xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision 519b58bb)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 #include <linux/cc_platform.h>
29 
30 #include <asm/apic.h>
31 #include <asm/perf_event.h>
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/debugreg.h>
35 #include <asm/kvm_para.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 #include <asm/traps.h>
40 #include <asm/fpu/api.h>
41 
42 #include <asm/virtext.h>
43 #include "trace.h"
44 
45 #include "svm.h"
46 #include "svm_ops.h"
47 
48 #include "kvm_onhyperv.h"
49 #include "svm_onhyperv.h"
50 
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53 
54 #ifdef MODULE
55 static const struct x86_cpu_id svm_cpu_id[] = {
56 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
57 	{}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
60 #endif
61 
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64 
65 static bool erratum_383_found __read_mostly;
66 
67 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
68 
69 /*
70  * Set osvw_len to higher value when updated Revision Guides
71  * are published and we know what the new status bits are
72  */
73 static uint64_t osvw_len = 4, osvw_status;
74 
75 static DEFINE_PER_CPU(u64, current_tsc_ratio);
76 
77 #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
78 
79 static const struct svm_direct_access_msrs {
80 	u32 index;   /* Index of the MSR */
81 	bool always; /* True if intercept is initially cleared */
82 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
83 	{ .index = MSR_STAR,				.always = true  },
84 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
85 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
86 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
87 #ifdef CONFIG_X86_64
88 	{ .index = MSR_GS_BASE,				.always = true  },
89 	{ .index = MSR_FS_BASE,				.always = true  },
90 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
91 	{ .index = MSR_LSTAR,				.always = true  },
92 	{ .index = MSR_CSTAR,				.always = true  },
93 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
94 #endif
95 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
96 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
97 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
98 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
99 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
100 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
101 	{ .index = MSR_EFER,				.always = false },
102 	{ .index = MSR_IA32_CR_PAT,			.always = false },
103 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
104 	{ .index = MSR_TSC_AUX,				.always = false },
105 	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
106 	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
107 	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
108 	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
109 	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
110 	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
111 	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
112 	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
113 	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
114 	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
115 	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
116 	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
117 	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
118 	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
119 	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
120 	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
121 
122 	/*
123 	 * Note:
124 	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
125 	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
126 	 * the AVIC hardware would generate GP fault. Therefore, always
127 	 * intercept the MSR 0x832, and do not setup direct_access_msr.
128 	 */
129 	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
130 	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
131 	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
132 	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
133 	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
134 	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
135 	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
136 	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
137 	{ .index = MSR_INVALID,				.always = false },
138 };
139 
140 /*
141  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
142  * pause_filter_count: On processors that support Pause filtering(indicated
143  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
144  *	count value. On VMRUN this value is loaded into an internal counter.
145  *	Each time a pause instruction is executed, this counter is decremented
146  *	until it reaches zero at which time a #VMEXIT is generated if pause
147  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
148  *	Intercept Filtering for more details.
149  *	This also indicate if ple logic enabled.
150  *
151  * pause_filter_thresh: In addition, some processor families support advanced
152  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
153  *	the amount of time a guest is allowed to execute in a pause loop.
154  *	In this mode, a 16-bit pause filter threshold field is added in the
155  *	VMCB. The threshold value is a cycle count that is used to reset the
156  *	pause counter. As with simple pause filtering, VMRUN loads the pause
157  *	count value from VMCB into an internal counter. Then, on each pause
158  *	instruction the hardware checks the elapsed number of cycles since
159  *	the most recent pause instruction against the pause filter threshold.
160  *	If the elapsed cycle count is greater than the pause filter threshold,
161  *	then the internal pause count is reloaded from the VMCB and execution
162  *	continues. If the elapsed cycle count is less than the pause filter
163  *	threshold, then the internal pause count is decremented. If the count
164  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
165  *	triggered. If advanced pause filtering is supported and pause filter
166  *	threshold field is set to zero, the filter will operate in the simpler,
167  *	count only mode.
168  */
169 
170 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
171 module_param(pause_filter_thresh, ushort, 0444);
172 
173 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
174 module_param(pause_filter_count, ushort, 0444);
175 
176 /* Default doubles per-vcpu window every exit. */
177 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
178 module_param(pause_filter_count_grow, ushort, 0444);
179 
180 /* Default resets per-vcpu window every exit to pause_filter_count. */
181 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
182 module_param(pause_filter_count_shrink, ushort, 0444);
183 
184 /* Default is to compute the maximum so we can never overflow. */
185 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
186 module_param(pause_filter_count_max, ushort, 0444);
187 
188 /*
189  * Use nested page tables by default.  Note, NPT may get forced off by
190  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
191  */
192 bool npt_enabled = true;
193 module_param_named(npt, npt_enabled, bool, 0444);
194 
195 /* allow nested virtualization in KVM/SVM */
196 static int nested = true;
197 module_param(nested, int, S_IRUGO);
198 
199 /* enable/disable Next RIP Save */
200 static int nrips = true;
201 module_param(nrips, int, 0444);
202 
203 /* enable/disable Virtual VMLOAD VMSAVE */
204 static int vls = true;
205 module_param(vls, int, 0444);
206 
207 /* enable/disable Virtual GIF */
208 int vgif = true;
209 module_param(vgif, int, 0444);
210 
211 /* enable/disable LBR virtualization */
212 static int lbrv = true;
213 module_param(lbrv, int, 0444);
214 
215 static int tsc_scaling = true;
216 module_param(tsc_scaling, int, 0444);
217 
218 /*
219  * enable / disable AVIC.  Because the defaults differ for APICv
220  * support between VMX and SVM we cannot use module_param_named.
221  */
222 static bool avic;
223 module_param(avic, bool, 0444);
224 
225 bool __read_mostly dump_invalid_vmcb;
226 module_param(dump_invalid_vmcb, bool, 0644);
227 
228 
229 bool intercept_smi = true;
230 module_param(intercept_smi, bool, 0444);
231 
232 
233 static bool svm_gp_erratum_intercept = true;
234 
235 static u8 rsm_ins_bytes[] = "\x0f\xaa";
236 
237 static unsigned long iopm_base;
238 
239 struct kvm_ldttss_desc {
240 	u16 limit0;
241 	u16 base0;
242 	unsigned base1:8, type:5, dpl:2, p:1;
243 	unsigned limit1:4, zero0:3, g:1, base2:8;
244 	u32 base3;
245 	u32 zero1;
246 } __attribute__((packed));
247 
248 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
249 
250 /*
251  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
252  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
253  *
254  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
255  * defer the restoration of TSC_AUX until the CPU returns to userspace.
256  */
257 static int tsc_aux_uret_slot __read_mostly = -1;
258 
259 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
260 
261 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
262 #define MSRS_RANGE_SIZE 2048
263 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
264 
265 u32 svm_msrpm_offset(u32 msr)
266 {
267 	u32 offset;
268 	int i;
269 
270 	for (i = 0; i < NUM_MSR_MAPS; i++) {
271 		if (msr < msrpm_ranges[i] ||
272 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
273 			continue;
274 
275 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
276 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
277 
278 		/* Now we have the u8 offset - but need the u32 offset */
279 		return offset / 4;
280 	}
281 
282 	/* MSR not in any range */
283 	return MSR_INVALID;
284 }
285 
286 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
287 
288 static int get_npt_level(void)
289 {
290 #ifdef CONFIG_X86_64
291 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
292 #else
293 	return PT32E_ROOT_LEVEL;
294 #endif
295 }
296 
297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
298 {
299 	struct vcpu_svm *svm = to_svm(vcpu);
300 	u64 old_efer = vcpu->arch.efer;
301 	vcpu->arch.efer = efer;
302 
303 	if (!npt_enabled) {
304 		/* Shadow paging assumes NX to be available.  */
305 		efer |= EFER_NX;
306 
307 		if (!(efer & EFER_LMA))
308 			efer &= ~EFER_LME;
309 	}
310 
311 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
312 		if (!(efer & EFER_SVME)) {
313 			svm_leave_nested(vcpu);
314 			svm_set_gif(svm, true);
315 			/* #GP intercept is still needed for vmware backdoor */
316 			if (!enable_vmware_backdoor)
317 				clr_exception_intercept(svm, GP_VECTOR);
318 
319 			/*
320 			 * Free the nested guest state, unless we are in SMM.
321 			 * In this case we will return to the nested guest
322 			 * as soon as we leave SMM.
323 			 */
324 			if (!is_smm(vcpu))
325 				svm_free_nested(svm);
326 
327 		} else {
328 			int ret = svm_allocate_nested(svm);
329 
330 			if (ret) {
331 				vcpu->arch.efer = old_efer;
332 				return ret;
333 			}
334 
335 			/*
336 			 * Never intercept #GP for SEV guests, KVM can't
337 			 * decrypt guest memory to workaround the erratum.
338 			 */
339 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
340 				set_exception_intercept(svm, GP_VECTOR);
341 		}
342 	}
343 
344 	svm->vmcb->save.efer = efer | EFER_SVME;
345 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
346 	return 0;
347 }
348 
349 static int is_external_interrupt(u32 info)
350 {
351 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
352 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
353 }
354 
355 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
356 {
357 	struct vcpu_svm *svm = to_svm(vcpu);
358 	u32 ret = 0;
359 
360 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
361 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
362 	return ret;
363 }
364 
365 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
366 {
367 	struct vcpu_svm *svm = to_svm(vcpu);
368 
369 	if (mask == 0)
370 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
371 	else
372 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
373 
374 }
375 
376 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
377 					   bool commit_side_effects)
378 {
379 	struct vcpu_svm *svm = to_svm(vcpu);
380 	unsigned long old_rflags;
381 
382 	/*
383 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
384 	 * the type of exit and the #VC handler in the guest.
385 	 */
386 	if (sev_es_guest(vcpu->kvm))
387 		goto done;
388 
389 	if (nrips && svm->vmcb->control.next_rip != 0) {
390 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
391 		svm->next_rip = svm->vmcb->control.next_rip;
392 	}
393 
394 	if (!svm->next_rip) {
395 		if (unlikely(!commit_side_effects))
396 			old_rflags = svm->vmcb->save.rflags;
397 
398 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
399 			return 0;
400 
401 		if (unlikely(!commit_side_effects))
402 			svm->vmcb->save.rflags = old_rflags;
403 	} else {
404 		kvm_rip_write(vcpu, svm->next_rip);
405 	}
406 
407 done:
408 	if (likely(commit_side_effects))
409 		svm_set_interrupt_shadow(vcpu, 0);
410 
411 	return 1;
412 }
413 
414 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
415 {
416 	return __svm_skip_emulated_instruction(vcpu, true);
417 }
418 
419 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
420 {
421 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
422 	struct vcpu_svm *svm = to_svm(vcpu);
423 
424 	/*
425 	 * Due to architectural shortcomings, the CPU doesn't always provide
426 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
427 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
428 	 * the instruction even if NextRIP is supported to acquire the next
429 	 * RIP so that it can be shoved into the NextRIP field, otherwise
430 	 * hardware will fail to advance guest RIP during event injection.
431 	 * Drop the exception/interrupt if emulation fails and effectively
432 	 * retry the instruction, it's the least awful option.  If NRIPS is
433 	 * in use, the skip must not commit any side effects such as clearing
434 	 * the interrupt shadow or RFLAGS.RF.
435 	 */
436 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
437 		return -EIO;
438 
439 	rip = kvm_rip_read(vcpu);
440 
441 	/*
442 	 * Save the injection information, even when using next_rip, as the
443 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
444 	 * doesn't complete due to a VM-Exit occurring while the CPU is
445 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
446 	 * work as there may be no backing instruction, e.g. if the event is
447 	 * being injected by L1 for L2, or if the guest is patching INT3 into
448 	 * a different instruction.
449 	 */
450 	svm->soft_int_injected = true;
451 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
452 	svm->soft_int_old_rip = old_rip;
453 	svm->soft_int_next_rip = rip;
454 
455 	if (nrips)
456 		kvm_rip_write(vcpu, old_rip);
457 
458 	if (static_cpu_has(X86_FEATURE_NRIPS))
459 		svm->vmcb->control.next_rip = rip;
460 
461 	return 0;
462 }
463 
464 static void svm_inject_exception(struct kvm_vcpu *vcpu)
465 {
466 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
467 	struct vcpu_svm *svm = to_svm(vcpu);
468 
469 	kvm_deliver_exception_payload(vcpu, ex);
470 
471 	if (kvm_exception_is_soft(ex->vector) &&
472 	    svm_update_soft_interrupt_rip(vcpu))
473 		return;
474 
475 	svm->vmcb->control.event_inj = ex->vector
476 		| SVM_EVTINJ_VALID
477 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
478 		| SVM_EVTINJ_TYPE_EXEPT;
479 	svm->vmcb->control.event_inj_err = ex->error_code;
480 }
481 
482 static void svm_init_erratum_383(void)
483 {
484 	u32 low, high;
485 	int err;
486 	u64 val;
487 
488 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
489 		return;
490 
491 	/* Use _safe variants to not break nested virtualization */
492 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
493 	if (err)
494 		return;
495 
496 	val |= (1ULL << 47);
497 
498 	low  = lower_32_bits(val);
499 	high = upper_32_bits(val);
500 
501 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
502 
503 	erratum_383_found = true;
504 }
505 
506 static void svm_init_osvw(struct kvm_vcpu *vcpu)
507 {
508 	/*
509 	 * Guests should see errata 400 and 415 as fixed (assuming that
510 	 * HLT and IO instructions are intercepted).
511 	 */
512 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
513 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
514 
515 	/*
516 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
517 	 * all osvw.status bits inside that length, including bit 0 (which is
518 	 * reserved for erratum 298), are valid. However, if host processor's
519 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
520 	 * be conservative here and therefore we tell the guest that erratum 298
521 	 * is present (because we really don't know).
522 	 */
523 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
524 		vcpu->arch.osvw.status |= 1;
525 }
526 
527 static int has_svm(void)
528 {
529 	const char *msg;
530 
531 	if (!cpu_has_svm(&msg)) {
532 		printk(KERN_INFO "has_svm: %s\n", msg);
533 		return 0;
534 	}
535 
536 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
537 		pr_info("KVM is unsupported when running as an SEV guest\n");
538 		return 0;
539 	}
540 
541 	return 1;
542 }
543 
544 void __svm_write_tsc_multiplier(u64 multiplier)
545 {
546 	preempt_disable();
547 
548 	if (multiplier == __this_cpu_read(current_tsc_ratio))
549 		goto out;
550 
551 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
552 	__this_cpu_write(current_tsc_ratio, multiplier);
553 out:
554 	preempt_enable();
555 }
556 
557 static void svm_hardware_disable(void)
558 {
559 	/* Make sure we clean up behind us */
560 	if (tsc_scaling)
561 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
562 
563 	cpu_svm_disable();
564 
565 	amd_pmu_disable_virt();
566 }
567 
568 static int svm_hardware_enable(void)
569 {
570 
571 	struct svm_cpu_data *sd;
572 	uint64_t efer;
573 	struct desc_struct *gdt;
574 	int me = raw_smp_processor_id();
575 
576 	rdmsrl(MSR_EFER, efer);
577 	if (efer & EFER_SVME)
578 		return -EBUSY;
579 
580 	if (!has_svm()) {
581 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
582 		return -EINVAL;
583 	}
584 	sd = per_cpu(svm_data, me);
585 	if (!sd) {
586 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
587 		return -EINVAL;
588 	}
589 
590 	sd->asid_generation = 1;
591 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
592 	sd->next_asid = sd->max_asid + 1;
593 	sd->min_asid = max_sev_asid + 1;
594 
595 	gdt = get_current_gdt_rw();
596 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
597 
598 	wrmsrl(MSR_EFER, efer | EFER_SVME);
599 
600 	wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
601 
602 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
603 		/*
604 		 * Set the default value, even if we don't use TSC scaling
605 		 * to avoid having stale value in the msr
606 		 */
607 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
608 	}
609 
610 
611 	/*
612 	 * Get OSVW bits.
613 	 *
614 	 * Note that it is possible to have a system with mixed processor
615 	 * revisions and therefore different OSVW bits. If bits are not the same
616 	 * on different processors then choose the worst case (i.e. if erratum
617 	 * is present on one processor and not on another then assume that the
618 	 * erratum is present everywhere).
