1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/frame.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 29 #include <asm/apic.h> 30 #include <asm/perf_event.h> 31 #include <asm/tlbflush.h> 32 #include <asm/desc.h> 33 #include <asm/debugreg.h> 34 #include <asm/kvm_para.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/spec-ctrl.h> 37 #include <asm/cpu_device_id.h> 38 39 #include <asm/virtext.h> 40 #include "trace.h" 41 42 #include "svm.h" 43 44 #define __ex(x) __kvm_handle_fault_on_reboot(x) 45 46 MODULE_AUTHOR("Qumranet"); 47 MODULE_LICENSE("GPL"); 48 49 #ifdef MODULE 50 static const struct x86_cpu_id svm_cpu_id[] = { 51 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 52 {} 53 }; 54 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 55 #endif 56 57 #define IOPM_ALLOC_ORDER 2 58 #define MSRPM_ALLOC_ORDER 1 59 60 #define SEG_TYPE_LDT 2 61 #define SEG_TYPE_BUSY_TSS16 3 62 63 #define SVM_FEATURE_LBRV (1 << 1) 64 #define SVM_FEATURE_SVML (1 << 2) 65 #define SVM_FEATURE_TSC_RATE (1 << 4) 66 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 67 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 68 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 69 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 70 71 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 72 73 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 74 #define TSC_RATIO_MIN 0x0000000000000001ULL 75 #define TSC_RATIO_MAX 0x000000ffffffffffULL 76 77 static bool erratum_383_found __read_mostly; 78 79 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 80 81 /* 82 * Set osvw_len to higher value when updated Revision Guides 83 * are published and we know what the new status bits are 84 */ 85 static uint64_t osvw_len = 4, osvw_status; 86 87 static DEFINE_PER_CPU(u64, current_tsc_ratio); 88 #define TSC_RATIO_DEFAULT 0x0100000000ULL 89 90 static const struct svm_direct_access_msrs { 91 u32 index; /* Index of the MSR */ 92 bool always; /* True if intercept is always on */ 93 } direct_access_msrs[] = { 94 { .index = MSR_STAR, .always = true }, 95 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 96 #ifdef CONFIG_X86_64 97 { .index = MSR_GS_BASE, .always = true }, 98 { .index = MSR_FS_BASE, .always = true }, 99 { .index = MSR_KERNEL_GS_BASE, .always = true }, 100 { .index = MSR_LSTAR, .always = true }, 101 { .index = MSR_CSTAR, .always = true }, 102 { .index = MSR_SYSCALL_MASK, .always = true }, 103 #endif 104 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 105 { .index = MSR_IA32_PRED_CMD, .always = false }, 106 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 107 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 108 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 109 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 110 { .index = MSR_INVALID, .always = false }, 111 }; 112 113 /* enable NPT for AMD64 and X86 with PAE */ 114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 115 bool npt_enabled = true; 116 #else 117 bool npt_enabled; 118 #endif 119 120 /* 121 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 122 * pause_filter_count: On processors that support Pause filtering(indicated 123 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 124 * count value. On VMRUN this value is loaded into an internal counter. 125 * Each time a pause instruction is executed, this counter is decremented 126 * until it reaches zero at which time a #VMEXIT is generated if pause 127 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 128 * Intercept Filtering for more details. 129 * This also indicate if ple logic enabled. 130 * 131 * pause_filter_thresh: In addition, some processor families support advanced 132 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 133 * the amount of time a guest is allowed to execute in a pause loop. 134 * In this mode, a 16-bit pause filter threshold field is added in the 135 * VMCB. The threshold value is a cycle count that is used to reset the 136 * pause counter. As with simple pause filtering, VMRUN loads the pause 137 * count value from VMCB into an internal counter. Then, on each pause 138 * instruction the hardware checks the elapsed number of cycles since 139 * the most recent pause instruction against the pause filter threshold. 140 * If the elapsed cycle count is greater than the pause filter threshold, 141 * then the internal pause count is reloaded from the VMCB and execution 142 * continues. If the elapsed cycle count is less than the pause filter 143 * threshold, then the internal pause count is decremented. If the count 144 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 145 * triggered. If advanced pause filtering is supported and pause filter 146 * threshold field is set to zero, the filter will operate in the simpler, 147 * count only mode. 148 */ 149 150 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 151 module_param(pause_filter_thresh, ushort, 0444); 152 153 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 154 module_param(pause_filter_count, ushort, 0444); 155 156 /* Default doubles per-vcpu window every exit. */ 157 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 158 module_param(pause_filter_count_grow, ushort, 0444); 159 160 /* Default resets per-vcpu window every exit to pause_filter_count. */ 161 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 162 module_param(pause_filter_count_shrink, ushort, 0444); 163 164 /* Default is to compute the maximum so we can never overflow. */ 165 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 166 module_param(pause_filter_count_max, ushort, 0444); 167 168 /* allow nested paging (virtualized MMU) for all guests */ 169 static int npt = true; 170 module_param(npt, int, S_IRUGO); 171 172 /* allow nested virtualization in KVM/SVM */ 173 static int nested = true; 174 module_param(nested, int, S_IRUGO); 175 176 /* enable/disable Next RIP Save */ 177 static int nrips = true; 178 module_param(nrips, int, 0444); 179 180 /* enable/disable Virtual VMLOAD VMSAVE */ 181 static int vls = true; 182 module_param(vls, int, 0444); 183 184 /* enable/disable Virtual GIF */ 185 static int vgif = true; 186 module_param(vgif, int, 0444); 187 188 /* enable/disable SEV support */ 189 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); 190 module_param(sev, int, 0444); 191 192 static bool __read_mostly dump_invalid_vmcb = 0; 193 module_param(dump_invalid_vmcb, bool, 0644); 194 195 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 196 197 static void svm_complete_interrupts(struct vcpu_svm *svm); 198 199 static unsigned long iopm_base; 200 201 struct kvm_ldttss_desc { 202 u16 limit0; 203 u16 base0; 204 unsigned base1:8, type:5, dpl:2, p:1; 205 unsigned limit1:4, zero0:3, g:1, base2:8; 206 u32 base3; 207 u32 zero1; 208 } __attribute__((packed)); 209 210 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 211 212 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 213 214 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 215 #define MSRS_RANGE_SIZE 2048 216 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 217 218 u32 svm_msrpm_offset(u32 msr) 219 { 220 u32 offset; 221 int i; 222 223 for (i = 0; i < NUM_MSR_MAPS; i++) { 224 if (msr < msrpm_ranges[i] || 225 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 226 continue; 227 228 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 229 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 230 231 /* Now we have the u8 offset - but need the u32 offset */ 232 return offset / 4; 233 } 234 235 /* MSR not in any range */ 236 return MSR_INVALID; 237 } 238 239 #define MAX_INST_SIZE 15 240 241 static inline void clgi(void) 242 { 243 asm volatile (__ex("clgi")); 244 } 245 246 static inline void stgi(void) 247 { 248 asm volatile (__ex("stgi")); 249 } 250 251 static inline void invlpga(unsigned long addr, u32 asid) 252 { 253 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr)); 254 } 255 256 static int get_npt_level(struct kvm_vcpu *vcpu) 257 { 258 #ifdef CONFIG_X86_64 259 return PT64_ROOT_4LEVEL; 260 #else 261 return PT32E_ROOT_LEVEL; 262 #endif 263 } 264 265 void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 266 { 267 vcpu->arch.efer = efer; 268 269 if (!npt_enabled) { 270 /* Shadow paging assumes NX to be available. */ 271 efer |= EFER_NX; 272 273 if (!(efer & EFER_LMA)) 274 efer &= ~EFER_LME; 275 } 276 277 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME; 278 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 279 } 280 281 static int is_external_interrupt(u32 info) 282 { 283 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 284 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 285 } 286 287 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 288 { 289 struct vcpu_svm *svm = to_svm(vcpu); 290 u32 ret = 0; 291 292 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 293 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 294 return ret; 295 } 296 297 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 298 { 299 struct vcpu_svm *svm = to_svm(vcpu); 300 301 if (mask == 0) 302 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 303 else 304 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 305 306 } 307 308 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 309 { 310 struct vcpu_svm *svm = to_svm(vcpu); 311 312 if (nrips && svm->vmcb->control.next_rip != 0) { 313 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 314 svm->next_rip = svm->vmcb->control.next_rip; 315 } 316 317 if (!svm->next_rip) { 318 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 319 return 0; 320 } else { 321 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE) 322 pr_err("%s: ip 0x%lx next 0x%llx\n", 323 __func__, kvm_rip_read(vcpu), svm->next_rip); 324 kvm_rip_write(vcpu, svm->next_rip); 325 } 326 svm_set_interrupt_shadow(vcpu, 0); 327 328 return 1; 329 } 330 331 static void svm_queue_exception(struct kvm_vcpu *vcpu) 332 { 333 struct vcpu_svm *svm = to_svm(vcpu); 334 unsigned nr = vcpu->arch.exception.nr; 335 bool has_error_code = vcpu->arch.exception.has_error_code; 336 bool reinject = vcpu->arch.exception.injected; 337 u32 error_code = vcpu->arch.exception.error_code; 338 339 /* 340 * If we are within a nested VM we'd better #VMEXIT and let the guest 341 * handle the exception 342 */ 343 if (!reinject && 344 nested_svm_check_exception(svm, nr, has_error_code, error_code)) 345 return; 346 347 kvm_deliver_exception_payload(&svm->vcpu); 348 349 if (nr == BP_VECTOR && !nrips) { 350 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); 351 352 /* 353 * For guest debugging where we have to reinject #BP if some 354 * INT3 is guest-owned: 355 * Emulate nRIP by moving RIP forward. Will fail if injection 356 * raises a fault that is not intercepted. Still better than 357 * failing in all cases. 358 */ 359 (void)skip_emulated_instruction(&svm->vcpu); 360 rip = kvm_rip_read(&svm->vcpu); 361 svm->int3_rip = rip + svm->vmcb->save.cs.base; 362 svm->int3_injected = rip - old_rip; 363 } 364 365 svm->vmcb->control.event_inj = nr 366 | SVM_EVTINJ_VALID 367 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 368 | SVM_EVTINJ_TYPE_EXEPT; 369 svm->vmcb->control.event_inj_err = error_code; 370 } 371 372 static void svm_init_erratum_383(void) 373 { 374 u32 low, high; 375 int err; 376 u64 val; 377 378 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 379 return; 380 381 /* Use _safe variants to not break nested virtualization */ 382 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 383 if (err) 384 return; 385 386 val |= (1ULL << 47); 387 388 low = lower_32_bits(val); 389 high = upper_32_bits(val); 390 391 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 392 393 erratum_383_found = true; 394 } 395 396 static void svm_init_osvw(struct kvm_vcpu *vcpu) 397 { 398 /* 399 * Guests should see errata 400 and 415 as fixed (assuming that 400 * HLT and IO instructions are intercepted). 401 */ 402 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 403 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 404 405 /* 406 * By increasing VCPU's osvw.length to 3 we are telling the guest that 407 * all osvw.status bits inside that length, including bit 0 (which is 408 * reserved for erratum 298), are valid. However, if host processor's 409 * osvw_len is 0 then osvw_status[0] carries no information. We need to 410 * be conservative here and therefore we tell the guest that erratum 298 411 * is present (because we really don't know). 412 */ 413 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 414 vcpu->arch.osvw.status |= 1; 415 } 416 417 static int has_svm(void) 418 { 419 const char *msg; 420 421 if (!cpu_has_svm(&msg)) { 422 printk(KERN_INFO "has_svm: %s\n", msg); 423 return 0; 424 } 425 426 return 1; 427 } 428 429 static void svm_hardware_disable(void) 430 { 431 /* Make sure we clean up behind us */ 432 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) 433 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 434 435 cpu_svm_disable(); 436 437 amd_pmu_disable_virt(); 438 } 439 440 static int svm_hardware_enable(void) 441 { 442 443 struct svm_cpu_data *sd; 444 uint64_t efer; 445 struct desc_struct *gdt; 446 int me = raw_smp_processor_id(); 447 448 rdmsrl(MSR_EFER, efer); 449 if (efer & EFER_SVME) 450 return -EBUSY; 451 452 if (!has_svm()) { 453 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 454 return -EINVAL; 455 } 456 sd = per_cpu(svm_data, me); 457 if (!sd) { 458 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 459 return -EINVAL; 460 } 461 462 sd->asid_generation = 1; 463 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 464 sd->next_asid = sd->max_asid + 1; 465 sd->min_asid = max_sev_asid + 1; 466 467 gdt = get_current_gdt_rw(); 468 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 469 470 wrmsrl(MSR_EFER, efer | EFER_SVME); 471 472 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT); 473 474 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 475 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 476 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 477 } 478 479 480 /* 481 * Get OSVW bits. 482 * 483 * Note that it is possible to have a system with mixed processor 484 * revisions and therefore different OSVW bits. If bits are not the same 485 * on different processors then choose the worst case (i.e. if erratum 486 * is present on one processor and not on another then assume that the 487 * erratum is present everywhere). 