1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 31 #include <asm/apic.h> 32 #include <asm/perf_event.h> 33 #include <asm/tlbflush.h> 34 #include <asm/desc.h> 35 #include <asm/debugreg.h> 36 #include <asm/kvm_para.h> 37 #include <asm/irq_remapping.h> 38 #include <asm/spec-ctrl.h> 39 #include <asm/cpu_device_id.h> 40 #include <asm/traps.h> 41 #include <asm/fpu/api.h> 42 43 #include <asm/virtext.h> 44 #include "trace.h" 45 46 #include "svm.h" 47 #include "svm_ops.h" 48 49 #include "kvm_onhyperv.h" 50 #include "svm_onhyperv.h" 51 52 MODULE_AUTHOR("Qumranet"); 53 MODULE_LICENSE("GPL"); 54 55 #ifdef MODULE 56 static const struct x86_cpu_id svm_cpu_id[] = { 57 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 58 {} 59 }; 60 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 61 #endif 62 63 #define SEG_TYPE_LDT 2 64 #define SEG_TYPE_BUSY_TSS16 3 65 66 static bool erratum_383_found __read_mostly; 67 68 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 69 70 /* 71 * Set osvw_len to higher value when updated Revision Guides 72 * are published and we know what the new status bits are 73 */ 74 static uint64_t osvw_len = 4, osvw_status; 75 76 static DEFINE_PER_CPU(u64, current_tsc_ratio); 77 78 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 79 80 static const struct svm_direct_access_msrs { 81 u32 index; /* Index of the MSR */ 82 bool always; /* True if intercept is initially cleared */ 83 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 84 { .index = MSR_STAR, .always = true }, 85 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 86 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 87 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 88 #ifdef CONFIG_X86_64 89 { .index = MSR_GS_BASE, .always = true }, 90 { .index = MSR_FS_BASE, .always = true }, 91 { .index = MSR_KERNEL_GS_BASE, .always = true }, 92 { .index = MSR_LSTAR, .always = true }, 93 { .index = MSR_CSTAR, .always = true }, 94 { .index = MSR_SYSCALL_MASK, .always = true }, 95 #endif 96 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 97 { .index = MSR_IA32_PRED_CMD, .always = false }, 98 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 99 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 100 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 101 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 102 { .index = MSR_EFER, .always = false }, 103 { .index = MSR_IA32_CR_PAT, .always = false }, 104 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 105 { .index = MSR_TSC_AUX, .always = false }, 106 { .index = X2APIC_MSR(APIC_ID), .always = false }, 107 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 108 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 109 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 110 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 111 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 112 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 113 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 114 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 115 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 116 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 117 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 118 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 119 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 120 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 121 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 122 123 /* 124 * Note: 125 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 126 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 127 * the AVIC hardware would generate GP fault. Therefore, always 128 * intercept the MSR 0x832, and do not setup direct_access_msr. 129 */ 130 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 131 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 132 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 133 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 134 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 135 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 136 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 137 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 138 { .index = MSR_INVALID, .always = false }, 139 }; 140 141 /* 142 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 143 * pause_filter_count: On processors that support Pause filtering(indicated 144 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 145 * count value. On VMRUN this value is loaded into an internal counter. 146 * Each time a pause instruction is executed, this counter is decremented 147 * until it reaches zero at which time a #VMEXIT is generated if pause 148 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 149 * Intercept Filtering for more details. 150 * This also indicate if ple logic enabled. 151 * 152 * pause_filter_thresh: In addition, some processor families support advanced 153 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 154 * the amount of time a guest is allowed to execute in a pause loop. 155 * In this mode, a 16-bit pause filter threshold field is added in the 156 * VMCB. The threshold value is a cycle count that is used to reset the 157 * pause counter. As with simple pause filtering, VMRUN loads the pause 158 * count value from VMCB into an internal counter. Then, on each pause 159 * instruction the hardware checks the elapsed number of cycles since 160 * the most recent pause instruction against the pause filter threshold. 161 * If the elapsed cycle count is greater than the pause filter threshold, 162 * then the internal pause count is reloaded from the VMCB and execution 163 * continues. If the elapsed cycle count is less than the pause filter 164 * threshold, then the internal pause count is decremented. If the count 165 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 166 * triggered. If advanced pause filtering is supported and pause filter 167 * threshold field is set to zero, the filter will operate in the simpler, 168 * count only mode. 169 */ 170 171 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 172 module_param(pause_filter_thresh, ushort, 0444); 173 174 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 175 module_param(pause_filter_count, ushort, 0444); 176 177 /* Default doubles per-vcpu window every exit. */ 178 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 179 module_param(pause_filter_count_grow, ushort, 0444); 180 181 /* Default resets per-vcpu window every exit to pause_filter_count. */ 182 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 183 module_param(pause_filter_count_shrink, ushort, 0444); 184 185 /* Default is to compute the maximum so we can never overflow. */ 186 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 187 module_param(pause_filter_count_max, ushort, 0444); 188 189 /* 190 * Use nested page tables by default. Note, NPT may get forced off by 191 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 192 */ 193 bool npt_enabled = true; 194 module_param_named(npt, npt_enabled, bool, 0444); 195 196 /* allow nested virtualization in KVM/SVM */ 197 static int nested = true; 198 module_param(nested, int, S_IRUGO); 199 200 /* enable/disable Next RIP Save */ 201 static int nrips = true; 202 module_param(nrips, int, 0444); 203 204 /* enable/disable Virtual VMLOAD VMSAVE */ 205 static int vls = true; 206 module_param(vls, int, 0444); 207 208 /* enable/disable Virtual GIF */ 209 int vgif = true; 210 module_param(vgif, int, 0444); 211 212 /* enable/disable LBR virtualization */ 213 static int lbrv = true; 214 module_param(lbrv, int, 0444); 215 216 static int tsc_scaling = true; 217 module_param(tsc_scaling, int, 0444); 218 219 /* 220 * enable / disable AVIC. Because the defaults differ for APICv 221 * support between VMX and SVM we cannot use module_param_named. 