpu, &map, true); 2138 2139 return ret; 2140 } 2141 2142 static int vmsave_interception(struct vcpu_svm *svm) 2143 { 2144 struct vmcb *nested_vmcb; 2145 struct kvm_host_map map; 2146 int ret; 2147 2148 if (nested_svm_check_permissions(svm)) 2149 return 1; 2150 2151 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2152 if (ret) { 2153 if (ret == -EINVAL) 2154 kvm_inject_gp(&svm->vcpu, 0); 2155 return 1; 2156 } 2157 2158 nested_vmcb = map.hva; 2159 2160 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2161 2162 nested_svm_vmloadsave(svm->vmcb, nested_vmcb); 2163 kvm_vcpu_unmap(&svm->vcpu, &map, true); 2164 2165 return ret; 2166 } 2167 2168 static int vmrun_interception(struct vcpu_svm *svm) 2169 { 2170 if (nested_svm_check_permissions(svm)) 2171 return 1; 2172 2173 return nested_svm_vmrun(svm); 2174 } 2175 2176 void svm_set_gif(struct vcpu_svm *svm, bool value) 2177 { 2178 if (value) { 2179 /* 2180 * If VGIF is enabled, the STGI intercept is only added to 2181 * detect the opening of the SMI/NMI window; remove it now. 2182 * Likewise, clear the VINTR intercept, we will set it 2183 * again while processing KVM_REQ_EVENT if needed. 2184 */ 2185 if (vgif_enabled(svm)) 2186 svm_clr_intercept(svm, INTERCEPT_STGI); 2187 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2188 svm_clear_vintr(svm); 2189 2190 enable_gif(svm); 2191 if (svm->vcpu.arch.smi_pending || 2192 svm->vcpu.arch.nmi_pending || 2193 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2194 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2195 } else { 2196 disable_gif(svm); 2197 2198 /* 2199 * After a CLGI no interrupts should come. But if vGIF is 2200 * in use, we still rely on the VINTR intercept (rather than 2201 * STGI) to detect an open interrupt window. 2202 */ 2203 if (!vgif_enabled(svm)) 2204 svm_clear_vintr(svm); 2205 } 2206 } 2207 2208 static int stgi_interception(struct vcpu_svm *svm) 2209 { 2210 int ret; 2211 2212 if (nested_svm_check_permissions(svm)) 2213 return 1; 2214 2215 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2216 svm_set_gif(svm, true); 2217 return ret; 2218 } 2219 2220 static int clgi_interception(struct vcpu_svm *svm) 2221 { 2222 int ret; 2223 2224 if (nested_svm_check_permissions(svm)) 2225 return 1; 2226 2227 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2228 svm_set_gif(svm, false); 2229 return ret; 2230 } 2231 2232 static int invlpga_interception(struct vcpu_svm *svm) 2233 { 2234 struct kvm_vcpu *vcpu = &svm->vcpu; 2235 2236 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu), 2237 kvm_rax_read(&svm->vcpu)); 2238 2239 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2240 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu)); 2241 2242 return kvm_skip_emulated_instruction(&svm->vcpu); 2243 } 2244 2245 static int skinit_interception(struct vcpu_svm *svm) 2246 { 2247 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu)); 2248 2249 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2250 return 1; 2251 } 2252 2253 static int wbinvd_interception(struct vcpu_svm *svm) 2254 { 2255 return kvm_emulate_wbinvd(&svm->vcpu); 2256 } 2257 2258 static int xsetbv_interception(struct vcpu_svm *svm) 2259 { 2260 u64 new_bv = kvm_read_edx_eax(&svm->vcpu); 2261 u32 index = kvm_rcx_read(&svm->vcpu); 2262 2263 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) { 2264 return kvm_skip_emulated_instruction(&svm->vcpu); 2265 } 2266 2267 return 1; 2268 } 2269 2270 static int rdpru_interception(struct vcpu_svm *svm) 2271 { 2272 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2273 return 1; 2274 } 2275 2276 static int task_switch_interception(struct vcpu_svm *svm) 2277 { 2278 u16 tss_selector; 2279 int reason; 2280 int int_type = svm->vmcb->control.exit_int_info & 2281 SVM_EXITINTINFO_TYPE_MASK; 2282 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2283 uint32_t type = 2284 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2285 uint32_t idt_v = 2286 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2287 bool has_error_code = false; 2288 u32 error_code = 0; 2289 2290 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2291 2292 if (svm->vmcb->control.exit_info_2 & 2293 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2294 reason = TASK_SWITCH_IRET; 2295 else if (svm->vmcb->control.exit_info_2 & 2296 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2297 reason = TASK_SWITCH_JMP; 2298 else if (idt_v) 2299 reason = TASK_SWITCH_GATE; 2300 else 2301 reason = TASK_SWITCH_CALL; 2302 2303 if (reason == TASK_SWITCH_GATE) { 2304 switch (type) { 2305 case SVM_EXITINTINFO_TYPE_NMI: 2306 svm->vcpu.arch.nmi_injected = false; 2307 break; 2308 case SVM_EXITINTINFO_TYPE_EXEPT: 2309 if (svm->vmcb->control.exit_info_2 & 2310 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2311 has_error_code = true; 2312 error_code = 2313 (u32)svm->vmcb->control.exit_info_2; 2314 } 2315 kvm_clear_exception_queue(&svm->vcpu); 2316 break; 2317 case SVM_EXITINTINFO_TYPE_INTR: 2318 kvm_clear_interrupt_queue(&svm->vcpu); 2319 break; 2320 default: 2321 break; 2322 } 2323 } 2324 2325 if (reason != TASK_SWITCH_GATE || 2326 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2327 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2328 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2329 if (!skip_emulated_instruction(&svm->vcpu)) 2330 return 0; 2331 } 2332 2333 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2334 int_vec = -1; 2335 2336 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, 2337 has_error_code, error_code); 2338 } 2339 2340 static int cpuid_interception(struct vcpu_svm *svm) 2341 { 2342 return kvm_emulate_cpuid(&svm->vcpu); 2343 } 2344 2345 static int iret_interception(struct vcpu_svm *svm) 2346 { 2347 ++svm->vcpu.stat.nmi_window_exits; 2348 svm->vcpu.arch.hflags |= HF_IRET_MASK; 2349 if (!sev_es_guest(svm->vcpu.kvm)) { 2350 svm_clr_intercept(svm, INTERCEPT_IRET); 2351 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); 2352 } 2353 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2354 return 1; 2355 } 2356 2357 static int invd_interception(struct vcpu_svm *svm) 2358 { 2359 /* Treat an INVD instruction as a NOP and just skip it. */ 2360 return kvm_skip_emulated_instruction(&svm->vcpu); 2361 } 2362 2363 static int invlpg_interception(struct vcpu_svm *svm) 2364 { 2365 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2366 return kvm_emulate_instruction(&svm->vcpu, 0); 2367 2368 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); 2369 return kvm_skip_emulated_instruction(&svm->vcpu); 2370 } 2371 2372 static int emulate_on_interception(struct vcpu_svm *svm) 2373 { 2374 return kvm_emulate_instruction(&svm->vcpu, 0); 2375 } 2376 2377 static int rsm_interception(struct vcpu_svm *svm) 2378 { 2379 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2); 2380 } 2381 2382 static int rdpmc_interception(struct vcpu_svm *svm) 2383 { 2384 int err; 2385 2386 if (!nrips) 2387 return emulate_on_interception(svm); 2388 2389 err = kvm_rdpmc(&svm->vcpu); 2390 return kvm_complete_insn_gp(&svm->vcpu, err); 2391 } 2392 2393 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, 2394 unsigned long val) 2395 { 2396 unsigned long cr0 = svm->vcpu.arch.cr0; 2397 bool ret = false; 2398 2399 if (!is_guest_mode(&svm->vcpu) || 2400 (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2401 return false; 2402 2403 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2404 val &= ~SVM_CR0_SELECTIVE_MASK; 2405 2406 if (cr0 ^ val) { 2407 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2408 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2409 } 2410 2411 return ret; 2412 } 2413 2414 #define CR_VALID (1ULL << 63) 2415 2416 static int cr_interception(struct vcpu_svm *svm) 2417 { 2418 int reg, cr; 2419 unsigned long val; 2420 int err; 2421 2422 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2423 return emulate_on_interception(svm); 2424 2425 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2426 return emulate_on_interception(svm); 2427 2428 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2429 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2430 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2431 else 2432 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2433 2434 err = 0; 2435 if (cr >= 16) { /* mov to cr */ 2436 cr -= 16; 2437 val = kvm_register_read(&svm->vcpu, reg); 2438 trace_kvm_cr_write(cr, val); 2439 switch (cr) { 2440 case 0: 2441 if (!check_selective_cr0_intercepted(svm, val)) 2442 err = kvm_set_cr0(&svm->vcpu, val); 2443 else 2444 return 1; 2445 2446 break; 2447 case 3: 2448 err = kvm_set_cr3(&svm->vcpu, val); 2449 break; 2450 case 4: 2451 err = kvm_set_cr4(&svm->vcpu, val); 2452 break; 2453 case 8: 2454 err = kvm_set_cr8(&svm->vcpu, val); 2455 break; 2456 default: 2457 WARN(1, "unhandled write to CR%d", cr); 2458 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2459 return 1; 2460 } 2461 } else { /* mov from cr */ 2462 switch (cr) { 2463 case 0: 2464 val = kvm_read_cr0(&svm->vcpu); 2465 break; 2466 case 2: 2467 val = svm->vcpu.arch.cr2; 2468 break; 2469 case 3: 2470 val = kvm_read_cr3(&svm->vcpu); 2471 break; 2472 case 4: 2473 val = kvm_read_cr4(&svm->vcpu); 2474 break; 2475 case 8: 2476 val = kvm_get_cr8(&svm->vcpu); 2477 break; 2478 default: 2479 WARN(1, "unhandled