488 */ 489 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 490 uint64_t len, status = 0; 491 int err; 492 493 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 494 if (!err) 495 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 496 &err); 497 498 if (err) 499 osvw_status = osvw_len = 0; 500 else { 501 if (len < osvw_len) 502 osvw_len = len; 503 osvw_status |= status; 504 osvw_status &= (1ULL << osvw_len) - 1; 505 } 506 } else 507 osvw_status = osvw_len = 0; 508 509 svm_init_erratum_383(); 510 511 amd_pmu_enable_virt(); 512 513 return 0; 514 } 515 516 static void svm_cpu_uninit(int cpu) 517 { 518 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id()); 519 520 if (!sd) 521 return; 522 523 per_cpu(svm_data, raw_smp_processor_id()) = NULL; 524 kfree(sd->sev_vmcbs); 525 __free_page(sd->save_area); 526 kfree(sd); 527 } 528 529 static int svm_cpu_init(int cpu) 530 { 531 struct svm_cpu_data *sd; 532 533 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 534 if (!sd) 535 return -ENOMEM; 536 sd->cpu = cpu; 537 sd->save_area = alloc_page(GFP_KERNEL); 538 if (!sd->save_area) 539 goto free_cpu_data; 540 541 if (svm_sev_enabled()) { 542 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1, 543 sizeof(void *), 544 GFP_KERNEL); 545 if (!sd->sev_vmcbs) 546 goto free_save_area; 547 } 548 549 per_cpu(svm_data, cpu) = sd; 550 551 return 0; 552 553 free_save_area: 554 __free_page(sd->save_area); 555 free_cpu_data: 556 kfree(sd); 557 return -ENOMEM; 558 559 } 560 561 static bool valid_msr_intercept(u32 index) 562 { 563 int i; 564 565 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 566 if (direct_access_msrs[i].index == index) 567 return true; 568 569 return false; 570 } 571 572 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr) 573 { 574 u8 bit_write; 575 unsigned long tmp; 576 u32 offset; 577 u32 *msrpm; 578 579 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 580 to_svm(vcpu)->msrpm; 581 582 offset = svm_msrpm_offset(msr); 583 bit_write = 2 * (msr & 0x0f) + 1; 584 tmp = msrpm[offset]; 585 586 BUG_ON(offset == MSR_INVALID); 587 588 return !!test_bit(bit_write, &tmp); 589 } 590 591 static void set_msr_interception(u32 *msrpm, unsigned msr, 592 int read, int write) 593 { 594 u8 bit_read, bit_write; 595 unsigned long tmp; 596 u32 offset; 597 598 /* 599 * If this warning triggers extend the direct_access_msrs list at the 600 * beginning of the file 601 */ 602 WARN_ON(!valid_msr_intercept(msr)); 603 604 offset = svm_msrpm_offset(msr); 605 bit_read = 2 * (msr & 0x0f); 606 bit_write = 2 * (msr & 0x0f) + 1; 607 tmp = msrpm[offset]; 608 609 BUG_ON(offset == MSR_INVALID); 610 611 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 612 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 613 614 msrpm[offset] = tmp; 615 } 616 617 static void svm_vcpu_init_msrpm(u32 *msrpm) 618 { 619 int i; 620 621 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); 622 623 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 624 if (!direct_access_msrs[i].always) 625 continue; 626 627 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1); 628 } 629 } 630 631 static void add_msr_offset(u32 offset) 632 { 633 int i; 634 635 for (i = 0; i < MSRPM_OFFSETS; ++i) { 636 637 /* Offset already in list? */ 638 if (msrpm_offsets[i] == offset) 639 return; 640 641 /* Slot used by another offset? */ 642 if (msrpm_offsets[i] != MSR_INVALID) 643 continue; 644 645 /* Add offset to list */ 646 msrpm_offsets[i] = offset; 647 648 return; 649 } 650 651 /* 652 * If this BUG triggers the msrpm_offsets table has an overflow. Just 653 * increase MSRPM_OFFSETS in this case. 654 */ 655 BUG(); 656 } 657 658 static void init_msrpm_offsets(void) 659 { 660 int i; 661 662 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 663 664 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 665 u32 offset; 666 667 offset = svm_msrpm_offset(direct_access_msrs[i].index); 668 BUG_ON(offset == MSR_INVALID); 669 670 add_msr_offset(offset); 671 } 672 } 673 674 static void svm_enable_lbrv(struct vcpu_svm *svm) 675 { 676 u32 *msrpm = svm->msrpm; 677 678 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 679 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 680 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 681 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 682 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 683 } 684 685 static void svm_disable_lbrv(struct vcpu_svm *svm) 686 { 687 u32 *msrpm = svm->msrpm; 688 689 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 690 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 691 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 692 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 693 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 694 } 695 696 void disable_nmi_singlestep(struct vcpu_svm *svm) 697 { 698 svm->nmi_singlestep = false; 699 700 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 701 /* Clear our flags if they were not set by the guest */ 702 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 703 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 704 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 705 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 706 } 707 } 708 709 static void grow_ple_window(struct kvm_vcpu *vcpu) 710 { 711 struct vcpu_svm *svm = to_svm(vcpu); 712 struct vmcb_control_area *control = &svm->vmcb->control; 713 int old = control->pause_filter_count; 714 715 control->pause_filter_count = __grow_ple_window(old, 716 pause_filter_count, 717 pause_filter_count_grow, 718 pause_filter_count_max); 719 720 if (control->pause_filter_count != old) { 721 mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 722 trace_kvm_ple_window_update(vcpu->vcpu_id, 723 control->pause_filter_count, old); 724 } 725 } 726 727 static void shrink_ple_window(struct kvm_vcpu *vcpu) 728 { 729 struct vcpu_svm *svm = to_svm(vcpu); 730 struct vmcb_control_area *control = &svm->vmcb->control; 731 int old = control->pause_filter_count; 732 733 control->pause_filter_count = 734 __shrink_ple_window(old, 735 pause_filter_count, 736 pause_filter_count_shrink, 737 pause_filter_count); 738 if (control->pause_filter_count != old) { 739 mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 740 trace_kvm_ple_window_update(vcpu->vcpu_id, 741 control->pause_filter_count, old); 742 } 743 } 744 745 /* 746 * The default MMIO mask is a single bit (excluding the present bit), 747 * which could conflict with the memory encryption bit. Check for 748 * memory encryption support and override the default MMIO mask if 749 * memory encryption is enabled. 750 */ 751 static __init void svm_adjust_mmio_mask(void) 752 { 753 unsigned int enc_bit, mask_bit; 754 u64 msr, mask; 755 756 /* If there is no memory encryption support, use existing mask */ 757 if (cpuid_eax(0x80000000) < 0x8000001f) 758 return; 759 760 /* If memory encryption is not enabled, use existing mask */ 761 rdmsrl(MSR_K8_SYSCFG, msr); 762 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) 763 return; 764 765 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 766 mask_bit = boot_cpu_data.x86_phys_bits; 767 768 /* Increment the mask bit if it is the same as the encryption bit */ 769 if (enc_bit == mask_bit) 770 mask_bit++; 771 772 /* 773 * If the mask bit location is below 52, then some bits above the 774 * physical addressing limit will always be reserved, so use the 775 * rsvd_bits() function to generate the mask. This mask, along with 776 * the present bit, will be used to generate a page fault with 777 * PFER.RSV = 1. 778 * 779 * If the mask bit location is 52 (or above), then clear the mask. 780 */ 781 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 782 783 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 784 } 785 786 static void svm_hardware_teardown(void) 787 { 788 int cpu; 789 790 if (svm_sev_enabled()) 791 sev_hardware_teardown(); 792 793 for_each_possible_cpu(cpu) 794 svm_cpu_uninit(cpu); 795 796 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); 797 iopm_base = 0; 798 } 799 800 static __init void svm_set_cpu_caps(void) 801 { 802 kvm_set_cpu_caps(); 803 804 supported_xss = 0; 805 806 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 807 if (nested) { 808 kvm_cpu_cap_set(X86_FEATURE_SVM); 809 810 if (nrips) 811 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 812 813 if (npt_enabled) 814 kvm_cpu_cap_set(X86_FEATURE_NPT); 815 } 816 817 /* CPUID 0x80000008 */ 818 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 819 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 820 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 821 } 822 823 static __init int svm_hardware_setup(void) 824 { 825 int cpu; 826 struct page *iopm_pages; 827 void *iopm_va; 828 int r; 829 830 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); 831 832 if (!iopm_pages) 833 return -ENOMEM; 834 835 iopm_va = page_address(iopm_pages); 836 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); 837 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 838 839 init_msrpm_offsets(); 840 841 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 842 843 if (boot_cpu_has(X86_FEATURE_NX)) 844 kvm_enable_efer_bits(EFER_NX); 845 846 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 847 kvm_enable_efer_bits(EFER_FFXSR); 848 849 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 850 kvm_has_tsc_control = true; 851 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 852 kvm_tsc_scaling_ratio_frac_bits = 32; 853 } 854 855 /* Check for pause filtering support */ 856 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 857 pause_filter_count = 0; 858 pause_filter_thresh = 0; 859 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 860 pause_filter_thresh = 0; 861 } 862 863 if (nested) { 864 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 865 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 866 } 867 868 if (sev) { 869 if (boot_cpu_has(X86_FEATURE_SEV) && 870 IS_ENABLED(CONFIG_KVM_AMD_SEV)) { 871 r = sev_hardware_setup(); 872 if (r) 873 sev = false; 874 } else { 875 sev = false; 876 } 877 } 878 879 svm_adjust_mmio_mask(); 880 881 for_each_possible_cpu(cpu) { 882 r = svm_cpu_init(cpu); 883 if (r) 884 goto err; 885 } 886 887 if (!boot_cpu_has(X86_FEATURE_NPT)) 888 npt_enabled = false; 889 890 if (npt_enabled && !npt) 891 npt_enabled = false; 892 893 kvm_configure_mmu(npt_enabled, PT_PDPE_LEVEL); 894 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 895 896 if (nrips) { 897 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 898 nrips = false; 899 } 900 901 if (avic) { 902 if (!npt_enabled || 903 !boot_cpu_has(X86_FEATURE_AVIC) || 904 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { 905 avic = false; 906 } else { 907 pr_info("AVIC enabled\n"); 908 909 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 910 } 911 } 912 913 if (vls) { 914 if (!npt_enabled || 915 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 916 !IS_ENABLED(CONFIG_X86_64)) { 917 vls = false; 918 } else { 919 pr_info("Virtual VMLOAD VMSAVE supported\n"); 920 } 921 } 922 923 if (vgif) { 924 if (!boot_cpu_has(X86_FEATURE_VGIF)) 925 vgif = false; 926 else 927 pr_info("Virtual GIF supported\n"); 928 } 929 930 svm_set_cpu_caps(); 931 932 return 0; 933 934 err: 935 svm_hardware_teardown(); 936 return r; 937 } 938 939 static void init_seg(struct vmcb_seg *seg) 940 { 941 seg->selector = 0; 942 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 943 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 944 seg->limit = 0xffff; 945 seg->base = 0; 946 } 947 948 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 949 { 950 seg->selector = 0; 951 seg->attrib = SVM_SELECTOR_P_MASK | type; 952 seg->limit = 0xffff; 953 seg->base = 0; 954 } 955 956 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu) 957 { 958 struct vcpu_svm *svm = to_svm(vcpu); 959 960 if (is_guest_mode(vcpu)) 961 return svm->nested.hsave->control.tsc_offset; 962 963 return vcpu->arch.tsc_offset; 964 } 965 966 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 967 { 968 struct vcpu_svm *svm = to_svm(vcpu); 969 u64 g_tsc_offset = 0; 970 971 if (is_guest_mode(vcpu)) { 972 /* Write L1's TSC offset. */ 973 g_tsc_offset = svm->vmcb->control.tsc_offset - 974 svm->nested.hsave->control.tsc_offset; 975 svm->nested.hsave->control.tsc_offset = offset; 976 } 977 978 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 979 svm->vmcb->control.tsc_offset - g_tsc_offset, 980 offset); 981 982 svm->vmcb->control.tsc_offset = offset + g_tsc_offset; 983 984 mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 985 return svm->vmcb->control.tsc_offset; 986 } 987 988 static void init_vmcb(struct vcpu_svm *svm) 989 { 990 struct vmcb_control_area *control = &svm->vmcb->control; 991 struct vmcb_save_area *save = &svm->vmcb->save; 992 993 svm->vcpu.arch.hflags = 0; 994 995 set_cr_intercept(svm, INTERCEPT_CR0_READ); 996 set_cr_intercept(svm, INTERCEPT_CR3_READ); 997 set_cr_intercept(svm, INTERCEPT_CR4_READ); 998 set_cr_intercept(svm, INTERCEPT_CR0_WRITE); 999 set_cr_intercept(svm, INTERCEPT_CR3_WRITE); 1000 set_cr_intercept(svm, INTERCEPT_CR4_WRITE); 1001 if (!kvm_vcpu_apicv_active(&svm->vcpu)) 1002 set_cr_intercept(svm, INTERCEPT_CR8_WRITE); 1003 1004 set_dr_intercepts(svm); 1005 1006 set_exception_intercept(svm, PF_VECTOR); 1007 set_exception_intercept(svm, UD_VECTOR); 1008 set_exception_intercept(svm, MC_VECTOR); 1009 set_exception_intercept(svm, AC_VECTOR); 1010 set_exception_intercept(svm, DB_VECTOR); 1011 /* 1012 * Guest access to VMware backdoor ports could legitimately 1013 * trigger #GP because of TSS I/O permission bitmap. 1014 * We intercept those #GP and allow access to them anyway 1015 * as VMware does. 1016 */ 1017 if (enable_vmware_backdoor) 1018 set_exception_intercept(svm, GP_VECTOR); 1019 1020 set_intercept(svm, INTERCEPT_INTR); 1021 set_intercept(svm, INTERCEPT_NMI); 1022 set_intercept(svm, INTERCEPT_SMI); 1023 set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1024 set_intercept(svm, INTERCEPT_RDPMC); 1025 set_intercept(svm, INTERCEPT_CPUID); 1026 set_intercept(svm, INTERCEPT_INVD); 1027 set_intercept(svm, INTERCEPT_INVLPG); 1028 set_intercept(svm, INTERCEPT_INVLPGA); 1029 set_intercept(svm, INTERCEPT_IOIO_PROT); 1030 set_intercept(svm, INTERCEPT_MSR_PROT); 1031 set_intercept(svm, INTERCEPT_TASK_SWITCH); 1032 set_intercept(svm, INTERCEPT_SHUTDOWN); 1033 set_intercept(svm, INTERCEPT_VMRUN); 1034 set_intercept(svm, INTERCEPT_VMMCALL); 1035 set_intercept(svm, INTERCEPT_VMLOAD); 1036 set_intercept(svm, INTERCEPT_VMSAVE); 1037 set_intercept(svm, INTERCEPT_STGI); 1038 set_intercept(svm, INTERCEPT_CLGI); 1039 set_intercept(svm, INTERCEPT_SKINIT); 1040 set_intercept(svm, INTERCEPT_WBINVD); 1041 set_intercept(svm, INTERCEPT_XSETBV); 1042 set_intercept(svm, INTERCEPT_RDPRU); 1043 set_intercept(svm, INTERCEPT_RSM); 1044 1045 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) { 1046 set_intercept(svm, INTERCEPT_MONITOR); 1047 set_intercept(svm, INTERCEPT_MWAIT); 1048 } 1049 1050 if (!kvm_hlt_in_guest(svm->vcpu.kvm)) 1051 set_intercept(svm, INTERCEPT_HLT); 1052 1053 control->iopm_base_pa = __sme_set(iopm_base); 1054 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1055 control->int_ctl = V_INTR_MASKING_MASK; 1056 1057 init_seg(&save->es); 1058 init_seg(&save->ss); 1059 init_seg(&save->ds); 1060 init_seg(&save->fs); 1061 init_seg(&save->gs); 1062 1063 save->cs.selector = 0xf000; 1064 save->cs.base = 0xffff0000; 1065 /* Executable/Readable Code Segment */ 1066 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1067 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1068 save->cs.limit = 0xffff; 1069 1070 save->gdtr.limit = 0xffff; 1071 save->idtr.limit = 0xffff; 1072 1073 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1074 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1075 1076 svm_set_efer(&svm->vcpu, 0); 1077 save->dr6 = 0xffff0ff0; 1078 kvm_set_rflags(&svm->vcpu, 2); 1079 save->rip = 0x0000fff0; 1080 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; 1081 1082 /* 1083 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. 