222 */ 223 static bool avic; 224 module_param(avic, bool, 0444); 225 226 bool __read_mostly dump_invalid_vmcb; 227 module_param(dump_invalid_vmcb, bool, 0644); 228 229 230 bool intercept_smi = true; 231 module_param(intercept_smi, bool, 0444); 232 233 234 static bool svm_gp_erratum_intercept = true; 235 236 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 237 238 static unsigned long iopm_base; 239 240 struct kvm_ldttss_desc { 241 u16 limit0; 242 u16 base0; 243 unsigned base1:8, type:5, dpl:2, p:1; 244 unsigned limit1:4, zero0:3, g:1, base2:8; 245 u32 base3; 246 u32 zero1; 247 } __attribute__((packed)); 248 249 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 250 251 /* 252 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 253 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 254 * 255 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 256 * defer the restoration of TSC_AUX until the CPU returns to userspace. 257 */ 258 static int tsc_aux_uret_slot __read_mostly = -1; 259 260 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 261 262 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 263 #define MSRS_RANGE_SIZE 2048 264 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 265 266 u32 svm_msrpm_offset(u32 msr) 267 { 268 u32 offset; 269 int i; 270 271 for (i = 0; i < NUM_MSR_MAPS; i++) { 272 if (msr < msrpm_ranges[i] || 273 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 274 continue; 275 276 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 277 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 278 279 /* Now we have the u8 offset - but need the u32 offset */ 280 return offset / 4; 281 } 282 283 /* MSR not in any range */ 284 return MSR_INVALID; 285 } 286 287 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 288 289 static int get_npt_level(void) 290 { 291 #ifdef CONFIG_X86_64 292 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 293 #else 294 return PT32E_ROOT_LEVEL; 295 #endif 296 } 297 298 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 299 { 300 struct vcpu_svm *svm = to_svm(vcpu); 301 u64 old_efer = vcpu->arch.efer; 302 vcpu->arch.efer = efer; 303 304 if (!npt_enabled) { 305 /* Shadow paging assumes NX to be available. */ 306 efer |= EFER_NX; 307 308 if (!(efer & EFER_LMA)) 309 efer &= ~EFER_LME; 310 } 311 312 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 313 if (!(efer & EFER_SVME)) { 314 svm_leave_nested(vcpu); 315 svm_set_gif(svm, true); 316 /* #GP intercept is still needed for vmware backdoor */ 317 if (!enable_vmware_backdoor) 318 clr_exception_intercept(svm, GP_VECTOR); 319 320 /* 321 * Free the nested guest state, unless we are in SMM. 322 * In this case we will return to the nested guest 323 * as soon as we leave SMM. 324 */ 325 if (!is_smm(vcpu)) 326 svm_free_nested(svm); 327 328 } else { 329 int ret = svm_allocate_nested(svm); 330 331 if (ret) { 332 vcpu->arch.efer = old_efer; 333 return ret; 334 } 335 336 /* 337 * Never intercept #GP for SEV guests, KVM can't 338 * decrypt guest memory to workaround the erratum. 339 */ 340 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 341 set_exception_intercept(svm, GP_VECTOR); 342 } 343 } 344 345 svm->vmcb->save.efer = efer | EFER_SVME; 346 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 347 return 0; 348 } 349 350 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 351 { 352 struct vcpu_svm *svm = to_svm(vcpu); 353 u32 ret = 0; 354 355 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 356 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 357 return ret; 358 } 359 360 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 361 { 362 struct vcpu_svm *svm = to_svm(vcpu); 363 364 if (mask == 0) 365 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 366 else 367 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 368 369 } 370 371 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 372 bool commit_side_effects) 373 { 374 struct vcpu_svm *svm = to_svm(vcpu); 375 unsigned long old_rflags; 376 377 /* 378 * SEV-ES does not expose the next RIP. The RIP update is controlled by 379 * the type of exit and the #VC handler in the guest. 380 */ 381 if (sev_es_guest(vcpu->kvm)) 382 goto done; 383 384 if (nrips && svm->vmcb->control.next_rip != 0) { 385 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 386 svm->next_rip = svm->vmcb->control.next_rip; 387 } 388 389 if (!svm->next_rip) { 390 if (unlikely(!commit_side_effects)) 391 old_rflags = svm->vmcb->save.rflags; 392 393 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 394 return 0; 395 396 if (unlikely(!commit_side_effects)) 397 svm->vmcb->save.rflags = old_rflags; 398 } else { 399 kvm_rip_write(vcpu, svm->next_rip); 400 } 401 402 done: 403 if (likely(commit_side_effects)) 404 svm_set_interrupt_shadow(vcpu, 0); 405 406 return 1; 407 } 408 409 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 410 { 411 return __svm_skip_emulated_instruction(vcpu, true); 412 } 413 414 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 415 { 416 unsigned long rip, old_rip = kvm_rip_read(vcpu); 417 struct vcpu_svm *svm = to_svm(vcpu); 418 419 /* 420 * Due to architectural shortcomings, the CPU doesn't always provide 421 * NextRIP, e.g. if KVM intercepted an exception that occurred while 422 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 423 * the instruction even if NextRIP is supported to acquire the next 424 * RIP so that it can be shoved into the NextRIP field, otherwise 425 * hardware will fail to advance guest RIP during event injection. 426 * Drop the exception/interrupt if emulation fails and effectively 427 * retry the instruction, it's the least awful option. If NRIPS is 428 * in use, the skip must not commit any side effects such as clearing 429 * the interrupt shadow or RFLAGS.RF. 430 */ 431 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 432 return -EIO; 433 434 rip = kvm_rip_read(vcpu); 435 436 /* 437 * Save the injection information, even when using next_rip, as the 438 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 439 * doesn't complete due to a VM-Exit occurring while the CPU is 440 * vectoring the event. Decoding the instruction isn't guaranteed to 441 * work as there may be no backing instruction, e.g. if the event is 442 * being injected by L1 for L2, or if the guest is patching INT3 into 443 * a different instruction. 444 */ 445 svm->soft_int_injected = true; 446 svm->soft_int_csbase = svm->vmcb->save.cs.base; 447 svm->soft_int_old_rip = old_rip; 448 svm->soft_int_next_rip = rip; 449 450 if (nrips) 451 kvm_rip_write(vcpu, old_rip); 452 453 if (static_cpu_has(X86_FEATURE_NRIPS)) 454 svm->vmcb->control.next_rip = rip; 455 456 return 0; 457 } 458 459 static void svm_inject_exception(struct kvm_vcpu *vcpu) 460 { 461 struct kvm_queued_exception *ex = &vcpu->arch.exception; 462 struct vcpu_svm *svm = to_svm(vcpu); 463 464 kvm_deliver_exception_payload(vcpu, ex); 465 466 if (kvm_exception_is_soft(ex->vector) && 467 svm_update_soft_interrupt_rip(vcpu)) 468 return; 469 470 svm->vmcb->control.event_inj = ex->vector 471 | SVM_EVTINJ_VALID 472 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 473 | SVM_EVTINJ_TYPE_EXEPT; 474 svm->vmcb->control.event_inj_err = ex->error_code; 475 } 476 477 static void svm_init_erratum_383(void) 478 { 479 u32 low, high; 480 int err; 481 u64 val; 482 483 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 484 return; 485 486 /* Use _safe variants to not break nested virtualization */ 487 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 488 if (err) 489 return; 490 491 val |= (1ULL << 47); 492 493 low = lower_32_bits(val); 494 high = upper_32_bits(val); 495 496 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 497 498 erratum_383_found = true; 499 } 500 501 static void svm_init_osvw(struct kvm_vcpu *vcpu) 502 { 503 /* 504 * Guests should see errata 400 and 415 as fixed (assuming that 505 * HLT and IO instructions are intercepted). 