1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 29 #include <asm/apic.h> 30 #include <asm/perf_event.h> 31 #include <asm/tlbflush.h> 32 #include <asm/desc.h> 33 #include <asm/debugreg.h> 34 #include <asm/kvm_para.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/spec-ctrl.h> 37 #include <asm/cpu_device_id.h> 38 #include <asm/traps.h> 39 40 #include <asm/virtext.h> 41 #include "trace.h" 42 43 #include "svm.h" 44 #include "svm_ops.h" 45 46 #define __ex(x) __kvm_handle_fault_on_reboot(x) 47 48 MODULE_AUTHOR("Qumranet"); 49 MODULE_LICENSE("GPL"); 50 51 #ifdef MODULE 52 static const struct x86_cpu_id svm_cpu_id[] = { 53 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 54 {} 55 }; 56 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 57 #endif 58 59 #define IOPM_ALLOC_ORDER 2 60 #define MSRPM_ALLOC_ORDER 1 61 62 #define SEG_TYPE_LDT 2 63 #define SEG_TYPE_BUSY_TSS16 3 64 65 #define SVM_FEATURE_LBRV (1 << 1) 66 #define SVM_FEATURE_SVML (1 << 2) 67 #define SVM_FEATURE_TSC_RATE (1 << 4) 68 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 69 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 70 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 71 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 72 73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 74 75 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 76 #define TSC_RATIO_MIN 0x0000000000000001ULL 77 #define TSC_RATIO_MAX 0x000000ffffffffffULL 78 79 static bool erratum_383_found __read_mostly; 80 81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 82 83 /* 84 * Set osvw_len to higher value when updated Revision Guides 85 * are published and we know what the new status bits are 86 */ 87 static uint64_t osvw_len = 4, osvw_status; 88 89 static DEFINE_PER_CPU(u64, current_tsc_ratio); 90 #define TSC_RATIO_DEFAULT 0x0100000000ULL 91 92 static const struct svm_direct_access_msrs { 93 u32 index; /* Index of the MSR */ 94 bool always; /* True if intercept is initially cleared */ 95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 96 { .index = MSR_STAR, .always = true }, 97 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 98 #ifdef CONFIG_X86_64 99 { .index = MSR_GS_BASE, .always = true }, 100 { .index = MSR_FS_BASE, .always = true }, 101 { .index = MSR_KERNEL_GS_BASE, .always = true }, 102 { .index = MSR_LSTAR, .always = true }, 103 { .index = MSR_CSTAR, .always = true }, 104 { .index = MSR_SYSCALL_MASK, .always = true }, 105 #endif 106 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 107 { .index = MSR_IA32_PRED_CMD, .always = false }, 108 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 109 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 110 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 111 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 112 { .index = MSR_EFER, .always = false }, 113 { .index = MSR_IA32_CR_PAT, .always = false }, 114 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 115 { .index = MSR_INVALID, .always = false }, 116 }; 117 118 /* 119 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 120 * pause_filter_count: On processors that support Pause filtering(indicated 121 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 122 * count value. On VMRUN this value is loaded into an internal counter. 123 * Each time a pause instruction is executed, this counter is decremented 124 * until it reaches zero at which time a #VMEXIT is generated if pause 125 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 126 * Intercept Filtering for more details. 127 * This also indicate if ple logic enabled. 128 * 129 * pause_filter_thresh: In addition, some processor families support advanced 130 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 131 * the amount of time a guest is allowed to execute in a pause loop. 132 * In this mode, a 16-bit pause filter threshold field is added in the 133 * VMCB. The threshold value is a cycle count that is used to reset the 134 * pause counter. As with simple pause filtering, VMRUN loads the pause 135 * count value from VMCB into an internal counter. Then, on each pause 136 * instruction the hardware checks the elapsed number of cycles since 137 * the most recent pause instruction against the pause filter threshold. 138 * If the elapsed cycle count is greater than the pause filter threshold, 139 * then the internal pause count is reloaded from the VMCB and execution 140 * continues. If the elapsed cycle count is less than the pause filter 141 * threshold, then the internal pause count is decremented. If the count 142 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 143 * triggered. If advanced pause filtering is supported and pause filter 144 * threshold field is set to zero, the filter will operate in the simpler, 145 * count only mode. 146 */ 147 148 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 149 module_param(pause_filter_thresh, ushort, 0444); 150 151 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 152 module_param(pause_filter_count, ushort, 0444); 153 154 /* Default doubles per-vcpu window every exit. */ 155 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 156 module_param(pause_filter_count_grow, ushort, 0444); 157 158 /* Default resets per-vcpu window every exit to pause_filter_count. */ 159 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 160 module_param(pause_filter_count_shrink, ushort, 0444); 161 162 /* Default is to compute the maximum so we can never overflow. */ 163 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 164 module_param(pause_filter_count_max, ushort, 0444); 165 166 /* 167 * Use nested page tables by default. Note, NPT may get forced off by 168 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 169 */ 170 bool npt_enabled = true; 171 module_param_named(npt, npt_enabled, bool, 0444); 172 173 /* allow nested virtualization in KVM/SVM */ 174 static int nested = true; 175 module_param(nested, int, S_IRUGO); 176 177 /* enable/disable Next RIP Save */ 178 static int nrips = true; 179 module_param(nrips, int, 0444); 180 181 /* enable/disable Virtual VMLOAD VMSAVE */ 182 static int vls = true; 183 module_param(vls, int, 0444); 184 185 /* enable/disable Virtual GIF */ 186 static int vgif = true; 187 module_param(vgif, int, 0444); 188 189 /* enable/disable SEV support */ 190 int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); 191 module_param(sev, int, 0444); 192 193 /* enable/disable SEV-ES support */ 194 int sev_es = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); 195 module_param(sev_es, int, 0444); 196 197 bool __read_mostly dump_invalid_vmcb; 198 module_param(dump_invalid_vmcb, bool, 0644); 199 200 static bool svm_gp_erratum_intercept = true; 201 202 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 203 204 static unsigned long iopm_base; 205 206 struct kvm_ldttss_desc { 207 u16 limit0; 208 u16 base0; 209 unsigned base1:8, type:5, dpl:2, p:1; 210 unsigned limit1:4, zero0:3, g:1, base2:8; 211 u32 base3; 212 u32 zero1; 213 } __attribute__((packed)); 214 215 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 216 217 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 218 219 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 220 #define MSRS_RANGE_SIZE 2048 221 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 222 223 u32 svm_msrpm_offset(u32 msr) 224 { 225 u32 offset; 226 int i; 227 228 for (i = 0; i < NUM_MSR_MAPS; i++) { 229 if (msr < msrpm_ranges[i] || 230 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 231 continue; 232 233 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 234 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 235 236 /* Now we have the u8 offset - but need the u32 offset */ 237 return offset / 4; 238 } 239 240 /* MSR not in any range */ 241 return MSR_INVALID; 242 } 243 244 #define MAX_INST_SIZE 15 245 246 static int get_max_npt_level(void) 247 { 248 #ifdef CONFIG_X86_64 249 return PT64_ROOT_4LEVEL; 250 #else 251 return PT32E_ROOT_LEVEL; 252 #endif 253 } 254 255 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 256 { 257 struct vcpu_svm *svm = to_svm(vcpu); 258 u64 old_efer = vcpu->arch.efer; 259 vcpu->arch.efer = efer; 260 261 if (!npt_enabled) { 262 /* Shadow paging assumes NX to be available. */ 263 efer |= EFER_NX; 264 265 if (!(efer & EFER_LMA)) 266 efer &= ~EFER_LME; 267 } 268 269 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 270 if (!(efer & EFER_SVME)) { 271 svm_leave_nested(svm); 272 svm_set_gif(svm, true); 273 /* #GP intercept is still needed for vmware backdoor */ 274 if (!enable_vmware_backdoor) 275 clr_exception_intercept(svm, GP_VECTOR); 276 277 /* 278 * Free the nested guest state, unless we are in SMM. 279 * In this case we will return to the nested guest 280 * as soon as we leave SMM. 281 */ 282 if (!is_smm(&svm->vcpu)) 283 svm_free_nested(svm); 284 285 } else { 286 int ret = svm_allocate_nested(svm); 287 288 if (ret) { 289 vcpu->arch.efer = old_efer; 290 return ret; 291 } 292 293 if (svm_gp_erratum_intercept) 294 set_exception_intercept(svm, GP_VECTOR); 295 } 296 } 297 298 svm->vmcb->save.efer = efer | EFER_SVME; 299 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 300 return 0; 301 } 302 303 static int is_external_interrupt(u32 info) 304 { 305 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 306 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 307 } 308 309 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 310 { 311 struct vcpu_svm *svm = to_svm(vcpu); 312 u32 ret = 0; 313 314 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 315 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 316 return ret; 317 } 318 319 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 320 { 321 struct vcpu_svm *svm = to_svm(vcpu); 322 323 if (mask == 0) 324 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 325 else 326 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 327 328 } 329 330 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 331 { 332 struct vcpu_svm *svm = to_svm(vcpu); 333 334 /* 335 * SEV-ES does not expose the next RIP. The RIP update is controlled by 336 * the type of exit and the #VC handler in the guest. 337 */ 338 if (sev_es_guest(vcpu->kvm)) 339 goto done; 340 341 if (nrips && svm->vmcb->control.next_rip != 0) { 342 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 343 svm->next_rip = svm->vmcb->control.next_rip; 344 } 345 346 if (!svm->next_rip) { 347 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 348 return 0; 349 } else { 350 kvm_rip_write(vcpu, svm->next_rip); 351 } 352 353 done: 354 svm_set_interrupt_shadow(vcpu, 0); 355 356 return 1; 357 } 358 359 static void svm_queue_exception(struct kvm_vcpu *vcpu) 360 { 361 struct vcpu_svm *svm = to_svm(vcpu); 362 unsigned nr = vcpu->arch.exception.nr; 363 bool has_error_code = vcpu->arch.exception.has_error_code; 364 u32 error_code = vcpu->arch.exception.error_code; 365 366 kvm_deliver_exception_payload(&svm->vcpu); 367 368 if (nr == BP_VECTOR && !nrips) { 369 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); 370 371 /* 372 * For guest debugging where we have to reinject #BP if some 373 * INT3 is guest-owned: 374 * Emulate nRIP by moving RIP forward. Will fail if injection 375 * raises a fault that is not intercepted. Still better than 376 * failing in all cases. 377 */ 378 (void)skip_emulated_instruction(&svm->vcpu); 379 rip = kvm_rip_read(&svm->vcpu); 380 svm->int3_rip = rip + svm->vmcb->save.cs.base; 381 svm->int3_injected = rip - old_rip; 382 } 383 384 svm->vmcb->control.event_inj = nr 385 | SVM_EVTINJ_VALID 386 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 387 | SVM_EVTINJ_TYPE_EXEPT; 388 svm->vmcb->control.event_inj_err = error_code; 389 } 390 391 static void svm_init_erratum_383(void) 392 { 393 u32 low, high; 394 int err; 395 u64 val; 396 397 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 398 return; 399 400 /* Use _safe variants to not break nested virtualization */ 401 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 402 if (err) 403 return; 404 405 val |= (1ULL << 47); 406 407 low = lower_32_bits(val); 408 high = upper_32_bits(val); 409 410 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 411 412 erratum_383_found = true; 413 } 414 415 static void svm_init_osvw(struct kvm_vcpu *vcpu) 416 { 417 /* 418 * Guests should see errata 400 and 415 as fixed (assuming that 419 * HLT and IO instructions are intercepted). 420 */ 421 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 422 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 423 424 /* 425 * By increasing VCPU's osvw.length to 3 we are telling the guest that 426 * all osvw.status bits inside that length, including bit 0 (which is 427 * reserved for erratum 298), are valid. However, if host processor's 428 * osvw_len is 0 then osvw_status[0] carries no information. We need to 429 * be conservative here and therefore we tell the guest that erratum 298 430 * is present (because we really don't know). 431 */ 432 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 433 vcpu->arch.osvw.status |= 1; 434 } 435 436 static int has_svm(void) 437 { 438 const char *msg; 439 440 if (!cpu_has_svm(&msg)) { 441 printk(KERN_INFO "has_svm: %s\n", msg); 442 return 0; 443 } 444 445 if (sev_active()) { 446 pr_info("KVM is unsupported when running as an SEV guest\n"); 447 return 0; 448 } 449 450 return 1; 451 } 452 453 static void svm_hardware_disable(void) 454 { 455 /* Make sure we clean up behind us */ 456 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) 457 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 458 459 cpu_svm_disable(); 460 461 amd_pmu_disable_virt(); 462 } 463 464 static int svm_hardware_enable(void) 465 { 466 467 struct svm_cpu_data *sd; 468 uint64_t efer; 469 struct desc_struct *gdt; 470 int me = raw_smp_processor_id(); 471 472 rdmsrl(MSR_EFER, efer); 473 if (efer & EFER_SVME) 474 return -EBUSY; 475 476 if (!has_svm()) { 477 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 478 return -EINVAL; 479 } 480 sd = per_cpu(svm_data, me); 481 if (!sd) { 482 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 483 return -EINVAL; 484 } 485 486 sd->asid_generation = 1; 487 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 488 sd->next_asid = sd->max_asid + 1; 489 sd->min_asid = max_sev_asid + 1; 490 491 gdt = get_current_gdt_rw(); 492 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 493 494 wrmsrl(MSR_EFER, efer | EFER_SVME); 495 496 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); 497 498 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 499 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 500 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 501 } 502 503 504 /* 505 * Get OSVW bits. 506 * 507 * Note that it is possible to have a system with mixed processor 508 * revisions and therefore different OSVW bits. If bits are not the same 509 * on different processors then choose the worst case (i.e. if erratum 510 * is present on one processor and not on another then assume that the 511 * erratum is present everywhere). 