1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/frame.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 29 #include <asm/apic.h> 30 #include <asm/perf_event.h> 31 #include <asm/tlbflush.h> 32 #include <asm/desc.h> 33 #include <asm/debugreg.h> 34 #include <asm/kvm_para.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/mce.h> 37 #include <asm/spec-ctrl.h> 38 #include <asm/cpu_device_id.h> 39 40 #include <asm/virtext.h> 41 #include "trace.h" 42 43 #include "svm.h" 44 45 #define __ex(x) __kvm_handle_fault_on_reboot(x) 46 47 MODULE_AUTHOR("Qumranet"); 48 MODULE_LICENSE("GPL"); 49 50 #ifdef MODULE 51 static const struct x86_cpu_id svm_cpu_id[] = { 52 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 53 {} 54 }; 55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 56 #endif 57 58 #define IOPM_ALLOC_ORDER 2 59 #define MSRPM_ALLOC_ORDER 1 60 61 #define SEG_TYPE_LDT 2 62 #define SEG_TYPE_BUSY_TSS16 3 63 64 #define SVM_FEATURE_LBRV (1 << 1) 65 #define SVM_FEATURE_SVML (1 << 2) 66 #define SVM_FEATURE_TSC_RATE (1 << 4) 67 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 68 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 69 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 70 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 71 72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 73 74 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 75 #define TSC_RATIO_MIN 0x0000000000000001ULL 76 #define TSC_RATIO_MAX 0x000000ffffffffffULL 77 78 static bool erratum_383_found __read_mostly; 79 80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 81 82 /* 83 * Set osvw_len to higher value when updated Revision Guides 84 * are published and we know what the new status bits are 85 */ 86 static uint64_t osvw_len = 4, osvw_status; 87 88 static DEFINE_PER_CPU(u64, current_tsc_ratio); 89 #define TSC_RATIO_DEFAULT 0x0100000000ULL 90 91 static const struct svm_direct_access_msrs { 92 u32 index; /* Index of the MSR */ 93 bool always; /* True if intercept is always on */ 94 } direct_access_msrs[] = { 95 { .index = MSR_STAR, .always = true }, 96 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 97 #ifdef CONFIG_X86_64 98 { .index = MSR_GS_BASE, .always = true }, 99 { .index = MSR_FS_BASE, .always = true }, 100 { .index = MSR_KERNEL_GS_BASE, .always = true }, 101 { .index = MSR_LSTAR, .always = true }, 102 { .index = MSR_CSTAR, .always = true }, 103 { .index = MSR_SYSCALL_MASK, .always = true }, 104 #endif 105 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 106 { .index = MSR_IA32_PRED_CMD, .always = false }, 107 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 108 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 109 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 110 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 111 { .index = MSR_INVALID, .always = false }, 112 }; 113 114 /* enable NPT for AMD64 and X86 with PAE */ 115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 116 bool npt_enabled = true; 117 #else 118 bool npt_enabled; 119 #endif 120 121 /* 122 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 123 * pause_filter_count: On processors that support Pause filtering(indicated 124 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 125 * count value. On VMRUN this value is loaded into an internal counter. 126 * Each time a pause instruction is executed, this counter is decremented 127 * until it reaches zero at which time a #VMEXIT is generated if pause 128 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 129 * Intercept Filtering for more details. 130 * This also indicate if ple logic enabled. 131 * 132 * pause_filter_thresh: In addition, some processor families support advanced 133 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 134 * the amount of time a guest is allowed to execute in a pause loop. 135 * In this mode, a 16-bit pause filter threshold field is added in the 136 * VMCB. The threshold value is a cycle count that is used to reset the 137 * pause counter. As with simple pause filtering, VMRUN loads the pause 138 * count value from VMCB into an internal counter. Then, on each pause 139 * instruction the hardware checks the elapsed number of cycles since 140 * the most recent pause instruction against the pause filter threshold. 141 * If the elapsed cycle count is greater than the pause filter threshold, 142 * then the internal pause count is reloaded from the VMCB and execution 143 * continues. If the elapsed cycle count is less than the pause filter 144 * threshold, then the internal pause count is decremented. If the count 145 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 146 * triggered. If advanced pause filtering is supported and pause filter 147 * threshold field is set to zero, the filter will operate in the simpler, 148 * count only mode. 149 */ 150 151 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 152 module_param(pause_filter_thresh, ushort, 0444); 153 154 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 155 module_param(pause_filter_count, ushort, 0444); 156 157 /* Default doubles per-vcpu window every exit. */ 158 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 159 module_param(pause_filter_count_grow, ushort, 0444); 160 161 /* Default resets per-vcpu window every exit to pause_filter_count. */ 162 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 163 module_param(pause_filter_count_shrink, ushort, 0444); 164 165 /* Default is to compute the maximum so we can never overflow. */ 166 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 167 module_param(pause_filter_count_max, ushort, 0444); 168 169 /* allow nested paging (virtualized MMU) for all guests */ 170 static int npt = true; 171 module_param(npt, int, S_IRUGO); 172 173 /* allow nested virtualization in KVM/SVM */ 174 static int nested = true; 175 module_param(nested, int, S_IRUGO); 176 177 /* enable/disable Next RIP Save */ 178 static int nrips = true; 179 module_param(nrips, int, 0444); 180 181 /* enable/disable Virtual VMLOAD VMSAVE */ 182 static int vls = true; 183 module_param(vls, int, 0444); 184 185 /* enable/disable Virtual GIF */ 186 static int vgif = true; 187 module_param(vgif, int, 0444); 188 189 /* enable/disable SEV support */ 190 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); 191 module_param(sev, int, 0444); 192 193 static bool __read_mostly dump_invalid_vmcb = 0; 194 module_param(dump_invalid_vmcb, bool, 0644); 195 196 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 197 198 static void svm_complete_interrupts(struct vcpu_svm *svm); 199 200 static unsigned long iopm_base; 201 202 struct kvm_ldttss_desc { 203 u16 limit0; 204 u16 base0; 205 unsigned base1:8, type:5, dpl:2, p:1; 206 unsigned limit1:4, zero0:3, g:1, base2:8; 207 u32 base3; 208 u32 zero1; 209 } __attribute__((packed)); 210 211 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 212 213 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 214 215 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 216 #define MSRS_RANGE_SIZE 2048 217 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 218 219 u32 svm_msrpm_offset(u32 msr) 220 { 221 u32 offset; 222 int i; 223 224 for (i = 0; i < NUM_MSR_MAPS; i++) { 225 if (msr < msrpm_ranges[i] || 226 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 227 continue; 228 229 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 230 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 231 232 /* Now we have the u8 offset - but need the u32 offset */ 233 return offset / 4; 234 } 235 236 /* MSR not in any range */ 237 return MSR_INVALID; 238 } 239 240 #define MAX_INST_SIZE 15 241 242 static inline void clgi(void) 243 { 244 asm volatile (__ex("clgi")); 245 } 246 247 static inline void stgi(void) 248 { 249 asm volatile (__ex("stgi")); 250 } 251 252 static inline void invlpga(unsigned long addr, u32 asid) 253 { 254 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr)); 255 } 256 257 static int get_max_npt_level(void) 258 { 259 #ifdef CONFIG_X86_64 260 return PT64_ROOT_4LEVEL; 261 #else 262 return PT32E_ROOT_LEVEL; 263 #endif 264 } 265 266 void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 267 { 268 struct vcpu_svm *svm = to_svm(vcpu); 269 vcpu->arch.efer = efer; 270 271 if (!npt_enabled) { 272 /* Shadow paging assumes NX to be available. */ 273 efer |= EFER_NX; 274 275 if (!(efer & EFER_LMA)) 276 efer &= ~EFER_LME; 277 } 278 279 if (!(efer & EFER_SVME)) { 280 svm_leave_nested(svm); 281 svm_set_gif(svm, true); 282 } 283 284 svm->vmcb->save.efer = efer | EFER_SVME; 285 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 286 } 287 288 static int is_external_interrupt(u32 info) 289 { 290 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 291 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 292 } 293 294 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 295 { 296 struct vcpu_svm *svm = to_svm(vcpu); 297 u32 ret = 0; 298 299 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 300 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 301 return ret; 302 } 303 304 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 305 { 306 struct vcpu_svm *svm = to_svm(vcpu); 307 308 if (mask == 0) 309 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 310 else 311 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 312 313 } 314 315 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 316 { 317 struct vcpu_svm *svm = to_svm(vcpu); 318 319 if (nrips && svm->vmcb->control.next_rip != 0) { 320 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 321 svm->next_rip = svm->vmcb->control.next_rip; 322 } 323 324 if (!svm->next_rip) { 325 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 326 return 0; 327 } else { 328 kvm_rip_write(vcpu, svm->next_rip); 329 } 330 svm_set_interrupt_shadow(vcpu, 0); 331 332 return 1; 333 } 334 335 static void svm_queue_exception(struct kvm_vcpu *vcpu) 336 { 337 struct vcpu_svm *svm = to_svm(vcpu); 338 unsigned nr = vcpu->arch.exception.nr; 339 bool has_error_code = vcpu->arch.exception.has_error_code; 340 u32 error_code = vcpu->arch.exception.error_code; 341 342 kvm_deliver_exception_payload(&svm->vcpu); 343 344 if (nr == BP_VECTOR && !nrips) { 345 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); 346 347 /* 348 * For guest debugging where we have to reinject #BP if some 349 * INT3 is guest-owned: 350 * Emulate nRIP by moving RIP forward. Will fail if injection 351 * raises a fault that is not intercepted. Still better than 352 * failing in all cases. 353 */ 354 (void)skip_emulated_instruction(&svm->vcpu); 355 rip = kvm_rip_read(&svm->vcpu); 356 svm->int3_rip = rip + svm->vmcb->save.cs.base; 357 svm->int3_injected = rip - old_rip; 358 } 359 360 svm->vmcb->control.event_inj = nr 361 | SVM_EVTINJ_VALID 362 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 363 | SVM_EVTINJ_TYPE_EXEPT; 364 svm->vmcb->control.event_inj_err = error_code; 365 } 366 367 static void svm_init_erratum_383(void) 368 { 369 u32 low, high; 370 int err; 371 u64 val; 372 373 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 374 return; 375 376 /* Use _safe variants to not break nested virtualization */ 377 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 378 if (err) 379 return; 380 381 val |= (1ULL << 47); 382 383 low = lower_32_bits(val); 384 high = upper_32_bits(val); 385 386 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 387 388 erratum_383_found = true; 389 } 390 391 static void svm_init_osvw(struct kvm_vcpu *vcpu) 392 { 393 /* 394 * Guests should see errata 400 and 415 as fixed (assuming that 395 * HLT and IO instructions are intercepted). 396 */ 397 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 398 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 399 400 /* 401 * By increasing VCPU's osvw.length to 3 we are telling the guest that 402 * all osvw.status bits inside that length, including bit 0 (which is 403 * reserved for erratum 298), are valid. However, if host processor's 404 * osvw_len is 0 then osvw_status[0] carries no information. We need to 405 * be conservative here and therefore we tell the guest that erratum 298 406 * is present (because we really don't know). 407 */ 408 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 409 vcpu->arch.osvw.status |= 1; 410 } 411 412 static int has_svm(void) 413 { 414 const char *msg; 415 416 if (!cpu_has_svm(&msg)) { 417 printk(KERN_INFO "has_svm: %s\n", msg); 418 return 0; 419 } 420 421 return 1; 422 } 423 424 static void svm_hardware_disable(void) 425 { 426 /* Make sure we clean up behind us */ 427 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) 428 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 429 430 cpu_svm_disable(); 431 432 amd_pmu_disable_virt(); 433 } 434 435 static int svm_hardware_enable(void) 436 { 437 438 struct svm_cpu_data *sd; 439 uint64_t efer; 440 struct desc_struct *gdt; 441 int me = raw_smp_processor_id(); 442 443 rdmsrl(MSR_EFER, efer); 444 if (efer & EFER_SVME) 445 return -EBUSY; 446 447 if (!has_svm()) { 448 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 449 return -EINVAL; 450 } 451 sd = per_cpu(svm_data, me); 452 if (!sd) { 453 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 454 return -EINVAL; 455 } 456 457 sd->asid_generation = 1; 458 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 459 sd->next_asid = sd->max_asid + 1; 460 sd->min_asid = max_sev_asid + 1; 461 462 gdt = get_current_gdt_rw(); 463 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 464 465 wrmsrl(MSR_EFER, efer | EFER_SVME); 466 467 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT); 468 469 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 470 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 471 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 472 } 473 474 475 /* 476 * Get OSVW bits. 477 * 478 * Note that it is possible to have a system with mixed processor 479 * revisions and therefore different OSVW bits. If bits are not the same 480 * on different processors then choose the worst case (i.e. if erratum 481 * is present on one processor and not on another then assume that the 482 * erratum is present everywhere). 