1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 #include <linux/cc_platform.h> 29 30 #include <asm/apic.h> 31 #include <asm/perf_event.h> 32 #include <asm/tlbflush.h> 33 #include <asm/desc.h> 34 #include <asm/debugreg.h> 35 #include <asm/kvm_para.h> 36 #include <asm/irq_remapping.h> 37 #include <asm/spec-ctrl.h> 38 #include <asm/cpu_device_id.h> 39 #include <asm/traps.h> 40 #include <asm/fpu/api.h> 41 42 #include <asm/virtext.h> 43 #include "trace.h" 44 45 #include "svm.h" 46 #include "svm_ops.h" 47 48 #include "kvm_onhyperv.h" 49 #include "svm_onhyperv.h" 50 51 MODULE_AUTHOR("Qumranet"); 52 MODULE_LICENSE("GPL"); 53 54 #ifdef MODULE 55 static const struct x86_cpu_id svm_cpu_id[] = { 56 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 57 {} 58 }; 59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 60 #endif 61 62 #define SEG_TYPE_LDT 2 63 #define SEG_TYPE_BUSY_TSS16 3 64 65 #define SVM_FEATURE_LBRV (1 << 1) 66 #define SVM_FEATURE_SVML (1 << 2) 67 #define SVM_FEATURE_TSC_RATE (1 << 4) 68 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 69 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 70 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 71 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 72 73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 74 75 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 76 #define TSC_RATIO_MIN 0x0000000000000001ULL 77 #define TSC_RATIO_MAX 0x000000ffffffffffULL 78 79 static bool erratum_383_found __read_mostly; 80 81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 82 83 /* 84 * Set osvw_len to higher value when updated Revision Guides 85 * are published and we know what the new status bits are 86 */ 87 static uint64_t osvw_len = 4, osvw_status; 88 89 static DEFINE_PER_CPU(u64, current_tsc_ratio); 90 #define TSC_RATIO_DEFAULT 0x0100000000ULL 91 92 static const struct svm_direct_access_msrs { 93 u32 index; /* Index of the MSR */ 94 bool always; /* True if intercept is initially cleared */ 95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 96 { .index = MSR_STAR, .always = true }, 97 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 98 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 99 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 100 #ifdef CONFIG_X86_64 101 { .index = MSR_GS_BASE, .always = true }, 102 { .index = MSR_FS_BASE, .always = true }, 103 { .index = MSR_KERNEL_GS_BASE, .always = true }, 104 { .index = MSR_LSTAR, .always = true }, 105 { .index = MSR_CSTAR, .always = true }, 106 { .index = MSR_SYSCALL_MASK, .always = true }, 107 #endif 108 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 109 { .index = MSR_IA32_PRED_CMD, .always = false }, 110 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 111 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 112 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 113 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 114 { .index = MSR_EFER, .always = false }, 115 { .index = MSR_IA32_CR_PAT, .always = false }, 116 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 117 { .index = MSR_INVALID, .always = false }, 118 }; 119 120 /* 121 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 122 * pause_filter_count: On processors that support Pause filtering(indicated 123 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 124 * count value. On VMRUN this value is loaded into an internal counter. 125 * Each time a pause instruction is executed, this counter is decremented 126 * until it reaches zero at which time a #VMEXIT is generated if pause 127 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 128 * Intercept Filtering for more details. 129 * This also indicate if ple logic enabled. 130 * 131 * pause_filter_thresh: In addition, some processor families support advanced 132 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 133 * the amount of time a guest is allowed to execute in a pause loop. 134 * In this mode, a 16-bit pause filter threshold field is added in the 135 * VMCB. The threshold value is a cycle count that is used to reset the 136 * pause counter. As with simple pause filtering, VMRUN loads the pause 137 * count value from VMCB into an internal counter. Then, on each pause 138 * instruction the hardware checks the elapsed number of cycles since 139 * the most recent pause instruction against the pause filter threshold. 140 * If the elapsed cycle count is greater than the pause filter threshold, 141 * then the internal pause count is reloaded from the VMCB and execution 142 * continues. If the elapsed cycle count is less than the pause filter 143 * threshold, then the internal pause count is decremented. If the count 144 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 145 * triggered. If advanced pause filtering is supported and pause filter 146 * threshold field is set to zero, the filter will operate in the simpler, 147 * count only mode. 148 */ 149 150 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 151 module_param(pause_filter_thresh, ushort, 0444); 152 153 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 154 module_param(pause_filter_count, ushort, 0444); 155 156 /* Default doubles per-vcpu window every exit. */ 157 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 158 module_param(pause_filter_count_grow, ushort, 0444); 159 160 /* Default resets per-vcpu window every exit to pause_filter_count. */ 161 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 162 module_param(pause_filter_count_shrink, ushort, 0444); 163 164 /* Default is to compute the maximum so we can never overflow. */ 165 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 166 module_param(pause_filter_count_max, ushort, 0444); 167 168 /* 169 * Use nested page tables by default. Note, NPT may get forced off by 170 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 171 */ 172 bool npt_enabled = true; 173 module_param_named(npt, npt_enabled, bool, 0444); 174 175 /* allow nested virtualization in KVM/SVM */ 176 static int nested = true; 177 module_param(nested, int, S_IRUGO); 178 179 /* enable/disable Next RIP Save */ 180 static int nrips = true; 181 module_param(nrips, int, 0444); 182 183 /* enable/disable Virtual VMLOAD VMSAVE */ 184 static int vls = true; 185 module_param(vls, int, 0444); 186 187 /* enable/disable Virtual GIF */ 188 static int vgif = true; 189 module_param(vgif, int, 0444); 190 191 /* enable/disable LBR virtualization */ 192 static int lbrv = true; 193 module_param(lbrv, int, 0444); 194 195 static int tsc_scaling = true; 196 module_param(tsc_scaling, int, 0444); 197 198 /* 199 * enable / disable AVIC. Because the defaults differ for APICv 200 * support between VMX and SVM we cannot use module_param_named. 201 */ 202 static bool avic; 203 module_param(avic, bool, 0444); 204 205 bool __read_mostly dump_invalid_vmcb; 206 module_param(dump_invalid_vmcb, bool, 0644); 207 208 209 bool intercept_smi = true; 210 module_param(intercept_smi, bool, 0444); 211 212 213 static bool svm_gp_erratum_intercept = true; 214 215 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 216 217 static unsigned long iopm_base; 218 219 struct kvm_ldttss_desc { 220 u16 limit0; 221 u16 base0; 222 unsigned base1:8, type:5, dpl:2, p:1; 223 unsigned limit1:4, zero0:3, g:1, base2:8; 224 u32 base3; 225 u32 zero1; 226 } __attribute__((packed)); 227 228 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 229 230 /* 231 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 232 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 233 * 234 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 235 * defer the restoration of TSC_AUX until the CPU returns to userspace. 236 */ 237 static int tsc_aux_uret_slot __read_mostly = -1; 238 239 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 240 241 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 242 #define MSRS_RANGE_SIZE 2048 243 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 244 245 u32 svm_msrpm_offset(u32 msr) 246 { 247 u32 offset; 248 int i; 249 250 for (i = 0; i < NUM_MSR_MAPS; i++) { 251 if (msr < msrpm_ranges[i] || 252 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 253 continue; 254 255 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 256 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 257 258 /* Now we have the u8 offset - but need the u32 offset */ 259 return offset / 4; 260 } 261 262 /* MSR not in any range */ 263 return MSR_INVALID; 264 } 265 266 #define MAX_INST_SIZE 15 267 268 static int get_npt_level(void) 269 { 270 #ifdef CONFIG_X86_64 271 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 272 #else 273 return PT32E_ROOT_LEVEL; 274 #endif 275 } 276 277 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 278 { 279 struct vcpu_svm *svm = to_svm(vcpu); 280 u64 old_efer = vcpu->arch.efer; 281 vcpu->arch.efer = efer; 282 283 if (!npt_enabled) { 284 /* Shadow paging assumes NX to be available. */ 285 efer |= EFER_NX; 286 287 if (!(efer & EFER_LMA)) 288 efer &= ~EFER_LME; 289 } 290 291 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 292 if (!(efer & EFER_SVME)) { 293 svm_leave_nested(vcpu); 294 svm_set_gif(svm, true); 295 /* #GP intercept is still needed for vmware backdoor */ 296 if (!enable_vmware_backdoor) 297 clr_exception_intercept(svm, GP_VECTOR); 298 299 /* 300 * Free the nested guest state, unless we are in SMM. 301 * In this case we will return to the nested guest 302 * as soon as we leave SMM. 303 */ 304 if (!is_smm(vcpu)) 305 svm_free_nested(svm); 306 307 } else { 308 int ret = svm_allocate_nested(svm); 309 310 if (ret) { 311 vcpu->arch.efer = old_efer; 312 return ret; 313 } 314 315 /* 316 * Never intercept #GP for SEV guests, KVM can't 317 * decrypt guest memory to workaround the erratum. 318 */ 319 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 320 set_exception_intercept(svm, GP_VECTOR); 321 } 322 } 323 324 svm->vmcb->save.efer = efer | EFER_SVME; 325 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 326 return 0; 327 } 328 329 static int is_external_interrupt(u32 info) 330 { 331 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 332 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 333 } 334 335 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 336 { 337 struct vcpu_svm *svm = to_svm(vcpu); 338 u32 ret = 0; 339 340 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 341 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 342 return ret; 343 } 344 345 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 346 { 347 struct vcpu_svm *svm = to_svm(vcpu); 348 349 if (mask == 0) 350 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 351 else 352 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 353 354 } 355 356 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 357 { 358 struct vcpu_svm *svm = to_svm(vcpu); 359 360 /* 361 * SEV-ES does not expose the next RIP. The RIP update is controlled by 362 * the type of exit and the #VC handler in the guest. 363 */ 364 if (sev_es_guest(vcpu->kvm)) 365 goto done; 366 367 if (nrips && svm->vmcb->control.next_rip != 0) { 368 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 369 svm->next_rip = svm->vmcb->control.next_rip; 370 } 371 372 if (!svm->next_rip) { 373 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 374 return 0; 375 } else { 376 kvm_rip_write(vcpu, svm->next_rip); 377 } 378 379 done: 380 svm_set_interrupt_shadow(vcpu, 0); 381 382 return 1; 383 } 384 385 static void svm_queue_exception(struct kvm_vcpu *vcpu) 386 { 387 struct vcpu_svm *svm = to_svm(vcpu); 388 unsigned nr = vcpu->arch.exception.nr; 389 bool has_error_code = vcpu->arch.exception.has_error_code; 390 u32 error_code = vcpu->arch.exception.error_code; 391 392 kvm_deliver_exception_payload(vcpu); 393 394 if (nr == BP_VECTOR && !nrips) { 395 unsigned long rip, old_rip = kvm_rip_read(vcpu); 396 397 /* 398 * For guest debugging where we have to reinject #BP if some 399 * INT3 is guest-owned: 400 * Emulate nRIP by moving RIP forward. Will fail if injection 401 * raises a fault that is not intercepted. Still better than 402 * failing in all cases. 403 */ 404 (void)skip_emulated_instruction(vcpu); 405 rip = kvm_rip_read(vcpu); 406 svm->int3_rip = rip + svm->vmcb->save.cs.base; 407 svm->int3_injected = rip - old_rip; 408 } 409 410 svm->vmcb->control.event_inj = nr 411 | SVM_EVTINJ_VALID 412 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 413 | SVM_EVTINJ_TYPE_EXEPT; 414 svm->vmcb->control.event_inj_err = error_code; 415 } 416 417 static void svm_init_erratum_383(void) 418 { 419 u32 low, high; 420 int err; 421 u64 val; 422 423 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 424 return; 425 426 /* Use _safe variants to not break nested virtualization */ 427 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 428 if (err) 429 return; 430 431 val |= (1ULL << 47); 432 433 low = lower_32_bits(val); 434 high = upper_32_bits(val); 435 436 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 437 438 erratum_383_found = true; 439 } 440 441 static void svm_init_osvw(struct kvm_vcpu *vcpu) 442 { 443 /* 444 * Guests should see errata 400 and 415 as fixed (assuming that 445 * HLT and IO instructions are intercepted). 446 */ 447 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 448 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 449 450 /* 451 * By increasing VCPU's osvw.length to 3 we are telling the guest that 452 * all osvw.status bits inside that length, including bit 0 (which is 453 * reserved for erratum 298), are valid. However, if host processor's 454 * osvw_len is 0 then osvw_status[0] carries no information. We need to 455 * be conservative here and therefore we tell the guest that erratum 298 456 * is present (because we really don't know). 457 */ 458 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 459 vcpu->arch.osvw.status |= 1; 460 } 461 462 static int has_svm(void) 463 { 464 const char *msg; 465 466 if (!cpu_has_svm(&msg)) { 467 printk(KERN_INFO "has_svm: %s\n", msg); 468 return 0; 469 } 470 471 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 472 pr_info("KVM is unsupported when running as an SEV guest\n"); 473 return 0; 474 } 475 476 return 1; 477 } 478 479 static void svm_hardware_disable(void) 480 { 481 /* Make sure we clean up behind us */ 482 if (tsc_scaling) 483 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 484 485 cpu_svm_disable(); 486 487 amd_pmu_disable_virt(); 488 } 489 490 static int svm_hardware_enable(void) 491 { 492 493 struct svm_cpu_data *sd; 494 uint64_t efer; 495 struct desc_struct *gdt; 496 int me = raw_smp_processor_id(); 497 498 rdmsrl(MSR_EFER, efer); 499 if (efer & EFER_SVME) 500 return -EBUSY; 501 502 if (!has_svm()) { 503 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 504 return -EINVAL; 505 } 506 sd = per_cpu(svm_data, me); 507 if (!sd) { 508 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 509 return -EINVAL; 510 } 511 512 sd->asid_generation = 1; 513 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 514 sd->next_asid = sd->max_asid + 1; 515 sd->min_asid = max_sev_asid + 1; 516 517 gdt = get_current_gdt_rw(); 518 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 519 520 wrmsrl(MSR_EFER, efer | EFER_SVME); 521 522 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); 523 524 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 525 /* 526 * Set the default value, even if we don't use TSC scaling 527 * to avoid having stale value in the msr 528 */ 529 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 530 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 531 } 532 533 534 /* 535 * Get OSVW bits. 536 * 537 * Note that it is possible to have a system with mixed processor 538 * revisions and therefore different OSVW bits. If bits are not the same 539 * on different processors then choose the worst case (i.e. if erratum 540 * is present on one processor and not on another then assume that the 541 * erratum is present everywhere). 