read from CR%d", cr); 2480 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2481 return 1; 2482 } 2483 kvm_register_write(&svm->vcpu, reg, val); 2484 trace_kvm_cr_read(cr, val); 2485 } 2486 return kvm_complete_insn_gp(&svm->vcpu, err); 2487 } 2488 2489 static int cr_trap(struct vcpu_svm *svm) 2490 { 2491 struct kvm_vcpu *vcpu = &svm->vcpu; 2492 unsigned long old_value, new_value; 2493 unsigned int cr; 2494 int ret = 0; 2495 2496 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2497 2498 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2499 switch (cr) { 2500 case 0: 2501 old_value = kvm_read_cr0(vcpu); 2502 svm_set_cr0(vcpu, new_value); 2503 2504 kvm_post_set_cr0(vcpu, old_value, new_value); 2505 break; 2506 case 4: 2507 old_value = kvm_read_cr4(vcpu); 2508 svm_set_cr4(vcpu, new_value); 2509 2510 kvm_post_set_cr4(vcpu, old_value, new_value); 2511 break; 2512 case 8: 2513 ret = kvm_set_cr8(&svm->vcpu, new_value); 2514 break; 2515 default: 2516 WARN(1, "unhandled CR%d write trap", cr); 2517 kvm_queue_exception(vcpu, UD_VECTOR); 2518 return 1; 2519 } 2520 2521 return kvm_complete_insn_gp(vcpu, ret); 2522 } 2523 2524 static int dr_interception(struct vcpu_svm *svm) 2525 { 2526 int reg, dr; 2527 unsigned long val; 2528 2529 if (svm->vcpu.guest_debug == 0) { 2530 /* 2531 * No more DR vmexits; force a reload of the debug registers 2532 * and reenter on this instruction. The next vmexit will 2533 * retrieve the full state of the debug registers. 2534 */ 2535 clr_dr_intercepts(svm); 2536 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2537 return 1; 2538 } 2539 2540 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2541 return emulate_on_interception(svm); 2542 2543 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2544 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2545 2546 if (dr >= 16) { /* mov to DRn */ 2547 if (!kvm_require_dr(&svm->vcpu, dr - 16)) 2548 return 1; 2549 val = kvm_register_read(&svm->vcpu, reg); 2550 kvm_set_dr(&svm->vcpu, dr - 16, val); 2551 } else { 2552 if (!kvm_require_dr(&svm->vcpu, dr)) 2553 return 1; 2554 kvm_get_dr(&svm->vcpu, dr, &val); 2555 kvm_register_write(&svm->vcpu, reg, val); 2556 } 2557 2558 return kvm_skip_emulated_instruction(&svm->vcpu); 2559 } 2560 2561 static int cr8_write_interception(struct vcpu_svm *svm) 2562 { 2563 struct kvm_run *kvm_run = svm->vcpu.run; 2564 int r; 2565 2566 u8 cr8_prev = kvm_get_cr8(&svm->vcpu); 2567 /* instruction emulation calls kvm_set_cr8() */ 2568 r = cr_interception(svm); 2569 if (lapic_in_kernel(&svm->vcpu)) 2570 return r; 2571 if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) 2572 return r; 2573 kvm_run->exit_reason = KVM_EXIT_SET_TPR; 2574 return 0; 2575 } 2576 2577 static int efer_trap(struct vcpu_svm *svm) 2578 { 2579 struct msr_data msr_info; 2580 int ret; 2581 2582 /* 2583 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2584 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2585 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2586 * the guest doesn't have X86_FEATURE_SVM. 2587 */ 2588 msr_info.host_initiated = false; 2589 msr_info.index = MSR_EFER; 2590 msr_info.data = svm->vmcb->control.exit_info_1 & ~EFER_SVME; 2591 ret = kvm_set_msr_common(&svm->vcpu, &msr_info); 2592 2593 return kvm_complete_insn_gp(&svm->vcpu, ret); 2594 } 2595 2596 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2597 { 2598 msr->data = 0; 2599 2600 switch (msr->index) { 2601 case MSR_F10H_DECFG: 2602 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2603 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2604 break; 2605 case MSR_IA32_PERF_CAPABILITIES: 2606 return 0; 2607 default: 2608 return KVM_MSR_RET_INVALID; 2609 } 2610 2611 return 0; 2612 } 2613 2614 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2615 { 2616 struct vcpu_svm *svm = to_svm(vcpu); 2617 2618 switch (msr_info->index) { 2619 case MSR_STAR: 2620 msr_info->data = svm->vmcb->save.star; 2621 break; 2622 #ifdef CONFIG_X86_64 2623 case MSR_LSTAR: 2624 msr_info->data = svm->vmcb->save.lstar; 2625 break; 2626 case MSR_CSTAR: 2627 msr_info->data = svm->vmcb->save.cstar; 2628 break; 2629 case MSR_KERNEL_GS_BASE: 2630 msr_info->data = svm->vmcb->save.kernel_gs_base; 2631 break; 2632 case MSR_SYSCALL_MASK: 2633 msr_info->data = svm->vmcb->save.sfmask; 2634 break; 2635 #endif 2636 case MSR_IA32_SYSENTER_CS: 2637 msr_info->data = svm->vmcb->save.sysenter_cs; 2638 break; 2639 case MSR_IA32_SYSENTER_EIP: 2640 msr_info->data = svm->sysenter_eip; 2641 break; 2642 case MSR_IA32_SYSENTER_ESP: 2643 msr_info->data = svm->sysenter_esp; 2644 break; 2645 case MSR_TSC_AUX: 2646 if (!boot_cpu_has(X86_FEATURE_RDTSCP)) 2647 return 1; 2648 msr_info->data = svm->tsc_aux; 2649 break; 2650 /* 2651 * Nobody will change the following 5 values in the VMCB so we can 2652 * safely return them on rdmsr. They will always be 0 until LBRV is 2653 * implemented. 2654 */ 2655 case MSR_IA32_DEBUGCTLMSR: 2656 msr_info->data = svm->vmcb->save.dbgctl; 2657 break; 2658 case MSR_IA32_LASTBRANCHFROMIP: 2659 msr_info->data = svm->vmcb->save.br_from; 2660 break; 2661 case MSR_IA32_LASTBRANCHTOIP: 2662 msr_info->data = svm->vmcb->save.br_to; 2663 break; 2664 case MSR_IA32_LASTINTFROMIP: 2665 msr_info->data = svm->vmcb->save.last_excp_from; 2666 break; 2667 case MSR_IA32_LASTINTTOIP: 2668 msr_info->data = svm->vmcb->save.last_excp_to; 2669 break; 2670 case MSR_VM_HSAVE_PA: 2671 msr_info->data = svm->nested.hsave_msr; 2672 break; 2673 case MSR_VM_CR: 2674 msr_info->data = svm->nested.vm_cr_msr; 2675 break; 2676 case MSR_IA32_SPEC_CTRL: 2677 if (!msr_info->host_initiated && 2678 !guest_has_spec_ctrl_msr(vcpu)) 2679 return 1; 2680 2681 msr_info->data = svm->spec_ctrl; 2682 break; 2683 case MSR_AMD64_VIRT_SPEC_CTRL: 2684 if (!msr_info->host_initiated && 2685 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2686 return 1; 2687 2688 msr_info->data = svm->virt_spec_ctrl; 2689 break; 2690 case MSR_F15H_IC_CFG: { 2691 2692 int family, model; 2693 2694 family = guest_cpuid_family(vcpu); 2695 model = guest_cpuid_model(vcpu); 2696 2697 if (family < 0 || model < 0) 2698 return kvm_get_msr_common(vcpu, msr_info); 2699 2700 msr_info->data = 0; 2701 2702 if (family == 0x15 && 2703 (model >= 0x2 && model < 0x20)) 2704 msr_info->data = 0x1E; 2705 } 2706 break; 2707 case MSR_F10H_DECFG: 2708 msr_info->data = svm->msr_decfg; 2709 break; 2710 default: 2711 return kvm_get_msr_common(vcpu, msr_info); 2712 } 2713 return 0; 2714 } 2715 2716 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2717 { 2718 struct vcpu_svm *svm = to_svm(vcpu); 2719 if (!sev_es_guest(svm->vcpu.kvm) || !err) 2720 return kvm_complete_insn_gp(&svm->vcpu, err); 2721 2722 ghcb_set_sw_exit_info_1(svm->ghcb, 1); 2723 ghcb_set_sw_exit_info_2(svm->ghcb, 2724 X86_TRAP_GP | 2725 SVM_EVTINJ_TYPE_EXEPT | 2726 SVM_EVTINJ_VALID); 2727 return 1; 2728 } 2729 2730 static int rdmsr_interception(struct vcpu_svm *svm) 2731 { 2732 return kvm_emulate_rdmsr(&svm->vcpu); 2733 } 2734 2735 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2736 { 2737 struct vcpu_svm *svm = to_svm(vcpu); 2738 int svm_dis, chg_mask; 2739 2740 if (data & ~SVM_VM_CR_VALID_MASK) 2741 return 1; 2742 2743 chg_mask = SVM_VM_CR_VALID_MASK; 2744 2745 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2746 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2747 2748 svm->nested.vm_cr_msr &= ~chg_mask; 2749 svm->nested.vm_cr_msr |= (data & chg_mask); 2750 2751 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2752 2753 /* check for svm_disable while efer.svme is set */ 2754 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2755 return 1; 2756 2757 return 0; 2758 } 2759 2760 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2761 { 2762 struct vcpu_svm *svm = to_svm(vcpu); 2763 2764 u32 ecx = msr->index; 2765 u64 data = msr->data; 2766 switch (ecx) { 2767 case MSR_IA32_CR_PAT: 2768 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2769 return 1; 2770 vcpu->arch.pat = data; 2771 svm->vmcb->save.g_pat = data; 2772 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2773 break; 2774 case MSR_IA32_SPEC_CTRL: 2775 if (!msr->host_initiated && 2776 !guest_has_spec_ctrl_msr(vcpu)) 2777 return 1; 2778 2779 if (kvm_spec_ctrl_test_value(data)) 2780 return 1; 2781 2782 svm->spec_ctrl = data; 2783 if (!data) 2784 break; 2785 2786 /* 2787 * For non-nested: 2788 * When it's written (to non-zero) for the first time, pass 2789 * it through. 2790 * 2791 * For nested: 2792 * The handling of the MSR bitmap for L2 guests is done in 2793 * nested_svm_vmrun_msrpm. 