506 */ 507 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 508 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 509 510 /* 511 * By increasing VCPU's osvw.length to 3 we are telling the guest that 512 * all osvw.status bits inside that length, including bit 0 (which is 513 * reserved for erratum 298), are valid. However, if host processor's 514 * osvw_len is 0 then osvw_status[0] carries no information. We need to 515 * be conservative here and therefore we tell the guest that erratum 298 516 * is present (because we really don't know). 517 */ 518 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 519 vcpu->arch.osvw.status |= 1; 520 } 521 522 static int has_svm(void) 523 { 524 const char *msg; 525 526 if (!cpu_has_svm(&msg)) { 527 printk(KERN_INFO "has_svm: %s\n", msg); 528 return 0; 529 } 530 531 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 532 pr_info("KVM is unsupported when running as an SEV guest\n"); 533 return 0; 534 } 535 536 return 1; 537 } 538 539 void __svm_write_tsc_multiplier(u64 multiplier) 540 { 541 preempt_disable(); 542 543 if (multiplier == __this_cpu_read(current_tsc_ratio)) 544 goto out; 545 546 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 547 __this_cpu_write(current_tsc_ratio, multiplier); 548 out: 549 preempt_enable(); 550 } 551 552 static void svm_hardware_disable(void) 553 { 554 /* Make sure we clean up behind us */ 555 if (tsc_scaling) 556 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 557 558 cpu_svm_disable(); 559 560 amd_pmu_disable_virt(); 561 } 562 563 static int svm_hardware_enable(void) 564 { 565 566 struct svm_cpu_data *sd; 567 uint64_t efer; 568 struct desc_struct *gdt; 569 int me = raw_smp_processor_id(); 570 571 rdmsrl(MSR_EFER, efer); 572 if (efer & EFER_SVME) 573 return -EBUSY; 574 575 if (!has_svm()) { 576 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 577 return -EINVAL; 578 } 579 sd = per_cpu_ptr(&svm_data, me); 580 sd->asid_generation = 1; 581 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 582 sd->next_asid = sd->max_asid + 1; 583 sd->min_asid = max_sev_asid + 1; 584 585 gdt = get_current_gdt_rw(); 586 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 587 588 wrmsrl(MSR_EFER, efer | EFER_SVME); 589 590 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 591 592 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 593 /* 594 * Set the default value, even if we don't use TSC scaling 595 * to avoid having stale value in the msr 596 */ 597 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 598 } 599 600 601 /* 602 * Get OSVW bits. 603 * 604 * Note that it is possible to have a system with mixed processor 605 * revisions and therefore different OSVW bits. If bits are not the same 606 * on different processors then choose the worst case (i.e. if erratum 607 * is present on one processor and not on another then assume that the 608 * erratum is present everywhere). 609 */ 610 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 611 uint64_t len, status = 0; 612 int err; 613 614 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 615 if (!err) 616 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 617 &err); 618 619 if (err) 620 osvw_status = osvw_len = 0; 621 else { 622 if (len < osvw_len) 623 osvw_len = len; 624 osvw_status |= status; 625 osvw_status &= (1ULL << osvw_len) - 1; 626 } 627 } else 628 osvw_status = osvw_len = 0; 629 630 svm_init_erratum_383(); 631 632 amd_pmu_enable_virt(); 633 634 return 0; 635 } 636 637 static void svm_cpu_uninit(int cpu) 638 { 639 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 640 641 if (!sd->save_area) 642 return; 643 644 kfree(sd->sev_vmcbs); 645 __free_page(sd->save_area); 646 sd->save_area_pa = 0; 647 sd->save_area = NULL; 648 } 649 650 static int svm_cpu_init(int cpu) 651 { 652 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 653 int ret = -ENOMEM; 654 655 memset(sd, 0, sizeof(struct svm_cpu_data)); 656 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 657 if (!sd->save_area) 658 return ret; 659 660 ret = sev_cpu_init(sd); 661 if (ret) 662 goto free_save_area; 663 664 sd->save_area_pa = __sme_page_pa(sd->save_area); 665 return 0; 666 667 free_save_area: 668 __free_page(sd->save_area); 669 sd->save_area = NULL; 670 return ret; 671 672 } 673 674 static int direct_access_msr_slot(u32 msr) 675 { 676 u32 i; 677 678 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 679 if (direct_access_msrs[i].index == msr) 680 return i; 681 682 return -ENOENT; 683 } 684 685 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 686 int write) 687 { 688 struct vcpu_svm *svm = to_svm(vcpu); 689 int slot = direct_access_msr_slot(msr); 690 691 if (slot == -ENOENT) 692 return; 693 694 /* Set the shadow bitmaps to the desired intercept states */ 695 if (read) 696 set_bit(slot, svm->shadow_msr_intercept.read); 697 else 698 clear_bit(slot, svm->shadow_msr_intercept.read); 699 700 if (write) 701 set_bit(slot, svm->shadow_msr_intercept.write); 702 else 703 clear_bit(slot, svm->shadow_msr_intercept.write); 704 } 705 706 static bool valid_msr_intercept(u32 index) 707 { 708 return direct_access_msr_slot(index) != -ENOENT; 709 } 710 711 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 712 { 713 u8 bit_write; 714 unsigned long tmp; 715 u32 offset; 716 u32 *msrpm; 717 718 /* 719 * For non-nested case: 720 * If the L01 MSR bitmap does not intercept the MSR, then we need to 721 * save it. 722 * 723 * For nested case: 724 * If the L02 MSR bitmap does not intercept the MSR, then we need to 725 * save it. 726 */ 727 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 728 to_svm(vcpu)->msrpm; 729 730 offset = svm_msrpm_offset(msr); 731 bit_write = 2 * (msr & 0x0f) + 1; 732 tmp = msrpm[offset]; 733 734 BUG_ON(offset == MSR_INVALID); 735 736 return !!test_bit(bit_write, &tmp); 737 } 738 739 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 740 u32 msr, int read, int write) 741 { 742 struct vcpu_svm *svm = to_svm(vcpu); 743 u8 bit_read, bit_write; 744 unsigned long tmp; 745 u32 offset; 746 747 /* 748 * If this warning triggers extend the direct_access_msrs list at the 749 * beginning of the file 750 */ 751 WARN_ON(!valid_msr_intercept(msr)); 752 753 /* Enforce non allowed MSRs to trap */ 754 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 755 read = 0; 756 757 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 758 write = 0; 759 760 offset = svm_msrpm_offset(msr); 761 bit_read = 2 * (msr & 0x0f); 762 bit_write = 2 * (msr & 0x0f) + 1; 763 tmp = msrpm[offset]; 764 765 BUG_ON(offset == MSR_INVALID); 766 767 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 768 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 769 770 msrpm[offset] = tmp; 771 772 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 