619 	 */
620 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
621 		uint64_t len, status = 0;
622 		int err;
623 
624 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
625 		if (!err)
626 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
627 						      &err);
628 
629 		if (err)
630 			osvw_status = osvw_len = 0;
631 		else {
632 			if (len < osvw_len)
633 				osvw_len = len;
634 			osvw_status |= status;
635 			osvw_status &= (1ULL << osvw_len) - 1;
636 		}
637 	} else
638 		osvw_status = osvw_len = 0;
639 
640 	svm_init_erratum_383();
641 
642 	amd_pmu_enable_virt();
643 
644 	return 0;
645 }
646 
647 static void svm_cpu_uninit(int cpu)
648 {
649 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
650 
651 	if (!sd)
652 		return;
653 
654 	per_cpu(svm_data, cpu) = NULL;
655 	kfree(sd->sev_vmcbs);
656 	__free_page(sd->save_area);
657 	kfree(sd);
658 }
659 
660 static int svm_cpu_init(int cpu)
661 {
662 	struct svm_cpu_data *sd;
663 	int ret = -ENOMEM;
664 
665 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
666 	if (!sd)
667 		return ret;
668 	sd->cpu = cpu;
669 	sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
670 	if (!sd->save_area)
671 		goto free_cpu_data;
672 
673 	ret = sev_cpu_init(sd);
674 	if (ret)
675 		goto free_save_area;
676 
677 	per_cpu(svm_data, cpu) = sd;
678 
679 	return 0;
680 
681 free_save_area:
682 	__free_page(sd->save_area);
683 free_cpu_data:
684 	kfree(sd);
685 	return ret;
686 
687 }
688 
689 static int direct_access_msr_slot(u32 msr)
690 {
691 	u32 i;
692 
693 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
694 		if (direct_access_msrs[i].index == msr)
695 			return i;
696 
697 	return -ENOENT;
698 }
699 
700 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
701 				     int write)
702 {
703 	struct vcpu_svm *svm = to_svm(vcpu);
704 	int slot = direct_access_msr_slot(msr);
705 
706 	if (slot == -ENOENT)
707 		return;
708 
709 	/* Set the shadow bitmaps to the desired intercept states */
710 	if (read)
711 		set_bit(slot, svm->shadow_msr_intercept.read);
712 	else
713 		clear_bit(slot, svm->shadow_msr_intercept.read);
714 
715 	if (write)
716 		set_bit(slot, svm->shadow_msr_intercept.write);
717 	else
718 		clear_bit(slot, svm->shadow_msr_intercept.write);
719 }
720 
721 static bool valid_msr_intercept(u32 index)
722 {
723 	return direct_access_msr_slot(index) != -ENOENT;
724 }
725 
726 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
727 {
728 	u8 bit_write;
729 	unsigned long tmp;
730 	u32 offset;
731 	u32 *msrpm;
732 
733 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
734 				      to_svm(vcpu)->msrpm;
735 
736 	offset    = svm_msrpm_offset(msr);
737 	bit_write = 2 * (msr & 0x0f) + 1;
738 	tmp       = msrpm[offset];
739 
740 	BUG_ON(offset == MSR_INVALID);
741 
742 	return !!test_bit(bit_write,  &tmp);
743 }
744 
745 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
746 					u32 msr, int read, int write)
747 {
748 	struct vcpu_svm *svm = to_svm(vcpu);
749 	u8 bit_read, bit_write;
750 	unsigned long tmp;
751 	u32 offset;
752 
753 	/*
754 	 * If this warning triggers extend the direct_access_msrs list at the
755 	 * beginning of the file
756 	 */
757 	WARN_ON(!valid_msr_intercept(msr));
758 
759 	/* Enforce non allowed MSRs to trap */
760 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
761 		read = 0;
762 
763 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
764 		write = 0;
765 
766 	offset    = svm_msrpm_offset(msr);
767 	bit_read  = 2 * (msr & 0x0f);
768 	bit_write = 2 * (msr & 0x0f) + 1;
769 	tmp       = msrpm[offset];
770 
771 	BUG_ON(offset == MSR_INVALID);
772 
773 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
774 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
775 
776 	msrpm[offset] = tmp;
777 
778 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
779 	svm->nested.force_msr_bitmap_recalc = true;
780 }
781 
782 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
783 			  int read, int write)
784 {
785 	set_shadow_msr_intercept(vcpu, msr, read, write);
786 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
787 }
788 
789 u32 *svm_vcpu_alloc_msrpm(void)
790 {
791 	unsigned int order = get_order(MSRPM_SIZE);
792 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
793 	u32 *msrpm;
794 
795 	if (!pages)
796 		return NULL;
797 
798 	msrpm = page_address(pages);
799 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
800 
801 	return msrpm;
802 }
803 
804 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
805 {
806 	int i;
807 
808 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
809 		if (!direct_access_msrs[i].always)
810 			continue;
811 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
812 	}
813 }
814 
815 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
816 {
817 	int i;
818 
819 	if (intercept == svm->x2avic_msrs_intercepted)
820 		return;
821 
822 	if (avic_mode != AVIC_MODE_X2 ||
823 	    !apic_x2apic_mode(svm->vcpu.arch.apic))
824 		return;
825 
826 	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
827 		int index = direct_access_msrs[i].index;
828 
829 		if ((index < APIC_BASE_MSR) ||
830 		    (index > APIC_BASE_MSR + 0xff))
831 			continue;
832 		set_msr_interception(&svm->vcpu, svm->msrpm, index,
833 				     !intercept, !intercept);
834 	}
835 
836 	svm->x2avic_msrs_intercepted = intercept;
837 }
838 
839 void svm_vcpu_free_msrpm(u32 *msrpm)
840 {
841 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
842 }
843 
844 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
845 {
846 	struct vcpu_svm *svm = to_svm(vcpu);
847 	u32 i;
848 
849 	/*
850 	 * Set intercept permissions for all direct access MSRs again. They
851 	 * will automatically get filtered through the MSR filter, so we are
852 	 * back in sync after this.
853 	 */
854 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
855 		u32 msr = direct_access_msrs[i].index;
856 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
857 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
858 
859 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
860 	}
861 }
862 
863 static void add_msr_offset(u32 offset)
864 {
865 	int i;
866 
867 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
868 
869 		/* Offset already in list? */
870 		if (msrpm_offsets[i] == offset)
871 			return;
872 
873 		/* Slot used by another offset? */
874 		if (msrpm_offsets[i] != MSR_INVALID)
875 			continue;
876 
877 		/* Add offset to list */
878 		msrpm_offsets[i] = offset;
879 
880 		return;
881 	}
882 
883 	/*
884 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
885 	 * increase MSRPM_OFFSETS in this case.
886 	 */
887 	BUG();
888 }
889 
890 static void init_msrpm_offsets(void)
891 {
892 	int i;
893 
894 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
895 
896 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
897 		u32 offset;
898 
899 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
900 		BUG_ON(offset == MSR_INVALID);
901 
902 		add_msr_offset(offset);
903 	}
904 }
905 
906 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
907 {
908 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
909 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
910 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
911 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
912 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
913 
914 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
915 }
916 
917 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
918 {
919 	struct vcpu_svm *svm = to_svm(vcpu);
920 
921 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
922 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
923 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
924 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
925 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
926 
927 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
928 	if (is_guest_mode(vcpu))
929 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
930 }
931 
932 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
933 {
934 	struct vcpu_svm *svm = to_svm(vcpu);
935 
936 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
937 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
938 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
939 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
940 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
941 
942 	/*
943 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
944 	 * on nested guest entries.
945 	 */
946 	if (is_guest_mode(vcpu))
947 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
948 }
949 
950 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
951 {
952 	/*
953 	 * If the LBR virtualization is disabled, the LBR msrs are always
954 	 * kept in the vmcb01 to avoid copying them on nested guest entries.
955 	 *
956 	 * If nested, and the LBR virtualization is enabled/disabled, the msrs
957 	 * are moved between the vmcb01 and vmcb02 as needed.
958 	 */
959 	struct vmcb *vmcb =
960 		(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
961 			svm->vmcb : svm->vmcb01.ptr;
962 
963 	switch (index) {
964 	case MSR_IA32_DEBUGCTLMSR:
965 		return vmcb->save.dbgctl;
966 	case MSR_IA32_LASTBRANCHFROMIP:
967 		return vmcb->save.br_from;
968 	case MSR_IA32_LASTBRANCHTOIP:
969 		return vmcb->save.br_to;
970 	case MSR_IA32_LASTINTFROMIP:
971 		return vmcb->save.last_excp_from;
972 	case MSR_IA32_LASTINTTOIP:
973 		return vmcb->save.last_excp_to;
974 	default:
975 		KVM_BUG(false, svm->vcpu.kvm,
976 			"%s: Unknown MSR 0x%x", __func__, index);
977 		return 0;
978 	}
979 }
980 
981 void svm_update_lbrv(struct kvm_vcpu *vcpu)
982 {
983 	struct vcpu_svm *svm = to_svm(vcpu);
984 
985 	bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
986 					   DEBUGCTLMSR_LBR;
987 
988 	bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
989 				      LBR_CTL_ENABLE_MASK);
990 
991 	if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
992 		if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
993 			enable_lbrv = true;
994 
995 	if (enable_lbrv == current_enable_lbrv)
996 		return;
997 
998 	if (enable_lbrv)
999 		svm_enable_lbrv(vcpu);
1000 	else
1001 		svm_disable_lbrv(vcpu);
1002 }
1003 
1004 void disable_nmi_singlestep(struct vcpu_svm *svm)
1005 {
1006 	svm->nmi_singlestep = false;
1007 
1008 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1009 		/* Clear our flags if they were not set by the guest */
1010 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1011 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1012 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1013 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1014 	}
1015 }
1016 
1017 static void grow_ple_window(struct kvm_vcpu *vcpu)
1018 {
1019 	struct vcpu_svm *svm = to_svm(vcpu);
1020 	struct vmcb_control_area *control = &svm->vmcb->control;
1021 	int old = control->pause_filter_count;
1022 
1023 	if (kvm_pause_in_guest(vcpu->kvm))
1024 		return;
1025 
1026 	control->pause_filter_count = __grow_ple_window(old,
1027 							pause_filter_count,
1028 							pause_filter_count_grow,
1029 							pause_filter_count_max);
1030 
1031 	if (control->pause_filter_count != old) {
1032 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1033 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1034 					    control->pause_filter_count, old);
1035 	}
1036 }
1037 
1038 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1039 {
1040 	struct vcpu_svm *svm = to_svm(vcpu);
1041 	struct vmcb_control_area *control = &svm->vmcb->control;
1042 	int old = control->pause_filter_count;
1043 
1044 	if (kvm_pause_in_guest(vcpu->kvm))
1045 		return;
1046 
1047 	control->pause_filter_count =
1048 				__shrink_ple_window(old,
1049 						    pause_filter_count,
1050 						    pause_filter_count_shrink,
1051 						    pause_filter_count);
1052 	if (control->pause_filter_count != old) {
1053 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1054 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1055 					    control->pause_filter_count, old);
1056 	}
1057 }
1058 
1059 static void svm_hardware_unsetup(void)
1060 {
1061 	int cpu;
1062 
1063 	sev_hardware_unsetup();
1064 
1065 	for_each_possible_cpu(cpu)
1066 		svm_cpu_uninit(cpu);
1067 
1068 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1069 	get_order(IOPM_SIZE));
1070 	iopm_base = 0;
1071 }
1072 
1073 static void init_seg(struct vmcb_seg *seg)
1074 {
1075 	seg->selector = 0;
1076 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1077 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1078 	seg->limit = 0xffff;
1079 	seg->base = 0;
1080 }
1081 
1082 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1083 {
1084 	seg->selector = 0;
1085 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1086 	seg->limit = 0xffff;
1087 	seg->base = 0;
1088 }
1089 
1090 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1091 {
1092 	struct vcpu_svm *svm = to_svm(vcpu);
1093 
1094 	return svm->nested.ctl.tsc_offset;
1095 }
1096 
1097 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1098 {
1099 	struct vcpu_svm *svm = to_svm(vcpu);
1100 
1101 	return svm->tsc_ratio_msr;
1102 }
1103 
1104 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1105 {
1106 	struct vcpu_svm *svm = to_svm(vcpu);
1107 
1108 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1109 	svm->vmcb->control.tsc_offset = offset;
1110 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1111 }
1112 
1113 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1114 {
1115 	__svm_write_tsc_multiplier(multiplier);
1116 }
1117 
1118 
1119 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1120 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1121 					      struct vcpu_svm *svm)
1122 {
1123 	/*
1124 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1125 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1126 	 */
1127 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1128 		if (!npt_enabled ||
1129 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1130 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1131 		else
1132 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1133 	}
1134 
1135 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1136 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1137 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1138 		else
1139 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1140 	}
1141 }
1142 
1143 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1144 {
1145 	struct vcpu_svm *svm = to_svm(vcpu);
1146 
1147 	if (guest_cpuid_is_intel(vcpu)) {
1148 		/*
1149 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1150 		 * accesses because the processor only stores 32 bits.
1151 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1152 		 */
1153 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1154 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1155 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1156 
1157 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1158 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1159 
1160 		svm->v_vmload_vmsave_enabled = false;
1161 	} else {
1162 		/*
1163 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1164 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1165 		 */
1166 		if (vls) {
1167 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1168 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1169 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1170 		}
1171 		/* No need to intercept these MSRs */
1172 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1173 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1174 	}
1175 }
1176 
1177 static void init_vmcb(struct kvm_vcpu *vcpu)
1178 {
1179 	struct vcpu_svm *svm = to_svm(vcpu);
1180 	struct vmcb *vmcb = svm->vmcb01.ptr;
1181 	struct vmcb_control_area *control = &vmcb->control;
1182 	struct vmcb_save_area *save = &vmcb->save;
1183 
1184 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1185 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1186 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1187 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1188 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1189 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1190 	if (!kvm_vcpu_apicv_active(vcpu))
1191 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1192 
1193 	set_dr_intercepts(svm);
1194 
1195 	set_exception_intercept(svm, PF_VECTOR);
1196 	set_exception_intercept(svm, UD_VECTOR);
1197 	set_exception_intercept(svm, MC_VECTOR);
1198 	set_exception_intercept(svm, AC_VECTOR);
1199 	set_exception_intercept(svm, DB_VECTOR);
1200 	/*
1201 	 * Guest access to VMware backdoor ports could legitimately
1202 	 * trigger #GP because of TSS I/O permission bitmap.
1203 	 * We intercept those #GP and allow access to them anyway
1204 	 * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
1205 	 * decrypt guest memory to decode the faulting instruction.
1206 	 */
1207 	if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1208 		set_exception_intercept(svm, GP_VECTOR);
1209 
1210 	svm_set_intercept(svm, INTERCEPT_INTR);
1211 	svm_set_intercept(svm, INTERCEPT_NMI);
1212 
1213 	if (intercept_smi)
1214 		svm_set_intercept(svm, INTERCEPT_SMI);
1215 
1216 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1217 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1218 	svm_set_intercept(svm, INTERCEPT_CPUID);
1219 	svm_set_intercept(svm, INTERCEPT_INVD);
1220 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1221 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1222 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1223 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1224 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1225 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1226 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1227 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1228 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1229 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1230 	svm_set_intercept(svm, INTERCEPT_STGI);
1231 	svm_set_intercept(svm, INTERCEPT_CLGI);
1232 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1233 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1234 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1235 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1236 	svm_set_intercept(svm, INTERCEPT_RSM);
1237 
1238 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1239 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1240 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1241 	}
1242 
1243 	if (!kvm_hlt_in_guest(vcpu->kvm))
1244 		svm_set_intercept(svm, INTERCEPT_HLT);
1245 
1246 	control->iopm_base_pa = __sme_set(iopm_base);
1247 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1248 	control->int_ctl = V_INTR_MASKING_MASK;
1249 
1250 	init_seg(&save->es);
1251 	init_seg(&save->ss);
1252 	init_seg(&save->ds);
1253 	init_seg(&save->fs);
1254 	init_seg(&save->gs);
1255 
1256 	save->cs.selector = 0xf000;
1257 	save->cs.base = 0xffff0000;
1258 	/* Executable/Readable Code Segment */
1259 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1260 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1261 	save->cs.limit = 0xffff;
1262 
1263 	save->gdtr.base = 0;
1264 	save->gdtr.limit = 0xffff;
1265 	save->idtr.base = 0;
1266 	save->idtr.limit = 0xffff;
1267 
1268 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1269 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1270 
1271 	if (npt_enabled) {
1272 		/* Setup VMCB for Nested Paging */
1273 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1274 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1275 		clr_exception_intercept(svm, PF_VECTOR);
1276 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1277 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1278 		save->g_pat = vcpu->arch.pat;
1279 		save->cr3 = 0;
1280 	}
1281 	svm->current_vmcb->asid_generation = 0;
1282 	svm->asid = 0;
1283 
1284 	svm->nested.vmcb12_gpa = INVALID_GPA;
1285 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1286 
1287 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1288 		control->pause_filter_count = pause_filter_count;
1289 		if (pause_filter_thresh)
1290 			control->pause_filter_thresh = pause_filter_thresh;
1291 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1292 	} else {
1293 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1294 	}
1295 
1296 	svm_recalc_instruction_intercepts(vcpu, svm);
1297 
1298 	/*
1299 	 * If the host supports V_SPEC_CTRL then disable the interception
1300 	 * of MSR_IA32_SPEC_CTRL.
1301 	 */
1302 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1303 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1304 
1305 	if (kvm_vcpu_apicv_active(vcpu))
1306 		avic_init_vmcb(svm, vmcb);
1307 
1308 	if (vgif) {
1309 		svm_clr_intercept(svm, INTERCEPT_STGI);
1310 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1311 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1312 	}
1313 
1314 	if (sev_guest(vcpu->kvm))
1315 		sev_init_vmcb(svm);
1316 
1317 	svm_hv_init_vmcb(vmcb);
1318 	init_vmcb_after_set_cpuid(vcpu);
1319 
1320 	vmcb_mark_all_dirty(vmcb);
1321 
1322 	enable_gif(svm);
1323 }
1324 
1325 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1326 {
1327 	struct vcpu_svm *svm = to_svm(vcpu);
1328 
1329 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1330 
1331 	svm_init_osvw(vcpu);
1332 	vcpu->arch.microcode_version = 0x01000065;
1333 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1334 
1335 	if (sev_es_guest(vcpu->kvm))
1336 		sev_es_vcpu_reset(svm);
1337 }
1338 
1339 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1340 {
1341 	struct vcpu_svm *svm = to_svm(vcpu);
1342 
1343 	svm->spec_ctrl = 0;
1344 	svm->virt_spec_ctrl = 0;
1345 
1346 	init_vmcb(vcpu);
1347 
1348 	if (!init_event)
1349 		__svm_vcpu_reset(vcpu);
1350 }
1351 
1352 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1353 {
1354 	svm->current_vmcb = target_vmcb;
1355 	svm->vmcb = target_vmcb->ptr;
1356 }
1357 
1358 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1359 {
1360 	struct vcpu_svm *svm;
1361 	struct page *vmcb01_page;
1362 	struct page *vmsa_page = NULL;
1363 	int err;
1364 
1365 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1366 	svm = to_svm(vcpu);
1367 
1368 	err = -ENOMEM;
1369 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1370 	if (!vmcb01_page)
1371 		goto out;
1372 
1373 	if (sev_es_guest(vcpu->kvm)) {
1374 		/*
1375 		 * SEV-ES guests require a separate VMSA page used to contain
1376 		 * the encrypted register state of the guest.
1377 		 */
1378 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1379 		if (!vmsa_page)
1380 			goto error_free_vmcb_page;
1381 
1382 		/*
1383 		 * SEV-ES guests maintain an encrypted version of their FPU
1384 		 * state which is restored and saved on VMRUN and VMEXIT.
1385 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1386 		 * do xsave/xrstor on it.