2794 * We update the L1 MSR bit as well since it will end up 2795 * touching the MSR anyway now. 2796 */ 2797 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2798 break; 2799 case MSR_IA32_PRED_CMD: 2800 if (!msr->host_initiated && 2801 !guest_has_pred_cmd_msr(vcpu)) 2802 return 1; 2803 2804 if (data & ~PRED_CMD_IBPB) 2805 return 1; 2806 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2807 return 1; 2808 if (!data) 2809 break; 2810 2811 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2812 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2813 break; 2814 case MSR_AMD64_VIRT_SPEC_CTRL: 2815 if (!msr->host_initiated && 2816 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2817 return 1; 2818 2819 if (data & ~SPEC_CTRL_SSBD) 2820 return 1; 2821 2822 svm->virt_spec_ctrl = data; 2823 break; 2824 case MSR_STAR: 2825 svm->vmcb->save.star = data; 2826 break; 2827 #ifdef CONFIG_X86_64 2828 case MSR_LSTAR: 2829 svm->vmcb->save.lstar = data; 2830 break; 2831 case MSR_CSTAR: 2832 svm->vmcb->save.cstar = data; 2833 break; 2834 case MSR_KERNEL_GS_BASE: 2835 svm->vmcb->save.kernel_gs_base = data; 2836 break; 2837 case MSR_SYSCALL_MASK: 2838 svm->vmcb->save.sfmask = data; 2839 break; 2840 #endif 2841 case MSR_IA32_SYSENTER_CS: 2842 svm->vmcb->save.sysenter_cs = data; 2843 break; 2844 case MSR_IA32_SYSENTER_EIP: 2845 svm->sysenter_eip = data; 2846 svm->vmcb->save.sysenter_eip = data; 2847 break; 2848 case MSR_IA32_SYSENTER_ESP: 2849 svm->sysenter_esp = data; 2850 svm->vmcb->save.sysenter_esp = data; 2851 break; 2852 case MSR_TSC_AUX: 2853 if (!boot_cpu_has(X86_FEATURE_RDTSCP)) 2854 return 1; 2855 2856 /* 2857 * This is rare, so we update the MSR here instead of using 2858 * direct_access_msrs. Doing that would require a rdmsr in 2859 * svm_vcpu_put. 2860 */ 2861 svm->tsc_aux = data; 2862 wrmsrl(MSR_TSC_AUX, svm->tsc_aux); 2863 break; 2864 case MSR_IA32_DEBUGCTLMSR: 2865 if (!boot_cpu_has(X86_FEATURE_LBRV)) { 2866 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2867 __func__, data); 2868 break; 2869 } 2870 if (data & DEBUGCTL_RESERVED_BITS) 2871 return 1; 2872 2873 svm->vmcb->save.dbgctl = data; 2874 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 2875 if (data & (1ULL<<0)) 2876 svm_enable_lbrv(vcpu); 2877 else 2878 svm_disable_lbrv(vcpu); 2879 break; 2880 case MSR_VM_HSAVE_PA: 2881 svm->nested.hsave_msr = data; 2882 break; 2883 case MSR_VM_CR: 2884 return svm_set_vm_cr(vcpu, data); 2885 case MSR_VM_IGNNE: 2886 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2887 break; 2888 case MSR_F10H_DECFG: { 2889 struct kvm_msr_entry msr_entry; 2890 2891 msr_entry.index = msr->index; 2892 if (svm_get_msr_feature(&msr_entry)) 2893 return 1; 2894 2895 /* Check the supported bits */ 2896 if (data & ~msr_entry.data) 2897 return 1; 2898 2899 /* Don't allow the guest to change a bit, #GP */ 2900 if (!msr->host_initiated && (data ^ msr_entry.data)) 2901 return 1; 2902 2903 svm->msr_decfg = data; 2904 break; 2905 } 2906 case MSR_IA32_APICBASE: 2907 if (kvm_vcpu_apicv_active(vcpu)) 2908 avic_update_vapic_bar(to_svm(vcpu), data); 2909 fallthrough; 2910 default: 2911 return kvm_set_msr_common(vcpu, msr); 2912 } 2913 return 0; 2914 } 2915 2916 static int wrmsr_interception(struct vcpu_svm *svm) 2917 { 2918 return kvm_emulate_wrmsr(&svm->vcpu); 2919 } 2920 2921 static int msr_interception(struct vcpu_svm *svm) 2922 { 2923 if (svm->vmcb->control.exit_info_1) 2924 return wrmsr_interception(svm); 2925 else 2926 return rdmsr_interception(svm); 2927 } 2928 2929 static int interrupt_window_interception(struct vcpu_svm *svm) 2930 { 2931 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2932 svm_clear_vintr(svm); 2933 2934 /* 2935 * For AVIC, the only reason to end up here is ExtINTs. 2936 * In this case AVIC was temporarily disabled for 2937 * requesting the IRQ window and we have to re-enable it. 2938 */ 2939 svm_toggle_avic_for_irq_window(&svm->vcpu, true); 2940 2941 ++svm->vcpu.stat.irq_window_exits; 2942 return 1; 2943 } 2944 2945 static int pause_interception(struct vcpu_svm *svm) 2946 { 2947 struct kvm_vcpu *vcpu = &svm->vcpu; 2948 bool in_kernel; 2949 2950 /* 2951 * CPL is not made available for an SEV-ES guest, therefore 2952 * vcpu->arch.preempted_in_kernel can never be true. Just 2953 * set in_kernel to false as well. 2954 */ 2955 in_kernel = !sev_es_guest(svm->vcpu.kvm) && svm_get_cpl(vcpu) == 0; 2956 2957 if (!kvm_pause_in_guest(vcpu->kvm)) 2958 grow_ple_window(vcpu); 2959 2960 kvm_vcpu_on_spin(vcpu, in_kernel); 2961 return 1; 2962 } 2963 2964 static int nop_interception(struct vcpu_svm *svm) 2965 { 2966 return kvm_skip_emulated_instruction(&(svm->vcpu)); 2967 } 2968 2969 static int monitor_interception(struct vcpu_svm *svm) 2970 { 2971 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); 2972 return nop_interception(svm); 2973 } 2974 2975 static int mwait_interception(struct vcpu_svm *svm) 2976 { 2977 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); 2978 return nop_interception(svm); 2979 } 2980 2981 static int invpcid_interception(struct vcpu_svm *svm) 2982 { 2983 struct kvm_vcpu *vcpu = &svm->vcpu; 2984 unsigned long type; 2985 gva_t gva; 2986 2987 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 2988 kvm_queue_exception(vcpu, UD_VECTOR); 2989 return 1; 2990 } 2991 2992 /* 2993 * For an INVPCID intercept: 2994 * EXITINFO1 provides the linear address of the memory operand. 2995 * EXITINFO2 provides the contents of the register operand. 2996 */ 2997 type = svm->vmcb->control.exit_info_2; 2998 gva = svm->vmcb->control.exit_info_1; 2999 3000 if (type > 3) { 3001 kvm_inject_gp(vcpu, 0); 3002 return 1; 3003 } 3004 3005 return kvm_handle_invpcid(vcpu, type, gva); 3006 } 3007 3008 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { 3009 [SVM_EXIT_READ_CR0] = cr_interception, 3010 [SVM_EXIT_READ_CR3] = cr_interception, 3011 [SVM_EXIT_READ_CR4] = cr_interception, 3012 [SVM_EXIT_READ_CR8] = cr_interception, 3013 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3014 [SVM_EXIT_WRITE_CR0] = cr_interception, 3015 [SVM_EXIT_WRITE_CR3] = cr_interception, 3016 [SVM_EXIT_WRITE_CR4] = cr_interception, 3017 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3018 [SVM_EXIT_READ_DR0] = dr_interception, 3019 [SVM_EXIT_READ_DR1] = dr_interception, 3020 [SVM_EXIT_READ_DR2] = dr_interception, 3021 [SVM_EXIT_READ_DR3] = dr_interception, 3022 [SVM_EXIT_READ_DR4] = dr_interception, 3023 [SVM_EXIT_READ_DR5] = dr_interception, 3024 [SVM_EXIT_READ_DR6] = dr_interception, 3025 [SVM_EXIT_READ_DR7] = dr_interception, 3026 [SVM_EXIT_WRITE_DR0] = dr_interception, 3027 [SVM_EXIT_WRITE_DR1] = dr_interception, 3028 [SVM_EXIT_WRITE_DR2] = dr_interception, 3029 [SVM_EXIT_WRITE_DR3] = dr_interception, 3030 [SVM_EXIT_WRITE_DR4] = dr_interception, 3031 [SVM_EXIT_WRITE_DR5] = dr_interception, 3032 [SVM_EXIT_WRITE_DR6] = dr_interception, 3033 [SVM_EXIT_WRITE_DR7] = dr_interception, 3034 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3035 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3036 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3037 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3038 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3039 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3040 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3041 [SVM_EXIT_INTR] = intr_interception, 3042 [SVM_EXIT_NMI] = nmi_interception, 3043 [SVM_EXIT_SMI] = nop_on_interception, 3044 [SVM_EXIT_INIT] = nop_on_interception, 3045 [SVM_EXIT_VINTR] = interrupt_window_interception, 3046 [SVM_EXIT_RDPMC] = rdpmc_interception, 3047 [SVM_EXIT_CPUID] = cpuid_interception, 3048 [SVM_EXIT_IRET] = iret_interception, 3049 [SVM_EXIT_INVD] = invd_interception, 3050 [SVM_EXIT_PAUSE] = pause_interception, 3051 [SVM_EXIT_HLT] = halt_interception, 3052 [SVM_EXIT_INVLPG] = invlpg_interception, 3053 [SVM_EXIT_INVLPGA] = invlpga_interception, 3054 [SVM_EXIT_IOIO] = io_interception, 3055 [SVM_EXIT_MSR] = msr_interception, 3056 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3057 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3058 [SVM_EXIT_VMRUN] = vmrun_interception, 3059 [SVM_EXIT_VMMCALL] = vmmcall_interception, 3060 [SVM_EXIT_VMLOAD] = vmload_interception, 3061 [SVM_EXIT_VMSAVE] = vmsave_interception, 3062 [SVM_EXIT_STGI] = stgi_interception, 3063 [SVM_EXIT_CLGI] = clgi_interception, 3064 [SVM_EXIT_SKINIT] = skinit_interception, 3065 [SVM_EXIT_WBINVD] = wbinvd_interception, 3066 [SVM_EXIT_MONITOR] = monitor_interception, 3067 [SVM_EXIT_MWAIT] = mwait_interception, 3068 [SVM_EXIT_XSETBV] = xsetbv_interception, 3069 [SVM_EXIT_RDPRU] = rdpru_interception, 3070 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3071 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3072 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3073 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3074 [SVM_EXIT_INVPCID] = invpcid_interception, 3075 [SVM_EXIT_NPF] = npf_interception, 3076 [SVM_EXIT_RSM] = rsm_interception, 3077 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3078 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3079 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3080 }; 3081 3082 static void dump_vmcb(struct kvm_vcpu *vcpu) 3083 { 3084 struct vcpu_svm *svm = to_svm(vcpu); 3085 struct vmcb_control_area *control = &svm->vmcb->control; 3086 struct vmcb_save_area *save = &svm->vmcb->save; 3087 3088 if (!dump_invalid_vmcb) { 3089 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3090 return; 3091 } 3092 3093 pr_err("VMCB Control Area:\n"); 3094 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3095 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3096 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3097 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3098 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3099 pr_err("%-20s%08x %08x\n", "intercepts:", 3100 control->intercepts[INTERCEPT_WORD3], 3101 control->intercepts[INTERCEPT_WORD4]); 3102 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3103 pr_err("%-20s%d\n", "pause