xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision 7e60e389)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 #include <asm/traps.h>
39 
40 #include <asm/virtext.h>
41 #include "trace.h"
42 
43 #include "svm.h"
44 
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49 
50 #ifdef MODULE
51 static const struct x86_cpu_id svm_cpu_id[] = {
52 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
53 	{}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56 #endif
57 
58 #define IOPM_ALLOC_ORDER 2
59 #define MSRPM_ALLOC_ORDER 1
60 
61 #define SEG_TYPE_LDT 2
62 #define SEG_TYPE_BUSY_TSS16 3
63 
64 #define SVM_FEATURE_LBRV           (1 <<  1)
65 #define SVM_FEATURE_SVML           (1 <<  2)
66 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
67 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
68 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
69 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
70 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
71 
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73 
74 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
75 #define TSC_RATIO_MIN		0x0000000000000001ULL
76 #define TSC_RATIO_MAX		0x000000ffffffffffULL
77 
78 static bool erratum_383_found __read_mostly;
79 
80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
81 
82 /*
83  * Set osvw_len to higher value when updated Revision Guides
84  * are published and we know what the new status bits are
85  */
86 static uint64_t osvw_len = 4, osvw_status;
87 
88 static DEFINE_PER_CPU(u64, current_tsc_ratio);
89 #define TSC_RATIO_DEFAULT	0x0100000000ULL
90 
91 static const struct svm_direct_access_msrs {
92 	u32 index;   /* Index of the MSR */
93 	bool always; /* True if intercept is initially cleared */
94 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
95 	{ .index = MSR_STAR,				.always = true  },
96 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
97 #ifdef CONFIG_X86_64
98 	{ .index = MSR_GS_BASE,				.always = true  },
99 	{ .index = MSR_FS_BASE,				.always = true  },
100 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
101 	{ .index = MSR_LSTAR,				.always = true  },
102 	{ .index = MSR_CSTAR,				.always = true  },
103 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
104 #endif
105 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
106 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
107 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
108 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
109 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
110 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
111 	{ .index = MSR_EFER,				.always = false },
112 	{ .index = MSR_IA32_CR_PAT,			.always = false },
113 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
114 	{ .index = MSR_INVALID,				.always = false },
115 };
116 
117 /* enable NPT for AMD64 and X86 with PAE */
118 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
119 bool npt_enabled = true;
120 #else
121 bool npt_enabled;
122 #endif
123 
124 /*
125  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
126  * pause_filter_count: On processors that support Pause filtering(indicated
127  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
128  *	count value. On VMRUN this value is loaded into an internal counter.
129  *	Each time a pause instruction is executed, this counter is decremented
130  *	until it reaches zero at which time a #VMEXIT is generated if pause
131  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
132  *	Intercept Filtering for more details.
133  *	This also indicate if ple logic enabled.
134  *
135  * pause_filter_thresh: In addition, some processor families support advanced
136  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
137  *	the amount of time a guest is allowed to execute in a pause loop.
138  *	In this mode, a 16-bit pause filter threshold field is added in the
139  *	VMCB. The threshold value is a cycle count that is used to reset the
140  *	pause counter. As with simple pause filtering, VMRUN loads the pause
141  *	count value from VMCB into an internal counter. Then, on each pause
142  *	instruction the hardware checks the elapsed number of cycles since
143  *	the most recent pause instruction against the pause filter threshold.
144  *	If the elapsed cycle count is greater than the pause filter threshold,
145  *	then the internal pause count is reloaded from the VMCB and execution
146  *	continues. If the elapsed cycle count is less than the pause filter
147  *	threshold, then the internal pause count is decremented. If the count
148  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
149  *	triggered. If advanced pause filtering is supported and pause filter
150  *	threshold field is set to zero, the filter will operate in the simpler,
151  *	count only mode.
152  */
153 
154 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
155 module_param(pause_filter_thresh, ushort, 0444);
156 
157 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
158 module_param(pause_filter_count, ushort, 0444);
159 
160 /* Default doubles per-vcpu window every exit. */
161 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
162 module_param(pause_filter_count_grow, ushort, 0444);
163 
164 /* Default resets per-vcpu window every exit to pause_filter_count. */
165 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
166 module_param(pause_filter_count_shrink, ushort, 0444);
167 
168 /* Default is to compute the maximum so we can never overflow. */
169 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
170 module_param(pause_filter_count_max, ushort, 0444);
171 
172 /* allow nested paging (virtualized MMU) for all guests */
173 static int npt = true;
174 module_param(npt, int, S_IRUGO);
175 
176 /* allow nested virtualization in KVM/SVM */
177 static int nested = true;
178 module_param(nested, int, S_IRUGO);
179 
180 /* enable/disable Next RIP Save */
181 static int nrips = true;
182 module_param(nrips, int, 0444);
183 
184 /* enable/disable Virtual VMLOAD VMSAVE */
185 static int vls = true;
186 module_param(vls, int, 0444);
187 
188 /* enable/disable Virtual GIF */
189 static int vgif = true;
190 module_param(vgif, int, 0444);
191 
192 /* enable/disable SEV support */
193 int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
194 module_param(sev, int, 0444);
195 
196 /* enable/disable SEV-ES support */
197 int sev_es = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
198 module_param(sev_es, int, 0444);
199 
200 bool __read_mostly dump_invalid_vmcb;
201 module_param(dump_invalid_vmcb, bool, 0644);
202 
203 static u8 rsm_ins_bytes[] = "\x0f\xaa";
204 
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206 
207 static unsigned long iopm_base;
208 
209 struct kvm_ldttss_desc {
210 	u16 limit0;
211 	u16 base0;
212 	unsigned base1:8, type:5, dpl:2, p:1;
213 	unsigned limit1:4, zero0:3, g:1, base2:8;
214 	u32 base3;
215 	u32 zero1;
216 } __attribute__((packed));
217 
218 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
219 
220 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
221 
222 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
223 #define MSRS_RANGE_SIZE 2048
224 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
225 
226 u32 svm_msrpm_offset(u32 msr)
227 {
228 	u32 offset;
229 	int i;
230 
231 	for (i = 0; i < NUM_MSR_MAPS; i++) {
232 		if (msr < msrpm_ranges[i] ||
233 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
234 			continue;
235 
236 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
237 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
238 
239 		/* Now we have the u8 offset - but need the u32 offset */
240 		return offset / 4;
241 	}
242 
243 	/* MSR not in any range */
244 	return MSR_INVALID;
245 }
246 
247 #define MAX_INST_SIZE 15
248 
249 static inline void clgi(void)
250 {
251 	asm volatile (__ex("clgi"));
252 }
253 
254 static inline void stgi(void)
255 {
256 	asm volatile (__ex("stgi"));
257 }
258 
259 static inline void invlpga(unsigned long addr, u32 asid)
260 {
261 	asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
262 }
263 
264 static int get_max_npt_level(void)
265 {
266 #ifdef CONFIG_X86_64
267 	return PT64_ROOT_4LEVEL;
268 #else
269 	return PT32E_ROOT_LEVEL;
270 #endif
271 }
272 
273 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
274 {
275 	struct vcpu_svm *svm = to_svm(vcpu);
276 	u64 old_efer = vcpu->arch.efer;
277 	vcpu->arch.efer = efer;
278 
279 	if (!npt_enabled) {
280 		/* Shadow paging assumes NX to be available.  */
281 		efer |= EFER_NX;
282 
283 		if (!(efer & EFER_LMA))
284 			efer &= ~EFER_LME;
285 	}
286 
287 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
288 		if (!(efer & EFER_SVME)) {
289 			svm_leave_nested(svm);
290 			svm_set_gif(svm, true);
291 
292 			/*
293 			 * Free the nested guest state, unless we are in SMM.
294 			 * In this case we will return to the nested guest
295 			 * as soon as we leave SMM.
296 			 */
297 			if (!is_smm(&svm->vcpu))
298 				svm_free_nested(svm);
299 
300 		} else {
301 			int ret = svm_allocate_nested(svm);
302 
303 			if (ret) {
304 				vcpu->arch.efer = old_efer;
305 				return ret;
306 			}
307 		}
308 	}
309 
310 	svm->vmcb->save.efer = efer | EFER_SVME;
311 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
312 	return 0;
313 }
314 
315 static int is_external_interrupt(u32 info)
316 {
317 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
318 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
319 }
320 
321 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
322 {
323 	struct vcpu_svm *svm = to_svm(vcpu);
324 	u32 ret = 0;
325 
326 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
327 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
328 	return ret;
329 }
330 
331 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
332 {
333 	struct vcpu_svm *svm = to_svm(vcpu);
334 
335 	if (mask == 0)
336 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
337 	else
338 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
339 
340 }
341 
342 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
343 {
344 	struct vcpu_svm *svm = to_svm(vcpu);
345 
346 	/*
347 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
348 	 * the type of exit and the #VC handler in the guest.
349 	 */
350 	if (sev_es_guest(vcpu->kvm))
351 		goto done;
352 
353 	if (nrips && svm->vmcb->control.next_rip != 0) {
354 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
355 		svm->next_rip = svm->vmcb->control.next_rip;
356 	}
357 
358 	if (!svm->next_rip) {
359 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
360 			return 0;
361 	} else {
362 		kvm_rip_write(vcpu, svm->next_rip);
363 	}
364 
365 done:
366 	svm_set_interrupt_shadow(vcpu, 0);
367 
368 	return 1;
369 }
370 
371 static void svm_queue_exception(struct kvm_vcpu *vcpu)
372 {
373 	struct vcpu_svm *svm = to_svm(vcpu);
374 	unsigned nr = vcpu->arch.exception.nr;
375 	bool has_error_code = vcpu->arch.exception.has_error_code;
376 	u32 error_code = vcpu->arch.exception.error_code;
377 
378 	kvm_deliver_exception_payload(&svm->vcpu);
379 
380 	if (nr == BP_VECTOR && !nrips) {
381 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
382 
383 		/*
384 		 * For guest debugging where we have to reinject #BP if some
385 		 * INT3 is guest-owned:
386 		 * Emulate nRIP by moving RIP forward. Will fail if injection
387 		 * raises a fault that is not intercepted. Still better than
388 		 * failing in all cases.
389 		 */
390 		(void)skip_emulated_instruction(&svm->vcpu);
391 		rip = kvm_rip_read(&svm->vcpu);
392 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
393 		svm->int3_injected = rip - old_rip;
394 	}
395 
396 	svm->vmcb->control.event_inj = nr
397 		| SVM_EVTINJ_VALID
398 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
399 		| SVM_EVTINJ_TYPE_EXEPT;
400 	svm->vmcb->control.event_inj_err = error_code;
401 }
402 
403 static void svm_init_erratum_383(void)
404 {
405 	u32 low, high;
406 	int err;
407 	u64 val;
408 
409 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
410 		return;
411 
412 	/* Use _safe variants to not break nested virtualization */
413 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
414 	if (err)
415 		return;
416 
417 	val |= (1ULL << 47);
418 
419 	low  = lower_32_bits(val);
420 	high = upper_32_bits(val);
421 
422 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
423 
424 	erratum_383_found = true;
425 }
426 
427 static void svm_init_osvw(struct kvm_vcpu *vcpu)
428 {
429 	/*
430 	 * Guests should see errata 400 and 415 as fixed (assuming that
431 	 * HLT and IO instructions are intercepted).
432 	 */
433 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
434 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
435 
436 	/*
437 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
438 	 * all osvw.status bits inside that length, including bit 0 (which is
439 	 * reserved for erratum 298), are valid. However, if host processor's
440 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
441 	 * be conservative here and therefore we tell the guest that erratum 298
442 	 * is present (because we really don't know).
443 	 */
444 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
445 		vcpu->arch.osvw.status |= 1;
446 }
447 
448 static int has_svm(void)
449 {
450 	const char *msg;
451 
452 	if (!cpu_has_svm(&msg)) {
453 		printk(KERN_INFO "has_svm: %s\n", msg);
454 		return 0;
455 	}
456 
457 	return 1;
458 }
459 
460 static void svm_hardware_disable(void)
461 {
462 	/* Make sure we clean up behind us */
463 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
464 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
465 
466 	cpu_svm_disable();
467 
468 	amd_pmu_disable_virt();
469 }
470 
471 static int svm_hardware_enable(void)
472 {
473 
474 	struct svm_cpu_data *sd;
475 	uint64_t efer;
476 	struct desc_struct *gdt;
477 	int me = raw_smp_processor_id();
478 
479 	rdmsrl(MSR_EFER, efer);
480 	if (efer & EFER_SVME)
481 		return -EBUSY;
482 
483 	if (!has_svm()) {
484 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
485 		return -EINVAL;
486 	}
487 	sd = per_cpu(svm_data, me);
488 	if (!sd) {
489 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
490 		return -EINVAL;
491 	}
492 
493 	sd->asid_generation = 1;
494 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
495 	sd->next_asid = sd->max_asid + 1;
496 	sd->min_asid = max_sev_asid + 1;
497 
498 	gdt = get_current_gdt_rw();
499 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
500 
501 	wrmsrl(MSR_EFER, efer | EFER_SVME);
502 
503 	wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
504 
505 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
506 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
507 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
508 	}
509 
510 
511 	/*
512 	 * Get OSVW bits.
513 	 *
514 	 * Note that it is possible to have a system with mixed processor
515 	 * revisions and therefore different OSVW bits. If bits are not the same
516 	 * on different processors then choose the worst case (i.e. if erratum
517 	 * is present on one processor and not on another then assume that the
518 	 * erratum is present everywhere).
519 	 */
520 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
521 		uint64_t len, status = 0;
522 		int err;
523 
524 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
525 		if (!err)
526 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
527 						      &err);
528 
529 		if (err)
530 			osvw_status = osvw_len = 0;
531 		else {
532 			if (len < osvw_len)
533 				osvw_len = len;
534 			osvw_status |= status;
535 			osvw_status &= (1ULL << osvw_len) - 1;
536 		}
537 	} else
538 		osvw_status = osvw_len = 0;
539 
540 	svm_init_erratum_383();
541 
542 	amd_pmu_enable_virt();
543 
544 	return 0;
545 }
546 
547 static void svm_cpu_uninit(int cpu)
548 {
549 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
550 
551 	if (!sd)
552 		return;
553 
554 	per_cpu(svm_data, cpu) = NULL;
555 	kfree(sd->sev_vmcbs);
556 	__free_page(sd->save_area);
557 	kfree(sd);
558 }
559 
560 static int svm_cpu_init(int cpu)
561 {
562 	struct svm_cpu_data *sd;
563 
564 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
565 	if (!sd)
566 		return -ENOMEM;
567 	sd->cpu = cpu;
568 	sd->save_area = alloc_page(GFP_KERNEL);
569 	if (!sd->save_area)
570 		goto free_cpu_data;
571 	clear_page(page_address(sd->save_area));
572 
573 	if (svm_sev_enabled()) {
574 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
575 					      sizeof(void *),
576 					      GFP_KERNEL);
577 		if (!sd->sev_vmcbs)
578 			goto free_save_area;
579 	}
580 
581 	per_cpu(svm_data, cpu) = sd;
582 
583 	return 0;
584 
585 free_save_area:
586 	__free_page(sd->save_area);
587 free_cpu_data:
588 	kfree(sd);
589 	return -ENOMEM;
590 
591 }
592 
593 static int direct_access_msr_slot(u32 msr)
594 {
595 	u32 i;
596 
597 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
598 		if (direct_access_msrs[i].index == msr)
599 			return i;
600 
601 	return -ENOENT;
602 }
603 
604 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
605 				     int write)
606 {
607 	struct vcpu_svm *svm = to_svm(vcpu);
608 	int slot = direct_access_msr_slot(msr);
609 
610 	if (slot == -ENOENT)
611 		return;
612 
613 	/* Set the shadow bitmaps to the desired intercept states */
614 	if (read)
615 		set_bit(slot, svm->shadow_msr_intercept.read);
616 	else
617 		clear_bit(slot, svm->shadow_msr_intercept.read);
618 
619 	if (write)
620 		set_bit(slot, svm->shadow_msr_intercept.write);
621 	else
622 		clear_bit(slot, svm->shadow_msr_intercept.write);
623 }
624 
625 static bool valid_msr_intercept(u32 index)
626 {
627 	return direct_access_msr_slot(index) != -ENOENT;
628 }
629 
630 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
631 {
632 	u8 bit_write;
633 	unsigned long tmp;
634 	u32 offset;
635 	u32 *msrpm;
636 
637 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
638 				      to_svm(vcpu)->msrpm;
639 
640 	offset    = svm_msrpm_offset(msr);
641 	bit_write = 2 * (msr & 0x0f) + 1;
642 	tmp       = msrpm[offset];
643 
644 	BUG_ON(offset == MSR_INVALID);
645 
646 	return !!test_bit(bit_write,  &tmp);
647 }
648 
649 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
650 					u32 msr, int read, int write)
651 {
652 	u8 bit_read, bit_write;
653 	unsigned long tmp;
654 	u32 offset;
655 
656 	/*
657 	 * If this warning triggers extend the direct_access_msrs list at the
658 	 * beginning of the file
659 	 */
660 	WARN_ON(!valid_msr_intercept(msr));
661 
662 	/* Enforce non allowed MSRs to trap */
663 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
664 		read = 0;
665 
666 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
667 		write = 0;
668 
669 	offset    = svm_msrpm_offset(msr);
670 	bit_read  = 2 * (msr & 0x0f);
671 	bit_write = 2 * (msr & 0x0f) + 1;
672 	tmp       = msrpm[offset];
673 
674 	BUG_ON(offset == MSR_INVALID);
675 
676 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
677 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
678 
679 	msrpm[offset] = tmp;
680 }
681 
682 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
683 			  int read, int write)
684 {
685 	set_shadow_msr_intercept(vcpu, msr, read, write);
686 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
687 }
688 
689 u32 *svm_vcpu_alloc_msrpm(void)
690 {
691 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
692 	u32 *msrpm;
693 
694 	if (!pages)
695 		return NULL;
696 
697 	msrpm = page_address(pages);
698 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
699 
700 	return msrpm;
701 }
702 
703 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
704 {
705 	int i;
706 
707 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
708 		if (!direct_access_msrs[i].always)
709 			continue;
710 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
711 	}
712 }
713 
714 
715 void svm_vcpu_free_msrpm(u32 *msrpm)
716 {
717 	__free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
718 }
719 
720 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
721 {
722 	struct vcpu_svm *svm = to_svm(vcpu);
723 	u32 i;
724 
725 	/*
726 	 * Set intercept permissions for all direct access MSRs again. They
727 	 * will automatically get filtered through the MSR filter, so we are
728 	 * back in sync after this.