512 */ 513 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 514 uint64_t len, status = 0; 515 int err; 516 517 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 518 if (!err) 519 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 520 &err); 521 522 if (err) 523 osvw_status = osvw_len = 0; 524 else { 525 if (len < osvw_len) 526 osvw_len = len; 527 osvw_status |= status; 528 osvw_status &= (1ULL << osvw_len) - 1; 529 } 530 } else 531 osvw_status = osvw_len = 0; 532 533 svm_init_erratum_383(); 534 535 amd_pmu_enable_virt(); 536 537 return 0; 538 } 539 540 static void svm_cpu_uninit(int cpu) 541 { 542 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 543 544 if (!sd) 545 return; 546 547 per_cpu(svm_data, cpu) = NULL; 548 kfree(sd->sev_vmcbs); 549 __free_page(sd->save_area); 550 kfree(sd); 551 } 552 553 static int svm_cpu_init(int cpu) 554 { 555 struct svm_cpu_data *sd; 556 557 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 558 if (!sd) 559 return -ENOMEM; 560 sd->cpu = cpu; 561 sd->save_area = alloc_page(GFP_KERNEL); 562 if (!sd->save_area) 563 goto free_cpu_data; 564 clear_page(page_address(sd->save_area)); 565 566 if (svm_sev_enabled()) { 567 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1, 568 sizeof(void *), 569 GFP_KERNEL); 570 if (!sd->sev_vmcbs) 571 goto free_save_area; 572 } 573 574 per_cpu(svm_data, cpu) = sd; 575 576 return 0; 577 578 free_save_area: 579 __free_page(sd->save_area); 580 free_cpu_data: 581 kfree(sd); 582 return -ENOMEM; 583 584 } 585 586 static int direct_access_msr_slot(u32 msr) 587 { 588 u32 i; 589 590 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 591 if (direct_access_msrs[i].index == msr) 592 return i; 593 594 return -ENOENT; 595 } 596 597 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 598 int write) 599 { 600 struct vcpu_svm *svm = to_svm(vcpu); 601 int slot = direct_access_msr_slot(msr); 602 603 if (slot == -ENOENT) 604 return; 605 606 /* Set the shadow bitmaps to the desired intercept states */ 607 if (read) 608 set_bit(slot, svm->shadow_msr_intercept.read); 609 else 610 clear_bit(slot, svm->shadow_msr_intercept.read); 611 612 if (write) 613 set_bit(slot, svm->shadow_msr_intercept.write); 614 else 615 clear_bit(slot, svm->shadow_msr_intercept.write); 616 } 617 618 static bool valid_msr_intercept(u32 index) 619 { 620 return direct_access_msr_slot(index) != -ENOENT; 621 } 622 623 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 624 { 625 u8 bit_write; 626 unsigned long tmp; 627 u32 offset; 628 u32 *msrpm; 629 630 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 631 to_svm(vcpu)->msrpm; 632 633 offset = svm_msrpm_offset(msr); 634 bit_write = 2 * (msr & 0x0f) + 1; 635 tmp = msrpm[offset]; 636 637 BUG_ON(offset == MSR_INVALID); 638 639 return !!test_bit(bit_write, &tmp); 640 } 641 642 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 643 u32 msr, int read, int write) 644 { 645 u8 bit_read, bit_write; 646 unsigned long tmp; 647 u32 offset; 648 649 /* 650 * If this warning triggers extend the direct_access_msrs list at the 651 * beginning of the file 652 */ 653 WARN_ON(!valid_msr_intercept(msr)); 654 655 /* Enforce non allowed MSRs to trap */ 656 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 657 read = 0; 658 659 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 660 write = 0; 661 662 offset = svm_msrpm_offset(msr); 663 bit_read = 2 * (msr & 0x0f); 664 bit_write = 2 * (msr & 0x0f) + 1; 665 tmp = msrpm[offset]; 666 667 BUG_ON(offset == MSR_INVALID); 668 669 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 670 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 671 672 msrpm[offset] = tmp; 673 } 674 675 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 676 int read, int write) 677 { 678 set_shadow_msr_intercept(vcpu, msr, read, write); 679 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 680 } 681 682 u32 *svm_vcpu_alloc_msrpm(void) 683 { 684 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); 685 u32 *msrpm; 686 687 if (!pages) 688 return NULL; 689 690 msrpm = page_address(pages); 691 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); 692 693 return msrpm; 694 } 695 696 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 697 { 698 int i; 699 700 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 701 if (!direct_access_msrs[i].always) 702 continue; 703 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 704 } 705 } 706 707 708 void svm_vcpu_free_msrpm(u32 *msrpm) 709 { 710 __free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER); 711 } 712 713 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 714 { 715 struct vcpu_svm *svm = to_svm(vcpu); 716 u32 i; 717 718 /* 719 * Set intercept permissions for all direct access MSRs again. They 720 * will automatically get filtered through the MSR filter, so we are 721 * back in sync after this. 722 */ 723 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 724 u32 msr = direct_access_msrs[i].index; 725 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 726 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 727 728 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 729 } 730 } 731 732 static void add_msr_offset(u32 offset) 733 { 734 int i; 735 736 for (i = 0; i < MSRPM_OFFSETS; ++i) { 737 738 /* Offset already in list? */ 739 if (msrpm_offsets[i] == offset) 740 return; 741 742 /* Slot used by another offset? */ 743 if (msrpm_offsets[i] != MSR_INVALID) 744 continue; 745 746 /* Add offset to list */ 747 msrpm_offsets[i] = offset; 748 749 return; 750 } 751 752 /* 753 * If this BUG triggers the msrpm_offsets table has an overflow. Just 754 * increase MSRPM_OFFSETS in this case. 755 */ 756 BUG(); 757 } 758 759 static void init_msrpm_offsets(void) 760 { 761 int i; 762 763 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 764 765 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 766 u32 offset; 767 768 offset = svm_msrpm_offset(direct_access_msrs[i].index); 769 BUG_ON(offset == MSR_INVALID); 770 771 add_msr_offset(offset); 772 } 773 } 774 775 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 776 { 777 struct vcpu_svm *svm = to_svm(vcpu); 778 779 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 780 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 781 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 782 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 783 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 784 } 785 786 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 787 { 788 struct vcpu_svm *svm = to_svm(vcpu); 789 790 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 791 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 792 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 793 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 794 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 795 } 796 797 void disable_nmi_singlestep(struct vcpu_svm *svm) 798 { 799 svm->nmi_singlestep = false; 800 801 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 802 /* Clear our flags if they were not set by the guest */ 803 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 804 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 805 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 806 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 807 } 808 } 809 810 static void grow_ple_window(struct kvm_vcpu *vcpu) 811 { 812 struct vcpu_svm *svm = to_svm(vcpu); 813 struct vmcb_control_area *control = &svm->vmcb->control; 814 int old = control->pause_filter_count; 815 816 control->pause_filter_count = __grow_ple_window(old, 817 pause_filter_count, 818 pause_filter_count_grow, 819 pause_filter_count_max); 820 821 if (control->pause_filter_count != old) { 822 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 823 trace_kvm_ple_window_update(vcpu->vcpu_id, 824 control->pause_filter_count, old); 825 } 826 } 827 828 static void shrink_ple_window(struct kvm_vcpu *vcpu) 829 { 830 struct vcpu_svm *svm = to_svm(vcpu); 831 struct vmcb_control_area *control = &svm->vmcb->control; 832 int old = control->pause_filter_count; 833 834 control->pause_filter_count = 835 __shrink_ple_window(old, 836 pause_filter_count, 837 pause_filter_count_shrink, 838 pause_filter_count); 839 if (control->pause_filter_count != old) { 840 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 841 trace_kvm_ple_window_update(vcpu->vcpu_id, 842 control->pause_filter_count, old); 843 } 844 } 845 846 /* 847 * The default MMIO mask is a single bit (excluding the present bit), 848 * which could conflict with the memory encryption bit. Check for 849 * memory encryption support and override the default MMIO mask if 850 * memory encryption is enabled. 851 */ 852 static __init void svm_adjust_mmio_mask(void) 853 { 854 unsigned int enc_bit, mask_bit; 855 u64 msr, mask; 856 857 /* If there is no memory encryption support, use existing mask */ 858 if (cpuid_eax(0x80000000) < 0x8000001f) 859 return; 860 861 /* If memory encryption is not enabled, use existing mask */ 862 rdmsrl(MSR_K8_SYSCFG, msr); 863 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) 864 return; 865 866 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 867 mask_bit = boot_cpu_data.x86_phys_bits; 868 869 /* Increment the mask bit if it is the same as the encryption bit */ 870 if (enc_bit == mask_bit) 871 mask_bit++; 872 873 /* 874 * If the mask bit location is below 52, then some bits above the 875 * physical addressing limit will always be reserved, so use the 876 * rsvd_bits() function to generate the mask. This mask, along with 877 * the present bit, will be used to generate a page fault with 878 * PFER.RSV = 1. 879 * 880 * If the mask bit location is 52 (or above), then clear the mask. 881 */ 882 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 883 884 kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK); 885 } 886 887 static void svm_hardware_teardown(void) 888 { 889 int cpu; 890 891 if (svm_sev_enabled()) 892 sev_hardware_teardown(); 893 894 for_each_possible_cpu(cpu) 895 svm_cpu_uninit(cpu); 896 897 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); 898 iopm_base = 0; 899 } 900 901 static __init void svm_set_cpu_caps(void) 902 { 903 kvm_set_cpu_caps(); 904 905 supported_xss = 0; 906 907 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 908 if (nested) { 909 kvm_cpu_cap_set(X86_FEATURE_SVM); 910 911 if (nrips) 912 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 913 914 if (npt_enabled) 915 kvm_cpu_cap_set(X86_FEATURE_NPT); 916 917 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 918 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 919 } 920 921 /* CPUID 0x80000008 */ 922 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 923 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 924 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 925 } 926 927 static __init int svm_hardware_setup(void) 928 { 929 int cpu; 930 struct page *iopm_pages; 931 void *iopm_va; 932 int r; 933 934 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); 935 936 if (!iopm_pages) 937 return -ENOMEM; 938 939 iopm_va = page_address(iopm_pages); 940 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); 941 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 942 943 init_msrpm_offsets(); 944 945 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 946 947 if (boot_cpu_has(X86_FEATURE_NX)) 948 kvm_enable_efer_bits(EFER_NX); 949 950 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 951 kvm_enable_efer_bits(EFER_FFXSR); 952 953 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 954 kvm_has_tsc_control = true; 955 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 956 kvm_tsc_scaling_ratio_frac_bits = 32; 957 } 958 959 /* Check for pause filtering support */ 960 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 961 pause_filter_count = 0; 962 pause_filter_thresh = 0; 963 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 964 pause_filter_thresh = 0; 965 } 966 967 if (nested) { 968 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 969 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 970 } 971 972 if (IS_ENABLED(CONFIG_KVM_AMD_SEV) && sev) { 973 sev_hardware_setup(); 974 } else { 975 sev = false; 976 sev_es = false; 977 } 978 979 svm_adjust_mmio_mask(); 980 981 for_each_possible_cpu(cpu) { 982 r = svm_cpu_init(cpu); 983 if (r) 984 goto err; 985 } 986 987 /* 988 * KVM's MMU doesn't support using 2-level paging for itself, and thus 989 * NPT isn't supported if the host is using 2-level paging since host 990 * CR4 is unchanged on VMRUN. 991 */ 992 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 993 npt_enabled = false; 994 995 if (!boot_cpu_has(X86_FEATURE_NPT)) 996 npt_enabled = false; 997 998 kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G); 999 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 1000 1001 if (nrips) { 1002 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 1003 nrips = false; 1004 } 1005 1006 if (avic) { 1007 if (!npt_enabled || 1008 !boot_cpu_has(X86_FEATURE_AVIC) || 1009 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { 1010 avic = false; 1011 } else { 1012 pr_info("AVIC enabled\n"); 1013 1014 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 1015 } 1016 } 1017 1018 if (vls) { 1019 if (!npt_enabled || 1020 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 1021 !IS_ENABLED(CONFIG_X86_64)) { 1022 vls = false; 1023 } else { 1024 pr_info("Virtual VMLOAD VMSAVE supported\n"); 1025 } 1026 } 1027 1028 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 1029 svm_gp_erratum_intercept = false; 1030 1031 if (vgif) { 1032 if (!boot_cpu_has(X86_FEATURE_VGIF)) 1033 vgif = false; 1034 else 1035 pr_info("Virtual GIF supported\n"); 1036 } 1037 1038 svm_set_cpu_caps(); 1039 1040 /* 1041 * It seems that on AMD processors PTE's accessed bit is 1042 * being set by the CPU hardware before the NPF vmexit. 1043 * This is not expected behaviour and our tests fail because 1044 * of it. 1045 * A workaround here is to disable support for 1046 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 1047 * In this case userspace can know if there is support using 1048 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 1049 * it 1050 * If future AMD CPU models change the behaviour described above, 1051 * this variable can be changed accordingly 1052 */ 1053 allow_smaller_maxphyaddr = !npt_enabled; 1054 1055 return 0; 1056 1057 err: 1058 svm_hardware_teardown(); 1059 return r; 1060 } 1061 1062 static void init_seg(struct vmcb_seg *seg) 1063 { 1064 seg->selector = 0; 1065 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1066 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1067 seg->limit = 0xffff; 1068 seg->base = 0; 1069 } 1070 1071 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1072 { 1073 seg->selector = 0; 1074 seg->attrib = SVM_SELECTOR_P_MASK | type; 1075 seg->limit = 0xffff; 1076 seg->base = 0; 1077 } 1078 1079 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1080 { 1081 struct vcpu_svm *svm = to_svm(vcpu); 1082 u64 g_tsc_offset = 0; 1083 1084 if (is_guest_mode(vcpu)) { 1085 /* Write L1's TSC offset. */ 1086 g_tsc_offset = svm->vmcb->control.tsc_offset - 1087 svm->nested.hsave->control.tsc_offset; 1088 svm->nested.hsave->control.tsc_offset = offset; 1089 } 1090 1091 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1092 svm->vmcb->control.tsc_offset - g_tsc_offset, 1093 offset); 1094 1095 svm->vmcb->control.tsc_offset = offset + g_tsc_offset; 1096 1097 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1098 return svm->vmcb->control.tsc_offset; 1099 } 1100 1101 static void svm_check_invpcid(struct vcpu_svm *svm) 1102 { 1103 /* 1104 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1105 * roots, or if INVPCID is disabled in the guest to inject #UD. 1106 */ 1107 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1108 if (!npt_enabled || 1109 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1110 svm_set_intercept(svm, INTERCEPT_INVPCID); 1111 else 1112 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1113 } 1114 } 1115 1116 static void init_vmcb(struct vcpu_svm *svm) 1117 { 1118 struct vmcb_control_area *control = &svm->vmcb->control; 1119 struct vmcb_save_area *save = &svm->vmcb->save; 1120 1121 svm->vcpu.arch.hflags = 0; 1122 1123 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1124 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1125 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1126 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1127 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1128 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1129 if (!kvm_vcpu_apicv_active(&svm->vcpu)) 1130 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1131 1132 set_dr_intercepts(svm); 1133 1134 set_exception_intercept(svm, PF_VECTOR); 1135 set_exception_intercept(svm, UD_VECTOR); 1136 set_exception_intercept(svm, MC_VECTOR); 1137 set_exception_intercept(svm, AC_VECTOR); 1138 set_exception_intercept(svm, DB_VECTOR); 1139 /* 1140 * Guest access to VMware backdoor ports could legitimately 1141 * trigger #GP because of TSS I/O permission bitmap. 1142 * We intercept those #GP and allow access to them anyway 1143 * as VMware does. 1144 */ 1145 if (enable_vmware_backdoor) 1146 set_exception_intercept(svm, GP_VECTOR); 1147 1148 svm_set_intercept(svm, INTERCEPT_INTR); 1149 svm_set_intercept(svm, INTERCEPT_NMI); 1150 svm_set_intercept(svm, INTERCEPT_SMI); 1151 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1152 svm_set_intercept(svm, INTERCEPT_RDPMC); 1153 svm_set_intercept(svm, INTERCEPT_CPUID); 1154 svm_set_intercept(svm, INTERCEPT_INVD); 1155 svm_set_intercept(svm, INTERCEPT_INVLPG); 1156 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1157 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1158 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1159 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1160 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1161 svm_set_intercept(svm, INTERCEPT_VMRUN); 1162 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1163 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1164 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1165 svm_set_intercept(svm, INTERCEPT_STGI); 1166 svm_set_intercept(svm, INTERCEPT_CLGI); 1167 svm_set_intercept(svm, INTERCEPT_SKINIT); 1168 svm_set_intercept(svm, INTERCEPT_WBINVD); 1169 svm_set_intercept(svm, INTERCEPT_XSETBV); 1170 svm_set_intercept(svm, INTERCEPT_RDPRU); 1171 svm_set_intercept(svm, INTERCEPT_RSM); 1172 1173 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) { 1174 svm_set_intercept(svm, INTERCEPT_MONITOR); 1175 svm_set_intercept(svm, INTERCEPT_MWAIT); 1176 } 1177 1178 if (!kvm_hlt_in_guest(svm->vcpu.kvm)) 1179 svm_set_intercept(svm, INTERCEPT_HLT); 1180 1181 control->iopm_base_pa = __sme_set(iopm_base); 1182 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1183 control->int_ctl = V_INTR_MASKING_MASK; 1184 1185 init_seg(&save->es); 1186 init_seg(&save->ss); 1187 init_seg(&save->ds); 1188 init_seg(&save->fs); 1189 init_seg(&save->gs); 1190 1191 save->cs.selector = 0xf000; 1192 save->cs.base = 0xffff0000; 1193 /* Executable/Readable Code Segment */ 1194 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1195 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1196 save->cs.limit = 0xffff; 1197 1198 save->gdtr.limit = 0xffff; 1199 save->idtr.limit = 0xffff; 1200 1201 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1202 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1203 1204 svm_set_cr4(&svm->vcpu, 0); 1205 svm_set_efer(&svm->vcpu, 0); 1206 save->dr6 = 0xffff0ff0; 1207 kvm_set_rflags(&svm->vcpu, X86_EFLAGS_FIXED); 1208 save->rip = 0x0000fff0; 1209 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; 1210 1211 /* 1212 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. 