filter threshold:", 3104 control->pause_filter_thresh); 3105 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3106 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3107 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3108 pr_err("%-20s%d\n", "asid:", control->asid); 3109 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3110 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3111 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3112 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3113 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3114 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3115 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3116 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3117 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3118 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3119 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3120 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3121 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3122 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3123 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3124 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3125 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3126 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3127 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3128 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3129 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3130 pr_err("VMCB State Save Area:\n"); 3131 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3132 "es:", 3133 save->es.selector, save->es.attrib, 3134 save->es.limit, save->es.base); 3135 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3136 "cs:", 3137 save->cs.selector, save->cs.attrib, 3138 save->cs.limit, save->cs.base); 3139 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3140 "ss:", 3141 save->ss.selector, save->ss.attrib, 3142 save->ss.limit, save->ss.base); 3143 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3144 "ds:", 3145 save->ds.selector, save->ds.attrib, 3146 save->ds.limit, save->ds.base); 3147 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3148 "fs:", 3149 save->fs.selector, save->fs.attrib, 3150 save->fs.limit, save->fs.base); 3151 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3152 "gs:", 3153 save->gs.selector, save->gs.attrib, 3154 save->gs.limit, save->gs.base); 3155 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3156 "gdtr:", 3157 save->gdtr.selector, save->gdtr.attrib, 3158 save->gdtr.limit, save->gdtr.base); 3159 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3160 "ldtr:", 3161 save->ldtr.selector, save->ldtr.attrib, 3162 save->ldtr.limit, save->ldtr.base); 3163 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3164 "idtr:", 3165 save->idtr.selector, save->idtr.attrib, 3166 save->idtr.limit, save->idtr.base); 3167 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3168 "tr:", 3169 save->tr.selector, save->tr.attrib, 3170 save->tr.limit, save->tr.base); 3171 pr_err("cpl: %d efer: %016llx\n", 3172 save->cpl, save->efer); 3173 pr_err("%-15s %016llx %-13s %016llx\n", 3174 "cr0:", save->cr0, "cr2:", save->cr2); 3175 pr_err("%-15s %016llx %-13s %016llx\n", 3176 "cr3:", save->cr3, "cr4:", save->cr4); 3177 pr_err("%-15s %016llx %-13s %016llx\n", 3178 "dr6:", save->dr6, "dr7:", save->dr7); 3179 pr_err("%-15s %016llx %-13s %016llx\n", 3180 "rip:", save->rip, "rflags:", save->rflags); 3181 pr_err("%-15s %016llx %-13s %016llx\n", 3182 "rsp:", save->rsp, "rax:", save->rax); 3183 pr_err("%-15s %016llx %-13s %016llx\n", 3184 "star:", save->star, "lstar:", save->lstar); 3185 pr_err("%-15s %016llx %-13s %016llx\n", 3186 "cstar:", save->cstar, "sfmask:", save->sfmask); 3187 pr_err("%-15s %016llx %-13s %016llx\n", 3188 "kernel_gs_base:", save->kernel_gs_base, 3189 "sysenter_cs:", save->sysenter_cs); 3190 pr_err("%-15s %016llx %-13s %016llx\n", 3191 "sysenter_esp:", save->sysenter_esp, 3192 "sysenter_eip:", save->sysenter_eip); 3193 pr_err("%-15s %016llx %-13s %016llx\n", 3194 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3195 pr_err("%-15s %016llx %-13s %016llx\n", 3196 "br_from:", save->br_from, "br_to:", save->br_to); 3197 pr_err("%-15s %016llx %-13s %016llx\n", 3198 "excp_from:", save->last_excp_from, 3199 "excp_to:", save->last_excp_to); 3200 } 3201 3202 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3203 { 3204 if (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3205 svm_exit_handlers[exit_code]) 3206 return 0; 3207 3208 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3209 dump_vmcb(vcpu); 3210 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3211 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3212 vcpu->run->internal.ndata = 2; 3213 vcpu->run->internal.data[0] = exit_code; 3214 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3215 3216 return -EINVAL; 3217 } 3218 3219 int svm_invoke_exit_handler(struct vcpu_svm *svm, u64 exit_code) 3220 { 3221 if (svm_handle_invalid_exit(&svm->vcpu, exit_code)) 3222 return 0; 3223 3224 #ifdef CONFIG_RETPOLINE 3225 if (exit_code == SVM_EXIT_MSR) 3226 return msr_interception(svm); 3227 else if (exit_code == SVM_EXIT_VINTR) 3228 return interrupt_window_interception(svm); 3229 else if (exit_code == SVM_EXIT_INTR) 3230 return intr_interception(svm); 3231 else if (exit_code == SVM_EXIT_HLT) 3232 return halt_interception(svm); 3233 else if (exit_code == SVM_EXIT_NPF) 3234 return npf_interception(svm); 3235 #endif 3236 return svm_exit_handlers[exit_code](svm); 3237 } 3238 3239 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 3240 u32 *intr_info, u32 *error_code) 3241 { 3242 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3243 3244 *info1 = control->exit_info_1; 3245 *info2 = control->exit_info_2; 3246 *intr_info = control->exit_int_info; 3247 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3248 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3249 *error_code = control->exit_int_info_err; 3250 else 3251 *error_code = 0; 3252 } 3253 3254 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3255 { 3256 struct vcpu_svm *svm = to_svm(vcpu); 3257 struct kvm_run *kvm_run = vcpu->run; 3258 u32 exit_code = svm->vmcb->control.exit_code; 3259 3260 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); 3261 3262 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3263 if (!sev_es_guest(vcpu->kvm)) { 3264 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3265 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3266 if (npt_enabled) 3267 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3268 } 3269 3270 if (is_guest_mode(vcpu)) { 3271 int vmexit; 3272 3273 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM); 3274 3275 vmexit = nested_svm_exit_special(svm); 3276 3277 if (vmexit == NESTED_EXIT_CONTINUE) 3278 vmexit = nested_svm_exit_handled(svm); 3279 3280 if (vmexit == NESTED_EXIT_DONE) 3281 return 1; 3282 } 3283 3284 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3285 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3286 kvm_run->fail_entry.hardware_entry_failure_reason 3287 = svm->vmcb->control.exit_code; 3288 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3289 dump_vmcb(vcpu); 3290 return 0; 3291 } 3292 3293 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3294 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3295 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3296 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3297 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3298 "exit_code 0x%x\n", 3299 __func__, svm->vmcb->control.exit_int_info, 3300 exit_code); 3301 3302 if (exit_fastpath != EXIT_FASTPATH_NONE) 3303 return 1; 3304 3305 return svm_invoke_exit_handler(svm, exit_code); 3306 } 3307 3308 static void reload_tss(struct kvm_vcpu *vcpu) 3309 { 3310 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3311 3312 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3313 load_TR_desc(); 3314 } 3315 3316 static void pre_svm_run(struct vcpu_svm *svm) 3317 { 3318 struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu); 3319 3320 if (sev_guest(svm->vcpu.kvm)) 3321 return pre_sev_run(svm, svm->vcpu.cpu); 3322 3323 /* FIXME: handle wraparound of asid_generation */ 3324 if (svm->asid_generation != sd->asid_generation) 3325 new_asid(svm, sd); 3326 } 3327 3328 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3329 { 3330 struct vcpu_svm *svm = to_svm(vcpu); 3331 3332 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3333 vcpu->arch.hflags |= HF_NMI_MASK; 3334 if (!sev_es_guest(svm->vcpu.kvm)) 3335 svm_set_intercept(svm, INTERCEPT_IRET); 3336 ++vcpu->stat.nmi_injections; 3337 } 3338 3339 static void svm_set_irq(struct kvm_vcpu *vcpu) 3340 { 3341 struct vcpu_svm *svm = to_svm(vcpu); 3342 3343 BUG_ON(!(gif_set(svm))); 3344 3345 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3346 ++vcpu->stat.irq_injections; 3347 3348 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3349 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3350 } 3351 3352 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3353 { 3354 struct vcpu_svm *svm = to_svm(vcpu); 3355 3356 /* 3357 * SEV-ES guests must always keep the CR intercepts cleared. CR 3358 * tracking is done using the CR write traps. 