1387 		 */
1388 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1389 	}
1390 
1391 	err = avic_init_vcpu(svm);
1392 	if (err)
1393 		goto error_free_vmsa_page;
1394 
1395 	svm->msrpm = svm_vcpu_alloc_msrpm();
1396 	if (!svm->msrpm) {
1397 		err = -ENOMEM;
1398 		goto error_free_vmsa_page;
1399 	}
1400 
1401 	svm->x2avic_msrs_intercepted = true;
1402 
1403 	svm->vmcb01.ptr = page_address(vmcb01_page);
1404 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1405 	svm_switch_vmcb(svm, &svm->vmcb01);
1406 
1407 	if (vmsa_page)
1408 		svm->sev_es.vmsa = page_address(vmsa_page);
1409 
1410 	svm->guest_state_loaded = false;
1411 
1412 	return 0;
1413 
1414 error_free_vmsa_page:
1415 	if (vmsa_page)
1416 		__free_page(vmsa_page);
1417 error_free_vmcb_page:
1418 	__free_page(vmcb01_page);
1419 out:
1420 	return err;
1421 }
1422 
1423 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1424 {
1425 	int i;
1426 
1427 	for_each_online_cpu(i)
1428 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1429 }
1430 
1431 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1432 {
1433 	struct vcpu_svm *svm = to_svm(vcpu);
1434 
1435 	/*
1436 	 * The vmcb page can be recycled, causing a false negative in
1437 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1438 	 * vmcb page recorded as its current vmcb.
1439 	 */
1440 	svm_clear_current_vmcb(svm->vmcb);
1441 
1442 	svm_free_nested(svm);
1443 
1444 	sev_free_vcpu(vcpu);
1445 
1446 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1447 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1448 }
1449 
1450 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1451 {
1452 	struct vcpu_svm *svm = to_svm(vcpu);
1453 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1454 
1455 	if (sev_es_guest(vcpu->kvm))
1456 		sev_es_unmap_ghcb(svm);
1457 
1458 	if (svm->guest_state_loaded)
1459 		return;
1460 
1461 	/*
1462 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1463 	 * or subsequent vmload of host save area.
1464 	 */
1465 	vmsave(__sme_page_pa(sd->save_area));
1466 	if (sev_es_guest(vcpu->kvm)) {
1467 		struct sev_es_save_area *hostsa;
1468 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1469 
1470 		sev_es_prepare_switch_to_guest(hostsa);
1471 	}
1472 
1473 	if (tsc_scaling)
1474 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1475 
1476 	if (likely(tsc_aux_uret_slot >= 0))
1477 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1478 
1479 	svm->guest_state_loaded = true;
1480 }
1481 
1482 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1483 {
1484 	to_svm(vcpu)->guest_state_loaded = false;
1485 }
1486 
1487 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1488 {
1489 	struct vcpu_svm *svm = to_svm(vcpu);
1490 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1491 
1492 	if (sd->current_vmcb != svm->vmcb) {
1493 		sd->current_vmcb = svm->vmcb;
1494 		indirect_branch_prediction_barrier();
1495 	}
1496 	if (kvm_vcpu_apicv_active(vcpu))
1497 		avic_vcpu_load(vcpu, cpu);
1498 }
1499 
1500 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1501 {
1502 	if (kvm_vcpu_apicv_active(vcpu))
1503 		avic_vcpu_put(vcpu);
1504 
1505 	svm_prepare_host_switch(vcpu);
1506 
1507 	++vcpu->stat.host_state_reload;
1508 }
1509 
1510 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1511 {
1512 	struct vcpu_svm *svm = to_svm(vcpu);
1513 	unsigned long rflags = svm->vmcb->save.rflags;
1514 
1515 	if (svm->nmi_singlestep) {
1516 		/* Hide our flags if they were not set by the guest */
1517 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1518 			rflags &= ~X86_EFLAGS_TF;
1519 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1520 			rflags &= ~X86_EFLAGS_RF;
1521 	}
1522 	return rflags;
1523 }
1524 
1525 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1526 {
1527 	if (to_svm(vcpu)->nmi_singlestep)
1528 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1529 
1530        /*
1531         * Any change of EFLAGS.VM is accompanied by a reload of SS
1532         * (caused by either a task switch or an inter-privilege IRET),
1533         * so we do not need to update the CPL here.
1534         */
1535 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1536 }
1537 
1538 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1539 {
1540 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1541 
1542 	return sev_es_guest(vcpu->kvm)
1543 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1544 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1545 }
1546 
1547 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1548 {
1549 	kvm_register_mark_available(vcpu, reg);
1550 
1551 	switch (reg) {
1552 	case VCPU_EXREG_PDPTR:
1553 		/*
1554 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1555 		 * it is always updated per SDM when moving to CRs.
1556 		 */
1557 		if (npt_enabled)
1558 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1559 		break;
1560 	default:
1561 		KVM_BUG_ON(1, vcpu->kvm);
1562 	}
1563 }
1564 
1565 static void svm_set_vintr(struct vcpu_svm *svm)
1566 {
1567 	struct vmcb_control_area *control;
1568 
1569 	/*
1570 	 * The following fields are ignored when AVIC is enabled
1571 	 */
1572 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1573 
1574 	svm_set_intercept(svm, INTERCEPT_VINTR);
1575 
1576 	/*
1577 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1578 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1579 	 */
1580 	control = &svm->vmcb->control;
1581 	control->int_vector = 0x0;
1582 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1583 	control->int_ctl |= V_IRQ_MASK |
1584 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1585 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1586 }
1587 
1588 static void svm_clear_vintr(struct vcpu_svm *svm)
1589 {
1590 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1591 
1592 	/* Drop int_ctl fields related to VINTR injection.  */
1593 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1594 	if (is_guest_mode(&svm->vcpu)) {
1595 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1596 
1597 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1598 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1599 
1600 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1601 			V_IRQ_INJECTION_BITS_MASK;
1602 
1603 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1604 	}
1605 
1606 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1607 }
1608 
1609 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1610 {
1611 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1612 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1613 
1614 	switch (seg) {
1615 	case VCPU_SREG_CS: return &save->cs;
1616 	case VCPU_SREG_DS: return &save->ds;
1617 	case VCPU_SREG_ES: return &save->es;
1618 	case VCPU_SREG_FS: return &save01->fs;
1619 	case VCPU_SREG_GS: return &save01->gs;
1620 	case VCPU_SREG_SS: return &save->ss;
1621 	case VCPU_SREG_TR: return &save01->tr;
1622 	case VCPU_SREG_LDTR: return &save01->ldtr;
1623 	}
1624 	BUG();
1625 	return NULL;
1626 }
1627 
1628 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1629 {
1630 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1631 
1632 	return s->base;
1633 }
1634 
1635 static void svm_get_segment(struct kvm_vcpu *vcpu,
1636 			    struct kvm_segment *var, int seg)
1637 {
1638 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1639 
1640 	var->base = s->base;
1641 	var->limit = s->limit;
1642 	var->selector = s->selector;
1643 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1644 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1645 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1646 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1647 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1648 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1649 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1650 
1651 	/*
1652 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1653 	 * However, the SVM spec states that the G bit is not observed by the
1654 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1655 	 * So let's synthesize a legal G bit for all segments, this helps
1656 	 * running KVM nested. It also helps cross-vendor migration, because
1657 	 * Intel's vmentry has a check on the 'G' bit.
1658 	 */
1659 	var->g = s->limit > 0xfffff;
1660 
1661 	/*
1662 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1663 	 * for cross vendor migration purposes by "not present"
1664 	 */
1665 	var->unusable = !var->present;
1666 
1667 	switch (seg) {
1668 	case VCPU_SREG_TR:
1669 		/*
1670 		 * Work around a bug where the busy flag in the tr selector
1671 		 * isn't exposed
1672 		 */
1673 		var->type |= 0x2;
1674 		break;
1675 	case VCPU_SREG_DS:
1676 	case VCPU_SREG_ES:
1677 	case VCPU_SREG_FS:
1678 	case VCPU_SREG_GS:
1679 		/*
1680 		 * The accessed bit must always be set in the segment
1681 		 * descriptor cache, although it can be cleared in the
1682 		 * descriptor, the cached bit always remains at 1. Since
1683 		 * Intel has a check on this, set it here to support
1684 		 * cross-vendor migration.
1685 		 */
1686 		if (!var->unusable)
1687 			var->type |= 0x1;
1688 		break;
1689 	case VCPU_SREG_SS:
1690 		/*
1691 		 * On AMD CPUs sometimes the DB bit in the segment
1692 		 * descriptor is left as 1, although the whole segment has
1693 		 * been made unusable. Clear it here to pass an Intel VMX
1694 		 * entry check when cross vendor migrating.
1695 		 */
1696 		if (var->unusable)
1697 			var->db = 0;
1698 		/* This is symmetric with svm_set_segment() */
1699 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1700 		break;
1701 	}
1702 }
1703 
1704 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1705 {
1706 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1707 
1708 	return save->cpl;
1709 }
1710 
1711 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1712 {
1713 	struct kvm_segment cs;
1714 
1715 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1716 	*db = cs.db;
1717 	*l = cs.l;
1718 }
1719 
1720 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1721 {
1722 	struct vcpu_svm *svm = to_svm(vcpu);
1723 
1724 	dt->size = svm->vmcb->save.idtr.limit;
1725 	dt->address = svm->vmcb->save.idtr.base;
1726 }
1727 
1728 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1729 {
1730 	struct vcpu_svm *svm = to_svm(vcpu);
1731 
1732 	svm->vmcb->save.idtr.limit = dt->size;
1733 	svm->vmcb->save.idtr.base = dt->address ;
1734 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1735 }
1736 
1737 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1738 {
1739 	struct vcpu_svm *svm = to_svm(vcpu);
1740 
1741 	dt->size = svm->vmcb->save.gdtr.limit;
1742 	dt->address = svm->vmcb->save.gdtr.base;
1743 }
1744 
1745 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1746 {
1747 	struct vcpu_svm *svm = to_svm(vcpu);
1748 
1749 	svm->vmcb->save.gdtr.limit = dt->size;
1750 	svm->vmcb->save.gdtr.base = dt->address ;
1751 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1752 }
1753 
1754 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1755 {
1756 	struct vcpu_svm *svm = to_svm(vcpu);
1757 
1758 	/*
1759 	 * For guests that don't set guest_state_protected, the cr3 update is
1760 	 * handled via kvm_mmu_load() while entering the guest. For guests
1761 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1762 	 * VMCB save area now, since the save area will become the initial
1763 	 * contents of the VMSA, and future VMCB save area updates won't be
1764 	 * seen.
1765 	 */
1766 	if (sev_es_guest(vcpu->kvm)) {
1767 		svm->vmcb->save.cr3 = cr3;
1768 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1769 	}
1770 }
1771 
1772 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1773 {
1774 	struct vcpu_svm *svm = to_svm(vcpu);
1775 	u64 hcr0 = cr0;
1776 	bool old_paging = is_paging(vcpu);
1777 
1778 #ifdef CONFIG_X86_64
1779 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1780 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1781 			vcpu->arch.efer |= EFER_LMA;
1782 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1783 		}
1784 
1785 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1786 			vcpu->arch.efer &= ~EFER_LMA;
1787 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1788 		}
1789 	}
1790 #endif
1791 	vcpu->arch.cr0 = cr0;
1792 
1793 	if (!npt_enabled) {
1794 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1795 		if (old_paging != is_paging(vcpu))
1796 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1797 	}
1798 
1799 	/*
1800 	 * re-enable caching here because the QEMU bios
1801 	 * does not do it - this results in some delay at
1802 	 * reboot
1803 	 */
1804 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1805 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1806 
1807 	svm->vmcb->save.cr0 = hcr0;
1808 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1809 
1810 	/*
1811 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1812 	 * tracking is done using the CR write traps.
1813 	 */
1814 	if (sev_es_guest(vcpu->kvm))
1815 		return;
1816 
1817 	if (hcr0 == cr0) {
1818 		/* Selective CR0 write remains on.  */
1819 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1820 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1821 	} else {
1822 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1823 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1824 	}
1825 }
1826 
1827 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1828 {
1829 	return true;
1830 }
1831 
1832 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1833 {
1834 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1835 	unsigned long old_cr4 = vcpu->arch.cr4;
1836 
1837 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1838 		svm_flush_tlb_current(vcpu);
1839 
1840 	vcpu->arch.cr4 = cr4;
1841 	if (!npt_enabled) {
1842 		cr4 |= X86_CR4_PAE;
1843 
1844 		if (!is_paging(vcpu))
1845 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1846 	}
1847 	cr4 |= host_cr4_mce;
1848 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1849 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1850 
1851 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1852 		kvm_update_cpuid_runtime(vcpu);
1853 }
1854 
1855 static void svm_set_segment(struct kvm_vcpu *vcpu,
1856 			    struct kvm_segment *var, int seg)
1857 {
1858 	struct vcpu_svm *svm = to_svm(vcpu);
1859 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1860 
1861 	s->base = var->base;
1862 	s->limit = var->limit;
1863 	s->selector = var->selector;
1864 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1865 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1866 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1867 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1868 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1869 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1870 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1871 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1872 
1873 	/*
1874 	 * This is always accurate, except if SYSRET returned to a segment
1875 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1876 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1877 	 * would entail passing the CPL to userspace and back.
1878 	 */
1879 	if (seg == VCPU_SREG_SS)
1880 		/* This is symmetric with svm_get_segment() */
1881 		svm->vmcb->save.cpl = (var->dpl & 3);
1882 
1883 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1884 }
1885 
1886 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1887 {
1888 	struct vcpu_svm *svm = to_svm(vcpu);
1889 
1890 	clr_exception_intercept(svm, BP_VECTOR);
1891 
1892 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1893 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1894 			set_exception_intercept(svm, BP_VECTOR);
1895 	}
1896 }
1897 
1898 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1899 {
1900 	if (sd->next_asid > sd->max_asid) {
1901 		++sd->asid_generation;
1902 		sd->next_asid = sd->min_asid;
1903 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1904 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1905 	}
1906 
1907 	svm->current_vmcb->asid_generation = sd->asid_generation;
1908 	svm->asid = sd->next_asid++;
1909 }
1910 
1911 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1912 {
1913 	struct vmcb *vmcb = svm->vmcb;
1914 
1915 	if (svm->vcpu.arch.guest_state_protected)
1916 		return;
1917 
1918 	if (unlikely(value != vmcb->save.dr6)) {
1919 		vmcb->save.dr6 = value;
1920 		vmcb_mark_dirty(vmcb, VMCB_DR);
1921 	}
1922 }
1923 
1924 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1925 {
1926 	struct vcpu_svm *svm = to_svm(vcpu);
1927 
1928 	if (vcpu->arch.guest_state_protected)
1929 		return;
1930 
1931 	get_debugreg(vcpu->arch.db[0], 0);
1932 	get_debugreg(vcpu->arch.db[1], 1);
1933 	get_debugreg(vcpu->arch.db[2], 2);
1934 	get_debugreg(vcpu->arch.db[3], 3);
1935 	/*
1936 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1937 	 * because db_interception might need it.  We can do it before vmentry.
1938 	 */
1939 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1940 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1941 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1942 	set_dr_intercepts(svm);
1943 }
1944 
1945 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1946 {
1947 	struct vcpu_svm *svm = to_svm(vcpu);
1948 
1949 	if (vcpu->arch.guest_state_protected)
1950 		return;
1951 
1952 	svm->vmcb->save.dr7 = value;
1953 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1954 }
1955 
1956 static int pf_interception(struct kvm_vcpu *vcpu)
1957 {
1958 	struct vcpu_svm *svm = to_svm(vcpu);
1959 
1960 	u64 fault_address = svm->vmcb->control.exit_info_2;
1961 	u64 error_code = svm->vmcb->control.exit_info_1;
1962 
1963 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1964 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1965 			svm->vmcb->control.insn_bytes : NULL,
1966 			svm->vmcb->control.insn_len);
1967 }
1968 
1969 static int npf_interception(struct kvm_vcpu *vcpu)
1970 {
1971 	struct vcpu_svm *svm = to_svm(vcpu);
1972 
1973 	u64 fault_address = svm->vmcb->control.exit_info_2;
1974 	u64 error_code = svm->vmcb->control.exit_info_1;
1975 
1976 	trace_kvm_page_fault(vcpu, fault_address, error_code);
1977 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1978 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1979 			svm->vmcb->control.insn_bytes : NULL,
1980 			svm->vmcb->control.insn_len);
1981 }
1982 
1983 static int db_interception(struct kvm_vcpu *vcpu)
1984 {
1985 	struct kvm_run *kvm_run = vcpu->run;
1986 	struct vcpu_svm *svm = to_svm(vcpu);
1987 
1988 	if (!(vcpu->guest_debug &
1989 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1990 		!svm->nmi_singlestep) {
1991 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1992 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1993 		return 1;
1994 	}
1995 
1996 	if (svm->nmi_singlestep) {
1997 		disable_nmi_singlestep(svm);
1998 		/* Make sure we check for pending NMIs upon entry */
1999 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2000 	}
2001 
2002 	if (vcpu->guest_debug &
2003 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2004 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2005 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2006 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2007 		kvm_run->debug.arch.pc =
2008 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2009 		kvm_run->debug.arch.exception = DB_VECTOR;
2010 		return 0;
2011 	}
2012 
2013 	return 1;
2014 }
2015 
2016 static int bp_interception(struct kvm_vcpu *vcpu)
2017 {
2018 	struct vcpu_svm *svm = to_svm(vcpu);
2019 	struct kvm_run *kvm_run = vcpu->run;
2020 
2021 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2022 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2023 	kvm_run->debug.arch.exception = BP_VECTOR;
2024 	return 0;
2025 }
2026 
2027 static int ud_interception(struct kvm_vcpu *vcpu)
2028 {
2029 	return handle_ud(vcpu);
2030 }
2031 
2032 static int ac_interception(struct kvm_vcpu *vcpu)
2033 {
2034 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2035 	return 1;
2036 }
2037 
2038 static bool is_erratum_383(void)
2039 {
2040 	int err, i;
2041 	u64 value;
2042 
2043 	if (!erratum_383_found)
2044 		return false;
2045 
2046 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2047 	if (err)
2048 		return false;
2049 
2050 	/* Bit 62 may or may not be set for this mce */
2051 	value &= ~(1ULL << 62);
2052 
2053 	if (value != 0xb600000000010015ULL)
2054 		return false;
2055 
2056 	/* Clear MCi_STATUS registers */
2057 	for (i = 0; i < 6; ++i)
2058 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2059 
2060 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2061 	if (!err) {
2062 		u32 low, high;
2063 
2064 		value &= ~(1ULL << 2);
2065 		low    = lower_32_bits(value);
2066 		high   = upper_32_bits(value);
2067 
2068 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2069 	}
2070 
2071 	/* Flush tlb to evict multi-match entries */
2072 	__flush_tlb_all();
2073 
2074 	return true;
2075 }
2076 
2077 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2078 {
2079 	if (is_erratum_383()) {
2080 		/*
2081 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2082 		 * guest.