1213 * It also updates the guest-visible cr0 value. 1214 */ 1215 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); 1216 kvm_mmu_reset_context(&svm->vcpu); 1217 1218 save->cr4 = X86_CR4_PAE; 1219 /* rdx = ?? */ 1220 1221 if (npt_enabled) { 1222 /* Setup VMCB for Nested Paging */ 1223 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1224 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1225 clr_exception_intercept(svm, PF_VECTOR); 1226 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1227 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1228 save->g_pat = svm->vcpu.arch.pat; 1229 save->cr3 = 0; 1230 save->cr4 = 0; 1231 } 1232 svm->asid_generation = 0; 1233 svm->asid = 0; 1234 1235 svm->nested.vmcb12_gpa = 0; 1236 svm->vcpu.arch.hflags = 0; 1237 1238 if (!kvm_pause_in_guest(svm->vcpu.kvm)) { 1239 control->pause_filter_count = pause_filter_count; 1240 if (pause_filter_thresh) 1241 control->pause_filter_thresh = pause_filter_thresh; 1242 svm_set_intercept(svm, INTERCEPT_PAUSE); 1243 } else { 1244 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1245 } 1246 1247 svm_check_invpcid(svm); 1248 1249 if (kvm_vcpu_apicv_active(&svm->vcpu)) 1250 avic_init_vmcb(svm); 1251 1252 /* 1253 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1254 * in VMCB and clear intercepts to avoid #VMEXIT. 1255 */ 1256 if (vls) { 1257 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1258 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1259 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1260 } 1261 1262 if (vgif) { 1263 svm_clr_intercept(svm, INTERCEPT_STGI); 1264 svm_clr_intercept(svm, INTERCEPT_CLGI); 1265 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1266 } 1267 1268 if (sev_guest(svm->vcpu.kvm)) { 1269 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1270 clr_exception_intercept(svm, UD_VECTOR); 1271 1272 if (sev_es_guest(svm->vcpu.kvm)) { 1273 /* Perform SEV-ES specific VMCB updates */ 1274 sev_es_init_vmcb(svm); 1275 } 1276 } 1277 1278 vmcb_mark_all_dirty(svm->vmcb); 1279 1280 enable_gif(svm); 1281 1282 } 1283 1284 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1285 { 1286 struct vcpu_svm *svm = to_svm(vcpu); 1287 u32 dummy; 1288 u32 eax = 1; 1289 1290 svm->spec_ctrl = 0; 1291 svm->virt_spec_ctrl = 0; 1292 1293 if (!init_event) { 1294 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | 1295 MSR_IA32_APICBASE_ENABLE; 1296 if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) 1297 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; 1298 } 1299 init_vmcb(svm); 1300 1301 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false); 1302 kvm_rdx_write(vcpu, eax); 1303 1304 if (kvm_vcpu_apicv_active(vcpu) && !init_event) 1305 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); 1306 } 1307 1308 static int svm_create_vcpu(struct kvm_vcpu *vcpu) 1309 { 1310 struct vcpu_svm *svm; 1311 struct page *vmcb_page; 1312 struct page *vmsa_page = NULL; 1313 int err; 1314 1315 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1316 svm = to_svm(vcpu); 1317 1318 err = -ENOMEM; 1319 vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1320 if (!vmcb_page) 1321 goto out; 1322 1323 if (sev_es_guest(svm->vcpu.kvm)) { 1324 /* 1325 * SEV-ES guests require a separate VMSA page used to contain 1326 * the encrypted register state of the guest. 1327 */ 1328 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1329 if (!vmsa_page) 1330 goto error_free_vmcb_page; 1331 1332 /* 1333 * SEV-ES guests maintain an encrypted version of their FPU 1334 * state which is restored and saved on VMRUN and VMEXIT. 1335 * Free the fpu structure to prevent KVM from attempting to 1336 * access the FPU state. 1337 */ 1338 kvm_free_guest_fpu(vcpu); 1339 } 1340 1341 err = avic_init_vcpu(svm); 1342 if (err) 1343 goto error_free_vmsa_page; 1344 1345 /* We initialize this flag to true to make sure that the is_running 1346 * bit would be set the first time the vcpu is loaded. 1347 */ 1348 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) 1349 svm->avic_is_running = true; 1350 1351 svm->msrpm = svm_vcpu_alloc_msrpm(); 1352 if (!svm->msrpm) { 1353 err = -ENOMEM; 1354 goto error_free_vmsa_page; 1355 } 1356 1357 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1358 1359 svm->vmcb = page_address(vmcb_page); 1360 svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT); 1361 1362 if (vmsa_page) 1363 svm->vmsa = page_address(vmsa_page); 1364 1365 svm->asid_generation = 0; 1366 svm->guest_state_loaded = false; 1367 init_vmcb(svm); 1368 1369 svm_init_osvw(vcpu); 1370 vcpu->arch.microcode_version = 0x01000065; 1371 1372 if (sev_es_guest(svm->vcpu.kvm)) 1373 /* Perform SEV-ES specific VMCB creation updates */ 1374 sev_es_create_vcpu(svm); 1375 1376 return 0; 1377 1378 error_free_vmsa_page: 1379 if (vmsa_page) 1380 __free_page(vmsa_page); 1381 error_free_vmcb_page: 1382 __free_page(vmcb_page); 1383 out: 1384 return err; 1385 } 1386 1387 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1388 { 1389 int i; 1390 1391 for_each_online_cpu(i) 1392 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1393 } 1394 1395 static void svm_free_vcpu(struct kvm_vcpu *vcpu) 1396 { 1397 struct vcpu_svm *svm = to_svm(vcpu); 1398 1399 /* 1400 * The vmcb page can be recycled, causing a false negative in 1401 * svm_vcpu_load(). So, ensure that no logical CPU has this 1402 * vmcb page recorded as its current vmcb. 1403 */ 1404 svm_clear_current_vmcb(svm->vmcb); 1405 1406 svm_free_nested(svm); 1407 1408 sev_free_vcpu(vcpu); 1409 1410 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); 1411 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); 1412 } 1413 1414 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) 1415 { 1416 struct vcpu_svm *svm = to_svm(vcpu); 1417 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 1418 unsigned int i; 1419 1420 if (svm->guest_state_loaded) 1421 return; 1422 1423 /* 1424 * Certain MSRs are restored on VMEXIT (sev-es), or vmload of host save 1425 * area (non-sev-es). Save ones that aren't so we can restore them 1426 * individually later. 1427 */ 1428 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) 1429 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); 1430 1431 /* 1432 * Save additional host state that will be restored on VMEXIT (sev-es) 1433 * or subsequent vmload of host save area. 1434 */ 1435 if (sev_es_guest(svm->vcpu.kvm)) { 1436 sev_es_prepare_guest_switch(svm, vcpu->cpu); 1437 } else { 1438 vmsave(__sme_page_pa(sd->save_area)); 1439 } 1440 1441 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 1442 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1443 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1444 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1445 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1446 } 1447 } 1448 1449 /* This assumes that the kernel never uses MSR_TSC_AUX */ 1450 if (static_cpu_has(X86_FEATURE_RDTSCP)) 1451 wrmsrl(MSR_TSC_AUX, svm->tsc_aux); 1452 1453 svm->guest_state_loaded = true; 1454 } 1455 1456 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1457 { 1458 struct vcpu_svm *svm = to_svm(vcpu); 1459 unsigned int i; 1460 1461 if (!svm->guest_state_loaded) 1462 return; 1463 1464 /* 1465 * Certain MSRs are restored on VMEXIT (sev-es), or vmload of host save 1466 * area (non-sev-es). Restore the ones that weren't. 1467 */ 1468 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) 1469 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); 1470 1471 svm->guest_state_loaded = false; 1472 } 1473 1474 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1475 { 1476 struct vcpu_svm *svm = to_svm(vcpu); 1477 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1478 1479 if (unlikely(cpu != vcpu->cpu)) { 1480 svm->asid_generation = 0; 1481 vmcb_mark_all_dirty(svm->vmcb); 1482 } 1483 1484 if (sd->current_vmcb != svm->vmcb) { 1485 sd->current_vmcb = svm->vmcb; 1486 indirect_branch_prediction_barrier(); 1487 } 1488 avic_vcpu_load(vcpu, cpu); 1489 } 1490 1491 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1492 { 1493 avic_vcpu_put(vcpu); 1494 svm_prepare_host_switch(vcpu); 1495 1496 ++vcpu->stat.host_state_reload; 1497 } 1498 1499 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1500 { 1501 struct vcpu_svm *svm = to_svm(vcpu); 1502 unsigned long rflags = svm->vmcb->save.rflags; 1503 1504 if (svm->nmi_singlestep) { 1505 /* Hide our flags if they were not set by the guest */ 1506 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1507 rflags &= ~X86_EFLAGS_TF; 1508 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1509 rflags &= ~X86_EFLAGS_RF; 1510 } 1511 return rflags; 1512 } 1513 1514 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1515 { 1516 if (to_svm(vcpu)->nmi_singlestep) 1517 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1518 1519 /* 1520 * Any change of EFLAGS.VM is accompanied by a reload of SS 1521 * (caused by either a task switch or an inter-privilege IRET), 1522 * so we do not need to update the CPL here. 1523 */ 1524 to_svm(vcpu)->vmcb->save.rflags = rflags; 1525 } 1526 1527 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1528 { 1529 switch (reg) { 1530 case VCPU_EXREG_PDPTR: 1531 BUG_ON(!npt_enabled); 1532 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 1533 break; 1534 default: 1535 WARN_ON_ONCE(1); 1536 } 1537 } 1538 1539 static void svm_set_vintr(struct vcpu_svm *svm) 1540 { 1541 struct vmcb_control_area *control; 1542 1543 /* The following fields are ignored when AVIC is enabled */ 1544 WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu)); 1545 svm_set_intercept(svm, INTERCEPT_VINTR); 1546 1547 /* 1548 * This is just a dummy VINTR to actually cause a vmexit to happen. 1549 * Actual injection of virtual interrupts happens through EVENTINJ. 1550 */ 1551 control = &svm->vmcb->control; 1552 control->int_vector = 0x0; 1553 control->int_ctl &= ~V_INTR_PRIO_MASK; 1554 control->int_ctl |= V_IRQ_MASK | 1555 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1556 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1557 } 1558 1559 static void svm_clear_vintr(struct vcpu_svm *svm) 1560 { 1561 const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK; 1562 svm_clr_intercept(svm, INTERCEPT_VINTR); 1563 1564 /* Drop int_ctl fields related to VINTR injection. */ 1565 svm->vmcb->control.int_ctl &= mask; 1566 if (is_guest_mode(&svm->vcpu)) { 1567 svm->nested.hsave->control.int_ctl &= mask; 1568 1569 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1570 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1571 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask; 1572 } 1573 1574 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1575 } 1576 1577 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1578 { 1579 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1580 1581 switch (seg) { 1582 case VCPU_SREG_CS: return &save->cs; 1583 case VCPU_SREG_DS: return &save->ds; 1584 case VCPU_SREG_ES: return &save->es; 1585 case VCPU_SREG_FS: return &save->fs; 1586 case VCPU_SREG_GS: return &save->gs; 1587 case VCPU_SREG_SS: return &save->ss; 1588 case VCPU_SREG_TR: return &save->tr; 1589 case VCPU_SREG_LDTR: return &save->ldtr; 1590 } 1591 BUG(); 1592 return NULL; 1593 } 1594 1595 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1596 { 1597 struct vmcb_seg *s = svm_seg(vcpu, seg); 1598 1599 return s->base; 1600 } 1601 1602 static void svm_get_segment(struct kvm_vcpu *vcpu, 1603 struct kvm_segment *var, int seg) 1604 { 1605 struct vmcb_seg *s = svm_seg(vcpu, seg); 1606 1607 var->base = s->base; 1608 var->limit = s->limit; 1609 var->selector = s->selector; 1610 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1611 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1612 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1613 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1614 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1615 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1616 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1617 1618 /* 1619 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1620 * However, the SVM spec states that the G bit is not observed by the 1621 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1622 * So let's synthesize a legal G bit for all segments, this helps 1623 * running KVM nested. It also helps cross-vendor migration, because 1624 * Intel's vmentry has a check on the 'G' bit. 1625 */ 1626 var->g = s->limit > 0xfffff; 1627 1628 /* 1629 * AMD's VMCB does not have an explicit unusable field, so emulate it 1630 * for cross vendor migration purposes by "not present" 1631 */ 1632 var->unusable = !var->present; 1633 1634 switch (seg) { 1635 case VCPU_SREG_TR: 1636 /* 1637 * Work around a bug where the busy flag in the tr selector 1638 * isn't exposed 1639 */ 1640 var->type |= 0x2; 1641 break; 1642 case VCPU_SREG_DS: 1643 case VCPU_SREG_ES: 1644 case VCPU_SREG_FS: 1645 case VCPU_SREG_GS: 1646 /* 1647 * The accessed bit must always be set in the segment 1648 * descriptor cache, although it can be cleared in the 1649 * descriptor, the cached bit always remains at 1. Since 1650 * Intel has a check on this, set it here to support 1651 * cross-vendor migration. 1652 */ 1653 if (!var->unusable) 1654 var->type |= 0x1; 1655 break; 1656 case VCPU_SREG_SS: 1657 /* 1658 * On AMD CPUs sometimes the DB bit in the segment 1659 * descriptor is left as 1, although the whole segment has 1660 * been made unusable. Clear it here to pass an Intel VMX 1661 * entry check when cross vendor migrating. 1662 */ 1663 if (var->unusable) 1664 var->db = 0; 1665 /* This is symmetric with svm_set_segment() */ 1666 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1667 break; 1668 } 1669 } 1670 1671 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1672 { 1673 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1674 1675 return save->cpl; 1676 } 1677 1678 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1679 { 1680 struct vcpu_svm *svm = to_svm(vcpu); 1681 1682 dt->size = svm->vmcb->save.idtr.limit; 1683 dt->address = svm->vmcb->save.idtr.base; 1684 } 1685 1686 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1687 { 1688 struct vcpu_svm *svm = to_svm(vcpu); 1689 1690 svm->vmcb->save.idtr.limit = dt->size; 1691 svm->vmcb->save.idtr.base = dt->address ; 1692 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1693 } 1694 1695 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1696 { 1697 struct vcpu_svm *svm = to_svm(vcpu); 1698 1699 dt->size = svm->vmcb->save.gdtr.limit; 1700 dt->address = svm->vmcb->save.gdtr.base; 1701 } 1702 1703 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1704 { 1705 struct vcpu_svm *svm = to_svm(vcpu); 1706 1707 svm->vmcb->save.gdtr.limit = dt->size; 1708 svm->vmcb->save.gdtr.base = dt->address ; 1709 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1710 } 1711 1712 static void update_cr0_intercept(struct vcpu_svm *svm) 1713 { 1714 ulong gcr0; 1715 u64 *hcr0; 1716 1717 /* 1718 * SEV-ES guests must always keep the CR intercepts cleared. CR 1719 * tracking is done using the CR write traps. 