3359 */ 3360 if (sev_es_guest(vcpu->kvm)) 3361 return; 3362 3363 if (nested_svm_virtualize_tpr(vcpu)) 3364 return; 3365 3366 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3367 3368 if (irr == -1) 3369 return; 3370 3371 if (tpr >= irr) 3372 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3373 } 3374 3375 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3376 { 3377 struct vcpu_svm *svm = to_svm(vcpu); 3378 struct vmcb *vmcb = svm->vmcb; 3379 bool ret; 3380 3381 if (!gif_set(svm)) 3382 return true; 3383 3384 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3385 return false; 3386 3387 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3388 (svm->vcpu.arch.hflags & HF_NMI_MASK); 3389 3390 return ret; 3391 } 3392 3393 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3394 { 3395 struct vcpu_svm *svm = to_svm(vcpu); 3396 if (svm->nested.nested_run_pending) 3397 return -EBUSY; 3398 3399 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3400 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3401 return -EBUSY; 3402 3403 return !svm_nmi_blocked(vcpu); 3404 } 3405 3406 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3407 { 3408 struct vcpu_svm *svm = to_svm(vcpu); 3409 3410 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); 3411 } 3412 3413 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3414 { 3415 struct vcpu_svm *svm = to_svm(vcpu); 3416 3417 if (masked) { 3418 svm->vcpu.arch.hflags |= HF_NMI_MASK; 3419 if (!sev_es_guest(svm->vcpu.kvm)) 3420 svm_set_intercept(svm, INTERCEPT_IRET); 3421 } else { 3422 svm->vcpu.arch.hflags &= ~HF_NMI_MASK; 3423 if (!sev_es_guest(svm->vcpu.kvm)) 3424 svm_clr_intercept(svm, INTERCEPT_IRET); 3425 } 3426 } 3427 3428 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3429 { 3430 struct vcpu_svm *svm = to_svm(vcpu); 3431 struct vmcb *vmcb = svm->vmcb; 3432 3433 if (!gif_set(svm)) 3434 return true; 3435 3436 if (sev_es_guest(svm->vcpu.kvm)) { 3437 /* 3438 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask 3439 * bit to determine the state of the IF flag. 3440 */ 3441 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK)) 3442 return true; 3443 } else if (is_guest_mode(vcpu)) { 3444 /* As long as interrupts are being delivered... */ 3445 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3446 ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF) 3447 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3448 return true; 3449 3450 /* ... vmexits aren't blocked by the interrupt shadow */ 3451 if (nested_exit_on_intr(svm)) 3452 return false; 3453 } else { 3454 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3455 return true; 3456 } 3457 3458 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3459 } 3460 3461 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3462 { 3463 struct vcpu_svm *svm = to_svm(vcpu); 3464 if (svm->nested.nested_run_pending) 3465 return -EBUSY; 3466 3467 /* 3468 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3469 * e.g. if the IRQ arrived asynchronously after checking nested events. 3470 */ 3471 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3472 return -EBUSY; 3473 3474 return !svm_interrupt_blocked(vcpu); 3475 } 3476 3477 static void enable_irq_window(struct kvm_vcpu *vcpu) 3478 { 3479 struct vcpu_svm *svm = to_svm(vcpu); 3480 3481 /* 3482 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3483 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3484 * get that intercept, this function will be called again though and 3485 * we'll get the vintr intercept. However, if the vGIF feature is 3486 * enabled, the STGI interception will not occur. Enable the irq 3487 * window under the assumption that the hardware will set the GIF. 3488 */ 3489 if (vgif_enabled(svm) || gif_set(svm)) { 3490 /* 3491 * IRQ window is not needed when AVIC is enabled, 3492 * unless we have pending ExtINT since it cannot be injected 3493 * via AVIC. In such case, we need to temporarily disable AVIC, 3494 * and fallback to injecting IRQ via V_IRQ. 3495 */ 3496 svm_toggle_avic_for_irq_window(vcpu, false); 3497 svm_set_vintr(svm); 3498 } 3499 } 3500 3501 static void enable_nmi_window(struct kvm_vcpu *vcpu) 3502 { 3503 struct vcpu_svm *svm = to_svm(vcpu); 3504 3505 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) 3506 == HF_NMI_MASK) 3507 return; /* IRET will cause a vm exit */ 3508 3509 if (!gif_set(svm)) { 3510 if (vgif_enabled(svm)) 3511 svm_set_intercept(svm, INTERCEPT_STGI); 3512 return; /* STGI will cause a vm exit */ 3513 } 3514 3515 /* 3516 * Something prevents NMI from been injected. Single step over possible 3517 * problem (IRET or exception injection or interrupt shadow) 3518 */ 3519 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3520 svm->nmi_singlestep = true; 3521 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3522 } 3523 3524 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) 3525 { 3526 return 0; 3527 } 3528 3529 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 3530 { 3531 return 0; 3532 } 3533 3534 void svm_flush_tlb(struct kvm_vcpu *vcpu) 3535 { 3536 struct vcpu_svm *svm = to_svm(vcpu); 3537 3538 /* 3539 * Flush only the current ASID even if the TLB flush was invoked via 3540 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3541 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3542 * unconditionally does a TLB flush on both nested VM-Enter and nested 3543 * VM-Exit (via kvm_mmu_reset_context()). 3544 */ 3545 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3546 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3547 else 3548 svm->asid_generation--; 3549 } 3550 3551 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3552 { 3553 struct vcpu_svm *svm = to_svm(vcpu); 3554 3555 invlpga(gva, svm->vmcb->control.asid); 3556 } 3557 3558 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) 3559 { 3560 } 3561 3562 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3563 { 3564 struct vcpu_svm *svm = to_svm(vcpu); 3565 3566 if (nested_svm_virtualize_tpr(vcpu)) 3567 return; 3568 3569 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3570 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3571 kvm_set_cr8(vcpu, cr8); 3572 } 3573 } 3574 3575 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3576 { 3577 struct vcpu_svm *svm = to_svm(vcpu); 3578 u64 cr8; 3579 3580 if (nested_svm_virtualize_tpr(vcpu) || 3581 kvm_vcpu_apicv_active(vcpu)) 3582 return; 3583 3584 cr8 = kvm_get_cr8(vcpu); 3585 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3586 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3587 } 3588 3589 static void svm_complete_interrupts(struct vcpu_svm *svm) 3590 { 3591 u8 vector; 3592 int type; 3593 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3594 unsigned int3_injected = svm->int3_injected; 3595 3596 svm->int3_injected = 0; 3597 3598 /* 3599 * If we've made progress since setting HF_IRET_MASK, we've 3600 * executed an IRET and can allow NMI injection. 3601 */ 3602 if ((svm->vcpu.arch.hflags & HF_IRET_MASK) && 3603 (sev_es_guest(svm->vcpu.kvm) || 3604 kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip)) { 3605 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3606 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3607 } 3608 3609 svm->vcpu.arch.nmi_injected = false; 3610 kvm_clear_exception_queue(&svm->vcpu); 3611 kvm_clear_interrupt_queue(&svm->vcpu); 3612 3613 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3614 return; 3615 3616 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3617 3618 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3619 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3620 3621 switch (type) { 3622 case SVM_EXITINTINFO_TYPE_NMI: 3623 svm->vcpu.arch.nmi_injected = true; 3624 break; 3625 case SVM_EXITINTINFO_TYPE_EXEPT: 3626 /* 3627 * Never re-inject a #VC exception. 3628 */ 3629 if (vector == X86_TRAP_VC) 3630 break; 3631 3632 /* 3633 * In case of software exceptions, do not reinject the vector, 3634 * but re-execute the instruction instead. Rewind RIP first 3635 * if we emulated INT3 before. 3636 */ 3637 if (kvm_exception_is_soft(vector)) { 3638 if (vector == BP_VECTOR && int3_injected && 3639 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) 3640 kvm_rip_write(&svm->vcpu, 3641 kvm_rip_read(&svm->vcpu) - 3642 int3_injected); 3643 break; 3644 } 3645 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3646 u32 err = svm->vmcb->control.exit_int_info_err; 3647 kvm_requeue_exception_e(&svm->vcpu, vector, err); 3648 3649 } else 3650 kvm_requeue_exception(&svm->vcpu, vector); 3651 break; 3652 case SVM_EXITINTINFO_TYPE_INTR: 3653 kvm_queue_interrupt(&svm->vcpu, vector, false); 3654 break; 3655 default: 3656 break; 3657 } 3658 } 3659 3660 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3661 { 3662 struct vcpu_svm *svm = to_svm(vcpu); 3663 struct vmcb_control_area *control = &svm->vmcb->control; 3664 3665 control->exit_int_info = control->event_inj; 3666 control->exit_int_info_err = control->event_inj_err; 3667 control->event_inj = 0; 3668 svm_complete_interrupts(svm); 3669 } 3670 3671 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3672 { 3673 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3674 to_svm(vcpu)->vmcb->control.exit_info_1) 3675 return handle_fastpath_set_msr_irqoff(vcpu); 3676 3677 return EXIT_FASTPATH_NONE; 3678 } 3679 3680 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs); 3681 3682 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, 3683 struct vcpu_svm *svm) 3684 { 3685 /* 3686 * VMENTER enables interrupts (host state), but the kernel state is 3687 * interrupts disabled when this is invoked. Also tell RCU about 3688 * it. This is the same logic as for exit_to_user_mode(). 