773 svm->nested.force_msr_bitmap_recalc = true; 774 } 775 776 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 777 int read, int write) 778 { 779 set_shadow_msr_intercept(vcpu, msr, read, write); 780 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 781 } 782 783 u32 *svm_vcpu_alloc_msrpm(void) 784 { 785 unsigned int order = get_order(MSRPM_SIZE); 786 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 787 u32 *msrpm; 788 789 if (!pages) 790 return NULL; 791 792 msrpm = page_address(pages); 793 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 794 795 return msrpm; 796 } 797 798 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 799 { 800 int i; 801 802 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 803 if (!direct_access_msrs[i].always) 804 continue; 805 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 806 } 807 } 808 809 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 810 { 811 int i; 812 813 if (intercept == svm->x2avic_msrs_intercepted) 814 return; 815 816 if (avic_mode != AVIC_MODE_X2 || 817 !apic_x2apic_mode(svm->vcpu.arch.apic)) 818 return; 819 820 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 821 int index = direct_access_msrs[i].index; 822 823 if ((index < APIC_BASE_MSR) || 824 (index > APIC_BASE_MSR + 0xff)) 825 continue; 826 set_msr_interception(&svm->vcpu, svm->msrpm, index, 827 !intercept, !intercept); 828 } 829 830 svm->x2avic_msrs_intercepted = intercept; 831 } 832 833 void svm_vcpu_free_msrpm(u32 *msrpm) 834 { 835 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 836 } 837 838 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 839 { 840 struct vcpu_svm *svm = to_svm(vcpu); 841 u32 i; 842 843 /* 844 * Set intercept permissions for all direct access MSRs again. They 845 * will automatically get filtered through the MSR filter, so we are 846 * back in sync after this. 847 */ 848 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 849 u32 msr = direct_access_msrs[i].index; 850 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 851 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 852 853 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 854 } 855 } 856 857 static void add_msr_offset(u32 offset) 858 { 859 int i; 860 861 for (i = 0; i < MSRPM_OFFSETS; ++i) { 862 863 /* Offset already in list? */ 864 if (msrpm_offsets[i] == offset) 865 return; 866 867 /* Slot used by another offset? */ 868 if (msrpm_offsets[i] != MSR_INVALID) 869 continue; 870 871 /* Add offset to list */ 872 msrpm_offsets[i] = offset; 873 874 return; 875 } 876 877 /* 878 * If this BUG triggers the msrpm_offsets table has an overflow. Just 879 * increase MSRPM_OFFSETS in this case. 880 */ 881 BUG(); 882 } 883 884 static void init_msrpm_offsets(void) 885 { 886 int i; 887 888 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 889 890 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 891 u32 offset; 892 893 offset = svm_msrpm_offset(direct_access_msrs[i].index); 894 BUG_ON(offset == MSR_INVALID); 895 896 add_msr_offset(offset); 897 } 898 } 899 900 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 901 { 902 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 903 to_vmcb->save.br_from = from_vmcb->save.br_from; 904 to_vmcb->save.br_to = from_vmcb->save.br_to; 905 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 906 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 907 908 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 909 } 910 911 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 912 { 913 struct vcpu_svm *svm = to_svm(vcpu); 914 915 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 916 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 917 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 918 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 919 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 920 921 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 922 if (is_guest_mode(vcpu)) 923 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 924 } 925 926 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 927 { 928 struct vcpu_svm *svm = to_svm(vcpu); 929 930 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 931 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 932 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 933 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 934 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 935 936 /* 937 * Move the LBR msrs back to the vmcb01 to avoid copying them 938 * on nested guest entries. 939 */ 940 if (is_guest_mode(vcpu)) 941 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 942 } 943 944 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index) 945 { 946 /* 947 * If the LBR virtualization is disabled, the LBR msrs are always 948 * kept in the vmcb01 to avoid copying them on nested guest entries. 949 * 950 * If nested, and the LBR virtualization is enabled/disabled, the msrs 951 * are moved between the vmcb01 and vmcb02 as needed. 952 */ 953 struct vmcb *vmcb = 954 (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ? 955 svm->vmcb : svm->vmcb01.ptr; 956 957 switch (index) { 958 case MSR_IA32_DEBUGCTLMSR: 959 return vmcb->save.dbgctl; 960 case MSR_IA32_LASTBRANCHFROMIP: 961 return vmcb->save.br_from; 962 case MSR_IA32_LASTBRANCHTOIP: 963 return vmcb->save.br_to; 964 case MSR_IA32_LASTINTFROMIP: 965 return vmcb->save.last_excp_from; 966 case MSR_IA32_LASTINTTOIP: 967 return vmcb->save.last_excp_to; 968 default: 969 KVM_BUG(false, svm->vcpu.kvm, 970 "%s: Unknown MSR 0x%x", __func__, index); 971 return 0; 972 } 973 } 974 975 void svm_update_lbrv(struct kvm_vcpu *vcpu) 976 { 977 struct vcpu_svm *svm = to_svm(vcpu); 978 979 bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) & 980 DEBUGCTLMSR_LBR; 981 982 bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext & 983 LBR_CTL_ENABLE_MASK); 984 985 if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled)) 986 if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)) 987 enable_lbrv = true; 988 989 if (enable_lbrv == current_enable_lbrv) 990 return; 991 992 if (enable_lbrv) 993 svm_enable_lbrv(vcpu); 994 else 995 svm_disable_lbrv(vcpu); 996 } 997 998 void disable_nmi_singlestep(struct vcpu_svm *svm) 999 { 1000 svm->nmi_singlestep = false; 1001 1002 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1003 /* Clear our flags if they were not set by the guest */ 1004 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1005 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1006 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1007 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1008 } 1009 } 1010 1011 static void grow_ple_window(struct kvm_vcpu *vcpu) 1012 { 1013 struct vcpu_svm *svm = to_svm(vcpu); 1014 struct vmcb_control_area *control = &svm->vmcb->control; 1015 int old = control->pause_filter_count; 1016 1017 if (kvm_pause_in_guest(vcpu->kvm)) 1018 return; 1019 1020 control->pause_filter_count = __grow_ple_window(old, 1021 pause_filter_count, 1022 pause_filter_count_grow, 1023 pause_filter_count_max); 1024 1025 if (control->pause_filter_count != old) { 1026 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1027 trace_kvm_ple_window_update(vcpu->vcpu_id, 1028 control->pause_filter_count, old); 1029 } 1030 } 1031 1032 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1033 { 1034 struct vcpu_svm *svm = to_svm(vcpu); 1035 struct vmcb_control_area *control = &svm->vmcb->control; 1036 int old = control->pause_filter_count; 1037 