1720 */ 1721 if (sev_es_guest(svm->vcpu.kvm)) 1722 return; 1723 1724 gcr0 = svm->vcpu.arch.cr0; 1725 hcr0 = &svm->vmcb->save.cr0; 1726 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) 1727 | (gcr0 & SVM_CR0_SELECTIVE_MASK); 1728 1729 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1730 1731 if (gcr0 == *hcr0) { 1732 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1733 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1734 } else { 1735 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1736 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1737 } 1738 } 1739 1740 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1741 { 1742 struct vcpu_svm *svm = to_svm(vcpu); 1743 1744 #ifdef CONFIG_X86_64 1745 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1746 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1747 vcpu->arch.efer |= EFER_LMA; 1748 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1749 } 1750 1751 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1752 vcpu->arch.efer &= ~EFER_LMA; 1753 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1754 } 1755 } 1756 #endif 1757 vcpu->arch.cr0 = cr0; 1758 1759 if (!npt_enabled) 1760 cr0 |= X86_CR0_PG | X86_CR0_WP; 1761 1762 /* 1763 * re-enable caching here because the QEMU bios 1764 * does not do it - this results in some delay at 1765 * reboot 1766 */ 1767 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1768 cr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1769 svm->vmcb->save.cr0 = cr0; 1770 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1771 update_cr0_intercept(svm); 1772 } 1773 1774 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1775 { 1776 return true; 1777 } 1778 1779 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1780 { 1781 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1782 unsigned long old_cr4 = vcpu->arch.cr4; 1783 1784 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1785 svm_flush_tlb(vcpu); 1786 1787 vcpu->arch.cr4 = cr4; 1788 if (!npt_enabled) 1789 cr4 |= X86_CR4_PAE; 1790 cr4 |= host_cr4_mce; 1791 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1792 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1793 1794 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1795 kvm_update_cpuid_runtime(vcpu); 1796 } 1797 1798 static void svm_set_segment(struct kvm_vcpu *vcpu, 1799 struct kvm_segment *var, int seg) 1800 { 1801 struct vcpu_svm *svm = to_svm(vcpu); 1802 struct vmcb_seg *s = svm_seg(vcpu, seg); 1803 1804 s->base = var->base; 1805 s->limit = var->limit; 1806 s->selector = var->selector; 1807 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1808 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1809 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1810 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1811 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1812 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1813 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1814 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1815 1816 /* 1817 * This is always accurate, except if SYSRET returned to a segment 1818 * with SS.DPL != 3. Intel does not have this quirk, and always 1819 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1820 * would entail passing the CPL to userspace and back. 1821 */ 1822 if (seg == VCPU_SREG_SS) 1823 /* This is symmetric with svm_get_segment() */ 1824 svm->vmcb->save.cpl = (var->dpl & 3); 1825 1826 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1827 } 1828 1829 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1830 { 1831 struct vcpu_svm *svm = to_svm(vcpu); 1832 1833 clr_exception_intercept(svm, BP_VECTOR); 1834 1835 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1836 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1837 set_exception_intercept(svm, BP_VECTOR); 1838 } 1839 } 1840 1841 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1842 { 1843 if (sd->next_asid > sd->max_asid) { 1844 ++sd->asid_generation; 1845 sd->next_asid = sd->min_asid; 1846 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1847 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1848 } 1849 1850 svm->asid_generation = sd->asid_generation; 1851 svm->asid = sd->next_asid++; 1852 } 1853 1854 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1855 { 1856 struct vmcb *vmcb = svm->vmcb; 1857 1858 if (svm->vcpu.arch.guest_state_protected) 1859 return; 1860 1861 if (unlikely(value != vmcb->save.dr6)) { 1862 vmcb->save.dr6 = value; 1863 vmcb_mark_dirty(vmcb, VMCB_DR); 1864 } 1865 } 1866 1867 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1868 { 1869 struct vcpu_svm *svm = to_svm(vcpu); 1870 1871 if (vcpu->arch.guest_state_protected) 1872 return; 1873 1874 get_debugreg(vcpu->arch.db[0], 0); 1875 get_debugreg(vcpu->arch.db[1], 1); 1876 get_debugreg(vcpu->arch.db[2], 2); 1877 get_debugreg(vcpu->arch.db[3], 3); 1878 /* 1879 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1880 * because db_interception might need it. We can do it before vmentry. 1881 */ 1882 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1883 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1884 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1885 set_dr_intercepts(svm); 1886 } 1887 1888 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1889 { 1890 struct vcpu_svm *svm = to_svm(vcpu); 1891 1892 if (vcpu->arch.guest_state_protected) 1893 return; 1894 1895 svm->vmcb->save.dr7 = value; 1896 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1897 } 1898 1899 static int pf_interception(struct vcpu_svm *svm) 1900 { 1901 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1902 u64 error_code = svm->vmcb->control.exit_info_1; 1903 1904 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address, 1905 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1906 svm->vmcb->control.insn_bytes : NULL, 1907 svm->vmcb->control.insn_len); 1908 } 1909 1910 static int npf_interception(struct vcpu_svm *svm) 1911 { 1912 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1913 u64 error_code = svm->vmcb->control.exit_info_1; 1914 1915 trace_kvm_page_fault(fault_address, error_code); 1916 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, 1917 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1918 svm->vmcb->control.insn_bytes : NULL, 1919 svm->vmcb->control.insn_len); 1920 } 1921 1922 static int db_interception(struct vcpu_svm *svm) 1923 { 1924 struct kvm_run *kvm_run = svm->vcpu.run; 1925 struct kvm_vcpu *vcpu = &svm->vcpu; 1926 1927 if (!(svm->vcpu.guest_debug & 1928 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1929 !svm->nmi_singlestep) { 1930 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1931 kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload); 1932 return 1; 1933 } 1934 1935 if (svm->nmi_singlestep) { 1936 disable_nmi_singlestep(svm); 1937 /* Make sure we check for pending NMIs upon entry */ 1938 kvm_make_request(KVM_REQ_EVENT, vcpu); 1939 } 1940 1941 if (svm->vcpu.guest_debug & 1942 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1943 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1944 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1945 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1946 kvm_run->debug.arch.pc = 1947 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1948 kvm_run->debug.arch.exception = DB_VECTOR; 1949 return 0; 1950 } 1951 1952 return 1; 1953 } 1954 1955 static int bp_interception(struct vcpu_svm *svm) 1956 { 1957 struct kvm_run *kvm_run = svm->vcpu.run; 1958 1959 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1960 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1961 kvm_run->debug.arch.exception = BP_VECTOR; 1962 return 0; 1963 } 1964 1965 static int ud_interception(struct vcpu_svm *svm) 1966 { 1967 return handle_ud(&svm->vcpu); 1968 } 1969 1970 static int ac_interception(struct vcpu_svm *svm) 1971 { 1972 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0); 1973 return 1; 1974 } 1975 1976 static bool is_erratum_383(void) 1977 { 1978 int err, i; 1979 u64 value; 1980 1981 if (!erratum_383_found) 1982 return false; 1983 1984 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 1985 if (err) 1986 return false; 1987 1988 /* Bit 62 may or may not be set for this mce */ 1989 value &= ~(1ULL << 62); 1990 1991 if (value != 0xb600000000010015ULL) 1992 return false; 1993 1994 /* Clear MCi_STATUS registers */ 1995 for (i = 0; i < 6; ++i) 1996 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 1997 1998 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 1999 if (!err) { 2000 u32 low, high; 2001 2002 value &= ~(1ULL << 2); 2003 low = lower_32_bits(value); 2004 high = upper_32_bits(value); 2005 2006 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2007 } 2008 2009 /* Flush tlb to evict multi-match entries */ 2010 __flush_tlb_all(); 2011 2012 return true; 2013 } 2014 2015 static void svm_handle_mce(struct vcpu_svm *svm) 2016 { 2017 if (is_erratum_383()) { 2018 /* 2019 * Erratum 383 triggered. Guest state is corrupt so kill the 2020 * guest. 2021 */ 2022 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 2023 2024 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); 2025 2026 return; 2027 } 2028 2029 /* 2030 * On an #MC intercept the MCE handler is not called automatically in 2031 * the host. So do it by hand here. 2032 */ 2033 kvm_machine_check(); 2034 } 2035 2036 static int mc_interception(struct vcpu_svm *svm) 2037 { 2038 return 1; 2039 } 2040 2041 static int shutdown_interception(struct vcpu_svm *svm) 2042 { 2043 struct kvm_run *kvm_run = svm->vcpu.run; 2044 2045 /* 2046 * The VM save area has already been encrypted so it 2047 * cannot be reinitialized - just terminate. 2048 */ 2049 if (sev_es_guest(svm->vcpu.kvm)) 2050 return -EINVAL; 2051 2052 /* 2053 * VMCB is undefined after a SHUTDOWN intercept 2054 * so reinitialize it. 2055 */ 2056 clear_page(svm->vmcb); 2057 init_vmcb(svm); 2058 2059 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2060 return 0; 2061 } 2062 2063 static int io_interception(struct vcpu_svm *svm) 2064 { 2065 struct kvm_vcpu *vcpu = &svm->vcpu; 2066 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2067 int size, in, string; 2068 unsigned port; 2069 2070 ++svm->vcpu.stat.io_exits; 2071 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2072 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2073 port = io_info >> 16; 2074 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2075 2076 if (string) { 2077 if (sev_es_guest(vcpu->kvm)) 2078 return sev_es_string_io(svm, size, port, in); 2079 else 2080 return kvm_emulate_instruction(vcpu, 0); 2081 } 2082 2083 svm->next_rip = svm->vmcb->control.exit_info_2; 2084 2085 return kvm_fast_pio(&svm->vcpu, size, port, in); 2086 } 2087 2088 static int nmi_interception(struct vcpu_svm *svm) 2089 { 2090 return 1; 2091 } 2092 2093 static int intr_interception(struct vcpu_svm *svm) 2094 { 2095 ++svm->vcpu.stat.irq_exits; 2096 return 1; 2097 } 2098 2099 static int nop_on_interception(struct vcpu_svm *svm) 2100 { 2101 return 1; 2102 } 2103 2104 static int halt_interception(struct vcpu_svm *svm) 2105 { 2106 return kvm_emulate_halt(&svm->vcpu); 2107 } 2108 2109 static int vmmcall_interception(struct vcpu_svm *svm) 2110 { 2111 return kvm_emulate_hypercall(&svm->vcpu); 2112 } 2113 2114 static int vmload_interception(struct vcpu_svm *svm) 2115 { 2116 struct vmcb *nested_vmcb; 2117 struct kvm_host_map map; 2118 int ret; 2119 2120 if (nested_svm_check_permissions(svm)) 2121 return 1; 2122 2123 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2124 if (ret) { 2125 if (ret == -EINVAL) 2126 kvm_inject_gp(&svm->vcpu, 0); 2127 return 1; 2128 } 2129 2130 nested_vmcb = map.hva; 2131 2132 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2133 2134 nested_svm_vmloadsave(nested_vmcb, svm->vmcb); 2135 kvm_vcpu_unmap(&svm->vcpu, &map, true); 2136 2137 return ret; 2138 } 2139 2140 static int vmsave_interception(struct vcpu_svm *svm) 2141 { 2142 struct vmcb *nested_vmcb; 2143 struct kvm_host_map map; 2144 int ret; 2145 2146 if (nested_svm_check_permissions(svm)) 2147 return 1; 2148 2149 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2150 if (ret) { 2151 if (ret == -EINVAL) 2152 kvm_inject_gp(&svm->vcpu, 0); 2153 return 1; 2154 } 2155 2156 nested_vmcb = map.hva; 2157 2158 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2159 2160 nested_svm_vmloadsave(svm->vmcb, nested_vmcb); 2161 kvm_vcpu_unmap(&svm->vcpu, &map, true); 2162 2163 return ret; 2164 } 2165 2166 static int vmrun_interception(struct vcpu_svm *svm) 2167 { 2168 if (nested_svm_check_permissions(svm)) 2169 return 1; 2170 2171 return nested_svm_vmrun(svm); 2172 } 2173 2174 enum { 2175 NONE_SVM_INSTR, 2176 SVM_INSTR_VMRUN, 2177 SVM_INSTR_VMLOAD, 2178 SVM_INSTR_VMSAVE, 2179 }; 2180 2181 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2182 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2183 { 2184 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2185 2186 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2187 return NONE_SVM_INSTR; 2188 2189 switch (ctxt->modrm) { 2190 case 0xd8: /* VMRUN */ 2191 return SVM_INSTR_VMRUN; 2192 case 0xda: /* VMLOAD */ 2193 return SVM_INSTR_VMLOAD; 2194 case 0xdb: /* VMSAVE */ 2195 return SVM_INSTR_VMSAVE; 2196 default: 2197 break; 2198 } 2199 2200 return NONE_SVM_INSTR; 2201 } 2202 2203 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2204 { 2205 const int guest_mode_exit_codes[] = { 2206 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2207 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2208 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2209 }; 2210 int (*const svm_instr_handlers[])(struct vcpu_svm *svm) = { 2211 [SVM_INSTR_VMRUN] = vmrun_interception, 2212 [SVM_INSTR_VMLOAD] = vmload_interception, 2213 [SVM_INSTR_VMSAVE] = vmsave_interception, 2214 }; 2215 struct vcpu_svm *svm = to_svm(vcpu); 2216 int ret; 2217 2218 if (is_guest_mode(vcpu)) { 2219 svm->vmcb->control.exit_code = guest_mode_exit_codes[opcode]; 2220 svm->vmcb->control.exit_info_1 = 0; 2221 svm->vmcb->control.exit_info_2 = 0; 2222 2223 /* Returns '1' or -errno on failure, '0' on success. */ 2224 ret = nested_svm_vmexit(svm); 2225 if (ret) 2226 return ret; 2227 return 1; 2228 } 2229 return svm_instr_handlers[opcode](svm); 2230 } 2231 2232 /* 2233 * #GP handling code. Note that #GP can be triggered under the following two 2234 * cases: 2235 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2236 * some AMD CPUs when EAX of these instructions are in the reserved memory 2237 * regions (e.g. SMM memory on host). 2238 * 2) VMware backdoor 2239 */ 2240 static int gp_interception(struct vcpu_svm *svm) 2241 { 2242 struct kvm_vcpu *vcpu = &svm->vcpu; 2243 u32 error_code = svm->vmcb->control.exit_info_1; 2244 int opcode; 2245 2246 /* Both #GP cases have zero error_code */ 2247 if (error_code) 2248 goto reinject; 2249 2250 /* Decode the instruction for usage later */ 2251 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2252 goto reinject; 2253 2254 opcode = svm_instr_opcode(vcpu); 2255 2256 if (opcode == NONE_SVM_INSTR) { 2257 if (!enable_vmware_backdoor) 2258 goto reinject; 2259 2260 /* 2261 * VMware backdoor emulation on #GP interception only handles 2262 * IN{S}, OUT{S}, and RDPMC. 2263 */ 2264 if (!is_guest_mode(vcpu)) 2265 return kvm_emulate_instruction(vcpu, 2266 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2267 } else 2268 return emulate_svm_instr(vcpu, opcode); 2269 2270 reinject: 2271 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2272 return 1; 2273 } 2274 2275 void svm_set_gif(struct vcpu_svm *svm, bool value) 2276 { 2277 if (value) { 2278 /* 2279 * If VGIF is enabled, the STGI intercept is only added to 2280 * detect the opening of the SMI/NMI window; remove it now. 2281 * Likewise, clear the VINTR intercept, we will set it 2282 * again while processing KVM_REQ_EVENT if needed. 2283 */ 2284 if (vgif_enabled(svm)) 2285 svm_clr_intercept(svm, INTERCEPT_STGI); 2286 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2287 svm_clear_vintr(svm); 2288 2289 enable_gif(svm); 2290 if (svm->vcpu.arch.smi_pending || 2291 svm->vcpu.arch.nmi_pending || 2292 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2293 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2294 } else { 2295 disable_gif(svm); 2296 2297 /* 2298 * After a CLGI no interrupts should come. But if vGIF is 2299 * in use, we still rely on the VINTR intercept (rather than 2300 * STGI) to detect an open interrupt window. 2301 */ 2302 if (!vgif_enabled(svm)) 2303 svm_clear_vintr(svm); 2304 } 2305 } 2306 2307 static int stgi_interception(struct vcpu_svm *svm) 2308 { 2309 int ret; 2310 2311 if (nested_svm_check_permissions(svm)) 2312 return 1; 2313 2314 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2315 svm_set_gif(svm, true); 2316 return ret; 2317 } 2318 2319 static int clgi_interception(struct vcpu_svm *svm) 2320 { 2321 int ret; 2322 2323 if (nested_svm_check_permissions(svm)) 2324 return 1; 2325 2326 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2327 svm_set_gif(svm, false); 2328 return ret; 2329 } 2330 2331 static int invlpga_interception(struct vcpu_svm *svm) 2332 { 2333 struct kvm_vcpu *vcpu = &svm->vcpu; 2334 2335 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu), 2336 kvm_rax_read(&svm->vcpu)); 2337 2338 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2339 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu)); 2340 2341 return kvm_skip_emulated_instruction(&svm->vcpu); 2342 } 2343 2344 static int skinit_interception(struct vcpu_svm *svm) 2345 { 2346 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu)); 2347 2348 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2349 return 1; 2350 } 2351 2352 static int wbinvd_interception(struct vcpu_svm *svm) 2353 { 2354 return kvm_emulate_wbinvd(&svm->vcpu); 2355 } 2356 2357 static int xsetbv_interception(struct vcpu_svm *svm) 2358 { 2359 u64 new_bv = kvm_read_edx_eax(&svm->vcpu); 2360 u32 index = kvm_rcx_read(&svm->vcpu); 2361 2362 int err = kvm_set_xcr(&svm->vcpu, index, new_bv); 2363 return kvm_complete_insn_gp(&svm->vcpu, err); 2364 } 2365 2366 static int rdpru_interception(struct vcpu_svm *svm) 2367 { 2368 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2369 return 1; 2370 } 2371 2372 static int task_switch_interception(struct vcpu_svm *svm) 2373 { 2374 u16 tss_selector; 2375 int reason; 2376 int int_type = svm->vmcb->control.exit_int_info & 2377 SVM_EXITINTINFO_TYPE_MASK; 2378 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2379 uint32_t type = 2380 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2381 uint32_t idt_v = 2382 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2383 bool has_error_code = false; 2384 u32 error_code = 0; 2385 2386 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2387 2388 if (svm->vmcb->control.exit_info_2 & 2389 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2390 reason = TASK_SWITCH_IRET; 2391 else if (svm->vmcb->control.exit_info_2 & 2392 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2393 reason = TASK_SWITCH_JMP; 2394 else if (idt_v) 2395 reason = TASK_SWITCH_GATE; 2396 else 2397 reason = TASK_SWITCH_CALL; 2398 2399 if (reason == TASK_SWITCH_GATE) { 2400 switch (type) { 2401 case SVM_EXITINTINFO_TYPE_NMI: 2402 svm->vcpu.arch.nmi_injected = false; 2403 break; 2404 case SVM_EXITINTINFO_TYPE_EXEPT: 2405 if (svm->vmcb->control.exit_info_2 & 2406 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2407 has_error_code = true; 2408 error_code = 2409 (u32)svm->vmcb->control.exit_info_2; 2410 } 2411 kvm_clear_exception_queue(&svm->vcpu); 2412 break; 2413 case SVM_EXITINTINFO_TYPE_INTR: 2414 kvm_clear_interrupt_queue(&svm->vcpu); 2415 break; 2416 default: 2417 break; 2418 } 2419 } 2420 2421 if (reason != TASK_SWITCH_GATE || 2422 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2423 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2424 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2425 if (!skip_emulated_instruction(&svm->vcpu)) 2426 return 0; 2427 } 2428 2429 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2430 int_vec = -1; 2431 2432 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, 2433 has_error_code, error_code); 2434 } 2435 2436 static int cpuid_interception(struct vcpu_svm *svm) 2437 { 2438 return kvm_emulate_cpuid(&svm->vcpu); 2439 } 2440 2441 static int iret_interception(struct vcpu_svm *svm) 2442 { 2443 ++svm->vcpu.stat.nmi_window_exits; 2444 svm->vcpu.arch.hflags |= HF_IRET_MASK; 2445 if (!sev_es_guest(svm->vcpu.kvm)) { 2446 svm_clr_intercept(svm, INTERCEPT_IRET); 2447 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); 2448 } 2449 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2450 return 1; 2451 } 2452 2453 static int invd_interception(struct vcpu_svm *svm) 2454 { 2455 /* Treat an INVD instruction as a NOP and just skip it. */ 2456 return kvm_skip_emulated_instruction(&svm->vcpu); 2457 } 2458 2459 static int invlpg_interception(struct vcpu_svm *svm) 2460 { 2461 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2462 return kvm_emulate_instruction(&svm->vcpu, 0); 2463 2464 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); 2465 return kvm_skip_emulated_instruction(&svm->vcpu); 2466 } 2467 2468 static int emulate_on_interception(struct vcpu_svm *svm) 2469 { 2470 return kvm_emulate_instruction(&svm->vcpu, 0); 2471 } 2472 2473 static int rsm_interception(struct vcpu_svm *svm) 2474 { 2475 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2); 2476 } 2477 2478 static int rdpmc_interception(struct vcpu_svm *svm) 2479 { 2480 int err; 2481 2482 if (!nrips) 2483 return emulate_on_interception(svm); 2484 2485 err = kvm_rdpmc(&svm->vcpu); 2486 return kvm_complete_insn_gp(&svm->vcpu, err); 2487 } 2488 2489 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, 2490 unsigned long val) 2491 { 2492 unsigned long cr0 = svm->vcpu.arch.cr0; 2493 bool ret = false; 2494 2495 if (!is_guest_mode(&svm->vcpu) || 2496 (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2497 return false; 2498 2499 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2500 val &= ~SVM_CR0_SELECTIVE_MASK; 2501 2502 if (cr0 ^ val) { 2503 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2504 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2505 } 2506 2507 return ret; 2508 } 2509 2510 #define CR_VALID (1ULL << 63) 2511 2512 static int cr_interception(struct vcpu_svm *svm) 2513 { 2514 int reg, cr; 2515 unsigned long val; 2516 int err; 2517 2518 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2519 return emulate_on_interception(svm); 2520 2521 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2522 return emulate_on_interception(svm); 2523 2524 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2525 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2526 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2527 else 2528 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2529 2530 err = 0; 2531 if (cr >= 16) { /* mov to cr */ 2532 cr -= 16; 2533 val = kvm_register_read(&svm->vcpu, reg); 2534 trace_kvm_cr_write(cr, val); 2535 switch (cr) { 2536 case 0: 2537 if (!check_selective_cr0_intercepted(svm, val)) 2538 err = kvm_set_cr0(&svm->vcpu, val); 2539 else 2540 return 1; 2541 2542 break; 2543 case 3: 2544 err = kvm_set_cr3(&svm->vcpu, val); 2545 break; 2546 case 4: 2547 err = kvm_set_cr4(&svm->vcpu, val); 2548 break; 2549 case 8: 2550 err = kvm_set_cr8(&svm->vcpu, val); 2551 break; 2552 default: 2553 WARN(1, "unhandled write to CR%d", cr); 2554 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2555 return 1; 2556 } 2557 } else { /* mov from cr */ 2558 switch (cr) { 2559 case 0: 2560 val = kvm_read_cr0(&svm->vcpu); 2561 break; 2562 case 2: 2563 val = svm->vcpu.arch.cr2; 2564 break; 2565 case 3: 2566 val = kvm_read_cr3(&svm->vcpu); 2567 break; 2568 case 4: 2569 val = kvm_read_cr4(&svm->vcpu); 2570 break; 2571 case 8: 2572 val = kvm_get_cr8(&svm->vcpu); 2573 break; 2574 default: 2575 WARN(1, "unhandled read from CR%d", cr); 2576 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2577 return 1; 2578 } 2579 kvm_register_write(&svm->vcpu, reg, val); 2580 trace_kvm_cr_read(cr, val); 2581 } 2582 return kvm_complete_insn_gp(&svm->vcpu, err); 2583 } 2584 2585 static int cr_trap(struct vcpu_svm *svm) 2586 { 2587 struct kvm_vcpu *vcpu = &svm->vcpu; 2588 unsigned long old_value, new_value; 2589 unsigned int cr; 2590 int ret = 0; 2591 2592 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2593 2594 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2595 switch (cr) { 2596 case 0: 2597 old_value = kvm_read_cr0(vcpu); 2598 svm_set_cr0(vcpu, new_value); 2599 2600 kvm_post_set_cr0(vcpu, old_value, new_value); 2601 break; 2602 case 4: 2603 old_value = kvm_read_cr4(vcpu); 2604 svm_set_cr4(vcpu, new_value); 2605 2606 kvm_post_set_cr4(vcpu, old_value, new_value); 2607 break; 2608 case 8: 2609 ret = kvm_set_cr8(&svm->vcpu, new_value); 2610 break; 2611 default: 2612 WARN(1, "unhandled CR%d write trap", cr); 2613 kvm_queue_exception(vcpu, UD_VECTOR); 2614 return 1; 2615 } 2616 2617 return kvm_complete_insn_gp(vcpu, ret); 2618 } 2619 2620 static int dr_interception(struct vcpu_svm *svm) 2621 { 2622 int reg, dr; 2623 unsigned long val; 2624 int err = 0; 2625 2626 if (svm->vcpu.guest_debug == 0) { 2627 /* 2628 * No more DR vmexits; force a reload of the debug registers 2629 * and reenter on this instruction. The next vmexit will 2630 * retrieve the full state of the debug registers. 2631 */ 2632 clr_dr_intercepts(svm); 2633 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2634 return 1; 2635 } 2636 2637 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2638 return emulate_on_interception(svm); 2639 2640 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2641 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2642 if (dr >= 16) { /* mov to DRn */ 2643 dr -= 16; 2644 val = kvm_register_read(&svm->vcpu, reg); 2645 err = kvm_set_dr(&svm->vcpu, dr, val); 2646 } else { 2647 kvm_get_dr(&svm->vcpu, dr, &val); 2648 kvm_register_write(&svm->vcpu, reg, val); 2649 } 2650 2651 return kvm_complete_insn_gp(&svm->vcpu, err); 2652 } 2653 2654 static int cr8_write_interception(struct vcpu_svm *svm) 2655 { 2656 struct kvm_run *kvm_run = svm->vcpu.run; 2657 int r; 2658 2659 u8 cr8_prev = kvm_get_cr8(&svm->vcpu); 2660 /* instruction emulation calls kvm_set_cr8() */ 2661 r = cr_interception(svm); 2662 if (lapic_in_kernel(&svm->vcpu)) 2663 return r; 2664 if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) 2665 return r; 2666 kvm_run->exit_reason = KVM_EXIT_SET_TPR; 2667 return 0; 2668 } 2669 2670 static int efer_trap(struct vcpu_svm *svm) 2671 { 2672 struct msr_data msr_info; 2673 int ret; 2674 2675 /* 2676 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2677 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2678 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2679 * the guest doesn't have X86_FEATURE_SVM. 2680 */ 2681 msr_info.host_initiated = false; 2682 msr_info.index = MSR_EFER; 2683 msr_info.data = svm->vmcb->control.exit_info_1 & ~EFER_SVME; 2684 ret = kvm_set_msr_common(&svm->vcpu, &msr_info); 2685 2686 return kvm_complete_insn_gp(&svm->vcpu, ret); 2687 } 2688 2689 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2690 { 2691 msr->data = 0; 2692 2693 switch (msr->index) { 2694 case MSR_F10H_DECFG: 2695 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2696 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2697 break; 2698 case MSR_IA32_PERF_CAPABILITIES: 2699 return 0; 2700 default: 2701 return KVM_MSR_RET_INVALID; 2702 } 2703 2704 return 0; 2705 } 2706 2707 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2708 { 2709 struct vcpu_svm *svm = to_svm(vcpu); 2710 2711 switch (msr_info->index) { 2712 case MSR_STAR: 2713 msr_info->data = svm->vmcb->save.star; 2714 break; 2715 #ifdef CONFIG_X86_64 2716 case MSR_LSTAR: 2717 msr_info->data = svm->vmcb->save.lstar; 2718 break; 2719 case MSR_CSTAR: 2720 msr_info->data = svm->vmcb->save.cstar; 2721 break; 2722 case MSR_KERNEL_GS_BASE: 2723 msr_info->data = svm->vmcb->save.kernel_gs_base; 2724 break; 2725 case MSR_SYSCALL_MASK: 2726 msr_info->data = svm->vmcb->save.sfmask; 2727 break; 2728 #endif 2729 case MSR_IA32_SYSENTER_CS: 2730 msr_info->data = svm->vmcb->save.sysenter_cs; 2731 break; 2732 case MSR_IA32_SYSENTER_EIP: 2733 msr_info->data = svm->sysenter_eip; 2734 break; 2735 case MSR_IA32_SYSENTER_ESP: 2736 msr_info->data = svm->sysenter_esp; 2737 break; 2738 case MSR_TSC_AUX: 2739 if (!boot_cpu_has(X86_FEATURE_RDTSCP)) 2740 return 1; 2741 msr_info->data = svm->tsc_aux; 2742 break; 2743 /* 2744 * Nobody will change the following 5 values in the VMCB so we can 2745 * safely return them on rdmsr. They will always be 0 until LBRV is 2746 * implemented. 2747 */ 2748 case MSR_IA32_DEBUGCTLMSR: 2749 msr_info->data = svm->vmcb->save.dbgctl; 2750 break; 2751 case MSR_IA32_LASTBRANCHFROMIP: 2752 msr_info->data = svm->vmcb->save.br_from; 2753 break; 2754 case MSR_IA32_LASTBRANCHTOIP: 2755 msr_info->data = svm->vmcb->save.br_to; 2756 break; 2757 case MSR_IA32_LASTINTFROMIP: 2758 msr_info->data = svm->vmcb->save.last_excp_from; 2759 break; 2760 case MSR_IA32_LASTINTTOIP: 2761 msr_info->data = svm->vmcb->save.last_excp_to; 2762 break; 2763 case MSR_VM_HSAVE_PA: 2764 msr_info->data = svm->nested.hsave_msr; 2765 break; 2766 case MSR_VM_CR: 2767 msr_info->data = svm->nested.vm_cr_msr; 2768 break; 2769 case MSR_IA32_SPEC_CTRL: 2770 if (!msr_info->host_initiated && 2771 !guest_has_spec_ctrl_msr(vcpu)) 2772 return 1; 2773 2774 msr_info->data = svm->spec_ctrl; 2775 break; 2776 case MSR_AMD64_VIRT_SPEC_CTRL: 2777 if (!msr_info->host_initiated && 2778 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2779 return 1; 2780 2781 msr_info->data = svm->virt_spec_ctrl; 2782 break; 2783 case MSR_F15H_IC_CFG: { 2784 2785 int family, model; 2786 2787 family = guest_cpuid_family(vcpu); 2788 model = guest_cpuid_model(vcpu); 2789 2790 if (family < 0 || model < 0) 2791 return kvm_get_msr_common(vcpu, msr_info); 2792 2793 msr_info->data = 0; 2794 2795 if (family == 0x15 && 2796 (model >= 0x2 && model < 0x20)) 2797 msr_info->data = 0x1E; 2798 } 2799 break; 2800 case MSR_F10H_DECFG: 2801 msr_info->data = svm->msr_decfg; 2802 break; 2803 default: 2804 return kvm_get_msr_common(vcpu, msr_info); 2805 } 2806 return 0; 2807 } 2808 2809 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2810 { 2811 struct vcpu_svm *svm = to_svm(vcpu); 2812 if (!sev_es_guest(svm->vcpu.kvm) || !err) 2813 return kvm_complete_insn_gp(&svm->vcpu, err); 2814 2815 ghcb_set_sw_exit_info_1(svm->ghcb, 1); 2816 ghcb_set_sw_exit_info_2(svm->ghcb, 2817 X86_TRAP_GP | 2818 SVM_EVTINJ_TYPE_EXEPT | 2819 SVM_EVTINJ_VALID); 2820 return 1; 2821 } 2822 2823 static int rdmsr_interception(struct vcpu_svm *svm) 2824 { 2825 return kvm_emulate_rdmsr(&svm->vcpu); 2826 } 2827 2828 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2829 { 2830 struct vcpu_svm *svm = to_svm(vcpu); 2831 int svm_dis, chg_mask; 2832 2833 if (data & ~SVM_VM_CR_VALID_MASK) 2834 return 1; 2835 2836 chg_mask = SVM_VM_CR_VALID_MASK; 2837 2838 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2839 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2840 2841 svm->nested.vm_cr_msr &= ~chg_mask; 2842 svm->nested.vm_cr_msr |= (data & chg_mask); 2843 2844 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2845 2846 /* check for svm_disable while efer.svme is set */ 2847 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2848 return 1; 2849 2850 return 0; 2851 } 2852 2853 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2854 { 2855 struct vcpu_svm *svm = to_svm(vcpu); 2856 2857 u32 ecx = msr->index; 2858 u64 data = msr->data; 2859 switch (ecx) { 2860 case MSR_IA32_CR_PAT: 2861 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2862 return 1; 2863 vcpu->arch.pat = data; 2864 svm->vmcb->save.g_pat = data; 2865 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2866 break; 2867 case MSR_IA32_SPEC_CTRL: 2868 if (!msr->host_initiated && 2869 !guest_has_spec_ctrl_msr(vcpu)) 2870 return 1; 2871 2872 if (kvm_spec_ctrl_test_value(data)) 2873 return 1; 2874 2875 svm->spec_ctrl = data; 2876 if (!data) 2877 break; 2878 2879 /* 2880 * For non-nested: 2881 * When it's written (to non-zero) for the first time, pass 2882 * it through. 2883 * 2884 * For nested: 2885 * The handling of the MSR bitmap for L2 guests is done in 2886 * nested_svm_vmrun_msrpm. 2887 * We update the L1 MSR bit as well since it will end up 2888 * touching the MSR anyway now. 2889 */ 2890 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2891 break; 2892 case MSR_IA32_PRED_CMD: 2893 if (!msr->host_initiated && 2894 !guest_has_pred_cmd_msr(vcpu)) 2895 return 1; 2896 2897 if (data & ~PRED_CMD_IBPB) 2898 return 1; 2899 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2900 return 1; 2901 if (!data) 2902 break; 2903 2904 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2905 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2906 break; 2907 case MSR_AMD64_VIRT_SPEC_CTRL: 2908 if (!msr->host_initiated && 2909 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2910 return 1; 2911 2912 if (data & ~SPEC_CTRL_SSBD) 2913 return 1; 2914 2915 svm->virt_spec_ctrl = data; 2916 break; 2917 case MSR_STAR: 2918 svm->vmcb->save.star = data; 2919 break; 2920 #ifdef CONFIG_X86_64 2921 case MSR_LSTAR: 2922 svm->vmcb->save.lstar = data; 2923 break; 2924 case MSR_CSTAR: 2925 svm->vmcb->save.cstar = data; 2926 break; 2927 case MSR_KERNEL_GS_BASE: 2928 svm->vmcb->save.kernel_gs_base = data; 2929 break; 2930 case MSR_SYSCALL_MASK: 2931 svm->vmcb->save.sfmask = data; 2932 break; 2933 #endif 2934 case MSR_IA32_SYSENTER_CS: 2935 svm->vmcb->save.sysenter_cs = data; 2936 break; 2937 case MSR_IA32_SYSENTER_EIP: 2938 svm->sysenter_eip = data; 2939 svm->vmcb->save.sysenter_eip = data; 2940 break; 2941 case MSR_IA32_SYSENTER_ESP: 2942 svm->sysenter_esp = data; 2943 svm->vmcb->save.sysenter_esp = data; 2944 break; 2945 case MSR_TSC_AUX: 2946 if (!boot_cpu_has(X86_FEATURE_RDTSCP)) 2947 return 1; 2948 2949 /* 2950 * This is rare, so we update the MSR here instead of using 2951 * direct_access_msrs. Doing that would require a rdmsr in 2952 * svm_vcpu_put. 2953 */ 2954 svm->tsc_aux = data; 2955 wrmsrl(MSR_TSC_AUX, svm->tsc_aux); 2956 break; 2957 case MSR_IA32_DEBUGCTLMSR: 2958 if (!boot_cpu_has(X86_FEATURE_LBRV)) { 2959 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2960 __func__, data); 2961 break; 2962 } 2963 if (data & DEBUGCTL_RESERVED_BITS) 2964 return 1; 2965 2966 svm->vmcb->save.dbgctl = data; 2967 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 2968 if (data & (1ULL<<0)) 2969 svm_enable_lbrv(vcpu); 2970 else 2971 svm_disable_lbrv(vcpu); 2972 break; 2973 case MSR_VM_HSAVE_PA: 2974 svm->nested.hsave_msr = data; 2975 break; 2976 case MSR_VM_CR: 2977 return svm_set_vm_cr(vcpu, data); 2978 case MSR_VM_IGNNE: 2979 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2980 break; 2981 case MSR_F10H_DECFG: { 2982 struct kvm_msr_entry msr_entry; 2983 2984 msr_entry.index = msr->index; 2985 if (svm_get_msr_feature(&msr_entry)) 2986 return 1; 2987 2988 /* Check the supported bits */ 2989 if (data & ~msr_entry.data) 2990 return 1; 2991 2992 /* Don't allow the guest to change a bit, #GP */ 2993 if (!msr->host_initiated && (data ^ msr_entry.data)) 2994 return 1; 2995 2996 svm->msr_decfg = data; 2997 break; 2998 } 2999 case MSR_IA32_APICBASE: 3000 if (kvm_vcpu_apicv_active(vcpu)) 3001 avic_update_vapic_bar(to_svm(vcpu), data); 3002 fallthrough; 3003 default: 3004 return kvm_set_msr_common(vcpu, msr); 3005 } 3006 return 0; 3007 } 3008 3009 static int wrmsr_interception(struct vcpu_svm *svm) 3010 { 3011 return kvm_emulate_wrmsr(&svm->vcpu); 3012 } 3013 3014 static int msr_interception(struct vcpu_svm *svm) 3015 { 3016 if (svm->vmcb->control.exit_info_1) 3017 return wrmsr_interception(svm); 3018 else 3019 return rdmsr_interception(svm); 3020 } 3021 3022 static int interrupt_window_interception(struct vcpu_svm *svm) 3023 { 3024 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3025 svm_clear_vintr(svm); 3026 3027 /* 3028 * For AVIC, the only reason to end up here is ExtINTs. 