1084 * It also updates the guest-visible cr0 value. 1085 */ 1086 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); 1087 kvm_mmu_reset_context(&svm->vcpu); 1088 1089 save->cr4 = X86_CR4_PAE; 1090 /* rdx = ?? */ 1091 1092 if (npt_enabled) { 1093 /* Setup VMCB for Nested Paging */ 1094 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1095 clr_intercept(svm, INTERCEPT_INVLPG); 1096 clr_exception_intercept(svm, PF_VECTOR); 1097 clr_cr_intercept(svm, INTERCEPT_CR3_READ); 1098 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE); 1099 save->g_pat = svm->vcpu.arch.pat; 1100 save->cr3 = 0; 1101 save->cr4 = 0; 1102 } 1103 svm->asid_generation = 0; 1104 1105 svm->nested.vmcb = 0; 1106 svm->vcpu.arch.hflags = 0; 1107 1108 if (pause_filter_count) { 1109 control->pause_filter_count = pause_filter_count; 1110 if (pause_filter_thresh) 1111 control->pause_filter_thresh = pause_filter_thresh; 1112 set_intercept(svm, INTERCEPT_PAUSE); 1113 } else { 1114 clr_intercept(svm, INTERCEPT_PAUSE); 1115 } 1116 1117 if (kvm_vcpu_apicv_active(&svm->vcpu)) 1118 avic_init_vmcb(svm); 1119 1120 /* 1121 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1122 * in VMCB and clear intercepts to avoid #VMEXIT. 1123 */ 1124 if (vls) { 1125 clr_intercept(svm, INTERCEPT_VMLOAD); 1126 clr_intercept(svm, INTERCEPT_VMSAVE); 1127 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1128 } 1129 1130 if (vgif) { 1131 clr_intercept(svm, INTERCEPT_STGI); 1132 clr_intercept(svm, INTERCEPT_CLGI); 1133 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1134 } 1135 1136 if (sev_guest(svm->vcpu.kvm)) { 1137 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1138 clr_exception_intercept(svm, UD_VECTOR); 1139 } 1140 1141 mark_all_dirty(svm->vmcb); 1142 1143 enable_gif(svm); 1144 1145 } 1146 1147 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1148 { 1149 struct vcpu_svm *svm = to_svm(vcpu); 1150 u32 dummy; 1151 u32 eax = 1; 1152 1153 svm->spec_ctrl = 0; 1154 svm->virt_spec_ctrl = 0; 1155 1156 if (!init_event) { 1157 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | 1158 MSR_IA32_APICBASE_ENABLE; 1159 if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) 1160 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; 1161 } 1162 init_vmcb(svm); 1163 1164 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false); 1165 kvm_rdx_write(vcpu, eax); 1166 1167 if (kvm_vcpu_apicv_active(vcpu) && !init_event) 1168 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); 1169 } 1170 1171 static int svm_create_vcpu(struct kvm_vcpu *vcpu) 1172 { 1173 struct vcpu_svm *svm; 1174 struct page *page; 1175 struct page *msrpm_pages; 1176 struct page *hsave_page; 1177 struct page *nested_msrpm_pages; 1178 int err; 1179 1180 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1181 svm = to_svm(vcpu); 1182 1183 err = -ENOMEM; 1184 page = alloc_page(GFP_KERNEL_ACCOUNT); 1185 if (!page) 1186 goto out; 1187 1188 msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); 1189 if (!msrpm_pages) 1190 goto free_page1; 1191 1192 nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); 1193 if (!nested_msrpm_pages) 1194 goto free_page2; 1195 1196 hsave_page = alloc_page(GFP_KERNEL_ACCOUNT); 1197 if (!hsave_page) 1198 goto free_page3; 1199 1200 err = avic_init_vcpu(svm); 1201 if (err) 1202 goto free_page4; 1203 1204 /* We initialize this flag to true to make sure that the is_running 1205 * bit would be set the first time the vcpu is loaded. 1206 */ 1207 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) 1208 svm->avic_is_running = true; 1209 1210 svm->nested.hsave = page_address(hsave_page); 1211 1212 svm->msrpm = page_address(msrpm_pages); 1213 svm_vcpu_init_msrpm(svm->msrpm); 1214 1215 svm->nested.msrpm = page_address(nested_msrpm_pages); 1216 svm_vcpu_init_msrpm(svm->nested.msrpm); 1217 1218 svm->vmcb = page_address(page); 1219 clear_page(svm->vmcb); 1220 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT); 1221 svm->asid_generation = 0; 1222 init_vmcb(svm); 1223 1224 svm_init_osvw(vcpu); 1225 vcpu->arch.microcode_version = 0x01000065; 1226 1227 return 0; 1228 1229 free_page4: 1230 __free_page(hsave_page); 1231 free_page3: 1232 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER); 1233 free_page2: 1234 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER); 1235 free_page1: 1236 __free_page(page); 1237 out: 1238 return err; 1239 } 1240 1241 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1242 { 1243 int i; 1244 1245 for_each_online_cpu(i) 1246 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1247 } 1248 1249 static void svm_free_vcpu(struct kvm_vcpu *vcpu) 1250 { 1251 struct vcpu_svm *svm = to_svm(vcpu); 1252 1253 /* 1254 * The vmcb page can be recycled, causing a false negative in 1255 * svm_vcpu_load(). So, ensure that no logical CPU has this 1256 * vmcb page recorded as its current vmcb. 1257 */ 1258 svm_clear_current_vmcb(svm->vmcb); 1259 1260 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); 1261 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); 1262 __free_page(virt_to_page(svm->nested.hsave)); 1263 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER); 1264 } 1265 1266 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1267 { 1268 struct vcpu_svm *svm = to_svm(vcpu); 1269 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1270 int i; 1271 1272 if (unlikely(cpu != vcpu->cpu)) { 1273 svm->asid_generation = 0; 1274 mark_all_dirty(svm->vmcb); 1275 } 1276 1277 #ifdef CONFIG_X86_64 1278 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base); 1279 #endif 1280 savesegment(fs, svm->host.fs); 1281 savesegment(gs, svm->host.gs); 1282 svm->host.ldt = kvm_read_ldt(); 1283 1284 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) 1285 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); 1286 1287 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 1288 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1289 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1290 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1291 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1292 } 1293 } 1294 /* This assumes that the kernel never uses MSR_TSC_AUX */ 1295 if (static_cpu_has(X86_FEATURE_RDTSCP)) 1296 wrmsrl(MSR_TSC_AUX, svm->tsc_aux); 1297 1298 if (sd->current_vmcb != svm->vmcb) { 1299 sd->current_vmcb = svm->vmcb; 1300 indirect_branch_prediction_barrier(); 1301 } 1302 avic_vcpu_load(vcpu, cpu); 1303 } 1304 1305 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1306 { 1307 struct vcpu_svm *svm = to_svm(vcpu); 1308 int i; 1309 1310 avic_vcpu_put(vcpu); 1311 1312 ++vcpu->stat.host_state_reload; 1313 kvm_load_ldt(svm->host.ldt); 1314 #ifdef CONFIG_X86_64 1315 loadsegment(fs, svm->host.fs); 1316 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase); 1317 load_gs_index(svm->host.gs); 1318 #else 1319 #ifdef CONFIG_X86_32_LAZY_GS 1320 loadsegment(gs, svm->host.gs); 1321 #endif 1322 #endif 1323 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) 1324 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); 1325 } 1326 1327 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1328 { 1329 struct vcpu_svm *svm = to_svm(vcpu); 1330 unsigned long rflags = svm->vmcb->save.rflags; 1331 1332 if (svm->nmi_singlestep) { 1333 /* Hide our flags if they were not set by the guest */ 1334 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1335 rflags &= ~X86_EFLAGS_TF; 1336 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1337 rflags &= ~X86_EFLAGS_RF; 1338 } 1339 return rflags; 1340 } 1341 1342 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1343 { 1344 if (to_svm(vcpu)->nmi_singlestep) 1345 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1346 1347 /* 1348 * Any change of EFLAGS.VM is accompanied by a reload of SS 1349 * (caused by either a task switch or an inter-privilege IRET), 1350 * so we do not need to update the CPL here. 1351 */ 1352 to_svm(vcpu)->vmcb->save.rflags = rflags; 1353 } 1354 1355 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1356 { 1357 switch (reg) { 1358 case VCPU_EXREG_PDPTR: 1359 BUG_ON(!npt_enabled); 1360 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 1361 break; 1362 default: 1363 WARN_ON_ONCE(1); 1364 } 1365 } 1366 1367 static inline void svm_enable_vintr(struct vcpu_svm *svm) 1368 { 1369 struct vmcb_control_area *control; 1370 1371 /* The following fields are ignored when AVIC is enabled */ 1372 WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu)); 1373 1374 /* 1375 * This is just a dummy VINTR to actually cause a vmexit to happen. 1376 * Actual injection of virtual interrupts happens through EVENTINJ. 1377 */ 1378 control = &svm->vmcb->control; 1379 control->int_vector = 0x0; 1380 control->int_ctl &= ~V_INTR_PRIO_MASK; 1381 control->int_ctl |= V_IRQ_MASK | 1382 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1383 mark_dirty(svm->vmcb, VMCB_INTR); 1384 } 1385 1386 static void svm_set_vintr(struct vcpu_svm *svm) 1387 { 1388 set_intercept(svm, INTERCEPT_VINTR); 1389 if (is_intercept(svm, INTERCEPT_VINTR)) 1390 svm_enable_vintr(svm); 1391 } 1392 1393 static void svm_clear_vintr(struct vcpu_svm *svm) 1394 { 1395 clr_intercept(svm, INTERCEPT_VINTR); 1396 1397 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; 1398 mark_dirty(svm->vmcb, VMCB_INTR); 1399 } 1400 1401 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1402 { 1403 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1404 1405 switch (seg) { 1406 case VCPU_SREG_CS: return &save->cs; 1407 case VCPU_SREG_DS: return &save->ds; 1408 case VCPU_SREG_ES: return &save->es; 1409 case VCPU_SREG_FS: return &save->fs; 1410 case VCPU_SREG_GS: return &save->gs; 1411 case VCPU_SREG_SS: return &save->ss; 1412 case VCPU_SREG_TR: return &save->tr; 1413 case VCPU_SREG_LDTR: return &save->ldtr; 1414 } 1415 BUG(); 1416 return NULL; 1417 } 1418 1419 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1420 { 1421 struct vmcb_seg *s = svm_seg(vcpu, seg); 1422 1423 return s->base; 1424 } 1425 1426 static void svm_get_segment(struct kvm_vcpu *vcpu, 1427 struct kvm_segment *var, int seg) 1428 { 1429 struct vmcb_seg *s = svm_seg(vcpu, seg); 1430 1431 var->base = s->base; 1432 var->limit = s->limit; 1433 var->selector = s->selector; 1434 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1435 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1436 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1437 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1438 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1439 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1440 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1441 1442 /* 1443 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1444 * However, the SVM spec states that the G bit is not observed by the 1445 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1446 * So let's synthesize a legal G bit for all segments, this helps 1447 * running KVM nested. It also helps cross-vendor migration, because 1448 * Intel's vmentry has a check on the 'G' bit. 1449 */ 1450 var->g = s->limit > 0xfffff; 1451 1452 /* 1453 * AMD's VMCB does not have an explicit unusable field, so emulate it 1454 * for cross vendor migration purposes by "not present" 1455 */ 1456 var->unusable = !var->present; 1457 1458 switch (seg) { 1459 case VCPU_SREG_TR: 1460 /* 1461 * Work around a bug where the busy flag in the tr selector 1462 * isn't exposed 1463 */ 1464 var->type |= 0x2; 1465 break; 1466 case VCPU_SREG_DS: 1467 case VCPU_SREG_ES: 1468 case VCPU_SREG_FS: 1469 case VCPU_SREG_GS: 1470 /* 1471 * The accessed bit must always be set in the segment 1472 * descriptor cache, although it can be cleared in the 1473 * descriptor, the cached bit always remains at 1. Since 1474 * Intel has a check on this, set it here to support 1475 * cross-vendor migration. 1476 */ 1477 if (!var->unusable) 1478 var->type |= 0x1; 1479 break; 1480 case VCPU_SREG_SS: 1481 /* 1482 * On AMD CPUs sometimes the DB bit in the segment 1483 * descriptor is left as 1, although the whole segment has 1484 * been made unusable. Clear it here to pass an Intel VMX 1485 * entry check when cross vendor migrating. 1486 */ 1487 if (var->unusable) 1488 var->db = 0; 1489 /* This is symmetric with svm_set_segment() */ 1490 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1491 break; 1492 } 1493 } 1494 1495 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1496 { 1497 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1498 1499 return save->cpl; 1500 } 1501 1502 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1503 { 1504 struct vcpu_svm *svm = to_svm(vcpu); 1505 1506 dt->size = svm->vmcb->save.idtr.limit; 1507 dt->address = svm->vmcb->save.idtr.base; 1508 } 1509 1510 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1511 { 1512 struct vcpu_svm *svm = to_svm(vcpu); 1513 1514 svm->vmcb->save.idtr.limit = dt->size; 1515 svm->vmcb->save.idtr.base = dt->address ; 1516 mark_dirty(svm->vmcb, VMCB_DT); 1517 } 1518 1519 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1520 { 1521 struct vcpu_svm *svm = to_svm(vcpu); 1522 1523 dt->size = svm->vmcb->save.gdtr.limit; 1524 dt->address = svm->vmcb->save.gdtr.base; 1525 } 1526 1527 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1528 { 1529 struct vcpu_svm *svm = to_svm(vcpu); 1530 1531 svm->vmcb->save.gdtr.limit = dt->size; 1532 svm->vmcb->save.gdtr.base = dt->address ; 1533 mark_dirty(svm->vmcb, VMCB_DT); 1534 } 1535 1536 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) 1537 { 1538 } 1539 1540 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) 1541 { 1542 } 1543 1544 static void update_cr0_intercept(struct vcpu_svm *svm) 1545 { 1546 ulong gcr0 = svm->vcpu.arch.cr0; 1547 u64 *hcr0 = &svm->vmcb->save.cr0; 1548 1549 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) 1550 | (gcr0 & SVM_CR0_SELECTIVE_MASK); 1551 1552 mark_dirty(svm->vmcb, VMCB_CR); 1553 1554 if (gcr0 == *hcr0) { 1555 clr_cr_intercept(svm, INTERCEPT_CR0_READ); 1556 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE); 1557 } else { 1558 set_cr_intercept(svm, INTERCEPT_CR0_READ); 1559 set_cr_intercept(svm, INTERCEPT_CR0_WRITE); 1560 } 1561 } 1562 1563 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1564 { 1565 struct vcpu_svm *svm = to_svm(vcpu); 1566 1567 #ifdef CONFIG_X86_64 1568 if (vcpu->arch.efer & EFER_LME) { 1569 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1570 vcpu->arch.efer |= EFER_LMA; 1571 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1572 } 1573 1574 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1575 vcpu->arch.efer &= ~EFER_LMA; 1576 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1577 } 1578 } 1579 #endif 1580 vcpu->arch.cr0 = cr0; 1581 1582 if (!npt_enabled) 1583 cr0 |= X86_CR0_PG | X86_CR0_WP; 1584 1585 /* 1586 * re-enable