1038 if (kvm_pause_in_guest(vcpu->kvm)) 1039 return; 1040 1041 control->pause_filter_count = 1042 __shrink_ple_window(old, 1043 pause_filter_count, 1044 pause_filter_count_shrink, 1045 pause_filter_count); 1046 if (control->pause_filter_count != old) { 1047 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1048 trace_kvm_ple_window_update(vcpu->vcpu_id, 1049 control->pause_filter_count, old); 1050 } 1051 } 1052 1053 static void svm_hardware_unsetup(void) 1054 { 1055 int cpu; 1056 1057 sev_hardware_unsetup(); 1058 1059 for_each_possible_cpu(cpu) 1060 svm_cpu_uninit(cpu); 1061 1062 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 1063 get_order(IOPM_SIZE)); 1064 iopm_base = 0; 1065 } 1066 1067 static void init_seg(struct vmcb_seg *seg) 1068 { 1069 seg->selector = 0; 1070 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1071 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1072 seg->limit = 0xffff; 1073 seg->base = 0; 1074 } 1075 1076 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1077 { 1078 seg->selector = 0; 1079 seg->attrib = SVM_SELECTOR_P_MASK | type; 1080 seg->limit = 0xffff; 1081 seg->base = 0; 1082 } 1083 1084 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1085 { 1086 struct vcpu_svm *svm = to_svm(vcpu); 1087 1088 return svm->nested.ctl.tsc_offset; 1089 } 1090 1091 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1092 { 1093 struct vcpu_svm *svm = to_svm(vcpu); 1094 1095 return svm->tsc_ratio_msr; 1096 } 1097 1098 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1099 { 1100 struct vcpu_svm *svm = to_svm(vcpu); 1101 1102 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1103 svm->vmcb->control.tsc_offset = offset; 1104 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1105 } 1106 1107 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1108 { 1109 __svm_write_tsc_multiplier(multiplier); 1110 } 1111 1112 1113 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1114 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1115 struct vcpu_svm *svm) 1116 { 1117 /* 1118 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1119 * roots, or if INVPCID is disabled in the guest to inject #UD. 1120 */ 1121 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1122 if (!npt_enabled || 1123 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1124 svm_set_intercept(svm, INTERCEPT_INVPCID); 1125 else 1126 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1127 } 1128 1129 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1130 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1131 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1132 else 1133 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1134 } 1135 } 1136 1137 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1138 { 1139 struct vcpu_svm *svm = to_svm(vcpu); 1140 1141 if (guest_cpuid_is_intel(vcpu)) { 1142 /* 1143 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1144 * accesses because the processor only stores 32 bits. 1145 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1146 */ 1147 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1148 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1149 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1150 1151 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1152 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1153 1154 svm->v_vmload_vmsave_enabled = false; 1155 } else { 1156 /* 1157 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1158 * in VMCB and clear intercepts to avoid #VMEXIT. 1159 */ 1160 if (vls) { 1161 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1162 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1163 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1164 } 1165 /* No need to intercept these MSRs */ 1166 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1167 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1168 } 1169 } 1170 1171 static void init_vmcb(struct kvm_vcpu *vcpu) 1172 { 1173 struct vcpu_svm *svm = to_svm(vcpu); 1174 struct vmcb *vmcb = svm->vmcb01.ptr; 1175 struct vmcb_control_area *control = &vmcb->control; 1176 struct vmcb_save_area *save = &vmcb->save; 1177 1178 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1179 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1180 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1181 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1182 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1183 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1184 if (!kvm_vcpu_apicv_active(vcpu)) 1185 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1186 1187 set_dr_intercepts(svm); 1188 1189 set_exception_intercept(svm, PF_VECTOR); 1190 set_exception_intercept(svm, UD_VECTOR); 1191 set_exception_intercept(svm, MC_VECTOR); 1192 set_exception_intercept(svm, AC_VECTOR); 1193 set_exception_intercept(svm, DB_VECTOR); 1194 /* 1195 * Guest access to VMware backdoor ports could legitimately 1196 * trigger #GP because of TSS I/O permission bitmap. 1197 * We intercept those #GP and allow access to them anyway 1198 * as VMware does. Don't intercept #GP for SEV guests as KVM can't 1199 * decrypt guest memory to decode the faulting instruction. 1200 */ 1201 if (enable_vmware_backdoor && !sev_guest(vcpu->kvm)) 1202 set_exception_intercept(svm, GP_VECTOR); 1203 1204 svm_set_intercept(svm, INTERCEPT_INTR); 1205 svm_set_intercept(svm, INTERCEPT_NMI); 1206 1207 if (intercept_smi) 1208 svm_set_intercept(svm, INTERCEPT_SMI); 1209 1210 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1211 svm_set_intercept(svm, INTERCEPT_RDPMC); 1212 svm_set_intercept(svm, INTERCEPT_CPUID); 1213 svm_set_intercept(svm, INTERCEPT_INVD); 1214 svm_set_intercept(svm, INTERCEPT_INVLPG); 1215 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1216 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1217 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1218 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1219 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1220 svm_set_intercept(svm, INTERCEPT_VMRUN); 1221 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1222 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1223 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1224 svm_set_intercept(svm, INTERCEPT_STGI); 1225 svm_set_intercept(svm, INTERCEPT_CLGI); 1226 svm_set_intercept(svm, INTERCEPT_SKINIT); 1227 svm_set_intercept(svm, INTERCEPT_WBINVD); 1228 svm_set_intercept(svm, INTERCEPT_XSETBV); 1229 svm_set_intercept(svm, INTERCEPT_RDPRU); 1230 svm_set_intercept(svm, INTERCEPT_RSM); 1231 1232 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1233 svm_set_intercept(svm, INTERCEPT_MONITOR); 1234 svm_set_intercept(svm, INTERCEPT_MWAIT); 1235 } 1236 1237 if (!kvm_hlt_in_guest(vcpu->kvm)) 1238 svm_set_intercept(svm, INTERCEPT_HLT); 1239 1240 control->iopm_base_pa = __sme_set(iopm_base); 1241 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1242 control->int_ctl = V_INTR_MASKING_MASK; 1243 1244 init_seg(&save->es); 1245 init_seg(&save->ss); 1246 init_seg(&save->ds); 1247 init_seg(&save->fs); 1248 init_seg(&save->gs); 1249 1250 save->cs.selector = 0xf000; 1251 save->cs.base = 0xffff0000; 1252 /* Executable/Readable Code Segment */ 1253 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1254 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1255 save->cs.limit = 0xffff; 1256 1257 save->gdtr.base = 0; 1258 save->gdtr.limit = 0xffff; 1259 save->idtr.base = 0; 1260 save->idtr.limit = 0xffff; 1261 1262 