729 	 */
730 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
731 		u32 msr = direct_access_msrs[i].index;
732 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
733 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
734 
735 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
736 	}
737 }
738 
739 static void add_msr_offset(u32 offset)
740 {
741 	int i;
742 
743 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
744 
745 		/* Offset already in list? */
746 		if (msrpm_offsets[i] == offset)
747 			return;
748 
749 		/* Slot used by another offset? */
750 		if (msrpm_offsets[i] != MSR_INVALID)
751 			continue;
752 
753 		/* Add offset to list */
754 		msrpm_offsets[i] = offset;
755 
756 		return;
757 	}
758 
759 	/*
760 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
761 	 * increase MSRPM_OFFSETS in this case.
762 	 */
763 	BUG();
764 }
765 
766 static void init_msrpm_offsets(void)
767 {
768 	int i;
769 
770 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
771 
772 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
773 		u32 offset;
774 
775 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
776 		BUG_ON(offset == MSR_INVALID);
777 
778 		add_msr_offset(offset);
779 	}
780 }
781 
782 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
783 {
784 	struct vcpu_svm *svm = to_svm(vcpu);
785 
786 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
787 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
788 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
789 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
790 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
791 }
792 
793 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
794 {
795 	struct vcpu_svm *svm = to_svm(vcpu);
796 
797 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
798 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
799 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
800 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
801 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
802 }
803 
804 void disable_nmi_singlestep(struct vcpu_svm *svm)
805 {
806 	svm->nmi_singlestep = false;
807 
808 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
809 		/* Clear our flags if they were not set by the guest */
810 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
811 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
812 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
813 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
814 	}
815 }
816 
817 static void grow_ple_window(struct kvm_vcpu *vcpu)
818 {
819 	struct vcpu_svm *svm = to_svm(vcpu);
820 	struct vmcb_control_area *control = &svm->vmcb->control;
821 	int old = control->pause_filter_count;
822 
823 	control->pause_filter_count = __grow_ple_window(old,
824 							pause_filter_count,
825 							pause_filter_count_grow,
826 							pause_filter_count_max);
827 
828 	if (control->pause_filter_count != old) {
829 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
830 		trace_kvm_ple_window_update(vcpu->vcpu_id,
831 					    control->pause_filter_count, old);
832 	}
833 }
834 
835 static void shrink_ple_window(struct kvm_vcpu *vcpu)
836 {
837 	struct vcpu_svm *svm = to_svm(vcpu);
838 	struct vmcb_control_area *control = &svm->vmcb->control;
839 	int old = control->pause_filter_count;
840 
841 	control->pause_filter_count =
842 				__shrink_ple_window(old,
843 						    pause_filter_count,
844 						    pause_filter_count_shrink,
845 						    pause_filter_count);
846 	if (control->pause_filter_count != old) {
847 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
848 		trace_kvm_ple_window_update(vcpu->vcpu_id,
849 					    control->pause_filter_count, old);
850 	}
851 }
852 
853 /*
854  * The default MMIO mask is a single bit (excluding the present bit),
855  * which could conflict with the memory encryption bit. Check for
856  * memory encryption support and override the default MMIO mask if
857  * memory encryption is enabled.
858  */
859 static __init void svm_adjust_mmio_mask(void)
860 {
861 	unsigned int enc_bit, mask_bit;
862 	u64 msr, mask;
863 
864 	/* If there is no memory encryption support, use existing mask */
865 	if (cpuid_eax(0x80000000) < 0x8000001f)
866 		return;
867 
868 	/* If memory encryption is not enabled, use existing mask */
869 	rdmsrl(MSR_K8_SYSCFG, msr);
870 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
871 		return;
872 
873 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
874 	mask_bit = boot_cpu_data.x86_phys_bits;
875 
876 	/* Increment the mask bit if it is the same as the encryption bit */
877 	if (enc_bit == mask_bit)
878 		mask_bit++;
879 
880 	/*
881 	 * If the mask bit location is below 52, then some bits above the
882 	 * physical addressing limit will always be reserved, so use the
883 	 * rsvd_bits() function to generate the mask. This mask, along with
884 	 * the present bit, will be used to generate a page fault with
885 	 * PFER.RSV = 1.
886 	 *
887 	 * If the mask bit location is 52 (or above), then clear the mask.
888 	 */
889 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
890 
891 	kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
892 }
893 
894 static void svm_hardware_teardown(void)
895 {
896 	int cpu;
897 
898 	if (svm_sev_enabled())
899 		sev_hardware_teardown();
900 
901 	for_each_possible_cpu(cpu)
902 		svm_cpu_uninit(cpu);
903 
904 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
905 	iopm_base = 0;
906 }
907 
908 static __init void svm_set_cpu_caps(void)
909 {
910 	kvm_set_cpu_caps();
911 
912 	supported_xss = 0;
913 
914 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
915 	if (nested) {
916 		kvm_cpu_cap_set(X86_FEATURE_SVM);
917 
918 		if (nrips)
919 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
920 
921 		if (npt_enabled)
922 			kvm_cpu_cap_set(X86_FEATURE_NPT);
923 	}
924 
925 	/* CPUID 0x80000008 */
926 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
927 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
928 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
929 
930 	/* Enable INVPCID feature */
931 	kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
932 }
933 
934 static __init int svm_hardware_setup(void)
935 {
936 	int cpu;
937 	struct page *iopm_pages;
938 	void *iopm_va;
939 	int r;
940 
941 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
942 
943 	if (!iopm_pages)
944 		return -ENOMEM;
945 
946 	iopm_va = page_address(iopm_pages);
947 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
948 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
949 
950 	init_msrpm_offsets();
951 
952 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
953 
954 	if (boot_cpu_has(X86_FEATURE_NX))
955 		kvm_enable_efer_bits(EFER_NX);
956 
957 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
958 		kvm_enable_efer_bits(EFER_FFXSR);
959 
960 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
961 		kvm_has_tsc_control = true;
962 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
963 		kvm_tsc_scaling_ratio_frac_bits = 32;
964 	}
965 
966 	/* Check for pause filtering support */
967 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
968 		pause_filter_count = 0;
969 		pause_filter_thresh = 0;
970 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
971 		pause_filter_thresh = 0;
972 	}
973 
974 	if (nested) {
975 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
976 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
977 	}
978 
979 	if (IS_ENABLED(CONFIG_KVM_AMD_SEV) && sev) {
980 		sev_hardware_setup();
981 	} else {
982 		sev = false;
983 		sev_es = false;
984 	}
985 
986 	svm_adjust_mmio_mask();
987 
988 	for_each_possible_cpu(cpu) {
989 		r = svm_cpu_init(cpu);
990 		if (r)
991 			goto err;
992 	}
993 
994 	if (!boot_cpu_has(X86_FEATURE_NPT))
995 		npt_enabled = false;
996 
997 	if (npt_enabled && !npt)
998 		npt_enabled = false;
999 
1000 	kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
1001 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
1002 
1003 	if (nrips) {
1004 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
1005 			nrips = false;
1006 	}
1007 
1008 	if (avic) {
1009 		if (!npt_enabled ||
1010 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
1011 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1012 			avic = false;
1013 		} else {
1014 			pr_info("AVIC enabled\n");
1015 
1016 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1017 		}
1018 	}
1019 
1020 	if (vls) {
1021 		if (!npt_enabled ||
1022 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1023 		    !IS_ENABLED(CONFIG_X86_64)) {
1024 			vls = false;
1025 		} else {
1026 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1027 		}
1028 	}
1029 
1030 	if (vgif) {
1031 		if (!boot_cpu_has(X86_FEATURE_VGIF))
1032 			vgif = false;
1033 		else
1034 			pr_info("Virtual GIF supported\n");
1035 	}
1036 
1037 	svm_set_cpu_caps();
1038 
1039 	/*
1040 	 * It seems that on AMD processors PTE's accessed bit is
1041 	 * being set by the CPU hardware before the NPF vmexit.
1042 	 * This is not expected behaviour and our tests fail because
1043 	 * of it.
1044 	 * A workaround here is to disable support for
1045 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1046 	 * In this case userspace can know if there is support using
1047 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1048 	 * it
1049 	 * If future AMD CPU models change the behaviour described above,
1050 	 * this variable can be changed accordingly
1051 	 */
1052 	allow_smaller_maxphyaddr = !npt_enabled;
1053 
1054 	return 0;
1055 
1056 err:
1057 	svm_hardware_teardown();
1058 	return r;
1059 }
1060 
1061 static void init_seg(struct vmcb_seg *seg)
1062 {
1063 	seg->selector = 0;
1064 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1065 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1066 	seg->limit = 0xffff;
1067 	seg->base = 0;
1068 }
1069 
1070 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1071 {
1072 	seg->selector = 0;
1073 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1074 	seg->limit = 0xffff;
1075 	seg->base = 0;
1076 }
1077 
1078 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1079 {
1080 	struct vcpu_svm *svm = to_svm(vcpu);
1081 	u64 g_tsc_offset = 0;
1082 
1083 	if (is_guest_mode(vcpu)) {
1084 		/* Write L1's TSC offset.  */
1085 		g_tsc_offset = svm->vmcb->control.tsc_offset -
1086 			       svm->nested.hsave->control.tsc_offset;
1087 		svm->nested.hsave->control.tsc_offset = offset;
1088 	}
1089 
1090 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1091 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
1092 				   offset);
1093 
1094 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1095 
1096 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1097 	return svm->vmcb->control.tsc_offset;
1098 }
1099 
1100 static void svm_check_invpcid(struct vcpu_svm *svm)
1101 {
1102 	/*
1103 	 * Intercept INVPCID instruction only if shadow page table is
1104 	 * enabled. Interception is not required with nested page table
1105 	 * enabled.
1106 	 */
1107 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1108 		if (!npt_enabled)
1109 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1110 		else
1111 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1112 	}
1113 }
1114 
1115 static void init_vmcb(struct vcpu_svm *svm)
1116 {
1117 	struct vmcb_control_area *control = &svm->vmcb->control;
1118 	struct vmcb_save_area *save = &svm->vmcb->save;
1119 
1120 	svm->vcpu.arch.hflags = 0;
1121 
1122 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1123 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1124 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1125 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1126 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1127 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1128 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1129 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1130 
1131 	set_dr_intercepts(svm);
1132 
1133 	set_exception_intercept(svm, PF_VECTOR);
1134 	set_exception_intercept(svm, UD_VECTOR);
1135 	set_exception_intercept(svm, MC_VECTOR);
1136 	set_exception_intercept(svm, AC_VECTOR);
1137 	set_exception_intercept(svm, DB_VECTOR);
1138 	/*
1139 	 * Guest access to VMware backdoor ports could legitimately
1140 	 * trigger #GP because of TSS I/O permission bitmap.
1141 	 * We intercept those #GP and allow access to them anyway
1142 	 * as VMware does.
1143 	 */
1144 	if (enable_vmware_backdoor)
1145 		set_exception_intercept(svm, GP_VECTOR);
1146 
1147 	svm_set_intercept(svm, INTERCEPT_INTR);
1148 	svm_set_intercept(svm, INTERCEPT_NMI);
1149 	svm_set_intercept(svm, INTERCEPT_SMI);
1150 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1151 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1152 	svm_set_intercept(svm, INTERCEPT_CPUID);
1153 	svm_set_intercept(svm, INTERCEPT_INVD);
1154 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1155 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1156 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1157 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1158 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1159 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1160 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1161 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1162 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1163 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1164 	svm_set_intercept(svm, INTERCEPT_STGI);
1165 	svm_set_intercept(svm, INTERCEPT_CLGI);
1166 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1167 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1168 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1169 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1170 	svm_set_intercept(svm, INTERCEPT_RSM);
1171 
1172 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1173 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1174 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1175 	}
1176 
1177 	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1178 		svm_set_intercept(svm, INTERCEPT_HLT);
1179 
1180 	control->iopm_base_pa = __sme_set(iopm_base);
1181 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1182 	control->int_ctl = V_INTR_MASKING_MASK;
1183 
1184 	init_seg(&save->es);
1185 	init_seg(&save->ss);
1186 	init_seg(&save->ds);
1187 	init_seg(&save->fs);
1188 	init_seg(&save->gs);
1189 
1190 	save->cs.selector = 0xf000;
1191 	save->cs.base = 0xffff0000;
1192 	/* Executable/Readable Code Segment */
1193 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1194 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1195 	save->cs.limit = 0xffff;
1196 
1197 	save->gdtr.limit = 0xffff;
1198 	save->idtr.limit = 0xffff;
1199 
1200 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1201 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1202 
1203 	svm_set_efer(&svm->vcpu, 0);
1204 	save->dr6 = 0xffff0ff0;
1205 	kvm_set_rflags(&svm->vcpu, 2);
1206 	save->rip = 0x0000fff0;
1207 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1208 
1209 	/*
1210 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1211 	 * It also updates the guest-visible cr0 value.
1212 	 */
1213 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1214 	kvm_mmu_reset_context(&svm->vcpu);
1215 
1216 	save->cr4 = X86_CR4_PAE;
1217 	/* rdx = ?? */
1218 
1219 	if (npt_enabled) {
1220 		/* Setup VMCB for Nested Paging */
1221 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1222 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1223 		clr_exception_intercept(svm, PF_VECTOR);
1224 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1225 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1226 		save->g_pat = svm->vcpu.arch.pat;
1227 		save->cr3 = 0;
1228 		save->cr4 = 0;
1229 	}
1230 	svm->asid_generation = 0;
1231 	svm->asid = 0;
1232 
1233 	svm->nested.vmcb12_gpa = 0;
1234 	svm->vcpu.arch.hflags = 0;
1235 
1236 	if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1237 		control->pause_filter_count = pause_filter_count;
1238 		if (pause_filter_thresh)
1239 			control->pause_filter_thresh = pause_filter_thresh;
1240 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1241 	} else {
1242 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1243 	}
1244 
1245 	svm_check_invpcid(svm);
1246 
1247 	if (kvm_vcpu_apicv_active(&svm->vcpu))
1248 		avic_init_vmcb(svm);
1249 
1250 	/*
1251 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1252 	 * in VMCB and clear intercepts to avoid #VMEXIT.