483 */ 484 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 485 uint64_t len, status = 0; 486 int err; 487 488 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 489 if (!err) 490 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 491 &err); 492 493 if (err) 494 osvw_status = osvw_len = 0; 495 else { 496 if (len < osvw_len) 497 osvw_len = len; 498 osvw_status |= status; 499 osvw_status &= (1ULL << osvw_len) - 1; 500 } 501 } else 502 osvw_status = osvw_len = 0; 503 504 svm_init_erratum_383(); 505 506 amd_pmu_enable_virt(); 507 508 return 0; 509 } 510 511 static void svm_cpu_uninit(int cpu) 512 { 513 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id()); 514 515 if (!sd) 516 return; 517 518 per_cpu(svm_data, raw_smp_processor_id()) = NULL; 519 kfree(sd->sev_vmcbs); 520 __free_page(sd->save_area); 521 kfree(sd); 522 } 523 524 static int svm_cpu_init(int cpu) 525 { 526 struct svm_cpu_data *sd; 527 528 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 529 if (!sd) 530 return -ENOMEM; 531 sd->cpu = cpu; 532 sd->save_area = alloc_page(GFP_KERNEL); 533 if (!sd->save_area) 534 goto free_cpu_data; 535 536 if (svm_sev_enabled()) { 537 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1, 538 sizeof(void *), 539 GFP_KERNEL); 540 if (!sd->sev_vmcbs) 541 goto free_save_area; 542 } 543 544 per_cpu(svm_data, cpu) = sd; 545 546 return 0; 547 548 free_save_area: 549 __free_page(sd->save_area); 550 free_cpu_data: 551 kfree(sd); 552 return -ENOMEM; 553 554 } 555 556 static bool valid_msr_intercept(u32 index) 557 { 558 int i; 559 560 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 561 if (direct_access_msrs[i].index == index) 562 return true; 563 564 return false; 565 } 566 567 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr) 568 { 569 u8 bit_write; 570 unsigned long tmp; 571 u32 offset; 572 u32 *msrpm; 573 574 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 575 to_svm(vcpu)->msrpm; 576 577 offset = svm_msrpm_offset(msr); 578 bit_write = 2 * (msr & 0x0f) + 1; 579 tmp = msrpm[offset]; 580 581 BUG_ON(offset == MSR_INVALID); 582 583 return !!test_bit(bit_write, &tmp); 584 } 585 586 static void set_msr_interception(u32 *msrpm, unsigned msr, 587 int read, int write) 588 { 589 u8 bit_read, bit_write; 590 unsigned long tmp; 591 u32 offset; 592 593 /* 594 * If this warning triggers extend the direct_access_msrs list at the 595 * beginning of the file 596 */ 597 WARN_ON(!valid_msr_intercept(msr)); 598 599 offset = svm_msrpm_offset(msr); 600 bit_read = 2 * (msr & 0x0f); 601 bit_write = 2 * (msr & 0x0f) + 1; 602 tmp = msrpm[offset]; 603 604 BUG_ON(offset == MSR_INVALID); 605 606 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 607 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 608 609 msrpm[offset] = tmp; 610 } 611 612 static void svm_vcpu_init_msrpm(u32 *msrpm) 613 { 614 int i; 615 616 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); 617 618 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 619 if (!direct_access_msrs[i].always) 620 continue; 621 622 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1); 623 } 624 } 625 626 static void add_msr_offset(u32 offset) 627 { 628 int i; 629 630 for (i = 0; i < MSRPM_OFFSETS; ++i) { 631 632 /* Offset already in list? */ 633 if (msrpm_offsets[i] == offset) 634 return; 635 636 /* Slot used by another offset? */ 637 if (msrpm_offsets[i] != MSR_INVALID) 638 continue; 639 640 /* Add offset to list */ 641 msrpm_offsets[i] = offset; 642 643 return; 644 } 645 646 /* 647 * If this BUG triggers the msrpm_offsets table has an overflow. Just 648 * increase MSRPM_OFFSETS in this case. 649 */ 650 BUG(); 651 } 652 653 static void init_msrpm_offsets(void) 654 { 655 int i; 656 657 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 658 659 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 660 u32 offset; 661 662 offset = svm_msrpm_offset(direct_access_msrs[i].index); 663 BUG_ON(offset == MSR_INVALID); 664 665 add_msr_offset(offset); 666 } 667 } 668 669 static void svm_enable_lbrv(struct vcpu_svm *svm) 670 { 671 u32 *msrpm = svm->msrpm; 672 673 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 674 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 675 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 676 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 677 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 678 } 679 680 static void svm_disable_lbrv(struct vcpu_svm *svm) 681 { 682 u32 *msrpm = svm->msrpm; 683 684 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 685 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 686 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 687 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 688 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 689 } 690 691 void disable_nmi_singlestep(struct vcpu_svm *svm) 692 { 693 svm->nmi_singlestep = false; 694 695 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 696 /* Clear our flags if they were not set by the guest */ 697 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 698 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 699 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 700 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 701 } 702 } 703 704 static void grow_ple_window(struct kvm_vcpu *vcpu) 705 { 706 struct vcpu_svm *svm = to_svm(vcpu); 707 struct vmcb_control_area *control = &svm->vmcb->control; 708 int old = control->pause_filter_count; 709 710 control->pause_filter_count = __grow_ple_window(old, 711 pause_filter_count, 712 pause_filter_count_grow, 713 pause_filter_count_max); 714 715 if (control->pause_filter_count != old) { 716 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 717 trace_kvm_ple_window_update(vcpu->vcpu_id, 718 control->pause_filter_count, old); 719 } 720 } 721 722 static void shrink_ple_window(struct kvm_vcpu *vcpu) 723 { 724 struct vcpu_svm *svm = to_svm(vcpu); 725 struct vmcb_control_area *control = &svm->vmcb->control; 726 int old = control->pause_filter_count; 727 728 control->pause_filter_count = 729 __shrink_ple_window(old, 730 pause_filter_count, 731 pause_filter_count_shrink, 732 pause_filter_count); 733 if (control->pause_filter_count != old) { 734 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 735 trace_kvm_ple_window_update(vcpu->vcpu_id, 736 control->pause_filter_count, old); 737 } 738 } 739 740 /* 741 * The default MMIO mask is a single bit (excluding the present bit), 742 * which could conflict with the memory encryption bit. Check for 743 * memory encryption support and override the default MMIO mask if 744 * memory encryption is enabled. 745 */ 746 static __init void svm_adjust_mmio_mask(void) 747 { 748 unsigned int enc_bit, mask_bit; 749 u64 msr, mask; 750 751 /* If there is no memory encryption support, use existing mask */ 752 if (cpuid_eax(0x80000000) < 0x8000001f) 753 return; 754 755 /* If memory encryption is not enabled, use existing mask */ 756 rdmsrl(MSR_K8_SYSCFG, msr); 757 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) 758 return; 759 760 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 761 mask_bit = boot_cpu_data.x86_phys_bits; 762 763 /* Increment the mask bit if it is the same as the encryption bit */ 764 if (enc_bit == mask_bit) 765 mask_bit++; 766 767 /* 768 * If the mask bit location is below 52, then some bits above the 769 * physical addressing limit will always be reserved, so use the 770 * rsvd_bits() function to generate the mask. This mask, along with 771 * the present bit, will be used to generate a page fault with 772 * PFER.RSV = 1. 773 * 774 * If the mask bit location is 52 (or above), then clear the mask. 775 */ 776 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 777 778 kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK); 779 } 780 781 static void svm_hardware_teardown(void) 782 { 783 int cpu; 784 785 if (svm_sev_enabled()) 786 sev_hardware_teardown(); 787 788 for_each_possible_cpu(cpu) 789 svm_cpu_uninit(cpu); 790 791 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); 792 iopm_base = 0; 793 } 794 795 static __init void svm_set_cpu_caps(void) 796 { 797 kvm_set_cpu_caps(); 798 799 supported_xss = 0; 800 801 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 802 if (nested) { 803 kvm_cpu_cap_set(X86_FEATURE_SVM); 804 805 if (nrips) 806 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 807 808 if (npt_enabled) 809 kvm_cpu_cap_set(X86_FEATURE_NPT); 810 } 811 812 /* CPUID 0x80000008 */ 813 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 814 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 815 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 816 } 817 818 static __init int svm_hardware_setup(void) 819 { 820 int cpu; 821 struct page *iopm_pages; 822 void *iopm_va; 823 int r; 824 825 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); 826 827 if (!iopm_pages) 828 return -ENOMEM; 829 830 iopm_va = page_address(iopm_pages); 831 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); 832 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 833 834 init_msrpm_offsets(); 835 836 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 837 838 if (boot_cpu_has(X86_FEATURE_NX)) 839 kvm_enable_efer_bits(EFER_NX); 840 841 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 842 kvm_enable_efer_bits(EFER_FFXSR); 843 844 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 845 kvm_has_tsc_control = true; 846 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 847 kvm_tsc_scaling_ratio_frac_bits = 32; 848 } 849 850 /* Check for pause filtering support */ 851 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 852 pause_filter_count = 0; 853 pause_filter_thresh = 0; 854 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 855 pause_filter_thresh = 0; 856 } 857 858 if (nested) { 859 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 860 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 861 } 862 863 if (sev) { 864 if (boot_cpu_has(X86_FEATURE_SEV) && 865 IS_ENABLED(CONFIG_KVM_AMD_SEV)) { 866 r = sev_hardware_setup(); 867 if (r) 868 sev = false; 869 } else { 870 sev = false; 871 } 872 } 873 874 svm_adjust_mmio_mask(); 875 876 for_each_possible_cpu(cpu) { 877 r = svm_cpu_init(cpu); 878 if (r) 879 goto err; 880 } 881 882 if (!boot_cpu_has(X86_FEATURE_NPT)) 883 npt_enabled = false; 884 885 if (npt_enabled && !npt) 886 npt_enabled = false; 887 888 kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G); 889 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 890 891 if (nrips) { 892 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 893 nrips = false; 894 } 895 896 if (avic) { 897 if (!npt_enabled || 898 !boot_cpu_has(X86_FEATURE_AVIC) || 899 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { 900 avic = false; 901 } else { 902 pr_info("AVIC enabled\n"); 903 904 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 905 } 906 } 907 908 if (vls) { 909 if (!npt_enabled || 910 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 911 !IS_ENABLED(CONFIG_X86_64)) { 912 vls = false; 913 } else { 914 pr_info("Virtual VMLOAD VMSAVE supported\n"); 915 } 916 } 917 918 if (vgif) { 919 if (!boot_cpu_has(X86_FEATURE_VGIF)) 920 vgif = false; 921 else 922 pr_info("Virtual GIF supported\n"); 923 } 924 925 svm_set_cpu_caps(); 926 927 /* 928 * It seems that on AMD processors PTE's accessed bit is 929 * being set by the CPU hardware before the NPF vmexit. 930 * This is not expected behaviour and our tests fail because 931 * of it. 932 * A workaround here is to disable support for 933 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 934 * In this case userspace can know if there is support using 935 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 936 * it 937 * If future AMD CPU models change the behaviour described above, 938 * this variable can be changed accordingly 939 */ 940 allow_smaller_maxphyaddr = !npt_enabled; 941 942 return 0; 943 944 err: 945 svm_hardware_teardown(); 946 return r; 947 } 948 949 static void init_seg(struct vmcb_seg *seg) 950 { 951 seg->selector = 0; 952 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 953 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 954 seg->limit = 0xffff; 955 seg->base = 0; 956 } 957 958 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 959 { 960 seg->selector = 0; 961 seg->attrib = SVM_SELECTOR_P_MASK | type; 962 seg->limit = 0xffff; 963 seg->base = 0; 964 } 965 966 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 967 { 968 struct vcpu_svm *svm = to_svm(vcpu); 969 u64 g_tsc_offset = 0; 970 971 if (is_guest_mode(vcpu)) { 972 /* Write L1's TSC offset. */ 973 g_tsc_offset = svm->vmcb->control.tsc_offset - 974 svm->nested.hsave->control.tsc_offset; 975 svm->nested.hsave->control.tsc_offset = offset; 976 } 977 978 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 979 svm->vmcb->control.tsc_offset - g_tsc_offset, 980 offset); 981 982 svm->vmcb->control.tsc_offset = offset + g_tsc_offset; 983 984 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 985 return svm->vmcb->control.tsc_offset; 986 } 987 988 static void init_vmcb(struct vcpu_svm *svm) 989 { 990 struct vmcb_control_area *control = &svm->vmcb->control; 991 struct vmcb_save_area *save = &svm->vmcb->save; 992 993 svm->vcpu.arch.hflags = 0; 994 995 set_cr_intercept(svm, INTERCEPT_CR0_READ); 996 set_cr_intercept(svm, INTERCEPT_CR3_READ); 997 set_cr_intercept(svm, INTERCEPT_CR4_READ); 998 set_cr_intercept(svm, INTERCEPT_CR0_WRITE); 999 set_cr_intercept(svm, INTERCEPT_CR3_WRITE); 1000 set_cr_intercept(svm, INTERCEPT_CR4_WRITE); 1001 if (!kvm_vcpu_apicv_active(&svm->vcpu)) 1002 set_cr_intercept(svm, INTERCEPT_CR8_WRITE); 1003 1004 set_dr_intercepts(svm); 1005 1006 set_exception_intercept(svm, PF_VECTOR); 1007 set_exception_intercept(svm, UD_VECTOR); 1008 set_exception_intercept(svm, MC_VECTOR); 1009 set_exception_intercept(svm, AC_VECTOR); 1010 set_exception_intercept(svm, DB_VECTOR); 1011 /* 1012 * Guest access to VMware backdoor ports could legitimately 1013 * trigger #GP because of TSS I/O permission bitmap. 1014 * We intercept those #GP and allow access to them anyway 1015 * as VMware does. 1016 */ 1017 if (enable_vmware_backdoor) 1018 set_exception_intercept(svm, GP_VECTOR); 1019 1020 svm_set_intercept(svm, INTERCEPT_INTR); 1021 svm_set_intercept(svm, INTERCEPT_NMI); 1022 svm_set_intercept(svm, INTERCEPT_SMI); 1023 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1024 svm_set_intercept(svm, INTERCEPT_RDPMC); 1025 svm_set_intercept(svm, INTERCEPT_CPUID); 1026 svm_set_intercept(svm, INTERCEPT_INVD); 1027 svm_set_intercept(svm, INTERCEPT_INVLPG); 1028 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1029 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1030 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1031 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1032 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1033 svm_set_intercept(svm, INTERCEPT_VMRUN); 1034 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1035 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1036 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1037 svm_set_intercept(svm, INTERCEPT_STGI); 1038 svm_set_intercept(svm, INTERCEPT_CLGI); 1039 svm_set_intercept(svm, INTERCEPT_SKINIT); 1040 svm_set_intercept(svm, INTERCEPT_WBINVD); 1041 svm_set_intercept(svm, INTERCEPT_XSETBV); 1042 svm_set_intercept(svm, INTERCEPT_RDPRU); 1043 svm_set_intercept(svm, INTERCEPT_RSM); 1044 1045 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) { 1046 svm_set_intercept(svm, INTERCEPT_MONITOR); 1047 svm_set_intercept(svm, INTERCEPT_MWAIT); 1048 } 1049 1050 if (!kvm_hlt_in_guest(svm->vcpu.kvm)) 1051 svm_set_intercept(svm, INTERCEPT_HLT); 1052 1053 control->iopm_base_pa = __sme_set(iopm_base); 1054 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1055 control->int_ctl = V_INTR_MASKING_MASK; 1056 1057 init_seg(&save->es); 1058 init_seg(&save->ss); 1059 init_seg(&save->ds); 1060 init_seg(&save->fs); 1061 init_seg(&save->gs); 1062 1063 save->cs.selector = 0xf000; 1064 save->cs.base = 0xffff0000; 1065 /* Executable/Readable Code Segment */ 1066 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1067 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1068 save->cs.limit = 0xffff; 1069 1070 save->gdtr.limit = 0xffff; 1071 save->idtr.limit = 0xffff; 1072 1073 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1074 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1075 1076 svm_set_efer(&svm->vcpu, 0); 1077 save->dr6 = 0xffff0ff0; 1078 kvm_set_rflags(&svm->vcpu, 2); 1079 save->rip = 0x0000fff0; 1080 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; 1081 1082 /* 1083 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. 1084 * It also updates the guest-visible cr0 value. 