caching here because the QEMU bios 1587 * does not do it - this results in some delay at 1588 * reboot 1589 */ 1590 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1591 cr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1592 svm->vmcb->save.cr0 = cr0; 1593 mark_dirty(svm->vmcb, VMCB_CR); 1594 update_cr0_intercept(svm); 1595 } 1596 1597 int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1598 { 1599 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1600 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; 1601 1602 if (cr4 & X86_CR4_VMXE) 1603 return 1; 1604 1605 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1606 svm_flush_tlb(vcpu, true); 1607 1608 vcpu->arch.cr4 = cr4; 1609 if (!npt_enabled) 1610 cr4 |= X86_CR4_PAE; 1611 cr4 |= host_cr4_mce; 1612 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1613 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1614 return 0; 1615 } 1616 1617 static void svm_set_segment(struct kvm_vcpu *vcpu, 1618 struct kvm_segment *var, int seg) 1619 { 1620 struct vcpu_svm *svm = to_svm(vcpu); 1621 struct vmcb_seg *s = svm_seg(vcpu, seg); 1622 1623 s->base = var->base; 1624 s->limit = var->limit; 1625 s->selector = var->selector; 1626 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1627 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1628 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1629 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1630 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1631 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1632 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1633 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1634 1635 /* 1636 * This is always accurate, except if SYSRET returned to a segment 1637 * with SS.DPL != 3. Intel does not have this quirk, and always 1638 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1639 * would entail passing the CPL to userspace and back. 1640 */ 1641 if (seg == VCPU_SREG_SS) 1642 /* This is symmetric with svm_get_segment() */ 1643 svm->vmcb->save.cpl = (var->dpl & 3); 1644 1645 mark_dirty(svm->vmcb, VMCB_SEG); 1646 } 1647 1648 static void update_bp_intercept(struct kvm_vcpu *vcpu) 1649 { 1650 struct vcpu_svm *svm = to_svm(vcpu); 1651 1652 clr_exception_intercept(svm, BP_VECTOR); 1653 1654 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1655 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1656 set_exception_intercept(svm, BP_VECTOR); 1657 } else 1658 vcpu->guest_debug = 0; 1659 } 1660 1661 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1662 { 1663 if (sd->next_asid > sd->max_asid) { 1664 ++sd->asid_generation; 1665 sd->next_asid = sd->min_asid; 1666 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1667 } 1668 1669 svm->asid_generation = sd->asid_generation; 1670 svm->vmcb->control.asid = sd->next_asid++; 1671 1672 mark_dirty(svm->vmcb, VMCB_ASID); 1673 } 1674 1675 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1676 { 1677 struct vmcb *vmcb = svm->vmcb; 1678 1679 if (unlikely(value != vmcb->save.dr6)) { 1680 vmcb->save.dr6 = value; 1681 mark_dirty(vmcb, VMCB_DR); 1682 } 1683 } 1684 1685 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1686 { 1687 struct vcpu_svm *svm = to_svm(vcpu); 1688 1689 get_debugreg(vcpu->arch.db[0], 0); 1690 get_debugreg(vcpu->arch.db[1], 1); 1691 get_debugreg(vcpu->arch.db[2], 2); 1692 get_debugreg(vcpu->arch.db[3], 3); 1693 /* 1694 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here, 1695 * because db_interception might need it. We can do it before vmentry. 1696 */ 1697 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1698 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1699 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1700 set_dr_intercepts(svm); 1701 } 1702 1703 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1704 { 1705 struct vcpu_svm *svm = to_svm(vcpu); 1706 1707 svm->vmcb->save.dr7 = value; 1708 mark_dirty(svm->vmcb, VMCB_DR); 1709 } 1710 1711 static int pf_interception(struct vcpu_svm *svm) 1712 { 1713 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1714 u64 error_code = svm->vmcb->control.exit_info_1; 1715 1716 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address, 1717 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1718 svm->vmcb->control.insn_bytes : NULL, 1719 svm->vmcb->control.insn_len); 1720 } 1721 1722 static int npf_interception(struct vcpu_svm *svm) 1723 { 1724 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1725 u64 error_code = svm->vmcb->control.exit_info_1; 1726 1727 trace_kvm_page_fault(fault_address, error_code); 1728 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, 1729 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1730 svm->vmcb->control.insn_bytes : NULL, 1731 svm->vmcb->control.insn_len); 1732 } 1733 1734 static int db_interception(struct vcpu_svm *svm) 1735 { 1736 struct kvm_run *kvm_run = svm->vcpu.run; 1737 struct kvm_vcpu *vcpu = &svm->vcpu; 1738 1739 if (!(svm->vcpu.guest_debug & 1740 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1741 !svm->nmi_singlestep) { 1742 u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1; 1743 kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload); 1744 return 1; 1745 } 1746 1747 if (svm->nmi_singlestep) { 1748 disable_nmi_singlestep(svm); 1749 /* Make sure we check for pending NMIs upon entry */ 1750 kvm_make_request(KVM_REQ_EVENT, vcpu); 1751 } 1752 1753 if (svm->vcpu.guest_debug & 1754 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1755 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1756 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1757 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1758 kvm_run->debug.arch.pc = 1759 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1760 kvm_run->debug.arch.exception = DB_VECTOR; 1761 return 0; 1762 } 1763 1764 return 1; 1765 } 1766 1767 static int bp_interception(struct vcpu_svm *svm) 1768 { 1769 struct kvm_run *kvm_run = svm->vcpu.run; 1770 1771 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1772 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1773 kvm_run->debug.arch.exception = BP_VECTOR; 1774 return 0; 1775 } 1776 1777 static int ud_interception(struct vcpu_svm *svm) 1778 { 1779 return handle_ud(&svm->vcpu); 1780 } 1781 1782 static int ac_interception(struct vcpu_svm *svm) 1783 { 1784 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0); 1785 return 1; 1786 } 1787 1788 static int gp_interception(struct vcpu_svm *svm) 1789 { 1790 struct kvm_vcpu *vcpu = &svm->vcpu; 1791 u32 error_code = svm->vmcb->control.exit_info_1; 1792 1793 WARN_ON_ONCE(!enable_vmware_backdoor); 1794 1795 /* 1796 * VMware backdoor emulation on #GP interception only handles IN{S}, 1797 * OUT{S}, and RDPMC, none of which generate a non-zero error code. 1798 */ 1799 if (error_code) { 1800 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 1801 return 1; 1802 } 1803 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 1804 } 1805 1806 static bool is_erratum_383(void) 1807 { 1808 int err, i; 1809 u64 value; 1810 1811 if (!erratum_383_found) 1812 return false; 1813 1814 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 1815 if (err) 1816 return false; 1817 1818 /* Bit 62 may or may not be set for this mce */ 1819 value &= ~(1ULL << 62); 1820 1821 if (value != 0xb600000000010015ULL) 1822 return false; 1823 1824 /* Clear MCi_STATUS registers */ 1825 for (i = 0; i < 6; ++i) 1826 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 1827 1828 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 1829 if (!err) { 1830 u32 low, high; 1831 1832 value &= ~(1ULL << 2); 1833 low = lower_32_bits(value); 1834 high = upper_32_bits(value); 1835 1836 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 1837 } 1838 1839 /* Flush tlb to evict multi-match entries */ 1840 __flush_tlb_all(); 1841 1842 return true; 1843 } 1844 1845 static void svm_handle_mce(struct vcpu_svm *svm) 1846 { 1847 if (is_erratum_383()) { 1848 /* 1849 * Erratum 383 triggered. Guest state is corrupt so kill the 1850 * guest. 1851 */ 1852 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 1853 1854 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); 1855 1856 return; 1857 } 1858 1859 /* 1860 * On an #MC intercept the MCE handler is not called automatically in 1861 * the host. So do it by hand here. 1862 */ 1863 asm volatile ( 1864 "int $0x12\n"); 1865 /* not sure if we ever come back to this point */ 1866 1867 return; 1868 } 1869 1870 static int mc_interception(struct vcpu_svm *svm) 1871 { 1872 return 1; 1873 } 1874 1875 static int shutdown_interception(struct vcpu_svm *svm) 1876 { 1877 struct kvm_run *kvm_run = svm->vcpu.run; 1878 1879 /* 1880 * VMCB is undefined after a SHUTDOWN intercept 1881 * so reinitialize it. 1882 */ 1883 clear_page(svm->vmcb); 1884 init_vmcb(svm); 1885 1886 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 1887 return 0; 1888 } 1889 1890 static int io_interception(struct vcpu_svm *svm) 1891 { 1892 struct kvm_vcpu *vcpu = &svm->vcpu; 1893 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 1894 int size, in, string; 1895 unsigned port; 1896 1897 ++svm->vcpu.stat.io_exits; 1898 string = (io_info & SVM_IOIO_STR_MASK) != 0; 1899 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 1900 if (string) 1901 return kvm_emulate_instruction(vcpu, 0); 1902 1903 port = io_info >> 16; 1904 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 1905 svm->next_rip = svm->vmcb->control.exit_info_2; 1906 1907 return kvm_fast_pio(&svm->vcpu, size, port, in); 1908 } 1909 1910 static int nmi_interception(struct vcpu_svm *svm) 1911 { 1912 return 1; 1913 } 1914 1915 static int intr_interception(struct vcpu_svm *svm) 1916 { 1917 ++svm->vcpu.stat.irq_exits; 1918 return 1; 1919 } 1920 1921 static int nop_on_interception(struct vcpu_svm *svm) 1922 { 1923 return 1; 1924 } 1925 1926 static int halt_interception(struct vcpu_svm *svm) 1927 { 1928 return kvm_emulate_halt(&svm->vcpu); 1929 } 1930 1931 static int vmmcall_interception(struct vcpu_svm *svm) 1932 { 1933 return kvm_emulate_hypercall(&svm->vcpu); 1934 } 1935 1936 static int vmload_interception(struct vcpu_svm *svm) 1937 { 1938 struct vmcb *nested_vmcb; 1939 struct kvm_host_map map; 1940 int ret; 1941 1942 if (nested_svm_check_permissions(svm)) 1943 return 1; 1944 1945 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 1946 if (ret) { 1947 if (ret == -EINVAL) 1948 kvm_inject_gp(&svm->vcpu, 0); 1949 return 1; 1950 } 1951 1952 nested_vmcb = map.hva; 1953 1954 ret = kvm_skip_emulated_instruction(&svm->vcpu); 1955 1956 nested_svm_vmloadsave(nested_vmcb, svm->vmcb); 1957 kvm_vcpu_unmap(&svm->vcpu, &map, true); 1958 1959 return ret; 1960 } 1961 1962 static int vmsave_interception(struct vcpu_svm *svm) 1963 { 1964 struct vmcb *nested_vmcb; 1965 struct kvm_host_map map; 1966 int ret; 1967 1968 if (nested_svm_check_permissions(svm)) 1969 return 1; 1970 1971 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 1972 if (ret) { 1973 if (ret == -EINVAL) 1974 kvm_inject_gp(&svm->vcpu, 0); 1975 return 1; 1976 } 1977 1978 nested_vmcb = map.hva; 1979 1980 ret = kvm_skip_emulated_instruction(&svm->vcpu); 1981 1982 nested_svm_vmloadsave(svm->vmcb, nested_vmcb); 1983 kvm_vcpu_unmap(&svm->vcpu, &map, true); 1984 1985 return ret; 1986 } 1987 1988 static int vmrun_interception(struct vcpu_svm *svm) 1989 { 1990 if (nested_svm_check_permissions(svm)) 1991 return 1; 1992 1993 return nested_svm_vmrun(svm); 1994 } 1995 1996 static int stgi_interception(struct vcpu_svm *svm) 1997 { 1998 int ret; 1999 2000 if (nested_svm_check_permissions(svm)) 2001 return 1; 2002 2003 /* 2004 * If VGIF is enabled, the STGI intercept is only added to 2005 * detect the opening of the SMI/NMI window; remove it now. 2006 */ 2007 if (vgif_enabled(svm)) 2008 clr_intercept(svm, INTERCEPT_STGI); 2009 2010 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2011 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2012 2013 enable_gif(svm); 2014 2015 return ret; 2016 } 2017 2018 static int clgi_interception(struct vcpu_svm *svm) 2019 { 2020 int ret; 2021 2022 if (nested_svm_check_permissions(svm)) 2023 return 1; 2024 2025 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2026 2027 disable_gif(svm); 2028 2029 /* After a CLGI no interrupts should come */ 2030 if (!kvm_vcpu_apicv_active(&svm->vcpu)) 2031 svm_clear_vintr(svm); 2032 2033 return ret; 2034 } 2035 2036 static int invlpga_interception(struct vcpu_svm *svm) 2037 { 2038 struct kvm_vcpu *vcpu = &svm->vcpu; 2039 2040 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu), 2041 kvm_rax_read(&svm->vcpu)); 2042 2043 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2044 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu)); 2045 2046 return kvm_skip_emulated_instruction(&svm->vcpu); 2047 } 2048 2049 static int skinit_interception(struct vcpu_svm *svm) 2050 { 2051 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu)); 2052 2053 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2054 return 1; 2055 } 2056 2057 static int wbinvd_interception(struct vcpu_svm *svm) 2058 { 2059 return kvm_emulate_wbinvd(&svm->vcpu); 2060 } 2061 2062 static int xsetbv_interception(struct vcpu_svm *svm) 2063 { 2064 u64 new_bv = kvm_read_edx_eax(&svm->vcpu); 2065 u32 index = kvm_rcx_read(&svm->vcpu); 2066 2067 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) { 2068 return kvm_skip_emulated_instruction(&svm->vcpu); 2069 } 2070 2071 return 1; 2072 } 2073 2074 static int rdpru_interception(struct vcpu_svm *svm) 2075 { 2076 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2077 return 1; 2078 } 2079 2080 static int task_switch_interception(struct vcpu_svm *svm) 2081 { 2082 u16 tss_selector; 2083 int reason; 2084 int int_type = svm->vmcb->control.exit_int_info & 2085 SVM_EXITINTINFO_TYPE_MASK; 2086 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2087 uint32_t type = 2088 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2089 uint32_t idt_v = 2090 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2091 bool has_error_code = false; 2092 u32 error_code = 0; 2093 2094 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2095 2096 if (svm->vmcb->control.exit_info_2 & 2097 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2098 reason = TASK_SWITCH_IRET; 2099 else if (svm->vmcb->control.exit_info_2 & 2100 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2101 reason = TASK_SWITCH_JMP; 2102 else if (idt_v) 2103 reason = TASK_SWITCH_GATE; 2104 else 2105 reason = TASK_SWITCH_CALL; 2106 2107 if (reason == TASK_SWITCH_GATE) { 2108 switch (type) { 2109 case SVM_EXITINTINFO_TYPE_NMI: 2110 svm->vcpu.arch.nmi_injected = false; 2111 break; 2112 case SVM_EXITINTINFO_TYPE_EXEPT: 2113 if (svm->vmcb->control.exit_info_2 & 2114 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2115 has_error_code = true; 2116 error_code = 2117 (u32)svm->vmcb->control.exit_info_2; 2118 } 2119 kvm_clear_exception_queue(&svm->vcpu); 2120 break; 2121 case SVM_EXITINTINFO_TYPE_INTR: 2122 kvm_clear_interrupt_queue(&svm->vcpu); 2123 break; 2124 default: 2125 break; 2126 } 2127 } 2128 2129 if (reason != TASK_SWITCH_GATE || 2130 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2131 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2132 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2133 if (!skip_emulated_instruction(&svm->vcpu)) 2134 return 0; 2135 } 2136 2137 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2138 int_vec = -1; 2139 2140 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, 2141 has_error_code, error_code); 2142 } 2143 2144 static int cpuid_interception(struct vcpu_svm *svm) 2145 { 2146 return kvm_emulate_cpuid(&svm->vcpu); 2147 } 2148 2149 static int iret_interception(struct vcpu_svm *svm) 2150 { 2151 ++svm->vcpu.stat.nmi_window_exits; 2152 clr_intercept(svm, INTERCEPT_IRET); 2153 svm->vcpu.arch.hflags |= HF_IRET_MASK; 2154 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); 2155 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2156 return 1; 2157 } 2158 2159 static int invlpg_interception(struct vcpu_svm *svm) 2160 { 2161 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2162 return kvm_emulate_instruction(&svm->vcpu, 0); 2163 2164 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); 2165 return kvm_skip_emulated_instruction(&svm->vcpu); 2166 } 2167 2168 static int emulate_on_interception(struct vcpu_svm *svm) 2169 { 2170 return kvm_emulate_instruction(&svm->vcpu, 0); 2171 } 2172 2173 static int rsm_interception(struct vcpu_svm *svm) 2174 { 2175 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2); 2176 } 2177 2178 static int rdpmc_interception(struct vcpu_svm *svm) 2179 { 2180 int err; 2181 2182 if (!nrips) 2183 return emulate_on_interception(svm); 2184 2185 err = kvm_rdpmc(&svm->vcpu); 2186 return kvm_complete_insn_gp(&svm->vcpu, err); 2187 } 2188 2189 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, 2190 unsigned long val) 2191 { 2192 unsigned long cr0 = svm->vcpu.arch.cr0; 2193 bool ret = false; 2194 u64 intercept; 2195 2196 intercept = svm->nested.intercept; 2197 2198 if (!is_guest_mode(&svm->vcpu) || 2199 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))) 2200 return false; 2201 2202 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2203 val &= ~SVM_CR0_SELECTIVE_MASK; 2204 2205 if (cr0 ^ val) { 2206 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2207 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2208 } 2209 2210 return ret; 2211 } 2212 2213 #define CR_VALID (1ULL << 63) 2214 2215 static int cr_interception(struct vcpu_svm *svm) 2216 { 2217 int reg, cr; 2218 unsigned long val; 2219 int err; 2220 2221 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2222 return emulate_on_interception(svm); 2223 2224 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2225 return emulate_on_interception(svm); 2226 2227 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2228 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2229 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2230 else 2231 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2232 2233 err = 0; 2234 if (cr >= 16) { /* mov to cr */ 2235 cr -= 16; 2236 val = kvm_register_read(&svm->vcpu, reg); 2237 switch (cr) { 2238 case 0: 2239 if (!check_selective_cr0_intercepted(svm, val)) 2240 err = kvm_set_cr0(&svm->vcpu, val); 2241 else 2242 return 1; 2243 2244 break; 2245 case 3: 2246 err = kvm_set_cr3(&svm->vcpu, val); 2247 break; 2248 case 4: 2249 err = kvm_set_cr4(&svm->vcpu, val); 2250 break; 2251 case 8: 2252 err = kvm_set_cr8(&svm->vcpu, val); 2253 break; 2254 default: 2255 WARN(1, "unhandled write to CR%d", cr); 2256 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2257 return 1; 2258 } 2259 } else { /* mov from cr */ 2260 switch (cr) { 2261 case 0: 2262 val = kvm_read_cr0(&svm->vcpu); 2263 break; 2264 case 2: 2265 val = svm->vcpu.arch.cr2; 2266 break; 2267 case 3: 2268 val = kvm_read_cr3(&svm->vcpu); 2269 break; 2270 case 4: 2271 val = kvm_read_cr4(&svm->vcpu); 2272 break; 2273 case 8: 2274 val = kvm_get_cr8(&svm->vcpu); 2275 break; 2276 default: 2277 WARN(1, "unhandled read from CR%d", cr); 2278 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2279 return 1; 2280 } 2281 kvm_register_write(&svm->vcpu, reg, val); 2282 } 2283 return kvm_complete_insn_gp(&svm->vcpu, err); 2284 } 2285 2286 static int dr_interception(struct vcpu_svm *svm) 2287 { 2288 int reg, dr; 2289 unsigned long val; 2290 2291 if (svm->vcpu.guest_debug == 0) { 2292 /* 2293 * No more DR vmexits; force a reload of the debug registers 2294 * and reenter on this instruction. The next vmexit will 2295 * retrieve the full state of the debug registers. 2296 */ 2297 clr_dr_intercepts(svm); 2298 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2299 return 1; 2300 } 2301 2302 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2303 return emulate_on_interception(svm); 2304 2305 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2306 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2307 2308 if (dr >= 16) { /* mov to DRn */ 2309 if (!kvm_require_dr(&svm->vcpu, dr - 16)) 2310 return 1; 2311 val = kvm_register_read(&svm->vcpu, reg); 2312 kvm_set_dr(&svm->vcpu, dr - 16, val); 2313 } else { 2314 if (!kvm_require_dr(&svm->vcpu, dr)) 2315 return 1; 2316 kvm_get_dr(&svm->vcpu, dr, &val); 2317 kvm_register_write(&svm->vcpu, reg, val); 2318 } 2319 2320 return kvm_skip_emulated_instruction(&svm->vcpu); 2321 } 2322 2323 static int cr8_write_interception(struct vcpu_svm *svm) 2324 { 2325 struct kvm_run *kvm_run = svm->vcpu.run; 2326 int r; 2327 2328 u8 cr8_prev = kvm_get_cr8(&svm->vcpu); 2329 /* instruction emulation calls kvm_set_cr8() */ 2330 r = cr_interception(svm); 2331 if (lapic_in_kernel(&svm->vcpu)) 2332 return r; 2333 if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) 2334 return r; 2335 kvm_run->exit_reason = KVM_EXIT_SET_TPR; 2336 return 0; 2337 } 2338 2339 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2340 { 2341 msr->data = 0; 2342 2343 switch (msr->index) { 2344 case MSR_F10H_DECFG: 2345 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2346 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2347 break; 2348 default: 2349 return 1; 2350 } 2351 2352 return 0; 2353 } 2354 2355 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2356 { 2357 struct vcpu_svm *svm = to_svm(vcpu); 2358 2359 switch (msr_info->index) { 2360 case MSR_STAR: 2361 msr_info->data = svm->vmcb->save.star; 2362 break; 2363 #ifdef CONFIG_X86_64 2364 case MSR_LSTAR: 2365 msr_info->data = svm->vmcb->save.lstar; 2366 break; 2367 case MSR_CSTAR: 2368 msr_info->data = svm->vmcb->save.cstar; 2369 break; 2370 case MSR_KERNEL_GS_BASE: 2371 msr_info->data = svm->vmcb->save.kernel_gs_base; 2372 break; 2373 case MSR_SYSCALL_MASK: 2374 msr_info->data = svm->vmcb->save.sfmask; 2375 break; 2376 #endif 2377 case MSR_IA32_SYSENTER_CS: 2378 msr_info->data = svm->vmcb->save.sysenter_cs; 2379 break; 2380 case MSR_IA32_SYSENTER_EIP: 2381 msr_info->data = svm->sysenter_eip; 2382 break; 2383 case MSR_IA32_SYSENTER_ESP: 2384 msr_info->data = svm->sysenter_esp; 2385 break; 2386 case MSR_TSC_AUX: 2387 if (!boot_cpu_has(X86_FEATURE_RDTSCP)) 2388 return 1; 2389 msr_info->data = svm->tsc_aux; 2390 break; 2391 /* 2392 * Nobody will change the following 5 values in the VMCB so we can 2393 * safely return them on rdmsr. They will always be 0 until LBRV is 2394 * implemented. 2395 */ 2396 case MSR_IA32_DEBUGCTLMSR: 2397 msr_info->data = svm->vmcb->save.dbgctl; 2398 break; 2399 case MSR_IA32_LASTBRANCHFROMIP: 2400 msr_info->data = svm->vmcb->save.br_from; 2401 break; 2402 case MSR_IA32_LASTBRANCHTOIP: 2403 msr_info->data = svm->vmcb->save.br_to; 2404 break; 2405 case MSR_IA32_LASTINTFROMIP: 2406 msr_info->data = svm->vmcb->save.last_excp_from; 2407 break; 2408 case MSR_IA32_LASTINTTOIP: 2409 msr_info->data = svm->vmcb->save.last_excp_to; 2410 break; 2411 case MSR_VM_HSAVE_PA: 2412 msr_info->data = svm->nested.hsave_msr; 2413 break; 2414 case MSR_VM_CR: 2415 msr_info->data = svm->nested.vm_cr_msr; 2416 break; 2417 case MSR_IA32_SPEC_CTRL: 2418 if (!msr_info->host_initiated && 2419 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 2420 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) && 2421 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && 2422 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) 2423 return 1; 2424 2425 msr_info->data = svm->spec_ctrl; 2426 break; 2427 case MSR_AMD64_VIRT_SPEC_CTRL: 2428 if (!msr_info->host_initiated && 2429 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2430 return 1; 2431 2432 msr_info->data = svm->virt_spec_ctrl; 2433 break; 2434 case MSR_F15H_IC_CFG: { 2435 2436 int family, model; 2437 2438 family = guest_cpuid_family(vcpu); 2439 model = guest_cpuid_model(vcpu); 2440 2441 if (family < 0 || model < 0) 2442 return kvm_get_msr_common(vcpu, msr_info); 2443 2444 msr_info->data = 0; 2445 2446 if (family == 0x15 && 2447 (model >= 0x2 && model < 0x20)) 2448 msr_info->data = 0x1E; 2449 } 2450 break; 2451 case MSR_F10H_DECFG: 2452 msr_info->data = svm->msr_decfg; 2453 break; 2454 default: 2455 return kvm_get_msr_common(vcpu, msr_info); 2456 } 2457 return 0; 2458 } 2459 2460 static int rdmsr_interception(struct vcpu_svm *svm) 2461 { 2462 return kvm_emulate_rdmsr(&svm->vcpu); 2463 } 2464 2465 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2466 { 2467 struct vcpu_svm *svm = to_svm(vcpu); 2468 int svm_dis, chg_mask; 2469 2470 if (data & ~SVM_VM_CR_VALID_MASK) 2471 return 1; 2472 2473 chg_mask = SVM_VM_CR_VALID_MASK; 2474 2475 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2476 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2477 2478 svm->nested.vm_cr_msr &= ~chg_mask; 2479 svm->nested.vm_cr_msr |= (data & chg_mask); 2480 2481 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2482 2483 /* check for svm_disable while efer.svme is set */ 2484 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2485 return 1; 2486 2487 return 0; 2488 } 2489 2490 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2491 { 2492 struct vcpu_svm *svm = to_svm(vcpu); 2493 2494 u32 ecx = msr->index; 2495 u64 data = msr->data; 2496 switch (ecx) { 2497 case MSR_IA32_CR_PAT: 2498 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2499 return 1; 2500 vcpu->arch.pat = data; 2501 svm->vmcb->save.g_pat = data; 2502 mark_dirty(svm->vmcb, VMCB_NPT); 2503 break; 2504 case MSR_IA32_SPEC_CTRL: 2505 if (!msr->host_initiated && 2506 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 2507 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) && 2508 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && 2509 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) 2510 return 1; 2511 2512 if (data & ~kvm_spec_ctrl_valid_bits(vcpu)) 2513 return 1; 2514 2515 svm->spec_ctrl = data; 2516 if (!data) 2517 break; 2518 2519 /* 2520 * For non-nested: 2521 * When it's written (to non-zero) for the first time, pass 2522 * it through. 2523 * 2524 * For nested: 2525 * The handling of the MSR bitmap for L2 guests is done in 2526 * nested_svm_vmrun_msrpm. 2527 * We update the L1 MSR bit as well since it will end up 2528 * touching the MSR anyway now. 2529 */ 2530 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2531 break; 2532 case MSR_IA32_PRED_CMD: 2533 if (!msr->host_initiated && 2534 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 2535 return 1; 2536 2537 if (data & ~PRED_CMD_IBPB) 2538 return 1; 2539 if (!boot_cpu_has(X86_FEATURE_AMD_IBPB)) 2540 return 1; 2541 if (!data) 2542 break; 2543 2544 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2545 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2546 break; 2547 case MSR_AMD64_VIRT_SPEC_CTRL: 2548 if (!msr->host_initiated && 2549 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2550 return 1; 2551 2552 if (data & ~SPEC_CTRL_SSBD) 2553 return 1; 2554 2555 svm->virt_spec_ctrl = data; 2556 break; 2557 case MSR_STAR: 2558 svm->vmcb->save.star = data; 2559 break; 2560 #ifdef CONFIG_X86_64 2561 case MSR_LSTAR: 2562 svm->vmcb->save.lstar = data; 2563 break; 2564 case MSR_CSTAR: 2565 svm->vmcb->save.cstar = data; 2566 break; 2567 case MSR_KERNEL_GS_BASE: 2568 svm->vmcb->save.kernel_gs_base = data; 2569 break; 2570 case MSR_SYSCALL_MASK: 2571 svm->vmcb->save.sfmask = data; 2572 break; 2573 #endif 2574 case MSR_IA32_SYSENTER_CS: 2575 svm->vmcb->save.sysenter_cs = data; 2576 break; 2577 case MSR_IA32_SYSENTER_EIP: 2578 svm->sysenter_eip = data; 2579 svm->vmcb->save.sysenter_eip = data; 2580 break; 2581 case MSR_IA32_SYSENTER_ESP: 2582 svm->sysenter_esp = data; 2583 svm->vmcb->save.sysenter_esp = data; 2584 break; 2585 case MSR_TSC_AUX: 2586 if (!boot_cpu_has(X86_FEATURE_RDTSCP)) 2587 return 1; 2588 2589 /* 2590 * This is rare, so we update the MSR here instead of using 2591 * direct_access_msrs. Doing that would require a rdmsr in 2592 * svm_vcpu_put. 2593 */ 2594 svm->tsc_aux = data; 2595 wrmsrl(MSR_TSC_AUX, svm->tsc_aux); 2596 break; 2597 case MSR_IA32_DEBUGCTLMSR: 2598 if (!boot_cpu_has(X86_FEATURE_LBRV)) { 2599 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2600 __func__, data); 2601 break; 2602 } 2603 if (data & DEBUGCTL_RESERVED_BITS) 2604 return 1; 2605 2606 svm->vmcb->save.dbgctl = data; 2607 mark_dirty(svm->vmcb, VMCB_LBR); 2608 if (data & (1ULL<<0)) 2609 svm_enable_lbrv(svm); 2610 else 2611 svm_disable_lbrv(svm); 2612 break; 2613 case MSR_VM_HSAVE_PA: 2614 svm->nested.hsave_msr = data; 2615 break; 2616 case MSR_VM_CR: 2617 return svm_set_vm_cr(vcpu, data); 2618 case MSR_VM_IGNNE: 2619 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2620 break; 2621 case MSR_F10H_DECFG: { 2622 struct kvm_msr_entry msr_entry; 2623 2624 msr_entry.index = msr->index; 2625 if (svm_get_msr_feature(&msr_entry)) 2626 return 1; 2627 2628 /* Check the supported bits */ 2629 if (data & ~msr_entry.data) 2630 return 1; 2631 2632 /* Don't allow the guest to change a bit, #GP */ 2633 if (!msr->host_initiated && (data ^ msr_entry.data)) 2634 return 1; 2635 2636 svm->msr_decfg = data; 2637 break; 2638 } 2639 case MSR_IA32_APICBASE: 2640 if (kvm_vcpu_apicv_active(vcpu)) 2641 avic_update_vapic_bar(to_svm(vcpu), data); 2642 /* Fall through */ 2643 default: 2644 return kvm_set_msr_common(vcpu, msr); 2645 } 2646 return 0; 2647 } 2648 2649 static int wrmsr_interception(struct vcpu_svm *svm) 2650 { 2651 return kvm_emulate_wrmsr(&svm->vcpu); 2652 } 2653 2654 static int msr_interception(struct vcpu_svm *svm) 2655 { 2656 if (svm->vmcb->control.exit_info_1) 2657 return wrmsr_interception(svm); 2658 else 2659 return rdmsr_interception(svm); 2660 } 2661 2662 static int interrupt_window_interception(struct vcpu_svm *svm) 2663 { 2664 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2665 svm_clear_vintr(svm); 2666 2667 /* 2668 * For AVIC, the only reason to end up here is ExtINTs. 