2083 		 */
2084 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2085 
2086 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2087 
2088 		return;
2089 	}
2090 
2091 	/*
2092 	 * On an #MC intercept the MCE handler is not called automatically in
2093 	 * the host. So do it by hand here.
2094 	 */
2095 	kvm_machine_check();
2096 }
2097 
2098 static int mc_interception(struct kvm_vcpu *vcpu)
2099 {
2100 	return 1;
2101 }
2102 
2103 static int shutdown_interception(struct kvm_vcpu *vcpu)
2104 {
2105 	struct kvm_run *kvm_run = vcpu->run;
2106 	struct vcpu_svm *svm = to_svm(vcpu);
2107 
2108 	/*
2109 	 * The VM save area has already been encrypted so it
2110 	 * cannot be reinitialized - just terminate.
2111 	 */
2112 	if (sev_es_guest(vcpu->kvm))
2113 		return -EINVAL;
2114 
2115 	/*
2116 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2117 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2118 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2119 	 * userspace.  At a platform view, INIT is acceptable behavior as
2120 	 * there exist bare metal platforms that automatically INIT the CPU
2121 	 * in response to shutdown.
2122 	 */
2123 	clear_page(svm->vmcb);
2124 	kvm_vcpu_reset(vcpu, true);
2125 
2126 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2127 	return 0;
2128 }
2129 
2130 static int io_interception(struct kvm_vcpu *vcpu)
2131 {
2132 	struct vcpu_svm *svm = to_svm(vcpu);
2133 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2134 	int size, in, string;
2135 	unsigned port;
2136 
2137 	++vcpu->stat.io_exits;
2138 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2139 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2140 	port = io_info >> 16;
2141 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2142 
2143 	if (string) {
2144 		if (sev_es_guest(vcpu->kvm))
2145 			return sev_es_string_io(svm, size, port, in);
2146 		else
2147 			return kvm_emulate_instruction(vcpu, 0);
2148 	}
2149 
2150 	svm->next_rip = svm->vmcb->control.exit_info_2;
2151 
2152 	return kvm_fast_pio(vcpu, size, port, in);
2153 }
2154 
2155 static int nmi_interception(struct kvm_vcpu *vcpu)
2156 {
2157 	return 1;
2158 }
2159 
2160 static int smi_interception(struct kvm_vcpu *vcpu)
2161 {
2162 	return 1;
2163 }
2164 
2165 static int intr_interception(struct kvm_vcpu *vcpu)
2166 {
2167 	++vcpu->stat.irq_exits;
2168 	return 1;
2169 }
2170 
2171 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2172 {
2173 	struct vcpu_svm *svm = to_svm(vcpu);
2174 	struct vmcb *vmcb12;
2175 	struct kvm_host_map map;
2176 	int ret;
2177 
2178 	if (nested_svm_check_permissions(vcpu))
2179 		return 1;
2180 
2181 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2182 	if (ret) {
2183 		if (ret == -EINVAL)
2184 			kvm_inject_gp(vcpu, 0);
2185 		return 1;
2186 	}
2187 
2188 	vmcb12 = map.hva;
2189 
2190 	ret = kvm_skip_emulated_instruction(vcpu);
2191 
2192 	if (vmload) {
2193 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2194 		svm->sysenter_eip_hi = 0;
2195 		svm->sysenter_esp_hi = 0;
2196 	} else {
2197 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2198 	}
2199 
2200 	kvm_vcpu_unmap(vcpu, &map, true);
2201 
2202 	return ret;
2203 }
2204 
2205 static int vmload_interception(struct kvm_vcpu *vcpu)
2206 {
2207 	return vmload_vmsave_interception(vcpu, true);
2208 }
2209 
2210 static int vmsave_interception(struct kvm_vcpu *vcpu)
2211 {
2212 	return vmload_vmsave_interception(vcpu, false);
2213 }
2214 
2215 static int vmrun_interception(struct kvm_vcpu *vcpu)
2216 {
2217 	if (nested_svm_check_permissions(vcpu))
2218 		return 1;
2219 
2220 	return nested_svm_vmrun(vcpu);
2221 }
2222 
2223 enum {
2224 	NONE_SVM_INSTR,
2225 	SVM_INSTR_VMRUN,
2226 	SVM_INSTR_VMLOAD,
2227 	SVM_INSTR_VMSAVE,
2228 };
2229 
2230 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2231 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2232 {
2233 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2234 
2235 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2236 		return NONE_SVM_INSTR;
2237 
2238 	switch (ctxt->modrm) {
2239 	case 0xd8: /* VMRUN */
2240 		return SVM_INSTR_VMRUN;
2241 	case 0xda: /* VMLOAD */
2242 		return SVM_INSTR_VMLOAD;
2243 	case 0xdb: /* VMSAVE */
2244 		return SVM_INSTR_VMSAVE;
2245 	default:
2246 		break;
2247 	}
2248 
2249 	return NONE_SVM_INSTR;
2250 }
2251 
2252 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2253 {
2254 	const int guest_mode_exit_codes[] = {
2255 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2256 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2257 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2258 	};
2259 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2260 		[SVM_INSTR_VMRUN] = vmrun_interception,
2261 		[SVM_INSTR_VMLOAD] = vmload_interception,
2262 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2263 	};
2264 	struct vcpu_svm *svm = to_svm(vcpu);
2265 	int ret;
2266 
2267 	if (is_guest_mode(vcpu)) {
2268 		/* Returns '1' or -errno on failure, '0' on success. */
2269 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2270 		if (ret)
2271 			return ret;
2272 		return 1;
2273 	}
2274 	return svm_instr_handlers[opcode](vcpu);
2275 }
2276 
2277 /*
2278  * #GP handling code. Note that #GP can be triggered under the following two
2279  * cases:
2280  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2281  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2282  *      regions (e.g. SMM memory on host).
2283  *   2) VMware backdoor
2284  */
2285 static int gp_interception(struct kvm_vcpu *vcpu)
2286 {
2287 	struct vcpu_svm *svm = to_svm(vcpu);
2288 	u32 error_code = svm->vmcb->control.exit_info_1;
2289 	int opcode;
2290 
2291 	/* Both #GP cases have zero error_code */
2292 	if (error_code)
2293 		goto reinject;
2294 
2295 	/* Decode the instruction for usage later */
2296 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2297 		goto reinject;
2298 
2299 	opcode = svm_instr_opcode(vcpu);
2300 
2301 	if (opcode == NONE_SVM_INSTR) {
2302 		if (!enable_vmware_backdoor)
2303 			goto reinject;
2304 
2305 		/*
2306 		 * VMware backdoor emulation on #GP interception only handles
2307 		 * IN{S}, OUT{S}, and RDPMC.
2308 		 */
2309 		if (!is_guest_mode(vcpu))
2310 			return kvm_emulate_instruction(vcpu,
2311 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2312 	} else {
2313 		/* All SVM instructions expect page aligned RAX */
2314 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2315 			goto reinject;
2316 
2317 		return emulate_svm_instr(vcpu, opcode);
2318 	}
2319 
2320 reinject:
2321 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2322 	return 1;
2323 }
2324 
2325 void svm_set_gif(struct vcpu_svm *svm, bool value)
2326 {
2327 	if (value) {
2328 		/*
2329 		 * If VGIF is enabled, the STGI intercept is only added to
2330 		 * detect the opening of the SMI/NMI window; remove it now.
2331 		 * Likewise, clear the VINTR intercept, we will set it
2332 		 * again while processing KVM_REQ_EVENT if needed.
2333 		 */
2334 		if (vgif)
2335 			svm_clr_intercept(svm, INTERCEPT_STGI);
2336 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2337 			svm_clear_vintr(svm);
2338 
2339 		enable_gif(svm);
2340 		if (svm->vcpu.arch.smi_pending ||
2341 		    svm->vcpu.arch.nmi_pending ||
2342 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2343 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2344 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2345 	} else {
2346 		disable_gif(svm);
2347 
2348 		/*
2349 		 * After a CLGI no interrupts should come.  But if vGIF is
2350 		 * in use, we still rely on the VINTR intercept (rather than
2351 		 * STGI) to detect an open interrupt window.
2352 		*/
2353 		if (!vgif)
2354 			svm_clear_vintr(svm);
2355 	}
2356 }
2357 
2358 static int stgi_interception(struct kvm_vcpu *vcpu)
2359 {
2360 	int ret;
2361 
2362 	if (nested_svm_check_permissions(vcpu))
2363 		return 1;
2364 
2365 	ret = kvm_skip_emulated_instruction(vcpu);
2366 	svm_set_gif(to_svm(vcpu), true);
2367 	return ret;
2368 }
2369 
2370 static int clgi_interception(struct kvm_vcpu *vcpu)
2371 {
2372 	int ret;
2373 
2374 	if (nested_svm_check_permissions(vcpu))
2375 		return 1;
2376 
2377 	ret = kvm_skip_emulated_instruction(vcpu);
2378 	svm_set_gif(to_svm(vcpu), false);
2379 	return ret;
2380 }
2381 
2382 static int invlpga_interception(struct kvm_vcpu *vcpu)
2383 {
2384 	gva_t gva = kvm_rax_read(vcpu);
2385 	u32 asid = kvm_rcx_read(vcpu);
2386 
2387 	/* FIXME: Handle an address size prefix. */
2388 	if (!is_long_mode(vcpu))
2389 		gva = (u32)gva;
2390 
2391 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2392 
2393 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2394 	kvm_mmu_invlpg(vcpu, gva);
2395 
2396 	return kvm_skip_emulated_instruction(vcpu);
2397 }
2398 
2399 static int skinit_interception(struct kvm_vcpu *vcpu)
2400 {
2401 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2402 
2403 	kvm_queue_exception(vcpu, UD_VECTOR);
2404 	return 1;
2405 }
2406 
2407 static int task_switch_interception(struct kvm_vcpu *vcpu)
2408 {
2409 	struct vcpu_svm *svm = to_svm(vcpu);
2410 	u16 tss_selector;
2411 	int reason;
2412 	int int_type = svm->vmcb->control.exit_int_info &
2413 		SVM_EXITINTINFO_TYPE_MASK;
2414 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2415 	uint32_t type =
2416 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2417 	uint32_t idt_v =
2418 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2419 	bool has_error_code = false;
2420 	u32 error_code = 0;
2421 
2422 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2423 
2424 	if (svm->vmcb->control.exit_info_2 &
2425 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2426 		reason = TASK_SWITCH_IRET;
2427 	else if (svm->vmcb->control.exit_info_2 &
2428 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2429 		reason = TASK_SWITCH_JMP;
2430 	else if (idt_v)
2431 		reason = TASK_SWITCH_GATE;
2432 	else
2433 		reason = TASK_SWITCH_CALL;
2434 
2435 	if (reason == TASK_SWITCH_GATE) {
2436 		switch (type) {
2437 		case SVM_EXITINTINFO_TYPE_NMI:
2438 			vcpu->arch.nmi_injected = false;
2439 			break;
2440 		case SVM_EXITINTINFO_TYPE_EXEPT:
2441 			if (svm->vmcb->control.exit_info_2 &
2442 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2443 				has_error_code = true;
2444 				error_code =
2445 					(u32)svm->vmcb->control.exit_info_2;
2446 			}
2447 			kvm_clear_exception_queue(vcpu);
2448 			break;
2449 		case SVM_EXITINTINFO_TYPE_INTR:
2450 		case SVM_EXITINTINFO_TYPE_SOFT:
2451 			kvm_clear_interrupt_queue(vcpu);
2452 			break;
2453 		default:
2454 			break;
2455 		}
2456 	}
2457 
2458 	if (reason != TASK_SWITCH_GATE ||
2459 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2460 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2461 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2462 		if (!svm_skip_emulated_instruction(vcpu))
2463 			return 0;
2464 	}
2465 
2466 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2467 		int_vec = -1;
2468 
2469 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2470 			       has_error_code, error_code);
2471 }
2472 
2473 static int iret_interception(struct kvm_vcpu *vcpu)
2474 {
2475 	struct vcpu_svm *svm = to_svm(vcpu);
2476 
2477 	++vcpu->stat.nmi_window_exits;
2478 	vcpu->arch.hflags |= HF_IRET_MASK;
2479 	if (!sev_es_guest(vcpu->kvm)) {
2480 		svm_clr_intercept(svm, INTERCEPT_IRET);
2481 		svm->nmi_iret_rip = kvm_rip_read(vcpu);
2482 	}
2483 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2484 	return 1;
2485 }
2486 
2487 static int invlpg_interception(struct kvm_vcpu *vcpu)
2488 {
2489 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2490 		return kvm_emulate_instruction(vcpu, 0);
2491 
2492 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2493 	return kvm_skip_emulated_instruction(vcpu);
2494 }
2495 
2496 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2497 {
2498 	return kvm_emulate_instruction(vcpu, 0);
2499 }
2500 
2501 static int rsm_interception(struct kvm_vcpu *vcpu)
2502 {
2503 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2504 }
2505 
2506 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2507 					    unsigned long val)
2508 {
2509 	struct vcpu_svm *svm = to_svm(vcpu);
2510 	unsigned long cr0 = vcpu->arch.cr0;
2511 	bool ret = false;
2512 
2513 	if (!is_guest_mode(vcpu) ||
2514 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2515 		return false;
2516 
2517 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2518 	val &= ~SVM_CR0_SELECTIVE_MASK;
2519 
2520 	if (cr0 ^ val) {
2521 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2522 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2523 	}
2524 
2525 	return ret;
2526 }
2527 
2528 #define CR_VALID (1ULL << 63)
2529 
2530 static int cr_interception(struct kvm_vcpu *vcpu)
2531 {
2532 	struct vcpu_svm *svm = to_svm(vcpu);
2533 	int reg, cr;
2534 	unsigned long val;
2535 	int err;
2536 
2537 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2538 		return emulate_on_interception(vcpu);
2539 
2540 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2541 		return emulate_on_interception(vcpu);
2542 
2543 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2544 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2545 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2546 	else
2547 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2548 
2549 	err = 0;
2550 	if (cr >= 16) { /* mov to cr */
2551 		cr -= 16;
2552 		val = kvm_register_read(vcpu, reg);
2553 		trace_kvm_cr_write(cr, val);
2554 		switch (cr) {
2555 		case 0:
2556 			if (!check_selective_cr0_intercepted(vcpu, val))
2557 				err = kvm_set_cr0(vcpu, val);
2558 			else
2559 				return 1;
2560 
2561 			break;
2562 		case 3:
2563 			err = kvm_set_cr3(vcpu, val);
2564 			break;
2565 		case 4:
2566 			err = kvm_set_cr4(vcpu, val);
2567 			break;
2568 		case 8:
2569 			err = kvm_set_cr8(vcpu, val);
2570 			break;
2571 		default:
2572 			WARN(1, "unhandled write to CR%d", cr);
2573 			kvm_queue_exception(vcpu, UD_VECTOR);
2574 			return 1;
2575 		}
2576 	} else { /* mov from cr */
2577 		switch (cr) {
2578 		case 0:
2579 			val = kvm_read_cr0(vcpu);
2580 			break;
2581 		case 2:
2582 			val = vcpu->arch.cr2;
2583 			break;
2584 		case 3:
2585 			val = kvm_read_cr3(vcpu);
2586 			break;
2587 		case 4:
2588 			val = kvm_read_cr4(vcpu);
2589 			break;
2590 		case 8:
2591 			val = kvm_get_cr8(vcpu);
2592 			break;
2593 		default:
2594 			WARN(1, "unhandled read from CR%d", cr);
2595 			kvm_queue_exception(vcpu, UD_VECTOR);
2596 			return 1;
2597 		}
2598 		kvm_register_write(vcpu, reg, val);
2599 		trace_kvm_cr_read(cr, val);
2600 	}
2601 	return kvm_complete_insn_gp(vcpu, err);
2602 }
2603 
2604 static int cr_trap(struct kvm_vcpu *vcpu)
2605 {
2606 	struct vcpu_svm *svm = to_svm(vcpu);
2607 	unsigned long old_value, new_value;
2608 	unsigned int cr;
2609 	int ret = 0;
2610 
2611 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2612 
2613 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2614 	switch (cr) {
2615 	case 0:
2616 		old_value = kvm_read_cr0(vcpu);
2617 		svm_set_cr0(vcpu, new_value);
2618 
2619 		kvm_post_set_cr0(vcpu, old_value, new_value);
2620 		break;
2621 	case 4:
2622 		old_value = kvm_read_cr4(vcpu);
2623 		svm_set_cr4(vcpu, new_value);
2624 
2625 		kvm_post_set_cr4(vcpu, old_value, new_value);
2626 		break;
2627 	case 8:
2628 		ret = kvm_set_cr8(vcpu, new_value);
2629 		break;
2630 	default:
2631 		WARN(1, "unhandled CR%d write trap", cr);
2632 		kvm_queue_exception(vcpu, UD_VECTOR);
2633 		return 1;
2634 	}
2635 
2636 	return kvm_complete_insn_gp(vcpu, ret);
2637 }
2638 
2639 static int dr_interception(struct kvm_vcpu *vcpu)
2640 {
2641 	struct vcpu_svm *svm = to_svm(vcpu);
2642 	int reg, dr;
2643 	unsigned long val;
2644 	int err = 0;
2645 
2646 	if (vcpu->guest_debug == 0) {
2647 		/*
2648 		 * No more DR vmexits; force a reload of the debug registers
2649 		 * and reenter on this instruction.  The next vmexit will
2650 		 * retrieve the full state of the debug registers.
2651 		 */
2652 		clr_dr_intercepts(svm);
2653 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2654 		return 1;
2655 	}
2656 
2657 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2658 		return emulate_on_interception(vcpu);
2659 
2660 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2661 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2662 	if (dr >= 16) { /* mov to DRn  */
2663 		dr -= 16;
2664 		val = kvm_register_read(vcpu, reg);
2665 		err = kvm_set_dr(vcpu, dr, val);
2666 	} else {
2667 		kvm_get_dr(vcpu, dr, &val);
2668 		kvm_register_write(vcpu, reg, val);
2669 	}
2670 
2671 	return kvm_complete_insn_gp(vcpu, err);
2672 }
2673 
2674 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2675 {
2676 	int r;
2677 
2678 	u8 cr8_prev = kvm_get_cr8(vcpu);
2679 	/* instruction emulation calls kvm_set_cr8() */
2680 	r = cr_interception(vcpu);
2681 	if (lapic_in_kernel(vcpu))
2682 		return r;
2683 	if (cr8_prev <= kvm_get_cr8(vcpu))
2684 		return r;
2685 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2686 	return 0;
2687 }
2688 
2689 static int efer_trap(struct kvm_vcpu *vcpu)
2690 {
2691 	struct msr_data msr_info;
2692 	int ret;
2693 
2694 	/*
2695 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2696 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2697 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2698 	 * the guest doesn't have X86_FEATURE_SVM.