1085 */ 1086 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); 1087 kvm_mmu_reset_context(&svm->vcpu); 1088 1089 save->cr4 = X86_CR4_PAE; 1090 /* rdx = ?? */ 1091 1092 if (npt_enabled) { 1093 /* Setup VMCB for Nested Paging */ 1094 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1095 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1096 clr_exception_intercept(svm, PF_VECTOR); 1097 clr_cr_intercept(svm, INTERCEPT_CR3_READ); 1098 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE); 1099 save->g_pat = svm->vcpu.arch.pat; 1100 save->cr3 = 0; 1101 save->cr4 = 0; 1102 } 1103 svm->asid_generation = 0; 1104 1105 svm->nested.vmcb = 0; 1106 svm->vcpu.arch.hflags = 0; 1107 1108 if (!kvm_pause_in_guest(svm->vcpu.kvm)) { 1109 control->pause_filter_count = pause_filter_count; 1110 if (pause_filter_thresh) 1111 control->pause_filter_thresh = pause_filter_thresh; 1112 svm_set_intercept(svm, INTERCEPT_PAUSE); 1113 } else { 1114 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1115 } 1116 1117 if (kvm_vcpu_apicv_active(&svm->vcpu)) 1118 avic_init_vmcb(svm); 1119 1120 /* 1121 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1122 * in VMCB and clear intercepts to avoid #VMEXIT. 1123 */ 1124 if (vls) { 1125 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1126 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1127 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1128 } 1129 1130 if (vgif) { 1131 svm_clr_intercept(svm, INTERCEPT_STGI); 1132 svm_clr_intercept(svm, INTERCEPT_CLGI); 1133 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1134 } 1135 1136 if (sev_guest(svm->vcpu.kvm)) { 1137 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1138 clr_exception_intercept(svm, UD_VECTOR); 1139 } 1140 1141 vmcb_mark_all_dirty(svm->vmcb); 1142 1143 enable_gif(svm); 1144 1145 } 1146 1147 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1148 { 1149 struct vcpu_svm *svm = to_svm(vcpu); 1150 u32 dummy; 1151 u32 eax = 1; 1152 1153 svm->spec_ctrl = 0; 1154 svm->virt_spec_ctrl = 0; 1155 1156 if (!init_event) { 1157 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | 1158 MSR_IA32_APICBASE_ENABLE; 1159 if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) 1160 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; 1161 } 1162 init_vmcb(svm); 1163 1164 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false); 1165 kvm_rdx_write(vcpu, eax); 1166 1167 if (kvm_vcpu_apicv_active(vcpu) && !init_event) 1168 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); 1169 } 1170 1171 static int svm_create_vcpu(struct kvm_vcpu *vcpu) 1172 { 1173 struct vcpu_svm *svm; 1174 struct page *page; 1175 struct page *msrpm_pages; 1176 struct page *hsave_page; 1177 struct page *nested_msrpm_pages; 1178 int err; 1179 1180 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1181 svm = to_svm(vcpu); 1182 1183 err = -ENOMEM; 1184 page = alloc_page(GFP_KERNEL_ACCOUNT); 1185 if (!page) 1186 goto out; 1187 1188 msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); 1189 if (!msrpm_pages) 1190 goto free_page1; 1191 1192 nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); 1193 if (!nested_msrpm_pages) 1194 goto free_page2; 1195 1196 hsave_page = alloc_page(GFP_KERNEL_ACCOUNT); 1197 if (!hsave_page) 1198 goto free_page3; 1199 1200 err = avic_init_vcpu(svm); 1201 if (err) 1202 goto free_page4; 1203 1204 /* We initialize this flag to true to make sure that the is_running 1205 * bit would be set the first time the vcpu is loaded. 1206 */ 1207 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) 1208 svm->avic_is_running = true; 1209 1210 svm->nested.hsave = page_address(hsave_page); 1211 clear_page(svm->nested.hsave); 1212 1213 svm->msrpm = page_address(msrpm_pages); 1214 svm_vcpu_init_msrpm(svm->msrpm); 1215 1216 svm->nested.msrpm = page_address(nested_msrpm_pages); 1217 svm_vcpu_init_msrpm(svm->nested.msrpm); 1218 1219 svm->vmcb = page_address(page); 1220 clear_page(svm->vmcb); 1221 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT); 1222 svm->asid_generation = 0; 1223 init_vmcb(svm); 1224 1225 svm_init_osvw(vcpu); 1226 vcpu->arch.microcode_version = 0x01000065; 1227 1228 return 0; 1229 1230 free_page4: 1231 __free_page(hsave_page); 1232 free_page3: 1233 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER); 1234 free_page2: 1235 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER); 1236 free_page1: 1237 __free_page(page); 1238 out: 1239 return err; 1240 } 1241 1242 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1243 { 1244 int i; 1245 1246 for_each_online_cpu(i) 1247 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1248 } 1249 1250 static void svm_free_vcpu(struct kvm_vcpu *vcpu) 1251 { 1252 struct vcpu_svm *svm = to_svm(vcpu); 1253 1254 /* 1255 * The vmcb page can be recycled, causing a false negative in 1256 * svm_vcpu_load(). So, ensure that no logical CPU has this 1257 * vmcb page recorded as its current vmcb. 1258 */ 1259 svm_clear_current_vmcb(svm->vmcb); 1260 1261 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); 1262 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); 1263 __free_page(virt_to_page(svm->nested.hsave)); 1264 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER); 1265 } 1266 1267 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1268 { 1269 struct vcpu_svm *svm = to_svm(vcpu); 1270 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1271 int i; 1272 1273 if (unlikely(cpu != vcpu->cpu)) { 1274 svm->asid_generation = 0; 1275 vmcb_mark_all_dirty(svm->vmcb); 1276 } 1277 1278 #ifdef CONFIG_X86_64 1279 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base); 1280 #endif 1281 savesegment(fs, svm->host.fs); 1282 savesegment(gs, svm->host.gs); 1283 svm->host.ldt = kvm_read_ldt(); 1284 1285 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) 1286 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); 1287 1288 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 1289 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1290 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1291 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1292 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1293 } 1294 } 1295 /* This assumes that the kernel never uses MSR_TSC_AUX */ 1296 if (static_cpu_has(X86_FEATURE_RDTSCP)) 1297 wrmsrl(MSR_TSC_AUX, svm->tsc_aux); 1298 1299 if (sd->current_vmcb != svm->vmcb) { 1300 sd->current_vmcb = svm->vmcb; 1301 indirect_branch_prediction_barrier(); 1302 } 1303 avic_vcpu_load(vcpu, cpu); 1304 } 1305 1306 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1307 { 1308 struct vcpu_svm *svm = to_svm(vcpu); 1309 int i; 1310 1311 avic_vcpu_put(vcpu); 1312 1313 ++vcpu->stat.host_state_reload; 1314 kvm_load_ldt(svm->host.ldt); 1315 #ifdef CONFIG_X86_64 1316 loadsegment(fs, svm->host.fs); 1317 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase); 1318 load_gs_index(svm->host.gs); 1319 #else 1320 #ifdef CONFIG_X86_32_LAZY_GS 1321 loadsegment(gs, svm->host.gs); 1322 #endif 1323 #endif 1324 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) 1325 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); 1326 } 1327 1328 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1329 { 1330 struct vcpu_svm *svm = to_svm(vcpu); 1331 unsigned long rflags = svm->vmcb->save.rflags; 1332 1333 if (svm->nmi_singlestep) { 1334 /* Hide our flags if they were not set by the guest */ 1335 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1336 rflags &= ~X86_EFLAGS_TF; 1337 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1338 rflags &= ~X86_EFLAGS_RF; 1339 } 1340 return rflags; 1341 } 1342 1343 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1344 { 1345 if (to_svm(vcpu)->nmi_singlestep) 1346 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1347 1348 /* 1349 * Any change of EFLAGS.VM is accompanied by a reload of SS 1350 * (caused by either a task switch or an inter-privilege IRET), 1351 * so we do not need to update the CPL here. 1352 */ 1353 to_svm(vcpu)->vmcb->save.rflags = rflags; 1354 } 1355 1356 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1357 { 1358 switch (reg) { 1359 case VCPU_EXREG_PDPTR: 1360 BUG_ON(!npt_enabled); 1361 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 1362 break; 1363 default: 1364 WARN_ON_ONCE(1); 1365 } 1366 } 1367 1368 static void svm_set_vintr(struct vcpu_svm *svm) 1369 { 1370 struct vmcb_control_area *control; 1371 1372 /* The following fields are ignored when AVIC is enabled */ 1373 WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu)); 1374 svm_set_intercept(svm, INTERCEPT_VINTR); 1375 1376 /* 1377 * This is just a dummy VINTR to actually cause a vmexit to happen. 1378 * Actual injection of virtual interrupts happens through EVENTINJ. 1379 */ 1380 control = &svm->vmcb->control; 1381 control->int_vector = 0x0; 1382 control->int_ctl &= ~V_INTR_PRIO_MASK; 1383 control->int_ctl |= V_IRQ_MASK | 1384 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1385 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1386 } 1387 1388 static void svm_clear_vintr(struct vcpu_svm *svm) 1389 { 1390 const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK; 1391 svm_clr_intercept(svm, INTERCEPT_VINTR); 1392 1393 /* Drop int_ctl fields related to VINTR injection. */ 1394 svm->vmcb->control.int_ctl &= mask; 1395 if (is_guest_mode(&svm->vcpu)) { 1396 svm->nested.hsave->control.int_ctl &= mask; 1397 1398 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1399 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1400 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask; 1401 } 1402 1403 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1404 } 1405 1406 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1407 { 1408 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1409 1410 switch (seg) { 1411 case VCPU_SREG_CS: return &save->cs; 1412 case VCPU_SREG_DS: return &save->ds; 1413 case VCPU_SREG_ES: return &save->es; 1414 case VCPU_SREG_FS: return &save->fs; 1415 case VCPU_SREG_GS: return &save->gs; 1416 case VCPU_SREG_SS: return &save->ss; 1417 case VCPU_SREG_TR: return &save->tr; 1418 case VCPU_SREG_LDTR: return &save->ldtr; 1419 } 1420 BUG(); 1421 return NULL; 1422 } 1423 1424 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1425 { 1426 struct vmcb_seg *s = svm_seg(vcpu, seg); 1427 1428 return s->base; 1429 } 1430 1431 static void svm_get_segment(struct kvm_vcpu *vcpu, 1432 struct kvm_segment *var, int seg) 1433 { 1434 struct vmcb_seg *s = svm_seg(vcpu, seg); 1435 1436 var->base = s->base; 1437 var->limit = s->limit; 1438 var->selector = s->selector; 1439 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1440 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1441 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1442 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1443 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1444 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1445 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1446 1447 /* 1448 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1449 * However, the SVM spec states that the G bit is not observed by the 1450 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1451 * So let's synthesize a legal G bit for all segments, this helps 1452 * running KVM nested. It also helps cross-vendor migration, because 1453 * Intel's vmentry has a check on the 'G' bit. 1454 */ 1455 var->g = s->limit > 0xfffff; 1456 1457 /* 1458 * AMD's VMCB does not have an explicit unusable field, so emulate it 1459 * for cross vendor migration purposes by "not present" 1460 */ 1461 var->unusable = !var->present; 1462 1463 switch (seg) { 1464 case VCPU_SREG_TR: 1465 /* 1466 * Work around a bug where the busy flag in the tr selector 1467 * isn't exposed 1468 */ 1469 var->type |= 0x2; 1470 break; 1471 case VCPU_SREG_DS: 1472 case VCPU_SREG_ES: 1473 case VCPU_SREG_FS: 1474 case VCPU_SREG_GS: 1475 /* 1476 * The accessed bit must always be set in the segment 1477 * descriptor cache, although it can be cleared in the 1478 * descriptor, the cached bit always remains at 1. Since 1479 * Intel has a check on this, set it here to support 1480 * cross-vendor migration. 1481 */ 1482 if (!var->unusable) 1483 var->type |= 0x1; 1484 break; 1485 case VCPU_SREG_SS: 1486 /* 1487 * On AMD CPUs sometimes the DB bit in the segment 1488 * descriptor is left as 1, although the whole segment has 1489 * been made unusable. Clear it here to pass an Intel VMX 1490 * entry check when cross vendor migrating. 1491 */ 1492 if (var->unusable) 1493 var->db = 0; 1494 /* This is symmetric with svm_set_segment() */ 1495 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1496 break; 1497 } 1498 } 1499 1500 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1501 { 1502 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1503 1504 return save->cpl; 1505 } 1506 1507 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1508 { 1509 struct vcpu_svm *svm = to_svm(vcpu); 1510 1511 dt->size = svm->vmcb->save.idtr.limit; 1512 dt->address = svm->vmcb->save.idtr.base; 1513 } 1514 1515 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1516 { 1517 struct vcpu_svm *svm = to_svm(vcpu); 1518 1519 svm->vmcb->save.idtr.limit = dt->size; 1520 svm->vmcb->save.idtr.base = dt->address ; 1521 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1522 } 1523 1524 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1525 { 1526 struct vcpu_svm *svm = to_svm(vcpu); 1527 1528 dt->size = svm->vmcb->save.gdtr.limit; 1529 dt->address = svm->vmcb->save.gdtr.base; 1530 } 1531 1532 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1533 { 1534 struct vcpu_svm *svm = to_svm(vcpu); 1535 1536 svm->vmcb->save.gdtr.limit = dt->size; 1537 svm->vmcb->save.gdtr.base = dt->address ; 1538 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1539 } 1540 1541 static void update_cr0_intercept(struct vcpu_svm *svm) 1542 { 1543 ulong gcr0 = svm->vcpu.arch.cr0; 1544 u64 *hcr0 = &svm->vmcb->save.cr0; 1545 1546 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) 1547 | (gcr0 & SVM_CR0_SELECTIVE_MASK); 1548 1549 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1550 1551 if (gcr0 == *hcr0) { 1552 clr_cr_intercept(svm, INTERCEPT_CR0_READ); 1553 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE); 1554 } else { 1555 set_cr_intercept(svm, INTERCEPT_CR0_READ); 1556 set_cr_intercept(svm, INTERCEPT_CR0_WRITE); 1557 } 1558 } 1559 1560 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1561 { 1562 struct vcpu_svm *svm = to_svm(vcpu); 1563 1564 #ifdef CONFIG_X86_64 1565 if (vcpu->arch.efer & EFER_LME) { 1566 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1567 vcpu->arch.efer |= EFER_LMA; 1568 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1569 } 1570 1571 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1572 vcpu->arch.efer &= ~EFER_LMA; 1573 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1574 } 1575 } 1576 #endif 1577 vcpu->arch.cr0 = cr0; 1578 1579 if (!npt_enabled) 1580 cr0 |= X86_CR0_PG | X86_CR0_WP; 1581 1582 /* 1583 * re-enable caching here because the QEMU bios 1584 * does not do it - this results in some delay at 1585 * reboot 1586 */ 1587 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1588 cr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1589 svm->vmcb->save.cr0 = cr0; 1590 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1591 update_cr0_intercept(svm); 1592 } 1593 1594 int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1595 { 1596 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1597 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; 1598 1599 if (cr4 & X86_CR4_VMXE) 1600 return 1; 1601 1602 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1603 svm_flush_tlb(vcpu); 1604 1605 vcpu->arch.cr4 = cr4; 1606 if (!npt_enabled) 1607 cr4 |= X86_CR4_PAE; 1608 cr4 |= host_cr4_mce; 1609 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1610 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1611 return 0; 1612 } 1613 1614 static void svm_set_segment(struct kvm_vcpu *vcpu, 1615 struct kvm_segment *var, int seg) 1616 { 1617 struct vcpu_svm *svm = to_svm(vcpu); 1618 struct vmcb_seg *s = svm_seg(vcpu, seg); 1619 1620 s->base = var->base; 1621 s->limit = var->limit; 1622 s->selector = var->selector; 1623 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1624 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1625 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1626 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1627 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1628 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1629 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1630 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1631 1632 /* 1633 * This is always accurate, except if SYSRET returned to a segment 1634 * with SS.DPL != 3. Intel does not have this quirk, and always 1635 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1636 * would entail passing the CPL to userspace and back. 1637 */ 1638 if (seg == VCPU_SREG_SS) 1639 /* This is symmetric with svm_get_segment() */ 1640 svm->vmcb->save.cpl = (var->dpl & 3); 1641 1642 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1643 } 1644 1645 static void update_exception_bitmap(struct kvm_vcpu *vcpu) 1646 { 1647 struct vcpu_svm *svm = to_svm(vcpu); 1648 1649 clr_exception_intercept(svm, BP_VECTOR); 1650 1651 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1652 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1653 set_exception_intercept(svm, BP_VECTOR); 1654 } 1655 } 1656 1657 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1658 { 1659 if (sd->next_asid > sd->max_asid) { 1660 ++sd->asid_generation; 1661 sd->next_asid = sd->min_asid; 1662 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1663 } 1664 1665 svm->asid_generation = sd->asid_generation; 1666 svm->vmcb->control.asid = sd->next_asid++; 1667 1668 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1669 } 1670 1671 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1672 { 1673 struct vmcb *vmcb = svm->vmcb; 1674 1675 if (unlikely(value != vmcb->save.dr6)) { 1676 vmcb->save.dr6 = value; 1677 vmcb_mark_dirty(vmcb, VMCB_DR); 1678 } 1679 } 1680 1681 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1682 { 1683 struct vcpu_svm *svm = to_svm(vcpu); 1684 1685 get_debugreg(vcpu->arch.db[0], 0); 1686 get_debugreg(vcpu->arch.db[1], 1); 1687 get_debugreg(vcpu->arch.db[2], 2); 1688 get_debugreg(vcpu->arch.db[3], 3); 1689 /* 1690 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here, 1691 * because db_interception might need it. We can do it before vmentry. 