2669 * In this case AVIC was temporarily disabled for 2670 * requesting the IRQ window and we have to re-enable it. 2671 */ 2672 svm_toggle_avic_for_irq_window(&svm->vcpu, true); 2673 2674 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; 2675 mark_dirty(svm->vmcb, VMCB_INTR); 2676 ++svm->vcpu.stat.irq_window_exits; 2677 return 1; 2678 } 2679 2680 static int pause_interception(struct vcpu_svm *svm) 2681 { 2682 struct kvm_vcpu *vcpu = &svm->vcpu; 2683 bool in_kernel = (svm_get_cpl(vcpu) == 0); 2684 2685 if (pause_filter_thresh) 2686 grow_ple_window(vcpu); 2687 2688 kvm_vcpu_on_spin(vcpu, in_kernel); 2689 return 1; 2690 } 2691 2692 static int nop_interception(struct vcpu_svm *svm) 2693 { 2694 return kvm_skip_emulated_instruction(&(svm->vcpu)); 2695 } 2696 2697 static int monitor_interception(struct vcpu_svm *svm) 2698 { 2699 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); 2700 return nop_interception(svm); 2701 } 2702 2703 static int mwait_interception(struct vcpu_svm *svm) 2704 { 2705 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); 2706 return nop_interception(svm); 2707 } 2708 2709 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { 2710 [SVM_EXIT_READ_CR0] = cr_interception, 2711 [SVM_EXIT_READ_CR3] = cr_interception, 2712 [SVM_EXIT_READ_CR4] = cr_interception, 2713 [SVM_EXIT_READ_CR8] = cr_interception, 2714 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 2715 [SVM_EXIT_WRITE_CR0] = cr_interception, 2716 [SVM_EXIT_WRITE_CR3] = cr_interception, 2717 [SVM_EXIT_WRITE_CR4] = cr_interception, 2718 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 2719 [SVM_EXIT_READ_DR0] = dr_interception, 2720 [SVM_EXIT_READ_DR1] = dr_interception, 2721 [SVM_EXIT_READ_DR2] = dr_interception, 2722 [SVM_EXIT_READ_DR3] = dr_interception, 2723 [SVM_EXIT_READ_DR4] = dr_interception, 2724 [SVM_EXIT_READ_DR5] = dr_interception, 2725 [SVM_EXIT_READ_DR6] = dr_interception, 2726 [SVM_EXIT_READ_DR7] = dr_interception, 2727 [SVM_EXIT_WRITE_DR0] = dr_interception, 2728 [SVM_EXIT_WRITE_DR1] = dr_interception, 2729 [SVM_EXIT_WRITE_DR2] = dr_interception, 2730 [SVM_EXIT_WRITE_DR3] = dr_interception, 2731 [SVM_EXIT_WRITE_DR4] = dr_interception, 2732 [SVM_EXIT_WRITE_DR5] = dr_interception, 2733 [SVM_EXIT_WRITE_DR6] = dr_interception, 2734 [SVM_EXIT_WRITE_DR7] = dr_interception, 2735 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 2736 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 2737 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 2738 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 2739 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 2740 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 2741 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 2742 [SVM_EXIT_INTR] = intr_interception, 2743 [SVM_EXIT_NMI] = nmi_interception, 2744 [SVM_EXIT_SMI] = nop_on_interception, 2745 [SVM_EXIT_INIT] = nop_on_interception, 2746 [SVM_EXIT_VINTR] = interrupt_window_interception, 2747 [SVM_EXIT_RDPMC] = rdpmc_interception, 2748 [SVM_EXIT_CPUID] = cpuid_interception, 2749 [SVM_EXIT_IRET] = iret_interception, 2750 [SVM_EXIT_INVD] = emulate_on_interception, 2751 [SVM_EXIT_PAUSE] = pause_interception, 2752 [SVM_EXIT_HLT] = halt_interception, 2753 [SVM_EXIT_INVLPG] = invlpg_interception, 2754 [SVM_EXIT_INVLPGA] = invlpga_interception, 2755 [SVM_EXIT_IOIO] = io_interception, 2756 [SVM_EXIT_MSR] = msr_interception, 2757 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 2758 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 2759 [SVM_EXIT_VMRUN] = vmrun_interception, 2760 [SVM_EXIT_VMMCALL] = vmmcall_interception, 2761 [SVM_EXIT_VMLOAD] = vmload_interception, 2762 [SVM_EXIT_VMSAVE] = vmsave_interception, 2763 [SVM_EXIT_STGI] = stgi_interception, 2764 [SVM_EXIT_CLGI] = clgi_interception, 2765 [SVM_EXIT_SKINIT] = skinit_interception, 2766 [SVM_EXIT_WBINVD] = wbinvd_interception, 2767 [SVM_EXIT_MONITOR] = monitor_interception, 2768 [SVM_EXIT_MWAIT] = mwait_interception, 2769 [SVM_EXIT_XSETBV] = xsetbv_interception, 2770 [SVM_EXIT_RDPRU] = rdpru_interception, 2771 [SVM_EXIT_NPF] = npf_interception, 2772 [SVM_EXIT_RSM] = rsm_interception, 2773 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 2774 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 2775 }; 2776 2777 static void dump_vmcb(struct kvm_vcpu *vcpu) 2778 { 2779 struct vcpu_svm *svm = to_svm(vcpu); 2780 struct vmcb_control_area *control = &svm->vmcb->control; 2781 struct vmcb_save_area *save = &svm->vmcb->save; 2782 2783 if (!dump_invalid_vmcb) { 2784 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2785 return; 2786 } 2787 2788 pr_err("VMCB Control Area:\n"); 2789 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff); 2790 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16); 2791 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff); 2792 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16); 2793 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions); 2794 pr_err("%-20s%016llx\n", "intercepts:", control->intercept); 2795 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 2796 pr_err("%-20s%d\n", "pause filter threshold:", 2797 control->pause_filter_thresh); 2798 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 2799 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 2800 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 2801 pr_err("%-20s%d\n", "asid:", control->asid); 2802 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 2803 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 2804 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 2805 pr_err("%-20s%08x\n", "int_state:", control->int_state); 2806 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 2807 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 2808 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 2809 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 2810 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 2811 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 2812 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 2813 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 2814 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 2815 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 2816 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 2817 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 2818 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 2819 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 2820 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 2821 pr_err("VMCB State Save Area:\n"); 2822 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2823 "es:", 2824 save->es.selector, save->es.attrib, 2825 save->es.limit, save->es.base); 2826 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2827 "cs:", 2828 save->cs.selector, save->cs.attrib, 2829 save->cs.limit, save->cs.base); 2830 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2831 "ss:", 2832 save->ss.selector, save->ss.attrib, 2833 save->ss.limit, save->ss.base); 2834 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2835 "ds:", 2836 save->ds.selector, save->ds.attrib, 2837 save->ds.limit, save->ds.base); 2838 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2839 "fs:", 2840 save->fs.selector, save->fs.attrib, 2841 save->fs.limit, save->fs.base); 2842 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2843 "gs:", 2844 save->gs.selector, save->gs.attrib, 2845 save->gs.limit, save->gs.base); 2846 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2847 "gdtr:", 2848 save->gdtr.selector, save->gdtr.attrib, 2849 save->gdtr.limit, save->gdtr.base); 2850 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2851 "ldtr:", 2852 save->ldtr.selector, save->ldtr.attrib, 2853 save->ldtr.limit, save->ldtr.base); 2854 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2855 "idtr:", 2856 save->idtr.selector, save->idtr.attrib, 2857 save->idtr.limit, save->idtr.base); 2858 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2859 "tr:", 2860 save->tr.selector, save->tr.attrib, 2861 save->tr.limit, save->tr.base); 2862 pr_err("cpl: %d efer: %016llx\n", 2863 save->cpl, save->efer); 2864 pr_err("%-15s %016llx %-13s %016llx\n", 2865 "cr0:", save->cr0, "cr2:", save->cr2); 2866 pr_err("%-15s %016llx %-13s %016llx\n", 2867 "cr3:", save->cr3, "cr4:", save->cr4); 2868 pr_err("%-15s %016llx %-13s %016llx\n", 2869 "dr6:", save->dr6, "dr7:", save->dr7); 2870 pr_err("%-15s %016llx %-13s %016llx\n", 2871 "rip:", save->rip, "rflags:", save->rflags); 2872 pr_err("%-15s %016llx %-13s %016llx\n", 2873 "rsp:", save->rsp, "rax:", save->rax); 2874 pr_err("%-15s %016llx %-13s %016llx\n", 2875 "star:", save->star, "lstar:", save->lstar); 2876 pr_err("%-15s %016llx %-13s %016llx\n", 2877 "cstar:", save->cstar, "sfmask:", save->sfmask); 2878 pr_err("%-15s %016llx %-13s %016llx\n", 2879 "kernel_gs_base:", save->kernel_gs_base, 2880 "sysenter_cs:", save->sysenter_cs); 2881 pr_err("%-15s %016llx %-13s %016llx\n", 2882 "sysenter_esp:", save->sysenter_esp, 2883 "sysenter_eip:", save->sysenter_eip); 2884 pr_err("%-15s %016llx %-13s %016llx\n", 2885 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 2886 pr_err("%-15s %016llx %-13s %016llx\n", 2887 "br_from:", save->br_from, "br_to:", save->br_to); 2888 pr_err("%-15s %016llx %-13s %016llx\n", 2889 "excp_from:", save->last_excp_from, 2890 "excp_to:", save->last_excp_to); 2891 } 2892 2893 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) 2894 { 2895 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 2896 2897 *info1 = control->exit_info_1; 2898 *info2 = control->exit_info_2; 2899 } 2900 2901 static int handle_exit(struct kvm_vcpu *vcpu, 2902 enum exit_fastpath_completion exit_fastpath) 2903 { 2904 struct vcpu_svm *svm = to_svm(vcpu); 2905 struct kvm_run *kvm_run = vcpu->run; 2906 u32 exit_code = svm->vmcb->control.exit_code; 2907 2908 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); 2909 2910 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE)) 2911 vcpu->arch.cr0 = svm->vmcb->save.cr0; 2912 if (npt_enabled) 2913 vcpu->arch.cr3 = svm->vmcb->save.cr3; 2914 2915 if (unlikely(svm->nested.exit_required)) { 2916 nested_svm_vmexit(svm); 2917 svm->nested.exit_required = false; 2918 2919 return 1; 2920 } 2921 2922 if (is_guest_mode(vcpu)) { 2923 int vmexit; 2924 2925 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code, 2926 svm->vmcb->control.exit_info_1, 2927 svm->vmcb->control.exit_info_2, 2928 svm->vmcb->control.exit_int_info, 2929 svm->vmcb->control.exit_int_info_err, 2930 KVM_ISA_SVM); 2931 2932 vmexit = nested_svm_exit_special(svm); 2933 2934 if (vmexit == NESTED_EXIT_CONTINUE) 2935 vmexit = nested_svm_exit_handled(svm); 2936 2937 if (vmexit == NESTED_EXIT_DONE) 2938 return 1; 2939 } 2940 2941 svm_complete_interrupts(svm); 2942 2943 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 2944 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 2945 kvm_run->fail_entry.hardware_entry_failure_reason 2946 = svm->vmcb->control.exit_code; 2947 dump_vmcb(vcpu); 2948 return 0; 2949 } 2950 2951 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 2952 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 2953 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 2954 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 2955 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 2956 "exit_code 0x%x\n", 2957 __func__, svm->vmcb->control.exit_int_info, 2958 exit_code); 2959 2960 if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) { 2961 kvm_skip_emulated_instruction(vcpu); 2962 return 1; 2963 } else if (exit_code >= ARRAY_SIZE(svm_exit_handlers) 2964 || !svm_exit_handlers[exit_code]) { 2965 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code); 2966 dump_vmcb(vcpu); 2967 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2968 vcpu->run->internal.suberror = 2969 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 2970 vcpu->run->internal.ndata = 1; 2971 vcpu->run->internal.data[0] = exit_code; 2972 return 0; 2973 } 2974 2975 #ifdef CONFIG_RETPOLINE 2976 if (exit_code == SVM_EXIT_MSR) 2977 return msr_interception(svm); 2978 else if (exit_code == SVM_EXIT_VINTR) 2979 return interrupt_window_interception(svm); 2980 else if (exit_code == SVM_EXIT_INTR) 2981 return intr_interception(svm); 2982 else if (exit_code == SVM_EXIT_HLT) 2983 return halt_interception(svm); 2984 else if (exit_code == SVM_EXIT_NPF) 2985 return npf_interception(svm); 2986 #endif 2987 return svm_exit_handlers[exit_code](svm); 2988 } 2989 2990 static void reload_tss(struct kvm_vcpu *vcpu) 2991 { 2992 int cpu = raw_smp_processor_id(); 2993 2994 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2995 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 2996 load_TR_desc(); 2997 } 2998 2999 static void pre_svm_run(struct vcpu_svm *svm) 3000 { 3001 int cpu = raw_smp_processor_id(); 3002 3003 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 3004 3005 if (sev_guest(svm->vcpu.kvm)) 3006 return pre_sev_run(svm, cpu); 3007 3008 /* FIXME: handle wraparound of asid_generation */ 3009 if (svm->asid_generation != sd->asid_generation) 3010 new_asid(svm, sd); 3011 } 3012 3013 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3014 { 3015 struct vcpu_svm *svm = to_svm(vcpu); 3016 3017 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3018 vcpu->arch.hflags |= HF_NMI_MASK; 3019 set_intercept(svm, INTERCEPT_IRET); 3020 ++vcpu->stat.nmi_injections; 3021 } 3022 3023 static void svm_set_irq(struct kvm_vcpu *vcpu) 3024 { 3025 struct vcpu_svm *svm = to_svm(vcpu); 3026 3027 BUG_ON(!(gif_set(svm))); 3028 3029 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3030 ++vcpu->stat.irq_injections; 3031 3032 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3033 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3034 } 3035 3036 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3037 { 3038 struct vcpu_svm *svm = to_svm(vcpu); 3039 3040 if (svm_nested_virtualize_tpr(vcpu)) 3041 return; 3042 3043 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); 3044 3045 if (irr == -1) 3046 return; 3047 3048 if (tpr >= irr) 3049 set_cr_intercept(svm, INTERCEPT_CR8_WRITE); 3050 } 3051 3052 static int svm_nmi_allowed(struct kvm_vcpu *vcpu) 3053 { 3054 struct vcpu_svm *svm = to_svm(vcpu); 3055 struct vmcb *vmcb = svm->vmcb; 3056 int ret; 3057 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) && 3058 !(svm->vcpu.arch.hflags & HF_NMI_MASK); 3059 ret = ret && gif_set(svm) && nested_svm_nmi(svm); 3060 3061 return ret; 3062 } 3063 3064 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3065 { 3066 struct vcpu_svm *svm = to_svm(vcpu); 3067 3068 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); 3069 } 3070 3071 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3072 { 3073 struct vcpu_svm *svm = to_svm(vcpu); 3074 3075 if (masked) { 3076 svm->vcpu.arch.hflags |= HF_NMI_MASK; 3077 set_intercept(svm, INTERCEPT_IRET); 3078 } else { 3079 svm->vcpu.arch.hflags &= ~HF_NMI_MASK; 3080 clr_intercept(svm, INTERCEPT_IRET); 3081 } 3082 } 3083 3084 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu) 3085 { 3086 struct vcpu_svm *svm = to_svm(vcpu); 3087 struct vmcb *vmcb = svm->vmcb; 3088 3089 if (!gif_set(svm) || 3090 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)) 3091 return 0; 3092 3093 if (is_guest_mode(vcpu) && (svm->vcpu.arch.hflags & HF_VINTR_MASK)) 3094 return !!(svm->vcpu.arch.hflags & HF_HIF_MASK); 3095 else 3096 return !