3689 * 3690 * This ensures that e.g. latency analysis on the host observes 3691 * guest mode as interrupt enabled. 3692 * 3693 * guest_enter_irqoff() informs context tracking about the 3694 * transition to guest mode and if enabled adjusts RCU state 3695 * accordingly. 3696 */ 3697 instrumentation_begin(); 3698 trace_hardirqs_on_prepare(); 3699 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 3700 instrumentation_end(); 3701 3702 guest_enter_irqoff(); 3703 lockdep_hardirqs_on(CALLER_ADDR0); 3704 3705 if (sev_es_guest(svm->vcpu.kvm)) { 3706 __svm_sev_es_vcpu_run(svm->vmcb_pa); 3707 } else { 3708 __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs); 3709 3710 #ifdef CONFIG_X86_64 3711 native_wrmsrl(MSR_GS_BASE, svm->host.gs_base); 3712 #else 3713 loadsegment(fs, svm->host.fs); 3714 #ifndef CONFIG_X86_32_LAZY_GS 3715 loadsegment(gs, svm->host.gs); 3716 #endif 3717 #endif 3718 } 3719 3720 /* 3721 * VMEXIT disables interrupts (host state), but tracing and lockdep 3722 * have them in state 'on' as recorded before entering guest mode. 3723 * Same as enter_from_user_mode(). 3724 * 3725 * guest_exit_irqoff() restores host context and reinstates RCU if 3726 * enabled and required. 3727 * 3728 * This needs to be done before the below as native_read_msr() 3729 * contains a tracepoint and x86_spec_ctrl_restore_host() calls 3730 * into world and some more. 3731 */ 3732 lockdep_hardirqs_off(CALLER_ADDR0); 3733 guest_exit_irqoff(); 3734 3735 instrumentation_begin(); 3736 trace_hardirqs_off_finish(); 3737 instrumentation_end(); 3738 } 3739 3740 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3741 { 3742 struct vcpu_svm *svm = to_svm(vcpu); 3743 3744 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3745 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3746 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3747 3748 /* 3749 * Disable singlestep if we're injecting an interrupt/exception. 3750 * We don't want our modified rflags to be pushed on the stack where 3751 * we might not be able to easily reset them if we disabled NMI 3752 * singlestep later. 3753 */ 3754 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3755 /* 3756 * Event injection happens before external interrupts cause a 3757 * vmexit and interrupts are disabled here, so smp_send_reschedule 3758 * is enough to force an immediate vmexit. 3759 */ 3760 disable_nmi_singlestep(svm); 3761 smp_send_reschedule(vcpu->cpu); 3762 } 3763 3764 pre_svm_run(svm); 3765 3766 sync_lapic_to_cr8(vcpu); 3767 3768 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3769 svm->vmcb->control.asid = svm->asid; 3770 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3771 } 3772 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3773 3774 /* 3775 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3776 * of a #DB. 3777 */ 3778 if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3779 svm_set_dr6(svm, vcpu->arch.dr6); 3780 else 3781 svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM); 3782 3783 clgi(); 3784 kvm_load_guest_xsave_state(vcpu); 3785 3786 kvm_wait_lapic_expire(vcpu); 3787 3788 /* 3789 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3790 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3791 * is no need to worry about the conditional branch over the wrmsr 3792 * being speculatively taken. 3793 */ 3794 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3795 3796 svm_vcpu_enter_exit(vcpu, svm); 3797 3798 /* 3799 * We do not use IBRS in the kernel. If this vCPU has used the 3800 * SPEC_CTRL MSR it may have left it on; save the value and 3801 * turn it off. This is much more efficient than blindly adding 3802 * it to the atomic save/restore list. Especially as the former 3803 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3804 * 3805 * For non-nested case: 3806 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3807 * save it. 3808 * 3809 * For nested case: 3810 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3811 * save it. 3812 */ 3813 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3814 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3815 3816 if (!sev_es_guest(svm->vcpu.kvm)) 3817 reload_tss(vcpu); 3818 3819 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3820 3821 if (!sev_es_guest(svm->vcpu.kvm)) { 3822 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3823 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3824 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3825 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3826 } 3827 3828 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3829 kvm_before_interrupt(&svm->vcpu); 3830 3831 kvm_load_host_xsave_state(vcpu); 3832 stgi(); 3833 3834 /* Any pending NMI will happen here */ 3835 3836 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3837 kvm_after_interrupt(&svm->vcpu); 3838 3839 sync_cr8_to_lapic(vcpu); 3840 3841 svm->next_rip = 0; 3842 if (is_guest_mode(&svm->vcpu)) { 3843 sync_nested_vmcb_control(svm); 3844 svm->nested.nested_run_pending = 0; 3845 } 3846 3847 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3848 vmcb_mark_all_clean(svm->vmcb); 3849 3850 /* if exit due to PF check for async PF */ 3851 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3852 svm->vcpu.arch.apf.host_apf_flags = 3853 kvm_read_and_reset_apf_flags(); 3854 3855 if (npt_enabled) { 3856 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); 3857 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); 3858 } 3859 3860 /* 3861 * We need to handle MC intercepts here before the vcpu has a chance to 3862 * change the physical cpu 3863 */ 3864 if (unlikely(svm->vmcb->control.exit_code == 3865 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3866 svm_handle_mce(svm); 3867 3868 svm_complete_interrupts(svm); 3869 3870 if (is_guest_mode(vcpu)) 3871 return EXIT_FASTPATH_NONE; 3872 3873 return svm_exit_handlers_fastpath(vcpu); 3874 } 3875 3876 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root, 3877 int root_level) 3878 { 3879 struct vcpu_svm *svm = to_svm(vcpu); 3880 unsigned long cr3; 3881 3882 cr3 = __sme_set(root); 3883 if (npt_enabled) { 3884 svm->vmcb->control.nested_cr3 = cr3; 3885 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3886 3887 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ 3888 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3889 return; 3890 cr3 = vcpu->arch.cr3; 3891 } 3892 3893 svm->vmcb->save.cr3 = cr3; 3894 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 3895 } 3896 3897 static int is_disabled(void) 3898 { 3899 u64 vm_cr; 3900 3901 rdmsrl(MSR_VM_CR, vm_cr); 3902 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3903 return 1; 3904 3905 return 0; 3906 } 3907 3908 static void 3909 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3910 { 3911 /* 3912 * Patch in the VMMCALL instruction: 3913 */ 3914 hypercall[0] = 0x0f; 3915 hypercall[1] = 0x01; 3916 hypercall[2] = 0xd9; 3917 } 3918 3919 static int __init svm_check_processor_compat(void) 3920 { 3921 return 0; 3922 } 3923 3924 static bool svm_cpu_has_accelerated_tpr(void) 3925 { 3926 return false; 3927 } 3928 3929 /* 3930 * The kvm parameter can be NULL (module initialization, or invocation before 3931 * VM creation). Be sure to check the kvm parameter before using it. 3932 */ 3933 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 3934 { 3935 switch (index) { 3936 case MSR_IA32_MCG_EXT_CTL: 3937 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 3938 return false; 3939 case MSR_IA32_SMBASE: 3940 /* SEV-ES guests do not support SMM, so report false */ 3941 if (kvm && sev_es_guest(kvm)) 3942 return false; 3943 break; 3944 default: 3945 break; 3946 } 3947 3948 return true; 3949 } 3950 3951 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 3952 { 3953 return 0; 3954 } 3955 3956 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 3957 { 3958 struct vcpu_svm *svm = to_svm(vcpu); 3959 struct kvm_cpuid_entry2 *best; 3960 3961 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3962 boot_cpu_has(X86_FEATURE_XSAVE) && 3963 boot_cpu_has(X86_FEATURE_XSAVES); 3964 3965 /* Update nrips enabled cache */ 3966 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 3967 guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS); 3968 3969 /* Check again if INVPCID interception if required */ 3970 svm_check_invpcid(svm); 3971 3972 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 3973 if (sev_guest(vcpu->kvm)) { 3974 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); 3975 if (best) 3976 vcpu->arch.cr3_lm_rsvd_bits &= ~(1UL << (best->ebx & 0x3f)); 3977 } 3978 3979 if (!kvm_vcpu_apicv_active(vcpu)) 3980 return; 3981 3982 /* 3983 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 3984 * is exposed to the guest, disable AVIC. 3985 */ 3986 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 3987 kvm_request_apicv_update(vcpu->kvm, false, 3988 APICV_INHIBIT_REASON_X2APIC); 3989 3990 /* 3991 * Currently, AVIC does not work with nested virtualization. 