1253 	 */
1254 	if (vls) {
1255 		svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1256 		svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1257 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1258 	}
1259 
1260 	if (vgif) {
1261 		svm_clr_intercept(svm, INTERCEPT_STGI);
1262 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1263 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1264 	}
1265 
1266 	if (sev_guest(svm->vcpu.kvm)) {
1267 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1268 		clr_exception_intercept(svm, UD_VECTOR);
1269 
1270 		if (sev_es_guest(svm->vcpu.kvm)) {
1271 			/* Perform SEV-ES specific VMCB updates */
1272 			sev_es_init_vmcb(svm);
1273 		}
1274 	}
1275 
1276 	vmcb_mark_all_dirty(svm->vmcb);
1277 
1278 	enable_gif(svm);
1279 
1280 }
1281 
1282 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1283 {
1284 	struct vcpu_svm *svm = to_svm(vcpu);
1285 	u32 dummy;
1286 	u32 eax = 1;
1287 
1288 	svm->spec_ctrl = 0;
1289 	svm->virt_spec_ctrl = 0;
1290 
1291 	if (!init_event) {
1292 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1293 					   MSR_IA32_APICBASE_ENABLE;
1294 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1295 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1296 	}
1297 	init_vmcb(svm);
1298 
1299 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1300 	kvm_rdx_write(vcpu, eax);
1301 
1302 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1303 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1304 }
1305 
1306 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1307 {
1308 	struct vcpu_svm *svm;
1309 	struct page *vmcb_page;
1310 	struct page *vmsa_page = NULL;
1311 	int err;
1312 
1313 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1314 	svm = to_svm(vcpu);
1315 
1316 	err = -ENOMEM;
1317 	vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1318 	if (!vmcb_page)
1319 		goto out;
1320 
1321 	if (sev_es_guest(svm->vcpu.kvm)) {
1322 		/*
1323 		 * SEV-ES guests require a separate VMSA page used to contain
1324 		 * the encrypted register state of the guest.
1325 		 */
1326 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1327 		if (!vmsa_page)
1328 			goto error_free_vmcb_page;
1329 
1330 		/*
1331 		 * SEV-ES guests maintain an encrypted version of their FPU
1332 		 * state which is restored and saved on VMRUN and VMEXIT.
1333 		 * Free the fpu structure to prevent KVM from attempting to
1334 		 * access the FPU state.
1335 		 */
1336 		kvm_free_guest_fpu(vcpu);
1337 	}
1338 
1339 	err = avic_init_vcpu(svm);
1340 	if (err)
1341 		goto error_free_vmsa_page;
1342 
1343 	/* We initialize this flag to true to make sure that the is_running
1344 	 * bit would be set the first time the vcpu is loaded.
1345 	 */
1346 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1347 		svm->avic_is_running = true;
1348 
1349 	svm->msrpm = svm_vcpu_alloc_msrpm();
1350 	if (!svm->msrpm) {
1351 		err = -ENOMEM;
1352 		goto error_free_vmsa_page;
1353 	}
1354 
1355 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1356 
1357 	svm->vmcb = page_address(vmcb_page);
1358 	svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
1359 
1360 	if (vmsa_page)
1361 		svm->vmsa = page_address(vmsa_page);
1362 
1363 	svm->asid_generation = 0;
1364 	init_vmcb(svm);
1365 
1366 	svm_init_osvw(vcpu);
1367 	vcpu->arch.microcode_version = 0x01000065;
1368 
1369 	if (sev_es_guest(svm->vcpu.kvm))
1370 		/* Perform SEV-ES specific VMCB creation updates */
1371 		sev_es_create_vcpu(svm);
1372 
1373 	return 0;
1374 
1375 error_free_vmsa_page:
1376 	if (vmsa_page)
1377 		__free_page(vmsa_page);
1378 error_free_vmcb_page:
1379 	__free_page(vmcb_page);
1380 out:
1381 	return err;
1382 }
1383 
1384 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1385 {
1386 	int i;
1387 
1388 	for_each_online_cpu(i)
1389 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1390 }
1391 
1392 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1393 {
1394 	struct vcpu_svm *svm = to_svm(vcpu);
1395 
1396 	/*
1397 	 * The vmcb page can be recycled, causing a false negative in
1398 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1399 	 * vmcb page recorded as its current vmcb.
1400 	 */
1401 	svm_clear_current_vmcb(svm->vmcb);
1402 
1403 	svm_free_nested(svm);
1404 
1405 	sev_free_vcpu(vcpu);
1406 
1407 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1408 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1409 }
1410 
1411 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1412 {
1413 	struct vcpu_svm *svm = to_svm(vcpu);
1414 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1415 	int i;
1416 
1417 	if (unlikely(cpu != vcpu->cpu)) {
1418 		svm->asid_generation = 0;
1419 		vmcb_mark_all_dirty(svm->vmcb);
1420 	}
1421 
1422 	if (sev_es_guest(svm->vcpu.kvm)) {
1423 		sev_es_vcpu_load(svm, cpu);
1424 	} else {
1425 #ifdef CONFIG_X86_64
1426 		rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1427 #endif
1428 		savesegment(fs, svm->host.fs);
1429 		savesegment(gs, svm->host.gs);
1430 		svm->host.ldt = kvm_read_ldt();
1431 
1432 		for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1433 			rdmsrl(host_save_user_msrs[i].index,
1434 			       svm->host_user_msrs[i]);
1435 	}
1436 
1437 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1438 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1439 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1440 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1441 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1442 		}
1443 	}
1444 	/* This assumes that the kernel never uses MSR_TSC_AUX */
1445 	if (static_cpu_has(X86_FEATURE_RDTSCP))
1446 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1447 
1448 	if (sd->current_vmcb != svm->vmcb) {
1449 		sd->current_vmcb = svm->vmcb;
1450 		indirect_branch_prediction_barrier();
1451 	}
1452 	avic_vcpu_load(vcpu, cpu);
1453 }
1454 
1455 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1456 {
1457 	struct vcpu_svm *svm = to_svm(vcpu);
1458 	int i;
1459 
1460 	avic_vcpu_put(vcpu);
1461 
1462 	++vcpu->stat.host_state_reload;
1463 	if (sev_es_guest(svm->vcpu.kvm)) {
1464 		sev_es_vcpu_put(svm);
1465 	} else {
1466 		kvm_load_ldt(svm->host.ldt);
1467 #ifdef CONFIG_X86_64
1468 		loadsegment(fs, svm->host.fs);
1469 		wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1470 		load_gs_index(svm->host.gs);
1471 #else
1472 #ifdef CONFIG_X86_32_LAZY_GS
1473 		loadsegment(gs, svm->host.gs);
1474 #endif
1475 #endif
1476 
1477 		for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1478 			wrmsrl(host_save_user_msrs[i].index,
1479 			       svm->host_user_msrs[i]);
1480 	}
1481 }
1482 
1483 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1484 {
1485 	struct vcpu_svm *svm = to_svm(vcpu);
1486 	unsigned long rflags = svm->vmcb->save.rflags;
1487 
1488 	if (svm->nmi_singlestep) {
1489 		/* Hide our flags if they were not set by the guest */
1490 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1491 			rflags &= ~X86_EFLAGS_TF;
1492 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1493 			rflags &= ~X86_EFLAGS_RF;
1494 	}
1495 	return rflags;
1496 }
1497 
1498 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1499 {
1500 	if (to_svm(vcpu)->nmi_singlestep)
1501 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1502 
1503        /*
1504         * Any change of EFLAGS.VM is accompanied by a reload of SS
1505         * (caused by either a task switch or an inter-privilege IRET),
1506         * so we do not need to update the CPL here.
1507         */
1508 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1509 }
1510 
1511 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1512 {
1513 	switch (reg) {
1514 	case VCPU_EXREG_PDPTR:
1515 		BUG_ON(!npt_enabled);
1516 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1517 		break;
1518 	default:
1519 		WARN_ON_ONCE(1);
1520 	}
1521 }
1522 
1523 static void svm_set_vintr(struct vcpu_svm *svm)
1524 {
1525 	struct vmcb_control_area *control;
1526 
1527 	/* The following fields are ignored when AVIC is enabled */
1528 	WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1529 	svm_set_intercept(svm, INTERCEPT_VINTR);
1530 
1531 	/*
1532 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1533 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1534 	 */
1535 	control = &svm->vmcb->control;
1536 	control->int_vector = 0x0;
1537 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1538 	control->int_ctl |= V_IRQ_MASK |
1539 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1540 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1541 }
1542 
1543 static void svm_clear_vintr(struct vcpu_svm *svm)
1544 {
1545 	const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1546 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1547 
1548 	/* Drop int_ctl fields related to VINTR injection.  */
1549 	svm->vmcb->control.int_ctl &= mask;
1550 	if (is_guest_mode(&svm->vcpu)) {
1551 		svm->nested.hsave->control.int_ctl &= mask;
1552 
1553 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1554 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1555 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1556 	}
1557 
1558 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1559 }
1560 
1561 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1562 {
1563 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1564 
1565 	switch (seg) {
1566 	case VCPU_SREG_CS: return &save->cs;
1567 	case VCPU_SREG_DS: return &save->ds;
1568 	case VCPU_SREG_ES: return &save->es;
1569 	case VCPU_SREG_FS: return &save->fs;
1570 	case VCPU_SREG_GS: return &save->gs;
1571 	case VCPU_SREG_SS: return &save->ss;
1572 	case VCPU_SREG_TR: return &save->tr;
1573 	case VCPU_SREG_LDTR: return &save->ldtr;
1574 	}
1575 	BUG();
1576 	return NULL;
1577 }
1578 
1579 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1580 {
1581 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1582 
1583 	return s->base;
1584 }
1585 
1586 static void svm_get_segment(struct kvm_vcpu *vcpu,
1587 			    struct kvm_segment *var, int seg)
1588 {
1589 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1590 
1591 	var->base = s->base;
1592 	var->limit = s->limit;
1593 	var->selector = s->selector;
1594 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1595 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1596 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1597 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1598 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1599 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1600 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1601 
1602 	/*
1603 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1604 	 * However, the SVM spec states that the G bit is not observed by the
1605 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1606 	 * So let's synthesize a legal G bit for all segments, this helps
1607 	 * running KVM nested. It also helps cross-vendor migration, because
1608 	 * Intel's vmentry has a check on the 'G' bit.
1609 	 */
1610 	var->g = s->limit > 0xfffff;
1611 
1612 	/*
1613 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1614 	 * for cross vendor migration purposes by "not present"
1615 	 */
1616 	var->unusable = !var->present;
1617 
1618 	switch (seg) {
1619 	case VCPU_SREG_TR:
1620 		/*
1621 		 * Work around a bug where the busy flag in the tr selector
1622 		 * isn't exposed
1623 		 */
1624 		var->type |= 0x2;
1625 		break;
1626 	case VCPU_SREG_DS:
1627 	case VCPU_SREG_ES:
1628 	case VCPU_SREG_FS:
1629 	case VCPU_SREG_GS:
1630 		/*
1631 		 * The accessed bit must always be set in the segment
1632 		 * descriptor cache, although it can be cleared in the
1633 		 * descriptor, the cached bit always remains at 1. Since
1634 		 * Intel has a check on this, set it here to support
1635 		 * cross-vendor migration.
1636 		 */
1637 		if (!var->unusable)
1638 			var->type |= 0x1;
1639 		break;
1640 	case VCPU_SREG_SS:
1641 		/*
1642 		 * On AMD CPUs sometimes the DB bit in the segment
1643 		 * descriptor is left as 1, although the whole segment has
1644 		 * been made unusable. Clear it here to pass an Intel VMX
1645 		 * entry check when cross vendor migrating.
1646 		 */
1647 		if (var->unusable)
1648 			var->db = 0;
1649 		/* This is symmetric with svm_set_segment() */
1650 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1651 		break;
1652 	}
1653 }
1654 
1655 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1656 {
1657 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1658 
1659 	return save->cpl;
1660 }
1661 
1662 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1663 {
1664 	struct vcpu_svm *svm = to_svm(vcpu);
1665 
1666 	dt->size = svm->vmcb->save.idtr.limit;
1667 	dt->address = svm->vmcb->save.idtr.base;
1668 }
1669 
1670 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1671 {
1672 	struct vcpu_svm *svm = to_svm(vcpu);
1673 
1674 	svm->vmcb->save.idtr.limit = dt->size;
1675 	svm->vmcb->save.idtr.base = dt->address ;
1676 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1677 }
1678 
1679 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1680 {
1681 	struct vcpu_svm *svm = to_svm(vcpu);
1682 
1683 	dt->size = svm->vmcb->save.gdtr.limit;
1684 	dt->address = svm->vmcb->save.gdtr.base;
1685 }
1686 
1687 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1688 {
1689 	struct vcpu_svm *svm = to_svm(vcpu);
1690 
1691 	svm->vmcb->save.gdtr.limit = dt->size;
1692 	svm->vmcb->save.gdtr.base = dt->address ;
1693 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1694 }
1695 
1696 static void update_cr0_intercept(struct vcpu_svm *svm)
1697 {
1698 	ulong gcr0;
1699 	u64 *hcr0;
1700 
1701 	/*
1702 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1703 	 * tracking is done using the CR write traps.
1704 	 */
1705 	if (sev_es_guest(svm->vcpu.kvm))
1706 		return;
1707 
1708 	gcr0 = svm->vcpu.arch.cr0;
1709 	hcr0 = &svm->vmcb->save.cr0;
1710 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1711 		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1712 
1713 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1714 
1715 	if (gcr0 == *hcr0) {
1716 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1717 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1718 	} else {
1719 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1720 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1721 	}
1722 }
1723 
1724 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1725 {
1726 	struct vcpu_svm *svm = to_svm(vcpu);
1727 
1728 #ifdef CONFIG_X86_64
1729 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1730 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1731 			vcpu->arch.efer |= EFER_LMA;
1732 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1733 		}
1734 
1735 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1736 			vcpu->arch.efer &= ~EFER_LMA;
1737 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1738 		}
1739 	}
1740 #endif
1741 	vcpu->arch.cr0 = cr0;
1742 
1743 	if (!npt_enabled)
1744 		cr0 |= X86_CR0_PG | X86_CR0_WP;
1745 
1746 	/*
1747 	 * re-enable caching here because the QEMU bios
1748 	 * does not do it - this results in some delay at
1749 	 * reboot
1750 	 */
1751 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1752 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1753 	svm->vmcb->save.cr0 = cr0;
1754 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1755 	update_cr0_intercept(svm);
1756 }
1757 
1758 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1759 {
1760 	return true;
1761 }
1762 
1763 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1764 {
1765 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1766 	unsigned long old_cr4 = vcpu->arch.cr4;
1767 
1768 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1769 		svm_flush_tlb(vcpu);
1770 
1771 	vcpu->arch.cr4 = cr4;
1772 	if (!npt_enabled)
1773 		cr4 |= X86_CR4_PAE;
1774 	cr4 |= host_cr4_mce;
1775 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1776 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1777 
1778 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1779 		kvm_update_cpuid_runtime(vcpu);
1780 }
1781 
1782 static void svm_set_segment(struct kvm_vcpu *vcpu,
1783 			    struct kvm_segment *var, int seg)
1784 {
1785 	struct vcpu_svm *svm = to_svm(vcpu);
1786 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1787 
1788 	s->base = var->base;
1789 	s->limit = var->limit;
1790 	s->selector = var->selector;
1791 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1792 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1793 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1794 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1795 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1796 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1797 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1798 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1799 
1800 	/*
1801 	 * This is always accurate, except if SYSRET returned to a segment
1802 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1803 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1804 	 * would entail passing the CPL to userspace and back.
1805 	 */
1806 	if (seg == VCPU_SREG_SS)
1807 		/* This is symmetric with svm_get_segment() */
1808 		svm->vmcb->save.cpl = (var->dpl & 3);
1809 
1810 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1811 }
1812 
1813 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1814 {
1815 	struct vcpu_svm *svm = to_svm(vcpu);
1816 
1817 	clr_exception_intercept(svm, BP_VECTOR);
1818 
1819 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1820 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1821 			set_exception_intercept(svm, BP_VECTOR);
1822 	}
1823 }
1824 
1825 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1826 {
1827 	if (sd->next_asid > sd->max_asid) {
1828 		++sd->asid_generation;
1829 		sd->next_asid = sd->min_asid;
1830 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1831 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1832 	}
1833 
1834 	svm->asid_generation = sd->asid_generation;
1835 	svm->asid = sd->next_asid++;
1836 }
1837 
1838 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1839 {
1840 	struct vmcb *vmcb = svm->vmcb;
1841 
1842 	if (svm->vcpu.arch.guest_state_protected)
1843 		return;
1844 
1845 	if (unlikely(value != vmcb->save.dr6)) {
1846 		vmcb->save.dr6 = value;
1847 		vmcb_mark_dirty(vmcb, VMCB_DR);
1848 	}
1849 }
1850 
1851 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1852 {
1853 	struct vcpu_svm *svm = to_svm(vcpu);
1854 
1855 	if (vcpu->arch.guest_state_protected)
1856 		return;
1857 
1858 	get_debugreg(vcpu->arch.db[0], 0);
1859 	get_debugreg(vcpu->arch.db[1], 1);
1860 	get_debugreg(vcpu->arch.db[2], 2);
1861 	get_debugreg(vcpu->arch.db[3], 3);
1862 	/*
1863 	 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1864 	 * because db_interception might need it.  We can do it before vmentry.