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1263 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1264 1265 if (npt_enabled) { 1266 /* Setup VMCB for Nested Paging */ 1267 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1268 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1269 clr_exception_intercept(svm, PF_VECTOR); 1270 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1271 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1272 save->g_pat = vcpu->arch.pat; 1273 save->cr3 = 0; 1274 } 1275 svm->current_vmcb->asid_generation = 0; 1276 svm->asid = 0; 1277 1278 svm->nested.vmcb12_gpa = INVALID_GPA; 1279 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1280 1281 if (!kvm_pause_in_guest(vcpu->kvm)) { 1282 control->pause_filter_count = pause_filter_count; 1283 if (pause_filter_thresh) 1284 control->pause_filter_thresh = pause_filter_thresh; 1285 svm_set_intercept(svm, INTERCEPT_PAUSE); 1286 } else { 1287 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1288 } 1289 1290 svm_recalc_instruction_intercepts(vcpu, svm); 1291 1292 /* 1293 * If the host supports V_SPEC_CTRL then disable the interception 1294 * of MSR_IA32_SPEC_CTRL. 1295 */ 1296 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1297 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1298 1299 if (kvm_vcpu_apicv_active(vcpu)) 1300 avic_init_vmcb(svm, vmcb); 1301 1302 if (vgif) { 1303 svm_clr_intercept(svm, INTERCEPT_STGI); 1304 svm_clr_intercept(svm, INTERCEPT_CLGI); 1305 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1306 } 1307 1308 if (sev_guest(vcpu->kvm)) 1309 sev_init_vmcb(svm); 1310 1311 svm_hv_init_vmcb(vmcb); 1312 init_vmcb_after_set_cpuid(vcpu); 1313 1314 vmcb_mark_all_dirty(vmcb); 1315 1316 enable_gif(svm); 1317 } 1318 1319 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1320 { 1321 struct vcpu_svm *svm = to_svm(vcpu); 1322 1323 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1324 1325 svm_init_osvw(vcpu); 1326 vcpu->arch.microcode_version = 0x01000065; 1327 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1328 1329 if (sev_es_guest(vcpu->kvm)) 1330 sev_es_vcpu_reset(svm); 1331 } 1332 1333 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1334 { 1335 struct vcpu_svm *svm = to_svm(vcpu); 1336 1337 svm->spec_ctrl = 0; 1338 svm->virt_spec_ctrl = 0; 1339 1340 init_vmcb(vcpu); 1341 1342 if (!init_event) 1343 __svm_vcpu_reset(vcpu); 1344 } 1345 1346 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1347 { 1348 svm->current_vmcb = target_vmcb; 1349 svm->vmcb = target_vmcb->ptr; 1350 } 1351 1352 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1353 { 1354 struct vcpu_svm *svm; 1355 struct page *vmcb01_page; 1356 struct page *vmsa_page = NULL; 1357 int err; 1358 1359 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1360 svm = to_svm(vcpu); 1361 1362 err = -ENOMEM; 1363 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1364 if (!vmcb01_page) 1365 goto out; 1366 1367 if (sev_es_guest(vcpu->kvm)) { 1368 /* 1369 * SEV-ES guests require a separate VMSA page used to contain 1370 * the encrypted register state of the guest. 1371 */ 1372 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1373 if (!vmsa_page) 1374 goto error_free_vmcb_page; 1375 1376 /* 1377 * SEV-ES guests maintain an encrypted version of their FPU 1378 * state which is restored and saved on VMRUN and VMEXIT. 1379 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1380 * do xsave/xrstor on it. 1381 */ 1382 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1383 } 1384 1385 err = avic_init_vcpu(svm); 1386 if (err) 1387 goto error_free_vmsa_page; 1388 1389 svm->msrpm = svm_vcpu_alloc_msrpm(); 1390 if (!svm->msrpm) { 1391 err = -ENOMEM; 1392 goto error_free_vmsa_page; 1393 } 1394 1395 svm->x2avic_msrs_intercepted = true; 1396 1397 svm->vmcb01.ptr = page_address(vmcb01_page); 1398 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1399 svm_switch_vmcb(svm, &svm->vmcb01); 1400 1401 if (vmsa_page) 1402 svm->sev_es.vmsa = page_address(vmsa_page); 1403 1404 svm->guest_state_loaded = false; 1405 1406 return 0; 1407 1408 error_free_vmsa_page: 1409 if (vmsa_page) 1410 __free_page(vmsa_page); 1411 error_free_vmcb_page: 1412 __free_page(vmcb01_page); 1413 out: 1414 return err; 1415 } 1416 1417 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1418 { 1419 int i; 1420 1421 for_each_online_cpu(i) 1422 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1423 } 1424 1425 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1426 { 1427 struct vcpu_svm *svm = to_svm(vcpu); 1428 1429 /* 1430 * The vmcb page can be recycled, causing a false negative in 1431 * svm_vcpu_load(). So, ensure that no logical CPU has this 1432 * vmcb page recorded as its current vmcb. 1433 */ 1434 svm_clear_current_vmcb(svm->vmcb); 1435 1436 svm_leave_nested(vcpu); 1437 svm_free_nested(svm); 1438 1439 sev_free_vcpu(vcpu); 1440 1441 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1442 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1443 } 1444 1445 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1446 { 1447 struct vcpu_svm *svm = to_svm(vcpu); 1448 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1449 1450 if (sev_es_guest(vcpu->kvm)) 1451 sev_es_unmap_ghcb(svm); 1452 1453 if (svm->guest_state_loaded) 1454 return; 1455 1456 /* 1457 * Save additional host state that will be restored on VMEXIT (sev-es) 1458 * or subsequent vmload of host save area. 1459 */ 1460 vmsave(sd->save_area_pa); 1461 if (sev_es_guest(vcpu->kvm)) { 1462 struct sev_es_save_area *hostsa; 1463 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 1464 1465 sev_es_prepare_switch_to_guest(hostsa); 1466 } 1467 1468 if (tsc_scaling) 1469 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1470 1471 if (likely(tsc_aux_uret_slot >= 0)) 1472 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1473 1474 svm->guest_state_loaded = true; 1475 } 1476 1477 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1478 { 1479 to_svm(vcpu)->guest_state_loaded = false; 1480 } 1481 1482 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1483 { 1484 struct vcpu_svm *svm = to_svm(vcpu); 1485 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1486 1487 if (sd->current_vmcb != svm->vmcb) { 1488 sd->current_vmcb = svm->vmcb; 1489 indirect_branch_prediction_barrier(); 1490 } 1491 if (kvm_vcpu_apicv_active(vcpu)) 1492 avic_vcpu_load(vcpu, cpu); 1493 } 1494 1495 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1496 { 1497 if (kvm_vcpu_apicv_active(vcpu)) 1498 avic_vcpu_put(vcpu); 1499 1500 svm_prepare_host_switch(vcpu); 1501 1502 ++vcpu->stat.host_state_reload; 1503 } 1504 1505 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1506 { 1507 struct vcpu_svm *svm = to_svm(vcpu); 1508 unsigned long rflags = svm->vmcb->save.rflags; 1509 1510 if (svm->nmi_singlestep) { 1511 /* Hide our flags if they were not set by the guest */ 1512 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1513 rflags &= ~X86_EFLAGS_TF; 1514 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1515 rflags &= ~X86_EFLAGS_RF; 1516 } 1517 return rflags; 1518 } 1519 1520 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1521 { 1522 if (to_svm(vcpu)->nmi_singlestep) 1523 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1524 1525 /* 1526 * Any change of EFLAGS.VM is accompanied by a reload of SS 1527 * (caused by either a task switch or an inter-privilege IRET), 1528 * so we do not need to update the CPL here. 1529 */ 1530 to_svm(vcpu)->vmcb->save.rflags = rflags; 1531 } 1532 1533 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1534 { 1535 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1536 1537 return sev_es_guest(vcpu->kvm) 1538 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1539 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1540 } 1541 1542 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1543 { 1544 kvm_register_mark_available(vcpu, reg); 1545 1546 switch (reg) { 1547 case VCPU_EXREG_PDPTR: 1548 /* 1549 * When !npt_enabled, mmu->pdptrs[] is already available since 1550 * it is always updated per SDM when moving to CRs. 1551 */ 1552 if (npt_enabled) 1553 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1554 break; 1555 default: 1556 KVM_BUG_ON(1, vcpu->kvm); 1557 } 1558 } 1559 1560 static void svm_set_vintr(struct vcpu_svm *svm) 1561 { 1562 struct vmcb_control_area *control; 1563 1564 /* 1565 * The following fields are ignored when AVIC is enabled 1566 */ 1567 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1568 1569 svm_set_intercept(svm, INTERCEPT_VINTR); 1570 1571 /* 1572 * This is just a dummy VINTR to actually cause a vmexit to happen. 