3992 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 3993 */ 3994 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 3995 kvm_request_apicv_update(vcpu->kvm, false, 3996 APICV_INHIBIT_REASON_NESTED); 3997 } 3998 3999 static bool svm_has_wbinvd_exit(void) 4000 { 4001 return true; 4002 } 4003 4004 #define PRE_EX(exit) { .exit_code = (exit), \ 4005 .stage = X86_ICPT_PRE_EXCEPT, } 4006 #define POST_EX(exit) { .exit_code = (exit), \ 4007 .stage = X86_ICPT_POST_EXCEPT, } 4008 #define POST_MEM(exit) { .exit_code = (exit), \ 4009 .stage = X86_ICPT_POST_MEMACCESS, } 4010 4011 static const struct __x86_intercept { 4012 u32 exit_code; 4013 enum x86_intercept_stage stage; 4014 } x86_intercept_map[] = { 4015 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4016 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4017 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4018 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4019 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4020 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4021 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4022 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4023 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4024 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4025 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4026 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4027 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4028 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4029 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4030 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4031 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4032 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4033 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4034 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4035 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4036 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4037 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4038 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4039 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4040 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4041 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4042 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4043 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4044 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4045 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4046 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4047 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4048 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4049 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4050 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4051 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4052 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4053 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4054 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4055 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4056 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4057 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4058 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4059 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4060 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4061 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4062 }; 4063 4064 #undef PRE_EX 4065 #undef POST_EX 4066 #undef POST_MEM 4067 4068 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4069 struct x86_instruction_info *info, 4070 enum x86_intercept_stage stage, 4071 struct x86_exception *exception) 4072 { 4073 struct vcpu_svm *svm = to_svm(vcpu); 4074 int vmexit, ret = X86EMUL_CONTINUE; 4075 struct __x86_intercept icpt_info; 4076 struct vmcb *vmcb = svm->vmcb; 4077 4078 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4079 goto out; 4080 4081 icpt_info = x86_intercept_map[info->intercept]; 4082 4083 if (stage != icpt_info.stage) 4084 goto out; 4085 4086 switch (icpt_info.exit_code) { 4087 case SVM_EXIT_READ_CR0: 4088 if (info->intercept == x86_intercept_cr_read) 4089 icpt_info.exit_code += info->modrm_reg; 4090 break; 4091 case SVM_EXIT_WRITE_CR0: { 4092 unsigned long cr0, val; 4093 4094 if (info->intercept == x86_intercept_cr_write) 4095 icpt_info.exit_code += info->modrm_reg; 4096 4097 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4098 info->intercept == x86_intercept_clts) 4099 break; 4100 4101 if (!(vmcb_is_intercept(&svm->nested.ctl, 4102 INTERCEPT_SELECTIVE_CR0))) 4103 break; 4104 4105 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4106 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4107 4108 if (info->intercept == x86_intercept_lmsw) { 4109 cr0 &= 0xfUL; 4110 val &= 0xfUL; 4111 /* lmsw can't clear PE - catch this here */ 4112 if (cr0 & X86_CR0_PE) 4113 val |= X86_CR0_PE; 4114 } 4115 4116 if (cr0 ^ val) 4117 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4118 4119 break; 4120 } 4121 case SVM_EXIT_READ_DR0: 4122 case SVM_EXIT_WRITE_DR0: 4123 icpt_info.exit_code += info->modrm_reg; 4124 break; 4125 case SVM_EXIT_MSR: 4126 if (info->intercept == x86_intercept_wrmsr) 4127 vmcb->control.exit_info_1 = 1; 4128 else 4129 vmcb->control.exit_info_1 = 0; 4130 break; 4131 case SVM_EXIT_PAUSE: 4132 /* 4133 * We get this for NOP only, but pause 4134 * is rep not, check this here 4135 */ 4136 if (info->rep_prefix != REPE_PREFIX) 4137 goto out; 4138 break; 4139 case SVM_EXIT_IOIO: { 4140 u64 exit_info; 4141 u32 bytes; 4142 4143 if (info->intercept == x86_intercept_in || 4144 info->intercept == x86_intercept_ins) { 4145 exit_info = ((info->src_val & 0xffff) << 16) | 4146 SVM_IOIO_TYPE_MASK; 4147 bytes = info->dst_bytes; 4148 } else { 4149 exit_info = (info->dst_val & 0xffff) << 16; 4150 bytes = info->src_bytes; 4151 } 4152 4153 if (info->intercept == x86_intercept_outs || 4154 info->intercept == x86_intercept_ins) 4155 exit_info |= SVM_IOIO_STR_MASK; 4156 4157 if (info->rep_prefix) 4158 exit_info |= SVM_IOIO_REP_MASK; 4159 4160 bytes = min(bytes, 4u); 4161 4162 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4163 4164 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4165 4166 vmcb->control.exit_info_1 = exit_info; 4167 vmcb->control.exit_info_2 = info->next_rip; 4168 4169 break; 4170 } 4171 default: 4172 break; 4173 } 4174 4175 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4176 if (static_cpu_has(X86_FEATURE_NRIPS)) 4177 vmcb->control.next_rip = info->next_rip; 4178 vmcb->control.exit_code = icpt_info.exit_code; 4179 vmexit = nested_svm_exit_handled(svm); 4180 4181 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4182 : X86EMUL_CONTINUE; 4183 4184 out: 4185 return ret; 4186 } 4187 4188 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4189 { 4190 } 4191 4192 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4193 { 4194 if (!kvm_pause_in_guest(vcpu->kvm)) 4195 shrink_ple_window(vcpu); 4196 } 4197 4198 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4199 { 4200 /* [63:9] are reserved. */ 4201 vcpu->arch.mcg_cap &= 0x1ff; 4202 } 4203 4204 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4205 { 4206 struct vcpu_svm *svm = to_svm(vcpu); 4207 4208 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4209 if (!gif_set(svm)) 4210 return true; 4211 4212 return is_smm(vcpu); 4213 } 4214 4215 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4216 { 4217 struct vcpu_svm *svm = to_svm(vcpu); 4218 if (svm->nested.nested_run_pending) 4219 return -EBUSY; 4220 4221 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4222 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4223 return -EBUSY; 4224 4225 return !svm_smi_blocked(vcpu); 4226 } 4227 4228 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4229 { 4230 struct vcpu_svm *svm = to_svm(vcpu); 4231 int ret; 4232 4233 if (is_guest_mode(vcpu)) { 4234 /* FED8h - SVM Guest */ 4235 put_smstate(u64, smstate, 0x7ed8, 1); 4236 /* FEE0h - SVM Guest VMCB Physical Address */ 4237 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4238 4239 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4240 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4241 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4242 4243 ret = nested_svm_vmexit(svm); 4244 if (ret) 4245 return ret; 4246 } 4247 return 0; 4248 } 4249 4250 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4251 { 4252 struct vcpu_svm *svm = to_svm(vcpu); 4253 struct kvm_host_map map; 4254 int ret = 0; 4255 4256 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) { 4257 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4258 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8); 4259 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4260 4261 if (guest) { 4262 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4263 return 1; 4264 4265 if (!