1865 	 */
1866 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1867 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1868 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1869 	set_dr_intercepts(svm);
1870 }
1871 
1872 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1873 {
1874 	struct vcpu_svm *svm = to_svm(vcpu);
1875 
1876 	if (vcpu->arch.guest_state_protected)
1877 		return;
1878 
1879 	svm->vmcb->save.dr7 = value;
1880 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1881 }
1882 
1883 static int pf_interception(struct vcpu_svm *svm)
1884 {
1885 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1886 	u64 error_code = svm->vmcb->control.exit_info_1;
1887 
1888 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1889 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1890 			svm->vmcb->control.insn_bytes : NULL,
1891 			svm->vmcb->control.insn_len);
1892 }
1893 
1894 static int npf_interception(struct vcpu_svm *svm)
1895 {
1896 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1897 	u64 error_code = svm->vmcb->control.exit_info_1;
1898 
1899 	trace_kvm_page_fault(fault_address, error_code);
1900 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1901 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1902 			svm->vmcb->control.insn_bytes : NULL,
1903 			svm->vmcb->control.insn_len);
1904 }
1905 
1906 static int db_interception(struct vcpu_svm *svm)
1907 {
1908 	struct kvm_run *kvm_run = svm->vcpu.run;
1909 	struct kvm_vcpu *vcpu = &svm->vcpu;
1910 
1911 	if (!(svm->vcpu.guest_debug &
1912 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1913 		!svm->nmi_singlestep) {
1914 		u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1915 		kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1916 		return 1;
1917 	}
1918 
1919 	if (svm->nmi_singlestep) {
1920 		disable_nmi_singlestep(svm);
1921 		/* Make sure we check for pending NMIs upon entry */
1922 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1923 	}
1924 
1925 	if (svm->vcpu.guest_debug &
1926 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1927 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1928 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1929 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1930 		kvm_run->debug.arch.pc =
1931 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1932 		kvm_run->debug.arch.exception = DB_VECTOR;
1933 		return 0;
1934 	}
1935 
1936 	return 1;
1937 }
1938 
1939 static int bp_interception(struct vcpu_svm *svm)
1940 {
1941 	struct kvm_run *kvm_run = svm->vcpu.run;
1942 
1943 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1944 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1945 	kvm_run->debug.arch.exception = BP_VECTOR;
1946 	return 0;
1947 }
1948 
1949 static int ud_interception(struct vcpu_svm *svm)
1950 {
1951 	return handle_ud(&svm->vcpu);
1952 }
1953 
1954 static int ac_interception(struct vcpu_svm *svm)
1955 {
1956 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1957 	return 1;
1958 }
1959 
1960 static int gp_interception(struct vcpu_svm *svm)
1961 {
1962 	struct kvm_vcpu *vcpu = &svm->vcpu;
1963 	u32 error_code = svm->vmcb->control.exit_info_1;
1964 
1965 	WARN_ON_ONCE(!enable_vmware_backdoor);
1966 
1967 	/*
1968 	 * VMware backdoor emulation on #GP interception only handles IN{S},
1969 	 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1970 	 */
1971 	if (error_code) {
1972 		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1973 		return 1;
1974 	}
1975 	return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1976 }
1977 
1978 static bool is_erratum_383(void)
1979 {
1980 	int err, i;
1981 	u64 value;
1982 
1983 	if (!erratum_383_found)
1984 		return false;
1985 
1986 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1987 	if (err)
1988 		return false;
1989 
1990 	/* Bit 62 may or may not be set for this mce */
1991 	value &= ~(1ULL << 62);
1992 
1993 	if (value != 0xb600000000010015ULL)
1994 		return false;
1995 
1996 	/* Clear MCi_STATUS registers */
1997 	for (i = 0; i < 6; ++i)
1998 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1999 
2000 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2001 	if (!err) {
2002 		u32 low, high;
2003 
2004 		value &= ~(1ULL << 2);
2005 		low    = lower_32_bits(value);
2006 		high   = upper_32_bits(value);
2007 
2008 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2009 	}
2010 
2011 	/* Flush tlb to evict multi-match entries */
2012 	__flush_tlb_all();
2013 
2014 	return true;
2015 }
2016 
2017 static void svm_handle_mce(struct vcpu_svm *svm)
2018 {
2019 	if (is_erratum_383()) {
2020 		/*
2021 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2022 		 * guest.
2023 		 */
2024 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2025 
2026 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2027 
2028 		return;
2029 	}
2030 
2031 	/*
2032 	 * On an #MC intercept the MCE handler is not called automatically in
2033 	 * the host. So do it by hand here.
2034 	 */
2035 	kvm_machine_check();
2036 }
2037 
2038 static int mc_interception(struct vcpu_svm *svm)
2039 {
2040 	return 1;
2041 }
2042 
2043 static int shutdown_interception(struct vcpu_svm *svm)
2044 {
2045 	struct kvm_run *kvm_run = svm->vcpu.run;
2046 
2047 	/*
2048 	 * The VM save area has already been encrypted so it
2049 	 * cannot be reinitialized - just terminate.
2050 	 */
2051 	if (sev_es_guest(svm->vcpu.kvm))
2052 		return -EINVAL;
2053 
2054 	/*
2055 	 * VMCB is undefined after a SHUTDOWN intercept
2056 	 * so reinitialize it.
2057 	 */
2058 	clear_page(svm->vmcb);
2059 	init_vmcb(svm);
2060 
2061 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2062 	return 0;
2063 }
2064 
2065 static int io_interception(struct vcpu_svm *svm)
2066 {
2067 	struct kvm_vcpu *vcpu = &svm->vcpu;
2068 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2069 	int size, in, string;
2070 	unsigned port;
2071 
2072 	++svm->vcpu.stat.io_exits;
2073 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2074 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2075 	port = io_info >> 16;
2076 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2077 
2078 	if (string) {
2079 		if (sev_es_guest(vcpu->kvm))
2080 			return sev_es_string_io(svm, size, port, in);
2081 		else
2082 			return kvm_emulate_instruction(vcpu, 0);
2083 	}
2084 
2085 	svm->next_rip = svm->vmcb->control.exit_info_2;
2086 
2087 	return kvm_fast_pio(&svm->vcpu, size, port, in);
2088 }
2089 
2090 static int nmi_interception(struct vcpu_svm *svm)
2091 {
2092 	return 1;
2093 }
2094 
2095 static int intr_interception(struct vcpu_svm *svm)
2096 {
2097 	++svm->vcpu.stat.irq_exits;
2098 	return 1;
2099 }
2100 
2101 static int nop_on_interception(struct vcpu_svm *svm)
2102 {
2103 	return 1;
2104 }
2105 
2106 static int halt_interception(struct vcpu_svm *svm)
2107 {
2108 	return kvm_emulate_halt(&svm->vcpu);
2109 }
2110 
2111 static int vmmcall_interception(struct vcpu_svm *svm)
2112 {
2113 	return kvm_emulate_hypercall(&svm->vcpu);
2114 }
2115 
2116 static int vmload_interception(struct vcpu_svm *svm)
2117 {
2118 	struct vmcb *nested_vmcb;
2119 	struct kvm_host_map map;
2120 	int ret;
2121 
2122 	if (nested_svm_check_permissions(svm))
2123 		return 1;
2124 
2125 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2126 	if (ret) {
2127 		if (ret == -EINVAL)
2128 			kvm_inject_gp(&svm->vcpu, 0);
2129 		return 1;
2130 	}
2131 
2132 	nested_vmcb = map.hva;
2133 
2134 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2135 
2136 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2137 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2138 
2139 	return ret;
2140 }
2141 
2142 static int vmsave_interception(struct vcpu_svm *svm)
2143 {
2144 	struct vmcb *nested_vmcb;
2145 	struct kvm_host_map map;
2146 	int ret;
2147 
2148 	if (nested_svm_check_permissions(svm))
2149 		return 1;
2150 
2151 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2152 	if (ret) {
2153 		if (ret == -EINVAL)
2154 			kvm_inject_gp(&svm->vcpu, 0);
2155 		return 1;
2156 	}
2157 
2158 	nested_vmcb = map.hva;
2159 
2160 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2161 
2162 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2163 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2164 
2165 	return ret;
2166 }
2167 
2168 static int vmrun_interception(struct vcpu_svm *svm)
2169 {
2170 	if (nested_svm_check_permissions(svm))
2171 		return 1;
2172 
2173 	return nested_svm_vmrun(svm);
2174 }
2175 
2176 void svm_set_gif(struct vcpu_svm *svm, bool value)
2177 {
2178 	if (value) {
2179 		/*
2180 		 * If VGIF is enabled, the STGI intercept is only added to
2181 		 * detect the opening of the SMI/NMI window; remove it now.
2182 		 * Likewise, clear the VINTR intercept, we will set it
2183 		 * again while processing KVM_REQ_EVENT if needed.
2184 		 */
2185 		if (vgif_enabled(svm))
2186 			svm_clr_intercept(svm, INTERCEPT_STGI);
2187 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2188 			svm_clear_vintr(svm);
2189 
2190 		enable_gif(svm);
2191 		if (svm->vcpu.arch.smi_pending ||
2192 		    svm->vcpu.arch.nmi_pending ||
2193 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2194 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2195 	} else {
2196 		disable_gif(svm);
2197 
2198 		/*
2199 		 * After a CLGI no interrupts should come.  But if vGIF is
2200 		 * in use, we still rely on the VINTR intercept (rather than
2201 		 * STGI) to detect an open interrupt window.
2202 		*/
2203 		if (!vgif_enabled(svm))
2204 			svm_clear_vintr(svm);
2205 	}
2206 }
2207 
2208 static int stgi_interception(struct vcpu_svm *svm)
2209 {
2210 	int ret;
2211 
2212 	if (nested_svm_check_permissions(svm))
2213 		return 1;
2214 
2215 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2216 	svm_set_gif(svm, true);
2217 	return ret;
2218 }
2219 
2220 static int clgi_interception(struct vcpu_svm *svm)
2221 {
2222 	int ret;
2223 
2224 	if (nested_svm_check_permissions(svm))
2225 		return 1;
2226 
2227 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2228 	svm_set_gif(svm, false);
2229 	return ret;
2230 }
2231 
2232 static int invlpga_interception(struct vcpu_svm *svm)
2233 {
2234 	struct kvm_vcpu *vcpu = &svm->vcpu;
2235 
2236 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2237 			  kvm_rax_read(&svm->vcpu));
2238 
2239 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2240 	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2241 
2242 	return kvm_skip_emulated_instruction(&svm->vcpu);
2243 }
2244 
2245 static int skinit_interception(struct vcpu_svm *svm)
2246 {
2247 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2248 
2249 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2250 	return 1;
2251 }
2252 
2253 static int wbinvd_interception(struct vcpu_svm *svm)
2254 {
2255 	return kvm_emulate_wbinvd(&svm->vcpu);
2256 }
2257 
2258 static int xsetbv_interception(struct vcpu_svm *svm)
2259 {
2260 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2261 	u32 index = kvm_rcx_read(&svm->vcpu);
2262 
2263 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2264 		return kvm_skip_emulated_instruction(&svm->vcpu);
2265 	}
2266 
2267 	return 1;
2268 }
2269 
2270 static int rdpru_interception(struct vcpu_svm *svm)
2271 {
2272 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2273 	return 1;
2274 }
2275 
2276 static int task_switch_interception(struct vcpu_svm *svm)
2277 {
2278 	u16 tss_selector;
2279 	int reason;
2280 	int int_type = svm->vmcb->control.exit_int_info &
2281 		SVM_EXITINTINFO_TYPE_MASK;
2282 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2283 	uint32_t type =
2284 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2285 	uint32_t idt_v =
2286 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2287 	bool has_error_code = false;
2288 	u32 error_code = 0;
2289 
2290 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2291 
2292 	if (svm->vmcb->control.exit_info_2 &
2293 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2294 		reason = TASK_SWITCH_IRET;
2295 	else if (svm->vmcb->control.exit_info_2 &
2296 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2297 		reason = TASK_SWITCH_JMP;
2298 	else if (idt_v)
2299 		reason = TASK_SWITCH_GATE;
2300 	else
2301 		reason = TASK_SWITCH_CALL;
2302 
2303 	if (reason == TASK_SWITCH_GATE) {
2304 		switch (type) {
2305 		case SVM_EXITINTINFO_TYPE_NMI:
2306 			svm->vcpu.arch.nmi_injected = false;
2307 			break;
2308 		case SVM_EXITINTINFO_TYPE_EXEPT:
2309 			if (svm->vmcb->control.exit_info_2 &
2310 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2311 				has_error_code = true;
2312 				error_code =
2313 					(u32)svm->vmcb->control.exit_info_2;
2314 			}
2315 			kvm_clear_exception_queue(&svm->vcpu);
2316 			break;
2317 		case SVM_EXITINTINFO_TYPE_INTR:
2318 			kvm_clear_interrupt_queue(&svm->vcpu);
2319 			break;
2320 		default:
2321 			break;
2322 		}
2323 	}
2324 
2325 	if (reason != TASK_SWITCH_GATE ||
2326 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2327 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2328 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2329 		if (!skip_emulated_instruction(&svm->vcpu))
2330 			return 0;
2331 	}
2332 
2333 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2334 		int_vec = -1;
2335 
2336 	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2337 			       has_error_code, error_code);
2338 }
2339 
2340 static int cpuid_interception(struct vcpu_svm *svm)
2341 {
2342 	return kvm_emulate_cpuid(&svm->vcpu);
2343 }
2344 
2345 static int iret_interception(struct vcpu_svm *svm)
2346 {
2347 	++svm->vcpu.stat.nmi_window_exits;
2348 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2349 	if (!sev_es_guest(svm->vcpu.kvm)) {
2350 		svm_clr_intercept(svm, INTERCEPT_IRET);
2351 		svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2352 	}
2353 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2354 	return 1;
2355 }
2356 
2357 static int invd_interception(struct vcpu_svm *svm)
2358 {
2359 	/* Treat an INVD instruction as a NOP and just skip it. */
2360 	return kvm_skip_emulated_instruction(&svm->vcpu);
2361 }
2362 
2363 static int invlpg_interception(struct vcpu_svm *svm)
2364 {
2365 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2366 		return kvm_emulate_instruction(&svm->vcpu, 0);
2367 
2368 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2369 	return kvm_skip_emulated_instruction(&svm->vcpu);
2370 }
2371 
2372 static int emulate_on_interception(struct vcpu_svm *svm)
2373 {
2374 	return kvm_emulate_instruction(&svm->vcpu, 0);
2375 }
2376 
2377 static int rsm_interception(struct vcpu_svm *svm)
2378 {
2379 	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2380 }
2381 
2382 static int rdpmc_interception(struct vcpu_svm *svm)
2383 {
2384 	int err;
2385 
2386 	if (!nrips)
2387 		return emulate_on_interception(svm);
2388 
2389 	err = kvm_rdpmc(&svm->vcpu);
2390 	return kvm_complete_insn_gp(&svm->vcpu, err);
2391 }
2392 
2393 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2394 					    unsigned long val)
2395 {
2396 	unsigned long cr0 = svm->vcpu.arch.cr0;
2397 	bool ret = false;
2398 
2399 	if (!is_guest_mode(&svm->vcpu) ||
2400 	    (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2401 		return false;
2402 
2403 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2404 	val &= ~SVM_CR0_SELECTIVE_MASK;
2405 
2406 	if (cr0 ^ val) {
2407 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2408 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2409 	}
2410 
2411 	return ret;
2412 }
2413 
2414 #define CR_VALID (1ULL << 63)
2415 
2416 static int cr_interception(struct vcpu_svm *svm)
2417 {
2418 	int reg, cr;
2419 	unsigned long val;
2420 	int err;
2421 
2422 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2423 		return emulate_on_interception(svm);
2424 
2425 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2426 		return emulate_on_interception(svm);
2427 
2428 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2429 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2430 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2431 	else
2432 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2433 
2434 	err = 0;
2435 	if (cr >= 16) { /* mov to cr */
2436 		cr -= 16;
2437 		val = kvm_register_read(&svm->vcpu, reg);
2438 		trace_kvm_cr_write(cr, val);
2439 		switch (cr) {
2440 		case 0:
2441 			if (!check_selective_cr0_intercepted(svm, val))
2442 				err = kvm_set_cr0(&svm->vcpu, val);
2443 			else
2444 				return 1;
2445 
2446 			break;
2447 		case 3:
2448 			err = kvm_set_cr3(&svm->vcpu, val);
2449 			break;
2450 		case 4:
2451 			err = kvm_set_cr4(&svm->vcpu, val);
2452 			break;
2453 		case 8:
2454 			err = kvm_set_cr8(&svm->vcpu, val);
2455 			break;
2456 		default:
2457 			WARN(1, "unhandled write to CR%d", cr);
2458 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2459 			return 1;
2460 		}
2461 	} else { /* mov from cr */
2462 		switch (cr) {
2463 		case 0:
2464 			val = kvm_read_cr0(&svm->vcpu);
2465 			break;
2466 		case 2:
2467 			val = svm->vcpu.arch.cr2;
2468 			break;
2469 		case 3:
2470 			val = kvm_read_cr3(&svm->vcpu);
2471 			break;
2472 		case 4:
2473 			val = kvm_read_cr4(&svm->vcpu);
2474 			break;
2475 		case 8:
2476 			val = kvm_get_cr8(&svm->vcpu);
2477 			break;
2478 		default:
2479 			WARN(1, "unhandled read from CR%d", cr);
2480 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2481 			return 1;
2482 		}
2483 		kvm_register_write(&svm->vcpu, reg, val);
2484 		trace_kvm_cr_read(cr, val);
2485 	}
2486 	return kvm_complete_insn_gp(&svm->vcpu, err);
2487 }
2488 
2489 static int cr_trap(struct vcpu_svm *svm)
2490 {
2491 	struct kvm_vcpu *vcpu = &svm->vcpu;
2492 	unsigned long old_value, new_value;
2493 	unsigned int cr;
2494 	int ret = 0;
2495 
2496 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2497 
2498 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2499 	switch (cr) {
2500 	case 0:
2501 		old_value = kvm_read_cr0(vcpu);
2502 		svm_set_cr0(vcpu, new_value);
2503 
2504 		kvm_post_set_cr0(vcpu, old_value, new_value);
2505 		break;
2506 	case 4:
2507 		old_value = kvm_read_cr4(vcpu);
2508 		svm_set_cr4(vcpu, new_value);
2509 
2510 		kvm_post_set_cr4(vcpu, old_value, new_value);
2511 		break;
2512 	case 8:
2513 		ret = kvm_set_cr8(&svm->vcpu, new_value);
2514 		break;
2515 	default:
2516 		WARN(1, "unhandled CR%d write trap", cr);
2517 		kvm_queue_exception(vcpu, UD_VECTOR);
2518 		return 1;
2519 	}
2520 
2521 	return kvm_complete_insn_gp(vcpu, ret);
2522 }
2523 
2524 static int dr_interception(struct vcpu_svm *svm)
2525 {
2526 	int reg, dr;
2527 	unsigned long val;
2528 
2529 	if (svm->vcpu.guest_debug == 0) {
2530 		/*
2531 		 * No more DR vmexits; force a reload of the debug registers
2532 		 * and reenter on this instruction.  The next vmexit will
2533 		 * retrieve the full state of the debug registers.