1692 */ 1693 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1694 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1695 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1696 set_dr_intercepts(svm); 1697 } 1698 1699 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1700 { 1701 struct vcpu_svm *svm = to_svm(vcpu); 1702 1703 svm->vmcb->save.dr7 = value; 1704 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1705 } 1706 1707 static int pf_interception(struct vcpu_svm *svm) 1708 { 1709 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1710 u64 error_code = svm->vmcb->control.exit_info_1; 1711 1712 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address, 1713 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1714 svm->vmcb->control.insn_bytes : NULL, 1715 svm->vmcb->control.insn_len); 1716 } 1717 1718 static int npf_interception(struct vcpu_svm *svm) 1719 { 1720 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1721 u64 error_code = svm->vmcb->control.exit_info_1; 1722 1723 trace_kvm_page_fault(fault_address, error_code); 1724 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, 1725 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1726 svm->vmcb->control.insn_bytes : NULL, 1727 svm->vmcb->control.insn_len); 1728 } 1729 1730 static int db_interception(struct vcpu_svm *svm) 1731 { 1732 struct kvm_run *kvm_run = svm->vcpu.run; 1733 struct kvm_vcpu *vcpu = &svm->vcpu; 1734 1735 if (!(svm->vcpu.guest_debug & 1736 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1737 !svm->nmi_singlestep) { 1738 u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1; 1739 kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload); 1740 return 1; 1741 } 1742 1743 if (svm->nmi_singlestep) { 1744 disable_nmi_singlestep(svm); 1745 /* Make sure we check for pending NMIs upon entry */ 1746 kvm_make_request(KVM_REQ_EVENT, vcpu); 1747 } 1748 1749 if (svm->vcpu.guest_debug & 1750 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1751 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1752 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1753 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1754 kvm_run->debug.arch.pc = 1755 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1756 kvm_run->debug.arch.exception = DB_VECTOR; 1757 return 0; 1758 } 1759 1760 return 1; 1761 } 1762 1763 static int bp_interception(struct vcpu_svm *svm) 1764 { 1765 struct kvm_run *kvm_run = svm->vcpu.run; 1766 1767 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1768 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1769 kvm_run->debug.arch.exception = BP_VECTOR; 1770 return 0; 1771 } 1772 1773 static int ud_interception(struct vcpu_svm *svm) 1774 { 1775 return handle_ud(&svm->vcpu); 1776 } 1777 1778 static int ac_interception(struct vcpu_svm *svm) 1779 { 1780 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0); 1781 return 1; 1782 } 1783 1784 static int gp_interception(struct vcpu_svm *svm) 1785 { 1786 struct kvm_vcpu *vcpu = &svm->vcpu; 1787 u32 error_code = svm->vmcb->control.exit_info_1; 1788 1789 WARN_ON_ONCE(!enable_vmware_backdoor); 1790 1791 /* 1792 * VMware backdoor emulation on #GP interception only handles IN{S}, 1793 * OUT{S}, and RDPMC, none of which generate a non-zero error code. 1794 */ 1795 if (error_code) { 1796 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 1797 return 1; 1798 } 1799 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 1800 } 1801 1802 static bool is_erratum_383(void) 1803 { 1804 int err, i; 1805 u64 value; 1806 1807 if (!erratum_383_found) 1808 return false; 1809 1810 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 1811 if (err) 1812 return false; 1813 1814 /* Bit 62 may or may not be set for this mce */ 1815 value &= ~(1ULL << 62); 1816 1817 if (value != 0xb600000000010015ULL) 1818 return false; 1819 1820 /* Clear MCi_STATUS registers */ 1821 for (i = 0; i < 6; ++i) 1822 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 1823 1824 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 1825 if (!err) { 1826 u32 low, high; 1827 1828 value &= ~(1ULL << 2); 1829 low = lower_32_bits(value); 1830 high = upper_32_bits(value); 1831 1832 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 1833 } 1834 1835 /* Flush tlb to evict multi-match entries */ 1836 __flush_tlb_all(); 1837 1838 return true; 1839 } 1840 1841 /* 1842 * Trigger machine check on the host. We assume all the MSRs are already set up 1843 * by the CPU and that we still run on the same CPU as the MCE occurred on. 1844 * We pass a fake environment to the machine check handler because we want 1845 * the guest to be always treated like user space, no matter what context 1846 * it used internally. 1847 */ 1848 static void kvm_machine_check(void) 1849 { 1850 #if defined(CONFIG_X86_MCE) 1851 struct pt_regs regs = { 1852 .cs = 3, /* Fake ring 3 no matter what the guest ran on */ 1853 .flags = X86_EFLAGS_IF, 1854 }; 1855 1856 do_machine_check(®s); 1857 #endif 1858 } 1859 1860 static void svm_handle_mce(struct vcpu_svm *svm) 1861 { 1862 if (is_erratum_383()) { 1863 /* 1864 * Erratum 383 triggered. Guest state is corrupt so kill the 1865 * guest. 1866 */ 1867 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 1868 1869 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); 1870 1871 return; 1872 } 1873 1874 /* 1875 * On an #MC intercept the MCE handler is not called automatically in 1876 * the host. So do it by hand here. 1877 */ 1878 kvm_machine_check(); 1879 } 1880 1881 static int mc_interception(struct vcpu_svm *svm) 1882 { 1883 return 1; 1884 } 1885 1886 static int shutdown_interception(struct vcpu_svm *svm) 1887 { 1888 struct kvm_run *kvm_run = svm->vcpu.run; 1889 1890 /* 1891 * VMCB is undefined after a SHUTDOWN intercept 1892 * so reinitialize it. 1893 */ 1894 clear_page(svm->vmcb); 1895 init_vmcb(svm); 1896 1897 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 1898 return 0; 1899 } 1900 1901 static int io_interception(struct vcpu_svm *svm) 1902 { 1903 struct kvm_vcpu *vcpu = &svm->vcpu; 1904 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 1905 int size, in, string; 1906 unsigned port; 1907 1908 ++svm->vcpu.stat.io_exits; 1909 string = (io_info & SVM_IOIO_STR_MASK) != 0; 1910 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 1911 if (string) 1912 return kvm_emulate_instruction(vcpu, 0); 1913 1914 port = io_info >> 16; 1915 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 1916 svm->next_rip = svm->vmcb->control.exit_info_2; 1917 1918 return kvm_fast_pio(&svm->vcpu, size, port, in); 1919 } 1920 1921 static int nmi_interception(struct vcpu_svm *svm) 1922 { 1923 return 1; 1924 } 1925 1926 static int intr_interception(struct vcpu_svm *svm) 1927 { 1928 ++svm->vcpu.stat.irq_exits; 1929 return 1; 1930 } 1931 1932 static int nop_on_interception(struct vcpu_svm *svm) 1933 { 1934 return 1; 1935 } 1936 1937 static int halt_interception(struct vcpu_svm *svm) 1938 { 1939 return kvm_emulate_halt(&svm->vcpu); 1940 } 1941 1942 static int vmmcall_interception(struct vcpu_svm *svm) 1943 { 1944 return kvm_emulate_hypercall(&svm->vcpu); 1945 } 1946 1947 static int vmload_interception(struct vcpu_svm *svm) 1948 { 1949 struct vmcb *nested_vmcb; 1950 struct kvm_host_map map; 1951 int ret; 1952 1953 if (nested_svm_check_permissions(svm)) 1954 return 1; 1955 1956 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 1957 if (ret) { 1958 if (ret == -EINVAL) 1959 kvm_inject_gp(&svm->vcpu, 0); 1960 return 1; 1961 } 1962 1963 nested_vmcb = map.hva; 1964 1965 ret = kvm_skip_emulated_instruction(&svm->vcpu); 1966 1967 nested_svm_vmloadsave(nested_vmcb, svm->vmcb); 1968 kvm_vcpu_unmap(&svm->vcpu, &map, true); 1969 1970 return ret; 1971 } 1972 1973 static int vmsave_interception(struct vcpu_svm *svm) 1974 { 1975 struct vmcb *nested_vmcb; 1976 struct kvm_host_map map; 1977 int ret; 1978 1979 if (nested_svm_check_permissions(svm)) 1980 return 1; 1981 1982 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 1983 if (ret) { 1984 if (ret == -EINVAL) 1985 kvm_inject_gp(&svm->vcpu, 0); 1986 return 1; 1987 } 1988 1989 nested_vmcb = map.hva; 1990 1991 ret = kvm_skip_emulated_instruction(&svm->vcpu); 1992 1993 nested_svm_vmloadsave(svm->vmcb, nested_vmcb); 1994 kvm_vcpu_unmap(&svm->vcpu, &map, true); 1995 1996 return ret; 1997 } 1998 1999 static int vmrun_interception(struct vcpu_svm *svm) 2000 { 2001 if (nested_svm_check_permissions(svm)) 2002 return 1; 2003 2004 return nested_svm_vmrun(svm); 2005 } 2006 2007 void svm_set_gif(struct vcpu_svm *svm, bool value) 2008 { 2009 if (value) { 2010 /* 2011 * If VGIF is enabled, the STGI intercept is only added to 2012 * detect the opening of the SMI/NMI window; remove it now. 2013 * Likewise, clear the VINTR intercept, we will set it 2014 * again while processing KVM_REQ_EVENT if needed. 2015 */ 2016 if (vgif_enabled(svm)) 2017 svm_clr_intercept(svm, INTERCEPT_STGI); 2018 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2019 svm_clear_vintr(svm); 2020 2021 enable_gif(svm); 2022 if (svm->vcpu.arch.smi_pending || 2023 svm->vcpu.arch.nmi_pending || 2024 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2025 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2026 } else { 2027 disable_gif(svm); 2028 2029 /* 2030 * After a CLGI no interrupts should come. But if vGIF is 2031 * in use, we still rely on the VINTR intercept (rather than 2032 * STGI) to detect an open interrupt window. 2033 */ 2034 if (!vgif_enabled(svm)) 2035 svm_clear_vintr(svm); 2036 } 2037 } 2038 2039 static int stgi_interception(struct vcpu_svm *svm) 2040 { 2041 int ret; 2042 2043 if (nested_svm_check_permissions(svm)) 2044 return 1; 2045 2046 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2047 svm_set_gif(svm, true); 2048 return ret; 2049 } 2050 2051 static int clgi_interception(struct vcpu_svm *svm) 2052 { 2053 int ret; 2054 2055 if (nested_svm_check_permissions(svm)) 2056 return 1; 2057 2058 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2059 svm_set_gif(svm, false); 2060 return ret; 2061 } 2062 2063 static int invlpga_interception(struct vcpu_svm *svm) 2064 { 2065 struct kvm_vcpu *vcpu = &svm->vcpu; 2066 2067 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu), 2068 kvm_rax_read(&svm->vcpu)); 2069 2070 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2071 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu)); 2072 2073 return kvm_skip_emulated_instruction(&svm->vcpu); 2074 } 2075 2076 static int skinit_interception(struct vcpu_svm *svm) 2077 { 2078 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu)); 2079 2080 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2081 return 1; 2082 } 2083 2084 static int wbinvd_interception(struct vcpu_svm *svm) 2085 { 2086 return kvm_emulate_wbinvd(&svm->vcpu); 2087 } 2088 2089 static int xsetbv_interception(struct vcpu_svm *svm) 2090 { 2091 u64 new_bv = kvm_read_edx_eax(&svm->vcpu); 2092 u32 index = kvm_rcx_read(&svm->vcpu); 2093 2094 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) { 2095 return kvm_skip_emulated_instruction(&svm->vcpu); 2096 } 2097 2098 return 1; 2099 } 2100 2101 static int rdpru_interception(struct vcpu_svm *svm) 2102 { 2103 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2104 return 1; 2105 } 2106 2107 static int task_switch_interception(struct vcpu_svm *svm) 2108 { 2109 u16 tss_selector; 2110 int reason; 2111 int int_type = svm->vmcb->control.exit_int_info & 2112 SVM_EXITINTINFO_TYPE_MASK; 2113 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2114 uint32_t type = 2115 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2116 uint32_t idt_v = 2117 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2118 bool has_error_code = false; 2119 u32 error_code = 0; 2120 2121 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2122 2123 if (svm->vmcb->control.exit_info_2 & 2124 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2125 reason = TASK_SWITCH_IRET; 2126 else if (svm->vmcb->control.exit_info_2 & 2127 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2128 reason = TASK_SWITCH_JMP; 2129 else if (idt_v) 2130 reason = TASK_SWITCH_GATE; 2131 else 2132 reason = TASK_SWITCH_CALL; 2133 2134 if (reason == TASK_SWITCH_GATE) { 2135 switch (type) { 2136 case SVM_EXITINTINFO_TYPE_NMI: 2137 svm->vcpu.arch.nmi_injected = false; 2138 break; 2139 case SVM_EXITINTINFO_TYPE_EXEPT: 2140 if (svm->vmcb->control.exit_info_2 & 2141 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2142 has_error_code = true; 2143 error_code = 2144 (u32)svm->vmcb->control.exit_info_2; 2145 } 2146 kvm_clear_exception_queue(&svm->vcpu); 2147 break; 2148 case SVM_EXITINTINFO_TYPE_INTR: 2149 kvm_clear_interrupt_queue(&svm->vcpu); 2150 break; 2151 default: 2152 break; 2153 } 2154 } 2155 2156 if (reason != TASK_SWITCH_GATE || 2157 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2158 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2159 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2160 if (!skip_emulated_instruction(&svm->vcpu)) 2161 return 0; 2162 } 2163 2164 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2165 int_vec = -1; 2166 2167 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, 2168 has_error_code, error_code); 2169 } 2170 2171 static int cpuid_interception(struct vcpu_svm *svm) 2172 { 2173 return kvm_emulate_cpuid(&svm->vcpu); 2174 } 2175 2176 static int iret_interception(struct vcpu_svm *svm) 2177 { 2178 ++svm->vcpu.stat.nmi_window_exits; 2179 svm_clr_intercept(svm, INTERCEPT_IRET); 2180 svm->vcpu.arch.hflags |= HF_IRET_MASK; 2181 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); 2182 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2183 return 1; 2184 } 2185 2186 static int invlpg_interception(struct vcpu_svm *svm) 2187 { 2188 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2189 return kvm_emulate_instruction(&svm->vcpu, 0); 2190 2191 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); 2192 return kvm_skip_emulated_instruction(&svm->vcpu); 2193 } 2194 2195 static int emulate_on_interception(struct vcpu_svm *svm) 2196 { 2197 return kvm_emulate_instruction(&svm->vcpu, 0); 2198 } 2199 2200 static int rsm_interception(struct vcpu_svm *svm) 2201 { 2202 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2); 2203 } 2204 2205 static int rdpmc_interception(struct vcpu_svm *svm) 2206 { 2207 int err; 2208 2209 if (!nrips) 2210 return emulate_on_interception(svm); 2211 2212 err = kvm_rdpmc(&svm->vcpu); 2213 return kvm_complete_insn_gp(&svm->vcpu, err); 2214 } 2215 2216 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, 2217 unsigned long val) 2218 { 2219 unsigned long cr0 = svm->vcpu.arch.cr0; 2220 bool ret = false; 2221 u64 intercept; 2222 2223 intercept = svm->nested.ctl.intercept; 2224 2225 if (!is_guest_mode(&svm->vcpu) || 2226 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))) 2227 return false; 2228 2229 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2230 val &= ~SVM_CR0_SELECTIVE_MASK; 2231 2232 if (cr0 ^ val) { 2233 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2234 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2235 } 2236 2237 return ret; 2238 } 2239 2240 #define CR_VALID (1ULL << 63) 2241 2242 static int cr_interception(struct vcpu_svm *svm) 2243 { 2244 int reg, cr; 2245 unsigned long val; 2246 int err; 2247 2248 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2249 return emulate_on_interception(svm); 2250 2251 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2252 return emulate_on_interception(svm); 2253 2254 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2255 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2256 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2257 else 2258 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2259 2260 err = 0; 2261 if (cr >= 16) { /* mov to cr */ 2262 cr -= 16; 2263 val = kvm_register_read(&svm->vcpu, reg); 2264 switch (cr) { 2265 case 0: 2266 if (!check_selective_cr0_intercepted(svm, val)) 2267 err = kvm_set_cr0(&svm->vcpu, val); 2268 else 2269 return 1; 2270 2271 break; 2272 case 3: 2273 err = kvm_set_cr3(&svm->vcpu, val); 2274 break; 2275 case 4: 2276 err = kvm_set_cr4(&svm->vcpu, val); 2277 break; 2278 case 8: 2279 err = kvm_set_cr8(&svm->vcpu, val); 2280 break; 2281 default: 2282 WARN(1, "unhandled write to CR%d", cr); 2283 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2284 return 1; 2285 } 2286 } else { /* mov from cr */ 2287 switch (cr) { 2288 case 0: 2289 val = kvm_read_cr0(&svm->vcpu); 2290 break; 2291 case 2: 2292 val = svm->vcpu.arch.cr2; 2293 break; 2294 case 3: 2295 val = kvm_read_cr3(&svm->vcpu); 2296 break; 2297 case 4: 2298 val = kvm_read_cr4(&svm->vcpu); 2299 break; 2300 case 8: 2301 val = kvm_get_cr8(&svm->vcpu); 2302 break; 2303 default: 2304 WARN(1, "unhandled read from CR%d", cr); 2305 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2306 return 1; 2307 } 2308 kvm_register_write(&svm->vcpu, reg, val); 2309 } 2310 return kvm_complete_insn_gp(&svm->vcpu, err); 2311 } 2312 2313 static int dr_interception(struct vcpu_svm *svm) 2314 { 2315 int reg, dr; 2316 unsigned long val; 2317 2318 if (svm->vcpu.guest_debug == 0) { 2319 /* 2320 * No more DR vmexits; force a reload of the debug registers 2321 * and reenter on this instruction. The next vmexit will 2322 * retrieve the full state of the debug registers. 2323 */ 2324 clr_dr_intercepts(svm); 2325 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2326 return 1; 2327 } 2328 2329 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2330 return emulate_on_interception(svm); 2331 2332 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2333 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2334 2335 if (dr >= 16) { /* mov to DRn */ 2336 if (!kvm_require_dr(&svm->vcpu, dr - 16)) 2337 return 1; 2338 val = kvm_register_read(&svm->vcpu, reg); 2339 kvm_set_dr(&svm->vcpu, dr - 16, val); 2340 } else { 2341 if (!kvm_require_dr(&svm->vcpu, dr)) 2342 return 1; 2343 kvm_get_dr(&svm->vcpu, dr, &val); 2344 kvm_register_write(&svm->vcpu, reg, val); 2345 } 2346 2347 return kvm_skip_emulated_instruction(&svm->vcpu); 2348 } 2349 2350 static int cr8_write_interception(struct vcpu_svm *svm) 2351 { 2352 struct kvm_run *kvm_run = svm->vcpu.run; 2353 int r; 2354 2355 u8 cr8_prev = kvm_get_cr8(&svm->vcpu); 2356 /* instruction emulation calls kvm_set_cr8() */ 2357 r = cr_interception(svm); 2358 if (lapic_in_kernel(&svm->vcpu)) 2359 return r; 2360 if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) 2361 return r; 2362 kvm_run->exit_reason = KVM_EXIT_SET_TPR; 2363 return 0; 2364 } 2365 2366 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2367 { 2368 msr->data = 0; 2369 2370 switch (msr->index) { 2371 case MSR_F10H_DECFG: 2372 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2373 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2374 break; 2375 case MSR_IA32_PERF_CAPABILITIES: 2376 return 0; 2377 default: 2378 return KVM_MSR_RET_INVALID; 2379 } 2380 2381 return 0; 2382 } 2383 2384 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2385 { 2386 struct vcpu_svm *svm = to_svm(vcpu); 2387 2388 switch (msr_info->index) { 2389 case MSR_STAR: 2390 msr_info->data = svm->vmcb->save.star; 2391 break; 2392 #ifdef CONFIG_X86_64 2393 case MSR_LSTAR: 2394 msr_info->data = svm->vmcb->save.lstar; 2395 break; 2396 case MSR_CSTAR: 2397 msr_info->data = svm->vmcb->save.cstar; 2398 break; 2399 case MSR_KERNEL_GS_BASE: 2400 msr_info->data = svm->vmcb->save.kernel_gs_base; 2401 break; 2402 case MSR_SYSCALL_MASK: 2403 msr_info->data = svm->vmcb->save.sfmask; 2404 break; 2405 #endif 2406 case MSR_IA32_SYSENTER_CS: 2407 msr_info->data = svm->vmcb->save.sysenter_cs; 2408 break; 2409 case MSR_IA32_SYSENTER_EIP: 2410 msr_info->data = svm->sysenter_eip; 2411 break; 2412 case MSR_IA32_SYSENTER_ESP: 2413 msr_info->data = svm->sysenter_esp; 2414 break; 2415 case MSR_TSC_AUX: 2416 if (!boot_cpu_has(X86_FEATURE_RDTSCP)) 2417 return 1; 2418 msr_info->data = svm->tsc_aux; 2419 break; 2420 /* 2421 * Nobody will change the following 5 values in the VMCB so we can 2422 * safely return them on rdmsr. They will always be 0 until LBRV is 2423 * implemented. 2424 */ 2425 case MSR_IA32_DEBUGCTLMSR: 2426 msr_info->data = svm->vmcb->save.dbgctl; 2427 break; 2428 case MSR_IA32_LASTBRANCHFROMIP: 2429 msr_info->data = svm->vmcb->save.br_from; 2430 break; 2431 case MSR_IA32_LASTBRANCHTOIP: 2432 msr_info->data = svm->vmcb->save.br_to; 2433 break; 2434 case MSR_IA32_LASTINTFROMIP: 2435 msr_info->data = svm->vmcb->save.last_excp_from; 2436 break; 2437 case MSR_IA32_LASTINTTOIP: 2438 msr_info->data = svm->vmcb->save.last_excp_to; 2439 break; 2440 case MSR_VM_HSAVE_PA: 2441 msr_info->data = svm->nested.hsave_msr; 2442 break; 2443 case MSR_VM_CR: 2444 msr_info->data = svm->nested.vm_cr_msr; 2445 break; 2446 case MSR_IA32_SPEC_CTRL: 2447 if (!msr_info->host_initiated && 2448 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 2449 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) && 2450 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && 2451 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) 2452 return 1; 2453 2454 msr_info->data = svm->spec_ctrl; 2455 break; 2456 case MSR_AMD64_VIRT_SPEC_CTRL: 2457 if (!msr_info->host_initiated && 2458 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2459 return 1; 2460 2461 msr_info->data = svm->virt_spec_ctrl; 2462 break; 2463 case MSR_F15H_IC_CFG: { 2464 2465 int family, model; 2466 2467 family = guest_cpuid_family(vcpu); 2468 model = guest_cpuid_model(vcpu); 2469 2470 if (family < 0 || model < 0) 2471 return kvm_get_msr_common(vcpu, msr_info); 2472 2473 msr_info->data = 0; 2474 2475 if (family == 0x15 && 2476 (model >= 0x2 && model < 0x20)) 2477 msr_info->data = 0x1E; 2478 } 2479 break; 2480 case MSR_F10H_DECFG: 2481 msr_info->data = svm->msr_decfg; 2482 break; 2483 default: 2484 return kvm_get_msr_common(vcpu, msr_info); 2485 } 2486 return 0; 2487 } 2488 2489 static int rdmsr_interception(struct vcpu_svm *svm) 2490 { 2491 return kvm_emulate_rdmsr(&svm->vcpu); 2492 } 2493 2494 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2495 { 2496 struct vcpu_svm *svm = to_svm(vcpu); 2497 int svm_dis, chg_mask; 2498 2499 if (data & ~SVM_VM_CR_VALID_MASK) 2500 return 1; 2501 2502 chg_mask = SVM_VM_CR_VALID_MASK; 2503 2504 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2505 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2506 2507 svm->nested.vm_cr_msr &= ~chg_mask; 2508 svm->nested.vm_cr_msr |= (data & chg_mask); 2509 2510 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2511 2512 /* check for svm_disable while efer.svme is set */ 2513 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2514 return 1; 2515 2516 return 0; 2517 } 2518 2519 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2520 { 2521 struct vcpu_svm *svm = to_svm(vcpu); 2522 2523 u32 ecx = msr->index; 2524 u64 data = msr->data; 2525 switch (ecx) { 2526 case MSR_IA32_CR_PAT: 2527 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2528 return 1; 2529 vcpu->arch.pat = data; 2530 svm->vmcb->save.g_pat = data; 2531 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2532 break; 2533 case MSR_IA32_SPEC_CTRL: 2534 if (!msr->host_initiated && 2535 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && 2536 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) && 2537 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && 2538 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) 2539 return 1; 2540 2541 if (kvm_spec_ctrl_test_value(data)) 2542 return 1; 2543 2544 svm->spec_ctrl = data; 2545 if (!data) 2546 break; 2547 2548 /* 2549 * For non-nested: 2550 * When it's written (to non-zero) for the first time, pass 2551 * it through. 2552 * 2553 * For nested: 2554 * The handling of the MSR bitmap for L2 guests is done in 2555 * nested_svm_vmrun_msrpm. 2556 * We update the L1 MSR bit as well since it will end up 2557 * touching the MSR anyway now. 2558 */ 2559 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2560 break; 2561 case MSR_IA32_PRED_CMD: 2562 if (!msr->host_initiated && 2563 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) 2564 return 1; 2565 2566 if (data & ~PRED_CMD_IBPB) 2567 return 1; 2568 if (!boot_cpu_has(X86_FEATURE_AMD_IBPB)) 2569 return 1; 2570 if (!data) 2571 break; 2572 2573 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2574 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2575 break; 2576 case MSR_AMD64_VIRT_SPEC_CTRL: 2577 if (!msr->host_initiated && 2578 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2579 return 1; 2580 2581 if (data & ~SPEC_CTRL_SSBD) 2582 return 1; 2583 2584 svm->virt_spec_ctrl = data; 2585 break; 2586 case MSR_STAR: 2587 svm->vmcb->save.star = data; 2588 break; 2589 #ifdef CONFIG_X86_64 2590 case MSR_LSTAR: 2591 svm->vmcb->save.lstar = data; 2592 break; 2593 case MSR_CSTAR: 2594 svm->vmcb->save.cstar = data; 2595 break; 2596 case MSR_KERNEL_GS_BASE: 2597 svm->vmcb->save.kernel_gs_base = data; 2598 break; 2599 case MSR_SYSCALL_MASK: 2600 svm->vmcb->save.sfmask = data; 2601 break; 2602 #endif 2603 case MSR_IA32_SYSENTER_CS: 2604 svm->vmcb->save.sysenter_cs = data; 2605 break; 2606 case MSR_IA32_SYSENTER_EIP: 2607 svm->sysenter_eip = data; 2608 svm->vmcb->save.sysenter_eip = data; 2609 break; 2610 case MSR_IA32_SYSENTER_ESP: 2611 svm->sysenter_esp = data; 2612 svm->vmcb->save.sysenter_esp = data; 2613 break; 2614 case MSR_TSC_AUX: 2615 if (!boot_cpu_has(X86_FEATURE_RDTSCP)) 2616 return 1; 2617 2618 /* 2619 * This is rare, so we update the MSR here instead of using 2620 * direct_access_msrs. Doing that would require a rdmsr in 2621 * svm_vcpu_put. 2622 */ 2623 svm->tsc_aux = data; 2624 wrmsrl(MSR_TSC_AUX, svm->tsc_aux); 2625 break; 2626 case MSR_IA32_DEBUGCTLMSR: 2627 if (!boot_cpu_has(X86_FEATURE_LBRV)) { 2628 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2629 __func__, data); 2630 break; 2631 } 2632 if (data & DEBUGCTL_RESERVED_BITS) 2633 return 1; 2634 2635 svm->vmcb->save.dbgctl = data; 2636 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 2637 if (data & (1ULL<<0)) 2638 svm_enable_lbrv(svm); 2639 else 2640 svm_disable_lbrv(svm); 2641 break; 2642 case MSR_VM_HSAVE_PA: 2643 svm->nested.hsave_msr = data; 2644 break; 2645 case MSR_VM_CR: 2646 return svm_set_vm_cr(vcpu, data); 2647 case MSR_VM_IGNNE: 2648 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2649 break; 2650 case MSR_F10H_DECFG: { 2651 struct kvm_msr_entry msr_entry; 2652 2653 msr_entry.index = msr->index; 2654 if (svm_get_msr_feature(&msr_entry)) 2655 return 1; 2656 2657 /* Check the supported bits */ 2658 if (data & ~msr_entry.data) 2659 return 1; 2660 2661 /* Don't allow the guest to change a bit, #GP */ 2662 if (!msr->host_initiated && (data ^ msr_entry.data)) 2663 return 1; 2664 2665 svm->msr_decfg = data; 2666 break; 2667 } 2668 case MSR_IA32_APICBASE: 2669 if (kvm_vcpu_apicv_active(vcpu)) 2670 avic_update_vapic_bar(to_svm(vcpu), data); 2671 /* Fall through */ 2672 default: 2673 return kvm_set_msr_common(vcpu, msr); 2674 } 2675 return 0; 2676 } 2677 2678 static int wrmsr_interception(struct vcpu_svm *svm) 2679 { 2680 return kvm_emulate_wrmsr(&svm->vcpu); 2681 } 2682 2683 static int msr_interception(struct vcpu_svm *svm) 2684 { 2685 if (svm->vmcb->control.exit_info_1) 2686 return wrmsr_interception(svm); 2687 else 2688 return rdmsr_interception(svm); 2689 } 2690 2691 static int interrupt_window_interception(struct vcpu_svm *svm) 2692 { 2693 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2694 svm_clear_vintr(svm); 2695 2696 /* 2697 * For AVIC, the only reason to end up here is ExtINTs. 