2699 	 */
2700 	msr_info.host_initiated = false;
2701 	msr_info.index = MSR_EFER;
2702 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2703 	ret = kvm_set_msr_common(vcpu, &msr_info);
2704 
2705 	return kvm_complete_insn_gp(vcpu, ret);
2706 }
2707 
2708 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2709 {
2710 	msr->data = 0;
2711 
2712 	switch (msr->index) {
2713 	case MSR_F10H_DECFG:
2714 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2715 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2716 		break;
2717 	case MSR_IA32_PERF_CAPABILITIES:
2718 		return 0;
2719 	default:
2720 		return KVM_MSR_RET_INVALID;
2721 	}
2722 
2723 	return 0;
2724 }
2725 
2726 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2727 {
2728 	struct vcpu_svm *svm = to_svm(vcpu);
2729 
2730 	switch (msr_info->index) {
2731 	case MSR_AMD64_TSC_RATIO:
2732 		if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2733 			return 1;
2734 		msr_info->data = svm->tsc_ratio_msr;
2735 		break;
2736 	case MSR_STAR:
2737 		msr_info->data = svm->vmcb01.ptr->save.star;
2738 		break;
2739 #ifdef CONFIG_X86_64
2740 	case MSR_LSTAR:
2741 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2742 		break;
2743 	case MSR_CSTAR:
2744 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2745 		break;
2746 	case MSR_KERNEL_GS_BASE:
2747 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2748 		break;
2749 	case MSR_SYSCALL_MASK:
2750 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2751 		break;
2752 #endif
2753 	case MSR_IA32_SYSENTER_CS:
2754 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2755 		break;
2756 	case MSR_IA32_SYSENTER_EIP:
2757 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2758 		if (guest_cpuid_is_intel(vcpu))
2759 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2760 		break;
2761 	case MSR_IA32_SYSENTER_ESP:
2762 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2763 		if (guest_cpuid_is_intel(vcpu))
2764 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2765 		break;
2766 	case MSR_TSC_AUX:
2767 		msr_info->data = svm->tsc_aux;
2768 		break;
2769 	case MSR_IA32_DEBUGCTLMSR:
2770 	case MSR_IA32_LASTBRANCHFROMIP:
2771 	case MSR_IA32_LASTBRANCHTOIP:
2772 	case MSR_IA32_LASTINTFROMIP:
2773 	case MSR_IA32_LASTINTTOIP:
2774 		msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
2775 		break;
2776 	case MSR_VM_HSAVE_PA:
2777 		msr_info->data = svm->nested.hsave_msr;
2778 		break;
2779 	case MSR_VM_CR:
2780 		msr_info->data = svm->nested.vm_cr_msr;
2781 		break;
2782 	case MSR_IA32_SPEC_CTRL:
2783 		if (!msr_info->host_initiated &&
2784 		    !guest_has_spec_ctrl_msr(vcpu))
2785 			return 1;
2786 
2787 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2788 			msr_info->data = svm->vmcb->save.spec_ctrl;
2789 		else
2790 			msr_info->data = svm->spec_ctrl;
2791 		break;
2792 	case MSR_AMD64_VIRT_SPEC_CTRL:
2793 		if (!msr_info->host_initiated &&
2794 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2795 			return 1;
2796 
2797 		msr_info->data = svm->virt_spec_ctrl;
2798 		break;
2799 	case MSR_F15H_IC_CFG: {
2800 
2801 		int family, model;
2802 
2803 		family = guest_cpuid_family(vcpu);
2804 		model  = guest_cpuid_model(vcpu);
2805 
2806 		if (family < 0 || model < 0)
2807 			return kvm_get_msr_common(vcpu, msr_info);
2808 
2809 		msr_info->data = 0;
2810 
2811 		if (family == 0x15 &&
2812 		    (model >= 0x2 && model < 0x20))
2813 			msr_info->data = 0x1E;
2814 		}
2815 		break;
2816 	case MSR_F10H_DECFG:
2817 		msr_info->data = svm->msr_decfg;
2818 		break;
2819 	default:
2820 		return kvm_get_msr_common(vcpu, msr_info);
2821 	}
2822 	return 0;
2823 }
2824 
2825 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2826 {
2827 	struct vcpu_svm *svm = to_svm(vcpu);
2828 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2829 		return kvm_complete_insn_gp(vcpu, err);
2830 
2831 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2832 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2833 				X86_TRAP_GP |
2834 				SVM_EVTINJ_TYPE_EXEPT |
2835 				SVM_EVTINJ_VALID);
2836 	return 1;
2837 }
2838 
2839 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2840 {
2841 	struct vcpu_svm *svm = to_svm(vcpu);
2842 	int svm_dis, chg_mask;
2843 
2844 	if (data & ~SVM_VM_CR_VALID_MASK)
2845 		return 1;
2846 
2847 	chg_mask = SVM_VM_CR_VALID_MASK;
2848 
2849 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2850 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2851 
2852 	svm->nested.vm_cr_msr &= ~chg_mask;
2853 	svm->nested.vm_cr_msr |= (data & chg_mask);
2854 
2855 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2856 
2857 	/* check for svm_disable while efer.svme is set */
2858 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2859 		return 1;
2860 
2861 	return 0;
2862 }
2863 
2864 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2865 {
2866 	struct vcpu_svm *svm = to_svm(vcpu);
2867 	int r;
2868 
2869 	u32 ecx = msr->index;
2870 	u64 data = msr->data;
2871 	switch (ecx) {
2872 	case MSR_AMD64_TSC_RATIO:
2873 
2874 		if (!svm->tsc_scaling_enabled) {
2875 
2876 			if (!msr->host_initiated)
2877 				return 1;
2878 			/*
2879 			 * In case TSC scaling is not enabled, always
2880 			 * leave this MSR at the default value.
2881 			 *
2882 			 * Due to bug in qemu 6.2.0, it would try to set
2883 			 * this msr to 0 if tsc scaling is not enabled.
2884 			 * Ignore this value as well.
2885 			 */
2886 			if (data != 0 && data != svm->tsc_ratio_msr)
2887 				return 1;
2888 			break;
2889 		}
2890 
2891 		if (data & SVM_TSC_RATIO_RSVD)
2892 			return 1;
2893 
2894 		svm->tsc_ratio_msr = data;
2895 
2896 		if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2897 			nested_svm_update_tsc_ratio_msr(vcpu);
2898 
2899 		break;
2900 	case MSR_IA32_CR_PAT:
2901 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2902 			return 1;
2903 		vcpu->arch.pat = data;
2904 		svm->vmcb01.ptr->save.g_pat = data;
2905 		if (is_guest_mode(vcpu))
2906 			nested_vmcb02_compute_g_pat(svm);
2907 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2908 		break;
2909 	case MSR_IA32_SPEC_CTRL:
2910 		if (!msr->host_initiated &&
2911 		    !guest_has_spec_ctrl_msr(vcpu))
2912 			return 1;
2913 
2914 		if (kvm_spec_ctrl_test_value(data))
2915 			return 1;
2916 
2917 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2918 			svm->vmcb->save.spec_ctrl = data;
2919 		else
2920 			svm->spec_ctrl = data;
2921 		if (!data)
2922 			break;
2923 
2924 		/*
2925 		 * For non-nested:
2926 		 * When it's written (to non-zero) for the first time, pass
2927 		 * it through.
2928 		 *
2929 		 * For nested:
2930 		 * The handling of the MSR bitmap for L2 guests is done in
2931 		 * nested_svm_vmrun_msrpm.
2932 		 * We update the L1 MSR bit as well since it will end up
2933 		 * touching the MSR anyway now.
2934 		 */
2935 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2936 		break;
2937 	case MSR_IA32_PRED_CMD:
2938 		if (!msr->host_initiated &&
2939 		    !guest_has_pred_cmd_msr(vcpu))
2940 			return 1;
2941 
2942 		if (data & ~PRED_CMD_IBPB)
2943 			return 1;
2944 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2945 			return 1;
2946 		if (!data)
2947 			break;
2948 
2949 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2950 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2951 		break;
2952 	case MSR_AMD64_VIRT_SPEC_CTRL:
2953 		if (!msr->host_initiated &&
2954 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2955 			return 1;
2956 
2957 		if (data & ~SPEC_CTRL_SSBD)
2958 			return 1;
2959 
2960 		svm->virt_spec_ctrl = data;
2961 		break;
2962 	case MSR_STAR:
2963 		svm->vmcb01.ptr->save.star = data;
2964 		break;
2965 #ifdef CONFIG_X86_64
2966 	case MSR_LSTAR:
2967 		svm->vmcb01.ptr->save.lstar = data;
2968 		break;
2969 	case MSR_CSTAR:
2970 		svm->vmcb01.ptr->save.cstar = data;
2971 		break;
2972 	case MSR_KERNEL_GS_BASE:
2973 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2974 		break;
2975 	case MSR_SYSCALL_MASK:
2976 		svm->vmcb01.ptr->save.sfmask = data;
2977 		break;
2978 #endif
2979 	case MSR_IA32_SYSENTER_CS:
2980 		svm->vmcb01.ptr->save.sysenter_cs = data;
2981 		break;
2982 	case MSR_IA32_SYSENTER_EIP:
2983 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2984 		/*
2985 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2986 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2987 		 * In this case we use this intercept to track the high
2988 		 * 32 bit part of these msrs to support Intel's
2989 		 * implementation of SYSENTER/SYSEXIT.
2990 		 */
2991 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2992 		break;
2993 	case MSR_IA32_SYSENTER_ESP:
2994 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2995 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2996 		break;
2997 	case MSR_TSC_AUX:
2998 		/*
2999 		 * TSC_AUX is usually changed only during boot and never read
3000 		 * directly.  Intercept TSC_AUX instead of exposing it to the
3001 		 * guest via direct_access_msrs, and switch it via user return.
3002 		 */
3003 		preempt_disable();
3004 		r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3005 		preempt_enable();
3006 		if (r)
3007 			return 1;
3008 
3009 		svm->tsc_aux = data;
3010 		break;
3011 	case MSR_IA32_DEBUGCTLMSR:
3012 		if (!lbrv) {
3013 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3014 				    __func__, data);
3015 			break;
3016 		}
3017 		if (data & DEBUGCTL_RESERVED_BITS)
3018 			return 1;
3019 
3020 		if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
3021 			svm->vmcb->save.dbgctl = data;
3022 		else
3023 			svm->vmcb01.ptr->save.dbgctl = data;
3024 
3025 		svm_update_lbrv(vcpu);
3026 
3027 		break;
3028 	case MSR_VM_HSAVE_PA:
3029 		/*
3030 		 * Old kernels did not validate the value written to
3031 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3032 		 * value to allow live migrating buggy or malicious guests
3033 		 * originating from those kernels.
3034 		 */
3035 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3036 			return 1;
3037 
3038 		svm->nested.hsave_msr = data & PAGE_MASK;
3039 		break;
3040 	case MSR_VM_CR:
3041 		return svm_set_vm_cr(vcpu, data);
3042 	case MSR_VM_IGNNE:
3043 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3044 		break;
3045 	case MSR_F10H_DECFG: {
3046 		struct kvm_msr_entry msr_entry;
3047 
3048 		msr_entry.index = msr->index;
3049 		if (svm_get_msr_feature(&msr_entry))
3050 			return 1;
3051 
3052 		/* Check the supported bits */
3053 		if (data & ~msr_entry.data)
3054 			return 1;
3055 
3056 		/* Don't allow the guest to change a bit, #GP */
3057 		if (!msr->host_initiated && (data ^ msr_entry.data))
3058 			return 1;
3059 
3060 		svm->msr_decfg = data;
3061 		break;
3062 	}
3063 	default:
3064 		return kvm_set_msr_common(vcpu, msr);
3065 	}
3066 	return 0;
3067 }
3068 
3069 static int msr_interception(struct kvm_vcpu *vcpu)
3070 {
3071 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3072 		return kvm_emulate_wrmsr(vcpu);
3073 	else
3074 		return kvm_emulate_rdmsr(vcpu);
3075 }
3076 
3077 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3078 {
3079 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3080 	svm_clear_vintr(to_svm(vcpu));
3081 
3082 	/*
3083 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3084 	 * In this case AVIC was temporarily disabled for
3085 	 * requesting the IRQ window and we have to re-enable it.
3086 	 *
3087 	 * If running nested, still remove the VM wide AVIC inhibit to
3088 	 * support case in which the interrupt window was requested when the
3089 	 * vCPU was not running nested.
3090 
3091 	 * All vCPUs which run still run nested, will remain to have their
3092 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3093 	 */
3094 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3095 
3096 	++vcpu->stat.irq_window_exits;
3097 	return 1;
3098 }
3099 
3100 static int pause_interception(struct kvm_vcpu *vcpu)
3101 {
3102 	bool in_kernel;
3103 	/*
3104 	 * CPL is not made available for an SEV-ES guest, therefore
3105 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3106 	 * set in_kernel to false as well.
3107 	 */
3108 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3109 
3110 	grow_ple_window(vcpu);
3111 
3112 	kvm_vcpu_on_spin(vcpu, in_kernel);
3113 	return kvm_skip_emulated_instruction(vcpu);
3114 }
3115 
3116 static int invpcid_interception(struct kvm_vcpu *vcpu)
3117 {
3118 	struct vcpu_svm *svm = to_svm(vcpu);
3119 	unsigned long type;
3120 	gva_t gva;
3121 
3122 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3123 		kvm_queue_exception(vcpu, UD_VECTOR);
3124 		return 1;
3125 	}
3126 
3127 	/*
3128 	 * For an INVPCID intercept:
3129 	 * EXITINFO1 provides the linear address of the memory operand.
3130 	 * EXITINFO2 provides the contents of the register operand.