2534 		 */
2535 		clr_dr_intercepts(svm);
2536 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2537 		return 1;
2538 	}
2539 
2540 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2541 		return emulate_on_interception(svm);
2542 
2543 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2544 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2545 
2546 	if (dr >= 16) { /* mov to DRn */
2547 		if (!kvm_require_dr(&svm->vcpu, dr - 16))
2548 			return 1;
2549 		val = kvm_register_read(&svm->vcpu, reg);
2550 		kvm_set_dr(&svm->vcpu, dr - 16, val);
2551 	} else {
2552 		if (!kvm_require_dr(&svm->vcpu, dr))
2553 			return 1;
2554 		kvm_get_dr(&svm->vcpu, dr, &val);
2555 		kvm_register_write(&svm->vcpu, reg, val);
2556 	}
2557 
2558 	return kvm_skip_emulated_instruction(&svm->vcpu);
2559 }
2560 
2561 static int cr8_write_interception(struct vcpu_svm *svm)
2562 {
2563 	struct kvm_run *kvm_run = svm->vcpu.run;
2564 	int r;
2565 
2566 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2567 	/* instruction emulation calls kvm_set_cr8() */
2568 	r = cr_interception(svm);
2569 	if (lapic_in_kernel(&svm->vcpu))
2570 		return r;
2571 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2572 		return r;
2573 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2574 	return 0;
2575 }
2576 
2577 static int efer_trap(struct vcpu_svm *svm)
2578 {
2579 	struct msr_data msr_info;
2580 	int ret;
2581 
2582 	/*
2583 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2584 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2585 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2586 	 * the guest doesn't have X86_FEATURE_SVM.
2587 	 */
2588 	msr_info.host_initiated = false;
2589 	msr_info.index = MSR_EFER;
2590 	msr_info.data = svm->vmcb->control.exit_info_1 & ~EFER_SVME;
2591 	ret = kvm_set_msr_common(&svm->vcpu, &msr_info);
2592 
2593 	return kvm_complete_insn_gp(&svm->vcpu, ret);
2594 }
2595 
2596 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2597 {
2598 	msr->data = 0;
2599 
2600 	switch (msr->index) {
2601 	case MSR_F10H_DECFG:
2602 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2603 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2604 		break;
2605 	case MSR_IA32_PERF_CAPABILITIES:
2606 		return 0;
2607 	default:
2608 		return KVM_MSR_RET_INVALID;
2609 	}
2610 
2611 	return 0;
2612 }
2613 
2614 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2615 {
2616 	struct vcpu_svm *svm = to_svm(vcpu);
2617 
2618 	switch (msr_info->index) {
2619 	case MSR_STAR:
2620 		msr_info->data = svm->vmcb->save.star;
2621 		break;
2622 #ifdef CONFIG_X86_64
2623 	case MSR_LSTAR:
2624 		msr_info->data = svm->vmcb->save.lstar;
2625 		break;
2626 	case MSR_CSTAR:
2627 		msr_info->data = svm->vmcb->save.cstar;
2628 		break;
2629 	case MSR_KERNEL_GS_BASE:
2630 		msr_info->data = svm->vmcb->save.kernel_gs_base;
2631 		break;
2632 	case MSR_SYSCALL_MASK:
2633 		msr_info->data = svm->vmcb->save.sfmask;
2634 		break;
2635 #endif
2636 	case MSR_IA32_SYSENTER_CS:
2637 		msr_info->data = svm->vmcb->save.sysenter_cs;
2638 		break;
2639 	case MSR_IA32_SYSENTER_EIP:
2640 		msr_info->data = svm->sysenter_eip;
2641 		break;
2642 	case MSR_IA32_SYSENTER_ESP:
2643 		msr_info->data = svm->sysenter_esp;
2644 		break;
2645 	case MSR_TSC_AUX:
2646 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2647 			return 1;
2648 		msr_info->data = svm->tsc_aux;
2649 		break;
2650 	/*
2651 	 * Nobody will change the following 5 values in the VMCB so we can
2652 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2653 	 * implemented.
2654 	 */
2655 	case MSR_IA32_DEBUGCTLMSR:
2656 		msr_info->data = svm->vmcb->save.dbgctl;
2657 		break;
2658 	case MSR_IA32_LASTBRANCHFROMIP:
2659 		msr_info->data = svm->vmcb->save.br_from;
2660 		break;
2661 	case MSR_IA32_LASTBRANCHTOIP:
2662 		msr_info->data = svm->vmcb->save.br_to;
2663 		break;
2664 	case MSR_IA32_LASTINTFROMIP:
2665 		msr_info->data = svm->vmcb->save.last_excp_from;
2666 		break;
2667 	case MSR_IA32_LASTINTTOIP:
2668 		msr_info->data = svm->vmcb->save.last_excp_to;
2669 		break;
2670 	case MSR_VM_HSAVE_PA:
2671 		msr_info->data = svm->nested.hsave_msr;
2672 		break;
2673 	case MSR_VM_CR:
2674 		msr_info->data = svm->nested.vm_cr_msr;
2675 		break;
2676 	case MSR_IA32_SPEC_CTRL:
2677 		if (!msr_info->host_initiated &&
2678 		    !guest_has_spec_ctrl_msr(vcpu))
2679 			return 1;
2680 
2681 		msr_info->data = svm->spec_ctrl;
2682 		break;
2683 	case MSR_AMD64_VIRT_SPEC_CTRL:
2684 		if (!msr_info->host_initiated &&
2685 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2686 			return 1;
2687 
2688 		msr_info->data = svm->virt_spec_ctrl;
2689 		break;
2690 	case MSR_F15H_IC_CFG: {
2691 
2692 		int family, model;
2693 
2694 		family = guest_cpuid_family(vcpu);
2695 		model  = guest_cpuid_model(vcpu);
2696 
2697 		if (family < 0 || model < 0)
2698 			return kvm_get_msr_common(vcpu, msr_info);
2699 
2700 		msr_info->data = 0;
2701 
2702 		if (family == 0x15 &&
2703 		    (model >= 0x2 && model < 0x20))
2704 			msr_info->data = 0x1E;
2705 		}
2706 		break;
2707 	case MSR_F10H_DECFG:
2708 		msr_info->data = svm->msr_decfg;
2709 		break;
2710 	default:
2711 		return kvm_get_msr_common(vcpu, msr_info);
2712 	}
2713 	return 0;
2714 }
2715 
2716 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2717 {
2718 	struct vcpu_svm *svm = to_svm(vcpu);
2719 	if (!sev_es_guest(svm->vcpu.kvm) || !err)
2720 		return kvm_complete_insn_gp(&svm->vcpu, err);
2721 
2722 	ghcb_set_sw_exit_info_1(svm->ghcb, 1);
2723 	ghcb_set_sw_exit_info_2(svm->ghcb,
2724 				X86_TRAP_GP |
2725 				SVM_EVTINJ_TYPE_EXEPT |
2726 				SVM_EVTINJ_VALID);
2727 	return 1;
2728 }
2729 
2730 static int rdmsr_interception(struct vcpu_svm *svm)
2731 {
2732 	return kvm_emulate_rdmsr(&svm->vcpu);
2733 }
2734 
2735 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2736 {
2737 	struct vcpu_svm *svm = to_svm(vcpu);
2738 	int svm_dis, chg_mask;
2739 
2740 	if (data & ~SVM_VM_CR_VALID_MASK)
2741 		return 1;
2742 
2743 	chg_mask = SVM_VM_CR_VALID_MASK;
2744 
2745 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2746 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2747 
2748 	svm->nested.vm_cr_msr &= ~chg_mask;
2749 	svm->nested.vm_cr_msr |= (data & chg_mask);
2750 
2751 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2752 
2753 	/* check for svm_disable while efer.svme is set */
2754 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2755 		return 1;
2756 
2757 	return 0;
2758 }
2759 
2760 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2761 {
2762 	struct vcpu_svm *svm = to_svm(vcpu);
2763 
2764 	u32 ecx = msr->index;
2765 	u64 data = msr->data;
2766 	switch (ecx) {
2767 	case MSR_IA32_CR_PAT:
2768 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2769 			return 1;
2770 		vcpu->arch.pat = data;
2771 		svm->vmcb->save.g_pat = data;
2772 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2773 		break;
2774 	case MSR_IA32_SPEC_CTRL:
2775 		if (!msr->host_initiated &&
2776 		    !guest_has_spec_ctrl_msr(vcpu))
2777 			return 1;
2778 
2779 		if (kvm_spec_ctrl_test_value(data))
2780 			return 1;
2781 
2782 		svm->spec_ctrl = data;
2783 		if (!data)
2784 			break;
2785 
2786 		/*
2787 		 * For non-nested:
2788 		 * When it's written (to non-zero) for the first time, pass
2789 		 * it through.
2790 		 *
2791 		 * For nested:
2792 		 * The handling of the MSR bitmap for L2 guests is done in
2793 		 * nested_svm_vmrun_msrpm.
2794 		 * We update the L1 MSR bit as well since it will end up
2795 		 * touching the MSR anyway now.
2796 		 */
2797 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2798 		break;
2799 	case MSR_IA32_PRED_CMD:
2800 		if (!msr->host_initiated &&
2801 		    !guest_has_pred_cmd_msr(vcpu))
2802 			return 1;
2803 
2804 		if (data & ~PRED_CMD_IBPB)
2805 			return 1;
2806 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2807 			return 1;
2808 		if (!data)
2809 			break;
2810 
2811 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2812 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2813 		break;
2814 	case MSR_AMD64_VIRT_SPEC_CTRL:
2815 		if (!msr->host_initiated &&
2816 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2817 			return 1;
2818 
2819 		if (data & ~SPEC_CTRL_SSBD)
2820 			return 1;
2821 
2822 		svm->virt_spec_ctrl = data;
2823 		break;
2824 	case MSR_STAR:
2825 		svm->vmcb->save.star = data;
2826 		break;
2827 #ifdef CONFIG_X86_64
2828 	case MSR_LSTAR:
2829 		svm->vmcb->save.lstar = data;
2830 		break;
2831 	case MSR_CSTAR:
2832 		svm->vmcb->save.cstar = data;
2833 		break;
2834 	case MSR_KERNEL_GS_BASE:
2835 		svm->vmcb->save.kernel_gs_base = data;
2836 		break;
2837 	case MSR_SYSCALL_MASK:
2838 		svm->vmcb->save.sfmask = data;
2839 		break;
2840 #endif
2841 	case MSR_IA32_SYSENTER_CS:
2842 		svm->vmcb->save.sysenter_cs = data;
2843 		break;
2844 	case MSR_IA32_SYSENTER_EIP:
2845 		svm->sysenter_eip = data;
2846 		svm->vmcb->save.sysenter_eip = data;
2847 		break;
2848 	case MSR_IA32_SYSENTER_ESP:
2849 		svm->sysenter_esp = data;
2850 		svm->vmcb->save.sysenter_esp = data;
2851 		break;
2852 	case MSR_TSC_AUX:
2853 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2854 			return 1;
2855 
2856 		/*
2857 		 * This is rare, so we update the MSR here instead of using
2858 		 * direct_access_msrs.  Doing that would require a rdmsr in
2859 		 * svm_vcpu_put.
2860 		 */
2861 		svm->tsc_aux = data;
2862 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2863 		break;
2864 	case MSR_IA32_DEBUGCTLMSR:
2865 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2866 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2867 				    __func__, data);
2868 			break;
2869 		}
2870 		if (data & DEBUGCTL_RESERVED_BITS)
2871 			return 1;
2872 
2873 		svm->vmcb->save.dbgctl = data;
2874 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2875 		if (data & (1ULL<<0))
2876 			svm_enable_lbrv(vcpu);
2877 		else
2878 			svm_disable_lbrv(vcpu);
2879 		break;
2880 	case MSR_VM_HSAVE_PA:
2881 		svm->nested.hsave_msr = data;
2882 		break;
2883 	case MSR_VM_CR:
2884 		return svm_set_vm_cr(vcpu, data);
2885 	case MSR_VM_IGNNE:
2886 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2887 		break;
2888 	case MSR_F10H_DECFG: {
2889 		struct kvm_msr_entry msr_entry;
2890 
2891 		msr_entry.index = msr->index;
2892 		if (svm_get_msr_feature(&msr_entry))
2893 			return 1;
2894 
2895 		/* Check the supported bits */
2896 		if (data & ~msr_entry.data)
2897 			return 1;
2898 
2899 		/* Don't allow the guest to change a bit, #GP */
2900 		if (!msr->host_initiated && (data ^ msr_entry.data))
2901 			return 1;
2902 
2903 		svm->msr_decfg = data;
2904 		break;
2905 	}
2906 	case MSR_IA32_APICBASE:
2907 		if (kvm_vcpu_apicv_active(vcpu))
2908 			avic_update_vapic_bar(to_svm(vcpu), data);
2909 		fallthrough;
2910 	default:
2911 		return kvm_set_msr_common(vcpu, msr);
2912 	}
2913 	return 0;
2914 }
2915 
2916 static int wrmsr_interception(struct vcpu_svm *svm)
2917 {
2918 	return kvm_emulate_wrmsr(&svm->vcpu);
2919 }
2920 
2921 static int msr_interception(struct vcpu_svm *svm)
2922 {
2923 	if (svm->vmcb->control.exit_info_1)
2924 		return wrmsr_interception(svm);
2925 	else
2926 		return rdmsr_interception(svm);
2927 }
2928 
2929 static int interrupt_window_interception(struct vcpu_svm *svm)
2930 {
2931 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2932 	svm_clear_vintr(svm);
2933 
2934 	/*
2935 	 * For AVIC, the only reason to end up here is ExtINTs.