542 */ 543 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 544 uint64_t len, status = 0; 545 int err; 546 547 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 548 if (!err) 549 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 550 &err); 551 552 if (err) 553 osvw_status = osvw_len = 0; 554 else { 555 if (len < osvw_len) 556 osvw_len = len; 557 osvw_status |= status; 558 osvw_status &= (1ULL << osvw_len) - 1; 559 } 560 } else 561 osvw_status = osvw_len = 0; 562 563 svm_init_erratum_383(); 564 565 amd_pmu_enable_virt(); 566 567 return 0; 568 } 569 570 static void svm_cpu_uninit(int cpu) 571 { 572 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 573 574 if (!sd) 575 return; 576 577 per_cpu(svm_data, cpu) = NULL; 578 kfree(sd->sev_vmcbs); 579 __free_page(sd->save_area); 580 kfree(sd); 581 } 582 583 static int svm_cpu_init(int cpu) 584 { 585 struct svm_cpu_data *sd; 586 int ret = -ENOMEM; 587 588 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 589 if (!sd) 590 return ret; 591 sd->cpu = cpu; 592 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 593 if (!sd->save_area) 594 goto free_cpu_data; 595 596 ret = sev_cpu_init(sd); 597 if (ret) 598 goto free_save_area; 599 600 per_cpu(svm_data, cpu) = sd; 601 602 return 0; 603 604 free_save_area: 605 __free_page(sd->save_area); 606 free_cpu_data: 607 kfree(sd); 608 return ret; 609 610 } 611 612 static int direct_access_msr_slot(u32 msr) 613 { 614 u32 i; 615 616 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 617 if (direct_access_msrs[i].index == msr) 618 return i; 619 620 return -ENOENT; 621 } 622 623 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 624 int write) 625 { 626 struct vcpu_svm *svm = to_svm(vcpu); 627 int slot = direct_access_msr_slot(msr); 628 629 if (slot == -ENOENT) 630 return; 631 632 /* Set the shadow bitmaps to the desired intercept states */ 633 if (read) 634 set_bit(slot, svm->shadow_msr_intercept.read); 635 else 636 clear_bit(slot, svm->shadow_msr_intercept.read); 637 638 if (write) 639 set_bit(slot, svm->shadow_msr_intercept.write); 640 else 641 clear_bit(slot, svm->shadow_msr_intercept.write); 642 } 643 644 static bool valid_msr_intercept(u32 index) 645 { 646 return direct_access_msr_slot(index) != -ENOENT; 647 } 648 649 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 650 { 651 u8 bit_write; 652 unsigned long tmp; 653 u32 offset; 654 u32 *msrpm; 655 656 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 657 to_svm(vcpu)->msrpm; 658 659 offset = svm_msrpm_offset(msr); 660 bit_write = 2 * (msr & 0x0f) + 1; 661 tmp = msrpm[offset]; 662 663 BUG_ON(offset == MSR_INVALID); 664 665 return !!test_bit(bit_write, &tmp); 666 } 667 668 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 669 u32 msr, int read, int write) 670 { 671 u8 bit_read, bit_write; 672 unsigned long tmp; 673 u32 offset; 674 675 /* 676 * If this warning triggers extend the direct_access_msrs list at the 677 * beginning of the file 678 */ 679 WARN_ON(!valid_msr_intercept(msr)); 680 681 /* Enforce non allowed MSRs to trap */ 682 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 683 read = 0; 684 685 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 686 write = 0; 687 688 offset = svm_msrpm_offset(msr); 689 bit_read = 2 * (msr & 0x0f); 690 bit_write = 2 * (msr & 0x0f) + 1; 691 tmp = msrpm[offset]; 692 693 BUG_ON(offset == MSR_INVALID); 694 695 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 696 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 697 698 msrpm[offset] = tmp; 699 700 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 701 702 } 703 704 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 705 int read, int write) 706 { 707 set_shadow_msr_intercept(vcpu, msr, read, write); 708 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 709 } 710 711 u32 *svm_vcpu_alloc_msrpm(void) 712 { 713 unsigned int order = get_order(MSRPM_SIZE); 714 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 715 u32 *msrpm; 716 717 if (!pages) 718 return NULL; 719 720 msrpm = page_address(pages); 721 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 722 723 return msrpm; 724 } 725 726 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 727 { 728 int i; 729 730 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 731 if (!direct_access_msrs[i].always) 732 continue; 733 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 734 } 735 } 736 737 738 void svm_vcpu_free_msrpm(u32 *msrpm) 739 { 740 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 741 } 742 743 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 744 { 745 struct vcpu_svm *svm = to_svm(vcpu); 746 u32 i; 747 748 /* 749 * Set intercept permissions for all direct access MSRs again. They 750 * will automatically get filtered through the MSR filter, so we are 751 * back in sync after this. 752 */ 753 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 754 u32 msr = direct_access_msrs[i].index; 755 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 756 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 757 758 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 759 } 760 } 761 762 static void add_msr_offset(u32 offset) 763 { 764 int i; 765 766 for (i = 0; i < MSRPM_OFFSETS; ++i) { 767 768 /* Offset already in list? */ 769 if (msrpm_offsets[i] == offset) 770 return; 771 772 /* Slot used by another offset? */ 773 if (msrpm_offsets[i] != MSR_INVALID) 774 continue; 775 776 /* Add offset to list */ 777 msrpm_offsets[i] = offset; 778 779 return; 780 } 781 782 /* 783 * If this BUG triggers the msrpm_offsets table has an overflow. Just 784 * increase MSRPM_OFFSETS in this case. 785 */ 786 BUG(); 787 } 788 789 static void init_msrpm_offsets(void) 790 { 791 int i; 792 793 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 794 795 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 796 u32 offset; 797 798 offset = svm_msrpm_offset(direct_access_msrs[i].index); 799 BUG_ON(offset == MSR_INVALID); 800 801 add_msr_offset(offset); 802 } 803 } 804 805 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 806 { 807 struct vcpu_svm *svm = to_svm(vcpu); 808 809 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 810 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 811 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 812 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 813 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 814 } 815 816 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 817 { 818 struct vcpu_svm *svm = to_svm(vcpu); 819 820 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 821 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 822 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 823 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 824 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 825 } 826 827 void disable_nmi_singlestep(struct vcpu_svm *svm) 828 { 829 svm->nmi_singlestep = false; 830 831 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 832 /* Clear our flags if they were not set by the guest */ 833 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 834 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 835 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 836 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 837 } 838 } 839 840 static void grow_ple_window(struct kvm_vcpu *vcpu) 841 { 842 struct vcpu_svm *svm = to_svm(vcpu); 843 struct vmcb_control_area *control = &svm->vmcb->control; 844 int old = control->pause_filter_count; 845 846 control->pause_filter_count = __grow_ple_window(old, 847 pause_filter_count, 848 pause_filter_count_grow, 849 pause_filter_count_max); 850 851 if (control->pause_filter_count != old) { 852 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 853 trace_kvm_ple_window_update(vcpu->vcpu_id, 854 control->pause_filter_count, old); 855 } 856 } 857 858 static void shrink_ple_window(struct kvm_vcpu *vcpu) 859 { 860 struct vcpu_svm *svm = to_svm(vcpu); 861 struct vmcb_control_area *control = &svm->vmcb->control; 862 int old = control->pause_filter_count; 863 864 control->pause_filter_count = 865 __shrink_ple_window(old, 866 pause_filter_count, 867 pause_filter_count_shrink, 868 pause_filter_count); 869 if (control->pause_filter_count != old) { 870 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 871 trace_kvm_ple_window_update(vcpu->vcpu_id, 872 control->pause_filter_count, old); 873 } 874 } 875 876 static void svm_hardware_teardown(void) 877 { 878 int cpu; 879 880 sev_hardware_teardown(); 881 882 for_each_possible_cpu(cpu) 883 svm_cpu_uninit(cpu); 884 885 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 886 get_order(IOPM_SIZE)); 887 iopm_base = 0; 888 } 889 890 static void init_seg(struct vmcb_seg *seg) 891 { 892 seg->selector = 0; 893 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 894 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 895 seg->limit = 0xffff; 896 seg->base = 0; 897 } 898 899 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 900 { 901 seg->selector = 0; 902 seg->attrib = SVM_SELECTOR_P_MASK | type; 903 seg->limit = 0xffff; 904 seg->base = 0; 905 } 906 907 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 908 { 909 struct vcpu_svm *svm = to_svm(vcpu); 910 911 return svm->nested.ctl.tsc_offset; 912 } 913 914 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 915 { 916 struct vcpu_svm *svm = to_svm(vcpu); 917 918 return svm->tsc_ratio_msr; 919 } 920 921 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 922 { 923 struct vcpu_svm *svm = to_svm(vcpu); 924 925 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 926 svm->vmcb->control.tsc_offset = offset; 927 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 928 } 929 930 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 931 { 932 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 933 } 934 935 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 936 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 937 struct vcpu_svm *svm) 938 { 939 /* 940 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 941 * roots, or if INVPCID is disabled in the guest to inject #UD. 942 */ 943 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 944 if (!npt_enabled || 945 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 946 svm_set_intercept(svm, INTERCEPT_INVPCID); 947 else 948 svm_clr_intercept(svm, INTERCEPT_INVPCID); 949 } 950 951 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 952 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 953 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 954 else 955 svm_set_intercept(svm, INTERCEPT_RDTSCP); 956 } 957 } 958 959 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 960 { 961 struct vcpu_svm *svm = to_svm(vcpu); 962 963 if (guest_cpuid_is_intel(vcpu)) { 964 /* 965 * We must intercept SYSENTER_EIP and SYSENTER_ESP 966 * accesses because the processor only stores 32 bits. 967 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 968 */ 969 svm_set_intercept(svm, INTERCEPT_VMLOAD); 970 svm_set_intercept(svm, INTERCEPT_VMSAVE); 971 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 972 973 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 974 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 975 } else { 976 /* 977 * If hardware supports Virtual VMLOAD VMSAVE then enable it 978 * in VMCB and clear intercepts to avoid #VMEXIT. 979 */ 980 if (vls) { 981 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 982 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 983 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 984 } 985 /* No need to intercept these MSRs */ 986 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 987 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 988 } 989 } 990 991 static void init_vmcb(struct kvm_vcpu *vcpu) 992 { 993 struct vcpu_svm *svm = to_svm(vcpu); 994 struct vmcb_control_area *control = &svm->vmcb->control; 995 struct vmcb_save_area *save = &svm->vmcb->save; 996 997 svm_set_intercept(svm, INTERCEPT_CR0_READ); 998 svm_set_intercept(svm, INTERCEPT_CR3_READ); 999 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1000 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1001 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1002 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1003 if (!kvm_vcpu_apicv_active(vcpu)) 1004 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1005 1006 set_dr_intercepts(svm); 1007 1008 set_exception_intercept(svm, PF_VECTOR); 1009 set_exception_intercept(svm, UD_VECTOR); 1010 set_exception_intercept(svm, MC_VECTOR); 1011 set_exception_intercept(svm, AC_VECTOR); 1012 set_exception_intercept(svm, DB_VECTOR); 1013 /* 1014 * Guest access to VMware backdoor ports could legitimately 1015 * trigger #GP because of TSS I/O permission bitmap. 1016 * We intercept those #GP and allow access to them anyway 1017 * as VMware does. Don't intercept #GP for SEV guests as KVM can't 1018 * decrypt guest memory to decode the faulting instruction. 1019 */ 1020 if (enable_vmware_backdoor && !sev_guest(vcpu->kvm)) 1021 set_exception_intercept(svm, GP_VECTOR); 1022 1023 svm_set_intercept(svm, INTERCEPT_INTR); 1024 svm_set_intercept(svm, INTERCEPT_NMI); 1025 1026 if (intercept_smi) 1027 svm_set_intercept(svm, INTERCEPT_SMI); 1028 1029 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1030 svm_set_intercept(svm, INTERCEPT_RDPMC); 1031 svm_set_intercept(svm, INTERCEPT_CPUID); 1032 svm_set_intercept(svm, INTERCEPT_INVD); 1033 svm_set_intercept(svm, INTERCEPT_INVLPG); 1034 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1035 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1036 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1037 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1038 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1039 svm_set_intercept(svm, INTERCEPT_VMRUN); 1040 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1041 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1042 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1043 svm_set_intercept(svm, INTERCEPT_STGI); 1044 svm_set_intercept(svm, INTERCEPT_CLGI); 1045 svm_set_intercept(svm, INTERCEPT_SKINIT); 1046 svm_set_intercept(svm, INTERCEPT_WBINVD); 1047 svm_set_intercept(svm, INTERCEPT_XSETBV); 1048 svm_set_intercept(svm, INTERCEPT_RDPRU); 1049 svm_set_intercept(svm, INTERCEPT_RSM); 1050 1051 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1052 svm_set_intercept(svm, INTERCEPT_MONITOR); 1053 svm_set_intercept(svm, INTERCEPT_MWAIT); 1054 } 1055 1056 if (!kvm_hlt_in_guest(vcpu->kvm)) 1057 svm_set_intercept(svm, INTERCEPT_HLT); 1058 1059 control->iopm_base_pa = __sme_set(iopm_base); 1060 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1061 control->int_ctl = V_INTR_MASKING_MASK; 1062 1063 init_seg(&save->es); 1064 init_seg(&save->ss); 1065 init_seg(&save->ds); 1066 init_seg(&save->fs); 1067 init_seg(&save->gs); 1068 1069 save->cs.selector = 0xf000; 1070 save->cs.base = 0xffff0000; 1071 /* Executable/Readable Code Segment */ 1072 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1073 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1074 save->cs.limit = 0xffff; 1075 1076 save->gdtr.base = 0; 1077 save->gdtr.limit = 0xffff; 1078 save->idtr.base = 0; 1079 save->idtr.limit = 0xffff; 1080 1081 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1082 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1083 1084 if (npt_enabled) { 1085 /* Setup VMCB for Nested Paging */ 1086 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1087 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1088 clr_exception_intercept(svm, PF_VECTOR); 1089 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1090 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1091 save->g_pat = vcpu->arch.pat; 1092 save->cr3 = 0; 1093 } 1094 svm->current_vmcb->asid_generation = 0; 1095 svm->asid = 0; 1096 1097 svm->nested.vmcb12_gpa = INVALID_GPA; 1098 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1099 1100 if (!kvm_pause_in_guest(vcpu->kvm)) { 1101 control->pause_filter_count = pause_filter_count; 1102 if (pause_filter_thresh) 1103 control->pause_filter_thresh = pause_filter_thresh; 1104 svm_set_intercept(svm, INTERCEPT_PAUSE); 1105 } else { 1106 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1107 } 1108 1109 svm_recalc_instruction_intercepts(vcpu, svm); 1110 1111 /* 1112 * If the host supports V_SPEC_CTRL then disable the interception 1113 * of MSR_IA32_SPEC_CTRL. 1114 */ 1115 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1116 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1117 1118 if (kvm_vcpu_apicv_active(vcpu)) 1119 avic_init_vmcb(svm); 1120 1121 if (vgif) { 1122 svm_clr_intercept(svm, INTERCEPT_STGI); 1123 svm_clr_intercept(svm, INTERCEPT_CLGI); 1124 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1125 } 1126 1127 if (sev_guest(vcpu->kvm)) { 1128 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1129 clr_exception_intercept(svm, UD_VECTOR); 1130 1131 if (sev_es_guest(vcpu->kvm)) { 1132 /* Perform SEV-ES specific VMCB updates */ 1133 sev_es_init_vmcb(svm); 1134 } 1135 } 1136 1137 svm_hv_init_vmcb(svm->vmcb); 1138 init_vmcb_after_set_cpuid(vcpu); 1139 1140 vmcb_mark_all_dirty(svm->vmcb); 1141 1142 enable_gif(svm); 1143 } 1144 1145 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1146 { 1147 struct vcpu_svm *svm = to_svm(vcpu); 1148 1149 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1150 1151 svm_init_osvw(vcpu); 1152 vcpu->arch.microcode_version = 0x01000065; 1153 svm->tsc_ratio_msr = kvm_default_tsc_scaling_ratio; 1154 1155 if (sev_es_guest(vcpu->kvm)) 1156 sev_es_vcpu_reset(svm); 1157 } 1158 1159 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1160 { 1161 struct vcpu_svm *svm = to_svm(vcpu); 1162 1163 svm->spec_ctrl = 0; 1164 svm->virt_spec_ctrl = 0; 1165 1166 init_vmcb(vcpu); 1167 1168 if (!init_event) 1169 __svm_vcpu_reset(vcpu); 1170 } 1171 1172 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1173 { 1174 svm->current_vmcb = target_vmcb; 1175 svm->vmcb = target_vmcb->ptr; 1176 } 1177 1178 static int svm_create_vcpu(struct kvm_vcpu *vcpu) 1179 { 1180 struct vcpu_svm *svm; 1181 struct page *vmcb01_page; 1182 struct page *vmsa_page = NULL; 1183 int err; 1184 1185 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1186 svm = to_svm(vcpu); 1187 1188 err = -ENOMEM; 1189 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1190 if (!vmcb01_page) 1191 goto out; 1192 1193 if (sev_es_guest(vcpu->kvm)) { 1194 /* 1195 * SEV-ES guests require a separate VMSA page used to contain 1196 * the encrypted register state of the guest. 1197 */ 1198 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1199 if (!vmsa_page) 1200 goto error_free_vmcb_page; 1201 1202 /* 1203 * SEV-ES guests maintain an encrypted version of their FPU 1204 * state which is restored and saved on VMRUN and VMEXIT. 