2698 * In this case AVIC was temporarily disabled for 2699 * requesting the IRQ window and we have to re-enable it. 2700 */ 2701 svm_toggle_avic_for_irq_window(&svm->vcpu, true); 2702 2703 ++svm->vcpu.stat.irq_window_exits; 2704 return 1; 2705 } 2706 2707 static int pause_interception(struct vcpu_svm *svm) 2708 { 2709 struct kvm_vcpu *vcpu = &svm->vcpu; 2710 bool in_kernel = (svm_get_cpl(vcpu) == 0); 2711 2712 if (!kvm_pause_in_guest(vcpu->kvm)) 2713 grow_ple_window(vcpu); 2714 2715 kvm_vcpu_on_spin(vcpu, in_kernel); 2716 return 1; 2717 } 2718 2719 static int nop_interception(struct vcpu_svm *svm) 2720 { 2721 return kvm_skip_emulated_instruction(&(svm->vcpu)); 2722 } 2723 2724 static int monitor_interception(struct vcpu_svm *svm) 2725 { 2726 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); 2727 return nop_interception(svm); 2728 } 2729 2730 static int mwait_interception(struct vcpu_svm *svm) 2731 { 2732 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); 2733 return nop_interception(svm); 2734 } 2735 2736 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { 2737 [SVM_EXIT_READ_CR0] = cr_interception, 2738 [SVM_EXIT_READ_CR3] = cr_interception, 2739 [SVM_EXIT_READ_CR4] = cr_interception, 2740 [SVM_EXIT_READ_CR8] = cr_interception, 2741 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 2742 [SVM_EXIT_WRITE_CR0] = cr_interception, 2743 [SVM_EXIT_WRITE_CR3] = cr_interception, 2744 [SVM_EXIT_WRITE_CR4] = cr_interception, 2745 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 2746 [SVM_EXIT_READ_DR0] = dr_interception, 2747 [SVM_EXIT_READ_DR1] = dr_interception, 2748 [SVM_EXIT_READ_DR2] = dr_interception, 2749 [SVM_EXIT_READ_DR3] = dr_interception, 2750 [SVM_EXIT_READ_DR4] = dr_interception, 2751 [SVM_EXIT_READ_DR5] = dr_interception, 2752 [SVM_EXIT_READ_DR6] = dr_interception, 2753 [SVM_EXIT_READ_DR7] = dr_interception, 2754 [SVM_EXIT_WRITE_DR0] = dr_interception, 2755 [SVM_EXIT_WRITE_DR1] = dr_interception, 2756 [SVM_EXIT_WRITE_DR2] = dr_interception, 2757 [SVM_EXIT_WRITE_DR3] = dr_interception, 2758 [SVM_EXIT_WRITE_DR4] = dr_interception, 2759 [SVM_EXIT_WRITE_DR5] = dr_interception, 2760 [SVM_EXIT_WRITE_DR6] = dr_interception, 2761 [SVM_EXIT_WRITE_DR7] = dr_interception, 2762 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 2763 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 2764 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 2765 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 2766 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 2767 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 2768 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 2769 [SVM_EXIT_INTR] = intr_interception, 2770 [SVM_EXIT_NMI] = nmi_interception, 2771 [SVM_EXIT_SMI] = nop_on_interception, 2772 [SVM_EXIT_INIT] = nop_on_interception, 2773 [SVM_EXIT_VINTR] = interrupt_window_interception, 2774 [SVM_EXIT_RDPMC] = rdpmc_interception, 2775 [SVM_EXIT_CPUID] = cpuid_interception, 2776 [SVM_EXIT_IRET] = iret_interception, 2777 [SVM_EXIT_INVD] = emulate_on_interception, 2778 [SVM_EXIT_PAUSE] = pause_interception, 2779 [SVM_EXIT_HLT] = halt_interception, 2780 [SVM_EXIT_INVLPG] = invlpg_interception, 2781 [SVM_EXIT_INVLPGA] = invlpga_interception, 2782 [SVM_EXIT_IOIO] = io_interception, 2783 [SVM_EXIT_MSR] = msr_interception, 2784 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 2785 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 2786 [SVM_EXIT_VMRUN] = vmrun_interception, 2787 [SVM_EXIT_VMMCALL] = vmmcall_interception, 2788 [SVM_EXIT_VMLOAD] = vmload_interception, 2789 [SVM_EXIT_VMSAVE] = vmsave_interception, 2790 [SVM_EXIT_STGI] = stgi_interception, 2791 [SVM_EXIT_CLGI] = clgi_interception, 2792 [SVM_EXIT_SKINIT] = skinit_interception, 2793 [SVM_EXIT_WBINVD] = wbinvd_interception, 2794 [SVM_EXIT_MONITOR] = monitor_interception, 2795 [SVM_EXIT_MWAIT] = mwait_interception, 2796 [SVM_EXIT_XSETBV] = xsetbv_interception, 2797 [SVM_EXIT_RDPRU] = rdpru_interception, 2798 [SVM_EXIT_NPF] = npf_interception, 2799 [SVM_EXIT_RSM] = rsm_interception, 2800 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 2801 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 2802 }; 2803 2804 static void dump_vmcb(struct kvm_vcpu *vcpu) 2805 { 2806 struct vcpu_svm *svm = to_svm(vcpu); 2807 struct vmcb_control_area *control = &svm->vmcb->control; 2808 struct vmcb_save_area *save = &svm->vmcb->save; 2809 2810 if (!dump_invalid_vmcb) { 2811 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2812 return; 2813 } 2814 2815 pr_err("VMCB Control Area:\n"); 2816 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff); 2817 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16); 2818 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff); 2819 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16); 2820 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions); 2821 pr_err("%-20s%016llx\n", "intercepts:", control->intercept); 2822 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 2823 pr_err("%-20s%d\n", "pause filter threshold:", 2824 control->pause_filter_thresh); 2825 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 2826 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 2827 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 2828 pr_err("%-20s%d\n", "asid:", control->asid); 2829 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 2830 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 2831 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 2832 pr_err("%-20s%08x\n", "int_state:", control->int_state); 2833 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 2834 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 2835 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 2836 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 2837 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 2838 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 2839 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 2840 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 2841 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 2842 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 2843 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 2844 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 2845 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 2846 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 2847 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 2848 pr_err("VMCB State Save Area:\n"); 2849 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2850 "es:", 2851 save->es.selector, save->es.attrib, 2852 save->es.limit, save->es.base); 2853 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2854 "cs:", 2855 save->cs.selector, save->cs.attrib, 2856 save->cs.limit, save->cs.base); 2857 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2858 "ss:", 2859 save->ss.selector, save->ss.attrib, 2860 save->ss.limit, save->ss.base); 2861 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2862 "ds:", 2863 save->ds.selector, save->ds.attrib, 2864 save->ds.limit, save->ds.base); 2865 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2866 "fs:", 2867 save->fs.selector, save->fs.attrib, 2868 save->fs.limit, save->fs.base); 2869 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2870 "gs:", 2871 save->gs.selector, save->gs.attrib, 2872 save->gs.limit, save->gs.base); 2873 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2874 "gdtr:", 2875 save->gdtr.selector, save->gdtr.attrib, 2876 save->gdtr.limit, save->gdtr.base); 2877 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2878 "ldtr:", 2879 save->ldtr.selector, save->ldtr.attrib, 2880 save->ldtr.limit, save->ldtr.base); 2881 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2882 "idtr:", 2883 save->idtr.selector, save->idtr.attrib, 2884 save->idtr.limit, save->idtr.base); 2885 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 2886 "tr:", 2887 save->tr.selector, save->tr.attrib, 2888 save->tr.limit, save->tr.base); 2889 pr_err("cpl: %d efer: %016llx\n", 2890 save->cpl, save->efer); 2891 pr_err("%-15s %016llx %-13s %016llx\n", 2892 "cr0:", save->cr0, "cr2:", save->cr2); 2893 pr_err("%-15s %016llx %-13s %016llx\n", 2894 "cr3:", save->cr3, "cr4:", save->cr4); 2895 pr_err("%-15s %016llx %-13s %016llx\n", 2896 "dr6:", save->dr6, "dr7:", save->dr7); 2897 pr_err("%-15s %016llx %-13s %016llx\n", 2898 "rip:", save->rip, "rflags:", save->rflags); 2899 pr_err("%-15s %016llx %-13s %016llx\n", 2900 "rsp:", save->rsp, "rax:", save->rax); 2901 pr_err("%-15s %016llx %-13s %016llx\n", 2902 "star:", save->star, "lstar:", save->lstar); 2903 pr_err("%-15s %016llx %-13s %016llx\n", 2904 "cstar:", save->cstar, "sfmask:", save->sfmask); 2905 pr_err("%-15s %016llx %-13s %016llx\n", 2906 "kernel_gs_base:", save->kernel_gs_base, 2907 "sysenter_cs:", save->sysenter_cs); 2908 pr_err("%-15s %016llx %-13s %016llx\n", 2909 "sysenter_esp:", save->sysenter_esp, 2910 "sysenter_eip:", save->sysenter_eip); 2911 pr_err("%-15s %016llx %-13s %016llx\n", 2912 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 2913 pr_err("%-15s %016llx %-13s %016llx\n", 2914 "br_from:", save->br_from, "br_to:", save->br_to); 2915 pr_err("%-15s %016llx %-13s %016llx\n", 2916 "excp_from:", save->last_excp_from, 2917 "excp_to:", save->last_excp_to); 2918 } 2919 2920 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) 2921 { 2922 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 2923 2924 *info1 = control->exit_info_1; 2925 *info2 = control->exit_info_2; 2926 } 2927 2928 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 2929 { 2930 struct vcpu_svm *svm = to_svm(vcpu); 2931 struct kvm_run *kvm_run = vcpu->run; 2932 u32 exit_code = svm->vmcb->control.exit_code; 2933 2934 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); 2935 2936 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE)) 2937 vcpu->arch.cr0 = svm->vmcb->save.cr0; 2938 if (npt_enabled) 2939 vcpu->arch.cr3 = svm->vmcb->save.cr3; 2940 2941 svm_complete_interrupts(svm); 2942 2943 if (is_guest_mode(vcpu)) { 2944 int vmexit; 2945 2946 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code, 2947 svm->vmcb->control.exit_info_1, 2948 svm->vmcb->control.exit_info_2, 2949 svm->vmcb->control.exit_int_info, 2950 svm->vmcb->control.exit_int_info_err, 2951 KVM_ISA_SVM); 2952 2953 vmexit = nested_svm_exit_special(svm); 2954 2955 if (vmexit == NESTED_EXIT_CONTINUE) 2956 vmexit = nested_svm_exit_handled(svm); 2957 2958 if (vmexit == NESTED_EXIT_DONE) 2959 return 1; 2960 } 2961 2962 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 2963 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 2964 kvm_run->fail_entry.hardware_entry_failure_reason 2965 = svm->vmcb->control.exit_code; 2966 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 2967 dump_vmcb(vcpu); 2968 return 0; 2969 } 2970 2971 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 2972 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 2973 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 2974 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 2975 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 2976 "exit_code 0x%x\n", 2977 __func__, svm->vmcb->control.exit_int_info, 2978 exit_code); 2979 2980 if (exit_fastpath != EXIT_FASTPATH_NONE) 2981 return 1; 2982 2983 if (exit_code >= ARRAY_SIZE(svm_exit_handlers) 2984 || !svm_exit_handlers[exit_code]) { 2985 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code); 2986 dump_vmcb(vcpu); 2987 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2988 vcpu->run->internal.suberror = 2989 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 2990 vcpu->run->internal.ndata = 2; 2991 vcpu->run->internal.data[0] = exit_code; 2992 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 2993 return 0; 2994 } 2995 2996 #ifdef CONFIG_RETPOLINE 2997 if (exit_code == SVM_EXIT_MSR) 2998 return msr_interception(svm); 2999 else if (exit_code == SVM_EXIT_VINTR) 3000 return interrupt_window_interception(svm); 3001 else if (exit_code == SVM_EXIT_INTR) 3002 return intr_interception(svm); 3003 else if (exit_code == SVM_EXIT_HLT) 3004 return halt_interception(svm); 3005 else if (exit_code == SVM_EXIT_NPF) 3006 return npf_interception(svm); 3007 #endif 3008 return svm_exit_handlers[exit_code](svm); 3009 } 3010 3011 static void reload_tss(struct kvm_vcpu *vcpu) 3012 { 3013 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3014 3015 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3016 load_TR_desc(); 3017 } 3018 3019 static void pre_svm_run(struct vcpu_svm *svm) 3020 { 3021 struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu); 3022 3023 if (sev_guest(svm->vcpu.kvm)) 3024 return pre_sev_run(svm, svm->vcpu.cpu); 3025 3026 /* FIXME: handle wraparound of asid_generation */ 3027 if (svm->asid_generation != sd->asid_generation) 3028 new_asid(svm, sd); 3029 } 3030 3031 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3032 { 3033 struct vcpu_svm *svm = to_svm(vcpu); 3034 3035 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3036 vcpu->arch.hflags |= HF_NMI_MASK; 3037 svm_set_intercept(svm, INTERCEPT_IRET); 3038 ++vcpu->stat.nmi_injections; 3039 } 3040 3041 static void svm_set_irq(struct kvm_vcpu *vcpu) 3042 { 3043 struct vcpu_svm *svm = to_svm(vcpu); 3044 3045 BUG_ON(!(gif_set(svm))); 3046 3047 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3048 ++vcpu->stat.irq_injections; 3049 3050 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3051 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3052 } 3053 3054 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3055 { 3056 struct vcpu_svm *svm = to_svm(vcpu); 3057 3058 if (nested_svm_virtualize_tpr(vcpu)) 3059 return; 3060 3061 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); 3062 3063 if (irr == -1) 3064 return; 3065 3066 if (tpr >= irr) 3067 set_cr_intercept(svm, INTERCEPT_CR8_WRITE); 3068 } 3069 3070 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3071 { 3072 struct vcpu_svm *svm = to_svm(vcpu); 3073 struct vmcb *vmcb = svm->vmcb; 3074 bool ret; 3075 3076 if (!gif_set(svm)) 3077 return true; 3078 3079 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3080 return false; 3081 3082 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3083 (svm->vcpu.arch.hflags & HF_NMI_MASK); 3084 3085 return ret; 3086 } 3087 3088 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3089 { 3090 struct vcpu_svm *svm = to_svm(vcpu); 3091 if (svm->nested.nested_run_pending) 3092 return -EBUSY; 3093 3094 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3095 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3096 return -EBUSY; 3097 3098 return !svm_nmi_blocked(vcpu); 3099 } 3100 3101 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3102 { 3103 struct vcpu_svm *svm = to_svm(vcpu); 3104 3105 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); 3106 } 3107 3108 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3109 { 3110 struct vcpu_svm *svm = to_svm(vcpu); 3111 3112 if (masked) { 3113 svm->vcpu.arch.hflags |= HF_NMI_MASK; 3114 svm_set_intercept(svm, INTERCEPT_IRET); 3115 } else { 3116 svm->vcpu.arch.hflags &= ~HF_NMI_MASK; 3117 svm_clr_intercept(svm, INTERCEPT_IRET); 3118 } 3119 } 3120 3121 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3122 { 3123 struct vcpu_svm *svm = to_svm(vcpu); 3124 struct vmcb *vmcb = svm->vmcb; 3125 3126 if (!gif_set(svm)) 3127 return true; 3128 3129 if (is_guest_mode(vcpu)) { 3130 /* As long as interrupts are being delivered... */ 3131 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3132 ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF) 3133 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3134 return true; 3135 3136 /* ... vmexits aren't blocked by the interrupt shadow */ 3137 if (nested_exit_on_intr(svm)) 3138 return false; 3139 } else { 3140 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3141 return true; 3142 } 3143 3144 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3145 } 3146 3147 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3148 { 3149 struct vcpu_svm *svm = to_svm(vcpu); 3150 if (svm->nested.nested_run_pending) 3151 return -EBUSY; 3152 3153 /* 3154 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3155 * e.g. if the IRQ arrived asynchronously after checking nested events. 