2936 	 * In this case AVIC was temporarily disabled for
2937 	 * requesting the IRQ window and we have to re-enable it.
2938 	 */
2939 	svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2940 
2941 	++svm->vcpu.stat.irq_window_exits;
2942 	return 1;
2943 }
2944 
2945 static int pause_interception(struct vcpu_svm *svm)
2946 {
2947 	struct kvm_vcpu *vcpu = &svm->vcpu;
2948 	bool in_kernel;
2949 
2950 	/*
2951 	 * CPL is not made available for an SEV-ES guest, therefore
2952 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
2953 	 * set in_kernel to false as well.
2954 	 */
2955 	in_kernel = !sev_es_guest(svm->vcpu.kvm) && svm_get_cpl(vcpu) == 0;
2956 
2957 	if (!kvm_pause_in_guest(vcpu->kvm))
2958 		grow_ple_window(vcpu);
2959 
2960 	kvm_vcpu_on_spin(vcpu, in_kernel);
2961 	return 1;
2962 }
2963 
2964 static int nop_interception(struct vcpu_svm *svm)
2965 {
2966 	return kvm_skip_emulated_instruction(&(svm->vcpu));
2967 }
2968 
2969 static int monitor_interception(struct vcpu_svm *svm)
2970 {
2971 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2972 	return nop_interception(svm);
2973 }
2974 
2975 static int mwait_interception(struct vcpu_svm *svm)
2976 {
2977 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2978 	return nop_interception(svm);
2979 }
2980 
2981 static int invpcid_interception(struct vcpu_svm *svm)
2982 {
2983 	struct kvm_vcpu *vcpu = &svm->vcpu;
2984 	unsigned long type;
2985 	gva_t gva;
2986 
2987 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
2988 		kvm_queue_exception(vcpu, UD_VECTOR);
2989 		return 1;
2990 	}
2991 
2992 	/*
2993 	 * For an INVPCID intercept:
2994 	 * EXITINFO1 provides the linear address of the memory operand.
2995 	 * EXITINFO2 provides the contents of the register operand.
2996 	 */
2997 	type = svm->vmcb->control.exit_info_2;
2998 	gva = svm->vmcb->control.exit_info_1;
2999 
3000 	if (type > 3) {
3001 		kvm_inject_gp(vcpu, 0);
3002 		return 1;
3003 	}
3004 
3005 	return kvm_handle_invpcid(vcpu, type, gva);
3006 }
3007 
3008 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3009 	[SVM_EXIT_READ_CR0]			= cr_interception,
3010 	[SVM_EXIT_READ_CR3]			= cr_interception,
3011 	[SVM_EXIT_READ_CR4]			= cr_interception,
3012 	[SVM_EXIT_READ_CR8]			= cr_interception,
3013 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3014 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3015 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3016 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3017 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3018 	[SVM_EXIT_READ_DR0]			= dr_interception,
3019 	[SVM_EXIT_READ_DR1]			= dr_interception,
3020 	[SVM_EXIT_READ_DR2]			= dr_interception,
3021 	[SVM_EXIT_READ_DR3]			= dr_interception,
3022 	[SVM_EXIT_READ_DR4]			= dr_interception,
3023 	[SVM_EXIT_READ_DR5]			= dr_interception,
3024 	[SVM_EXIT_READ_DR6]			= dr_interception,
3025 	[SVM_EXIT_READ_DR7]			= dr_interception,
3026 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3027 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3028 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3029 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3030 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3031 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3032 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3033 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3034 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3035 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3036 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3037 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3038 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3039 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3040 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3041 	[SVM_EXIT_INTR]				= intr_interception,
3042 	[SVM_EXIT_NMI]				= nmi_interception,
3043 	[SVM_EXIT_SMI]				= nop_on_interception,
3044 	[SVM_EXIT_INIT]				= nop_on_interception,
3045 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3046 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
3047 	[SVM_EXIT_CPUID]			= cpuid_interception,
3048 	[SVM_EXIT_IRET]                         = iret_interception,
3049 	[SVM_EXIT_INVD]                         = invd_interception,
3050 	[SVM_EXIT_PAUSE]			= pause_interception,
3051 	[SVM_EXIT_HLT]				= halt_interception,
3052 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3053 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3054 	[SVM_EXIT_IOIO]				= io_interception,
3055 	[SVM_EXIT_MSR]				= msr_interception,
3056 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3057 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3058 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3059 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
3060 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3061 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3062 	[SVM_EXIT_STGI]				= stgi_interception,
3063 	[SVM_EXIT_CLGI]				= clgi_interception,
3064 	[SVM_EXIT_SKINIT]			= skinit_interception,
3065 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
3066 	[SVM_EXIT_MONITOR]			= monitor_interception,
3067 	[SVM_EXIT_MWAIT]			= mwait_interception,
3068 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
3069 	[SVM_EXIT_RDPRU]			= rdpru_interception,
3070 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3071 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3072 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3073 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3074 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3075 	[SVM_EXIT_NPF]				= npf_interception,
3076 	[SVM_EXIT_RSM]                          = rsm_interception,
3077 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3078 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3079 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3080 };
3081 
3082 static void dump_vmcb(struct kvm_vcpu *vcpu)
3083 {
3084 	struct vcpu_svm *svm = to_svm(vcpu);
3085 	struct vmcb_control_area *control = &svm->vmcb->control;
3086 	struct vmcb_save_area *save = &svm->vmcb->save;
3087 
3088 	if (!dump_invalid_vmcb) {
3089 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3090 		return;
3091 	}
3092 
3093 	pr_err("VMCB Control Area:\n");
3094 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3095 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3096 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3097 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3098 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3099 	pr_err("%-20s%08x %08x\n", "intercepts:",
3100               control->intercepts[INTERCEPT_WORD3],
3101 	       control->intercepts[INTERCEPT_WORD4]);
3102 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3103 	pr_err("%-20s%d\n", "pause filter threshold:",
3104 	       control->pause_filter_thresh);
3105 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3106 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3107 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3108 	pr_err("%-20s%d\n", "asid:", control->asid);
3109 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3110 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3111 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3112 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3113 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3114 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3115 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3116 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3117 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3118 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3119 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3120 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3121 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3122 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3123 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3124 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3125 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3126 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3127 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3128 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3129 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3130 	pr_err("VMCB State Save Area:\n");
3131 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3132 	       "es:",
3133 	       save->es.selector, save->es.attrib,
3134 	       save->es.limit, save->es.base);
3135 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3136 	       "cs:",
3137 	       save->cs.selector, save->cs.attrib,
3138 	       save->cs.limit, save->cs.base);
3139 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3140 	       "ss:",
3141 	       save->ss.selector, save->ss.attrib,
3142 	       save->ss.limit, save->ss.base);
3143 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3144 	       "ds:",
3145 	       save->ds.selector, save->ds.attrib,
3146 	       save->ds.limit, save->ds.base);
3147 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3148 	       "fs:",
3149 	       save->fs.selector, save->fs.attrib,
3150 	       save->fs.limit, save->fs.base);
3151 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3152 	       "gs:",
3153 	       save->gs.selector, save->gs.attrib,
3154 	       save->gs.limit, save->gs.base);
3155 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3156 	       "gdtr:",
3157 	       save->gdtr.selector, save->gdtr.attrib,
3158 	       save->gdtr.limit, save->gdtr.base);
3159 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3160 	       "ldtr:",
3161 	       save->ldtr.selector, save->ldtr.attrib,
3162 	       save->ldtr.limit, save->ldtr.base);
3163 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3164 	       "idtr:",
3165 	       save->idtr.selector, save->idtr.attrib,
3166 	       save->idtr.limit, save->idtr.base);
3167 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3168 	       "tr:",
3169 	       save->tr.selector, save->tr.attrib,
3170 	       save->tr.limit, save->tr.base);
3171 	pr_err("cpl:            %d                efer:         %016llx\n",
3172 		save->cpl, save->efer);
3173 	pr_err("%-15s %016llx %-13s %016llx\n",
3174 	       "cr0:", save->cr0, "cr2:", save->cr2);
3175 	pr_err("%-15s %016llx %-13s %016llx\n",
3176 	       "cr3:", save->cr3, "cr4:", save->cr4);
3177 	pr_err("%-15s %016llx %-13s %016llx\n",
3178 	       "dr6:", save->dr6, "dr7:", save->dr7);
3179 	pr_err("%-15s %016llx %-13s %016llx\n",
3180 	       "rip:", save->rip, "rflags:", save->rflags);
3181 	pr_err("%-15s %016llx %-13s %016llx\n",
3182 	       "rsp:", save->rsp, "rax:", save->rax);
3183 	pr_err("%-15s %016llx %-13s %016llx\n",
3184 	       "star:", save->star, "lstar:", save->lstar);
3185 	pr_err("%-15s %016llx %-13s %016llx\n",
3186 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
3187 	pr_err("%-15s %016llx %-13s %016llx\n",
3188 	       "kernel_gs_base:", save->kernel_gs_base,
3189 	       "sysenter_cs:", save->sysenter_cs);
3190 	pr_err("%-15s %016llx %-13s %016llx\n",
3191 	       "sysenter_esp:", save->sysenter_esp,
3192 	       "sysenter_eip:", save->sysenter_eip);
3193 	pr_err("%-15s %016llx %-13s %016llx\n",
3194 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3195 	pr_err("%-15s %016llx %-13s %016llx\n",
3196 	       "br_from:", save->br_from, "br_to:", save->br_to);
3197 	pr_err("%-15s %016llx %-13s %016llx\n",
3198 	       "excp_from:", save->last_excp_from,
3199 	       "excp_to:", save->last_excp_to);
3200 }
3201 
3202 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3203 {
3204 	if (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3205 	    svm_exit_handlers[exit_code])
3206 		return 0;
3207 
3208 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3209 	dump_vmcb(vcpu);
3210 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3211 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3212 	vcpu->run->internal.ndata = 2;
3213 	vcpu->run->internal.data[0] = exit_code;
3214 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3215 
3216 	return -EINVAL;
3217 }
3218 
3219 int svm_invoke_exit_handler(struct vcpu_svm *svm, u64 exit_code)
3220 {
3221 	if (svm_handle_invalid_exit(&svm->vcpu, exit_code))
3222 		return 0;
3223 
3224 #ifdef CONFIG_RETPOLINE
3225 	if (exit_code == SVM_EXIT_MSR)
3226 		return msr_interception(svm);
3227 	else if (exit_code == SVM_EXIT_VINTR)
3228 		return interrupt_window_interception(svm);
3229 	else if (exit_code == SVM_EXIT_INTR)
3230 		return intr_interception(svm);
3231 	else if (exit_code == SVM_EXIT_HLT)
3232 		return halt_interception(svm);
3233 	else if (exit_code == SVM_EXIT_NPF)
3234 		return npf_interception(svm);
3235 #endif
3236 	return svm_exit_handlers[exit_code](svm);
3237 }
3238 
3239 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3240 			      u32 *intr_info, u32 *error_code)
3241 {
3242 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3243 
3244 	*info1 = control->exit_info_1;
3245 	*info2 = control->exit_info_2;
3246 	*intr_info = control->exit_int_info;
3247 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3248 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3249 		*error_code = control->exit_int_info_err;
3250 	else
3251 		*error_code = 0;
3252 }
3253 
3254 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3255 {
3256 	struct vcpu_svm *svm = to_svm(vcpu);
3257 	struct kvm_run *kvm_run = vcpu->run;
3258 	u32 exit_code = svm->vmcb->control.exit_code;
3259 
3260 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3261 
3262 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3263 	if (!sev_es_guest(vcpu->kvm)) {
3264 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3265 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3266 		if (npt_enabled)
3267 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3268 	}
3269 
3270 	if (is_guest_mode(vcpu)) {
3271 		int vmexit;
3272 
3273 		trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3274 
3275 		vmexit = nested_svm_exit_special(svm);
3276 
3277 		if (vmexit == NESTED_EXIT_CONTINUE)
3278 			vmexit = nested_svm_exit_handled(svm);
3279 
3280 		if (vmexit == NESTED_EXIT_DONE)
3281 			return 1;
3282 	}
3283 
3284 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3285 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3286 		kvm_run->fail_entry.hardware_entry_failure_reason
3287 			= svm->vmcb->control.exit_code;
3288 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3289 		dump_vmcb(vcpu);
3290 		return 0;
3291 	}
3292 
3293 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3294 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3295 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3296 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3297 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3298 		       "exit_code 0x%x\n",
3299 		       __func__, svm->vmcb->control.exit_int_info,
3300 		       exit_code);
3301 
3302 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3303 		return 1;
3304 
3305 	return svm_invoke_exit_handler(svm, exit_code);
3306 }
3307 
3308 static void reload_tss(struct kvm_vcpu *vcpu)
3309 {
3310 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3311 
3312 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3313 	load_TR_desc();
3314 }
3315 
3316 static void pre_svm_run(struct vcpu_svm *svm)
3317 {
3318 	struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3319 
3320 	if (sev_guest(svm->vcpu.kvm))
3321 		return pre_sev_run(svm, svm->vcpu.cpu);
3322 
3323 	/* FIXME: handle wraparound of asid_generation */
3324 	if (svm->asid_generation != sd->asid_generation)
3325 		new_asid(svm, sd);
3326 }
3327 
3328 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3329 {
3330 	struct vcpu_svm *svm = to_svm(vcpu);
3331 
3332 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3333 	vcpu->arch.hflags |= HF_NMI_MASK;
3334 	if (!sev_es_guest(svm->vcpu.kvm))
3335 		svm_set_intercept(svm, INTERCEPT_IRET);
3336 	++vcpu->stat.nmi_injections;
3337 }
3338 
3339 static void svm_set_irq(struct kvm_vcpu *vcpu)
3340 {
3341 	struct vcpu_svm *svm = to_svm(vcpu);
3342 
3343 	BUG_ON(!(gif_set(svm)));
3344 
3345 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3346 	++vcpu->stat.irq_injections;
3347 
3348 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3349 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3350 }
3351 
3352 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3353 {
3354 	struct vcpu_svm *svm = to_svm(vcpu);
3355 
3356 	/*
3357 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3358 	 * tracking is done using the CR write traps.
3359 	 */
3360 	if (sev_es_guest(vcpu->kvm))
3361 		return;
3362 
3363 	if (nested_svm_virtualize_tpr(vcpu))
3364 		return;
3365 
3366 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3367 
3368 	if (irr == -1)
3369 		return;
3370 
3371 	if (tpr >= irr)
3372 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3373 }
3374 
3375 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3376 {
3377 	struct vcpu_svm *svm = to_svm(vcpu);
3378 	struct vmcb *vmcb = svm->vmcb;
3379 	bool ret;
3380 
3381 	if (!gif_set(svm))
3382 		return true;
3383 
3384 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3385 		return false;
3386 
3387 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3388 	      (svm->vcpu.arch.hflags & HF_NMI_MASK);
3389 
3390 	return ret;
3391 }
3392 
3393 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3394 {
3395 	struct vcpu_svm *svm = to_svm(vcpu);
3396 	if (svm->nested.nested_run_pending)
3397 		return -EBUSY;
3398 
3399 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3400 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3401 		return -EBUSY;
3402 
3403 	return !svm_nmi_blocked(vcpu);
3404 }
3405 
3406 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3407 {
3408 	struct vcpu_svm *svm = to_svm(vcpu);
3409 
3410 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3411 }
3412 
3413 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3414 {
3415 	struct vcpu_svm *svm = to_svm(vcpu);
3416 
3417 	if (masked) {
3418 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3419 		if (!sev_es_guest(svm->vcpu.kvm))
3420 			svm_set_intercept(svm, INTERCEPT_IRET);
3421 	} else {
3422 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3423 		if (!sev_es_guest(svm->vcpu.kvm))
3424 			svm_clr_intercept(svm, INTERCEPT_IRET);
3425 	}
3426 }
3427 
3428 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3429 {
3430 	struct vcpu_svm *svm = to_svm(vcpu);
3431 	struct vmcb *vmcb = svm->vmcb;
3432 
3433 	if (!gif_set(svm))
3434 		return true;
3435 
3436 	if (sev_es_guest(svm->vcpu.kvm)) {
3437 		/*
3438 		 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask
3439 		 * bit to determine the state of the IF flag.