1205 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1206 * do xsave/xrstor on it. 1207 */ 1208 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1209 } 1210 1211 err = avic_init_vcpu(svm); 1212 if (err) 1213 goto error_free_vmsa_page; 1214 1215 svm->msrpm = svm_vcpu_alloc_msrpm(); 1216 if (!svm->msrpm) { 1217 err = -ENOMEM; 1218 goto error_free_vmsa_page; 1219 } 1220 1221 svm->vmcb01.ptr = page_address(vmcb01_page); 1222 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1223 svm_switch_vmcb(svm, &svm->vmcb01); 1224 1225 if (vmsa_page) 1226 svm->sev_es.vmsa = page_address(vmsa_page); 1227 1228 svm->guest_state_loaded = false; 1229 1230 return 0; 1231 1232 error_free_vmsa_page: 1233 if (vmsa_page) 1234 __free_page(vmsa_page); 1235 error_free_vmcb_page: 1236 __free_page(vmcb01_page); 1237 out: 1238 return err; 1239 } 1240 1241 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1242 { 1243 int i; 1244 1245 for_each_online_cpu(i) 1246 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1247 } 1248 1249 static void svm_free_vcpu(struct kvm_vcpu *vcpu) 1250 { 1251 struct vcpu_svm *svm = to_svm(vcpu); 1252 1253 /* 1254 * The vmcb page can be recycled, causing a false negative in 1255 * svm_vcpu_load(). So, ensure that no logical CPU has this 1256 * vmcb page recorded as its current vmcb. 1257 */ 1258 svm_clear_current_vmcb(svm->vmcb); 1259 1260 svm_free_nested(svm); 1261 1262 sev_free_vcpu(vcpu); 1263 1264 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1265 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1266 } 1267 1268 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) 1269 { 1270 struct vcpu_svm *svm = to_svm(vcpu); 1271 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 1272 1273 if (sev_es_guest(vcpu->kvm)) 1274 sev_es_unmap_ghcb(svm); 1275 1276 if (svm->guest_state_loaded) 1277 return; 1278 1279 /* 1280 * Save additional host state that will be restored on VMEXIT (sev-es) 1281 * or subsequent vmload of host save area. 1282 */ 1283 if (sev_es_guest(vcpu->kvm)) { 1284 sev_es_prepare_guest_switch(svm, vcpu->cpu); 1285 } else { 1286 vmsave(__sme_page_pa(sd->save_area)); 1287 } 1288 1289 if (tsc_scaling) { 1290 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1291 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1292 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1293 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1294 } 1295 } 1296 1297 if (likely(tsc_aux_uret_slot >= 0)) 1298 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1299 1300 svm->guest_state_loaded = true; 1301 } 1302 1303 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1304 { 1305 to_svm(vcpu)->guest_state_loaded = false; 1306 } 1307 1308 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1309 { 1310 struct vcpu_svm *svm = to_svm(vcpu); 1311 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1312 1313 if (sd->current_vmcb != svm->vmcb) { 1314 sd->current_vmcb = svm->vmcb; 1315 indirect_branch_prediction_barrier(); 1316 } 1317 if (kvm_vcpu_apicv_active(vcpu)) 1318 avic_vcpu_load(vcpu, cpu); 1319 } 1320 1321 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1322 { 1323 if (kvm_vcpu_apicv_active(vcpu)) 1324 avic_vcpu_put(vcpu); 1325 1326 svm_prepare_host_switch(vcpu); 1327 1328 ++vcpu->stat.host_state_reload; 1329 } 1330 1331 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1332 { 1333 struct vcpu_svm *svm = to_svm(vcpu); 1334 unsigned long rflags = svm->vmcb->save.rflags; 1335 1336 if (svm->nmi_singlestep) { 1337 /* Hide our flags if they were not set by the guest */ 1338 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1339 rflags &= ~X86_EFLAGS_TF; 1340 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1341 rflags &= ~X86_EFLAGS_RF; 1342 } 1343 return rflags; 1344 } 1345 1346 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1347 { 1348 if (to_svm(vcpu)->nmi_singlestep) 1349 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1350 1351 /* 1352 * Any change of EFLAGS.VM is accompanied by a reload of SS 1353 * (caused by either a task switch or an inter-privilege IRET), 1354 * so we do not need to update the CPL here. 1355 */ 1356 to_svm(vcpu)->vmcb->save.rflags = rflags; 1357 } 1358 1359 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1360 { 1361 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1362 1363 return sev_es_guest(vcpu->kvm) 1364 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1365 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1366 } 1367 1368 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1369 { 1370 kvm_register_mark_available(vcpu, reg); 1371 1372 switch (reg) { 1373 case VCPU_EXREG_PDPTR: 1374 /* 1375 * When !npt_enabled, mmu->pdptrs[] is already available since 1376 * it is always updated per SDM when moving to CRs. 1377 */ 1378 if (npt_enabled) 1379 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1380 break; 1381 default: 1382 KVM_BUG_ON(1, vcpu->kvm); 1383 } 1384 } 1385 1386 static void svm_set_vintr(struct vcpu_svm *svm) 1387 { 1388 struct vmcb_control_area *control; 1389 1390 /* 1391 * The following fields are ignored when AVIC is enabled 1392 */ 1393 WARN_ON(kvm_apicv_activated(svm->vcpu.kvm)); 1394 1395 svm_set_intercept(svm, INTERCEPT_VINTR); 1396 1397 /* 1398 * This is just a dummy VINTR to actually cause a vmexit to happen. 1399 * Actual injection of virtual interrupts happens through EVENTINJ. 1400 */ 1401 control = &svm->vmcb->control; 1402 control->int_vector = 0x0; 1403 control->int_ctl &= ~V_INTR_PRIO_MASK; 1404 control->int_ctl |= V_IRQ_MASK | 1405 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1406 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1407 } 1408 1409 static void svm_clear_vintr(struct vcpu_svm *svm) 1410 { 1411 svm_clr_intercept(svm, INTERCEPT_VINTR); 1412 1413 /* Drop int_ctl fields related to VINTR injection. */ 1414 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1415 if (is_guest_mode(&svm->vcpu)) { 1416 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1417 1418 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1419 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1420 1421 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1422 V_IRQ_INJECTION_BITS_MASK; 1423 1424 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1425 } 1426 1427 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1428 } 1429 1430 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1431 { 1432 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1433 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1434 1435 switch (seg) { 1436 case VCPU_SREG_CS: return &save->cs; 1437 case VCPU_SREG_DS: return &save->ds; 1438 case VCPU_SREG_ES: return &save->es; 1439 case VCPU_SREG_FS: return &save01->fs; 1440 case VCPU_SREG_GS: return &save01->gs; 1441 case VCPU_SREG_SS: return &save->ss; 1442 case VCPU_SREG_TR: return &save01->tr; 1443 case VCPU_SREG_LDTR: return &save01->ldtr; 1444 } 1445 BUG(); 1446 return NULL; 1447 } 1448 1449 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1450 { 1451 struct vmcb_seg *s = svm_seg(vcpu, seg); 1452 1453 return s->base; 1454 } 1455 1456 static void svm_get_segment(struct kvm_vcpu *vcpu, 1457 struct kvm_segment *var, int seg) 1458 { 1459 struct vmcb_seg *s = svm_seg(vcpu, seg); 1460 1461 var->base = s->base; 1462 var->limit = s->limit; 1463 var->selector = s->selector; 1464 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1465 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1466 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1467 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1468 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1469 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1470 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1471 1472 /* 1473 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1474 * However, the SVM spec states that the G bit is not observed by the 1475 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1476 * So let's synthesize a legal G bit for all segments, this helps 1477 * running KVM nested. It also helps cross-vendor migration, because 1478 * Intel's vmentry has a check on the 'G' bit. 1479 */ 1480 var->g = s->limit > 0xfffff; 1481 1482 /* 1483 * AMD's VMCB does not have an explicit unusable field, so emulate it 1484 * for cross vendor migration purposes by "not present" 1485 */ 1486 var->unusable = !var->present; 1487 1488 switch (seg) { 1489 case VCPU_SREG_TR: 1490 /* 1491 * Work around a bug where the busy flag in the tr selector 1492 * isn't exposed 1493 */ 1494 var->type |= 0x2; 1495 break; 1496 case VCPU_SREG_DS: 1497 case VCPU_SREG_ES: 1498 case VCPU_SREG_FS: 1499 case VCPU_SREG_GS: 1500 /* 1501 * The accessed bit must always be set in the segment 1502 * descriptor cache, although it can be cleared in the 1503 * descriptor, the cached bit always remains at 1. Since 1504 * Intel has a check on this, set it here to support 1505 * cross-vendor migration. 1506 */ 1507 if (!var->unusable) 1508 var->type |= 0x1; 1509 break; 1510 case VCPU_SREG_SS: 1511 /* 1512 * On AMD CPUs sometimes the DB bit in the segment 1513 * descriptor is left as 1, although the whole segment has 1514 * been made unusable. Clear it here to pass an Intel VMX 1515 * entry check when cross vendor migrating. 1516 */ 1517 if (var->unusable) 1518 var->db = 0; 1519 /* This is symmetric with svm_set_segment() */ 1520 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1521 break; 1522 } 1523 } 1524 1525 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1526 { 1527 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1528 1529 return save->cpl; 1530 } 1531 1532 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1533 { 1534 struct vcpu_svm *svm = to_svm(vcpu); 1535 1536 dt->size = svm->vmcb->save.idtr.limit; 1537 dt->address = svm->vmcb->save.idtr.base; 1538 } 1539 1540 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1541 { 1542 struct vcpu_svm *svm = to_svm(vcpu); 1543 1544 svm->vmcb->save.idtr.limit = dt->size; 1545 svm->vmcb->save.idtr.base = dt->address ; 1546 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1547 } 1548 1549 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1550 { 1551 struct vcpu_svm *svm = to_svm(vcpu); 1552 1553 dt->size = svm->vmcb->save.gdtr.limit; 1554 dt->address = svm->vmcb->save.gdtr.base; 1555 } 1556 1557 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1558 { 1559 struct vcpu_svm *svm = to_svm(vcpu); 1560 1561 svm->vmcb->save.gdtr.limit = dt->size; 1562 svm->vmcb->save.gdtr.base = dt->address ; 1563 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1564 } 1565 1566 static void svm_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1567 { 1568 struct vcpu_svm *svm = to_svm(vcpu); 1569 1570 /* 1571 * For guests that don't set guest_state_protected, the cr3 update is 1572 * handled via kvm_mmu_load() while entering the guest. For guests 1573 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1574 * VMCB save area now, since the save area will become the initial 1575 * contents of the VMSA, and future VMCB save area updates won't be 1576 * seen. 1577 */ 1578 if (sev_es_guest(vcpu->kvm)) { 1579 svm->vmcb->save.cr3 = cr3; 1580 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1581 } 1582 } 1583 1584 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1585 { 1586 struct vcpu_svm *svm = to_svm(vcpu); 1587 u64 hcr0 = cr0; 1588 1589 #ifdef CONFIG_X86_64 1590 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1591 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1592 vcpu->arch.efer |= EFER_LMA; 1593 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1594 } 1595 1596 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1597 vcpu->arch.efer &= ~EFER_LMA; 1598 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1599 } 1600 } 1601 #endif 1602 vcpu->arch.cr0 = cr0; 1603 1604 if (!npt_enabled) 1605 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1606 1607 /* 1608 * re-enable caching here because the QEMU bios 1609 * does not do it - this results in some delay at 1610 * reboot 1611 */ 1612 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1613 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1614 1615 svm->vmcb->save.cr0 = hcr0; 1616 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1617 1618 /* 1619 * SEV-ES guests must always keep the CR intercepts cleared. CR 1620 * tracking is done using the CR write traps. 1621 */ 1622 if (sev_es_guest(vcpu->kvm)) 1623 return; 1624 1625 if (hcr0 == cr0) { 1626 /* Selective CR0 write remains on. */ 1627 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1628 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1629 } else { 1630 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1631 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1632 } 1633 } 1634 1635 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1636 { 1637 return true; 1638 } 1639 1640 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1641 { 1642 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1643 unsigned long old_cr4 = vcpu->arch.cr4; 1644 1645 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1646 svm_flush_tlb(vcpu); 1647 1648 vcpu->arch.cr4 = cr4; 1649 if (!npt_enabled) 1650 cr4 |= X86_CR4_PAE; 1651 cr4 |= host_cr4_mce; 1652 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1653 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1654 1655 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1656 kvm_update_cpuid_runtime(vcpu); 1657 } 1658 1659 static void svm_set_segment(struct kvm_vcpu *vcpu, 1660 struct kvm_segment *var, int seg) 1661 { 1662 struct vcpu_svm *svm = to_svm(vcpu); 1663 struct vmcb_seg *s = svm_seg(vcpu, seg); 1664 1665 s->base = var->base; 1666 s->limit = var->limit; 1667 s->selector = var->selector; 1668 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1669 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1670 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1671 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1672 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1673 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1674 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1675 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1676 1677 /* 1678 * This is always accurate, except if SYSRET returned to a segment 1679 * with SS.DPL != 3. Intel does not have this quirk, and always 1680 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1681 * would entail passing the CPL to userspace and back. 1682 */ 1683 if (seg == VCPU_SREG_SS) 1684 /* This is symmetric with svm_get_segment() */ 1685 svm->vmcb->save.cpl = (var->dpl & 3); 1686 1687 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1688 } 1689 1690 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1691 { 1692 struct vcpu_svm *svm = to_svm(vcpu); 1693 1694 clr_exception_intercept(svm, BP_VECTOR); 1695 1696 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1697 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1698 set_exception_intercept(svm, BP_VECTOR); 1699 } 1700 } 1701 1702 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1703 { 1704 if (sd->next_asid > sd->max_asid) { 1705 ++sd->asid_generation; 1706 sd->next_asid = sd->min_asid; 1707 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1708 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1709 } 1710 1711 svm->current_vmcb->asid_generation = sd->asid_generation; 1712 svm->asid = sd->next_asid++; 1713 } 1714 1715 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1716 { 1717 struct vmcb *vmcb = svm->vmcb; 1718 1719 if (svm->vcpu.arch.guest_state_protected) 1720 return; 1721 1722 if (unlikely(value != vmcb->save.dr6)) { 1723 vmcb->save.dr6 = value; 1724 vmcb_mark_dirty(vmcb, VMCB_DR); 1725 } 1726 } 1727 1728 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1729 { 1730 struct vcpu_svm *svm = to_svm(vcpu); 1731 1732 if (vcpu->arch.guest_state_protected) 1733 return; 1734 1735 get_debugreg(vcpu->arch.db[0], 0); 1736 get_debugreg(vcpu->arch.db[1], 1); 1737 get_debugreg(vcpu->arch.db[2], 2); 1738 get_debugreg(vcpu->arch.db[3], 3); 1739 /* 1740 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1741 * because db_interception might need it. We can do it before vmentry. 1742 */ 1743 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1744 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1745 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1746 set_dr_intercepts(svm); 1747 } 1748 1749 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1750 { 1751 struct vcpu_svm *svm = to_svm(vcpu); 1752 1753 if (vcpu->arch.guest_state_protected) 1754 return; 1755 1756 svm->vmcb->save.dr7 = value; 1757 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1758 } 1759 1760 static int pf_interception(struct kvm_vcpu *vcpu) 1761 { 1762 struct vcpu_svm *svm = to_svm(vcpu); 1763 1764 u64 fault_address = svm->vmcb->control.exit_info_2; 1765 u64 error_code = svm->vmcb->control.exit_info_1; 1766 1767 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1768 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1769 svm->vmcb->control.insn_bytes : NULL, 1770 svm->vmcb->control.insn_len); 1771 } 1772 1773 static int npf_interception(struct kvm_vcpu *vcpu) 1774 { 1775 struct vcpu_svm *svm = to_svm(vcpu); 1776 1777 u64 fault_address = svm->vmcb->control.exit_info_2; 1778 u64 error_code = svm->vmcb->control.exit_info_1; 1779 1780 trace_kvm_page_fault(fault_address, error_code); 1781 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 1782 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1783 svm->vmcb->control.insn_bytes : NULL, 1784 svm->vmcb->control.insn_len); 1785 } 1786 1787 static int db_interception(struct kvm_vcpu *vcpu) 1788 { 1789 struct kvm_run *kvm_run = vcpu->run; 1790 struct vcpu_svm *svm = to_svm(vcpu); 1791 1792 if (!(vcpu->guest_debug & 1793 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1794 !svm->nmi_singlestep) { 1795 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1796 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1797 return 1; 1798 } 1799 1800 if (svm->nmi_singlestep) { 1801 disable_nmi_singlestep(svm); 1802 /* Make sure we check for pending NMIs upon entry */ 1803 kvm_make_request(KVM_REQ_EVENT, vcpu); 1804 } 1805 1806 if (vcpu->guest_debug & 1807 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1808 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1809 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1810 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1811 kvm_run->debug.arch.pc = 1812 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1813 kvm_run->debug.arch.exception = DB_VECTOR; 1814 return 0; 1815 } 1816 1817 return 1; 1818 } 1819 1820 static int bp_interception(struct kvm_vcpu *vcpu) 1821 { 1822 struct vcpu_svm *svm = to_svm(vcpu); 1823 struct kvm_run *kvm_run = vcpu->run; 1824 1825 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1826 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1827 kvm_run->debug.arch.exception = BP_VECTOR; 1828 return 0; 1829 } 1830 1831 static int ud_interception(struct kvm_vcpu *vcpu) 1832 { 1833 return handle_ud(vcpu); 1834 } 1835 1836 static int ac_interception(struct kvm_vcpu *vcpu) 1837 { 1838 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 1839 return 1; 1840 } 1841 1842 static bool is_erratum_383(void) 1843 { 1844 int err, i; 1845 u64 value; 1846 1847 if (!erratum_383_found) 1848 return false; 1849 1850 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 1851 if (err) 1852 return false; 1853 1854 /* Bit 62 may or may not be set for this mce */ 1855 value &= ~(1ULL << 62); 1856 1857 if (value != 0xb600000000010015ULL) 1858 return false; 1859 1860 /* Clear MCi_STATUS registers */ 1861 for (i = 0; i < 6; ++i) 1862 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 1863 1864 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 1865 if (!err) { 1866 u32 low, high; 1867 1868 value &= ~(1ULL << 2); 1869 low = lower_32_bits(value); 1870 high = upper_32_bits(value); 1871 1872 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 1873 } 1874 1875 /* Flush tlb to evict multi-match entries */ 1876 __flush_tlb_all(); 1877 1878 return true; 1879 } 1880 1881 static void svm_handle_mce(struct kvm_vcpu *vcpu) 1882 { 1883 if (is_erratum_383()) { 1884 /* 1885 * Erratum 383 triggered. Guest state is corrupt so kill the 1886 * guest. 