3156 */ 3157 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3158 return -EBUSY; 3159 3160 return !svm_interrupt_blocked(vcpu); 3161 } 3162 3163 static void enable_irq_window(struct kvm_vcpu *vcpu) 3164 { 3165 struct vcpu_svm *svm = to_svm(vcpu); 3166 3167 /* 3168 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3169 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3170 * get that intercept, this function will be called again though and 3171 * we'll get the vintr intercept. However, if the vGIF feature is 3172 * enabled, the STGI interception will not occur. Enable the irq 3173 * window under the assumption that the hardware will set the GIF. 3174 */ 3175 if (vgif_enabled(svm) || gif_set(svm)) { 3176 /* 3177 * IRQ window is not needed when AVIC is enabled, 3178 * unless we have pending ExtINT since it cannot be injected 3179 * via AVIC. In such case, we need to temporarily disable AVIC, 3180 * and fallback to injecting IRQ via V_IRQ. 3181 */ 3182 svm_toggle_avic_for_irq_window(vcpu, false); 3183 svm_set_vintr(svm); 3184 } 3185 } 3186 3187 static void enable_nmi_window(struct kvm_vcpu *vcpu) 3188 { 3189 struct vcpu_svm *svm = to_svm(vcpu); 3190 3191 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) 3192 == HF_NMI_MASK) 3193 return; /* IRET will cause a vm exit */ 3194 3195 if (!gif_set(svm)) { 3196 if (vgif_enabled(svm)) 3197 svm_set_intercept(svm, INTERCEPT_STGI); 3198 return; /* STGI will cause a vm exit */ 3199 } 3200 3201 /* 3202 * Something prevents NMI from been injected. Single step over possible 3203 * problem (IRET or exception injection or interrupt shadow) 3204 */ 3205 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3206 svm->nmi_singlestep = true; 3207 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3208 } 3209 3210 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) 3211 { 3212 return 0; 3213 } 3214 3215 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 3216 { 3217 return 0; 3218 } 3219 3220 void svm_flush_tlb(struct kvm_vcpu *vcpu) 3221 { 3222 struct vcpu_svm *svm = to_svm(vcpu); 3223 3224 /* 3225 * Flush only the current ASID even if the TLB flush was invoked via 3226 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3227 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3228 * unconditionally does a TLB flush on both nested VM-Enter and nested 3229 * VM-Exit (via kvm_mmu_reset_context()). 3230 */ 3231 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3232 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3233 else 3234 svm->asid_generation--; 3235 } 3236 3237 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3238 { 3239 struct vcpu_svm *svm = to_svm(vcpu); 3240 3241 invlpga(gva, svm->vmcb->control.asid); 3242 } 3243 3244 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) 3245 { 3246 } 3247 3248 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3249 { 3250 struct vcpu_svm *svm = to_svm(vcpu); 3251 3252 if (nested_svm_virtualize_tpr(vcpu)) 3253 return; 3254 3255 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) { 3256 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3257 kvm_set_cr8(vcpu, cr8); 3258 } 3259 } 3260 3261 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3262 { 3263 struct vcpu_svm *svm = to_svm(vcpu); 3264 u64 cr8; 3265 3266 if (nested_svm_virtualize_tpr(vcpu) || 3267 kvm_vcpu_apicv_active(vcpu)) 3268 return; 3269 3270 cr8 = kvm_get_cr8(vcpu); 3271 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3272 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3273 } 3274 3275 static void svm_complete_interrupts(struct vcpu_svm *svm) 3276 { 3277 u8 vector; 3278 int type; 3279 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3280 unsigned int3_injected = svm->int3_injected; 3281 3282 svm->int3_injected = 0; 3283 3284 /* 3285 * If we've made progress since setting HF_IRET_MASK, we've 3286 * executed an IRET and can allow NMI injection. 3287 */ 3288 if ((svm->vcpu.arch.hflags & HF_IRET_MASK) 3289 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) { 3290 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3291 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3292 } 3293 3294 svm->vcpu.arch.nmi_injected = false; 3295 kvm_clear_exception_queue(&svm->vcpu); 3296 kvm_clear_interrupt_queue(&svm->vcpu); 3297 3298 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3299 return; 3300 3301 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3302 3303 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3304 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3305 3306 switch (type) { 3307 case SVM_EXITINTINFO_TYPE_NMI: 3308 svm->vcpu.arch.nmi_injected = true; 3309 break; 3310 case SVM_EXITINTINFO_TYPE_EXEPT: 3311 /* 3312 * In case of software exceptions, do not reinject the vector, 3313 * but re-execute the instruction instead. Rewind RIP first 3314 * if we emulated INT3 before. 3315 */ 3316 if (kvm_exception_is_soft(vector)) { 3317 if (vector == BP_VECTOR && int3_injected && 3318 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) 3319 kvm_rip_write(&svm->vcpu, 3320 kvm_rip_read(&svm->vcpu) - 3321 int3_injected); 3322 break; 3323 } 3324 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3325 u32 err = svm->vmcb->control.exit_int_info_err; 3326 kvm_requeue_exception_e(&svm->vcpu, vector, err); 3327 3328 } else 3329 kvm_requeue_exception(&svm->vcpu, vector); 3330 break; 3331 case SVM_EXITINTINFO_TYPE_INTR: 3332 kvm_queue_interrupt(&svm->vcpu, vector, false); 3333 break; 3334 default: 3335 break; 3336 } 3337 } 3338 3339 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3340 { 3341 struct vcpu_svm *svm = to_svm(vcpu); 3342 struct vmcb_control_area *control = &svm->vmcb->control; 3343 3344 control->exit_int_info = control->event_inj; 3345 control->exit_int_info_err = control->event_inj_err; 3346 control->event_inj = 0; 3347 svm_complete_interrupts(svm); 3348 } 3349 3350 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3351 { 3352 if (!is_guest_mode(vcpu) && 3353 to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3354 to_svm(vcpu)->vmcb->control.exit_info_1) 3355 return handle_fastpath_set_msr_irqoff(vcpu); 3356 3357 return EXIT_FASTPATH_NONE; 3358 } 3359 3360 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs); 3361 3362 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, 3363 struct vcpu_svm *svm) 3364 { 3365 /* 3366 * VMENTER enables interrupts (host state), but the kernel state is 3367 * interrupts disabled when this is invoked. Also tell RCU about 3368 * it. This is the same logic as for exit_to_user_mode(). 3369 * 3370 * This ensures that e.g. latency analysis on the host observes 3371 * guest mode as interrupt enabled. 3372 * 3373 * guest_enter_irqoff() informs context tracking about the 3374 * transition to guest mode and if enabled adjusts RCU state 3375 * accordingly. 3376 */ 3377 instrumentation_begin(); 3378 trace_hardirqs_on_prepare(); 3379 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 3380 instrumentation_end(); 3381 3382 guest_enter_irqoff(); 3383 lockdep_hardirqs_on(CALLER_ADDR0); 3384 3385 __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs); 3386 3387 #ifdef CONFIG_X86_64 3388 native_wrmsrl(MSR_GS_BASE, svm->host.gs_base); 3389 #else 3390 loadsegment(fs, svm->host.fs); 3391 #ifndef CONFIG_X86_32_LAZY_GS 3392 loadsegment(gs, svm->host.gs); 3393 #endif 3394 #endif 3395 3396 /* 3397 * VMEXIT disables interrupts (host state), but tracing and lockdep 3398 * have them in state 'on' as recorded before entering guest mode. 3399 * Same as enter_from_user_mode(). 3400 * 3401 * guest_exit_irqoff() restores host context and reinstates RCU if 3402 * enabled and required. 3403 * 3404 * This needs to be done before the below as native_read_msr() 3405 * contains a tracepoint and x86_spec_ctrl_restore_host() calls 3406 * into world and some more. 3407 */ 3408 lockdep_hardirqs_off(CALLER_ADDR0); 3409 guest_exit_irqoff(); 3410 3411 instrumentation_begin(); 3412 trace_hardirqs_off_finish(); 3413 instrumentation_end(); 3414 } 3415 3416 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3417 { 3418 fastpath_t exit_fastpath; 3419 struct vcpu_svm *svm = to_svm(vcpu); 3420 3421 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3422 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3423 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3424 3425 /* 3426 * Disable singlestep if we're injecting an interrupt/exception. 3427 * We don't want our modified rflags to be pushed on the stack where 3428 * we might not be able to easily reset them if we disabled NMI 3429 * singlestep later. 3430 */ 3431 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3432 /* 3433 * Event injection happens before external interrupts cause a 3434 * vmexit and interrupts are disabled here, so smp_send_reschedule 3435 * is enough to force an immediate vmexit. 3436 */ 3437 disable_nmi_singlestep(svm); 3438 smp_send_reschedule(vcpu->cpu); 3439 } 3440 3441 pre_svm_run(svm); 3442 3443 sync_lapic_to_cr8(vcpu); 3444 3445 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3446 3447 /* 3448 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3449 * of a #DB. 3450 */ 3451 if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3452 svm_set_dr6(svm, vcpu->arch.dr6); 3453 else 3454 svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM); 3455 3456 clgi(); 3457 kvm_load_guest_xsave_state(vcpu); 3458 3459 if (lapic_in_kernel(vcpu) && 3460 vcpu->arch.apic->lapic_timer.timer_advance_ns) 3461 kvm_wait_lapic_expire(vcpu); 3462 3463 /* 3464 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3465 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3466 * is no need to worry about the conditional branch over the wrmsr 3467 * being speculatively taken. 3468 */ 3469 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3470 3471 svm_vcpu_enter_exit(vcpu, svm); 3472 3473 /* 3474 * We do not use IBRS in the kernel. If this vCPU has used the 3475 * SPEC_CTRL MSR it may have left it on; save the value and 3476 * turn it off. This is much more efficient than blindly adding 3477 * it to the atomic save/restore list. Especially as the former 3478 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3479 * 3480 * For non-nested case: 3481 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3482 * save it. 3483 * 3484 * For nested case: 3485 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3486 * save it. 3487 */ 3488 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3489 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3490 3491 reload_tss(vcpu); 3492 3493 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3494 3495 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3496 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3497 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3498 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3499 3500 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3501 kvm_before_interrupt(&svm->vcpu); 3502 3503 kvm_load_host_xsave_state(vcpu); 3504 stgi(); 3505 3506 /* Any pending NMI will happen here */ 3507 exit_fastpath = svm_exit_handlers_fastpath(vcpu); 3508 3509 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3510 kvm_after_interrupt(&svm->vcpu); 3511 3512 sync_cr8_to_lapic(vcpu); 3513 3514 svm->next_rip = 0; 3515 if (is_guest_mode(&svm->vcpu)) { 3516 sync_nested_vmcb_control(svm); 3517 svm->nested.nested_run_pending = 0; 3518 } 3519 3520 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3521 3522 /* if exit due to PF check for async PF */ 3523 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3524 svm->vcpu.arch.apf.host_apf_flags = 3525 kvm_read_and_reset_apf_flags(); 3526 3527 if (npt_enabled) { 3528 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); 3529 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); 3530 } 3531 3532 /* 3533 * We need to handle MC intercepts here before the vcpu has a chance to 3534 * change the physical cpu 3535 */ 3536 if (unlikely(svm->vmcb->control.exit_code == 3537 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3538 svm_handle_mce(svm); 3539 3540 vmcb_mark_all_clean(svm->vmcb); 3541 return exit_fastpath; 3542 } 3543 3544 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root, 3545 int root_level) 3546 { 3547 struct vcpu_svm *svm = to_svm(vcpu); 3548 unsigned long cr3; 3549 3550 cr3 = __sme_set(root); 3551 if (npt_enabled) { 3552 svm->vmcb->control.nested_cr3 = cr3; 3553 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3554 3555 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ 3556 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3557 return; 3558 cr3 = vcpu->arch.cr3; 3559 } 3560 3561 svm->vmcb->save.cr3 = cr3; 3562 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 3563 } 3564 3565 static int is_disabled(void) 3566 { 3567 u64 vm_cr; 3568 3569 rdmsrl(MSR_VM_CR, vm_cr); 3570 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3571 return 1; 3572 3573 return 0; 3574 } 3575 3576 static void 3577 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3578 { 3579 /* 3580 * Patch in the VMMCALL instruction: 3581 */ 3582 hypercall[0] = 0x0f; 3583 hypercall[1] = 0x01; 3584 hypercall[2] = 0xd9; 3585 } 3586 3587 static int __init svm_check_processor_compat(void) 3588 { 3589 return 0; 3590 } 3591 3592 static bool svm_cpu_has_accelerated_tpr(void) 3593 { 3594 return false; 3595 } 3596 3597 static bool svm_has_emulated_msr(u32 index) 3598 { 3599 switch (index) { 3600 case MSR_IA32_MCG_EXT_CTL: 3601 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 3602 return false; 3603 default: 3604 break; 3605 } 3606 3607 return true; 3608 } 3609 3610 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 3611 { 3612 return 0; 3613 } 3614 3615 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 3616 { 3617 struct vcpu_svm *svm = to_svm(vcpu); 3618 3619 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3620 boot_cpu_has(X86_FEATURE_XSAVE) && 3621 boot_cpu_has(X86_FEATURE_XSAVES); 3622 3623 /* Update nrips enabled cache */ 3624 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 3625 guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS); 3626 3627 if (!kvm_vcpu_apicv_active(vcpu)) 3628 return; 3629 3630 /* 3631 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 3632 * is exposed to the guest, disable AVIC. 3633 */ 3634 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 3635 kvm_request_apicv_update(vcpu->kvm, false, 3636 APICV_INHIBIT_REASON_X2APIC); 3637 3638 /* 3639 * Currently, AVIC does not work with nested virtualization. 