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF); 3097 } 3098 3099 static void enable_irq_window(struct kvm_vcpu *vcpu) 3100 { 3101 struct vcpu_svm *svm = to_svm(vcpu); 3102 3103 /* 3104 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3105 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3106 * get that intercept, this function will be called again though and 3107 * we'll get the vintr intercept. However, if the vGIF feature is 3108 * enabled, the STGI interception will not occur. Enable the irq 3109 * window under the assumption that the hardware will set the GIF. 3110 */ 3111 if (vgif_enabled(svm) || gif_set(svm)) { 3112 /* 3113 * IRQ window is not needed when AVIC is enabled, 3114 * unless we have pending ExtINT since it cannot be injected 3115 * via AVIC. In such case, we need to temporarily disable AVIC, 3116 * and fallback to injecting IRQ via V_IRQ. 3117 */ 3118 svm_toggle_avic_for_irq_window(vcpu, false); 3119 svm_set_vintr(svm); 3120 } 3121 } 3122 3123 static void enable_nmi_window(struct kvm_vcpu *vcpu) 3124 { 3125 struct vcpu_svm *svm = to_svm(vcpu); 3126 3127 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) 3128 == HF_NMI_MASK) 3129 return; /* IRET will cause a vm exit */ 3130 3131 if (!gif_set(svm)) { 3132 if (vgif_enabled(svm)) 3133 set_intercept(svm, INTERCEPT_STGI); 3134 return; /* STGI will cause a vm exit */ 3135 } 3136 3137 if (svm->nested.exit_required) 3138 return; /* we're not going to run the guest yet */ 3139 3140 /* 3141 * Something prevents NMI from been injected. Single step over possible 3142 * problem (IRET or exception injection or interrupt shadow) 3143 */ 3144 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3145 svm->nmi_singlestep = true; 3146 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3147 } 3148 3149 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) 3150 { 3151 return 0; 3152 } 3153 3154 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 3155 { 3156 return 0; 3157 } 3158 3159 void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) 3160 { 3161 struct vcpu_svm *svm = to_svm(vcpu); 3162 3163 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3164 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3165 else 3166 svm->asid_generation--; 3167 } 3168 3169 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3170 { 3171 struct vcpu_svm *svm = to_svm(vcpu); 3172 3173 invlpga(gva, svm->vmcb->control.asid); 3174 } 3175 3176 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) 3177 { 3178 } 3179 3180 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3181 { 3182 struct vcpu_svm *svm = to_svm(vcpu); 3183 3184 if (svm_nested_virtualize_tpr(vcpu)) 3185 return; 3186 3187 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) { 3188 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3189 kvm_set_cr8(vcpu, cr8); 3190 } 3191 } 3192 3193 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3194 { 3195 struct vcpu_svm *svm = to_svm(vcpu); 3196 u64 cr8; 3197 3198 if (svm_nested_virtualize_tpr(vcpu) || 3199 kvm_vcpu_apicv_active(vcpu)) 3200 return; 3201 3202 cr8 = kvm_get_cr8(vcpu); 3203 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3204 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3205 } 3206 3207 static void svm_complete_interrupts(struct vcpu_svm *svm) 3208 { 3209 u8 vector; 3210 int type; 3211 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3212 unsigned int3_injected = svm->int3_injected; 3213 3214 svm->int3_injected = 0; 3215 3216 /* 3217 * If we've made progress since setting HF_IRET_MASK, we've 3218 * executed an IRET and can allow NMI injection. 3219 */ 3220 if ((svm->vcpu.arch.hflags & HF_IRET_MASK) 3221 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) { 3222 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3223 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3224 } 3225 3226 svm->vcpu.arch.nmi_injected = false; 3227 kvm_clear_exception_queue(&svm->vcpu); 3228 kvm_clear_interrupt_queue(&svm->vcpu); 3229 3230 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3231 return; 3232 3233 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3234 3235 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3236 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3237 3238 switch (type) { 3239 case SVM_EXITINTINFO_TYPE_NMI: 3240 svm->vcpu.arch.nmi_injected = true; 3241 break; 3242 case SVM_EXITINTINFO_TYPE_EXEPT: 3243 /* 3244 * In case of software exceptions, do not reinject the vector, 3245 * but re-execute the instruction instead. Rewind RIP first 3246 * if we emulated INT3 before. 3247 */ 3248 if (kvm_exception_is_soft(vector)) { 3249 if (vector == BP_VECTOR && int3_injected && 3250 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) 3251 kvm_rip_write(&svm->vcpu, 3252 kvm_rip_read(&svm->vcpu) - 3253 int3_injected); 3254 break; 3255 } 3256 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3257 u32 err = svm->vmcb->control.exit_int_info_err; 3258 kvm_requeue_exception_e(&svm->vcpu, vector, err); 3259 3260 } else 3261 kvm_requeue_exception(&svm->vcpu, vector); 3262 break; 3263 case SVM_EXITINTINFO_TYPE_INTR: 3264 kvm_queue_interrupt(&svm->vcpu, vector, false); 3265 break; 3266 default: 3267 break; 3268 } 3269 } 3270 3271 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3272 { 3273 struct vcpu_svm *svm = to_svm(vcpu); 3274 struct vmcb_control_area *control = &svm->vmcb->control; 3275 3276 control->exit_int_info = control->event_inj; 3277 control->exit_int_info_err = control->event_inj_err; 3278 control->event_inj = 0; 3279 svm_complete_interrupts(svm); 3280 } 3281 3282 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs); 3283 3284 static void svm_vcpu_run(struct kvm_vcpu *vcpu) 3285 { 3286 struct vcpu_svm *svm = to_svm(vcpu); 3287 3288 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3289 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3290 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3291 3292 /* 3293 * A vmexit emulation is required before the vcpu can be executed 3294 * again. 3295 */ 3296 if (unlikely(svm->nested.exit_required)) 3297 return; 3298 3299 /* 3300 * Disable singlestep if we're injecting an interrupt/exception. 3301 * We don't want our modified rflags to be pushed on the stack where 3302 * we might not be able to easily reset them if we disabled NMI 3303 * singlestep later. 3304 */ 3305 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3306 /* 3307 * Event injection happens before external interrupts cause a 3308 * vmexit and interrupts are disabled here, so smp_send_reschedule 3309 * is enough to force an immediate vmexit. 3310 */ 3311 disable_nmi_singlestep(svm); 3312 smp_send_reschedule(vcpu->cpu); 3313 } 3314 3315 pre_svm_run(svm); 3316 3317 sync_lapic_to_cr8(vcpu); 3318 3319 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3320 3321 /* 3322 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3323 * of a #DB. 3324 */ 3325 if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3326 svm_set_dr6(svm, vcpu->arch.dr6); 3327 else 3328 svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM); 3329 3330 clgi(); 3331 kvm_load_guest_xsave_state(vcpu); 3332 3333 if (lapic_in_kernel(vcpu) && 3334 vcpu->arch.apic->lapic_timer.timer_advance_ns) 3335 kvm_wait_lapic_expire(vcpu); 3336 3337 /* 3338 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3339 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3340 * is no need to worry about the conditional branch over the wrmsr 3341 * being speculatively taken. 3342 */ 3343 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3344 3345 __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs); 3346 3347 #ifdef CONFIG_X86_64 3348 wrmsrl(MSR_GS_BASE, svm->host.gs_base); 3349 #else 3350 loadsegment(fs, svm->host.fs); 3351 #ifndef CONFIG_X86_32_LAZY_GS 3352 loadsegment(gs, svm->host.gs); 3353 #endif 3354 #endif 3355 3356 /* 3357 * We do not use IBRS in the kernel. If this vCPU has used the 3358 * SPEC_CTRL MSR it may have left it on; save the value and 3359 * turn it off. This is much more efficient than blindly adding 3360 * it to the atomic save/restore list. Especially as the former 3361 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3362 * 3363 * For non-nested case: 3364 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3365 * save it. 3366 * 3367 * For nested case: 3368 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3369 * save it. 3370 */ 3371 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3372 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3373 3374 reload_tss(vcpu); 3375 3376 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3377 3378 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3379 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3380 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3381 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3382 3383 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3384 kvm_before_interrupt(&svm->vcpu); 3385 3386 kvm_load_host_xsave_state(vcpu); 3387 stgi(); 3388 3389 /* Any pending NMI will happen here */ 3390 3391 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3392 kvm_after_interrupt(&svm->vcpu); 3393 3394 sync_cr8_to_lapic(vcpu); 3395 3396 svm->next_rip = 0; 3397 3398 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3399 3400 /* if exit due to PF check for async PF */ 3401 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3402 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); 3403 3404 if (npt_enabled) { 3405 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); 3406 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); 3407 } 3408 3409 /* 3410 * We need to handle MC intercepts here before the vcpu has a chance to 3411 * change the physical cpu 3412 */ 3413 if (unlikely(svm->vmcb->control.exit_code == 3414 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3415 svm_handle_mce(svm); 3416 3417 mark_all_clean(svm->vmcb); 3418 } 3419 3420 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root) 3421 { 3422 struct vcpu_svm *svm = to_svm(vcpu); 3423 bool update_guest_cr3 = true; 3424 unsigned long cr3; 3425 3426 cr3 = __sme_set(root); 3427 if (npt_enabled) { 3428 svm->vmcb->control.nested_cr3 = cr3; 3429 mark_dirty(svm->vmcb, VMCB_NPT); 3430 3431 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ 3432 if (is_guest_mode(vcpu)) 3433 update_guest_cr3 = false; 3434 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3435 cr3 = vcpu->arch.cr3; 3436 else /* CR3 is already up-to-date. */ 3437 update_guest_cr3 = false; 3438 } 3439 3440 if (update_guest_cr3) { 3441 svm->vmcb->save.cr3 = cr3; 3442 mark_dirty(svm->vmcb, VMCB_CR); 3443 } 3444 } 3445 3446 static int is_disabled(void) 3447 { 3448 u64 vm_cr; 3449 3450 rdmsrl(MSR_VM_CR, vm_cr); 3451 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3452 return 1; 3453 3454 return 0; 3455 } 3456 3457 static void 3458 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3459 { 3460 /* 3461 * Patch in the VMMCALL instruction: 3462 */ 3463 hypercall[0] = 0x0f; 3464 hypercall[1] = 0x01; 3465 hypercall[2] = 0xd9; 3466 } 3467 3468 static int __init svm_check_processor_compat(void) 3469 { 3470 return 0; 3471 } 3472 3473 static bool svm_cpu_has_accelerated_tpr(void) 3474 { 3475 return false; 3476 } 3477 3478 static bool svm_has_emulated_msr(int index) 3479 { 3480 switch (index) { 3481 case MSR_IA32_MCG_EXT_CTL: 3482 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 3483 return false; 3484 default: 3485 break; 3486 } 3487 3488 return true; 3489 } 3490 3491 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 3492 { 3493 return 0; 3494 } 3495 3496 static void svm_cpuid_update(struct kvm_vcpu *vcpu) 3497 { 3498 struct vcpu_svm *svm = to_svm(vcpu); 3499 3500 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3501 boot_cpu_has(X86_FEATURE_XSAVE) && 3502 boot_cpu_has(X86_FEATURE_XSAVES); 3503 3504 /* Update nrips enabled cache */ 3505 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 3506 guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS); 3507 3508 if (!kvm_vcpu_apicv_active(vcpu)) 3509 return; 3510 3511 /* 3512 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 3513 * is exposed to the guest, disable AVIC. 3514 */ 3515 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 3516 kvm_request_apicv_update(vcpu->kvm, false, 3517 APICV_INHIBIT_REASON_X2APIC); 3518 3519 /* 3520 * Currently, AVIC does not work with nested virtualization. 3521 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 3522 */ 3523 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 3524 kvm_request_apicv_update(vcpu->kvm, false, 3525 APICV_INHIBIT_REASON_NESTED); 3526 } 3527 3528 static bool svm_has_wbinvd_exit(void) 3529 { 3530 return true; 3531 } 3532 3533 #define PRE_EX(exit) { .exit_code = (exit), \ 3534 .stage = X86_ICPT_PRE_EXCEPT, } 3535 #define POST_EX(exit) { .exit_code = (exit), \ 3536 .stage = X86_ICPT_POST_EXCEPT, } 3537 #define POST_MEM(exit) { .exit_code = (exit), \ 3538 .stage = X86_ICPT_POST_MEMACCESS, } 3539 3540 static const struct __x86_intercept { 3541 u32 exit_code; 3542 enum x86_intercept_stage stage; 3543 } x86_intercept_map[] = { 3544 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 3545 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 3546 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 3547 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 3548 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 3549 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 3550 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 3551 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 3552 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 3553 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 3554 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 3555 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 3556 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 3557 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 3558 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 3559 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 3560 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 3561 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 3562 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 3563 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 3564 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 3565 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 3566 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 3567 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 3568 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 3569 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 3570 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 3571 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 3572 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 3573 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 3574 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 3575 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 3576 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 3577 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 3578 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 3579 