1573 * Actual injection of virtual interrupts happens through EVENTINJ. 1574 */ 1575 control = &svm->vmcb->control; 1576 control->int_vector = 0x0; 1577 control->int_ctl &= ~V_INTR_PRIO_MASK; 1578 control->int_ctl |= V_IRQ_MASK | 1579 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1580 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1581 } 1582 1583 static void svm_clear_vintr(struct vcpu_svm *svm) 1584 { 1585 svm_clr_intercept(svm, INTERCEPT_VINTR); 1586 1587 /* Drop int_ctl fields related to VINTR injection. */ 1588 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1589 if (is_guest_mode(&svm->vcpu)) { 1590 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1591 1592 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1593 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1594 1595 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1596 V_IRQ_INJECTION_BITS_MASK; 1597 1598 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1599 } 1600 1601 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1602 } 1603 1604 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1605 { 1606 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1607 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1608 1609 switch (seg) { 1610 case VCPU_SREG_CS: return &save->cs; 1611 case VCPU_SREG_DS: return &save->ds; 1612 case VCPU_SREG_ES: return &save->es; 1613 case VCPU_SREG_FS: return &save01->fs; 1614 case VCPU_SREG_GS: return &save01->gs; 1615 case VCPU_SREG_SS: return &save->ss; 1616 case VCPU_SREG_TR: return &save01->tr; 1617 case VCPU_SREG_LDTR: return &save01->ldtr; 1618 } 1619 BUG(); 1620 return NULL; 1621 } 1622 1623 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1624 { 1625 struct vmcb_seg *s = svm_seg(vcpu, seg); 1626 1627 return s->base; 1628 } 1629 1630 static void svm_get_segment(struct kvm_vcpu *vcpu, 1631 struct kvm_segment *var, int seg) 1632 { 1633 struct vmcb_seg *s = svm_seg(vcpu, seg); 1634 1635 var->base = s->base; 1636 var->limit = s->limit; 1637 var->selector = s->selector; 1638 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1639 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1640 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1641 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1642 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1643 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1644 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1645 1646 /* 1647 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1648 * However, the SVM spec states that the G bit is not observed by the 1649 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1650 * So let's synthesize a legal G bit for all segments, this helps 1651 * running KVM nested. It also helps cross-vendor migration, because 1652 * Intel's vmentry has a check on the 'G' bit. 1653 */ 1654 var->g = s->limit > 0xfffff; 1655 1656 /* 1657 * AMD's VMCB does not have an explicit unusable field, so emulate it 1658 * for cross vendor migration purposes by "not present" 1659 */ 1660 var->unusable = !var->present; 1661 1662 switch (seg) { 1663 case VCPU_SREG_TR: 1664 /* 1665 * Work around a bug where the busy flag in the tr selector 1666 * isn't exposed 1667 */ 1668 var->type |= 0x2; 1669 break; 1670 case VCPU_SREG_DS: 1671 case VCPU_SREG_ES: 1672 case VCPU_SREG_FS: 1673 case VCPU_SREG_GS: 1674 /* 1675 * The accessed bit must always be set in the segment 1676 * descriptor cache, although it can be cleared in the 1677 * descriptor, the cached bit always remains at 1. Since 1678 * Intel has a check on this, set it here to support 1679 * cross-vendor migration. 1680 */ 1681 if (!var->unusable) 1682 var->type |= 0x1; 1683 break; 1684 case VCPU_SREG_SS: 1685 /* 1686 * On AMD CPUs sometimes the DB bit in the segment 1687 * descriptor is left as 1, although the whole segment has 1688 * been made unusable. Clear it here to pass an Intel VMX 1689 * entry check when cross vendor migrating. 1690 */ 1691 if (var->unusable) 1692 var->db = 0; 1693 /* This is symmetric with svm_set_segment() */ 1694 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1695 break; 1696 } 1697 } 1698 1699 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1700 { 1701 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1702 1703 return save->cpl; 1704 } 1705 1706 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1707 { 1708 struct kvm_segment cs; 1709 1710 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1711 *db = cs.db; 1712 *l = cs.l; 1713 } 1714 1715 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1716 { 1717 struct vcpu_svm *svm = to_svm(vcpu); 1718 1719 dt->size = svm->vmcb->save.idtr.limit; 1720 dt->address = svm->vmcb->save.idtr.base; 1721 } 1722 1723 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1724 { 1725 struct vcpu_svm *svm = to_svm(vcpu); 1726 1727 svm->vmcb->save.idtr.limit = dt->size; 1728 svm->vmcb->save.idtr.base = dt->address ; 1729 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1730 } 1731 1732 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1733 { 1734 struct vcpu_svm *svm = to_svm(vcpu); 1735 1736 dt->size = svm->vmcb->save.gdtr.limit; 1737 dt->address = svm->vmcb->save.gdtr.base; 1738 } 1739 1740 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1741 { 1742 struct vcpu_svm *svm = to_svm(vcpu); 1743 1744 svm->vmcb->save.gdtr.limit = dt->size; 1745 svm->vmcb->save.gdtr.base = dt->address ; 1746 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1747 } 1748 1749 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1750 { 1751 struct vcpu_svm *svm = to_svm(vcpu); 1752 1753 /* 1754 * For guests that don't set guest_state_protected, the cr3 update is 1755 * handled via kvm_mmu_load() while entering the guest. For guests 1756 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1757 * VMCB save area now, since the save area will become the initial 1758 * contents of the VMSA, and future VMCB save area updates won't be 1759 * seen. 1760 */ 1761 if (sev_es_guest(vcpu->kvm)) { 1762 svm->vmcb->save.cr3 = cr3; 1763 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1764 } 1765 } 1766 1767 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1768 { 1769 struct vcpu_svm *svm = to_svm(vcpu); 1770 u64 hcr0 = cr0; 1771 bool old_paging = is_paging(vcpu); 1772 1773 #ifdef CONFIG_X86_64 1774 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1775 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1776 vcpu->arch.efer |= EFER_LMA; 1777 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1778 } 1779 1780 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1781 vcpu->arch.efer &= ~EFER_LMA; 1782 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1783 } 1784 } 1785 #endif 1786 vcpu->arch.cr0 = cr0; 1787 1788 if (!npt_enabled) { 1789 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1790 if (old_paging != is_paging(vcpu)) 1791 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1792 } 1793 1794 /* 1795 * re-enable caching here because the QEMU bios 1796 * does not do it - this results in some delay at 1797 * reboot 1798 */ 1799 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1800 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1801 1802 svm->vmcb->save.cr0 = hcr0; 1803 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1804 1805 /* 1806 * SEV-ES guests must always keep the CR intercepts cleared. CR 1807 * tracking is done using the CR write traps. 