1887 */ 1888 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 1889 1890 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 1891 1892 return; 1893 } 1894 1895 /* 1896 * On an #MC intercept the MCE handler is not called automatically in 1897 * the host. So do it by hand here. 1898 */ 1899 kvm_machine_check(); 1900 } 1901 1902 static int mc_interception(struct kvm_vcpu *vcpu) 1903 { 1904 return 1; 1905 } 1906 1907 static int shutdown_interception(struct kvm_vcpu *vcpu) 1908 { 1909 struct kvm_run *kvm_run = vcpu->run; 1910 struct vcpu_svm *svm = to_svm(vcpu); 1911 1912 /* 1913 * The VM save area has already been encrypted so it 1914 * cannot be reinitialized - just terminate. 1915 */ 1916 if (sev_es_guest(vcpu->kvm)) 1917 return -EINVAL; 1918 1919 /* 1920 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 1921 * the VMCB in a known good state. Unfortuately, KVM doesn't have 1922 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 1923 * userspace. At a platform view, INIT is acceptable behavior as 1924 * there exist bare metal platforms that automatically INIT the CPU 1925 * in response to shutdown. 1926 */ 1927 clear_page(svm->vmcb); 1928 kvm_vcpu_reset(vcpu, true); 1929 1930 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 1931 return 0; 1932 } 1933 1934 static int io_interception(struct kvm_vcpu *vcpu) 1935 { 1936 struct vcpu_svm *svm = to_svm(vcpu); 1937 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 1938 int size, in, string; 1939 unsigned port; 1940 1941 ++vcpu->stat.io_exits; 1942 string = (io_info & SVM_IOIO_STR_MASK) != 0; 1943 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 1944 port = io_info >> 16; 1945 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 1946 1947 if (string) { 1948 if (sev_es_guest(vcpu->kvm)) 1949 return sev_es_string_io(svm, size, port, in); 1950 else 1951 return kvm_emulate_instruction(vcpu, 0); 1952 } 1953 1954 svm->next_rip = svm->vmcb->control.exit_info_2; 1955 1956 return kvm_fast_pio(vcpu, size, port, in); 1957 } 1958 1959 static int nmi_interception(struct kvm_vcpu *vcpu) 1960 { 1961 return 1; 1962 } 1963 1964 static int smi_interception(struct kvm_vcpu *vcpu) 1965 { 1966 return 1; 1967 } 1968 1969 static int intr_interception(struct kvm_vcpu *vcpu) 1970 { 1971 ++vcpu->stat.irq_exits; 1972 return 1; 1973 } 1974 1975 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 1976 { 1977 struct vcpu_svm *svm = to_svm(vcpu); 1978 struct vmcb *vmcb12; 1979 struct kvm_host_map map; 1980 int ret; 1981 1982 if (nested_svm_check_permissions(vcpu)) 1983 return 1; 1984 1985 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 1986 if (ret) { 1987 if (ret == -EINVAL) 1988 kvm_inject_gp(vcpu, 0); 1989 return 1; 1990 } 1991 1992 vmcb12 = map.hva; 1993 1994 ret = kvm_skip_emulated_instruction(vcpu); 1995 1996 if (vmload) { 1997 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 1998 svm->sysenter_eip_hi = 0; 1999 svm->sysenter_esp_hi = 0; 2000 } else { 2001 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2002 } 2003 2004 kvm_vcpu_unmap(vcpu, &map, true); 2005 2006 return ret; 2007 } 2008 2009 static int vmload_interception(struct kvm_vcpu *vcpu) 2010 { 2011 return vmload_vmsave_interception(vcpu, true); 2012 } 2013 2014 static int vmsave_interception(struct kvm_vcpu *vcpu) 2015 { 2016 return vmload_vmsave_interception(vcpu, false); 2017 } 2018 2019 static int vmrun_interception(struct kvm_vcpu *vcpu) 2020 { 2021 if (nested_svm_check_permissions(vcpu)) 2022 return 1; 2023 2024 return nested_svm_vmrun(vcpu); 2025 } 2026 2027 enum { 2028 NONE_SVM_INSTR, 2029 SVM_INSTR_VMRUN, 2030 SVM_INSTR_VMLOAD, 2031 SVM_INSTR_VMSAVE, 2032 }; 2033 2034 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2035 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2036 { 2037 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2038 2039 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2040 return NONE_SVM_INSTR; 2041 2042 switch (ctxt->modrm) { 2043 case 0xd8: /* VMRUN */ 2044 return SVM_INSTR_VMRUN; 2045 case 0xda: /* VMLOAD */ 2046 return SVM_INSTR_VMLOAD; 2047 case 0xdb: /* VMSAVE */ 2048 return SVM_INSTR_VMSAVE; 2049 default: 2050 break; 2051 } 2052 2053 return NONE_SVM_INSTR; 2054 } 2055 2056 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2057 { 2058 const int guest_mode_exit_codes[] = { 2059 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2060 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2061 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2062 }; 2063 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2064 [SVM_INSTR_VMRUN] = vmrun_interception, 2065 [SVM_INSTR_VMLOAD] = vmload_interception, 2066 [SVM_INSTR_VMSAVE] = vmsave_interception, 2067 }; 2068 struct vcpu_svm *svm = to_svm(vcpu); 2069 int ret; 2070 2071 if (is_guest_mode(vcpu)) { 2072 /* Returns '1' or -errno on failure, '0' on success. */ 2073 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2074 if (ret) 2075 return ret; 2076 return 1; 2077 } 2078 return svm_instr_handlers[opcode](vcpu); 2079 } 2080 2081 /* 2082 * #GP handling code. Note that #GP can be triggered under the following two 2083 * cases: 2084 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2085 * some AMD CPUs when EAX of these instructions are in the reserved memory 2086 * regions (e.g. SMM memory on host). 2087 * 2) VMware backdoor 2088 */ 2089 static int gp_interception(struct kvm_vcpu *vcpu) 2090 { 2091 struct vcpu_svm *svm = to_svm(vcpu); 2092 u32 error_code = svm->vmcb->control.exit_info_1; 2093 int opcode; 2094 2095 /* Both #GP cases have zero error_code */ 2096 if (error_code) 2097 goto reinject; 2098 2099 /* Decode the instruction for usage later */ 2100 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2101 goto reinject; 2102 2103 opcode = svm_instr_opcode(vcpu); 2104 2105 if (opcode == NONE_SVM_INSTR) { 2106 if (!enable_vmware_backdoor) 2107 goto reinject; 2108 2109 /* 2110 * VMware backdoor emulation on #GP interception only handles 2111 * IN{S}, OUT{S}, and RDPMC. 2112 */ 2113 if (!is_guest_mode(vcpu)) 2114 return kvm_emulate_instruction(vcpu, 2115 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2116 } else { 2117 /* All SVM instructions expect page aligned RAX */ 2118 if (svm->vmcb->save.rax & ~PAGE_MASK) 2119 goto reinject; 2120 2121 return emulate_svm_instr(vcpu, opcode); 2122 } 2123 2124 reinject: 2125 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2126 return 1; 2127 } 2128 2129 void svm_set_gif(struct vcpu_svm *svm, bool value) 2130 { 2131 if (value) { 2132 /* 2133 * If VGIF is enabled, the STGI intercept is only added to 2134 * detect the opening of the SMI/NMI window; remove it now. 2135 * Likewise, clear the VINTR intercept, we will set it 2136 * again while processing KVM_REQ_EVENT if needed. 2137 */ 2138 if (vgif_enabled(svm)) 2139 svm_clr_intercept(svm, INTERCEPT_STGI); 2140 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2141 svm_clear_vintr(svm); 2142 2143 enable_gif(svm); 2144 if (svm->vcpu.arch.smi_pending || 2145 svm->vcpu.arch.nmi_pending || 2146 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2147 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2148 } else { 2149 disable_gif(svm); 2150 2151 /* 2152 * After a CLGI no interrupts should come. But if vGIF is 2153 * in use, we still rely on the VINTR intercept (rather than 2154 * STGI) to detect an open interrupt window. 2155 */ 2156 if (!vgif_enabled(svm)) 2157 svm_clear_vintr(svm); 2158 } 2159 } 2160 2161 static int stgi_interception(struct kvm_vcpu *vcpu) 2162 { 2163 int ret; 2164 2165 if (nested_svm_check_permissions(vcpu)) 2166 return 1; 2167 2168 ret = kvm_skip_emulated_instruction(vcpu); 2169 svm_set_gif(to_svm(vcpu), true); 2170 return ret; 2171 } 2172 2173 static int clgi_interception(struct kvm_vcpu *vcpu) 2174 { 2175 int ret; 2176 2177 if (nested_svm_check_permissions(vcpu)) 2178 return 1; 2179 2180 ret = kvm_skip_emulated_instruction(vcpu); 2181 svm_set_gif(to_svm(vcpu), false); 2182 return ret; 2183 } 2184 2185 static int invlpga_interception(struct kvm_vcpu *vcpu) 2186 { 2187 gva_t gva = kvm_rax_read(vcpu); 2188 u32 asid = kvm_rcx_read(vcpu); 2189 2190 /* FIXME: Handle an address size prefix. */ 2191 if (!is_long_mode(vcpu)) 2192 gva = (u32)gva; 2193 2194 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2195 2196 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2197 kvm_mmu_invlpg(vcpu, gva); 2198 2199 return kvm_skip_emulated_instruction(vcpu); 2200 } 2201 2202 static int skinit_interception(struct kvm_vcpu *vcpu) 2203 { 2204 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2205 2206 kvm_queue_exception(vcpu, UD_VECTOR); 2207 return 1; 2208 } 2209 2210 static int task_switch_interception(struct kvm_vcpu *vcpu) 2211 { 2212 struct vcpu_svm *svm = to_svm(vcpu); 2213 u16 tss_selector; 2214 int reason; 2215 int int_type = svm->vmcb->control.exit_int_info & 2216 SVM_EXITINTINFO_TYPE_MASK; 2217 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2218 uint32_t type = 2219 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2220 uint32_t idt_v = 2221 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2222 bool has_error_code = false; 2223 u32 error_code = 0; 2224 2225 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2226 2227 if (svm->vmcb->control.exit_info_2 & 2228 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2229 reason = TASK_SWITCH_IRET; 2230 else if (svm->vmcb->control.exit_info_2 & 2231 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2232 reason = TASK_SWITCH_JMP; 2233 else if (idt_v) 2234 reason = TASK_SWITCH_GATE; 2235 else 2236 reason = TASK_SWITCH_CALL; 2237 2238 if (reason == TASK_SWITCH_GATE) { 2239 switch (type) { 2240 case SVM_EXITINTINFO_TYPE_NMI: 2241 vcpu->arch.nmi_injected = false; 2242 break; 2243 case SVM_EXITINTINFO_TYPE_EXEPT: 2244 if (svm->vmcb->control.exit_info_2 & 2245 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2246 has_error_code = true; 2247 error_code = 2248 (u32)svm->vmcb->control.exit_info_2; 2249 } 2250 kvm_clear_exception_queue(vcpu); 2251 break; 2252 case SVM_EXITINTINFO_TYPE_INTR: 2253 kvm_clear_interrupt_queue(vcpu); 2254 break; 2255 default: 2256 break; 2257 } 2258 } 2259 2260 if (reason != TASK_SWITCH_GATE || 2261 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2262 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2263 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2264 if (!skip_emulated_instruction(vcpu)) 2265 return 0; 2266 } 2267 2268 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2269 int_vec = -1; 2270 2271 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2272 has_error_code, error_code); 2273 } 2274 2275 static int iret_interception(struct kvm_vcpu *vcpu) 2276 { 2277 struct vcpu_svm *svm = to_svm(vcpu); 2278 2279 ++vcpu->stat.nmi_window_exits; 2280 vcpu->arch.hflags |= HF_IRET_MASK; 2281 if (!sev_es_guest(vcpu->kvm)) { 2282 svm_clr_intercept(svm, INTERCEPT_IRET); 2283 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2284 } 2285 kvm_make_request(KVM_REQ_EVENT, vcpu); 2286 return 1; 2287 } 2288 2289 static int invlpg_interception(struct kvm_vcpu *vcpu) 2290 { 2291 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2292 return kvm_emulate_instruction(vcpu, 0); 2293 2294 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2295 return kvm_skip_emulated_instruction(vcpu); 2296 } 2297 2298 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2299 { 2300 return kvm_emulate_instruction(vcpu, 0); 2301 } 2302 2303 static int rsm_interception(struct kvm_vcpu *vcpu) 2304 { 2305 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2306 } 2307 2308 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2309 unsigned long val) 2310 { 2311 struct vcpu_svm *svm = to_svm(vcpu); 2312 unsigned long cr0 = vcpu->arch.cr0; 2313 bool ret = false; 2314 2315 if (!is_guest_mode(vcpu) || 2316 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2317 return false; 2318 2319 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2320 val &= ~SVM_CR0_SELECTIVE_MASK; 2321 2322 if (cr0 ^ val) { 2323 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2324 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2325 } 2326 2327 return ret; 2328 } 2329 2330 #define CR_VALID (1ULL << 63) 2331 2332 static int cr_interception(struct kvm_vcpu *vcpu) 2333 { 2334 struct vcpu_svm *svm = to_svm(vcpu); 2335 int reg, cr; 2336 unsigned long val; 2337 int err; 2338 2339 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2340 return emulate_on_interception(vcpu); 2341 2342 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2343 return emulate_on_interception(vcpu); 2344 2345 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2346 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2347 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2348 else 2349 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2350 2351 err = 0; 2352 if (cr >= 16) { /* mov to cr */ 2353 cr -= 16; 2354 val = kvm_register_read(vcpu, reg); 2355 trace_kvm_cr_write(cr, val); 2356 switch (cr) { 2357 case 0: 2358 if (!check_selective_cr0_intercepted(vcpu, val)) 2359 err = kvm_set_cr0(vcpu, val); 2360 else 2361 return 1; 2362 2363 break; 2364 case 3: 2365 err = kvm_set_cr3(vcpu, val); 2366 break; 2367 case 4: 2368 err = kvm_set_cr4(vcpu, val); 2369 break; 2370 case 8: 2371 err = kvm_set_cr8(vcpu, val); 2372 break; 2373 default: 2374 WARN(1, "unhandled write to CR%d", cr); 2375 kvm_queue_exception(vcpu, UD_VECTOR); 2376 return 1; 2377 } 2378 } else { /* mov from cr */ 2379 switch (cr) { 2380 case 0: 2381 val = kvm_read_cr0(vcpu); 2382 break; 2383 case 2: 2384 val = vcpu->arch.cr2; 2385 break; 2386 case 3: 2387 val = kvm_read_cr3(vcpu); 2388 break; 2389 case 4: 2390 val = kvm_read_cr4(vcpu); 2391 break; 2392 case 8: 2393 val = kvm_get_cr8(vcpu); 2394 break; 2395 default: 2396 WARN(1, "unhandled read from CR%d", cr); 2397 kvm_queue_exception(vcpu, UD_VECTOR); 2398 return 1; 2399 } 2400 kvm_register_write(vcpu, reg, val); 2401 trace_kvm_cr_read(cr, val); 2402 } 2403 return kvm_complete_insn_gp(vcpu, err); 2404 } 2405 2406 static int cr_trap(struct kvm_vcpu *vcpu) 2407 { 2408 struct vcpu_svm *svm = to_svm(vcpu); 2409 unsigned long old_value, new_value; 2410 unsigned int cr; 2411 int ret = 0; 2412 2413 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2414 2415 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2416 switch (cr) { 2417 case 0: 2418 old_value = kvm_read_cr0(vcpu); 2419 svm_set_cr0(vcpu, new_value); 2420 2421 kvm_post_set_cr0(vcpu, old_value, new_value); 2422 break; 2423 case 4: 2424 old_value = kvm_read_cr4(vcpu); 2425 svm_set_cr4(vcpu, new_value); 2426 2427 kvm_post_set_cr4(vcpu, old_value, new_value); 2428 break; 2429 case 8: 2430 ret = kvm_set_cr8(vcpu, new_value); 2431 break; 2432 default: 2433 WARN(1, "unhandled CR%d write trap", cr); 2434 kvm_queue_exception(vcpu, UD_VECTOR); 2435 return 1; 2436 } 2437 2438 return kvm_complete_insn_gp(vcpu, ret); 2439 } 2440 2441 static int dr_interception(struct kvm_vcpu *vcpu) 2442 { 2443 struct vcpu_svm *svm = to_svm(vcpu); 2444 int reg, dr; 2445 unsigned long val; 2446 int err = 0; 2447 2448 if (vcpu->guest_debug == 0) { 2449 /* 2450 * No more DR vmexits; force a reload of the debug registers 2451 * and reenter on this instruction. The next vmexit will 2452 * retrieve the full state of the debug registers. 2453 */ 2454 clr_dr_intercepts(svm); 2455 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2456 return 1; 2457 } 2458 2459 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2460 return emulate_on_interception(vcpu); 2461 2462 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2463 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2464 if (dr >= 16) { /* mov to DRn */ 2465 dr -= 16; 2466 val = kvm_register_read(vcpu, reg); 2467 err = kvm_set_dr(vcpu, dr, val); 2468 } else { 2469 kvm_get_dr(vcpu, dr, &val); 2470 kvm_register_write(vcpu, reg, val); 2471 } 2472 2473 return kvm_complete_insn_gp(vcpu, err); 2474 } 2475 2476 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2477 { 2478 int r; 2479 2480 u8 cr8_prev = kvm_get_cr8(vcpu); 2481 /* instruction emulation calls kvm_set_cr8() */ 2482 r = cr_interception(vcpu); 2483 if (lapic_in_kernel(vcpu)) 2484 return r; 2485 if (cr8_prev <= kvm_get_cr8(vcpu)) 2486 return r; 2487 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2488 return 0; 2489 } 2490 2491 static int efer_trap(struct kvm_vcpu *vcpu) 2492 { 2493 struct msr_data msr_info; 2494 int ret; 2495 2496 /* 2497 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2498 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2499 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2500 * the guest doesn't have X86_FEATURE_SVM. 2501 */ 2502 msr_info.host_initiated = false; 2503 msr_info.index = MSR_EFER; 2504 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2505 ret = kvm_set_msr_common(vcpu, &msr_info); 2506 2507 return kvm_complete_insn_gp(vcpu, ret); 2508 } 2509 2510 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2511 { 2512 msr->data = 0; 2513 2514 switch (msr->index) { 2515 case MSR_F10H_DECFG: 2516 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2517 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2518 break; 2519 case MSR_IA32_PERF_CAPABILITIES: 2520 return 0; 2521 default: 2522 return KVM_MSR_RET_INVALID; 2523 } 2524 2525 return 0; 2526 } 2527 2528 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2529 { 2530 struct vcpu_svm *svm = to_svm(vcpu); 2531 2532 switch (msr_info->index) { 2533 case MSR_AMD64_TSC_RATIO: 2534 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled) 2535 return 1; 2536 msr_info->data = svm->tsc_ratio_msr; 2537 break; 2538 case MSR_STAR: 2539 msr_info->data = svm->vmcb01.ptr->save.star; 2540 break; 2541 #ifdef CONFIG_X86_64 2542 case MSR_LSTAR: 2543 msr_info->data = svm->vmcb01.ptr->save.lstar; 2544 break; 2545 case MSR_CSTAR: 2546 msr_info->data = svm->vmcb01.ptr->save.cstar; 2547 break; 2548 case MSR_KERNEL_GS_BASE: 2549 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2550 break; 2551 case MSR_SYSCALL_MASK: 2552 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2553 break; 2554 #endif 2555 case MSR_IA32_SYSENTER_CS: 2556 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2557 break; 2558 case MSR_IA32_SYSENTER_EIP: 2559 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2560 if (guest_cpuid_is_intel(vcpu)) 2561 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2562 break; 2563 case MSR_IA32_SYSENTER_ESP: 2564 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2565 if (guest_cpuid_is_intel(vcpu)) 2566 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2567 break; 2568 case MSR_TSC_AUX: 2569 msr_info->data = svm->tsc_aux; 2570 break; 2571 /* 2572 * Nobody will change the following 5 values in the VMCB so we can 2573 * safely return them on rdmsr. They will always be 0 until LBRV is 2574 * implemented. 