3131 	 */
3132 	type = svm->vmcb->control.exit_info_2;
3133 	gva = svm->vmcb->control.exit_info_1;
3134 
3135 	return kvm_handle_invpcid(vcpu, type, gva);
3136 }
3137 
3138 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3139 	[SVM_EXIT_READ_CR0]			= cr_interception,
3140 	[SVM_EXIT_READ_CR3]			= cr_interception,
3141 	[SVM_EXIT_READ_CR4]			= cr_interception,
3142 	[SVM_EXIT_READ_CR8]			= cr_interception,
3143 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3144 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3145 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3146 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3147 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3148 	[SVM_EXIT_READ_DR0]			= dr_interception,
3149 	[SVM_EXIT_READ_DR1]			= dr_interception,
3150 	[SVM_EXIT_READ_DR2]			= dr_interception,
3151 	[SVM_EXIT_READ_DR3]			= dr_interception,
3152 	[SVM_EXIT_READ_DR4]			= dr_interception,
3153 	[SVM_EXIT_READ_DR5]			= dr_interception,
3154 	[SVM_EXIT_READ_DR6]			= dr_interception,
3155 	[SVM_EXIT_READ_DR7]			= dr_interception,
3156 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3157 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3158 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3159 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3160 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3161 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3162 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3163 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3164 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3165 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3166 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3167 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3168 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3169 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3170 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3171 	[SVM_EXIT_INTR]				= intr_interception,
3172 	[SVM_EXIT_NMI]				= nmi_interception,
3173 	[SVM_EXIT_SMI]				= smi_interception,
3174 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3175 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3176 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3177 	[SVM_EXIT_IRET]                         = iret_interception,
3178 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3179 	[SVM_EXIT_PAUSE]			= pause_interception,
3180 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3181 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3182 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3183 	[SVM_EXIT_IOIO]				= io_interception,
3184 	[SVM_EXIT_MSR]				= msr_interception,
3185 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3186 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3187 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3188 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3189 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3190 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3191 	[SVM_EXIT_STGI]				= stgi_interception,
3192 	[SVM_EXIT_CLGI]				= clgi_interception,
3193 	[SVM_EXIT_SKINIT]			= skinit_interception,
3194 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3195 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3196 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3197 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3198 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3199 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3200 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3201 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3202 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3203 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3204 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3205 	[SVM_EXIT_NPF]				= npf_interception,
3206 	[SVM_EXIT_RSM]                          = rsm_interception,
3207 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3208 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3209 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3210 };
3211 
3212 static void dump_vmcb(struct kvm_vcpu *vcpu)
3213 {
3214 	struct vcpu_svm *svm = to_svm(vcpu);
3215 	struct vmcb_control_area *control = &svm->vmcb->control;
3216 	struct vmcb_save_area *save = &svm->vmcb->save;
3217 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3218 
3219 	if (!dump_invalid_vmcb) {
3220 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3221 		return;
3222 	}
3223 
3224 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3225 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3226 	pr_err("VMCB Control Area:\n");
3227 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3228 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3229 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3230 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3231 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3232 	pr_err("%-20s%08x %08x\n", "intercepts:",
3233               control->intercepts[INTERCEPT_WORD3],
3234 	       control->intercepts[INTERCEPT_WORD4]);
3235 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3236 	pr_err("%-20s%d\n", "pause filter threshold:",
3237 	       control->pause_filter_thresh);
3238 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3239 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3240 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3241 	pr_err("%-20s%d\n", "asid:", control->asid);
3242 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3243 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3244 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3245 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3246 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3247 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3248 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3249 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3250 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3251 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3252 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3253 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3254 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3255 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3256 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3257 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3258 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3259 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3260 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3261 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3262 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3263 	pr_err("VMCB State Save Area:\n");
3264 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3265 	       "es:",
3266 	       save->es.selector, save->es.attrib,
3267 	       save->es.limit, save->es.base);
3268 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3269 	       "cs:",
3270 	       save->cs.selector, save->cs.attrib,
3271 	       save->cs.limit, save->cs.base);
3272 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3273 	       "ss:",
3274 	       save->ss.selector, save->ss.attrib,
3275 	       save->ss.limit, save->ss.base);
3276 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3277 	       "ds:",
3278 	       save->ds.selector, save->ds.attrib,
3279 	       save->ds.limit, save->ds.base);
3280 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3281 	       "fs:",
3282 	       save01->fs.selector, save01->fs.attrib,
3283 	       save01->fs.limit, save01->fs.base);
3284 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3285 	       "gs:",
3286 	       save01->gs.selector, save01->gs.attrib,
3287 	       save01->gs.limit, save01->gs.base);
3288 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3289 	       "gdtr:",
3290 	       save->gdtr.selector, save->gdtr.attrib,
3291 	       save->gdtr.limit, save->gdtr.base);
3292 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3293 	       "ldtr:",
3294 	       save01->ldtr.selector, save01->ldtr.attrib,
3295 	       save01->ldtr.limit, save01->ldtr.base);
3296 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3297 	       "idtr:",
3298 	       save->idtr.selector, save->idtr.attrib,
3299 	       save->idtr.limit, save->idtr.base);
3300 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3301 	       "tr:",
3302 	       save01->tr.selector, save01->tr.attrib,
3303 	       save01->tr.limit, save01->tr.base);
3304 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3305 	       save->vmpl, save->cpl, save->efer);
3306 	pr_err("%-15s %016llx %-13s %016llx\n",
3307 	       "cr0:", save->cr0, "cr2:", save->cr2);
3308 	pr_err("%-15s %016llx %-13s %016llx\n",
3309 	       "cr3:", save->cr3, "cr4:", save->cr4);
3310 	pr_err("%-15s %016llx %-13s %016llx\n",
3311 	       "dr6:", save->dr6, "dr7:", save->dr7);
3312 	pr_err("%-15s %016llx %-13s %016llx\n",
3313 	       "rip:", save->rip, "rflags:", save->rflags);
3314 	pr_err("%-15s %016llx %-13s %016llx\n",
3315 	       "rsp:", save->rsp, "rax:", save->rax);
3316 	pr_err("%-15s %016llx %-13s %016llx\n",
3317 	       "star:", save01->star, "lstar:", save01->lstar);
3318 	pr_err("%-15s %016llx %-13s %016llx\n",
3319 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3320 	pr_err("%-15s %016llx %-13s %016llx\n",
3321 	       "kernel_gs_base:", save01->kernel_gs_base,
3322 	       "sysenter_cs:", save01->sysenter_cs);
3323 	pr_err("%-15s %016llx %-13s %016llx\n",
3324 	       "sysenter_esp:", save01->sysenter_esp,
3325 	       "sysenter_eip:", save01->sysenter_eip);
3326 	pr_err("%-15s %016llx %-13s %016llx\n",
3327 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3328 	pr_err("%-15s %016llx %-13s %016llx\n",
3329 	       "br_from:", save->br_from, "br_to:", save->br_to);
3330 	pr_err("%-15s %016llx %-13s %016llx\n",
3331 	       "excp_from:", save->last_excp_from,
3332 	       "excp_to:", save->last_excp_to);
3333 }
3334 
3335 static bool svm_check_exit_valid(u64 exit_code)
3336 {
3337 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3338 		svm_exit_handlers[exit_code]);
3339 }
3340 
3341 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3342 {
3343 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3344 	dump_vmcb(vcpu);
3345 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3346 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3347 	vcpu->run->internal.ndata = 2;
3348 	vcpu->run->internal.data[0] = exit_code;
3349 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3350 	return 0;
3351 }
3352 
3353 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3354 {
3355 	if (!svm_check_exit_valid(exit_code))
3356 		return svm_handle_invalid_exit(vcpu, exit_code);
3357 
3358 #ifdef CONFIG_RETPOLINE
3359 	if (exit_code == SVM_EXIT_MSR)
3360 		return msr_interception(vcpu);
3361 	else if (exit_code == SVM_EXIT_VINTR)
3362 		return interrupt_window_interception(vcpu);
3363 	else if (exit_code == SVM_EXIT_INTR)
3364 		return intr_interception(vcpu);
3365 	else if (exit_code == SVM_EXIT_HLT)
3366 		return kvm_emulate_halt(vcpu);
3367 	else if (exit_code == SVM_EXIT_NPF)
3368 		return npf_interception(vcpu);
3369 #endif
3370 	return svm_exit_handlers[exit_code](vcpu);
3371 }
3372 
3373 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3374 			      u64 *info1, u64 *info2,
3375 			      u32 *intr_info, u32 *error_code)
3376 {
3377 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3378 
3379 	*reason = control->exit_code;
3380 	*info1 = control->exit_info_1;
3381 	*info2 = control->exit_info_2;
3382 	*intr_info = control->exit_int_info;
3383 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3384 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3385 		*error_code = control->exit_int_info_err;
3386 	else
3387 		*error_code = 0;
3388 }
3389 
3390 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3391 {
3392 	struct vcpu_svm *svm = to_svm(vcpu);
3393 	struct kvm_run *kvm_run = vcpu->run;
3394 	u32 exit_code = svm->vmcb->control.exit_code;
3395 
3396 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
3397 
3398 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3399 	if (!sev_es_guest(vcpu->kvm)) {
3400 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3401 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3402 		if (npt_enabled)
3403 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3404 	}
3405 
3406 	if (is_guest_mode(vcpu)) {
3407 		int vmexit;
3408 
3409 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3410 
3411 		vmexit = nested_svm_exit_special(svm);
3412 
3413 		if (vmexit == NESTED_EXIT_CONTINUE)
3414 			vmexit = nested_svm_exit_handled(svm);
3415 
3416 		if (vmexit == NESTED_EXIT_DONE)
3417 			return 1;
3418 	}
3419 
3420 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3421 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3422 		kvm_run->fail_entry.hardware_entry_failure_reason
3423 			= svm->vmcb->control.exit_code;
3424 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3425 		dump_vmcb(vcpu);
3426 		return 0;
3427 	}
3428 
3429 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3430 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3431 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3432 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3433 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3434 		       "exit_code 0x%x\n",
3435 		       __func__, svm->vmcb->control.exit_int_info,
3436 		       exit_code);
3437 
3438 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3439 		return 1;
3440 
3441 	return svm_invoke_exit_handler(vcpu, exit_code);
3442 }
3443 
3444 static void reload_tss(struct kvm_vcpu *vcpu)
3445 {
3446 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3447 
3448 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3449 	load_TR_desc();
3450 }
3451 
3452 static void pre_svm_run(struct kvm_vcpu *vcpu)
3453 {
3454 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3455 	struct vcpu_svm *svm = to_svm(vcpu);
3456 
3457 	/*
3458 	 * If the previous vmrun of the vmcb occurred on a different physical
3459 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3460 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3461 	 */
3462 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3463 		svm->current_vmcb->asid_generation = 0;
3464 		vmcb_mark_all_dirty(svm->vmcb);
3465 		svm->current_vmcb->cpu = vcpu->cpu;
3466         }
3467 
3468 	if (sev_guest(vcpu->kvm))
3469 		return pre_sev_run(svm, vcpu->cpu);
3470 
3471 	/* FIXME: handle wraparound of asid_generation */
3472 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3473 		new_asid(svm, sd);
3474 }
3475 
3476 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3477 {
3478 	struct vcpu_svm *svm = to_svm(vcpu);
3479 
3480 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3481 
3482 	if (svm->nmi_l1_to_l2)
3483 		return;
3484 
3485 	vcpu->arch.hflags |= HF_NMI_MASK;
3486 	if (!sev_es_guest(vcpu->kvm))
3487 		svm_set_intercept(svm, INTERCEPT_IRET);
3488 	++vcpu->stat.nmi_injections;
3489 }
3490 
3491 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3492 {
3493 	struct vcpu_svm *svm = to_svm(vcpu);
3494 	u32 type;
3495 
3496 	if (vcpu->arch.interrupt.soft) {
3497 		if (svm_update_soft_interrupt_rip(vcpu))
3498 			return;
3499 
3500 		type = SVM_EVTINJ_TYPE_SOFT;
3501 	} else {
3502 		type = SVM_EVTINJ_TYPE_INTR;
3503 	}
3504 
3505 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3506 			   vcpu->arch.interrupt.soft, reinjected);
3507 	++vcpu->stat.irq_injections;
3508 
3509 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3510 				       SVM_EVTINJ_VALID | type;
3511 }
3512 
3513 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3514 				     int trig_mode, int vector)
3515 {
3516 	/*
3517 	 * apic->apicv_active must be read after vcpu->mode.
3518 	 * Pairs with smp_store_release in vcpu_enter_guest.
3519 	 */
3520 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3521 
3522 	/* Note, this is called iff the local APIC is in-kernel. */
3523 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3524 		/* Process the interrupt via kvm_check_and_inject_events(). */
3525 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3526 		kvm_vcpu_kick(vcpu);
3527 		return;
3528 	}
3529 
3530 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3531 	if (in_guest_mode) {
3532 		/*
3533 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3534 		 * the vCPU exits the guest before the doorbell chimes, hardware
3535 		 * will automatically process AVIC interrupts at the next VMRUN.
3536 		 */
3537 		avic_ring_doorbell(vcpu);
3538 	} else {
3539 		/*
3540 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3541 		 * pending IRQ when checking if the vCPU has a wake event.
3542 		 */
3543 		kvm_vcpu_wake_up(vcpu);
3544 	}
3545 }
3546 
3547 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3548 				  int trig_mode, int vector)
3549 {
3550 	kvm_lapic_set_irr(vector, apic);
3551 
3552 	/*
3553 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3554 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3555 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3556 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3557 	 * will signal the doorbell if the CPU has already entered the guest.
3558 	 */
3559 	smp_mb__after_atomic();
3560 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3561 }
3562 
3563 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3564 {
3565 	struct vcpu_svm *svm = to_svm(vcpu);
3566 
3567 	/*
3568 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3569 	 * tracking is done using the CR write traps.
3570 	 */
3571 	if (sev_es_guest(vcpu->kvm))
3572 		return;
3573 
3574 	if (nested_svm_virtualize_tpr(vcpu))
3575 		return;
3576 
3577 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3578 
3579 	if (irr == -1)
3580 		return;
3581 
3582 	if (tpr >= irr)
3583 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3584 }
3585 
3586 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3587 {
3588 	struct vcpu_svm *svm = to_svm(vcpu);
3589 	struct vmcb *vmcb = svm->vmcb;
3590 	bool ret;
3591 
3592 	if (!gif_set(svm))
3593 		return true;
3594 
3595 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3596 		return false;
3597 
3598 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3599 	      (vcpu->arch.hflags & HF_NMI_MASK);
3600 
3601 	return ret;
3602 }
3603 
3604 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3605 {
3606 	struct vcpu_svm *svm = to_svm(vcpu);
3607 	if (svm->nested.nested_run_pending)
3608 		return -EBUSY;
3609 
3610 	if (svm_nmi_blocked(vcpu))
3611 		return 0;
3612 
3613 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3614 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3615 		return -EBUSY;
3616 	return 1;
3617 }
3618 
3619 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3620 {
3621 	return !!(vcpu->arch.hflags & HF_NMI_MASK);
3622 }
3623 
3624 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3625 {
3626 	struct vcpu_svm *svm = to_svm(vcpu);
3627 
3628 	if (masked) {
3629 		vcpu->arch.hflags |= HF_NMI_MASK;
3630 		if (!sev_es_guest(vcpu->kvm))
3631 			svm_set_intercept(svm, INTERCEPT_IRET);
3632 	} else {
3633 		vcpu->arch.hflags &= ~HF_NMI_MASK;
3634 		if (!sev_es_guest(vcpu->kvm))
3635 			svm_clr_intercept(svm, INTERCEPT_IRET);
3636 	}
3637 }
3638 
3639 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3640 {
3641 	struct vcpu_svm *svm = to_svm(vcpu);
3642 	struct vmcb *vmcb = svm->vmcb;
3643 
3644 	if (!gif_set(svm))
3645 		return true;
3646 
3647 	if (is_guest_mode(vcpu)) {
3648 		/* As long as interrupts are being delivered...  */
3649 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3650 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3651 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3652 			return true;
3653 
3654 		/* ... vmexits aren't blocked by the interrupt shadow  */
3655 		if (nested_exit_on_intr(svm))
3656 			return false;
3657 	} else {
3658 		if (!svm_get_if_flag(vcpu))
3659 			return true;
3660 	}
3661 
3662 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3663 }
3664 
3665 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3666 {
3667 	struct vcpu_svm *svm = to_svm(vcpu);
3668 
3669 	if (svm->nested.nested_run_pending)
3670 		return -EBUSY;
3671 
3672 	if (svm_interrupt_blocked(vcpu))
3673 		return 0;
3674 
3675 	/*
3676 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3677 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3678 	 */
3679 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3680 		return -EBUSY;
3681 
3682 	return 1;
3683 }
3684 
3685 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3686 {
3687 	struct vcpu_svm *svm = to_svm(vcpu);
3688 
3689 	/*
3690 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3691 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3692 	 * get that intercept, this function will be called again though and
3693 	 * we'll get the vintr intercept. However, if the vGIF feature is
3694 	 * enabled, the STGI interception will not occur. Enable the irq
3695 	 * window under the assumption that the hardware will set the GIF.
3696 	 */
3697 	if (vgif || gif_set(svm)) {
3698 		/*
3699 		 * IRQ window is not needed when AVIC is enabled,
3700 		 * unless we have pending ExtINT since it cannot be injected
3701 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3702 		 * and fallback to injecting IRQ via V_IRQ.
3703 		 *
3704 		 * If running nested, AVIC is already locally inhibited
3705 		 * on this vCPU, therefore there is no need to request
3706 		 * the VM wide AVIC inhibition.
3707 		 */
3708 		if (!is_guest_mode(vcpu))
3709 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3710 
3711 		svm_set_vintr(svm);
3712 	}
3713 }
3714 
3715 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3716 {
3717 	struct vcpu_svm *svm = to_svm(vcpu);
3718 
3719 	if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3720 		return; /* IRET will cause a vm exit */
3721 
3722 	if (!gif_set(svm)) {
3723 		if (vgif)
3724 			svm_set_intercept(svm, INTERCEPT_STGI);
3725 		return; /* STGI will cause a vm exit */
3726 	}
3727 
3728 	/*
3729 	 * Something prevents NMI from been injected. Single step over possible
3730 	 * problem (IRET or exception injection or interrupt shadow)
3731 	 */
3732 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3733 	svm->nmi_singlestep = true;
3734 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3735 }
3736 
3737 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3738 {
3739 	struct vcpu_svm *svm = to_svm(vcpu);
3740 
3741 	/*
3742 	 * Flush only the current ASID even if the TLB flush was invoked via
3743 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3744 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3745 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3746 	 * VM-Exit (via kvm_mmu_reset_context()).
3747 	 */
3748 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3749 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3750 	else
3751 		svm->current_vmcb->asid_generation--;
3752 }
3753 
3754 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3755 {
3756 	struct vcpu_svm *svm = to_svm(vcpu);
3757 
3758 	invlpga(gva, svm->vmcb->control.asid);
3759 }
3760 
3761 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3762 {
3763 	struct vcpu_svm *svm = to_svm(vcpu);
3764 
3765 	if (nested_svm_virtualize_tpr(vcpu))
3766 		return;
3767 
3768 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3769 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3770 		kvm_set_cr8(vcpu, cr8);
3771 	}
3772 }
3773 
3774 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3775 {
3776 	struct vcpu_svm *svm = to_svm(vcpu);
3777 	u64 cr8;
3778 
3779 	if (nested_svm_virtualize_tpr(vcpu) ||
3780 	    kvm_vcpu_apicv_active(vcpu))
3781 		return;
3782 
3783 	cr8 = kvm_get_cr8(vcpu);
3784 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3785 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3786 }
3787 
3788 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3789 					int type)
3790 {
3791 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3792 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3793 	struct vcpu_svm *svm = to_svm(vcpu);
3794 
3795 	/*
3796 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3797 	 * associated with the original soft exception/interrupt.  next_rip is
3798 	 * cleared on all exits that can occur while vectoring an event, so KVM
3799 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
3800 	 * case below, this needs to be done if and only if KVM is re-injecting
3801 	 * the same event, i.e. if the event is a soft exception/interrupt,
3802 	 * otherwise next_rip is unused on VMRUN.
3803 	 */
3804 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3805 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3806 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3807 	/*
3808 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3809 	 * injecting the soft exception/interrupt.  That advancement needs to
3810 	 * be unwound if vectoring didn't complete.  Note, the new event may
3811 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
3812 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3813 	 * be the reported vectored event, but RIP still needs to be unwound.
3814 	 */
3815 	else if (!nrips && (is_soft || is_exception) &&
3816 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3817 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
3818 }
3819 
3820 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3821 {
3822 	struct vcpu_svm *svm = to_svm(vcpu);
3823 	u8 vector;
3824 	int type;
3825 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3826 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
3827 	bool soft_int_injected = svm->soft_int_injected;
3828 
3829 	svm->nmi_l1_to_l2 = false;
3830 	svm->soft_int_injected = false;
3831 
3832 	/*
3833 	 * If we've made progress since setting HF_IRET_MASK, we've
3834 	 * executed an IRET and can allow NMI injection.
3835 	 */
3836 	if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3837 	    (sev_es_guest(vcpu->kvm) ||
3838 	     kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3839 		vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3840 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3841 	}
3842 
3843 	vcpu->arch.nmi_injected = false;
3844 	kvm_clear_exception_queue(vcpu);
3845 	kvm_clear_interrupt_queue(vcpu);
3846 
3847 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3848 		return;
3849 
3850 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3851 
3852 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3853 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3854 
3855 	if (soft_int_injected)
3856 		svm_complete_soft_interrupt(vcpu, vector, type);
3857 
3858 	switch (type) {
3859 	case SVM_EXITINTINFO_TYPE_NMI:
3860 		vcpu->arch.nmi_injected = true;
3861 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
3862 		break;
3863 	case SVM_EXITINTINFO_TYPE_EXEPT:
3864 		/*
3865 		 * Never re-inject a #VC exception.