3640 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 3641 */ 3642 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 3643 kvm_request_apicv_update(vcpu->kvm, false, 3644 APICV_INHIBIT_REASON_NESTED); 3645 } 3646 3647 static bool svm_has_wbinvd_exit(void) 3648 { 3649 return true; 3650 } 3651 3652 #define PRE_EX(exit) { .exit_code = (exit), \ 3653 .stage = X86_ICPT_PRE_EXCEPT, } 3654 #define POST_EX(exit) { .exit_code = (exit), \ 3655 .stage = X86_ICPT_POST_EXCEPT, } 3656 #define POST_MEM(exit) { .exit_code = (exit), \ 3657 .stage = X86_ICPT_POST_MEMACCESS, } 3658 3659 static const struct __x86_intercept { 3660 u32 exit_code; 3661 enum x86_intercept_stage stage; 3662 } x86_intercept_map[] = { 3663 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 3664 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 3665 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 3666 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 3667 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 3668 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 3669 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 3670 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 3671 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 3672 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 3673 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 3674 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 3675 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 3676 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 3677 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 3678 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 3679 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 3680 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 3681 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 3682 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 3683 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 3684 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 3685 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 3686 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 3687 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 3688 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 3689 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 3690 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 3691 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 3692 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 3693 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 3694 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 3695 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 3696 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 3697 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 3698 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 3699 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 3700 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 3701 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 3702 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 3703 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 3704 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 3705 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 3706 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 3707 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 3708 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 3709 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 3710 }; 3711 3712 #undef PRE_EX 3713 #undef POST_EX 3714 #undef POST_MEM 3715 3716 static int svm_check_intercept(struct kvm_vcpu *vcpu, 3717 struct x86_instruction_info *info, 3718 enum x86_intercept_stage stage, 3719 struct x86_exception *exception) 3720 { 3721 struct vcpu_svm *svm = to_svm(vcpu); 3722 int vmexit, ret = X86EMUL_CONTINUE; 3723 struct __x86_intercept icpt_info; 3724 struct vmcb *vmcb = svm->vmcb; 3725 3726 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 3727 goto out; 3728 3729 icpt_info = x86_intercept_map[info->intercept]; 3730 3731 if (stage != icpt_info.stage) 3732 goto out; 3733 3734 switch (icpt_info.exit_code) { 3735 case SVM_EXIT_READ_CR0: 3736 if (info->intercept == x86_intercept_cr_read) 3737 icpt_info.exit_code += info->modrm_reg; 3738 break; 3739 case SVM_EXIT_WRITE_CR0: { 3740 unsigned long cr0, val; 3741 u64 intercept; 3742 3743 if (info->intercept == x86_intercept_cr_write) 3744 icpt_info.exit_code += info->modrm_reg; 3745 3746 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 3747 info->intercept == x86_intercept_clts) 3748 break; 3749 3750 intercept = svm->nested.ctl.intercept; 3751 3752 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))) 3753 break; 3754 3755 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 3756 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 3757 3758 if (info->intercept == x86_intercept_lmsw) { 3759 cr0 &= 0xfUL; 3760 val &= 0xfUL; 3761 /* lmsw can't clear PE - catch this here */ 3762 if (cr0 & X86_CR0_PE) 3763 val |= X86_CR0_PE; 3764 } 3765 3766 if (cr0 ^ val) 3767 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 3768 3769 break; 3770 } 3771 case SVM_EXIT_READ_DR0: 3772 case SVM_EXIT_WRITE_DR0: 3773 icpt_info.exit_code += info->modrm_reg; 3774 break; 3775 case SVM_EXIT_MSR: 3776 if (info->intercept == x86_intercept_wrmsr) 3777 vmcb->control.exit_info_1 = 1; 3778 else 3779 vmcb->control.exit_info_1 = 0; 3780 break; 3781 case SVM_EXIT_PAUSE: 3782 /* 3783 * We get this for NOP only, but pause 3784 * is rep not, check this here 3785 */ 3786 if (info->rep_prefix != REPE_PREFIX) 3787 goto out; 3788 break; 3789 case SVM_EXIT_IOIO: { 3790 u64 exit_info; 3791 u32 bytes; 3792 3793 if (info->intercept == x86_intercept_in || 3794 info->intercept == x86_intercept_ins) { 3795 exit_info = ((info->src_val & 0xffff) << 16) | 3796 SVM_IOIO_TYPE_MASK; 3797 bytes = info->dst_bytes; 3798 } else { 3799 exit_info = (info->dst_val & 0xffff) << 16; 3800 bytes = info->src_bytes; 3801 } 3802 3803 if (info->intercept == x86_intercept_outs || 3804 info->intercept == x86_intercept_ins) 3805 exit_info |= SVM_IOIO_STR_MASK; 3806 3807 if (info->rep_prefix) 3808 exit_info |= SVM_IOIO_REP_MASK; 3809 3810 bytes = min(bytes, 4u); 3811 3812 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 3813 3814 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 3815 3816 vmcb->control.exit_info_1 = exit_info; 3817 vmcb->control.exit_info_2 = info->next_rip; 3818 3819 break; 3820 } 3821 default: 3822 break; 3823 } 3824 3825 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 3826 if (static_cpu_has(X86_FEATURE_NRIPS)) 3827 vmcb->control.next_rip = info->next_rip; 3828 vmcb->control.exit_code = icpt_info.exit_code; 3829 vmexit = nested_svm_exit_handled(svm); 3830 3831 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 3832 : X86EMUL_CONTINUE; 3833 3834 out: 3835 return ret; 3836 } 3837 3838 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 3839 { 3840 } 3841 3842 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 3843 { 3844 if (!kvm_pause_in_guest(vcpu->kvm)) 3845 shrink_ple_window(vcpu); 3846 } 3847 3848 static void svm_setup_mce(struct kvm_vcpu *vcpu) 3849 { 3850 /* [63:9] are reserved. */ 3851 vcpu->arch.mcg_cap &= 0x1ff; 3852 } 3853 3854 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 3855 { 3856 struct vcpu_svm *svm = to_svm(vcpu); 3857 3858 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 3859 if (!gif_set(svm)) 3860 return true; 3861 3862 return is_smm(vcpu); 3863 } 3864 3865 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3866 { 3867 struct vcpu_svm *svm = to_svm(vcpu); 3868 if (svm->nested.nested_run_pending) 3869 return -EBUSY; 3870 3871 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 3872 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 3873 return -EBUSY; 3874 3875 return !svm_smi_blocked(vcpu); 3876 } 3877 3878 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 3879 { 3880 struct vcpu_svm *svm = to_svm(vcpu); 3881 int ret; 3882 3883 if (is_guest_mode(vcpu)) { 3884 /* FED8h - SVM Guest */ 3885 put_smstate(u64, smstate, 0x7ed8, 1); 3886 /* FEE0h - SVM Guest VMCB Physical Address */ 3887 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb); 3888 3889 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3890 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3891 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3892 3893 ret = nested_svm_vmexit(svm); 3894 if (ret) 3895 return ret; 3896 } 3897 return 0; 3898 } 3899 3900 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 3901 { 3902 struct vcpu_svm *svm = to_svm(vcpu); 3903 struct vmcb *nested_vmcb; 3904 struct kvm_host_map map; 3905 u64 guest; 3906 u64 vmcb; 3907 int ret = 0; 3908 3909 guest = GET_SMSTATE(u64, smstate, 0x7ed8); 3910 vmcb = GET_SMSTATE(u64, smstate, 0x7ee0); 3911 3912 if (guest) { 3913 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL) 3914 return 1; 3915 nested_vmcb = map.hva; 3916 ret = enter_svm_guest_mode(svm, vmcb, nested_vmcb); 3917 kvm_vcpu_unmap(&svm->vcpu, &map, true); 3918 } 3919 3920 return ret; 3921 } 3922 3923 static void enable_smi_window(struct kvm_vcpu *vcpu) 3924 { 3925 struct vcpu_svm *svm = to_svm(vcpu); 3926 3927 if (!gif_set(svm)) { 3928 if (vgif_enabled(svm)) 3929 svm_set_intercept(svm, INTERCEPT_STGI); 3930 /* STGI will cause a vm exit */ 3931 } else { 3932 /* We must be in SMM; RSM will cause a vmexit anyway. */ 3933 } 3934 } 3935 3936 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu) 3937 { 3938 unsigned long cr4 = kvm_read_cr4(vcpu); 3939 bool smep = cr4 & X86_CR4_SMEP; 3940 bool smap = cr4 & X86_CR4_SMAP; 3941 bool is_user = svm_get_cpl(vcpu) == 3; 3942 3943 /* 3944 * If RIP is invalid, go ahead with emulation which will cause an 3945 * internal error exit. 3946 */ 3947 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT)) 3948 return true; 3949 3950 /* 3951 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 3952 * 3953 * Errata: 3954 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is 3955 * possible that CPU microcode implementing DecodeAssist will fail 3956 * to read bytes of instruction which caused #NPF. In this case, 3957 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly 3958 * return 0 instead of the correct guest instruction bytes. 3959 * 3960 * This happens because CPU microcode reading instruction bytes 3961 * uses a special opcode which attempts to read data using CPL=0 3962 * priviledges. The microcode reads CS:RIP and if it hits a SMAP 3963 * fault, it gives up and returns no instruction bytes. 3964 * 3965 * Detection: 3966 * We reach here in case CPU supports DecodeAssist, raised #NPF and 3967 * returned 0 in GuestIntrBytes field of the VMCB. 3968 * First, errata can only be triggered in case vCPU CR4.SMAP=1. 3969 * Second, if vCPU CR4.SMEP=1, errata could only be triggered 3970 * in case vCPU CPL==3 (Because otherwise guest would have triggered 3971 * a SMEP fault instead of #NPF). 3972 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. 3973 * As most guests enable SMAP if they have also enabled SMEP, use above 3974 * logic in order to attempt minimize false-positive of detecting errata 3975 * while still preserving all cases semantic correctness. 3976 * 3977 * Workaround: 3978 * To determine what instruction the guest was executing, the hypervisor 3979 * will have to decode the instruction at the instruction pointer. 3980 * 3981 * In non SEV guest, hypervisor will be able to read the guest 3982 * memory to decode the instruction pointer when insn_len is zero 3983 * so we return true to indicate that decoding is possible. 3984 * 3985 * But in the SEV guest, the guest memory is encrypted with the 3986 * guest specific key and hypervisor will not be able to decode the 3987 * instruction pointer so we will not able to workaround it. Lets 3988 * print the error and request to kill the guest. 3989 */ 3990 if (smap && (!smep || is_user)) { 3991 if (!sev_guest(vcpu->kvm)) 3992 return true; 3993 3994 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 3995 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3996 } 3997 3998 return false; 3999 } 4000 4001 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4002 { 4003 struct vcpu_svm *svm = to_svm(vcpu); 4004 4005 /* 4006 * TODO: Last condition latch INIT signals on vCPU when 4007 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4008 * To properly emulate the INIT intercept, 4009 * svm_check_nested_events() should call nested_svm_vmexit() 4010 * if an INIT signal is pending. 4011 */ 4012 return !gif_set(svm) || 4013 (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT)); 4014 } 4015 4016 static void svm_vm_destroy(struct kvm *kvm) 4017 { 4018 avic_vm_destroy(kvm); 4019 sev_vm_destroy(kvm); 4020 } 4021 4022 static int svm_vm_init(struct kvm *kvm) 4023 { 4024 if (!pause_filter_count || !pause_filter_thresh) 4025 kvm->arch.pause_in_guest = true; 4026 4027 if (avic) { 4028 int ret = avic_vm_init(kvm); 4029 if (ret) 4030 return ret; 4031 } 4032 4033 kvm_apicv_init(kvm, avic); 4034 return 0; 4035 } 4036 4037 static struct kvm_x86_ops svm_x86_ops __initdata = { 4038 .hardware_unsetup = svm_hardware_teardown, 4039 .hardware_enable = svm_hardware_enable, 4040 .hardware_disable = svm_hardware_disable, 4041 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, 4042 .has_emulated_msr = svm_has_emulated_msr, 4043 4044 .vcpu_create = svm_create_vcpu, 4045 .vcpu_free = svm_free_vcpu, 4046 .vcpu_reset = svm_vcpu_reset, 4047 4048 .vm_size = sizeof(struct kvm_svm), 4049 .vm_init = svm_vm_init, 4050 .vm_destroy = svm_vm_destroy, 4051 4052 .prepare_guest_switch = svm_prepare_guest_switch, 4053 .vcpu_load = svm_vcpu_load, 4054 .vcpu_put = svm_vcpu_put, 4055 .vcpu_blocking = svm_vcpu_blocking, 4056 .vcpu_unblocking = svm_vcpu_unblocking, 4057 4058 .update_exception_bitmap = update_exception_bitmap, 4059 .get_msr_feature = svm_get_msr_feature, 4060 .get_msr = svm_get_msr, 4061 .set_msr = svm_set_msr, 4062 .get_segment_base = svm_get_segment_base, 4063 .get_segment = svm_get_segment, 4064 .set_segment = svm_set_segment, 4065 .get_cpl = svm_get_cpl, 4066 .get_cs_db_l_bits = kvm_get_cs_db_l_bits, 4067 .set_cr0 = svm_set_cr0, 4068 .set_cr4 = svm_set_cr4, 4069 .set_efer = svm_set_efer, 4070 .get_idt = svm_get_idt, 4071 .set_idt = svm_set_idt, 4072 .get_gdt = svm_get_gdt, 4073 .set_gdt = svm_set_gdt, 4074 .set_dr7 = svm_set_dr7, 4075 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4076 .cache_reg = svm_cache_reg, 4077 .get_rflags = svm_get_rflags, 4078 .set_rflags = svm_set_rflags, 4079 4080 .tlb_flush_all = svm_flush_tlb, 4081 .tlb_flush_current = svm_flush_tlb, 4082 .tlb_flush_gva = svm_flush_tlb_gva, 4083 .tlb_flush_guest = svm_flush_tlb, 4084 4085 .run = svm_vcpu_run, 4086 .handle_exit = handle_exit, 4087 .skip_emulated_instruction = skip_emulated_instruction, 4088 .update_emulated_instruction = NULL, 4089 .set_interrupt_shadow = svm_set_interrupt_shadow, 4090 .get_interrupt_shadow = svm_get_interrupt_shadow, 4091 .patch_hypercall = svm_patch_hypercall, 4092 .set_irq = svm_set_irq, 4093 .set_nmi = svm_inject_nmi, 4094 .queue_exception = svm_queue_exception, 4095 .cancel_injection = svm_cancel_injection, 4096 .interrupt_allowed = svm_interrupt_allowed, 4097 .nmi_allowed = svm_nmi_allowed, 4098 .get_nmi_mask = svm_get_nmi_mask, 4099 .set_nmi_mask = svm_set_nmi_mask, 4100 .enable_nmi_window = enable_nmi_window, 4101 .enable_irq_window = enable_irq_window, 4102 .update_cr8_intercept = update_cr8_intercept, 4103 .set_virtual_apic_mode = svm_set_virtual_apic_mode, 4104 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, 4105 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, 4106 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl, 4107 .load_eoi_exitmap = svm_load_eoi_exitmap, 4108 .hwapic_irr_update = svm_hwapic_irr_update, 4109 .hwapic_isr_update = svm_hwapic_isr_update, 4110 .sync_pir_to_irr = kvm_lapic_find_highest_irr, 4111 .apicv_post_state_restore = avic_post_state_restore, 4112 4113 .set_tss_addr = svm_set_tss_addr, 4114 .set_identity_map_addr = svm_set_identity_map_addr, 4115 .get_mt_mask = svm_get_mt_mask, 4116 4117 .get_exit_info = svm_get_exit_info, 4118 4119 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4120 4121 .has_wbinvd_exit = svm_has_wbinvd_exit, 4122 4123 .write_l1_tsc_offset = svm_write_l1_tsc_offset, 4124 4125 .load_mmu_pgd = svm_load_mmu_pgd, 4126 4127 .check_intercept = svm_check_intercept, 4128 .handle_exit_irqoff = svm_handle_exit_irqoff, 4129 4130 .request_immediate_exit = __kvm_request_immediate_exit, 4131 4132 .sched_in = svm_sched_in, 4133 4134 .pmu_ops = &amd_pmu_ops, 4135 .nested_ops = &svm_nested_ops, 4136 4137 .deliver_posted_interrupt = svm_deliver_avic_intr, 4138 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, 4139 .update_pi_irte = svm_update_pi_irte, 4140 .setup_mce = svm_setup_mce, 4141 4142 .smi_allowed = svm_smi_allowed, 4143 .pre_enter_smm = svm_pre_enter_smm, 4144 .pre_leave_smm = svm_pre_leave_smm, 4145 .enable_smi_window = enable_smi_window, 4146 4147 .mem_enc_op = svm_mem_enc_op, 4148 .mem_enc_reg_region = svm_register_enc_region, 4149 .mem_enc_unreg_region = svm_unregister_enc_region, 4150 4151 .need_emulation_on_page_fault = svm_need_emulation_on_page_fault, 4152 4153 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4154 }; 4155 4156 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4157 .cpu_has_kvm_support = has_svm, 4158 .disabled_by_bios = is_disabled, 4159 .hardware_setup = svm_hardware_setup, 4160 .check_processor_compatibility = svm_check_processor_compat, 4161 4162 .runtime_ops = &svm_x86_ops, 4163 }; 4164 4165 static int __init svm_init(void) 4166 { 4167 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4168 __alignof__(struct vcpu_svm), THIS_MODULE); 4169 } 4170 4171 static void __exit svm_exit(void) 4172 { 4173 kvm_exit(); 4174 } 4175 4176 module_init(svm_init) 4177 module_exit(svm_exit) 4178