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 3580 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 3581 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 3582 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 3583 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 3584 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 3585 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 3586 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 3587 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 3588 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 3589 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 3590 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 3591 }; 3592 3593 #undef PRE_EX 3594 #undef POST_EX 3595 #undef POST_MEM 3596 3597 static int svm_check_intercept(struct kvm_vcpu *vcpu, 3598 struct x86_instruction_info *info, 3599 enum x86_intercept_stage stage, 3600 struct x86_exception *exception) 3601 { 3602 struct vcpu_svm *svm = to_svm(vcpu); 3603 int vmexit, ret = X86EMUL_CONTINUE; 3604 struct __x86_intercept icpt_info; 3605 struct vmcb *vmcb = svm->vmcb; 3606 3607 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 3608 goto out; 3609 3610 icpt_info = x86_intercept_map[info->intercept]; 3611 3612 if (stage != icpt_info.stage) 3613 goto out; 3614 3615 switch (icpt_info.exit_code) { 3616 case SVM_EXIT_READ_CR0: 3617 if (info->intercept == x86_intercept_cr_read) 3618 icpt_info.exit_code += info->modrm_reg; 3619 break; 3620 case SVM_EXIT_WRITE_CR0: { 3621 unsigned long cr0, val; 3622 u64 intercept; 3623 3624 if (info->intercept == x86_intercept_cr_write) 3625 icpt_info.exit_code += info->modrm_reg; 3626 3627 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 3628 info->intercept == x86_intercept_clts) 3629 break; 3630 3631 intercept = svm->nested.intercept; 3632 3633 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))) 3634 break; 3635 3636 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 3637 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 3638 3639 if (info->intercept == x86_intercept_lmsw) { 3640 cr0 &= 0xfUL; 3641 val &= 0xfUL; 3642 /* lmsw can't clear PE - catch this here */ 3643 if (cr0 & X86_CR0_PE) 3644 val |= X86_CR0_PE; 3645 } 3646 3647 if (cr0 ^ val) 3648 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 3649 3650 break; 3651 } 3652 case SVM_EXIT_READ_DR0: 3653 case SVM_EXIT_WRITE_DR0: 3654 icpt_info.exit_code += info->modrm_reg; 3655 break; 3656 case SVM_EXIT_MSR: 3657 if (info->intercept == x86_intercept_wrmsr) 3658 vmcb->control.exit_info_1 = 1; 3659 else 3660 vmcb->control.exit_info_1 = 0; 3661 break; 3662 case SVM_EXIT_PAUSE: 3663 /* 3664 * We get this for NOP only, but pause 3665 * is rep not, check this here 3666 */ 3667 if (info->rep_prefix != REPE_PREFIX) 3668 goto out; 3669 break; 3670 case SVM_EXIT_IOIO: { 3671 u64 exit_info; 3672 u32 bytes; 3673 3674 if (info->intercept == x86_intercept_in || 3675 info->intercept == x86_intercept_ins) { 3676 exit_info = ((info->src_val & 0xffff) << 16) | 3677 SVM_IOIO_TYPE_MASK; 3678 bytes = info->dst_bytes; 3679 } else { 3680 exit_info = (info->dst_val & 0xffff) << 16; 3681 bytes = info->src_bytes; 3682 } 3683 3684 if (info->intercept == x86_intercept_outs || 3685 info->intercept == x86_intercept_ins) 3686 exit_info |= SVM_IOIO_STR_MASK; 3687 3688 if (info->rep_prefix) 3689 exit_info |= SVM_IOIO_REP_MASK; 3690 3691 bytes = min(bytes, 4u); 3692 3693 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 3694 3695 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 3696 3697 vmcb->control.exit_info_1 = exit_info; 3698 vmcb->control.exit_info_2 = info->next_rip; 3699 3700 break; 3701 } 3702 default: 3703 break; 3704 } 3705 3706 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 3707 if (static_cpu_has(X86_FEATURE_NRIPS)) 3708 vmcb->control.next_rip = info->next_rip; 3709 vmcb->control.exit_code = icpt_info.exit_code; 3710 vmexit = nested_svm_exit_handled(svm); 3711 3712 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 3713 : X86EMUL_CONTINUE; 3714 3715 out: 3716 return ret; 3717 } 3718 3719 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu, 3720 enum exit_fastpath_completion *exit_fastpath) 3721 { 3722 if (!is_guest_mode(vcpu) && 3723 to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3724 to_svm(vcpu)->vmcb->control.exit_info_1) 3725 *exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu); 3726 } 3727 3728 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 3729 { 3730 if (pause_filter_thresh) 3731 shrink_ple_window(vcpu); 3732 } 3733 3734 static void svm_setup_mce(struct kvm_vcpu *vcpu) 3735 { 3736 /* [63:9] are reserved. */ 3737 vcpu->arch.mcg_cap &= 0x1ff; 3738 } 3739 3740 static int svm_smi_allowed(struct kvm_vcpu *vcpu) 3741 { 3742 struct vcpu_svm *svm = to_svm(vcpu); 3743 3744 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 3745 if (!gif_set(svm)) 3746 return 0; 3747 3748 if (is_guest_mode(&svm->vcpu) && 3749 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) { 3750 /* TODO: Might need to set exit_info_1 and exit_info_2 here */ 3751 svm->vmcb->control.exit_code = SVM_EXIT_SMI; 3752 svm->nested.exit_required = true; 3753 return 0; 3754 } 3755 3756 return 1; 3757 } 3758 3759 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 3760 { 3761 struct vcpu_svm *svm = to_svm(vcpu); 3762 int ret; 3763 3764 if (is_guest_mode(vcpu)) { 3765 /* FED8h - SVM Guest */ 3766 put_smstate(u64, smstate, 0x7ed8, 1); 3767 /* FEE0h - SVM Guest VMCB Physical Address */ 3768 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb); 3769 3770 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3771 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3772 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3773 3774 ret = nested_svm_vmexit(svm); 3775 if (ret) 3776 return ret; 3777 } 3778 return 0; 3779 } 3780 3781 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 3782 { 3783 struct vcpu_svm *svm = to_svm(vcpu); 3784 struct vmcb *nested_vmcb; 3785 struct kvm_host_map map; 3786 u64 guest; 3787 u64 vmcb; 3788 3789 guest = GET_SMSTATE(u64, smstate, 0x7ed8); 3790 vmcb = GET_SMSTATE(u64, smstate, 0x7ee0); 3791 3792 if (guest) { 3793 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL) 3794 return 1; 3795 nested_vmcb = map.hva; 3796 enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map); 3797 } 3798 return 0; 3799 } 3800 3801 static int enable_smi_window(struct kvm_vcpu *vcpu) 3802 { 3803 struct vcpu_svm *svm = to_svm(vcpu); 3804 3805 if (!gif_set(svm)) { 3806 if (vgif_enabled(svm)) 3807 set_intercept(svm, INTERCEPT_STGI); 3808 /* STGI will cause a vm exit */ 3809 return 1; 3810 } 3811 return 0; 3812 } 3813 3814 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu) 3815 { 3816 unsigned long cr4 = kvm_read_cr4(vcpu); 3817 bool smep = cr4 & X86_CR4_SMEP; 3818 bool smap = cr4 & X86_CR4_SMAP; 3819 bool is_user = svm_get_cpl(vcpu) == 3; 3820 3821 /* 3822 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 3823 * 3824 * Errata: 3825 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is 3826 * possible that CPU microcode implementing DecodeAssist will fail 3827 * to read bytes of instruction which caused #NPF. In this case, 3828 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly 3829 * return 0 instead of the correct guest instruction bytes. 3830 * 3831 * This happens because CPU microcode reading instruction bytes 3832 * uses a special opcode which attempts to read data using CPL=0 3833 * priviledges. The microcode reads CS:RIP and if it hits a SMAP 3834 * fault, it gives up and returns no instruction bytes. 3835 * 3836 * Detection: 3837 * We reach here in case CPU supports DecodeAssist, raised #NPF and 3838 * returned 0 in GuestIntrBytes field of the VMCB. 3839 * First, errata can only be triggered in case vCPU CR4.SMAP=1. 3840 * Second, if vCPU CR4.SMEP=1, errata could only be triggered 3841 * in case vCPU CPL==3 (Because otherwise guest would have triggered 3842 * a SMEP fault instead of #NPF). 3843 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. 3844 * As most guests enable SMAP if they have also enabled SMEP, use above 3845 * logic in order to attempt minimize false-positive of detecting errata 3846 * while still preserving all cases semantic correctness. 3847 * 3848 * Workaround: 3849 * To determine what instruction the guest was executing, the hypervisor 3850 * will have to decode the instruction at the instruction pointer. 3851 * 3852 * In non SEV guest, hypervisor will be able to read the guest 3853 * memory to decode the instruction pointer when insn_len is zero 3854 * so we return true to indicate that decoding is possible. 3855 * 3856 * But in the SEV guest, the guest memory is encrypted with the 3857 * guest specific key and hypervisor will not be able to decode the 3858 * instruction pointer so we will not able to workaround it. Lets 3859 * print the error and request to kill the guest. 3860 */ 3861 if (smap && (!smep || is_user)) { 3862 if (!sev_guest(vcpu->kvm)) 3863 return true; 3864 3865 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 3866 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3867 } 3868 3869 return false; 3870 } 3871 3872 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 3873 { 3874 struct vcpu_svm *svm = to_svm(vcpu); 3875 3876 /* 3877 * TODO: Last condition latch INIT signals on vCPU when 3878 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 3879 * To properly emulate the INIT intercept, SVM should implement 3880 * kvm_x86_ops.check_nested_events() and call nested_svm_vmexit() 3881 * there if an INIT signal is pending. 3882 */ 3883 return !gif_set(svm) || 3884 (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT)); 3885 } 3886 3887 static void svm_vm_destroy(struct kvm *kvm) 3888 { 3889 avic_vm_destroy(kvm); 3890 sev_vm_destroy(kvm); 3891 } 3892 3893 static int svm_vm_init(struct kvm *kvm) 3894 { 3895 if (avic) { 3896 int ret = avic_vm_init(kvm); 3897 if (ret) 3898 return ret; 3899 } 3900 3901 kvm_apicv_init(kvm, avic); 3902 return 0; 3903 } 3904 3905 static struct kvm_x86_ops svm_x86_ops __initdata = { 3906 .hardware_unsetup = svm_hardware_teardown, 3907 .hardware_enable = svm_hardware_enable, 3908 .hardware_disable = svm_hardware_disable, 3909 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, 3910 .has_emulated_msr = svm_has_emulated_msr, 3911 3912 .vcpu_create = svm_create_vcpu, 3913 .vcpu_free = svm_free_vcpu, 3914 .vcpu_reset = svm_vcpu_reset, 3915 3916 .vm_size = sizeof(struct kvm_svm), 3917 .vm_init = svm_vm_init, 3918 .vm_destroy = svm_vm_destroy, 3919 3920 .prepare_guest_switch = svm_prepare_guest_switch, 3921 .vcpu_load = svm_vcpu_load, 3922 .vcpu_put = svm_vcpu_put, 3923 .vcpu_blocking = svm_vcpu_blocking, 3924 .vcpu_unblocking = svm_vcpu_unblocking, 3925 3926 .update_bp_intercept = update_bp_intercept, 3927 .get_msr_feature = svm_get_msr_feature, 3928 .get_msr = svm_get_msr, 3929 .set_msr = svm_set_msr, 3930 .get_segment_base = svm_get_segment_base, 3931 .get_segment = svm_get_segment, 3932 .set_segment = svm_set_segment, 3933 .get_cpl = svm_get_cpl, 3934 .get_cs_db_l_bits = kvm_get_cs_db_l_bits, 3935 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits, 3936 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits, 3937 .set_cr0 = svm_set_cr0, 3938 .set_cr4 = svm_set_cr4, 3939 .set_efer = svm_set_efer, 3940 .get_idt = svm_get_idt, 3941 .set_idt = svm_set_idt, 3942 .get_gdt = svm_get_gdt, 3943 .set_gdt = svm_set_gdt, 3944 .set_dr7 = svm_set_dr7, 3945 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 3946 .cache_reg = svm_cache_reg, 3947 .get_rflags = svm_get_rflags, 3948 .set_rflags = svm_set_rflags, 3949 3950 .tlb_flush = svm_flush_tlb, 3951 .tlb_flush_gva = svm_flush_tlb_gva, 3952 3953 .run = svm_vcpu_run, 3954 .handle_exit = handle_exit, 3955 .skip_emulated_instruction = skip_emulated_instruction, 3956 .update_emulated_instruction = NULL, 3957 .set_interrupt_shadow = svm_set_interrupt_shadow, 3958 .get_interrupt_shadow = svm_get_interrupt_shadow, 3959 .patch_hypercall = svm_patch_hypercall, 3960 .set_irq = svm_set_irq, 3961 .set_nmi = svm_inject_nmi, 3962 .queue_exception = svm_queue_exception, 3963 .cancel_injection = svm_cancel_injection, 3964 .interrupt_allowed = svm_interrupt_allowed, 3965 .nmi_allowed = svm_nmi_allowed, 3966 .get_nmi_mask = svm_get_nmi_mask, 3967 .set_nmi_mask = svm_set_nmi_mask, 3968 .enable_nmi_window = enable_nmi_window, 3969 .enable_irq_window = enable_irq_window, 3970 .update_cr8_intercept = update_cr8_intercept, 3971 .set_virtual_apic_mode = svm_set_virtual_apic_mode, 3972 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, 3973 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, 3974 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl, 3975 .load_eoi_exitmap = svm_load_eoi_exitmap, 3976 .hwapic_irr_update = svm_hwapic_irr_update, 3977 .hwapic_isr_update = svm_hwapic_isr_update, 3978 .sync_pir_to_irr = kvm_lapic_find_highest_irr, 3979 .apicv_post_state_restore = avic_post_state_restore, 3980 3981 .set_tss_addr = svm_set_tss_addr, 3982 .set_identity_map_addr = svm_set_identity_map_addr, 3983 .get_tdp_level = get_npt_level, 3984 .get_mt_mask = svm_get_mt_mask, 3985 3986 .get_exit_info = svm_get_exit_info, 3987 3988 .cpuid_update = svm_cpuid_update, 3989 3990 .has_wbinvd_exit = svm_has_wbinvd_exit, 3991 3992 .read_l1_tsc_offset = svm_read_l1_tsc_offset, 3993 .write_l1_tsc_offset = svm_write_l1_tsc_offset, 3994 3995 .load_mmu_pgd = svm_load_mmu_pgd, 3996 3997 .check_intercept = svm_check_intercept, 3998 .handle_exit_irqoff = svm_handle_exit_irqoff, 3999 4000 .request_immediate_exit = __kvm_request_immediate_exit, 4001 4002 .sched_in = svm_sched_in, 4003 4004 .pmu_ops = &amd_pmu_ops, 4005 .deliver_posted_interrupt = svm_deliver_avic_intr, 4006 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, 4007 .update_pi_irte = svm_update_pi_irte, 4008 .setup_mce = svm_setup_mce, 4009 4010 .smi_allowed = svm_smi_allowed, 4011 .pre_enter_smm = svm_pre_enter_smm, 4012 .pre_leave_smm = svm_pre_leave_smm, 4013 .enable_smi_window = enable_smi_window, 4014 4015 .mem_enc_op = svm_mem_enc_op, 4016 .mem_enc_reg_region = svm_register_enc_region, 4017 .mem_enc_unreg_region = svm_unregister_enc_region, 4018 4019 .nested_enable_evmcs = NULL, 4020 .nested_get_evmcs_version = NULL, 4021 4022 .need_emulation_on_page_fault = svm_need_emulation_on_page_fault, 4023 4024 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4025 4026 .check_nested_events = svm_check_nested_events, 4027 }; 4028 4029 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4030 .cpu_has_kvm_support = has_svm, 4031 .disabled_by_bios = is_disabled, 4032 .hardware_setup = svm_hardware_setup, 4033 .check_processor_compatibility = svm_check_processor_compat, 4034 4035 .runtime_ops = &svm_x86_ops, 4036 }; 4037 4038 static int __init svm_init(void) 4039 { 4040 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4041 __alignof__(struct vcpu_svm), THIS_MODULE); 4042 } 4043 4044 static void __exit svm_exit(void) 4045 { 4046 kvm_exit(); 4047 } 4048 4049 module_init(svm_init) 4050 module_exit(svm_exit) 4051