3866 		 */
3867 		if (vector == X86_TRAP_VC)
3868 			break;
3869 
3870 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3871 			u32 err = svm->vmcb->control.exit_int_info_err;
3872 			kvm_requeue_exception_e(vcpu, vector, err);
3873 
3874 		} else
3875 			kvm_requeue_exception(vcpu, vector);
3876 		break;
3877 	case SVM_EXITINTINFO_TYPE_INTR:
3878 		kvm_queue_interrupt(vcpu, vector, false);
3879 		break;
3880 	case SVM_EXITINTINFO_TYPE_SOFT:
3881 		kvm_queue_interrupt(vcpu, vector, true);
3882 		break;
3883 	default:
3884 		break;
3885 	}
3886 
3887 }
3888 
3889 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3890 {
3891 	struct vcpu_svm *svm = to_svm(vcpu);
3892 	struct vmcb_control_area *control = &svm->vmcb->control;
3893 
3894 	control->exit_int_info = control->event_inj;
3895 	control->exit_int_info_err = control->event_inj_err;
3896 	control->event_inj = 0;
3897 	svm_complete_interrupts(vcpu);
3898 }
3899 
3900 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3901 {
3902 	return 1;
3903 }
3904 
3905 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3906 {
3907 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3908 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3909 		return handle_fastpath_set_msr_irqoff(vcpu);
3910 
3911 	return EXIT_FASTPATH_NONE;
3912 }
3913 
3914 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3915 {
3916 	struct vcpu_svm *svm = to_svm(vcpu);
3917 	unsigned long vmcb_pa = svm->current_vmcb->pa;
3918 
3919 	guest_state_enter_irqoff();
3920 
3921 	if (sev_es_guest(vcpu->kvm)) {
3922 		__svm_sev_es_vcpu_run(vmcb_pa);
3923 	} else {
3924 		struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3925 
3926 		/*
3927 		 * Use a single vmcb (vmcb01 because it's always valid) for
3928 		 * context switching guest state via VMLOAD/VMSAVE, that way
3929 		 * the state doesn't need to be copied between vmcb01 and
3930 		 * vmcb02 when switching vmcbs for nested virtualization.
3931 		 */
3932 		vmload(svm->vmcb01.pa);
3933 		__svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3934 		vmsave(svm->vmcb01.pa);
3935 
3936 		vmload(__sme_page_pa(sd->save_area));
3937 	}
3938 
3939 	guest_state_exit_irqoff();
3940 }
3941 
3942 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3943 {
3944 	struct vcpu_svm *svm = to_svm(vcpu);
3945 
3946 	trace_kvm_entry(vcpu);
3947 
3948 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3949 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3950 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3951 
3952 	/*
3953 	 * Disable singlestep if we're injecting an interrupt/exception.
3954 	 * We don't want our modified rflags to be pushed on the stack where
3955 	 * we might not be able to easily reset them if we disabled NMI
3956 	 * singlestep later.
3957 	 */
3958 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3959 		/*
3960 		 * Event injection happens before external interrupts cause a
3961 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3962 		 * is enough to force an immediate vmexit.
3963 		 */
3964 		disable_nmi_singlestep(svm);
3965 		smp_send_reschedule(vcpu->cpu);
3966 	}
3967 
3968 	pre_svm_run(vcpu);
3969 
3970 	sync_lapic_to_cr8(vcpu);
3971 
3972 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3973 		svm->vmcb->control.asid = svm->asid;
3974 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3975 	}
3976 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3977 
3978 	svm_hv_update_vp_id(svm->vmcb, vcpu);
3979 
3980 	/*
3981 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3982 	 * of a #DB.
3983 	 */
3984 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3985 		svm_set_dr6(svm, vcpu->arch.dr6);
3986 	else
3987 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
3988 
3989 	clgi();
3990 	kvm_load_guest_xsave_state(vcpu);
3991 
3992 	kvm_wait_lapic_expire(vcpu);
3993 
3994 	/*
3995 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3996 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3997 	 * is no need to worry about the conditional branch over the wrmsr
3998 	 * being speculatively taken.
3999 	 */
4000 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4001 		x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
4002 
4003 	svm_vcpu_enter_exit(vcpu);
4004 
4005 	/*
4006 	 * We do not use IBRS in the kernel. If this vCPU has used the
4007 	 * SPEC_CTRL MSR it may have left it on; save the value and
4008 	 * turn it off. This is much more efficient than blindly adding
4009 	 * it to the atomic save/restore list. Especially as the former
4010 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
4011 	 *
4012 	 * For non-nested case:
4013 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
4014 	 * save it.
4015 	 *
4016 	 * For nested case:
4017 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
4018 	 * save it.
4019 	 */
4020 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
4021 	    unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
4022 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
4023 
4024 	if (!sev_es_guest(vcpu->kvm))
4025 		reload_tss(vcpu);
4026 
4027 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4028 		x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
4029 
4030 	if (!sev_es_guest(vcpu->kvm)) {
4031 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4032 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4033 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4034 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4035 	}
4036 	vcpu->arch.regs_dirty = 0;
4037 
4038 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4039 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4040 
4041 	kvm_load_host_xsave_state(vcpu);
4042 	stgi();
4043 
4044 	/* Any pending NMI will happen here */
4045 
4046 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4047 		kvm_after_interrupt(vcpu);
4048 
4049 	sync_cr8_to_lapic(vcpu);
4050 
4051 	svm->next_rip = 0;
4052 	if (is_guest_mode(vcpu)) {
4053 		nested_sync_control_from_vmcb02(svm);
4054 
4055 		/* Track VMRUNs that have made past consistency checking */
4056 		if (svm->nested.nested_run_pending &&
4057 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4058                         ++vcpu->stat.nested_run;
4059 
4060 		svm->nested.nested_run_pending = 0;
4061 	}
4062 
4063 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4064 	vmcb_mark_all_clean(svm->vmcb);
4065 
4066 	/* if exit due to PF check for async PF */
4067 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4068 		vcpu->arch.apf.host_apf_flags =
4069 			kvm_read_and_reset_apf_flags();
4070 
4071 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4072 
4073 	/*
4074 	 * We need to handle MC intercepts here before the vcpu has a chance to
4075 	 * change the physical cpu
4076 	 */
4077 	if (unlikely(svm->vmcb->control.exit_code ==
4078 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4079 		svm_handle_mce(vcpu);
4080 
4081 	svm_complete_interrupts(vcpu);
4082 
4083 	if (is_guest_mode(vcpu))
4084 		return EXIT_FASTPATH_NONE;
4085 
4086 	return svm_exit_handlers_fastpath(vcpu);
4087 }
4088 
4089 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4090 			     int root_level)
4091 {
4092 	struct vcpu_svm *svm = to_svm(vcpu);
4093 	unsigned long cr3;
4094 
4095 	if (npt_enabled) {
4096 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4097 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4098 
4099 		hv_track_root_tdp(vcpu, root_hpa);
4100 
4101 		cr3 = vcpu->arch.cr3;
4102 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4103 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4104 	} else {
4105 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4106 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4107 		cr3 = root_hpa;
4108 	}
4109 
4110 	svm->vmcb->save.cr3 = cr3;
4111 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4112 }
4113 
4114 static int is_disabled(void)
4115 {
4116 	u64 vm_cr;
4117 
4118 	rdmsrl(MSR_VM_CR, vm_cr);
4119 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4120 		return 1;
4121 
4122 	return 0;
4123 }
4124 
4125 static void
4126 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4127 {
4128 	/*
4129 	 * Patch in the VMMCALL instruction:
4130 	 */
4131 	hypercall[0] = 0x0f;
4132 	hypercall[1] = 0x01;
4133 	hypercall[2] = 0xd9;
4134 }
4135 
4136 static int __init svm_check_processor_compat(void)
4137 {
4138 	return 0;
4139 }
4140 
4141 /*
4142  * The kvm parameter can be NULL (module initialization, or invocation before
4143  * VM creation). Be sure to check the kvm parameter before using it.
4144  */
4145 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4146 {
4147 	switch (index) {
4148 	case MSR_IA32_MCG_EXT_CTL:
4149 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4150 		return false;
4151 	case MSR_IA32_SMBASE:
4152 		/* SEV-ES guests do not support SMM, so report false */
4153 		if (kvm && sev_es_guest(kvm))
4154 			return false;
4155 		break;
4156 	default:
4157 		break;
4158 	}
4159 
4160 	return true;
4161 }
4162 
4163 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4164 {
4165 	struct vcpu_svm *svm = to_svm(vcpu);
4166 	struct kvm_cpuid_entry2 *best;
4167 
4168 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4169 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
4170 				    boot_cpu_has(X86_FEATURE_XSAVES);
4171 
4172 	/* Update nrips enabled cache */
4173 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4174 			     guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4175 
4176 	svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4177 	svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
4178 
4179 	svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4180 
4181 	svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
4182 			guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
4183 
4184 	svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
4185 			guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
4186 
4187 	svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF);
4188 
4189 	svm_recalc_instruction_intercepts(vcpu, svm);
4190 
4191 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4192 	if (sev_guest(vcpu->kvm)) {
4193 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4194 		if (best)
4195 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4196 	}
4197 
4198 	init_vmcb_after_set_cpuid(vcpu);
4199 }
4200 
4201 static bool svm_has_wbinvd_exit(void)
4202 {
4203 	return true;
4204 }
4205 
4206 #define PRE_EX(exit)  { .exit_code = (exit), \
4207 			.stage = X86_ICPT_PRE_EXCEPT, }
4208 #define POST_EX(exit) { .exit_code = (exit), \
4209 			.stage = X86_ICPT_POST_EXCEPT, }
4210 #define POST_MEM(exit) { .exit_code = (exit), \
4211 			.stage = X86_ICPT_POST_MEMACCESS, }
4212 
4213 static const struct __x86_intercept {
4214 	u32 exit_code;
4215 	enum x86_intercept_stage stage;
4216 } x86_intercept_map[] = {
4217 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4218 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4219 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4220 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4221 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4222 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4223 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4224 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4225 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4226 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4227 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4228 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4229 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4230 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4231 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4232 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4233 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4234 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4235 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4236 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4237 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4238 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4239 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4240 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4241 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4242 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4243 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4244 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4245 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4246 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4247 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4248 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4249 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4250 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4251 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4252 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4253 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4254 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4255 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4256 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4257 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4258 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4259 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4260 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4261 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4262 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4263 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4264 };
4265 
4266 #undef PRE_EX
4267 #undef POST_EX
4268 #undef POST_MEM
4269 
4270 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4271 			       struct x86_instruction_info *info,
4272 			       enum x86_intercept_stage stage,
4273 			       struct x86_exception *exception)
4274 {
4275 	struct vcpu_svm *svm = to_svm(vcpu);
4276 	int vmexit, ret = X86EMUL_CONTINUE;
4277 	struct __x86_intercept icpt_info;
4278 	struct vmcb *vmcb = svm->vmcb;
4279 
4280 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4281 		goto out;
4282 
4283 	icpt_info = x86_intercept_map[info->intercept];
4284 
4285 	if (stage != icpt_info.stage)
4286 		goto out;
4287 
4288 	switch (icpt_info.exit_code) {
4289 	case SVM_EXIT_READ_CR0:
4290 		if (info->intercept == x86_intercept_cr_read)
4291 			icpt_info.exit_code += info->modrm_reg;
4292 		break;
4293 	case SVM_EXIT_WRITE_CR0: {
4294 		unsigned long cr0, val;
4295 
4296 		if (info->intercept == x86_intercept_cr_write)
4297 			icpt_info.exit_code += info->modrm_reg;
4298 
4299 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4300 		    info->intercept == x86_intercept_clts)
4301 			break;
4302 
4303 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4304 					INTERCEPT_SELECTIVE_CR0)))
4305 			break;
4306 
4307 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4308 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4309 
4310 		if (info->intercept == x86_intercept_lmsw) {
4311 			cr0 &= 0xfUL;
4312 			val &= 0xfUL;
4313 			/* lmsw can't clear PE - catch this here */
4314 			if (cr0 & X86_CR0_PE)
4315 				val |= X86_CR0_PE;
4316 		}
4317 
4318 		if (cr0 ^ val)
4319 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4320 
4321 		break;
4322 	}
4323 	case SVM_EXIT_READ_DR0:
4324 	case SVM_EXIT_WRITE_DR0:
4325 		icpt_info.exit_code += info->modrm_reg;
4326 		break;
4327 	case SVM_EXIT_MSR:
4328 		if (info->intercept == x86_intercept_wrmsr)
4329 			vmcb->control.exit_info_1 = 1;
4330 		else
4331 			vmcb->control.exit_info_1 = 0;
4332 		break;
4333 	case SVM_EXIT_PAUSE:
4334 		/*
4335 		 * We get this for NOP only, but pause
4336 		 * is rep not, check this here
4337 		 */
4338 		if (info->rep_prefix != REPE_PREFIX)
4339 			goto out;
4340 		break;
4341 	case SVM_EXIT_IOIO: {
4342 		u64 exit_info;
4343 		u32 bytes;
4344 
4345 		if (info->intercept == x86_intercept_in ||
4346 		    info->intercept == x86_intercept_ins) {
4347 			exit_info = ((info->src_val & 0xffff) << 16) |
4348 				SVM_IOIO_TYPE_MASK;
4349 			bytes = info->dst_bytes;
4350 		} else {
4351 			exit_info = (info->dst_val & 0xffff) << 16;
4352 			bytes = info->src_bytes;
4353 		}
4354 
4355 		if (info->intercept == x86_intercept_outs ||
4356 		    info->intercept == x86_intercept_ins)
4357 			exit_info |= SVM_IOIO_STR_MASK;
4358 
4359 		if (info->rep_prefix)
4360 			exit_info |= SVM_IOIO_REP_MASK;
4361 
4362 		bytes = min(bytes, 4u);
4363 
4364 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4365 
4366 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4367 
4368 		vmcb->control.exit_info_1 = exit_info;
4369 		vmcb->control.exit_info_2 = info->next_rip;
4370 
4371 		break;
4372 	}
4373 	default:
4374 		break;
4375 	}
4376 
4377 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4378 	if (static_cpu_has(X86_FEATURE_NRIPS))
4379 		vmcb->control.next_rip  = info->next_rip;
4380 	vmcb->control.exit_code = icpt_info.exit_code;
4381 	vmexit = nested_svm_exit_handled(svm);
4382 
4383 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4384 					   : X86EMUL_CONTINUE;
4385 
4386 out:
4387 	return ret;
4388 }
4389 
4390 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4391 {
4392 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4393 		vcpu->arch.at_instruction_boundary = true;
4394 }
4395 
4396 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4397 {
4398 	if (!kvm_pause_in_guest(vcpu->kvm))
4399 		shrink_ple_window(vcpu);
4400 }
4401 
4402 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4403 {
4404 	/* [63:9] are reserved. */
4405 	vcpu->arch.mcg_cap &= 0x1ff;
4406 }
4407 
4408 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4409 {
4410 	struct vcpu_svm *svm = to_svm(vcpu);
4411 
4412 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4413 	if (!gif_set(svm))
4414 		return true;
4415 
4416 	return is_smm(vcpu);
4417 }
4418 
4419 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4420 {
4421 	struct vcpu_svm *svm = to_svm(vcpu);
4422 	if (svm->nested.nested_run_pending)
4423 		return -EBUSY;
4424 
4425 	if (svm_smi_blocked(vcpu))
4426 		return 0;
4427 
4428 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4429 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4430 		return -EBUSY;
4431 
4432 	return 1;
4433 }
4434 
4435 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4436 {
4437 	struct vcpu_svm *svm = to_svm(vcpu);
4438 	struct kvm_host_map map_save;
4439 	int ret;
4440 
4441 	if (!is_guest_mode(vcpu))
4442 		return 0;
4443 
4444 	/* FED8h - SVM Guest */
4445 	put_smstate(u64, smstate, 0x7ed8, 1);
4446 	/* FEE0h - SVM Guest VMCB Physical Address */
4447 	put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4448 
4449 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4450 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4451 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4452 
4453 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4454 	if (ret)
4455 		return ret;
4456 
4457 	/*
4458 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4459 	 * VMCB01 is going to be used during SMM and thus the state will
4460 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4461 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4462 	 * format of the area is identical to guest save area offsetted
4463 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4464 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4465 	 * L1 hypervisor to save additional host context (e.g. KVM does
4466 	 * that, see svm_prepare_switch_to_guest()) which must be
4467 	 * preserved.
4468 	 */
4469 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4470 			 &map_save) == -EINVAL)
4471 		return 1;
4472 
4473 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4474 
4475 	svm_copy_vmrun_state(map_save.hva + 0x400,
4476 			     &svm->vmcb01.ptr->save);
4477 
4478 	kvm_vcpu_unmap(vcpu, &map_save, true);
4479 	return 0;
4480 }
4481 
4482 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4483 {
4484 	struct vcpu_svm *svm = to_svm(vcpu);
4485 	struct kvm_host_map map, map_save;
4486 	u64 saved_efer, vmcb12_gpa;
4487 	struct vmcb *vmcb12;
4488 	int ret;
4489 
4490 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4491 		return 0;
4492 
4493 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4494 	if (!GET_SMSTATE(u64, smstate, 0x7ed8))
4495 		return 0;
4496 
4497 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4498 		return 1;
4499 
4500 	saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4501 	if (!(saved_efer & EFER_SVME))
4502 		return 1;
4503 
4504 	vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4505 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4506 		return 1;
4507 
4508 	ret = 1;
4509 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL)
4510 		goto unmap_map;
4511 
4512 	if (svm_allocate_nested(svm))
4513 		goto unmap_save;
4514 
4515 	/*
4516 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4517 	 * used during SMM (see svm_enter_smm())
4518 	 */
4519 
4520 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4521 
4522 	/*
4523 	 * Enter the nested guest now
4524 	 */
4525 
4526 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4527 
4528 	vmcb12 = map.hva;
4529 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4530 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4531 	ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false);
4532 
4533 	if (ret)
4534 		goto unmap_save;
4535 
4536 	svm->nested.nested_run_pending = 1;
4537 
4538 unmap_save:
4539 	kvm_vcpu_unmap(vcpu, &map_save, true);
4540 unmap_map:
4541 	kvm_vcpu_unmap(vcpu, &map, true);
4542 	return ret;
4543 }
4544 
4545 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4546 {
4547 	struct vcpu_svm *svm = to_svm(vcpu);
4548 
4549 	if (!gif_set(svm)) {
4550 		if (vgif)
4551 			svm_set_intercept(svm, INTERCEPT_STGI);
4552 		/* STGI will cause a vm exit */
4553 	} else {
4554 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4555 	}
4556 }
4557 
4558 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4559 					void *insn, int insn_len)
4560 {
4561 	bool smep, smap, is_user;
4562 	unsigned long cr4;
4563 	u64 error_code;
4564 
4565 	/* Emulation is always possible when KVM has access to all guest state. */
4566 	if (!sev_guest(vcpu->kvm))
4567 		return true;
4568 
4569 	/* #UD and #GP should never be intercepted for SEV guests. */
4570 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4571 				  EMULTYPE_TRAP_UD_FORCED |
4572 				  EMULTYPE_VMWARE_GP));
4573 
4574 	/*
4575 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4576 	 * to guest register state.