3029 * In this case AVIC was temporarily disabled for 3030 * requesting the IRQ window and we have to re-enable it. 3031 */ 3032 svm_toggle_avic_for_irq_window(&svm->vcpu, true); 3033 3034 ++svm->vcpu.stat.irq_window_exits; 3035 return 1; 3036 } 3037 3038 static int pause_interception(struct vcpu_svm *svm) 3039 { 3040 struct kvm_vcpu *vcpu = &svm->vcpu; 3041 bool in_kernel; 3042 3043 /* 3044 * CPL is not made available for an SEV-ES guest, therefore 3045 * vcpu->arch.preempted_in_kernel can never be true. Just 3046 * set in_kernel to false as well. 3047 */ 3048 in_kernel = !sev_es_guest(svm->vcpu.kvm) && svm_get_cpl(vcpu) == 0; 3049 3050 if (!kvm_pause_in_guest(vcpu->kvm)) 3051 grow_ple_window(vcpu); 3052 3053 kvm_vcpu_on_spin(vcpu, in_kernel); 3054 return 1; 3055 } 3056 3057 static int nop_interception(struct vcpu_svm *svm) 3058 { 3059 return kvm_skip_emulated_instruction(&(svm->vcpu)); 3060 } 3061 3062 static int monitor_interception(struct vcpu_svm *svm) 3063 { 3064 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); 3065 return nop_interception(svm); 3066 } 3067 3068 static int mwait_interception(struct vcpu_svm *svm) 3069 { 3070 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); 3071 return nop_interception(svm); 3072 } 3073 3074 static int invpcid_interception(struct vcpu_svm *svm) 3075 { 3076 struct kvm_vcpu *vcpu = &svm->vcpu; 3077 unsigned long type; 3078 gva_t gva; 3079 3080 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3081 kvm_queue_exception(vcpu, UD_VECTOR); 3082 return 1; 3083 } 3084 3085 /* 3086 * For an INVPCID intercept: 3087 * EXITINFO1 provides the linear address of the memory operand. 3088 * EXITINFO2 provides the contents of the register operand. 3089 */ 3090 type = svm->vmcb->control.exit_info_2; 3091 gva = svm->vmcb->control.exit_info_1; 3092 3093 if (type > 3) { 3094 kvm_inject_gp(vcpu, 0); 3095 return 1; 3096 } 3097 3098 return kvm_handle_invpcid(vcpu, type, gva); 3099 } 3100 3101 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { 3102 [SVM_EXIT_READ_CR0] = cr_interception, 3103 [SVM_EXIT_READ_CR3] = cr_interception, 3104 [SVM_EXIT_READ_CR4] = cr_interception, 3105 [SVM_EXIT_READ_CR8] = cr_interception, 3106 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3107 [SVM_EXIT_WRITE_CR0] = cr_interception, 3108 [SVM_EXIT_WRITE_CR3] = cr_interception, 3109 [SVM_EXIT_WRITE_CR4] = cr_interception, 3110 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3111 [SVM_EXIT_READ_DR0] = dr_interception, 3112 [SVM_EXIT_READ_DR1] = dr_interception, 3113 [SVM_EXIT_READ_DR2] = dr_interception, 3114 [SVM_EXIT_READ_DR3] = dr_interception, 3115 [SVM_EXIT_READ_DR4] = dr_interception, 3116 [SVM_EXIT_READ_DR5] = dr_interception, 3117 [SVM_EXIT_READ_DR6] = dr_interception, 3118 [SVM_EXIT_READ_DR7] = dr_interception, 3119 [SVM_EXIT_WRITE_DR0] = dr_interception, 3120 [SVM_EXIT_WRITE_DR1] = dr_interception, 3121 [SVM_EXIT_WRITE_DR2] = dr_interception, 3122 [SVM_EXIT_WRITE_DR3] = dr_interception, 3123 [SVM_EXIT_WRITE_DR4] = dr_interception, 3124 [SVM_EXIT_WRITE_DR5] = dr_interception, 3125 [SVM_EXIT_WRITE_DR6] = dr_interception, 3126 [SVM_EXIT_WRITE_DR7] = dr_interception, 3127 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3128 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3129 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3130 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3131 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3132 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3133 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3134 [SVM_EXIT_INTR] = intr_interception, 3135 [SVM_EXIT_NMI] = nmi_interception, 3136 [SVM_EXIT_SMI] = nop_on_interception, 3137 [SVM_EXIT_INIT] = nop_on_interception, 3138 [SVM_EXIT_VINTR] = interrupt_window_interception, 3139 [SVM_EXIT_RDPMC] = rdpmc_interception, 3140 [SVM_EXIT_CPUID] = cpuid_interception, 3141 [SVM_EXIT_IRET] = iret_interception, 3142 [SVM_EXIT_INVD] = invd_interception, 3143 [SVM_EXIT_PAUSE] = pause_interception, 3144 [SVM_EXIT_HLT] = halt_interception, 3145 [SVM_EXIT_INVLPG] = invlpg_interception, 3146 [SVM_EXIT_INVLPGA] = invlpga_interception, 3147 [SVM_EXIT_IOIO] = io_interception, 3148 [SVM_EXIT_MSR] = msr_interception, 3149 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3150 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3151 [SVM_EXIT_VMRUN] = vmrun_interception, 3152 [SVM_EXIT_VMMCALL] = vmmcall_interception, 3153 [SVM_EXIT_VMLOAD] = vmload_interception, 3154 [SVM_EXIT_VMSAVE] = vmsave_interception, 3155 [SVM_EXIT_STGI] = stgi_interception, 3156 [SVM_EXIT_CLGI] = clgi_interception, 3157 [SVM_EXIT_SKINIT] = skinit_interception, 3158 [SVM_EXIT_WBINVD] = wbinvd_interception, 3159 [SVM_EXIT_MONITOR] = monitor_interception, 3160 [SVM_EXIT_MWAIT] = mwait_interception, 3161 [SVM_EXIT_XSETBV] = xsetbv_interception, 3162 [SVM_EXIT_RDPRU] = rdpru_interception, 3163 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3164 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3165 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3166 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3167 [SVM_EXIT_INVPCID] = invpcid_interception, 3168 [SVM_EXIT_NPF] = npf_interception, 3169 [SVM_EXIT_RSM] = rsm_interception, 3170 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3171 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3172 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3173 }; 3174 3175 static void dump_vmcb(struct kvm_vcpu *vcpu) 3176 { 3177 struct vcpu_svm *svm = to_svm(vcpu); 3178 struct vmcb_control_area *control = &svm->vmcb->control; 3179 struct vmcb_save_area *save = &svm->vmcb->save; 3180 3181 if (!dump_invalid_vmcb) { 3182 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3183 return; 3184 } 3185 3186 pr_err("VMCB Control Area:\n"); 3187 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3188 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3189 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3190 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3191 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3192 pr_err("%-20s%08x %08x\n", "intercepts:", 3193 control->intercepts[INTERCEPT_WORD3], 3194 control->intercepts[INTERCEPT_WORD4]); 3195 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3196 pr_err("%-20s%d\n", "pause filter threshold:", 3197 control->pause_filter_thresh); 3198 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3199 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3200 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3201 pr_err("%-20s%d\n", "asid:", control->asid); 3202 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3203 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3204 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3205 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3206 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3207 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3208 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3209 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3210 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3211 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3212 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3213 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3214 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3215 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3216 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3217 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3218 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3219 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3220 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3221 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3222 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3223 pr_err("VMCB State Save Area:\n"); 3224 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3225 "es:", 3226 save->es.selector, save->es.attrib, 3227 save->es.limit, save->es.base); 3228 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3229 "cs:", 3230 save->cs.selector, save->cs.attrib, 3231 save->cs.limit, save->cs.base); 3232 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3233 "ss:", 3234 save->ss.selector, save->ss.attrib, 3235 save->ss.limit, save->ss.base); 3236 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3237 "ds:", 3238 save->ds.selector, save->ds.attrib, 3239 save->ds.limit, save->ds.base); 3240 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3241 "fs:", 3242 save->fs.selector, save->fs.attrib, 3243 save->fs.limit, save->fs.base); 3244 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3245 "gs:", 3246 save->gs.selector, save->gs.attrib, 3247 save->gs.limit, save->gs.base); 3248 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3249 "gdtr:", 3250 save->gdtr.selector, save->gdtr.attrib, 3251 save->gdtr.limit, save->gdtr.base); 3252 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3253 "ldtr:", 3254 save->ldtr.selector, save->ldtr.attrib, 3255 save->ldtr.limit, save->ldtr.base); 3256 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3257 "idtr:", 3258 save->idtr.selector, save->idtr.attrib, 3259 save->idtr.limit, save->idtr.base); 3260 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3261 "tr:", 3262 save->tr.selector, save->tr.attrib, 3263 save->tr.limit, save->tr.base); 3264 pr_err("cpl: %d efer: %016llx\n", 3265 save->cpl, save->efer); 3266 pr_err("%-15s %016llx %-13s %016llx\n", 3267 "cr0:", save->cr0, "cr2:", save->cr2); 3268 pr_err("%-15s %016llx %-13s %016llx\n", 3269 "cr3:", save->cr3, "cr4:", save->cr4); 3270 pr_err("%-15s %016llx %-13s %016llx\n", 3271 "dr6:", save->dr6, "dr7:", save->dr7); 3272 pr_err("%-15s %016llx %-13s %016llx\n", 3273 "rip:", save->rip, "rflags:", save->rflags); 3274 pr_err("%-15s %016llx %-13s %016llx\n", 3275 "rsp:", save->rsp, "rax:", save->rax); 3276 pr_err("%-15s %016llx %-13s %016llx\n", 3277 "star:", save->star, "lstar:", save->lstar); 3278 pr_err("%-15s %016llx %-13s %016llx\n", 3279 "cstar:", save->cstar, "sfmask:", save->sfmask); 3280 pr_err("%-15s %016llx %-13s %016llx\n", 3281 "kernel_gs_base:", save->kernel_gs_base, 3282 "sysenter_cs:", save->sysenter_cs); 3283 pr_err("%-15s %016llx %-13s %016llx\n", 3284 "sysenter_esp:", save->sysenter_esp, 3285 "sysenter_eip:", save->sysenter_eip); 3286 pr_err("%-15s %016llx %-13s %016llx\n", 3287 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3288 pr_err("%-15s %016llx %-13s %016llx\n", 3289 "br_from:", save->br_from, "br_to:", save->br_to); 3290 pr_err("%-15s %016llx %-13s %016llx\n", 3291 "excp_from:", save->last_excp_from, 3292 "excp_to:", save->last_excp_to); 3293 } 3294 3295 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3296 { 3297 if (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3298 svm_exit_handlers[exit_code]) 3299 return 0; 3300 3301 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3302 dump_vmcb(vcpu); 3303 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3304 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3305 vcpu->run->internal.ndata = 2; 3306 vcpu->run->internal.data[0] = exit_code; 3307 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3308 3309 return -EINVAL; 3310 } 3311 3312 int svm_invoke_exit_handler(struct vcpu_svm *svm, u64 exit_code) 3313 { 3314 if (svm_handle_invalid_exit(&svm->vcpu, exit_code)) 3315 return 0; 3316 3317 #ifdef CONFIG_RETPOLINE 3318 if (exit_code == SVM_EXIT_MSR) 3319 return msr_interception(svm); 3320 else if (exit_code == SVM_EXIT_VINTR) 3321 return interrupt_window_interception(svm); 3322 else if (exit_code == SVM_EXIT_INTR) 3323 return intr_interception(svm); 3324 else if (exit_code == SVM_EXIT_HLT) 3325 return halt_interception(svm); 3326 else if (exit_code == SVM_EXIT_NPF) 3327 return npf_interception(svm); 3328 #endif 3329 return svm_exit_handlers[exit_code](svm); 3330 } 3331 3332 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 3333 u32 *intr_info, u32 *error_code) 3334 { 3335 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3336 3337 *info1 = control->exit_info_1; 3338 *info2 = control->exit_info_2; 3339 *intr_info = control->exit_int_info; 3340 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3341 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3342 *error_code = control->exit_int_info_err; 3343 else 3344 *error_code = 0; 3345 } 3346 3347 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3348 { 3349 struct vcpu_svm *svm = to_svm(vcpu); 3350 struct kvm_run *kvm_run = vcpu->run; 3351 u32 exit_code = svm->vmcb->control.exit_code; 3352 3353 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); 3354 3355 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3356 if (!sev_es_guest(vcpu->kvm)) { 3357 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3358 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3359 if (npt_enabled) 3360 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3361 } 3362 3363 if (is_guest_mode(vcpu)) { 3364 int vmexit; 3365 3366 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM); 3367 3368 vmexit = nested_svm_exit_special(svm); 3369 3370 if (vmexit == NESTED_EXIT_CONTINUE) 3371 vmexit = nested_svm_exit_handled(svm); 3372 3373 if (vmexit == NESTED_EXIT_DONE) 3374 return 1; 3375 } 3376 3377 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3378 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3379 kvm_run->fail_entry.hardware_entry_failure_reason 3380 = svm->vmcb->control.exit_code; 3381 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3382 dump_vmcb(vcpu); 3383 return 0; 3384 } 3385 3386 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3387 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3388 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3389 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3390 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3391 "exit_code 0x%x\n", 3392 __func__, svm->vmcb->control.exit_int_info, 3393 exit_code); 3394 3395 if (exit_fastpath != EXIT_FASTPATH_NONE) 3396 return 1; 3397 3398 return svm_invoke_exit_handler(svm, exit_code); 3399 } 3400 3401 static void reload_tss(struct kvm_vcpu *vcpu) 3402 { 3403 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3404 3405 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3406 load_TR_desc(); 3407 } 3408 3409 static void pre_svm_run(struct vcpu_svm *svm) 3410 { 3411 struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu); 3412 3413 if (sev_guest(svm->vcpu.kvm)) 3414 return pre_sev_run(svm, svm->vcpu.cpu); 3415 3416 /* FIXME: handle wraparound of asid_generation */ 3417 if (svm->asid_generation != sd->asid_generation) 3418 new_asid(svm, sd); 3419 } 3420 3421 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3422 { 3423 struct vcpu_svm *svm = to_svm(vcpu); 3424 3425 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3426 vcpu->arch.hflags |= HF_NMI_MASK; 3427 if (!sev_es_guest(svm->vcpu.kvm)) 3428 svm_set_intercept(svm, INTERCEPT_IRET); 3429 ++vcpu->stat.nmi_injections; 3430 } 3431 3432 static void svm_set_irq(struct kvm_vcpu *vcpu) 3433 { 3434 struct vcpu_svm *svm = to_svm(vcpu); 3435 3436 BUG_ON(!(gif_set(svm))); 3437 3438 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3439 ++vcpu->stat.irq_injections; 3440 3441 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3442 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3443 } 3444 3445 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3446 { 3447 struct vcpu_svm *svm = to_svm(vcpu); 3448 3449 /* 3450 * SEV-ES guests must always keep the CR intercepts cleared. CR 3451 * tracking is done using the CR write traps. 3452 */ 3453 if (sev_es_guest(vcpu->kvm)) 3454 return; 3455 3456 if (nested_svm_virtualize_tpr(vcpu)) 3457 return; 3458 3459 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3460 3461 if (irr == -1) 3462 return; 3463 3464 if (tpr >= irr) 3465 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3466 } 3467 3468 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3469 { 3470 struct vcpu_svm *svm = to_svm(vcpu); 3471 struct vmcb *vmcb = svm->vmcb; 3472 bool ret; 3473 3474 if (!gif_set(svm)) 3475 return true; 3476 3477 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3478 return false; 3479 3480 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3481 (svm->vcpu.arch.hflags & HF_NMI_MASK); 3482 3483 return ret; 3484 } 3485 3486 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3487 { 3488 struct vcpu_svm *svm = to_svm(vcpu); 3489 if (svm->nested.nested_run_pending) 3490 return -EBUSY; 3491 3492 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3493 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3494 return -EBUSY; 3495 3496 return !svm_nmi_blocked(vcpu); 3497 } 3498 3499 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3500 { 3501 struct vcpu_svm *svm = to_svm(vcpu); 3502 3503 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); 3504 } 3505 3506 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3507 { 3508 struct vcpu_svm *svm = to_svm(vcpu); 3509 3510 if (masked) { 3511 svm->vcpu.arch.hflags |= HF_NMI_MASK; 3512 if (!sev_es_guest(svm->vcpu.kvm)) 3513 svm_set_intercept(svm, INTERCEPT_IRET); 3514 } else { 3515 svm->vcpu.arch.hflags &= ~HF_NMI_MASK; 3516 if (!sev_es_guest(svm->vcpu.kvm)) 3517 svm_clr_intercept(svm, INTERCEPT_IRET); 3518 } 3519 } 3520 3521 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3522 { 3523 struct vcpu_svm *svm = to_svm(vcpu); 3524 struct vmcb *vmcb = svm->vmcb; 3525 3526 if (!gif_set(svm)) 3527 return true; 3528 3529 if (sev_es_guest(svm->vcpu.kvm)) { 3530 /* 3531 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask 3532 * bit to determine the state of the IF flag. 3533 */ 3534 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK)) 3535 return true; 3536 } else if (is_guest_mode(vcpu)) { 3537 /* As long as interrupts are being delivered... */ 3538 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3539 ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF) 3540 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3541 return true; 3542 3543 /* ... vmexits aren't blocked by the interrupt shadow */ 3544 if (nested_exit_on_intr(svm)) 3545 return false; 3546 } else { 3547 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3548 return true; 3549 } 3550 3551 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3552 } 3553 3554 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3555 { 3556 struct vcpu_svm *svm = to_svm(vcpu); 3557 if (svm->nested.nested_run_pending) 3558 return -EBUSY; 3559 3560 /* 3561 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3562 * e.g. if the IRQ arrived asynchronously after checking nested events. 