(saved_efer & EFER_SVME)) 4266 return 1; 4267 4268 if (kvm_vcpu_map(&svm->vcpu, 4269 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4270 return 1; 4271 4272 if (svm_allocate_nested(svm)) 4273 return 1; 4274 4275 ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva); 4276 kvm_vcpu_unmap(&svm->vcpu, &map, true); 4277 } 4278 } 4279 4280 return ret; 4281 } 4282 4283 static void enable_smi_window(struct kvm_vcpu *vcpu) 4284 { 4285 struct vcpu_svm *svm = to_svm(vcpu); 4286 4287 if (!gif_set(svm)) { 4288 if (vgif_enabled(svm)) 4289 svm_set_intercept(svm, INTERCEPT_STGI); 4290 /* STGI will cause a vm exit */ 4291 } else { 4292 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4293 } 4294 } 4295 4296 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 4297 { 4298 bool smep, smap, is_user; 4299 unsigned long cr4; 4300 4301 /* 4302 * When the guest is an SEV-ES guest, emulation is not possible. 4303 */ 4304 if (sev_es_guest(vcpu->kvm)) 4305 return false; 4306 4307 /* 4308 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4309 * 4310 * Errata: 4311 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is 4312 * possible that CPU microcode implementing DecodeAssist will fail 4313 * to read bytes of instruction which caused #NPF. In this case, 4314 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly 4315 * return 0 instead of the correct guest instruction bytes. 4316 * 4317 * This happens because CPU microcode reading instruction bytes 4318 * uses a special opcode which attempts to read data using CPL=0 4319 * priviledges. The microcode reads CS:RIP and if it hits a SMAP 4320 * fault, it gives up and returns no instruction bytes. 4321 * 4322 * Detection: 4323 * We reach here in case CPU supports DecodeAssist, raised #NPF and 4324 * returned 0 in GuestIntrBytes field of the VMCB. 4325 * First, errata can only be triggered in case vCPU CR4.SMAP=1. 4326 * Second, if vCPU CR4.SMEP=1, errata could only be triggered 4327 * in case vCPU CPL==3 (Because otherwise guest would have triggered 4328 * a SMEP fault instead of #NPF). 4329 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. 4330 * As most guests enable SMAP if they have also enabled SMEP, use above 4331 * logic in order to attempt minimize false-positive of detecting errata 4332 * while still preserving all cases semantic correctness. 4333 * 4334 * Workaround: 4335 * To determine what instruction the guest was executing, the hypervisor 4336 * will have to decode the instruction at the instruction pointer. 4337 * 4338 * In non SEV guest, hypervisor will be able to read the guest 4339 * memory to decode the instruction pointer when insn_len is zero 4340 * so we return true to indicate that decoding is possible. 4341 * 4342 * But in the SEV guest, the guest memory is encrypted with the 4343 * guest specific key and hypervisor will not be able to decode the 4344 * instruction pointer so we will not able to workaround it. Lets 4345 * print the error and request to kill the guest. 4346 */ 4347 if (likely(!insn || insn_len)) 4348 return true; 4349 4350 /* 4351 * If RIP is invalid, go ahead with emulation which will cause an 4352 * internal error exit. 4353 */ 4354 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT)) 4355 return true; 4356 4357 cr4 = kvm_read_cr4(vcpu); 4358 smep = cr4 & X86_CR4_SMEP; 4359 smap = cr4 & X86_CR4_SMAP; 4360 is_user = svm_get_cpl(vcpu) == 3; 4361 if (smap && (!smep || is_user)) { 4362 if (!sev_guest(vcpu->kvm)) 4363 return true; 4364 4365 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4366 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4367 } 4368 4369 return false; 4370 } 4371 4372 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4373 { 4374 struct vcpu_svm *svm = to_svm(vcpu); 4375 4376 /* 4377 * TODO: Last condition latch INIT signals on vCPU when 4378 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4379 * To properly emulate the INIT intercept, 4380 * svm_check_nested_events() should call nested_svm_vmexit() 4381 * if an INIT signal is pending. 4382 */ 4383 return !gif_set(svm) || 4384 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); 4385 } 4386 4387 static void svm_vm_destroy(struct kvm *kvm) 4388 { 4389 avic_vm_destroy(kvm); 4390 sev_vm_destroy(kvm); 4391 } 4392 4393 static int svm_vm_init(struct kvm *kvm) 4394 { 4395 if (!pause_filter_count || !pause_filter_thresh) 4396 kvm->arch.pause_in_guest = true; 4397 4398 if (avic) { 4399 int ret = avic_vm_init(kvm); 4400 if (ret) 4401 return ret; 4402 } 4403 4404 kvm_apicv_init(kvm, avic); 4405 return 0; 4406 } 4407 4408 static struct kvm_x86_ops svm_x86_ops __initdata = { 4409 .hardware_unsetup = svm_hardware_teardown, 4410 .hardware_enable = svm_hardware_enable, 4411 .hardware_disable = svm_hardware_disable, 4412 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, 4413 .has_emulated_msr = svm_has_emulated_msr, 4414 4415 .vcpu_create = svm_create_vcpu, 4416 .vcpu_free = svm_free_vcpu, 4417 .vcpu_reset = svm_vcpu_reset, 4418 4419 .vm_size = sizeof(struct kvm_svm), 4420 .vm_init = svm_vm_init, 4421 .vm_destroy = svm_vm_destroy, 4422 4423 .prepare_guest_switch = svm_prepare_guest_switch, 4424 .vcpu_load = svm_vcpu_load, 4425 .vcpu_put = svm_vcpu_put, 4426 .vcpu_blocking = svm_vcpu_blocking, 4427 .vcpu_unblocking = svm_vcpu_unblocking, 4428 4429 .update_exception_bitmap = update_exception_bitmap, 4430 .get_msr_feature = svm_get_msr_feature, 4431 .get_msr = svm_get_msr, 4432 .set_msr = svm_set_msr, 4433 .get_segment_base = svm_get_segment_base, 4434 .get_segment = svm_get_segment, 4435 .set_segment = svm_set_segment, 4436 .get_cpl = svm_get_cpl, 4437 .get_cs_db_l_bits = kvm_get_cs_db_l_bits, 4438 .set_cr0 = svm_set_cr0, 4439 .is_valid_cr4 = svm_is_valid_cr4, 4440 .set_cr4 = svm_set_cr4, 4441 .set_efer = svm_set_efer, 4442 .get_idt = svm_get_idt, 4443 .set_idt = svm_set_idt, 4444 .get_gdt = svm_get_gdt, 4445 .set_gdt = svm_set_gdt, 4446 .set_dr7 = svm_set_dr7, 4447 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4448 .cache_reg = svm_cache_reg, 4449 .get_rflags = svm_get_rflags, 4450 .set_rflags = svm_set_rflags, 4451 4452 .tlb_flush_all = svm_flush_tlb, 4453 .tlb_flush_current = svm_flush_tlb, 4454 .tlb_flush_gva = svm_flush_tlb_gva, 4455 .tlb_flush_guest = svm_flush_tlb, 4456 4457 .run = svm_vcpu_run, 4458 .handle_exit = handle_exit, 4459 .skip_emulated_instruction = skip_emulated_instruction, 4460 .update_emulated_instruction = NULL, 4461 .set_interrupt_shadow = svm_set_interrupt_shadow, 4462 .get_interrupt_shadow = svm_get_interrupt_shadow, 4463 .patch_hypercall = svm_patch_hypercall, 4464 .set_irq = svm_set_irq, 4465 .set_nmi = svm_inject_nmi, 4466 .queue_exception = svm_queue_exception, 4467 .cancel_injection = svm_cancel_injection, 4468 .interrupt_allowed = svm_interrupt_allowed, 4469 .nmi_allowed = svm_nmi_allowed, 4470 .get_nmi_mask = svm_get_nmi_mask, 4471 .set_nmi_mask = svm_set_nmi_mask, 4472 .enable_nmi_window = enable_nmi_window, 4473 .enable_irq_window = enable_irq_window, 4474 .update_cr8_intercept = update_cr8_intercept, 4475 .set_virtual_apic_mode = svm_set_virtual_apic_mode, 4476 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, 4477 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, 4478 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl, 4479 .load_eoi_exitmap = svm_load_eoi_exitmap, 4480 .hwapic_irr_update = svm_hwapic_irr_update, 4481 .hwapic_isr_update = svm_hwapic_isr_update, 4482 .sync_pir_to_irr = kvm_lapic_find_highest_irr, 4483 .apicv_post_state_restore = avic_post_state_restore, 4484 4485 .set_tss_addr = svm_set_tss_addr, 4486 .set_identity_map_addr = svm_set_identity_map_addr, 4487 .get_mt_mask = svm_get_mt_mask, 4488 4489 .get_exit_info = svm_get_exit_info, 4490 4491 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4492 4493 .has_wbinvd_exit = svm_has_wbinvd_exit, 4494 4495 .write_l1_tsc_offset = svm_write_l1_tsc_offset, 4496 4497 .load_mmu_pgd = svm_load_mmu_pgd, 4498 4499 .check_intercept = svm_check_intercept, 4500 .handle_exit_irqoff = svm_handle_exit_irqoff, 4501 4502 .request_immediate_exit = __kvm_request_immediate_exit, 4503 4504 .sched_in = svm_sched_in, 4505 4506 .pmu_ops = &amd_pmu_ops, 4507 .nested_ops = &svm_nested_ops, 4508 4509 .deliver_posted_interrupt = svm_deliver_avic_intr, 4510 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, 4511 .update_pi_irte = svm_update_pi_irte, 4512 .setup_mce = svm_setup_mce, 4513 4514 .smi_allowed = svm_smi_allowed, 4515 .pre_enter_smm = svm_pre_enter_smm, 4516 .pre_leave_smm = svm_pre_leave_smm, 4517 .enable_smi_window = enable_smi_window, 4518 4519 .mem_enc_op = svm_mem_enc_op, 4520 .mem_enc_reg_region = svm_register_enc_region, 4521 .mem_enc_unreg_region = svm_unregister_enc_region, 4522 4523 .can_emulate_instruction = svm_can_emulate_instruction, 4524 4525 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4526 4527 .msr_filter_changed = svm_msr_filter_changed, 4528 .complete_emulated_msr = svm_complete_emulated_msr, 4529 }; 4530 4531 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4532 .cpu_has_kvm_support = has_svm, 4533 .disabled_by_bios = is_disabled, 4534 .hardware_setup = svm_hardware_setup, 4535 .check_processor_compatibility = svm_check_processor_compat, 4536 4537 .runtime_ops = &svm_x86_ops, 4538 }; 4539 4540 static int __init svm_init(void) 4541 { 4542 __unused_size_checks(); 4543 4544 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4545 __alignof__(struct vcpu_svm), THIS_MODULE); 4546 } 4547 4548 static void __exit svm_exit(void) 4549 { 4550 kvm_exit(); 4551 } 4552 4553 module_init(svm_init) 4554 module_exit(svm_exit) 4555