4577 	 */
4578 	if (sev_es_guest(vcpu->kvm))
4579 		return false;
4580 
4581 	/*
4582 	 * Emulation is possible if the instruction is already decoded, e.g.
4583 	 * when completing I/O after returning from userspace.
4584 	 */
4585 	if (emul_type & EMULTYPE_NO_DECODE)
4586 		return true;
4587 
4588 	/*
4589 	 * Emulation is possible for SEV guests if and only if a prefilled
4590 	 * buffer containing the bytes of the intercepted instruction is
4591 	 * available. SEV guest memory is encrypted with a guest specific key
4592 	 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4593 	 * decode garbage.
4594 	 *
4595 	 * Inject #UD if KVM reached this point without an instruction buffer.
4596 	 * In practice, this path should never be hit by a well-behaved guest,
4597 	 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4598 	 * is still theoretically reachable, e.g. via unaccelerated fault-like
4599 	 * AVIC access, and needs to be handled by KVM to avoid putting the
4600 	 * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
4601 	 * but its the least awful option given lack of insight into the guest.
4602 	 */
4603 	if (unlikely(!insn)) {
4604 		kvm_queue_exception(vcpu, UD_VECTOR);
4605 		return false;
4606 	}
4607 
4608 	/*
4609 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4610 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4611 	 * the faulting instruction because the code fetch itself faulted, e.g.
4612 	 * the guest attempted to fetch from emulated MMIO or a guest page
4613 	 * table used to translate CS:RIP resides in emulated MMIO.
4614 	 */
4615 	if (likely(insn_len))
4616 		return true;
4617 
4618 	/*
4619 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4620 	 *
4621 	 * Errata:
4622 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4623 	 * possible that CPU microcode implementing DecodeAssist will fail to
4624 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4625 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4626 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4627 	 * gives up and does not fill the instruction bytes buffer.
4628 	 *
4629 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4630 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4631 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4632 	 * GuestIntrBytes field of the VMCB.
4633 	 *
4634 	 * This does _not_ mean that the erratum has been encountered, as the
4635 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4636 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4637 	 * encountered a reserved/not-present #PF.
4638 	 *
4639 	 * To hit the erratum, the following conditions must be true:
4640 	 *    1. CR4.SMAP=1 (obviously).
4641 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4642 	 *       have been hit as the guest would have encountered a SMEP
4643 	 *       violation #PF, not a #NPF.
4644 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4645 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4646 	 *
4647 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4648 	 * while translating guest page tables (see below).
4649 	 */
4650 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4651 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4652 		goto resume_guest;
4653 
4654 	cr4 = kvm_read_cr4(vcpu);
4655 	smep = cr4 & X86_CR4_SMEP;
4656 	smap = cr4 & X86_CR4_SMAP;
4657 	is_user = svm_get_cpl(vcpu) == 3;
4658 	if (smap && (!smep || is_user)) {
4659 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4660 
4661 		/*
4662 		 * If the fault occurred in userspace, arbitrarily inject #GP
4663 		 * to avoid killing the guest and to hopefully avoid confusing
4664 		 * the guest kernel too much, e.g. injecting #PF would not be
4665 		 * coherent with respect to the guest's page tables.  Request
4666 		 * triple fault if the fault occurred in the kernel as there's
4667 		 * no fault that KVM can inject without confusing the guest.
4668 		 * In practice, the triple fault is moot as no sane SEV kernel
4669 		 * will execute from user memory while also running with SMAP=1.
4670 		 */
4671 		if (is_user)
4672 			kvm_inject_gp(vcpu, 0);
4673 		else
4674 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4675 	}
4676 
4677 resume_guest:
4678 	/*
4679 	 * If the erratum was not hit, simply resume the guest and let it fault
4680 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4681 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4682 	 * userspace will kill the guest, and letting the emulator read garbage
4683 	 * will yield random behavior and potentially corrupt the guest.
4684 	 *
4685 	 * Simply resuming the guest is technically not a violation of the SEV
4686 	 * architecture.  AMD's APM states that all code fetches and page table
4687 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4688 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4689 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4690 	 * the guest spin is technically "ignoring" the access.
4691 	 */
4692 	return false;
4693 }
4694 
4695 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4696 {
4697 	struct vcpu_svm *svm = to_svm(vcpu);
4698 
4699 	return !gif_set(svm);
4700 }
4701 
4702 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4703 {
4704 	if (!sev_es_guest(vcpu->kvm))
4705 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4706 
4707 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4708 }
4709 
4710 static void svm_vm_destroy(struct kvm *kvm)
4711 {
4712 	avic_vm_destroy(kvm);
4713 	sev_vm_destroy(kvm);
4714 }
4715 
4716 static int svm_vm_init(struct kvm *kvm)
4717 {
4718 	if (!pause_filter_count || !pause_filter_thresh)
4719 		kvm->arch.pause_in_guest = true;
4720 
4721 	if (enable_apicv) {
4722 		int ret = avic_vm_init(kvm);
4723 		if (ret)
4724 			return ret;
4725 	}
4726 
4727 	return 0;
4728 }
4729 
4730 static struct kvm_x86_ops svm_x86_ops __initdata = {
4731 	.name = "kvm_amd",
4732 
4733 	.hardware_unsetup = svm_hardware_unsetup,
4734 	.hardware_enable = svm_hardware_enable,
4735 	.hardware_disable = svm_hardware_disable,
4736 	.has_emulated_msr = svm_has_emulated_msr,
4737 
4738 	.vcpu_create = svm_vcpu_create,
4739 	.vcpu_free = svm_vcpu_free,
4740 	.vcpu_reset = svm_vcpu_reset,
4741 
4742 	.vm_size = sizeof(struct kvm_svm),
4743 	.vm_init = svm_vm_init,
4744 	.vm_destroy = svm_vm_destroy,
4745 
4746 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4747 	.vcpu_load = svm_vcpu_load,
4748 	.vcpu_put = svm_vcpu_put,
4749 	.vcpu_blocking = avic_vcpu_blocking,
4750 	.vcpu_unblocking = avic_vcpu_unblocking,
4751 
4752 	.update_exception_bitmap = svm_update_exception_bitmap,
4753 	.get_msr_feature = svm_get_msr_feature,
4754 	.get_msr = svm_get_msr,
4755 	.set_msr = svm_set_msr,
4756 	.get_segment_base = svm_get_segment_base,
4757 	.get_segment = svm_get_segment,
4758 	.set_segment = svm_set_segment,
4759 	.get_cpl = svm_get_cpl,
4760 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4761 	.set_cr0 = svm_set_cr0,
4762 	.post_set_cr3 = sev_post_set_cr3,
4763 	.is_valid_cr4 = svm_is_valid_cr4,
4764 	.set_cr4 = svm_set_cr4,
4765 	.set_efer = svm_set_efer,
4766 	.get_idt = svm_get_idt,
4767 	.set_idt = svm_set_idt,
4768 	.get_gdt = svm_get_gdt,
4769 	.set_gdt = svm_set_gdt,
4770 	.set_dr7 = svm_set_dr7,
4771 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4772 	.cache_reg = svm_cache_reg,
4773 	.get_rflags = svm_get_rflags,
4774 	.set_rflags = svm_set_rflags,
4775 	.get_if_flag = svm_get_if_flag,
4776 
4777 	.flush_tlb_all = svm_flush_tlb_current,
4778 	.flush_tlb_current = svm_flush_tlb_current,
4779 	.flush_tlb_gva = svm_flush_tlb_gva,
4780 	.flush_tlb_guest = svm_flush_tlb_current,
4781 
4782 	.vcpu_pre_run = svm_vcpu_pre_run,
4783 	.vcpu_run = svm_vcpu_run,
4784 	.handle_exit = svm_handle_exit,
4785 	.skip_emulated_instruction = svm_skip_emulated_instruction,
4786 	.update_emulated_instruction = NULL,
4787 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4788 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4789 	.patch_hypercall = svm_patch_hypercall,
4790 	.inject_irq = svm_inject_irq,
4791 	.inject_nmi = svm_inject_nmi,
4792 	.inject_exception = svm_inject_exception,
4793 	.cancel_injection = svm_cancel_injection,
4794 	.interrupt_allowed = svm_interrupt_allowed,
4795 	.nmi_allowed = svm_nmi_allowed,
4796 	.get_nmi_mask = svm_get_nmi_mask,
4797 	.set_nmi_mask = svm_set_nmi_mask,
4798 	.enable_nmi_window = svm_enable_nmi_window,
4799 	.enable_irq_window = svm_enable_irq_window,
4800 	.update_cr8_intercept = svm_update_cr8_intercept,
4801 	.set_virtual_apic_mode = avic_set_virtual_apic_mode,
4802 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4803 	.check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons,
4804 	.apicv_post_state_restore = avic_apicv_post_state_restore,
4805 
4806 	.get_exit_info = svm_get_exit_info,
4807 
4808 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4809 
4810 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4811 
4812 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
4813 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4814 	.write_tsc_offset = svm_write_tsc_offset,
4815 	.write_tsc_multiplier = svm_write_tsc_multiplier,
4816 
4817 	.load_mmu_pgd = svm_load_mmu_pgd,
4818 
4819 	.check_intercept = svm_check_intercept,
4820 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4821 
4822 	.request_immediate_exit = __kvm_request_immediate_exit,
4823 
4824 	.sched_in = svm_sched_in,
4825 
4826 	.nested_ops = &svm_nested_ops,
4827 
4828 	.deliver_interrupt = svm_deliver_interrupt,
4829 	.pi_update_irte = avic_pi_update_irte,
4830 	.setup_mce = svm_setup_mce,
4831 
4832 	.smi_allowed = svm_smi_allowed,
4833 	.enter_smm = svm_enter_smm,
4834 	.leave_smm = svm_leave_smm,
4835 	.enable_smi_window = svm_enable_smi_window,
4836 
4837 	.mem_enc_ioctl = sev_mem_enc_ioctl,
4838 	.mem_enc_register_region = sev_mem_enc_register_region,
4839 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
4840 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
4841 
4842 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4843 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
4844 
4845 	.can_emulate_instruction = svm_can_emulate_instruction,
4846 
4847 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4848 
4849 	.msr_filter_changed = svm_msr_filter_changed,
4850 	.complete_emulated_msr = svm_complete_emulated_msr,
4851 
4852 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4853 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
4854 };
4855 
4856 /*
4857  * The default MMIO mask is a single bit (excluding the present bit),
4858  * which could conflict with the memory encryption bit. Check for
4859  * memory encryption support and override the default MMIO mask if
4860  * memory encryption is enabled.
4861  */
4862 static __init void svm_adjust_mmio_mask(void)
4863 {
4864 	unsigned int enc_bit, mask_bit;
4865 	u64 msr, mask;
4866 
4867 	/* If there is no memory encryption support, use existing mask */
4868 	if (cpuid_eax(0x80000000) < 0x8000001f)
4869 		return;
4870 
4871 	/* If memory encryption is not enabled, use existing mask */
4872 	rdmsrl(MSR_AMD64_SYSCFG, msr);
4873 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4874 		return;
4875 
4876 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4877 	mask_bit = boot_cpu_data.x86_phys_bits;
4878 
4879 	/* Increment the mask bit if it is the same as the encryption bit */
4880 	if (enc_bit == mask_bit)
4881 		mask_bit++;
4882 
4883 	/*
4884 	 * If the mask bit location is below 52, then some bits above the
4885 	 * physical addressing limit will always be reserved, so use the
4886 	 * rsvd_bits() function to generate the mask. This mask, along with
4887 	 * the present bit, will be used to generate a page fault with
4888 	 * PFER.RSV = 1.
4889 	 *
4890 	 * If the mask bit location is 52 (or above), then clear the mask.
4891 	 */
4892 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4893 
4894 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4895 }
4896 
4897 static __init void svm_set_cpu_caps(void)
4898 {
4899 	kvm_set_cpu_caps();
4900 
4901 	kvm_caps.supported_xss = 0;
4902 
4903 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
4904 	if (nested) {
4905 		kvm_cpu_cap_set(X86_FEATURE_SVM);
4906 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4907 
4908 		if (nrips)
4909 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4910 
4911 		if (npt_enabled)
4912 			kvm_cpu_cap_set(X86_FEATURE_NPT);
4913 
4914 		if (tsc_scaling)
4915 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4916 
4917 		if (vls)
4918 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
4919 		if (lbrv)
4920 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
4921 
4922 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
4923 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
4924 
4925 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
4926 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
4927 
4928 		if (vgif)
4929 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
4930 
4931 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
4932 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4933 	}
4934 
4935 	/* CPUID 0x80000008 */
4936 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
4937 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
4938 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
4939 
4940 	/* AMD PMU PERFCTR_CORE CPUID */
4941 	if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4942 		kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
4943 
4944 	/* CPUID 0x8000001F (SME/SEV features) */
4945 	sev_set_cpu_caps();
4946 }
4947 
4948 static __init int svm_hardware_setup(void)
4949 {
4950 	int cpu;
4951 	struct page *iopm_pages;
4952 	void *iopm_va;
4953 	int r;
4954 	unsigned int order = get_order(IOPM_SIZE);
4955 
4956 	/*
4957 	 * NX is required for shadow paging and for NPT if the NX huge pages
4958 	 * mitigation is enabled.
4959 	 */
4960 	if (!boot_cpu_has(X86_FEATURE_NX)) {
4961 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
4962 		return -EOPNOTSUPP;
4963 	}
4964 	kvm_enable_efer_bits(EFER_NX);
4965 
4966 	iopm_pages = alloc_pages(GFP_KERNEL, order);
4967 
4968 	if (!iopm_pages)
4969 		return -ENOMEM;
4970 
4971 	iopm_va = page_address(iopm_pages);
4972 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
4973 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
4974 
4975 	init_msrpm_offsets();
4976 
4977 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
4978 				     XFEATURE_MASK_BNDCSR);
4979 
4980 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
4981 		kvm_enable_efer_bits(EFER_FFXSR);
4982 
4983 	if (tsc_scaling) {
4984 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
4985 			tsc_scaling = false;
4986 		} else {
4987 			pr_info("TSC scaling supported\n");
4988 			kvm_caps.has_tsc_control = true;
4989 		}
4990 	}
4991 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
4992 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
4993 
4994 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
4995 
4996 	/* Check for pause filtering support */
4997 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
4998 		pause_filter_count = 0;
4999 		pause_filter_thresh = 0;
5000 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5001 		pause_filter_thresh = 0;
5002 	}
5003 
5004 	if (nested) {
5005 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
5006 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5007 	}
5008 
5009 	/*
5010 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5011 	 * NPT isn't supported if the host is using 2-level paging since host
5012 	 * CR4 is unchanged on VMRUN.
5013 	 */
5014 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5015 		npt_enabled = false;
5016 
5017 	if (!boot_cpu_has(X86_FEATURE_NPT))
5018 		npt_enabled = false;
5019 
5020 	/* Force VM NPT level equal to the host's paging level */
5021 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5022 			  get_npt_level(), PG_LEVEL_1G);
5023 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5024 
5025 	/* Setup shadow_me_value and shadow_me_mask */
5026 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5027 
5028 	svm_adjust_mmio_mask();
5029 
5030 	/*
5031 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5032 	 * may be modified by svm_adjust_mmio_mask()).
5033 	 */
5034 	sev_hardware_setup();
5035 
5036 	svm_hv_hardware_setup();
5037 
5038 	for_each_possible_cpu(cpu) {
5039 		r = svm_cpu_init(cpu);
5040 		if (r)
5041 			goto err;
5042 	}
5043 
5044 	if (nrips) {
5045 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
5046 			nrips = false;
5047 	}
5048 
5049 	enable_apicv = avic = avic && avic_hardware_setup(&svm_x86_ops);
5050 
5051 	if (!enable_apicv) {
5052 		svm_x86_ops.vcpu_blocking = NULL;
5053 		svm_x86_ops.vcpu_unblocking = NULL;
5054 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5055 	}
5056 
5057 	if (vls) {
5058 		if (!npt_enabled ||
5059 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5060 		    !IS_ENABLED(CONFIG_X86_64)) {
5061 			vls = false;
5062 		} else {
5063 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5064 		}
5065 	}
5066 
5067 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5068 		svm_gp_erratum_intercept = false;
5069 
5070 	if (vgif) {
5071 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5072 			vgif = false;
5073 		else
5074 			pr_info("Virtual GIF supported\n");
5075 	}
5076 
5077 	if (lbrv) {
5078 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5079 			lbrv = false;
5080 		else
5081 			pr_info("LBR virtualization supported\n");
5082 	}
5083 
5084 	if (!enable_pmu)
5085 		pr_info("PMU virtualization is disabled\n");
5086 
5087 	svm_set_cpu_caps();
5088 
5089 	/*
5090 	 * It seems that on AMD processors PTE's accessed bit is
5091 	 * being set by the CPU hardware before the NPF vmexit.
5092 	 * This is not expected behaviour and our tests fail because
5093 	 * of it.
5094 	 * A workaround here is to disable support for
5095 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5096 	 * In this case userspace can know if there is support using
5097 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5098 	 * it
5099 	 * If future AMD CPU models change the behaviour described above,
5100 	 * this variable can be changed accordingly
5101 	 */
5102 	allow_smaller_maxphyaddr = !npt_enabled;
5103 
5104 	return 0;
5105 
5106 err:
5107 	svm_hardware_unsetup();
5108 	return r;
5109 }
5110 
5111 
5112 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5113 	.cpu_has_kvm_support = has_svm,
5114 	.disabled_by_bios = is_disabled,
5115 	.hardware_setup = svm_hardware_setup,
5116 	.check_processor_compatibility = svm_check_processor_compat,
5117 
5118 	.runtime_ops = &svm_x86_ops,
5119 	.pmu_ops = &amd_pmu_ops,
5120 };
5121 
5122 static int __init svm_init(void)
5123 {
5124 	__unused_size_checks();
5125 
5126 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
5127 			__alignof__(struct vcpu_svm), THIS_MODULE);
5128 }
5129 
5130 static void __exit svm_exit(void)
5131 {
5132 	kvm_exit();
5133 }
5134 
5135 module_init(svm_init)
5136 module_exit(svm_exit)
5137