3563 */ 3564 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3565 return -EBUSY; 3566 3567 return !svm_interrupt_blocked(vcpu); 3568 } 3569 3570 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3571 { 3572 struct vcpu_svm *svm = to_svm(vcpu); 3573 3574 /* 3575 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3576 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3577 * get that intercept, this function will be called again though and 3578 * we'll get the vintr intercept. However, if the vGIF feature is 3579 * enabled, the STGI interception will not occur. Enable the irq 3580 * window under the assumption that the hardware will set the GIF. 3581 */ 3582 if (vgif_enabled(svm) || gif_set(svm)) { 3583 /* 3584 * IRQ window is not needed when AVIC is enabled, 3585 * unless we have pending ExtINT since it cannot be injected 3586 * via AVIC. In such case, we need to temporarily disable AVIC, 3587 * and fallback to injecting IRQ via V_IRQ. 3588 */ 3589 svm_toggle_avic_for_irq_window(vcpu, false); 3590 svm_set_vintr(svm); 3591 } 3592 } 3593 3594 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3595 { 3596 struct vcpu_svm *svm = to_svm(vcpu); 3597 3598 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) 3599 == HF_NMI_MASK) 3600 return; /* IRET will cause a vm exit */ 3601 3602 if (!gif_set(svm)) { 3603 if (vgif_enabled(svm)) 3604 svm_set_intercept(svm, INTERCEPT_STGI); 3605 return; /* STGI will cause a vm exit */ 3606 } 3607 3608 /* 3609 * Something prevents NMI from been injected. Single step over possible 3610 * problem (IRET or exception injection or interrupt shadow) 3611 */ 3612 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3613 svm->nmi_singlestep = true; 3614 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3615 } 3616 3617 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) 3618 { 3619 return 0; 3620 } 3621 3622 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 3623 { 3624 return 0; 3625 } 3626 3627 void svm_flush_tlb(struct kvm_vcpu *vcpu) 3628 { 3629 struct vcpu_svm *svm = to_svm(vcpu); 3630 3631 /* 3632 * Flush only the current ASID even if the TLB flush was invoked via 3633 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3634 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3635 * unconditionally does a TLB flush on both nested VM-Enter and nested 3636 * VM-Exit (via kvm_mmu_reset_context()). 3637 */ 3638 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3639 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3640 else 3641 svm->asid_generation--; 3642 } 3643 3644 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3645 { 3646 struct vcpu_svm *svm = to_svm(vcpu); 3647 3648 invlpga(gva, svm->vmcb->control.asid); 3649 } 3650 3651 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3652 { 3653 struct vcpu_svm *svm = to_svm(vcpu); 3654 3655 if (nested_svm_virtualize_tpr(vcpu)) 3656 return; 3657 3658 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3659 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3660 kvm_set_cr8(vcpu, cr8); 3661 } 3662 } 3663 3664 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3665 { 3666 struct vcpu_svm *svm = to_svm(vcpu); 3667 u64 cr8; 3668 3669 if (nested_svm_virtualize_tpr(vcpu) || 3670 kvm_vcpu_apicv_active(vcpu)) 3671 return; 3672 3673 cr8 = kvm_get_cr8(vcpu); 3674 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3675 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3676 } 3677 3678 static void svm_complete_interrupts(struct vcpu_svm *svm) 3679 { 3680 u8 vector; 3681 int type; 3682 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3683 unsigned int3_injected = svm->int3_injected; 3684 3685 svm->int3_injected = 0; 3686 3687 /* 3688 * If we've made progress since setting HF_IRET_MASK, we've 3689 * executed an IRET and can allow NMI injection. 3690 */ 3691 if ((svm->vcpu.arch.hflags & HF_IRET_MASK) && 3692 (sev_es_guest(svm->vcpu.kvm) || 3693 kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip)) { 3694 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3695 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3696 } 3697 3698 svm->vcpu.arch.nmi_injected = false; 3699 kvm_clear_exception_queue(&svm->vcpu); 3700 kvm_clear_interrupt_queue(&svm->vcpu); 3701 3702 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3703 return; 3704 3705 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3706 3707 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3708 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3709 3710 switch (type) { 3711 case SVM_EXITINTINFO_TYPE_NMI: 3712 svm->vcpu.arch.nmi_injected = true; 3713 break; 3714 case SVM_EXITINTINFO_TYPE_EXEPT: 3715 /* 3716 * Never re-inject a #VC exception. 3717 */ 3718 if (vector == X86_TRAP_VC) 3719 break; 3720 3721 /* 3722 * In case of software exceptions, do not reinject the vector, 3723 * but re-execute the instruction instead. Rewind RIP first 3724 * if we emulated INT3 before. 3725 */ 3726 if (kvm_exception_is_soft(vector)) { 3727 if (vector == BP_VECTOR && int3_injected && 3728 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) 3729 kvm_rip_write(&svm->vcpu, 3730 kvm_rip_read(&svm->vcpu) - 3731 int3_injected); 3732 break; 3733 } 3734 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3735 u32 err = svm->vmcb->control.exit_int_info_err; 3736 kvm_requeue_exception_e(&svm->vcpu, vector, err); 3737 3738 } else 3739 kvm_requeue_exception(&svm->vcpu, vector); 3740 break; 3741 case SVM_EXITINTINFO_TYPE_INTR: 3742 kvm_queue_interrupt(&svm->vcpu, vector, false); 3743 break; 3744 default: 3745 break; 3746 } 3747 } 3748 3749 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3750 { 3751 struct vcpu_svm *svm = to_svm(vcpu); 3752 struct vmcb_control_area *control = &svm->vmcb->control; 3753 3754 control->exit_int_info = control->event_inj; 3755 control->exit_int_info_err = control->event_inj_err; 3756 control->event_inj = 0; 3757 svm_complete_interrupts(svm); 3758 } 3759 3760 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3761 { 3762 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3763 to_svm(vcpu)->vmcb->control.exit_info_1) 3764 return handle_fastpath_set_msr_irqoff(vcpu); 3765 3766 return EXIT_FASTPATH_NONE; 3767 } 3768 3769 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, 3770 struct vcpu_svm *svm) 3771 { 3772 /* 3773 * VMENTER enables interrupts (host state), but the kernel state is 3774 * interrupts disabled when this is invoked. Also tell RCU about 3775 * it. This is the same logic as for exit_to_user_mode(). 3776 * 3777 * This ensures that e.g. latency analysis on the host observes 3778 * guest mode as interrupt enabled. 3779 * 3780 * guest_enter_irqoff() informs context tracking about the 3781 * transition to guest mode and if enabled adjusts RCU state 3782 * accordingly. 3783 */ 3784 instrumentation_begin(); 3785 trace_hardirqs_on_prepare(); 3786 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 3787 instrumentation_end(); 3788 3789 guest_enter_irqoff(); 3790 lockdep_hardirqs_on(CALLER_ADDR0); 3791 3792 if (sev_es_guest(svm->vcpu.kvm)) { 3793 __svm_sev_es_vcpu_run(svm->vmcb_pa); 3794 } else { 3795 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3796 3797 __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs); 3798 3799 vmload(__sme_page_pa(sd->save_area)); 3800 } 3801 3802 /* 3803 * VMEXIT disables interrupts (host state), but tracing and lockdep 3804 * have them in state 'on' as recorded before entering guest mode. 3805 * Same as enter_from_user_mode(). 3806 * 3807 * guest_exit_irqoff() restores host context and reinstates RCU if 3808 * enabled and required. 3809 * 3810 * This needs to be done before the below as native_read_msr() 3811 * contains a tracepoint and x86_spec_ctrl_restore_host() calls 3812 * into world and some more. 3813 */ 3814 lockdep_hardirqs_off(CALLER_ADDR0); 3815 guest_exit_irqoff(); 3816 3817 instrumentation_begin(); 3818 trace_hardirqs_off_finish(); 3819 instrumentation_end(); 3820 } 3821 3822 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3823 { 3824 struct vcpu_svm *svm = to_svm(vcpu); 3825 3826 trace_kvm_entry(vcpu); 3827 3828 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3829 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3830 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3831 3832 /* 3833 * Disable singlestep if we're injecting an interrupt/exception. 3834 * We don't want our modified rflags to be pushed on the stack where 3835 * we might not be able to easily reset them if we disabled NMI 3836 * singlestep later. 3837 */ 3838 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3839 /* 3840 * Event injection happens before external interrupts cause a 3841 * vmexit and interrupts are disabled here, so smp_send_reschedule 3842 * is enough to force an immediate vmexit. 3843 */ 3844 disable_nmi_singlestep(svm); 3845 smp_send_reschedule(vcpu->cpu); 3846 } 3847 3848 pre_svm_run(svm); 3849 3850 sync_lapic_to_cr8(vcpu); 3851 3852 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3853 svm->vmcb->control.asid = svm->asid; 3854 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3855 } 3856 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3857 3858 /* 3859 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3860 * of a #DB. 3861 */ 3862 if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3863 svm_set_dr6(svm, vcpu->arch.dr6); 3864 else 3865 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3866 3867 clgi(); 3868 kvm_load_guest_xsave_state(vcpu); 3869 3870 kvm_wait_lapic_expire(vcpu); 3871 3872 /* 3873 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3874 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3875 * is no need to worry about the conditional branch over the wrmsr 3876 * being speculatively taken. 3877 */ 3878 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3879 3880 svm_vcpu_enter_exit(vcpu, svm); 3881 3882 /* 3883 * We do not use IBRS in the kernel. If this vCPU has used the 3884 * SPEC_CTRL MSR it may have left it on; save the value and 3885 * turn it off. This is much more efficient than blindly adding 3886 * it to the atomic save/restore list. Especially as the former 3887 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3888 * 3889 * For non-nested case: 3890 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3891 * save it. 3892 * 3893 * For nested case: 3894 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3895 * save it. 3896 */ 3897 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3898 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3899 3900 if (!sev_es_guest(svm->vcpu.kvm)) 3901 reload_tss(vcpu); 3902 3903 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3904 3905 if (!sev_es_guest(svm->vcpu.kvm)) { 3906 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3907 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3908 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3909 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3910 } 3911 3912 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3913 kvm_before_interrupt(&svm->vcpu); 3914 3915 kvm_load_host_xsave_state(vcpu); 3916 stgi(); 3917 3918 /* Any pending NMI will happen here */ 3919 3920 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3921 kvm_after_interrupt(&svm->vcpu); 3922 3923 sync_cr8_to_lapic(vcpu); 3924 3925 svm->next_rip = 0; 3926 if (is_guest_mode(&svm->vcpu)) { 3927 sync_nested_vmcb_control(svm); 3928 svm->nested.nested_run_pending = 0; 3929 } 3930 3931 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3932 vmcb_mark_all_clean(svm->vmcb); 3933 3934 /* if exit due to PF check for async PF */ 3935 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3936 svm->vcpu.arch.apf.host_apf_flags = 3937 kvm_read_and_reset_apf_flags(); 3938 3939 if (npt_enabled) { 3940 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); 3941 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); 3942 } 3943 3944 /* 3945 * We need to handle MC intercepts here before the vcpu has a chance to 3946 * change the physical cpu 3947 */ 3948 if (unlikely(svm->vmcb->control.exit_code == 3949 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3950 svm_handle_mce(svm); 3951 3952 svm_complete_interrupts(svm); 3953 3954 if (is_guest_mode(vcpu)) 3955 return EXIT_FASTPATH_NONE; 3956 3957 return svm_exit_handlers_fastpath(vcpu); 3958 } 3959 3960 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root, 3961 int root_level) 3962 { 3963 struct vcpu_svm *svm = to_svm(vcpu); 3964 unsigned long cr3; 3965 3966 cr3 = __sme_set(root); 3967 if (npt_enabled) { 3968 svm->vmcb->control.nested_cr3 = cr3; 3969 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3970 3971 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ 3972 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3973 return; 3974 cr3 = vcpu->arch.cr3; 3975 } 3976 3977 svm->vmcb->save.cr3 = cr3; 3978 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 3979 } 3980 3981 static int is_disabled(void) 3982 { 3983 u64 vm_cr; 3984 3985 rdmsrl(MSR_VM_CR, vm_cr); 3986 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3987 return 1; 3988 3989 return 0; 3990 } 3991 3992 static void 3993 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3994 { 3995 /* 3996 * Patch in the VMMCALL instruction: 3997 */ 3998 hypercall[0] = 0x0f; 3999 hypercall[1] = 0x01; 4000 hypercall[2] = 0xd9; 4001 } 4002 4003 static int __init svm_check_processor_compat(void) 4004 { 4005 return 0; 4006 } 4007 4008 static bool svm_cpu_has_accelerated_tpr(void) 4009 { 4010 return false; 4011 } 4012 4013 /* 4014 * The kvm parameter can be NULL (module initialization, or invocation before 4015 * VM creation). Be sure to check the kvm parameter before using it. 4016 */ 4017 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4018 { 4019 switch (index) { 4020 case MSR_IA32_MCG_EXT_CTL: 4021 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 4022 return false; 4023 case MSR_IA32_SMBASE: 4024 /* SEV-ES guests do not support SMM, so report false */ 4025 if (kvm && sev_es_guest(kvm)) 4026 return false; 4027 break; 4028 default: 4029 break; 4030 } 4031 4032 return true; 4033 } 4034 4035 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 4036 { 4037 return 0; 4038 } 4039 4040 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4041 { 4042 struct vcpu_svm *svm = to_svm(vcpu); 4043 struct kvm_cpuid_entry2 *best; 4044 4045 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4046 boot_cpu_has(X86_FEATURE_XSAVE) && 4047 boot_cpu_has(X86_FEATURE_XSAVES); 4048 4049 /* Update nrips enabled cache */ 4050 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 4051 guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS); 4052 4053 /* Check again if INVPCID interception if required */ 4054 svm_check_invpcid(svm); 4055 4056 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4057 if (sev_guest(vcpu->kvm)) { 4058 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); 4059 if (best) 4060 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4061 } 4062 4063 if (!kvm_vcpu_apicv_active(vcpu)) 4064 return; 4065 4066 /* 4067 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 4068 * is exposed to the guest, disable AVIC. 4069 */ 4070 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 4071 kvm_request_apicv_update(vcpu->kvm, false, 4072 APICV_INHIBIT_REASON_X2APIC); 4073 4074 /* 4075 * Currently, AVIC does not work with nested virtualization. 