2575 */ 2576 case MSR_IA32_DEBUGCTLMSR: 2577 msr_info->data = svm->vmcb->save.dbgctl; 2578 break; 2579 case MSR_IA32_LASTBRANCHFROMIP: 2580 msr_info->data = svm->vmcb->save.br_from; 2581 break; 2582 case MSR_IA32_LASTBRANCHTOIP: 2583 msr_info->data = svm->vmcb->save.br_to; 2584 break; 2585 case MSR_IA32_LASTINTFROMIP: 2586 msr_info->data = svm->vmcb->save.last_excp_from; 2587 break; 2588 case MSR_IA32_LASTINTTOIP: 2589 msr_info->data = svm->vmcb->save.last_excp_to; 2590 break; 2591 case MSR_VM_HSAVE_PA: 2592 msr_info->data = svm->nested.hsave_msr; 2593 break; 2594 case MSR_VM_CR: 2595 msr_info->data = svm->nested.vm_cr_msr; 2596 break; 2597 case MSR_IA32_SPEC_CTRL: 2598 if (!msr_info->host_initiated && 2599 !guest_has_spec_ctrl_msr(vcpu)) 2600 return 1; 2601 2602 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2603 msr_info->data = svm->vmcb->save.spec_ctrl; 2604 else 2605 msr_info->data = svm->spec_ctrl; 2606 break; 2607 case MSR_AMD64_VIRT_SPEC_CTRL: 2608 if (!msr_info->host_initiated && 2609 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2610 return 1; 2611 2612 msr_info->data = svm->virt_spec_ctrl; 2613 break; 2614 case MSR_F15H_IC_CFG: { 2615 2616 int family, model; 2617 2618 family = guest_cpuid_family(vcpu); 2619 model = guest_cpuid_model(vcpu); 2620 2621 if (family < 0 || model < 0) 2622 return kvm_get_msr_common(vcpu, msr_info); 2623 2624 msr_info->data = 0; 2625 2626 if (family == 0x15 && 2627 (model >= 0x2 && model < 0x20)) 2628 msr_info->data = 0x1E; 2629 } 2630 break; 2631 case MSR_F10H_DECFG: 2632 msr_info->data = svm->msr_decfg; 2633 break; 2634 default: 2635 return kvm_get_msr_common(vcpu, msr_info); 2636 } 2637 return 0; 2638 } 2639 2640 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2641 { 2642 struct vcpu_svm *svm = to_svm(vcpu); 2643 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2644 return kvm_complete_insn_gp(vcpu, err); 2645 2646 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2647 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2648 X86_TRAP_GP | 2649 SVM_EVTINJ_TYPE_EXEPT | 2650 SVM_EVTINJ_VALID); 2651 return 1; 2652 } 2653 2654 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2655 { 2656 struct vcpu_svm *svm = to_svm(vcpu); 2657 int svm_dis, chg_mask; 2658 2659 if (data & ~SVM_VM_CR_VALID_MASK) 2660 return 1; 2661 2662 chg_mask = SVM_VM_CR_VALID_MASK; 2663 2664 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2665 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2666 2667 svm->nested.vm_cr_msr &= ~chg_mask; 2668 svm->nested.vm_cr_msr |= (data & chg_mask); 2669 2670 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2671 2672 /* check for svm_disable while efer.svme is set */ 2673 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2674 return 1; 2675 2676 return 0; 2677 } 2678 2679 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2680 { 2681 struct vcpu_svm *svm = to_svm(vcpu); 2682 int r; 2683 2684 u32 ecx = msr->index; 2685 u64 data = msr->data; 2686 switch (ecx) { 2687 case MSR_AMD64_TSC_RATIO: 2688 if (!msr->host_initiated && !svm->tsc_scaling_enabled) 2689 return 1; 2690 2691 if (data & TSC_RATIO_RSVD) 2692 return 1; 2693 2694 svm->tsc_ratio_msr = data; 2695 2696 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu)) 2697 nested_svm_update_tsc_ratio_msr(vcpu); 2698 2699 break; 2700 case MSR_IA32_CR_PAT: 2701 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2702 return 1; 2703 vcpu->arch.pat = data; 2704 svm->vmcb01.ptr->save.g_pat = data; 2705 if (is_guest_mode(vcpu)) 2706 nested_vmcb02_compute_g_pat(svm); 2707 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2708 break; 2709 case MSR_IA32_SPEC_CTRL: 2710 if (!msr->host_initiated && 2711 !guest_has_spec_ctrl_msr(vcpu)) 2712 return 1; 2713 2714 if (kvm_spec_ctrl_test_value(data)) 2715 return 1; 2716 2717 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2718 svm->vmcb->save.spec_ctrl = data; 2719 else 2720 svm->spec_ctrl = data; 2721 if (!data) 2722 break; 2723 2724 /* 2725 * For non-nested: 2726 * When it's written (to non-zero) for the first time, pass 2727 * it through. 2728 * 2729 * For nested: 2730 * The handling of the MSR bitmap for L2 guests is done in 2731 * nested_svm_vmrun_msrpm. 2732 * We update the L1 MSR bit as well since it will end up 2733 * touching the MSR anyway now. 2734 */ 2735 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2736 break; 2737 case MSR_IA32_PRED_CMD: 2738 if (!msr->host_initiated && 2739 !guest_has_pred_cmd_msr(vcpu)) 2740 return 1; 2741 2742 if (data & ~PRED_CMD_IBPB) 2743 return 1; 2744 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2745 return 1; 2746 if (!data) 2747 break; 2748 2749 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2750 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2751 break; 2752 case MSR_AMD64_VIRT_SPEC_CTRL: 2753 if (!msr->host_initiated && 2754 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2755 return 1; 2756 2757 if (data & ~SPEC_CTRL_SSBD) 2758 return 1; 2759 2760 svm->virt_spec_ctrl = data; 2761 break; 2762 case MSR_STAR: 2763 svm->vmcb01.ptr->save.star = data; 2764 break; 2765 #ifdef CONFIG_X86_64 2766 case MSR_LSTAR: 2767 svm->vmcb01.ptr->save.lstar = data; 2768 break; 2769 case MSR_CSTAR: 2770 svm->vmcb01.ptr->save.cstar = data; 2771 break; 2772 case MSR_KERNEL_GS_BASE: 2773 svm->vmcb01.ptr->save.kernel_gs_base = data; 2774 break; 2775 case MSR_SYSCALL_MASK: 2776 svm->vmcb01.ptr->save.sfmask = data; 2777 break; 2778 #endif 2779 case MSR_IA32_SYSENTER_CS: 2780 svm->vmcb01.ptr->save.sysenter_cs = data; 2781 break; 2782 case MSR_IA32_SYSENTER_EIP: 2783 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2784 /* 2785 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2786 * when we spoof an Intel vendor ID (for cross vendor migration). 2787 * In this case we use this intercept to track the high 2788 * 32 bit part of these msrs to support Intel's 2789 * implementation of SYSENTER/SYSEXIT. 2790 */ 2791 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2792 break; 2793 case MSR_IA32_SYSENTER_ESP: 2794 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 2795 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2796 break; 2797 case MSR_TSC_AUX: 2798 /* 2799 * TSC_AUX is usually changed only during boot and never read 2800 * directly. Intercept TSC_AUX instead of exposing it to the 2801 * guest via direct_access_msrs, and switch it via user return. 2802 */ 2803 preempt_disable(); 2804 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 2805 preempt_enable(); 2806 if (r) 2807 return 1; 2808 2809 svm->tsc_aux = data; 2810 break; 2811 case MSR_IA32_DEBUGCTLMSR: 2812 if (!lbrv) { 2813 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2814 __func__, data); 2815 break; 2816 } 2817 if (data & DEBUGCTL_RESERVED_BITS) 2818 return 1; 2819 2820 svm->vmcb->save.dbgctl = data; 2821 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 2822 if (data & (1ULL<<0)) 2823 svm_enable_lbrv(vcpu); 2824 else 2825 svm_disable_lbrv(vcpu); 2826 break; 2827 case MSR_VM_HSAVE_PA: 2828 /* 2829 * Old kernels did not validate the value written to 2830 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 2831 * value to allow live migrating buggy or malicious guests 2832 * originating from those kernels. 2833 */ 2834 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 2835 return 1; 2836 2837 svm->nested.hsave_msr = data & PAGE_MASK; 2838 break; 2839 case MSR_VM_CR: 2840 return svm_set_vm_cr(vcpu, data); 2841 case MSR_VM_IGNNE: 2842 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2843 break; 2844 case MSR_F10H_DECFG: { 2845 struct kvm_msr_entry msr_entry; 2846 2847 msr_entry.index = msr->index; 2848 if (svm_get_msr_feature(&msr_entry)) 2849 return 1; 2850 2851 /* Check the supported bits */ 2852 if (data & ~msr_entry.data) 2853 return 1; 2854 2855 /* Don't allow the guest to change a bit, #GP */ 2856 if (!msr->host_initiated && (data ^ msr_entry.data)) 2857 return 1; 2858 2859 svm->msr_decfg = data; 2860 break; 2861 } 2862 default: 2863 return kvm_set_msr_common(vcpu, msr); 2864 } 2865 return 0; 2866 } 2867 2868 static int msr_interception(struct kvm_vcpu *vcpu) 2869 { 2870 if (to_svm(vcpu)->vmcb->control.exit_info_1) 2871 return kvm_emulate_wrmsr(vcpu); 2872 else 2873 return kvm_emulate_rdmsr(vcpu); 2874 } 2875 2876 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 2877 { 2878 kvm_make_request(KVM_REQ_EVENT, vcpu); 2879 svm_clear_vintr(to_svm(vcpu)); 2880 2881 /* 2882 * For AVIC, the only reason to end up here is ExtINTs. 2883 * In this case AVIC was temporarily disabled for 2884 * requesting the IRQ window and we have to re-enable it. 2885 */ 2886 kvm_request_apicv_update(vcpu->kvm, true, APICV_INHIBIT_REASON_IRQWIN); 2887 2888 ++vcpu->stat.irq_window_exits; 2889 return 1; 2890 } 2891 2892 static int pause_interception(struct kvm_vcpu *vcpu) 2893 { 2894 bool in_kernel; 2895 2896 /* 2897 * CPL is not made available for an SEV-ES guest, therefore 2898 * vcpu->arch.preempted_in_kernel can never be true. Just 2899 * set in_kernel to false as well. 2900 */ 2901 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 2902 2903 if (!kvm_pause_in_guest(vcpu->kvm)) 2904 grow_ple_window(vcpu); 2905 2906 kvm_vcpu_on_spin(vcpu, in_kernel); 2907 return kvm_skip_emulated_instruction(vcpu); 2908 } 2909 2910 static int invpcid_interception(struct kvm_vcpu *vcpu) 2911 { 2912 struct vcpu_svm *svm = to_svm(vcpu); 2913 unsigned long type; 2914 gva_t gva; 2915 2916 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 2917 kvm_queue_exception(vcpu, UD_VECTOR); 2918 return 1; 2919 } 2920 2921 /* 2922 * For an INVPCID intercept: 2923 * EXITINFO1 provides the linear address of the memory operand. 2924 * EXITINFO2 provides the contents of the register operand. 2925 */ 2926 type = svm->vmcb->control.exit_info_2; 2927 gva = svm->vmcb->control.exit_info_1; 2928 2929 return kvm_handle_invpcid(vcpu, type, gva); 2930 } 2931 2932 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 2933 [SVM_EXIT_READ_CR0] = cr_interception, 2934 [SVM_EXIT_READ_CR3] = cr_interception, 2935 [SVM_EXIT_READ_CR4] = cr_interception, 2936 [SVM_EXIT_READ_CR8] = cr_interception, 2937 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 2938 [SVM_EXIT_WRITE_CR0] = cr_interception, 2939 [SVM_EXIT_WRITE_CR3] = cr_interception, 2940 [SVM_EXIT_WRITE_CR4] = cr_interception, 2941 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 2942 [SVM_EXIT_READ_DR0] = dr_interception, 2943 [SVM_EXIT_READ_DR1] = dr_interception, 2944 [SVM_EXIT_READ_DR2] = dr_interception, 2945 [SVM_EXIT_READ_DR3] = dr_interception, 2946 [SVM_EXIT_READ_DR4] = dr_interception, 2947 [SVM_EXIT_READ_DR5] = dr_interception, 2948 [SVM_EXIT_READ_DR6] = dr_interception, 2949 [SVM_EXIT_READ_DR7] = dr_interception, 2950 [SVM_EXIT_WRITE_DR0] = dr_interception, 2951 [SVM_EXIT_WRITE_DR1] = dr_interception, 2952 [SVM_EXIT_WRITE_DR2] = dr_interception, 2953 [SVM_EXIT_WRITE_DR3] = dr_interception, 2954 [SVM_EXIT_WRITE_DR4] = dr_interception, 2955 [SVM_EXIT_WRITE_DR5] = dr_interception, 2956 [SVM_EXIT_WRITE_DR6] = dr_interception, 2957 [SVM_EXIT_WRITE_DR7] = dr_interception, 2958 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 2959 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 2960 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 2961 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 2962 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 2963 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 2964 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 2965 [SVM_EXIT_INTR] = intr_interception, 2966 [SVM_EXIT_NMI] = nmi_interception, 2967 [SVM_EXIT_SMI] = smi_interception, 2968 [SVM_EXIT_VINTR] = interrupt_window_interception, 2969 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 2970 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 2971 [SVM_EXIT_IRET] = iret_interception, 2972 [SVM_EXIT_INVD] = kvm_emulate_invd, 2973 [SVM_EXIT_PAUSE] = pause_interception, 2974 [SVM_EXIT_HLT] = kvm_emulate_halt, 2975 [SVM_EXIT_INVLPG] = invlpg_interception, 2976 [SVM_EXIT_INVLPGA] = invlpga_interception, 2977 [SVM_EXIT_IOIO] = io_interception, 2978 [SVM_EXIT_MSR] = msr_interception, 2979 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 2980 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 2981 [SVM_EXIT_VMRUN] = vmrun_interception, 2982 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 2983 [SVM_EXIT_VMLOAD] = vmload_interception, 2984 [SVM_EXIT_VMSAVE] = vmsave_interception, 2985 [SVM_EXIT_STGI] = stgi_interception, 2986 [SVM_EXIT_CLGI] = clgi_interception, 2987 [SVM_EXIT_SKINIT] = skinit_interception, 2988 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 2989 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 2990 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 2991 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 2992 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 2993 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 2994 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 2995 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 2996 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 2997 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 2998 [SVM_EXIT_INVPCID] = invpcid_interception, 2999 [SVM_EXIT_NPF] = npf_interception, 3000 [SVM_EXIT_RSM] = rsm_interception, 3001 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3002 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3003 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3004 }; 3005 3006 static void dump_vmcb(struct kvm_vcpu *vcpu) 3007 { 3008 struct vcpu_svm *svm = to_svm(vcpu); 3009 struct vmcb_control_area *control = &svm->vmcb->control; 3010 struct vmcb_save_area *save = &svm->vmcb->save; 3011 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3012 3013 if (!dump_invalid_vmcb) { 3014 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3015 return; 3016 } 3017 3018 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3019 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3020 pr_err("VMCB Control Area:\n"); 3021 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3022 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3023 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3024 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3025 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3026 pr_err("%-20s%08x %08x\n", "intercepts:", 3027 control->intercepts[INTERCEPT_WORD3], 3028 control->intercepts[INTERCEPT_WORD4]); 3029 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3030 pr_err("%-20s%d\n", "pause filter threshold:", 3031 control->pause_filter_thresh); 3032 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3033 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3034 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3035 pr_err("%-20s%d\n", "asid:", control->asid); 3036 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3037 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3038 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3039 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3040 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3041 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3042 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3043 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3044 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3045 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3046 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3047 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3048 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3049 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3050 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3051 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3052 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3053 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3054 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3055 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3056 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3057 pr_err("VMCB State Save Area:\n"); 3058 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3059 "es:", 3060 save->es.selector, save->es.attrib, 3061 save->es.limit, save->es.base); 3062 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3063 "cs:", 3064 save->cs.selector, save->cs.attrib, 3065 save->cs.limit, save->cs.base); 3066 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3067 "ss:", 3068 save->ss.selector, save->ss.attrib, 3069 save->ss.limit, save->ss.base); 3070 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3071 "ds:", 3072 save->ds.selector, save->ds.attrib, 3073 save->ds.limit, save->ds.base); 3074 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3075 "fs:", 3076 save01->fs.selector, save01->fs.attrib, 3077 save01->fs.limit, save01->fs.base); 3078 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3079 "gs:", 3080 save01->gs.selector, save01->gs.attrib, 3081 save01->gs.limit, save01->gs.base); 3082 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3083 "gdtr:", 3084 save->gdtr.selector, save->gdtr.attrib, 3085 save->gdtr.limit, save->gdtr.base); 3086 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3087 "ldtr:", 3088 save01->ldtr.selector, save01->ldtr.attrib, 3089 save01->ldtr.limit, save01->ldtr.base); 3090 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3091 "idtr:", 3092 save->idtr.selector, save->idtr.attrib, 3093 save->idtr.limit, save->idtr.base); 3094 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3095 "tr:", 3096 save01->tr.selector, save01->tr.attrib, 