3440 		 */
3441 		if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK))
3442 			return true;
3443 	} else if (is_guest_mode(vcpu)) {
3444 		/* As long as interrupts are being delivered...  */
3445 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3446 		    ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3447 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3448 			return true;
3449 
3450 		/* ... vmexits aren't blocked by the interrupt shadow  */
3451 		if (nested_exit_on_intr(svm))
3452 			return false;
3453 	} else {
3454 		if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3455 			return true;
3456 	}
3457 
3458 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3459 }
3460 
3461 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3462 {
3463 	struct vcpu_svm *svm = to_svm(vcpu);
3464 	if (svm->nested.nested_run_pending)
3465 		return -EBUSY;
3466 
3467 	/*
3468 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3469 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3470 	 */
3471 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3472 		return -EBUSY;
3473 
3474 	return !svm_interrupt_blocked(vcpu);
3475 }
3476 
3477 static void enable_irq_window(struct kvm_vcpu *vcpu)
3478 {
3479 	struct vcpu_svm *svm = to_svm(vcpu);
3480 
3481 	/*
3482 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3483 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3484 	 * get that intercept, this function will be called again though and
3485 	 * we'll get the vintr intercept. However, if the vGIF feature is
3486 	 * enabled, the STGI interception will not occur. Enable the irq
3487 	 * window under the assumption that the hardware will set the GIF.
3488 	 */
3489 	if (vgif_enabled(svm) || gif_set(svm)) {
3490 		/*
3491 		 * IRQ window is not needed when AVIC is enabled,
3492 		 * unless we have pending ExtINT since it cannot be injected
3493 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3494 		 * and fallback to injecting IRQ via V_IRQ.
3495 		 */
3496 		svm_toggle_avic_for_irq_window(vcpu, false);
3497 		svm_set_vintr(svm);
3498 	}
3499 }
3500 
3501 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3502 {
3503 	struct vcpu_svm *svm = to_svm(vcpu);
3504 
3505 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3506 	    == HF_NMI_MASK)
3507 		return; /* IRET will cause a vm exit */
3508 
3509 	if (!gif_set(svm)) {
3510 		if (vgif_enabled(svm))
3511 			svm_set_intercept(svm, INTERCEPT_STGI);
3512 		return; /* STGI will cause a vm exit */
3513 	}
3514 
3515 	/*
3516 	 * Something prevents NMI from been injected. Single step over possible
3517 	 * problem (IRET or exception injection or interrupt shadow)
3518 	 */
3519 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3520 	svm->nmi_singlestep = true;
3521 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3522 }
3523 
3524 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3525 {
3526 	return 0;
3527 }
3528 
3529 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3530 {
3531 	return 0;
3532 }
3533 
3534 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3535 {
3536 	struct vcpu_svm *svm = to_svm(vcpu);
3537 
3538 	/*
3539 	 * Flush only the current ASID even if the TLB flush was invoked via
3540 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3541 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3542 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3543 	 * VM-Exit (via kvm_mmu_reset_context()).
3544 	 */
3545 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3546 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3547 	else
3548 		svm->asid_generation--;
3549 }
3550 
3551 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3552 {
3553 	struct vcpu_svm *svm = to_svm(vcpu);
3554 
3555 	invlpga(gva, svm->vmcb->control.asid);
3556 }
3557 
3558 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3559 {
3560 }
3561 
3562 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3563 {
3564 	struct vcpu_svm *svm = to_svm(vcpu);
3565 
3566 	if (nested_svm_virtualize_tpr(vcpu))
3567 		return;
3568 
3569 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3570 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3571 		kvm_set_cr8(vcpu, cr8);
3572 	}
3573 }
3574 
3575 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3576 {
3577 	struct vcpu_svm *svm = to_svm(vcpu);
3578 	u64 cr8;
3579 
3580 	if (nested_svm_virtualize_tpr(vcpu) ||
3581 	    kvm_vcpu_apicv_active(vcpu))
3582 		return;
3583 
3584 	cr8 = kvm_get_cr8(vcpu);
3585 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3586 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3587 }
3588 
3589 static void svm_complete_interrupts(struct vcpu_svm *svm)
3590 {
3591 	u8 vector;
3592 	int type;
3593 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3594 	unsigned int3_injected = svm->int3_injected;
3595 
3596 	svm->int3_injected = 0;
3597 
3598 	/*
3599 	 * If we've made progress since setting HF_IRET_MASK, we've
3600 	 * executed an IRET and can allow NMI injection.
3601 	 */
3602 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK) &&
3603 	    (sev_es_guest(svm->vcpu.kvm) ||
3604 	     kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip)) {
3605 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3606 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3607 	}
3608 
3609 	svm->vcpu.arch.nmi_injected = false;
3610 	kvm_clear_exception_queue(&svm->vcpu);
3611 	kvm_clear_interrupt_queue(&svm->vcpu);
3612 
3613 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3614 		return;
3615 
3616 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3617 
3618 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3619 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3620 
3621 	switch (type) {
3622 	case SVM_EXITINTINFO_TYPE_NMI:
3623 		svm->vcpu.arch.nmi_injected = true;
3624 		break;
3625 	case SVM_EXITINTINFO_TYPE_EXEPT:
3626 		/*
3627 		 * Never re-inject a #VC exception.
3628 		 */
3629 		if (vector == X86_TRAP_VC)
3630 			break;
3631 
3632 		/*
3633 		 * In case of software exceptions, do not reinject the vector,
3634 		 * but re-execute the instruction instead. Rewind RIP first
3635 		 * if we emulated INT3 before.
3636 		 */
3637 		if (kvm_exception_is_soft(vector)) {
3638 			if (vector == BP_VECTOR && int3_injected &&
3639 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3640 				kvm_rip_write(&svm->vcpu,
3641 					      kvm_rip_read(&svm->vcpu) -
3642 					      int3_injected);
3643 			break;
3644 		}
3645 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3646 			u32 err = svm->vmcb->control.exit_int_info_err;
3647 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3648 
3649 		} else
3650 			kvm_requeue_exception(&svm->vcpu, vector);
3651 		break;
3652 	case SVM_EXITINTINFO_TYPE_INTR:
3653 		kvm_queue_interrupt(&svm->vcpu, vector, false);
3654 		break;
3655 	default:
3656 		break;
3657 	}
3658 }
3659 
3660 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3661 {
3662 	struct vcpu_svm *svm = to_svm(vcpu);
3663 	struct vmcb_control_area *control = &svm->vmcb->control;
3664 
3665 	control->exit_int_info = control->event_inj;
3666 	control->exit_int_info_err = control->event_inj_err;
3667 	control->event_inj = 0;
3668 	svm_complete_interrupts(svm);
3669 }
3670 
3671 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3672 {
3673 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3674 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3675 		return handle_fastpath_set_msr_irqoff(vcpu);
3676 
3677 	return EXIT_FASTPATH_NONE;
3678 }
3679 
3680 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3681 
3682 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3683 					struct vcpu_svm *svm)
3684 {
3685 	/*
3686 	 * VMENTER enables interrupts (host state), but the kernel state is
3687 	 * interrupts disabled when this is invoked. Also tell RCU about
3688 	 * it. This is the same logic as for exit_to_user_mode().
3689 	 *
3690 	 * This ensures that e.g. latency analysis on the host observes
3691 	 * guest mode as interrupt enabled.
3692 	 *
3693 	 * guest_enter_irqoff() informs context tracking about the
3694 	 * transition to guest mode and if enabled adjusts RCU state
3695 	 * accordingly.
3696 	 */
3697 	instrumentation_begin();
3698 	trace_hardirqs_on_prepare();
3699 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3700 	instrumentation_end();
3701 
3702 	guest_enter_irqoff();
3703 	lockdep_hardirqs_on(CALLER_ADDR0);
3704 
3705 	if (sev_es_guest(svm->vcpu.kvm)) {
3706 		__svm_sev_es_vcpu_run(svm->vmcb_pa);
3707 	} else {
3708 		__svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3709 
3710 #ifdef CONFIG_X86_64
3711 		native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3712 #else
3713 		loadsegment(fs, svm->host.fs);
3714 #ifndef CONFIG_X86_32_LAZY_GS
3715 		loadsegment(gs, svm->host.gs);
3716 #endif
3717 #endif
3718 	}
3719 
3720 	/*
3721 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
3722 	 * have them in state 'on' as recorded before entering guest mode.
3723 	 * Same as enter_from_user_mode().
3724 	 *
3725 	 * guest_exit_irqoff() restores host context and reinstates RCU if
3726 	 * enabled and required.
3727 	 *
3728 	 * This needs to be done before the below as native_read_msr()
3729 	 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3730 	 * into world and some more.
3731 	 */
3732 	lockdep_hardirqs_off(CALLER_ADDR0);
3733 	guest_exit_irqoff();
3734 
3735 	instrumentation_begin();
3736 	trace_hardirqs_off_finish();
3737 	instrumentation_end();
3738 }
3739 
3740 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3741 {
3742 	struct vcpu_svm *svm = to_svm(vcpu);
3743 
3744 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3745 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3746 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3747 
3748 	/*
3749 	 * Disable singlestep if we're injecting an interrupt/exception.
3750 	 * We don't want our modified rflags to be pushed on the stack where
3751 	 * we might not be able to easily reset them if we disabled NMI
3752 	 * singlestep later.
3753 	 */
3754 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3755 		/*
3756 		 * Event injection happens before external interrupts cause a
3757 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3758 		 * is enough to force an immediate vmexit.
3759 		 */
3760 		disable_nmi_singlestep(svm);
3761 		smp_send_reschedule(vcpu->cpu);
3762 	}
3763 
3764 	pre_svm_run(svm);
3765 
3766 	sync_lapic_to_cr8(vcpu);
3767 
3768 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3769 		svm->vmcb->control.asid = svm->asid;
3770 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3771 	}
3772 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3773 
3774 	/*
3775 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3776 	 * of a #DB.
3777 	 */
3778 	if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3779 		svm_set_dr6(svm, vcpu->arch.dr6);
3780 	else
3781 		svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3782 
3783 	clgi();
3784 	kvm_load_guest_xsave_state(vcpu);
3785 
3786 	kvm_wait_lapic_expire(vcpu);
3787 
3788 	/*
3789 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3790 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3791 	 * is no need to worry about the conditional branch over the wrmsr
3792 	 * being speculatively taken.
3793 	 */
3794 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3795 
3796 	svm_vcpu_enter_exit(vcpu, svm);
3797 
3798 	/*
3799 	 * We do not use IBRS in the kernel. If this vCPU has used the
3800 	 * SPEC_CTRL MSR it may have left it on; save the value and
3801 	 * turn it off. This is much more efficient than blindly adding
3802 	 * it to the atomic save/restore list. Especially as the former
3803 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3804 	 *
3805 	 * For non-nested case:
3806 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3807 	 * save it.
3808 	 *
3809 	 * For nested case:
3810 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3811 	 * save it.
3812 	 */
3813 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3814 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3815 
3816 	if (!sev_es_guest(svm->vcpu.kvm))
3817 		reload_tss(vcpu);
3818 
3819 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3820 
3821 	if (!sev_es_guest(svm->vcpu.kvm)) {
3822 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
3823 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3824 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3825 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3826 	}
3827 
3828 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3829 		kvm_before_interrupt(&svm->vcpu);
3830 
3831 	kvm_load_host_xsave_state(vcpu);
3832 	stgi();
3833 
3834 	/* Any pending NMI will happen here */
3835 
3836 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3837 		kvm_after_interrupt(&svm->vcpu);
3838 
3839 	sync_cr8_to_lapic(vcpu);
3840 
3841 	svm->next_rip = 0;
3842 	if (is_guest_mode(&svm->vcpu)) {
3843 		sync_nested_vmcb_control(svm);
3844 		svm->nested.nested_run_pending = 0;
3845 	}
3846 
3847 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3848 	vmcb_mark_all_clean(svm->vmcb);
3849 
3850 	/* if exit due to PF check for async PF */
3851 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3852 		svm->vcpu.arch.apf.host_apf_flags =
3853 			kvm_read_and_reset_apf_flags();
3854 
3855 	if (npt_enabled) {
3856 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3857 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3858 	}
3859 
3860 	/*
3861 	 * We need to handle MC intercepts here before the vcpu has a chance to
3862 	 * change the physical cpu
3863 	 */
3864 	if (unlikely(svm->vmcb->control.exit_code ==
3865 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3866 		svm_handle_mce(svm);
3867 
3868 	svm_complete_interrupts(svm);
3869 
3870 	if (is_guest_mode(vcpu))
3871 		return EXIT_FASTPATH_NONE;
3872 
3873 	return svm_exit_handlers_fastpath(vcpu);
3874 }
3875 
3876 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3877 			     int root_level)
3878 {
3879 	struct vcpu_svm *svm = to_svm(vcpu);
3880 	unsigned long cr3;
3881 
3882 	cr3 = __sme_set(root);
3883 	if (npt_enabled) {
3884 		svm->vmcb->control.nested_cr3 = cr3;
3885 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3886 
3887 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3888 		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3889 			return;
3890 		cr3 = vcpu->arch.cr3;
3891 	}
3892 
3893 	svm->vmcb->save.cr3 = cr3;
3894 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3895 }
3896 
3897 static int is_disabled(void)
3898 {
3899 	u64 vm_cr;
3900 
3901 	rdmsrl(MSR_VM_CR, vm_cr);
3902 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3903 		return 1;
3904 
3905 	return 0;
3906 }
3907 
3908 static void
3909 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3910 {
3911 	/*
3912 	 * Patch in the VMMCALL instruction:
3913 	 */
3914 	hypercall[0] = 0x0f;
3915 	hypercall[1] = 0x01;
3916 	hypercall[2] = 0xd9;
3917 }
3918 
3919 static int __init svm_check_processor_compat(void)
3920 {
3921 	return 0;
3922 }
3923 
3924 static bool svm_cpu_has_accelerated_tpr(void)
3925 {
3926 	return false;
3927 }
3928 
3929 /*
3930  * The kvm parameter can be NULL (module initialization, or invocation before
3931  * VM creation). Be sure to check the kvm parameter before using it.
3932  */
3933 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3934 {
3935 	switch (index) {
3936 	case MSR_IA32_MCG_EXT_CTL:
3937 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3938 		return false;
3939 	case MSR_IA32_SMBASE:
3940 		/* SEV-ES guests do not support SMM, so report false */
3941 		if (kvm && sev_es_guest(kvm))
3942 			return false;
3943 		break;
3944 	default:
3945 		break;
3946 	}
3947 
3948 	return true;
3949 }
3950 
3951 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3952 {
3953 	return 0;
3954 }
3955 
3956 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3957 {
3958 	struct vcpu_svm *svm = to_svm(vcpu);
3959 	struct kvm_cpuid_entry2 *best;
3960 
3961 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3962 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
3963 				    boot_cpu_has(X86_FEATURE_XSAVES);
3964 
3965 	/* Update nrips enabled cache */
3966 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3967 			     guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3968 
3969 	/* Check again if INVPCID interception if required */
3970 	svm_check_invpcid(svm);
3971 
3972 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
3973 	if (sev_guest(vcpu->kvm)) {
3974 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3975 		if (best)
3976 			vcpu->arch.cr3_lm_rsvd_bits &= ~(1UL << (best->ebx & 0x3f));
3977 	}
3978 
3979 	if (!kvm_vcpu_apicv_active(vcpu))
3980 		return;
3981 
3982 	/*
3983 	 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3984 	 * is exposed to the guest, disable AVIC.
3985 	 */
3986 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3987 		kvm_request_apicv_update(vcpu->kvm, false,
3988 					 APICV_INHIBIT_REASON_X2APIC);
3989 
3990 	/*
3991 	 * Currently, AVIC does not work with nested virtualization.