4076 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 4077 */ 4078 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4079 kvm_request_apicv_update(vcpu->kvm, false, 4080 APICV_INHIBIT_REASON_NESTED); 4081 } 4082 4083 static bool svm_has_wbinvd_exit(void) 4084 { 4085 return true; 4086 } 4087 4088 #define PRE_EX(exit) { .exit_code = (exit), \ 4089 .stage = X86_ICPT_PRE_EXCEPT, } 4090 #define POST_EX(exit) { .exit_code = (exit), \ 4091 .stage = X86_ICPT_POST_EXCEPT, } 4092 #define POST_MEM(exit) { .exit_code = (exit), \ 4093 .stage = X86_ICPT_POST_MEMACCESS, } 4094 4095 static const struct __x86_intercept { 4096 u32 exit_code; 4097 enum x86_intercept_stage stage; 4098 } x86_intercept_map[] = { 4099 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4100 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4101 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4102 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4103 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4104 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4105 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4106 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4107 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4108 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4109 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4110 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4111 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4112 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4113 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4114 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4115 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4116 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4117 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4118 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4119 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4120 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4121 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4122 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4123 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4124 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4125 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4126 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4127 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4128 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4129 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4130 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4131 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4132 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4133 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4134 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4135 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4136 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4137 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4138 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4139 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4140 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4141 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4142 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4143 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4144 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4145 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4146 }; 4147 4148 #undef PRE_EX 4149 #undef POST_EX 4150 #undef POST_MEM 4151 4152 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4153 struct x86_instruction_info *info, 4154 enum x86_intercept_stage stage, 4155 struct x86_exception *exception) 4156 { 4157 struct vcpu_svm *svm = to_svm(vcpu); 4158 int vmexit, ret = X86EMUL_CONTINUE; 4159 struct __x86_intercept icpt_info; 4160 struct vmcb *vmcb = svm->vmcb; 4161 4162 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4163 goto out; 4164 4165 icpt_info = x86_intercept_map[info->intercept]; 4166 4167 if (stage != icpt_info.stage) 4168 goto out; 4169 4170 switch (icpt_info.exit_code) { 4171 case SVM_EXIT_READ_CR0: 4172 if (info->intercept == x86_intercept_cr_read) 4173 icpt_info.exit_code += info->modrm_reg; 4174 break; 4175 case SVM_EXIT_WRITE_CR0: { 4176 unsigned long cr0, val; 4177 4178 if (info->intercept == x86_intercept_cr_write) 4179 icpt_info.exit_code += info->modrm_reg; 4180 4181 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4182 info->intercept == x86_intercept_clts) 4183 break; 4184 4185 if (!(vmcb_is_intercept(&svm->nested.ctl, 4186 INTERCEPT_SELECTIVE_CR0))) 4187 break; 4188 4189 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4190 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4191 4192 if (info->intercept == x86_intercept_lmsw) { 4193 cr0 &= 0xfUL; 4194 val &= 0xfUL; 4195 /* lmsw can't clear PE - catch this here */ 4196 if (cr0 & X86_CR0_PE) 4197 val |= X86_CR0_PE; 4198 } 4199 4200 if (cr0 ^ val) 4201 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4202 4203 break; 4204 } 4205 case SVM_EXIT_READ_DR0: 4206 case SVM_EXIT_WRITE_DR0: 4207 icpt_info.exit_code += info->modrm_reg; 4208 break; 4209 case SVM_EXIT_MSR: 4210 if (info->intercept == x86_intercept_wrmsr) 4211 vmcb->control.exit_info_1 = 1; 4212 else 4213 vmcb->control.exit_info_1 = 0; 4214 break; 4215 case SVM_EXIT_PAUSE: 4216 /* 4217 * We get this for NOP only, but pause 4218 * is rep not, check this here 4219 */ 4220 if (info->rep_prefix != REPE_PREFIX) 4221 goto out; 4222 break; 4223 case SVM_EXIT_IOIO: { 4224 u64 exit_info; 4225 u32 bytes; 4226 4227 if (info->intercept == x86_intercept_in || 4228 info->intercept == x86_intercept_ins) { 4229 exit_info = ((info->src_val & 0xffff) << 16) | 4230 SVM_IOIO_TYPE_MASK; 4231 bytes = info->dst_bytes; 4232 } else { 4233 exit_info = (info->dst_val & 0xffff) << 16; 4234 bytes = info->src_bytes; 4235 } 4236 4237 if (info->intercept == x86_intercept_outs || 4238 info->intercept == x86_intercept_ins) 4239 exit_info |= SVM_IOIO_STR_MASK; 4240 4241 if (info->rep_prefix) 4242 exit_info |= SVM_IOIO_REP_MASK; 4243 4244 bytes = min(bytes, 4u); 4245 4246 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4247 4248 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4249 4250 vmcb->control.exit_info_1 = exit_info; 4251 vmcb->control.exit_info_2 = info->next_rip; 4252 4253 break; 4254 } 4255 default: 4256 break; 4257 } 4258 4259 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4260 if (static_cpu_has(X86_FEATURE_NRIPS)) 4261 vmcb->control.next_rip = info->next_rip; 4262 vmcb->control.exit_code = icpt_info.exit_code; 4263 vmexit = nested_svm_exit_handled(svm); 4264 4265 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4266 : X86EMUL_CONTINUE; 4267 4268 out: 4269 return ret; 4270 } 4271 4272 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4273 { 4274 } 4275 4276 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4277 { 4278 if (!kvm_pause_in_guest(vcpu->kvm)) 4279 shrink_ple_window(vcpu); 4280 } 4281 4282 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4283 { 4284 /* [63:9] are reserved. */ 4285 vcpu->arch.mcg_cap &= 0x1ff; 4286 } 4287 4288 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4289 { 4290 struct vcpu_svm *svm = to_svm(vcpu); 4291 4292 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4293 if (!gif_set(svm)) 4294 return true; 4295 4296 return is_smm(vcpu); 4297 } 4298 4299 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4300 { 4301 struct vcpu_svm *svm = to_svm(vcpu); 4302 if (svm->nested.nested_run_pending) 4303 return -EBUSY; 4304 4305 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4306 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4307 return -EBUSY; 4308 4309 return !svm_smi_blocked(vcpu); 4310 } 4311 4312 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4313 { 4314 struct vcpu_svm *svm = to_svm(vcpu); 4315 int ret; 4316 4317 if (is_guest_mode(vcpu)) { 4318 /* FED8h - SVM Guest */ 4319 put_smstate(u64, smstate, 0x7ed8, 1); 4320 /* FEE0h - SVM Guest VMCB Physical Address */ 4321 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4322 4323 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4324 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4325 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4326 4327 ret = nested_svm_vmexit(svm); 4328 if (ret) 4329 return ret; 4330 } 4331 return 0; 4332 } 4333 4334 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4335 { 4336 struct vcpu_svm *svm = to_svm(vcpu); 4337 struct kvm_host_map map; 4338 int ret = 0; 4339 4340 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) { 4341 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4342 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8); 4343 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4344 4345 if (guest) { 4346 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4347 return 1; 4348 4349 if (!(saved_efer & EFER_SVME)) 4350 return 1; 4351 4352 if (kvm_vcpu_map(&svm->vcpu, 4353 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4354 return 1; 4355 4356 if (svm_allocate_nested(svm)) 4357 return 1; 4358 4359 ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva); 4360 kvm_vcpu_unmap(&svm->vcpu, &map, true); 4361 } 4362 } 4363 4364 return ret; 4365 } 4366 4367 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4368 { 4369 struct vcpu_svm *svm = to_svm(vcpu); 4370 4371 if (!gif_set(svm)) { 4372 if (vgif_enabled(svm)) 4373 svm_set_intercept(svm, INTERCEPT_STGI); 4374 /* STGI will cause a vm exit */ 4375 } else { 4376 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4377 } 4378 } 4379 4380 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 4381 { 4382 bool smep, smap, is_user; 4383 unsigned long cr4; 4384 4385 /* 4386 * When the guest is an SEV-ES guest, emulation is not possible. 4387 */ 4388 if (sev_es_guest(vcpu->kvm)) 4389 return false; 4390 4391 /* 4392 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4393 * 4394 * Errata: 4395 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is 4396 * possible that CPU microcode implementing DecodeAssist will fail 4397 * to read bytes of instruction which caused #NPF. In this case, 4398 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly 4399 * return 0 instead of the correct guest instruction bytes. 4400 * 4401 * This happens because CPU microcode reading instruction bytes 4402 * uses a special opcode which attempts to read data using CPL=0 4403 * priviledges. The microcode reads CS:RIP and if it hits a SMAP 4404 * fault, it gives up and returns no instruction bytes. 4405 * 4406 * Detection: 4407 * We reach here in case CPU supports DecodeAssist, raised #NPF and 4408 * returned 0 in GuestIntrBytes field of the VMCB. 4409 * First, errata can only be triggered in case vCPU CR4.SMAP=1. 4410 * Second, if vCPU CR4.SMEP=1, errata could only be triggered 4411 * in case vCPU CPL==3 (Because otherwise guest would have triggered 4412 * a SMEP fault instead of #NPF). 4413 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. 4414 * As most guests enable SMAP if they have also enabled SMEP, use above 4415 * logic in order to attempt minimize false-positive of detecting errata 4416 * while still preserving all cases semantic correctness. 4417 * 4418 * Workaround: 4419 * To determine what instruction the guest was executing, the hypervisor 4420 * will have to decode the instruction at the instruction pointer. 4421 * 4422 * In non SEV guest, hypervisor will be able to read the guest 4423 * memory to decode the instruction pointer when insn_len is zero 4424 * so we return true to indicate that decoding is possible. 4425 * 4426 * But in the SEV guest, the guest memory is encrypted with the 4427 * guest specific key and hypervisor will not be able to decode the 4428 * instruction pointer so we will not able to workaround it. Lets 4429 * print the error and request to kill the guest. 4430 */ 4431 if (likely(!insn || insn_len)) 4432 return true; 4433 4434 /* 4435 * If RIP is invalid, go ahead with emulation which will cause an 4436 * internal error exit. 4437 */ 4438 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT)) 4439 return true; 4440 4441 cr4 = kvm_read_cr4(vcpu); 4442 smep = cr4 & X86_CR4_SMEP; 4443 smap = cr4 & X86_CR4_SMAP; 4444 is_user = svm_get_cpl(vcpu) == 3; 4445 if (smap && (!smep || is_user)) { 4446 if (!sev_guest(vcpu->kvm)) 4447 return true; 4448 4449 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4450 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4451 } 4452 4453 return false; 4454 } 4455 4456 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4457 { 4458 struct vcpu_svm *svm = to_svm(vcpu); 4459 4460 /* 4461 * TODO: Last condition latch INIT signals on vCPU when 4462 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4463 * To properly emulate the INIT intercept, 4464 * svm_check_nested_events() should call nested_svm_vmexit() 4465 * if an INIT signal is pending. 4466 */ 4467 return !gif_set(svm) || 4468 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); 4469 } 4470 4471 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4472 { 4473 if (!sev_es_guest(vcpu->kvm)) 4474 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4475 4476 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4477 } 4478 4479 static void svm_vm_destroy(struct kvm *kvm) 4480 { 4481 avic_vm_destroy(kvm); 4482 sev_vm_destroy(kvm); 4483 } 4484 4485 static int svm_vm_init(struct kvm *kvm) 4486 { 4487 if (!pause_filter_count || !pause_filter_thresh) 4488 kvm->arch.pause_in_guest = true; 4489 4490 if (avic) { 4491 int ret = avic_vm_init(kvm); 4492 if (ret) 4493 return ret; 4494 } 4495 4496 kvm_apicv_init(kvm, avic); 4497 return 0; 4498 } 4499 4500 static struct kvm_x86_ops svm_x86_ops __initdata = { 4501 .hardware_unsetup = svm_hardware_teardown, 4502 .hardware_enable = svm_hardware_enable, 4503 .hardware_disable = svm_hardware_disable, 4504 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, 4505 .has_emulated_msr = svm_has_emulated_msr, 4506 4507 .vcpu_create = svm_create_vcpu, 4508 .vcpu_free = svm_free_vcpu, 4509 .vcpu_reset = svm_vcpu_reset, 4510 4511 .vm_size = sizeof(struct kvm_svm), 4512 .vm_init = svm_vm_init, 4513 .vm_destroy = svm_vm_destroy, 4514 4515 .prepare_guest_switch = svm_prepare_guest_switch, 4516 .vcpu_load = svm_vcpu_load, 4517 .vcpu_put = svm_vcpu_put, 4518 .vcpu_blocking = svm_vcpu_blocking, 4519 .vcpu_unblocking = svm_vcpu_unblocking, 4520 4521 .update_exception_bitmap = svm_update_exception_bitmap, 4522 .get_msr_feature = svm_get_msr_feature, 4523 .get_msr = svm_get_msr, 4524 .set_msr = svm_set_msr, 4525 .get_segment_base = svm_get_segment_base, 4526 .get_segment = svm_get_segment, 4527 .set_segment = svm_set_segment, 4528 .get_cpl = svm_get_cpl, 4529 .get_cs_db_l_bits = kvm_get_cs_db_l_bits, 4530 .set_cr0 = svm_set_cr0, 4531 .is_valid_cr4 = svm_is_valid_cr4, 4532 .set_cr4 = svm_set_cr4, 4533 .set_efer = svm_set_efer, 4534 .get_idt = svm_get_idt, 4535 .set_idt = svm_set_idt, 4536 .get_gdt = svm_get_gdt, 4537 .set_gdt = svm_set_gdt, 4538 .set_dr7 = svm_set_dr7, 4539 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4540 .cache_reg = svm_cache_reg, 4541 .get_rflags = svm_get_rflags, 4542 .set_rflags = svm_set_rflags, 4543 4544 .tlb_flush_all = svm_flush_tlb, 4545 .tlb_flush_current = svm_flush_tlb, 4546 .tlb_flush_gva = svm_flush_tlb_gva, 4547 .tlb_flush_guest = svm_flush_tlb, 4548 4549 .run = svm_vcpu_run, 4550 .handle_exit = handle_exit, 4551 .skip_emulated_instruction = skip_emulated_instruction, 4552 .update_emulated_instruction = NULL, 4553 .set_interrupt_shadow = svm_set_interrupt_shadow, 4554 .get_interrupt_shadow = svm_get_interrupt_shadow, 4555 .patch_hypercall = svm_patch_hypercall, 4556 .set_irq = svm_set_irq, 4557 .set_nmi = svm_inject_nmi, 4558 .queue_exception = svm_queue_exception, 4559 .cancel_injection = svm_cancel_injection, 4560 .interrupt_allowed = svm_interrupt_allowed, 4561 .nmi_allowed = svm_nmi_allowed, 4562 .get_nmi_mask = svm_get_nmi_mask, 4563 .set_nmi_mask = svm_set_nmi_mask, 4564 .enable_nmi_window = svm_enable_nmi_window, 4565 .enable_irq_window = svm_enable_irq_window, 4566 .update_cr8_intercept = svm_update_cr8_intercept, 4567 .set_virtual_apic_mode = svm_set_virtual_apic_mode, 4568 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, 4569 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, 4570 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl, 4571 .load_eoi_exitmap = svm_load_eoi_exitmap, 4572 .hwapic_irr_update = svm_hwapic_irr_update, 4573 .hwapic_isr_update = svm_hwapic_isr_update, 4574 .sync_pir_to_irr = kvm_lapic_find_highest_irr, 4575 .apicv_post_state_restore = avic_post_state_restore, 4576 4577 .set_tss_addr = svm_set_tss_addr, 4578 .set_identity_map_addr = svm_set_identity_map_addr, 4579 .get_mt_mask = svm_get_mt_mask, 4580 4581 .get_exit_info = svm_get_exit_info, 4582 4583 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4584 4585 .has_wbinvd_exit = svm_has_wbinvd_exit, 4586 4587 .write_l1_tsc_offset = svm_write_l1_tsc_offset, 4588 4589 .load_mmu_pgd = svm_load_mmu_pgd, 4590 4591 .check_intercept = svm_check_intercept, 4592 .handle_exit_irqoff = svm_handle_exit_irqoff, 4593 4594 .request_immediate_exit = __kvm_request_immediate_exit, 4595 4596 .sched_in = svm_sched_in, 4597 4598 .pmu_ops = &amd_pmu_ops, 4599 .nested_ops = &svm_nested_ops, 4600 4601 .deliver_posted_interrupt = svm_deliver_avic_intr, 4602 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, 4603 .update_pi_irte = svm_update_pi_irte, 4604 .setup_mce = svm_setup_mce, 4605 4606 .smi_allowed = svm_smi_allowed, 4607 .pre_enter_smm = svm_pre_enter_smm, 4608 .pre_leave_smm = svm_pre_leave_smm, 4609 .enable_smi_window = svm_enable_smi_window, 4610 4611 .mem_enc_op = svm_mem_enc_op, 4612 .mem_enc_reg_region = svm_register_enc_region, 4613 .mem_enc_unreg_region = svm_unregister_enc_region, 4614 4615 .can_emulate_instruction = svm_can_emulate_instruction, 4616 4617 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4618 4619 .msr_filter_changed = svm_msr_filter_changed, 4620 .complete_emulated_msr = svm_complete_emulated_msr, 4621 4622 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4623 }; 4624 4625 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4626 .cpu_has_kvm_support = has_svm, 4627 .disabled_by_bios = is_disabled, 4628 .hardware_setup = svm_hardware_setup, 4629 .check_processor_compatibility = svm_check_processor_compat, 4630 4631 .runtime_ops = &svm_x86_ops, 4632 }; 4633 4634 static int __init svm_init(void) 4635 { 4636 __unused_size_checks(); 4637 4638 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4639 __alignof__(struct vcpu_svm), THIS_MODULE); 4640 } 4641 4642 static void __exit svm_exit(void) 4643 { 4644 kvm_exit(); 4645 } 4646 4647 module_init(svm_init) 4648 module_exit(svm_exit) 4649