3097 save01->tr.limit, save01->tr.base); 3098 pr_err("cpl: %d efer: %016llx\n", 3099 save->cpl, save->efer); 3100 pr_err("%-15s %016llx %-13s %016llx\n", 3101 "cr0:", save->cr0, "cr2:", save->cr2); 3102 pr_err("%-15s %016llx %-13s %016llx\n", 3103 "cr3:", save->cr3, "cr4:", save->cr4); 3104 pr_err("%-15s %016llx %-13s %016llx\n", 3105 "dr6:", save->dr6, "dr7:", save->dr7); 3106 pr_err("%-15s %016llx %-13s %016llx\n", 3107 "rip:", save->rip, "rflags:", save->rflags); 3108 pr_err("%-15s %016llx %-13s %016llx\n", 3109 "rsp:", save->rsp, "rax:", save->rax); 3110 pr_err("%-15s %016llx %-13s %016llx\n", 3111 "star:", save01->star, "lstar:", save01->lstar); 3112 pr_err("%-15s %016llx %-13s %016llx\n", 3113 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3114 pr_err("%-15s %016llx %-13s %016llx\n", 3115 "kernel_gs_base:", save01->kernel_gs_base, 3116 "sysenter_cs:", save01->sysenter_cs); 3117 pr_err("%-15s %016llx %-13s %016llx\n", 3118 "sysenter_esp:", save01->sysenter_esp, 3119 "sysenter_eip:", save01->sysenter_eip); 3120 pr_err("%-15s %016llx %-13s %016llx\n", 3121 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3122 pr_err("%-15s %016llx %-13s %016llx\n", 3123 "br_from:", save->br_from, "br_to:", save->br_to); 3124 pr_err("%-15s %016llx %-13s %016llx\n", 3125 "excp_from:", save->last_excp_from, 3126 "excp_to:", save->last_excp_to); 3127 } 3128 3129 static bool svm_check_exit_valid(struct kvm_vcpu *vcpu, u64 exit_code) 3130 { 3131 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3132 svm_exit_handlers[exit_code]); 3133 } 3134 3135 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3136 { 3137 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3138 dump_vmcb(vcpu); 3139 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3140 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3141 vcpu->run->internal.ndata = 2; 3142 vcpu->run->internal.data[0] = exit_code; 3143 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3144 return 0; 3145 } 3146 3147 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3148 { 3149 if (!svm_check_exit_valid(vcpu, exit_code)) 3150 return svm_handle_invalid_exit(vcpu, exit_code); 3151 3152 #ifdef CONFIG_RETPOLINE 3153 if (exit_code == SVM_EXIT_MSR) 3154 return msr_interception(vcpu); 3155 else if (exit_code == SVM_EXIT_VINTR) 3156 return interrupt_window_interception(vcpu); 3157 else if (exit_code == SVM_EXIT_INTR) 3158 return intr_interception(vcpu); 3159 else if (exit_code == SVM_EXIT_HLT) 3160 return kvm_emulate_halt(vcpu); 3161 else if (exit_code == SVM_EXIT_NPF) 3162 return npf_interception(vcpu); 3163 #endif 3164 return svm_exit_handlers[exit_code](vcpu); 3165 } 3166 3167 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3168 u64 *info1, u64 *info2, 3169 u32 *intr_info, u32 *error_code) 3170 { 3171 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3172 3173 *reason = control->exit_code; 3174 *info1 = control->exit_info_1; 3175 *info2 = control->exit_info_2; 3176 *intr_info = control->exit_int_info; 3177 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3178 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3179 *error_code = control->exit_int_info_err; 3180 else 3181 *error_code = 0; 3182 } 3183 3184 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3185 { 3186 struct vcpu_svm *svm = to_svm(vcpu); 3187 struct kvm_run *kvm_run = vcpu->run; 3188 u32 exit_code = svm->vmcb->control.exit_code; 3189 3190 trace_kvm_exit(vcpu, KVM_ISA_SVM); 3191 3192 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3193 if (!sev_es_guest(vcpu->kvm)) { 3194 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3195 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3196 if (npt_enabled) 3197 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3198 } 3199 3200 if (is_guest_mode(vcpu)) { 3201 int vmexit; 3202 3203 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3204 3205 vmexit = nested_svm_exit_special(svm); 3206 3207 if (vmexit == NESTED_EXIT_CONTINUE) 3208 vmexit = nested_svm_exit_handled(svm); 3209 3210 if (vmexit == NESTED_EXIT_DONE) 3211 return 1; 3212 } 3213 3214 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3215 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3216 kvm_run->fail_entry.hardware_entry_failure_reason 3217 = svm->vmcb->control.exit_code; 3218 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3219 dump_vmcb(vcpu); 3220 return 0; 3221 } 3222 3223 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3224 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3225 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3226 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3227 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3228 "exit_code 0x%x\n", 3229 __func__, svm->vmcb->control.exit_int_info, 3230 exit_code); 3231 3232 if (exit_fastpath != EXIT_FASTPATH_NONE) 3233 return 1; 3234 3235 return svm_invoke_exit_handler(vcpu, exit_code); 3236 } 3237 3238 static void reload_tss(struct kvm_vcpu *vcpu) 3239 { 3240 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3241 3242 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3243 load_TR_desc(); 3244 } 3245 3246 static void pre_svm_run(struct kvm_vcpu *vcpu) 3247 { 3248 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3249 struct vcpu_svm *svm = to_svm(vcpu); 3250 3251 /* 3252 * If the previous vmrun of the vmcb occurred on a different physical 3253 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3254 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3255 */ 3256 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3257 svm->current_vmcb->asid_generation = 0; 3258 vmcb_mark_all_dirty(svm->vmcb); 3259 svm->current_vmcb->cpu = vcpu->cpu; 3260 } 3261 3262 if (sev_guest(vcpu->kvm)) 3263 return pre_sev_run(svm, vcpu->cpu); 3264 3265 /* FIXME: handle wraparound of asid_generation */ 3266 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3267 new_asid(svm, sd); 3268 } 3269 3270 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3271 { 3272 struct vcpu_svm *svm = to_svm(vcpu); 3273 3274 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3275 vcpu->arch.hflags |= HF_NMI_MASK; 3276 if (!sev_es_guest(vcpu->kvm)) 3277 svm_set_intercept(svm, INTERCEPT_IRET); 3278 ++vcpu->stat.nmi_injections; 3279 } 3280 3281 static void svm_set_irq(struct kvm_vcpu *vcpu) 3282 { 3283 struct vcpu_svm *svm = to_svm(vcpu); 3284 3285 BUG_ON(!(gif_set(svm))); 3286 3287 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3288 ++vcpu->stat.irq_injections; 3289 3290 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3291 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3292 } 3293 3294 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3295 { 3296 struct vcpu_svm *svm = to_svm(vcpu); 3297 3298 /* 3299 * SEV-ES guests must always keep the CR intercepts cleared. CR 3300 * tracking is done using the CR write traps. 3301 */ 3302 if (sev_es_guest(vcpu->kvm)) 3303 return; 3304 3305 if (nested_svm_virtualize_tpr(vcpu)) 3306 return; 3307 3308 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3309 3310 if (irr == -1) 3311 return; 3312 3313 if (tpr >= irr) 3314 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3315 } 3316 3317 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3318 { 3319 struct vcpu_svm *svm = to_svm(vcpu); 3320 struct vmcb *vmcb = svm->vmcb; 3321 bool ret; 3322 3323 if (!gif_set(svm)) 3324 return true; 3325 3326 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3327 return false; 3328 3329 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3330 (vcpu->arch.hflags & HF_NMI_MASK); 3331 3332 return ret; 3333 } 3334 3335 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3336 { 3337 struct vcpu_svm *svm = to_svm(vcpu); 3338 if (svm->nested.nested_run_pending) 3339 return -EBUSY; 3340 3341 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3342 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3343 return -EBUSY; 3344 3345 return !svm_nmi_blocked(vcpu); 3346 } 3347 3348 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3349 { 3350 return !!(vcpu->arch.hflags & HF_NMI_MASK); 3351 } 3352 3353 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3354 { 3355 struct vcpu_svm *svm = to_svm(vcpu); 3356 3357 if (masked) { 3358 vcpu->arch.hflags |= HF_NMI_MASK; 3359 if (!sev_es_guest(vcpu->kvm)) 3360 svm_set_intercept(svm, INTERCEPT_IRET); 3361 } else { 3362 vcpu->arch.hflags &= ~HF_NMI_MASK; 3363 if (!sev_es_guest(vcpu->kvm)) 3364 svm_clr_intercept(svm, INTERCEPT_IRET); 3365 } 3366 } 3367 3368 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3369 { 3370 struct vcpu_svm *svm = to_svm(vcpu); 3371 struct vmcb *vmcb = svm->vmcb; 3372 3373 if (!gif_set(svm)) 3374 return true; 3375 3376 if (is_guest_mode(vcpu)) { 3377 /* As long as interrupts are being delivered... */ 3378 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3379 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3380 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3381 return true; 3382 3383 /* ... vmexits aren't blocked by the interrupt shadow */ 3384 if (nested_exit_on_intr(svm)) 3385 return false; 3386 } else { 3387 if (!svm_get_if_flag(vcpu)) 3388 return true; 3389 } 3390 3391 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3392 } 3393 3394 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3395 { 3396 struct vcpu_svm *svm = to_svm(vcpu); 3397 if (svm->nested.nested_run_pending) 3398 return -EBUSY; 3399 3400 /* 3401 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3402 * e.g. if the IRQ arrived asynchronously after checking nested events. 3403 */ 3404 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3405 return -EBUSY; 3406 3407 return !svm_interrupt_blocked(vcpu); 3408 } 3409 3410 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3411 { 3412 struct vcpu_svm *svm = to_svm(vcpu); 3413 3414 /* 3415 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3416 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3417 * get that intercept, this function will be called again though and 3418 * we'll get the vintr intercept. However, if the vGIF feature is 3419 * enabled, the STGI interception will not occur. Enable the irq 3420 * window under the assumption that the hardware will set the GIF. 3421 */ 3422 if (vgif_enabled(svm) || gif_set(svm)) { 3423 /* 3424 * IRQ window is not needed when AVIC is enabled, 3425 * unless we have pending ExtINT since it cannot be injected 3426 * via AVIC. In such case, we need to temporarily disable AVIC, 3427 * and fallback to injecting IRQ via V_IRQ. 3428 */ 3429 kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_IRQWIN); 3430 svm_set_vintr(svm); 3431 } 3432 } 3433 3434 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3435 { 3436 struct vcpu_svm *svm = to_svm(vcpu); 3437 3438 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) 3439 return; /* IRET will cause a vm exit */ 3440 3441 if (!gif_set(svm)) { 3442 if (vgif_enabled(svm)) 3443 svm_set_intercept(svm, INTERCEPT_STGI); 3444 return; /* STGI will cause a vm exit */ 3445 } 3446 3447 /* 3448 * Something prevents NMI from been injected. Single step over possible 3449 * problem (IRET or exception injection or interrupt shadow) 3450 */ 3451 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3452 svm->nmi_singlestep = true; 3453 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3454 } 3455 3456 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) 3457 { 3458 return 0; 3459 } 3460 3461 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 3462 { 3463 return 0; 3464 } 3465 3466 void svm_flush_tlb(struct kvm_vcpu *vcpu) 3467 { 3468 struct vcpu_svm *svm = to_svm(vcpu); 3469 3470 /* 3471 * Flush only the current ASID even if the TLB flush was invoked via 3472 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3473 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3474 * unconditionally does a TLB flush on both nested VM-Enter and nested 3475 * VM-Exit (via kvm_mmu_reset_context()). 3476 */ 3477 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3478 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3479 else 3480 svm->current_vmcb->asid_generation--; 3481 } 3482 3483 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3484 { 3485 struct vcpu_svm *svm = to_svm(vcpu); 3486 3487 invlpga(gva, svm->vmcb->control.asid); 3488 } 3489 3490 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3491 { 3492 struct vcpu_svm *svm = to_svm(vcpu); 3493 3494 if (nested_svm_virtualize_tpr(vcpu)) 3495 return; 3496 3497 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3498 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3499 kvm_set_cr8(vcpu, cr8); 3500 } 3501 } 3502 3503 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3504 { 3505 struct vcpu_svm *svm = to_svm(vcpu); 3506 u64 cr8; 3507 3508 if (nested_svm_virtualize_tpr(vcpu) || 3509 kvm_vcpu_apicv_active(vcpu)) 3510 return; 3511 3512 cr8 = kvm_get_cr8(vcpu); 3513 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3514 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3515 } 3516 3517 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3518 { 3519 struct vcpu_svm *svm = to_svm(vcpu); 3520 u8 vector; 3521 int type; 3522 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3523 unsigned int3_injected = svm->int3_injected; 3524 3525 svm->int3_injected = 0; 3526 3527 /* 3528 * If we've made progress since setting HF_IRET_MASK, we've 3529 * executed an IRET and can allow NMI injection. 3530 */ 3531 if ((vcpu->arch.hflags & HF_IRET_MASK) && 3532 (sev_es_guest(vcpu->kvm) || 3533 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { 3534 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3535 kvm_make_request(KVM_REQ_EVENT, vcpu); 3536 } 3537 3538 vcpu->arch.nmi_injected = false; 3539 kvm_clear_exception_queue(vcpu); 3540 kvm_clear_interrupt_queue(vcpu); 3541 3542 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3543 return; 3544 3545 kvm_make_request(KVM_REQ_EVENT, vcpu); 3546 3547 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3548 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3549 3550 switch (type) { 3551 case SVM_EXITINTINFO_TYPE_NMI: 3552 vcpu->arch.nmi_injected = true; 3553 break; 3554 case SVM_EXITINTINFO_TYPE_EXEPT: 3555 /* 3556 * Never re-inject a #VC exception. 3557 */ 3558 if (vector == X86_TRAP_VC) 3559 break; 3560 3561 /* 3562 * In case of software exceptions, do not reinject the vector, 3563 * but re-execute the instruction instead. Rewind RIP first 3564 * if we emulated INT3 before. 3565 */ 3566 if (kvm_exception_is_soft(vector)) { 3567 if (vector == BP_VECTOR && int3_injected && 3568 kvm_is_linear_rip(vcpu, svm->int3_rip)) 3569 kvm_rip_write(vcpu, 3570 kvm_rip_read(vcpu) - int3_injected); 3571 break; 3572 } 3573 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3574 u32 err = svm->vmcb->control.exit_int_info_err; 3575 kvm_requeue_exception_e(vcpu, vector, err); 3576 3577 } else 3578 kvm_requeue_exception(vcpu, vector); 3579 break; 3580 case SVM_EXITINTINFO_TYPE_INTR: 3581 kvm_queue_interrupt(vcpu, vector, false); 3582 break; 3583 default: 3584 break; 3585 } 3586 } 3587 3588 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3589 { 3590 struct vcpu_svm *svm = to_svm(vcpu); 3591 struct vmcb_control_area *control = &svm->vmcb->control; 3592 3593 control->exit_int_info = control->event_inj; 3594 control->exit_int_info_err = control->event_inj_err; 3595 control->event_inj = 0; 3596 svm_complete_interrupts(vcpu); 3597 } 3598 3599 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 3600 { 3601 return 1; 3602 } 3603 3604 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3605 { 3606 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3607 to_svm(vcpu)->vmcb->control.exit_info_1) 3608 return handle_fastpath_set_msr_irqoff(vcpu); 3609 3610 return EXIT_FASTPATH_NONE; 3611 } 3612 3613 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 3614 { 3615 struct vcpu_svm *svm = to_svm(vcpu); 3616 unsigned long vmcb_pa = svm->current_vmcb->pa; 3617 3618 kvm_guest_enter_irqoff(); 3619 3620 if (sev_es_guest(vcpu->kvm)) { 3621 __svm_sev_es_vcpu_run(vmcb_pa); 3622 } else { 3623 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3624 3625 /* 3626 * Use a single vmcb (vmcb01 because it's always valid) for 3627 * context switching guest state via VMLOAD/VMSAVE, that way 3628 * the state doesn't need to be copied between vmcb01 and 3629 * vmcb02 when switching vmcbs for nested virtualization. 3630 */ 3631 vmload(svm->vmcb01.pa); 3632 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs); 3633 vmsave(svm->vmcb01.pa); 3634 3635 vmload(__sme_page_pa(sd->save_area)); 3636 } 3637 3638 kvm_guest_exit_irqoff(); 3639 } 3640 3641 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3642 { 3643 struct vcpu_svm *svm = to_svm(vcpu); 3644 3645 trace_kvm_entry(vcpu); 3646 3647 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3648 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3649 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3650 3651 /* 3652 * Disable singlestep if we're injecting an interrupt/exception. 3653 * We don't want our modified rflags to be pushed on the stack where 3654 * we might not be able to easily reset them if we disabled NMI 3655 * singlestep later. 3656 */ 3657 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3658 /* 3659 * Event injection happens before external interrupts cause a 3660 * vmexit and interrupts are disabled here, so smp_send_reschedule 3661 * is enough to force an immediate vmexit. 3662 */ 3663 disable_nmi_singlestep(svm); 3664 smp_send_reschedule(vcpu->cpu); 3665 } 3666 3667 pre_svm_run(vcpu); 3668 3669 sync_lapic_to_cr8(vcpu); 3670 3671 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3672 svm->vmcb->control.asid = svm->asid; 3673 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3674 } 3675 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3676 3677 svm_hv_update_vp_id(svm->vmcb, vcpu); 3678 3679 /* 3680 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3681 * of a #DB. 3682 */ 3683 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3684 svm_set_dr6(svm, vcpu->arch.dr6); 3685 else 3686 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3687 3688 clgi(); 3689 kvm_load_guest_xsave_state(vcpu); 3690 3691 kvm_wait_lapic_expire(vcpu); 3692 3693 /* 3694 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3695 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3696 * is no need to worry about the conditional branch over the wrmsr 3697 * being speculatively taken. 