3992 	 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3993 	 */
3994 	if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3995 		kvm_request_apicv_update(vcpu->kvm, false,
3996 					 APICV_INHIBIT_REASON_NESTED);
3997 }
3998 
3999 static bool svm_has_wbinvd_exit(void)
4000 {
4001 	return true;
4002 }
4003 
4004 #define PRE_EX(exit)  { .exit_code = (exit), \
4005 			.stage = X86_ICPT_PRE_EXCEPT, }
4006 #define POST_EX(exit) { .exit_code = (exit), \
4007 			.stage = X86_ICPT_POST_EXCEPT, }
4008 #define POST_MEM(exit) { .exit_code = (exit), \
4009 			.stage = X86_ICPT_POST_MEMACCESS, }
4010 
4011 static const struct __x86_intercept {
4012 	u32 exit_code;
4013 	enum x86_intercept_stage stage;
4014 } x86_intercept_map[] = {
4015 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4016 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4017 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4018 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4019 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4020 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4021 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4022 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4023 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4024 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4025 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4026 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4027 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4028 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4029 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4030 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4031 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4032 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4033 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4034 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4035 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4036 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4037 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4038 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4039 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4040 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4041 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4042 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4043 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4044 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4045 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4046 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4047 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4048 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4049 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4050 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4051 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4052 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4053 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4054 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4055 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4056 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4057 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4058 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4059 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4060 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4061 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4062 };
4063 
4064 #undef PRE_EX
4065 #undef POST_EX
4066 #undef POST_MEM
4067 
4068 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4069 			       struct x86_instruction_info *info,
4070 			       enum x86_intercept_stage stage,
4071 			       struct x86_exception *exception)
4072 {
4073 	struct vcpu_svm *svm = to_svm(vcpu);
4074 	int vmexit, ret = X86EMUL_CONTINUE;
4075 	struct __x86_intercept icpt_info;
4076 	struct vmcb *vmcb = svm->vmcb;
4077 
4078 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4079 		goto out;
4080 
4081 	icpt_info = x86_intercept_map[info->intercept];
4082 
4083 	if (stage != icpt_info.stage)
4084 		goto out;
4085 
4086 	switch (icpt_info.exit_code) {
4087 	case SVM_EXIT_READ_CR0:
4088 		if (info->intercept == x86_intercept_cr_read)
4089 			icpt_info.exit_code += info->modrm_reg;
4090 		break;
4091 	case SVM_EXIT_WRITE_CR0: {
4092 		unsigned long cr0, val;
4093 
4094 		if (info->intercept == x86_intercept_cr_write)
4095 			icpt_info.exit_code += info->modrm_reg;
4096 
4097 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4098 		    info->intercept == x86_intercept_clts)
4099 			break;
4100 
4101 		if (!(vmcb_is_intercept(&svm->nested.ctl,
4102 					INTERCEPT_SELECTIVE_CR0)))
4103 			break;
4104 
4105 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4106 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4107 
4108 		if (info->intercept == x86_intercept_lmsw) {
4109 			cr0 &= 0xfUL;
4110 			val &= 0xfUL;
4111 			/* lmsw can't clear PE - catch this here */
4112 			if (cr0 & X86_CR0_PE)
4113 				val |= X86_CR0_PE;
4114 		}
4115 
4116 		if (cr0 ^ val)
4117 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4118 
4119 		break;
4120 	}
4121 	case SVM_EXIT_READ_DR0:
4122 	case SVM_EXIT_WRITE_DR0:
4123 		icpt_info.exit_code += info->modrm_reg;
4124 		break;
4125 	case SVM_EXIT_MSR:
4126 		if (info->intercept == x86_intercept_wrmsr)
4127 			vmcb->control.exit_info_1 = 1;
4128 		else
4129 			vmcb->control.exit_info_1 = 0;
4130 		break;
4131 	case SVM_EXIT_PAUSE:
4132 		/*
4133 		 * We get this for NOP only, but pause
4134 		 * is rep not, check this here
4135 		 */
4136 		if (info->rep_prefix != REPE_PREFIX)
4137 			goto out;
4138 		break;
4139 	case SVM_EXIT_IOIO: {
4140 		u64 exit_info;
4141 		u32 bytes;
4142 
4143 		if (info->intercept == x86_intercept_in ||
4144 		    info->intercept == x86_intercept_ins) {
4145 			exit_info = ((info->src_val & 0xffff) << 16) |
4146 				SVM_IOIO_TYPE_MASK;
4147 			bytes = info->dst_bytes;
4148 		} else {
4149 			exit_info = (info->dst_val & 0xffff) << 16;
4150 			bytes = info->src_bytes;
4151 		}
4152 
4153 		if (info->intercept == x86_intercept_outs ||
4154 		    info->intercept == x86_intercept_ins)
4155 			exit_info |= SVM_IOIO_STR_MASK;
4156 
4157 		if (info->rep_prefix)
4158 			exit_info |= SVM_IOIO_REP_MASK;
4159 
4160 		bytes = min(bytes, 4u);
4161 
4162 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4163 
4164 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4165 
4166 		vmcb->control.exit_info_1 = exit_info;
4167 		vmcb->control.exit_info_2 = info->next_rip;
4168 
4169 		break;
4170 	}
4171 	default:
4172 		break;
4173 	}
4174 
4175 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4176 	if (static_cpu_has(X86_FEATURE_NRIPS))
4177 		vmcb->control.next_rip  = info->next_rip;
4178 	vmcb->control.exit_code = icpt_info.exit_code;
4179 	vmexit = nested_svm_exit_handled(svm);
4180 
4181 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4182 					   : X86EMUL_CONTINUE;
4183 
4184 out:
4185 	return ret;
4186 }
4187 
4188 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4189 {
4190 }
4191 
4192 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4193 {
4194 	if (!kvm_pause_in_guest(vcpu->kvm))
4195 		shrink_ple_window(vcpu);
4196 }
4197 
4198 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4199 {
4200 	/* [63:9] are reserved. */
4201 	vcpu->arch.mcg_cap &= 0x1ff;
4202 }
4203 
4204 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4205 {
4206 	struct vcpu_svm *svm = to_svm(vcpu);
4207 
4208 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4209 	if (!gif_set(svm))
4210 		return true;
4211 
4212 	return is_smm(vcpu);
4213 }
4214 
4215 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4216 {
4217 	struct vcpu_svm *svm = to_svm(vcpu);
4218 	if (svm->nested.nested_run_pending)
4219 		return -EBUSY;
4220 
4221 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4222 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4223 		return -EBUSY;
4224 
4225 	return !svm_smi_blocked(vcpu);
4226 }
4227 
4228 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4229 {
4230 	struct vcpu_svm *svm = to_svm(vcpu);
4231 	int ret;
4232 
4233 	if (is_guest_mode(vcpu)) {
4234 		/* FED8h - SVM Guest */
4235 		put_smstate(u64, smstate, 0x7ed8, 1);
4236 		/* FEE0h - SVM Guest VMCB Physical Address */
4237 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4238 
4239 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4240 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4241 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4242 
4243 		ret = nested_svm_vmexit(svm);
4244 		if (ret)
4245 			return ret;
4246 	}
4247 	return 0;
4248 }
4249 
4250 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4251 {
4252 	struct vcpu_svm *svm = to_svm(vcpu);
4253 	struct kvm_host_map map;
4254 	int ret = 0;
4255 
4256 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4257 		u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4258 		u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4259 		u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4260 
4261 		if (guest) {
4262 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4263 				return 1;
4264 
4265 			if (!(saved_efer & EFER_SVME))
4266 				return 1;
4267 
4268 			if (kvm_vcpu_map(&svm->vcpu,
4269 					 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4270 				return 1;
4271 
4272 			if (svm_allocate_nested(svm))
4273 				return 1;
4274 
4275 			ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
4276 			kvm_vcpu_unmap(&svm->vcpu, &map, true);
4277 		}
4278 	}
4279 
4280 	return ret;
4281 }
4282 
4283 static void enable_smi_window(struct kvm_vcpu *vcpu)
4284 {
4285 	struct vcpu_svm *svm = to_svm(vcpu);
4286 
4287 	if (!gif_set(svm)) {
4288 		if (vgif_enabled(svm))
4289 			svm_set_intercept(svm, INTERCEPT_STGI);
4290 		/* STGI will cause a vm exit */
4291 	} else {
4292 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4293 	}
4294 }
4295 
4296 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4297 {
4298 	bool smep, smap, is_user;
4299 	unsigned long cr4;
4300 
4301 	/*
4302 	 * When the guest is an SEV-ES guest, emulation is not possible.
4303 	 */
4304 	if (sev_es_guest(vcpu->kvm))
4305 		return false;
4306 
4307 	/*
4308 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4309 	 *
4310 	 * Errata:
4311 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4312 	 * possible that CPU microcode implementing DecodeAssist will fail
4313 	 * to read bytes of instruction which caused #NPF. In this case,
4314 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4315 	 * return 0 instead of the correct guest instruction bytes.
4316 	 *
4317 	 * This happens because CPU microcode reading instruction bytes
4318 	 * uses a special opcode which attempts to read data using CPL=0
4319 	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
4320 	 * fault, it gives up and returns no instruction bytes.
4321 	 *
4322 	 * Detection:
4323 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4324 	 * returned 0 in GuestIntrBytes field of the VMCB.
4325 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4326 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4327 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4328 	 * a SMEP fault instead of #NPF).
4329 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4330 	 * As most guests enable SMAP if they have also enabled SMEP, use above
4331 	 * logic in order to attempt minimize false-positive of detecting errata
4332 	 * while still preserving all cases semantic correctness.
4333 	 *
4334 	 * Workaround:
4335 	 * To determine what instruction the guest was executing, the hypervisor
4336 	 * will have to decode the instruction at the instruction pointer.
4337 	 *
4338 	 * In non SEV guest, hypervisor will be able to read the guest
4339 	 * memory to decode the instruction pointer when insn_len is zero
4340 	 * so we return true to indicate that decoding is possible.
4341 	 *
4342 	 * But in the SEV guest, the guest memory is encrypted with the
4343 	 * guest specific key and hypervisor will not be able to decode the
4344 	 * instruction pointer so we will not able to workaround it. Lets
4345 	 * print the error and request to kill the guest.
4346 	 */
4347 	if (likely(!insn || insn_len))
4348 		return true;
4349 
4350 	/*
4351 	 * If RIP is invalid, go ahead with emulation which will cause an
4352 	 * internal error exit.
4353 	 */
4354 	if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4355 		return true;
4356 
4357 	cr4 = kvm_read_cr4(vcpu);
4358 	smep = cr4 & X86_CR4_SMEP;
4359 	smap = cr4 & X86_CR4_SMAP;
4360 	is_user = svm_get_cpl(vcpu) == 3;
4361 	if (smap && (!smep || is_user)) {
4362 		if (!sev_guest(vcpu->kvm))
4363 			return true;
4364 
4365 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4366 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4367 	}
4368 
4369 	return false;
4370 }
4371 
4372 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4373 {
4374 	struct vcpu_svm *svm = to_svm(vcpu);
4375 
4376 	/*
4377 	 * TODO: Last condition latch INIT signals on vCPU when
4378 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4379 	 * To properly emulate the INIT intercept,
4380 	 * svm_check_nested_events() should call nested_svm_vmexit()
4381 	 * if an INIT signal is pending.
4382 	 */
4383 	return !gif_set(svm) ||
4384 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4385 }
4386 
4387 static void svm_vm_destroy(struct kvm *kvm)
4388 {
4389 	avic_vm_destroy(kvm);
4390 	sev_vm_destroy(kvm);
4391 }
4392 
4393 static int svm_vm_init(struct kvm *kvm)
4394 {
4395 	if (!pause_filter_count || !pause_filter_thresh)
4396 		kvm->arch.pause_in_guest = true;
4397 
4398 	if (avic) {
4399 		int ret = avic_vm_init(kvm);
4400 		if (ret)
4401 			return ret;
4402 	}
4403 
4404 	kvm_apicv_init(kvm, avic);
4405 	return 0;
4406 }
4407 
4408 static struct kvm_x86_ops svm_x86_ops __initdata = {
4409 	.hardware_unsetup = svm_hardware_teardown,
4410 	.hardware_enable = svm_hardware_enable,
4411 	.hardware_disable = svm_hardware_disable,
4412 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4413 	.has_emulated_msr = svm_has_emulated_msr,
4414 
4415 	.vcpu_create = svm_create_vcpu,
4416 	.vcpu_free = svm_free_vcpu,
4417 	.vcpu_reset = svm_vcpu_reset,
4418 
4419 	.vm_size = sizeof(struct kvm_svm),
4420 	.vm_init = svm_vm_init,
4421 	.vm_destroy = svm_vm_destroy,
4422 
4423 	.prepare_guest_switch = svm_prepare_guest_switch,
4424 	.vcpu_load = svm_vcpu_load,
4425 	.vcpu_put = svm_vcpu_put,
4426 	.vcpu_blocking = svm_vcpu_blocking,
4427 	.vcpu_unblocking = svm_vcpu_unblocking,
4428 
4429 	.update_exception_bitmap = update_exception_bitmap,
4430 	.get_msr_feature = svm_get_msr_feature,
4431 	.get_msr = svm_get_msr,
4432 	.set_msr = svm_set_msr,
4433 	.get_segment_base = svm_get_segment_base,
4434 	.get_segment = svm_get_segment,
4435 	.set_segment = svm_set_segment,
4436 	.get_cpl = svm_get_cpl,
4437 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4438 	.set_cr0 = svm_set_cr0,
4439 	.is_valid_cr4 = svm_is_valid_cr4,
4440 	.set_cr4 = svm_set_cr4,
4441 	.set_efer = svm_set_efer,
4442 	.get_idt = svm_get_idt,
4443 	.set_idt = svm_set_idt,
4444 	.get_gdt = svm_get_gdt,
4445 	.set_gdt = svm_set_gdt,
4446 	.set_dr7 = svm_set_dr7,
4447 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4448 	.cache_reg = svm_cache_reg,
4449 	.get_rflags = svm_get_rflags,
4450 	.set_rflags = svm_set_rflags,
4451 
4452 	.tlb_flush_all = svm_flush_tlb,
4453 	.tlb_flush_current = svm_flush_tlb,
4454 	.tlb_flush_gva = svm_flush_tlb_gva,
4455 	.tlb_flush_guest = svm_flush_tlb,
4456 
4457 	.run = svm_vcpu_run,
4458 	.handle_exit = handle_exit,
4459 	.skip_emulated_instruction = skip_emulated_instruction,
4460 	.update_emulated_instruction = NULL,
4461 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4462 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4463 	.patch_hypercall = svm_patch_hypercall,
4464 	.set_irq = svm_set_irq,
4465 	.set_nmi = svm_inject_nmi,
4466 	.queue_exception = svm_queue_exception,
4467 	.cancel_injection = svm_cancel_injection,
4468 	.interrupt_allowed = svm_interrupt_allowed,
4469 	.nmi_allowed = svm_nmi_allowed,
4470 	.get_nmi_mask = svm_get_nmi_mask,
4471 	.set_nmi_mask = svm_set_nmi_mask,
4472 	.enable_nmi_window = enable_nmi_window,
4473 	.enable_irq_window = enable_irq_window,
4474 	.update_cr8_intercept = update_cr8_intercept,
4475 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
4476 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4477 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4478 	.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4479 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4480 	.hwapic_irr_update = svm_hwapic_irr_update,
4481 	.hwapic_isr_update = svm_hwapic_isr_update,
4482 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
4483 	.apicv_post_state_restore = avic_post_state_restore,
4484 
4485 	.set_tss_addr = svm_set_tss_addr,
4486 	.set_identity_map_addr = svm_set_identity_map_addr,
4487 	.get_mt_mask = svm_get_mt_mask,
4488 
4489 	.get_exit_info = svm_get_exit_info,
4490 
4491 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4492 
4493 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4494 
4495 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
4496 
4497 	.load_mmu_pgd = svm_load_mmu_pgd,
4498 
4499 	.check_intercept = svm_check_intercept,
4500 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4501 
4502 	.request_immediate_exit = __kvm_request_immediate_exit,
4503 
4504 	.sched_in = svm_sched_in,
4505 
4506 	.pmu_ops = &amd_pmu_ops,
4507 	.nested_ops = &svm_nested_ops,
4508 
4509 	.deliver_posted_interrupt = svm_deliver_avic_intr,
4510 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4511 	.update_pi_irte = svm_update_pi_irte,
4512 	.setup_mce = svm_setup_mce,
4513 
4514 	.smi_allowed = svm_smi_allowed,
4515 	.pre_enter_smm = svm_pre_enter_smm,
4516 	.pre_leave_smm = svm_pre_leave_smm,
4517 	.enable_smi_window = enable_smi_window,
4518 
4519 	.mem_enc_op = svm_mem_enc_op,
4520 	.mem_enc_reg_region = svm_register_enc_region,
4521 	.mem_enc_unreg_region = svm_unregister_enc_region,
4522 
4523 	.can_emulate_instruction = svm_can_emulate_instruction,
4524 
4525 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4526 
4527 	.msr_filter_changed = svm_msr_filter_changed,
4528 	.complete_emulated_msr = svm_complete_emulated_msr,
4529 };
4530 
4531 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4532 	.cpu_has_kvm_support = has_svm,
4533 	.disabled_by_bios = is_disabled,
4534 	.hardware_setup = svm_hardware_setup,
4535 	.check_processor_compatibility = svm_check_processor_compat,
4536 
4537 	.runtime_ops = &svm_x86_ops,
4538 };
4539 
4540 static int __init svm_init(void)
4541 {
4542 	__unused_size_checks();
4543 
4544 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4545 			__alignof__(struct vcpu_svm), THIS_MODULE);
4546 }
4547 
4548 static void __exit svm_exit(void)
4549 {
4550 	kvm_exit();
4551 }
4552 
4553 module_init(svm_init)
4554 module_exit(svm_exit)
4555