3698 */ 3699 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3700 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3701 3702 svm_vcpu_enter_exit(vcpu); 3703 3704 /* 3705 * We do not use IBRS in the kernel. If this vCPU has used the 3706 * SPEC_CTRL MSR it may have left it on; save the value and 3707 * turn it off. This is much more efficient than blindly adding 3708 * it to the atomic save/restore list. Especially as the former 3709 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3710 * 3711 * For non-nested case: 3712 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3713 * save it. 3714 * 3715 * For nested case: 3716 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3717 * save it. 3718 */ 3719 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) && 3720 unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3721 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3722 3723 if (!sev_es_guest(vcpu->kvm)) 3724 reload_tss(vcpu); 3725 3726 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3727 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3728 3729 if (!sev_es_guest(vcpu->kvm)) { 3730 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3731 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3732 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3733 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3734 } 3735 vcpu->arch.regs_dirty = 0; 3736 3737 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3738 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 3739 3740 kvm_load_host_xsave_state(vcpu); 3741 stgi(); 3742 3743 /* Any pending NMI will happen here */ 3744 3745 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3746 kvm_after_interrupt(vcpu); 3747 3748 sync_cr8_to_lapic(vcpu); 3749 3750 svm->next_rip = 0; 3751 if (is_guest_mode(vcpu)) { 3752 nested_sync_control_from_vmcb02(svm); 3753 3754 /* Track VMRUNs that have made past consistency checking */ 3755 if (svm->nested.nested_run_pending && 3756 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 3757 ++vcpu->stat.nested_run; 3758 3759 svm->nested.nested_run_pending = 0; 3760 } 3761 3762 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3763 vmcb_mark_all_clean(svm->vmcb); 3764 3765 /* if exit due to PF check for async PF */ 3766 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3767 vcpu->arch.apf.host_apf_flags = 3768 kvm_read_and_reset_apf_flags(); 3769 3770 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 3771 3772 /* 3773 * We need to handle MC intercepts here before the vcpu has a chance to 3774 * change the physical cpu 3775 */ 3776 if (unlikely(svm->vmcb->control.exit_code == 3777 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3778 svm_handle_mce(vcpu); 3779 3780 svm_complete_interrupts(vcpu); 3781 3782 if (is_guest_mode(vcpu)) 3783 return EXIT_FASTPATH_NONE; 3784 3785 return svm_exit_handlers_fastpath(vcpu); 3786 } 3787 3788 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3789 int root_level) 3790 { 3791 struct vcpu_svm *svm = to_svm(vcpu); 3792 unsigned long cr3; 3793 3794 if (npt_enabled) { 3795 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 3796 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3797 3798 hv_track_root_tdp(vcpu, root_hpa); 3799 3800 cr3 = vcpu->arch.cr3; 3801 } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3802 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 3803 } else { 3804 /* PCID in the guest should be impossible with a 32-bit MMU. */ 3805 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 3806 cr3 = root_hpa; 3807 } 3808 3809 svm->vmcb->save.cr3 = cr3; 3810 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 3811 } 3812 3813 static int is_disabled(void) 3814 { 3815 u64 vm_cr; 3816 3817 rdmsrl(MSR_VM_CR, vm_cr); 3818 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3819 return 1; 3820 3821 return 0; 3822 } 3823 3824 static void 3825 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3826 { 3827 /* 3828 * Patch in the VMMCALL instruction: 3829 */ 3830 hypercall[0] = 0x0f; 3831 hypercall[1] = 0x01; 3832 hypercall[2] = 0xd9; 3833 } 3834 3835 static int __init svm_check_processor_compat(void) 3836 { 3837 return 0; 3838 } 3839 3840 static bool svm_cpu_has_accelerated_tpr(void) 3841 { 3842 return false; 3843 } 3844 3845 /* 3846 * The kvm parameter can be NULL (module initialization, or invocation before 3847 * VM creation). Be sure to check the kvm parameter before using it. 3848 */ 3849 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 3850 { 3851 switch (index) { 3852 case MSR_IA32_MCG_EXT_CTL: 3853 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 3854 return false; 3855 case MSR_IA32_SMBASE: 3856 /* SEV-ES guests do not support SMM, so report false */ 3857 if (kvm && sev_es_guest(kvm)) 3858 return false; 3859 break; 3860 default: 3861 break; 3862 } 3863 3864 return true; 3865 } 3866 3867 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 3868 { 3869 return 0; 3870 } 3871 3872 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 3873 { 3874 struct vcpu_svm *svm = to_svm(vcpu); 3875 struct kvm_cpuid_entry2 *best; 3876 3877 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3878 boot_cpu_has(X86_FEATURE_XSAVE) && 3879 boot_cpu_has(X86_FEATURE_XSAVES); 3880 3881 /* Update nrips enabled cache */ 3882 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 3883 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); 3884 3885 svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR); 3886 3887 svm_recalc_instruction_intercepts(vcpu, svm); 3888 3889 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 3890 if (sev_guest(vcpu->kvm)) { 3891 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); 3892 if (best) 3893 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 3894 } 3895 3896 if (kvm_vcpu_apicv_active(vcpu)) { 3897 /* 3898 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 3899 * is exposed to the guest, disable AVIC. 3900 */ 3901 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 3902 kvm_request_apicv_update(vcpu->kvm, false, 3903 APICV_INHIBIT_REASON_X2APIC); 3904 3905 /* 3906 * Currently, AVIC does not work with nested virtualization. 3907 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 3908 */ 3909 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 3910 kvm_request_apicv_update(vcpu->kvm, false, 3911 APICV_INHIBIT_REASON_NESTED); 3912 } 3913 init_vmcb_after_set_cpuid(vcpu); 3914 } 3915 3916 static bool svm_has_wbinvd_exit(void) 3917 { 3918 return true; 3919 } 3920 3921 #define PRE_EX(exit) { .exit_code = (exit), \ 3922 .stage = X86_ICPT_PRE_EXCEPT, } 3923 #define POST_EX(exit) { .exit_code = (exit), \ 3924 .stage = X86_ICPT_POST_EXCEPT, } 3925 #define POST_MEM(exit) { .exit_code = (exit), \ 3926 .stage = X86_ICPT_POST_MEMACCESS, } 3927 3928 static const struct __x86_intercept { 3929 u32 exit_code; 3930 enum x86_intercept_stage stage; 3931 } x86_intercept_map[] = { 3932 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 3933 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 3934 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 3935 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 3936 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 3937 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 3938 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 3939 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 3940 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 3941 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 3942 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 3943 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 3944 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 3945 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 3946 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 3947 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 3948 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 3949 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 3950 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 3951 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 3952 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 3953 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 3954 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 3955 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 3956 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 3957 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 3958 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 3959 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 3960 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 3961 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 3962 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 3963 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 3964 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 3965 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 3966 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 3967 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 3968 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 3969 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 3970 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 3971 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 3972 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 3973 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 3974 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 3975 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 3976 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 3977 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 3978 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 3979 }; 3980 3981 #undef PRE_EX 3982 #undef POST_EX 3983 #undef POST_MEM 3984 3985 static int svm_check_intercept(struct kvm_vcpu *vcpu, 3986 struct x86_instruction_info *info, 3987 enum x86_intercept_stage stage, 3988 struct x86_exception *exception) 3989 { 3990 struct vcpu_svm *svm = to_svm(vcpu); 3991 int vmexit, ret = X86EMUL_CONTINUE; 3992 struct __x86_intercept icpt_info; 3993 struct vmcb *vmcb = svm->vmcb; 3994 3995 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 3996 goto out; 3997 3998 icpt_info = x86_intercept_map[info->intercept]; 3999 4000 if (stage != icpt_info.stage) 4001 goto out; 4002 4003 switch (icpt_info.exit_code) { 4004 case SVM_EXIT_READ_CR0: 4005 if (info->intercept == x86_intercept_cr_read) 4006 icpt_info.exit_code += info->modrm_reg; 4007 break; 4008 case SVM_EXIT_WRITE_CR0: { 4009 unsigned long cr0, val; 4010 4011 if (info->intercept == x86_intercept_cr_write) 4012 icpt_info.exit_code += info->modrm_reg; 4013 4014 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4015 info->intercept == x86_intercept_clts) 4016 break; 4017 4018 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4019 INTERCEPT_SELECTIVE_CR0))) 4020 break; 4021 4022 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4023 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4024 4025 if (info->intercept == x86_intercept_lmsw) { 4026 cr0 &= 0xfUL; 4027 val &= 0xfUL; 4028 /* lmsw can't clear PE - catch this here */ 4029 if (cr0 & X86_CR0_PE) 4030 val |= X86_CR0_PE; 4031 } 4032 4033 if (cr0 ^ val) 4034 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4035 4036 break; 4037 } 4038 case SVM_EXIT_READ_DR0: 4039 case SVM_EXIT_WRITE_DR0: 4040 icpt_info.exit_code += info->modrm_reg; 4041 break; 4042 case SVM_EXIT_MSR: 4043 if (info->intercept == x86_intercept_wrmsr) 4044 vmcb->control.exit_info_1 = 1; 4045 else 4046 vmcb->control.exit_info_1 = 0; 4047 break; 4048 case SVM_EXIT_PAUSE: 4049 /* 4050 * We get this for NOP only, but pause 4051 * is rep not, check this here 4052 */ 4053 if (info->rep_prefix != REPE_PREFIX) 4054 goto out; 4055 break; 4056 case SVM_EXIT_IOIO: { 4057 u64 exit_info; 4058 u32 bytes; 4059 4060 if (info->intercept == x86_intercept_in || 4061 info->intercept == x86_intercept_ins) { 4062 exit_info = ((info->src_val & 0xffff) << 16) | 4063 SVM_IOIO_TYPE_MASK; 4064 bytes = info->dst_bytes; 4065 } else { 4066 exit_info = (info->dst_val & 0xffff) << 16; 4067 bytes = info->src_bytes; 4068 } 4069 4070 if (info->intercept == x86_intercept_outs || 4071 info->intercept == x86_intercept_ins) 4072 exit_info |= SVM_IOIO_STR_MASK; 4073 4074 if (info->rep_prefix) 4075 exit_info |= SVM_IOIO_REP_MASK; 4076 4077 bytes = min(bytes, 4u); 4078 4079 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4080 4081 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4082 4083 vmcb->control.exit_info_1 = exit_info; 4084 vmcb->control.exit_info_2 = info->next_rip; 4085 4086 break; 4087 } 4088 default: 4089 break; 4090 } 4091 4092 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4093 if (static_cpu_has(X86_FEATURE_NRIPS)) 4094 vmcb->control.next_rip = info->next_rip; 4095 vmcb->control.exit_code = icpt_info.exit_code; 4096 vmexit = nested_svm_exit_handled(svm); 4097 4098 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4099 : X86EMUL_CONTINUE; 4100 4101 out: 4102 return ret; 4103 } 4104 4105 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4106 { 4107 } 4108 4109 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4110 { 4111 if (!kvm_pause_in_guest(vcpu->kvm)) 4112 shrink_ple_window(vcpu); 4113 } 4114 4115 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4116 { 4117 /* [63:9] are reserved. */ 4118 vcpu->arch.mcg_cap &= 0x1ff; 4119 } 4120 4121 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4122 { 4123 struct vcpu_svm *svm = to_svm(vcpu); 4124 4125 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4126 if (!gif_set(svm)) 4127 return true; 4128 4129 return is_smm(vcpu); 4130 } 4131 4132 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4133 { 4134 struct vcpu_svm *svm = to_svm(vcpu); 4135 if (svm->nested.nested_run_pending) 4136 return -EBUSY; 4137 4138 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4139 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4140 return -EBUSY; 4141 4142 return !svm_smi_blocked(vcpu); 4143 } 4144 4145 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4146 { 4147 struct vcpu_svm *svm = to_svm(vcpu); 4148 struct kvm_host_map map_save; 4149 int ret; 4150 4151 if (!is_guest_mode(vcpu)) 4152 return 0; 4153 4154 /* FED8h - SVM Guest */ 4155 put_smstate(u64, smstate, 0x7ed8, 1); 4156 /* FEE0h - SVM Guest VMCB Physical Address */ 4157 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4158 4159 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4160 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4161 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4162 4163 ret = nested_svm_vmexit(svm); 4164 if (ret) 4165 return ret; 4166 4167 /* 4168 * KVM uses VMCB01 to store L1 host state while L2 runs but 4169 * VMCB01 is going to be used during SMM and thus the state will 4170 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4171 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4172 * format of the area is identical to guest save area offsetted 4173 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4174 * within 'struct vmcb'). Note: HSAVE area may also be used by 4175 * L1 hypervisor to save additional host context (e.g. KVM does 4176 * that, see svm_prepare_guest_switch()) which must be 4177 * preserved. 4178 */ 4179 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), 4180 &map_save) == -EINVAL) 4181 return 1; 4182 4183 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4184 4185 svm_copy_vmrun_state(map_save.hva + 0x400, 4186 &svm->vmcb01.ptr->save); 4187 4188 kvm_vcpu_unmap(vcpu, &map_save, true); 4189 return 0; 4190 } 4191 4192 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4193 { 4194 struct vcpu_svm *svm = to_svm(vcpu); 4195 struct kvm_host_map map, map_save; 4196 u64 saved_efer, vmcb12_gpa; 4197 struct vmcb *vmcb12; 4198 int ret; 4199 4200 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4201 return 0; 4202 4203 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4204 if (!GET_SMSTATE(u64, smstate, 0x7ed8)) 4205 return 0; 4206 4207 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4208 return 1; 4209 4210 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4211 if (!(saved_efer & EFER_SVME)) 4212 return 1; 4213 4214 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4215 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4216 return 1; 4217 4218 ret = 1; 4219 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL) 4220 goto unmap_map; 4221 4222 if (svm_allocate_nested(svm)) 4223 goto unmap_save; 4224 4225 /* 4226 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4227 * used during SMM (see svm_enter_smm()) 4228 */ 4229 4230 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4231 4232 /* 4233 * Enter the nested guest now 4234 */ 4235 4236 vmcb12 = map.hva; 4237 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4238 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4239 ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false); 4240 4241 unmap_save: 4242 kvm_vcpu_unmap(vcpu, &map_save, true); 4243 unmap_map: 4244 kvm_vcpu_unmap(vcpu, &map, true); 4245 return ret; 4246 } 4247 4248 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4249 { 4250 struct vcpu_svm *svm = to_svm(vcpu); 4251 4252 if (!gif_set(svm)) { 4253 if (vgif_enabled(svm)) 4254 svm_set_intercept(svm, INTERCEPT_STGI); 4255 /* STGI will cause a vm exit */ 4256 } else { 4257 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4258 } 4259 } 4260 4261 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4262 void *insn, int insn_len) 4263 { 4264 bool smep, smap, is_user; 4265 unsigned long cr4; 4266 u64 error_code; 4267 4268 /* Emulation is always possible when KVM has access to all guest state. */ 4269 if (!sev_guest(vcpu->kvm)) 4270 return true; 4271 4272 /* #UD and #GP should never be intercepted for SEV guests. */ 4273 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4274 EMULTYPE_TRAP_UD_FORCED | 4275 EMULTYPE_VMWARE_GP)); 4276 4277 /* 4278 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4279 * to guest register state. 4280 */ 4281 if (sev_es_guest(vcpu->kvm)) 4282 return false; 4283 4284 /* 4285 * Emulation is possible if the instruction is already decoded, e.g. 4286 * when completing I/O after returning from userspace. 4287 */ 4288 if (emul_type & EMULTYPE_NO_DECODE) 4289 return true; 4290 4291 /* 4292 * Emulation is possible for SEV guests if and only if a prefilled 4293 * buffer containing the bytes of the intercepted instruction is 4294 * available. SEV guest memory is encrypted with a guest specific key 4295 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4296 * decode garbage. 4297 * 4298 * Inject #UD if KVM reached this point without an instruction buffer. 4299 * In practice, this path should never be hit by a well-behaved guest, 4300 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path 4301 * is still theoretically reachable, e.g. via unaccelerated fault-like 4302 * AVIC access, and needs to be handled by KVM to avoid putting the 4303 * guest into an infinite loop. Injecting #UD is somewhat arbitrary, 4304 * but its the least awful option given lack of insight into the guest. 4305 */ 4306 if (unlikely(!insn)) { 4307 kvm_queue_exception(vcpu, UD_VECTOR); 4308 return false; 4309 } 4310 4311 /* 4312 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4313 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4314 * the faulting instruction because the code fetch itself faulted, e.g. 4315 * the guest attempted to fetch from emulated MMIO or a guest page 4316 * table used to translate CS:RIP resides in emulated MMIO. 4317 */ 4318 if (likely(insn_len)) 4319 return true; 4320 4321 /* 4322 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4323 * 4324 * Errata: 4325 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4326 * possible that CPU microcode implementing DecodeAssist will fail to 4327 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4328 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4329 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4330 * gives up and does not fill the instruction bytes buffer. 4331 * 4332 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4333 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4334 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4335 * GuestIntrBytes field of the VMCB. 4336 * 4337 * This does _not_ mean that the erratum has been encountered, as the 4338 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4339 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4340 * encountered a reserved/not-present #PF. 4341 * 4342 * To hit the erratum, the following conditions must be true: 4343 * 1. CR4.SMAP=1 (obviously). 4344 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4345 * have been hit as the guest would have encountered a SMEP 4346 * violation #PF, not a #NPF. 4347 * 3. The #NPF is not due to a code fetch, in which case failure to 4348 * retrieve the instruction bytes is legitimate (see abvoe). 4349 * 4350 * In addition, don't apply the erratum workaround if the #NPF occurred 4351 * while translating guest page tables (see below). 4352 */ 4353 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4354 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4355 goto resume_guest; 4356 4357 cr4 = kvm_read_cr4(vcpu); 4358 smep = cr4 & X86_CR4_SMEP; 4359 smap = cr4 & X86_CR4_SMAP; 4360 is_user = svm_get_cpl(vcpu) == 3; 4361 if (smap && (!smep || is_user)) { 4362 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4363 4364 /* 4365 * If the fault occurred in userspace, arbitrarily inject #GP 4366 * to avoid killing the guest and to hopefully avoid confusing 4367 * the guest kernel too much, e.g. injecting #PF would not be 4368 * coherent with respect to the guest's page tables. Request 4369 * triple fault if the fault occurred in the kernel as there's 4370 * no fault that KVM can inject without confusing the guest. 4371 * In practice, the triple fault is moot as no sane SEV kernel 4372 * will execute from user memory while also running with SMAP=1. 4373 */ 4374 if (is_user) 4375 kvm_inject_gp(vcpu, 0); 4376 else 4377 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4378 } 4379 4380 resume_guest: 4381 /* 4382 * If the erratum was not hit, simply resume the guest and let it fault 4383 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4384 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4385 * userspace will kill the guest, and letting the emulator read garbage 4386 * will yield random behavior and potentially corrupt the guest. 4387 * 4388 * Simply resuming the guest is technically not a violation of the SEV 4389 * architecture. AMD's APM states that all code fetches and page table 4390 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4391 * APM also states that encrypted accesses to MMIO are "ignored", but 4392 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4393 * the guest spin is technically "ignoring" the access. 4394 */ 4395 return false; 4396 } 4397 4398 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4399 { 4400 struct vcpu_svm *svm = to_svm(vcpu); 4401 4402 /* 4403 * TODO: Last condition latch INIT signals on vCPU when 4404 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4405 * To properly emulate the INIT intercept, 4406 * svm_check_nested_events() should call nested_svm_vmexit() 4407 * if an INIT signal is pending. 4408 */ 4409 return !gif_set(svm) || 4410 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); 4411 } 4412 4413 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4414 { 4415 if (!sev_es_guest(vcpu->kvm)) 4416 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4417 4418 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4419 } 4420 4421 static void svm_vm_destroy(struct kvm *kvm) 4422 { 4423 avic_vm_destroy(kvm); 4424 sev_vm_destroy(kvm); 4425 } 4426 4427 static int svm_vm_init(struct kvm *kvm) 4428 { 4429 if (!pause_filter_count || !pause_filter_thresh) 4430 kvm->arch.pause_in_guest = true; 4431 4432 if (enable_apicv) { 4433 int ret = avic_vm_init(kvm); 4434 if (ret) 4435 return ret; 4436 } 4437 4438 return 0; 4439 } 4440 4441 static struct kvm_x86_ops svm_x86_ops __initdata = { 4442 .name = "kvm_amd", 4443 4444 .hardware_unsetup = svm_hardware_teardown, 4445 .hardware_enable = svm_hardware_enable, 4446 .hardware_disable = svm_hardware_disable, 4447 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, 4448 .has_emulated_msr = svm_has_emulated_msr, 4449 4450 .vcpu_create = svm_create_vcpu, 4451 .vcpu_free = svm_free_vcpu, 4452 .vcpu_reset = svm_vcpu_reset, 4453 4454 .vm_size = sizeof(struct kvm_svm), 4455 .vm_init = svm_vm_init, 4456 .vm_destroy = svm_vm_destroy, 4457 4458 .prepare_guest_switch = svm_prepare_guest_switch, 4459 .vcpu_load = svm_vcpu_load, 4460 .vcpu_put = svm_vcpu_put, 4461 .vcpu_blocking = avic_vcpu_blocking, 4462 .vcpu_unblocking = avic_vcpu_unblocking, 4463 4464 .update_exception_bitmap = svm_update_exception_bitmap, 4465 .get_msr_feature = svm_get_msr_feature, 4466 .get_msr = svm_get_msr, 4467 .set_msr = svm_set_msr, 4468 .get_segment_base = svm_get_segment_base, 4469 .get_segment = svm_get_segment, 4470 .set_segment = svm_set_segment, 4471 .get_cpl = svm_get_cpl, 4472 .get_cs_db_l_bits = kvm_get_cs_db_l_bits, 4473 .set_cr0 = svm_set_cr0, 4474 .post_set_cr3 = svm_post_set_cr3, 4475 .is_valid_cr4 = svm_is_valid_cr4, 4476 .set_cr4 = svm_set_cr4, 4477 .set_efer = svm_set_efer, 4478 .get_idt = svm_get_idt, 4479 .set_idt = svm_set_idt, 4480 .get_gdt = svm_get_gdt, 4481 .set_gdt = svm_set_gdt, 4482 .set_dr7 = svm_set_dr7, 4483 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4484 .cache_reg = svm_cache_reg, 4485 .get_rflags = svm_get_rflags, 4486 .set_rflags = svm_set_rflags, 4487 .get_if_flag = svm_get_if_flag, 4488 4489 .tlb_flush_all = svm_flush_tlb, 4490 .tlb_flush_current = svm_flush_tlb, 4491 .tlb_flush_gva = svm_flush_tlb_gva, 4492 .tlb_flush_guest = svm_flush_tlb, 4493 4494 .vcpu_pre_run = svm_vcpu_pre_run, 4495 .run = svm_vcpu_run, 4496 .handle_exit = handle_exit, 4497 .skip_emulated_instruction = skip_emulated_instruction, 4498 .update_emulated_instruction = NULL, 4499 .set_interrupt_shadow = svm_set_interrupt_shadow, 4500 .get_interrupt_shadow = svm_get_interrupt_shadow, 4501 .patch_hypercall = svm_patch_hypercall, 4502 .set_irq = svm_set_irq, 4503 .set_nmi = svm_inject_nmi, 4504 .queue_exception = svm_queue_exception, 4505 .cancel_injection = svm_cancel_injection, 4506 .interrupt_allowed = svm_interrupt_allowed, 4507 .nmi_allowed = svm_nmi_allowed, 4508 .get_nmi_mask = svm_get_nmi_mask, 4509 .set_nmi_mask = svm_set_nmi_mask, 4510 .enable_nmi_window = svm_enable_nmi_window, 4511 .enable_irq_window = svm_enable_irq_window, 4512 .update_cr8_intercept = svm_update_cr8_intercept, 4513 .set_virtual_apic_mode = svm_set_virtual_apic_mode, 4514 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, 4515 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, 4516 .load_eoi_exitmap = svm_load_eoi_exitmap, 4517 .hwapic_irr_update = svm_hwapic_irr_update, 4518 .hwapic_isr_update = svm_hwapic_isr_update, 4519 .apicv_post_state_restore = avic_post_state_restore, 4520 4521 .set_tss_addr = svm_set_tss_addr, 4522 .set_identity_map_addr = svm_set_identity_map_addr, 4523 .get_mt_mask = svm_get_mt_mask, 4524 4525 .get_exit_info = svm_get_exit_info, 4526 4527 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4528 4529 .has_wbinvd_exit = svm_has_wbinvd_exit, 4530 4531 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4532 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4533 .write_tsc_offset = svm_write_tsc_offset, 4534 .write_tsc_multiplier = svm_write_tsc_multiplier, 4535 4536 .load_mmu_pgd = svm_load_mmu_pgd, 4537 4538 .check_intercept = svm_check_intercept, 4539 .handle_exit_irqoff = svm_handle_exit_irqoff, 4540 4541 .request_immediate_exit = __kvm_request_immediate_exit, 4542 4543 .sched_in = svm_sched_in, 4544 4545 .pmu_ops = &amd_pmu_ops, 4546 .nested_ops = &svm_nested_ops, 4547 4548 .deliver_posted_interrupt = svm_deliver_avic_intr, 4549 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, 4550 .update_pi_irte = svm_update_pi_irte, 4551 .setup_mce = svm_setup_mce, 4552 4553 .smi_allowed = svm_smi_allowed, 4554 .enter_smm = svm_enter_smm, 4555 .leave_smm = svm_leave_smm, 4556 .enable_smi_window = svm_enable_smi_window, 4557 4558 .mem_enc_op = svm_mem_enc_op, 4559 .mem_enc_reg_region = svm_register_enc_region, 4560 .mem_enc_unreg_region = svm_unregister_enc_region, 4561 4562 .vm_copy_enc_context_from = svm_vm_copy_asid_from, 4563 .vm_move_enc_context_from = svm_vm_migrate_from, 4564 4565 .can_emulate_instruction = svm_can_emulate_instruction, 4566 4567 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4568 4569 .msr_filter_changed = svm_msr_filter_changed, 4570 .complete_emulated_msr = svm_complete_emulated_msr, 4571 4572 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4573 }; 4574 4575 /* 4576 * The default MMIO mask is a single bit (excluding the present bit), 4577 * which could conflict with the memory encryption bit. Check for 4578 * memory encryption support and override the default MMIO mask if 4579 * memory encryption is enabled. 4580 */ 4581 static __init void svm_adjust_mmio_mask(void) 4582 { 4583 unsigned int enc_bit, mask_bit; 4584 u64 msr, mask; 4585 4586 /* If there is no memory encryption support, use existing mask */ 4587 if (cpuid_eax(0x80000000) < 0x8000001f) 4588 return; 4589 4590 /* If memory encryption is not enabled, use existing mask */ 4591 rdmsrl(MSR_AMD64_SYSCFG, msr); 4592 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 4593 return; 4594 4595 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 4596 mask_bit = boot_cpu_data.x86_phys_bits; 4597 4598 /* Increment the mask bit if it is the same as the encryption bit */ 4599 if (enc_bit == mask_bit) 4600 mask_bit++; 4601 4602 /* 4603 * If the mask bit location is below 52, then some bits above the 4604 * physical addressing limit will always be reserved, so use the 4605 * rsvd_bits() function to generate the mask. This mask, along with 4606 * the present bit, will be used to generate a page fault with 4607 * PFER.RSV = 1. 4608 * 4609 * If the mask bit location is 52 (or above), then clear the mask. 4610 */ 4611 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 4612 4613 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 4614 } 4615 4616 static __init void svm_set_cpu_caps(void) 4617 { 4618 kvm_set_cpu_caps(); 4619 4620 supported_xss = 0; 4621 4622 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 4623 if (nested) { 4624 kvm_cpu_cap_set(X86_FEATURE_SVM); 4625 4626 if (nrips) 4627 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 4628 4629 if (npt_enabled) 4630 kvm_cpu_cap_set(X86_FEATURE_NPT); 4631 4632 if (tsc_scaling) 4633 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 4634 4635 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 4636 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 4637 } 4638 4639 /* CPUID 0x80000008 */ 4640 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 4641 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 4642 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 4643 4644 /* AMD PMU PERFCTR_CORE CPUID */ 4645 if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE)) 4646 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE); 4647 4648 /* CPUID 0x8000001F (SME/SEV features) */ 4649 sev_set_cpu_caps(); 4650 } 4651 4652 static __init int svm_hardware_setup(void) 4653 { 4654 int cpu; 4655 struct page *iopm_pages; 4656 void *iopm_va; 4657 int r; 4658 unsigned int order = get_order(IOPM_SIZE); 4659 4660 /* 4661 * NX is required for shadow paging and for NPT if the NX huge pages 4662 * mitigation is enabled. 4663 */ 4664 if (!boot_cpu_has(X86_FEATURE_NX)) { 4665 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 4666 return -EOPNOTSUPP; 4667 } 4668 kvm_enable_efer_bits(EFER_NX); 4669 4670 iopm_pages = alloc_pages(GFP_KERNEL, order); 4671 4672 if (!iopm_pages) 4673 return -ENOMEM; 4674 4675 iopm_va = page_address(iopm_pages); 4676 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 4677 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 4678 4679 init_msrpm_offsets(); 4680 4681 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 4682 4683 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 4684 kvm_enable_efer_bits(EFER_FFXSR); 4685 4686 if (tsc_scaling) { 4687 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 4688 tsc_scaling = false; 4689 } else { 4690 pr_info("TSC scaling supported\n"); 4691 kvm_has_tsc_control = true; 4692 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 4693 kvm_tsc_scaling_ratio_frac_bits = 32; 4694 } 4695 } 4696 4697 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 4698 4699 /* Check for pause filtering support */ 4700 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 4701 pause_filter_count = 0; 4702 pause_filter_thresh = 0; 4703 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 4704 pause_filter_thresh = 0; 4705 } 4706 4707 if (nested) { 4708 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 4709 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 4710 } 4711 4712 /* 4713 * KVM's MMU doesn't support using 2-level paging for itself, and thus 4714 * NPT isn't supported if the host is using 2-level paging since host 4715 * CR4 is unchanged on VMRUN. 4716 */ 4717 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 4718 npt_enabled = false; 4719 4720 if (!boot_cpu_has(X86_FEATURE_NPT)) 4721 npt_enabled = false; 4722 4723 /* Force VM NPT level equal to the host's paging level */ 4724 kvm_configure_mmu(npt_enabled, get_npt_level(), 4725 get_npt_level(), PG_LEVEL_1G); 4726 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 4727 4728 /* Note, SEV setup consumes npt_enabled. */ 4729 sev_hardware_setup(); 4730 4731 svm_hv_hardware_setup(); 4732 4733 svm_adjust_mmio_mask(); 4734 4735 for_each_possible_cpu(cpu) { 4736 r = svm_cpu_init(cpu); 4737 if (r) 4738 goto err; 4739 } 4740 4741 if (nrips) { 4742 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 4743 nrips = false; 4744 } 4745 4746 enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC); 4747 4748 if (enable_apicv) { 4749 pr_info("AVIC enabled\n"); 4750 4751 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 4752 } else { 4753 svm_x86_ops.vcpu_blocking = NULL; 4754 svm_x86_ops.vcpu_unblocking = NULL; 4755 } 4756 4757 if (vls) { 4758 if (!npt_enabled || 4759 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 4760 !IS_ENABLED(CONFIG_X86_64)) { 4761 vls = false; 4762 } else { 4763 pr_info("Virtual VMLOAD VMSAVE supported\n"); 4764 } 4765 } 4766 4767 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 4768 svm_gp_erratum_intercept = false; 4769 4770 if (vgif) { 4771 if (!boot_cpu_has(X86_FEATURE_VGIF)) 4772 vgif = false; 4773 else 4774 pr_info("Virtual GIF supported\n"); 4775 } 4776 4777 if (lbrv) { 4778 if (!boot_cpu_has(X86_FEATURE_LBRV)) 4779 lbrv = false; 4780 else 4781 pr_info("LBR virtualization supported\n"); 4782 } 4783 4784 if (!enable_pmu) 4785 pr_info("PMU virtualization is disabled\n"); 4786 4787 svm_set_cpu_caps(); 4788 4789 /* 4790 * It seems that on AMD processors PTE's accessed bit is 4791 * being set by the CPU hardware before the NPF vmexit. 4792 * This is not expected behaviour and our tests fail because 4793 * of it. 4794 * A workaround here is to disable support for 4795 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 4796 * In this case userspace can know if there is support using 4797 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 4798 * it 4799 * If future AMD CPU models change the behaviour described above, 4800 * this variable can be changed accordingly 4801 */ 4802 allow_smaller_maxphyaddr = !npt_enabled; 4803 4804 return 0; 4805 4806 err: 4807 svm_hardware_teardown(); 4808 return r; 4809 } 4810 4811 4812 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4813 .cpu_has_kvm_support = has_svm, 4814 .disabled_by_bios = is_disabled, 4815 .hardware_setup = svm_hardware_setup, 4816 .check_processor_compatibility = svm_check_processor_compat, 4817 4818 .runtime_ops = &svm_x86_ops, 4819 }; 4820 4821 static int __init svm_init(void) 4822 { 4823 __unused_size_checks(); 4824 4825 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4826 __alignof__(struct vcpu_svm), THIS_MODULE); 4827 } 4828 4829 static void __exit svm_exit(void) 4830 { 4831 kvm_exit(); 4832 } 4833 4834 module_init(svm_init) 4835 module_exit(svm_exit) 4836