1808 */ 1809 if (sev_es_guest(vcpu->kvm)) 1810 return; 1811 1812 if (hcr0 == cr0) { 1813 /* Selective CR0 write remains on. */ 1814 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1815 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1816 } else { 1817 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1818 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1819 } 1820 } 1821 1822 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1823 { 1824 return true; 1825 } 1826 1827 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1828 { 1829 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1830 unsigned long old_cr4 = vcpu->arch.cr4; 1831 1832 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1833 svm_flush_tlb_current(vcpu); 1834 1835 vcpu->arch.cr4 = cr4; 1836 if (!npt_enabled) { 1837 cr4 |= X86_CR4_PAE; 1838 1839 if (!is_paging(vcpu)) 1840 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1841 } 1842 cr4 |= host_cr4_mce; 1843 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1844 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1845 1846 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1847 kvm_update_cpuid_runtime(vcpu); 1848 } 1849 1850 static void svm_set_segment(struct kvm_vcpu *vcpu, 1851 struct kvm_segment *var, int seg) 1852 { 1853 struct vcpu_svm *svm = to_svm(vcpu); 1854 struct vmcb_seg *s = svm_seg(vcpu, seg); 1855 1856 s->base = var->base; 1857 s->limit = var->limit; 1858 s->selector = var->selector; 1859 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1860 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1861 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1862 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1863 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1864 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1865 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1866 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1867 1868 /* 1869 * This is always accurate, except if SYSRET returned to a segment 1870 * with SS.DPL != 3. Intel does not have this quirk, and always 1871 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1872 * would entail passing the CPL to userspace and back. 1873 */ 1874 if (seg == VCPU_SREG_SS) 1875 /* This is symmetric with svm_get_segment() */ 1876 svm->vmcb->save.cpl = (var->dpl & 3); 1877 1878 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1879 } 1880 1881 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1882 { 1883 struct vcpu_svm *svm = to_svm(vcpu); 1884 1885 clr_exception_intercept(svm, BP_VECTOR); 1886 1887 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1888 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1889 set_exception_intercept(svm, BP_VECTOR); 1890 } 1891 } 1892 1893 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1894 { 1895 if (sd->next_asid > sd->max_asid) { 1896 ++sd->asid_generation; 1897 sd->next_asid = sd->min_asid; 1898 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1899 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1900 } 1901 1902 svm->current_vmcb->asid_generation = sd->asid_generation; 1903 svm->asid = sd->next_asid++; 1904 } 1905 1906 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1907 { 1908 struct vmcb *vmcb = svm->vmcb; 1909 1910 if (svm->vcpu.arch.guest_state_protected) 1911 return; 1912 1913 if (unlikely(value != vmcb->save.dr6)) { 1914 vmcb->save.dr6 = value; 1915 vmcb_mark_dirty(vmcb, VMCB_DR); 1916 } 1917 } 1918 1919 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1920 { 1921 struct vcpu_svm *svm = to_svm(vcpu); 1922 1923 if (vcpu->arch.guest_state_protected) 1924 return; 1925 1926 get_debugreg(vcpu->arch.db[0], 0); 1927 get_debugreg(vcpu->arch.db[1], 1); 1928 get_debugreg(vcpu->arch.db[2], 2); 1929 get_debugreg(vcpu->arch.db[3], 3); 1930 /* 1931 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1932 * because db_interception might need it. We can do it before vmentry. 1933 */ 1934 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1935 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1936 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1937 set_dr_intercepts(svm); 1938 } 1939 1940 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1941 { 1942 struct vcpu_svm *svm = to_svm(vcpu); 1943 1944 if (vcpu->arch.guest_state_protected) 1945 return; 1946 1947 svm->vmcb->save.dr7 = value; 1948 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1949 } 1950 1951 static int pf_interception(struct kvm_vcpu *vcpu) 1952 { 1953 struct vcpu_svm *svm = to_svm(vcpu); 1954 1955 u64 fault_address = svm->vmcb->control.exit_info_2; 1956 u64 error_code = svm->vmcb->control.exit_info_1; 1957 1958 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1959 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1960 svm->vmcb->control.insn_bytes : NULL, 1961 svm->vmcb->control.insn_len); 1962 } 1963 1964 static int npf_interception(struct kvm_vcpu *vcpu) 1965 { 1966 struct vcpu_svm *svm = to_svm(vcpu); 1967 1968 u64 fault_address = svm->vmcb->control.exit_info_2; 1969 u64 error_code = svm->vmcb->control.exit_info_1; 1970 1971 trace_kvm_page_fault(vcpu, fault_address, error_code); 1972 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 1973 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1974 svm->vmcb->control.insn_bytes : NULL, 1975 svm->vmcb->control.insn_len); 1976 } 1977 1978 static int db_interception(struct kvm_vcpu *vcpu) 1979 { 1980 struct kvm_run *kvm_run = vcpu->run; 1981 struct vcpu_svm *svm = to_svm(vcpu); 1982 1983 if (!(vcpu->guest_debug & 1984 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1985 !svm->nmi_singlestep) { 1986 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1987 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1988 return 1; 1989 } 1990 1991 if (svm->nmi_singlestep) { 1992 disable_nmi_singlestep(svm); 1993 /* Make sure we check for pending NMIs upon entry */ 1994 kvm_make_request(KVM_REQ_EVENT, vcpu); 1995 } 1996 1997 if (vcpu->guest_debug & 1998 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1999 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2000 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2001 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2002 kvm_run->debug.arch.pc = 2003 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2004 kvm_run->debug.arch.exception = DB_VECTOR; 2005 return 0; 2006 } 2007 2008 return 1; 2009 } 2010 2011 static int bp_interception(struct kvm_vcpu *vcpu) 2012 { 2013 struct vcpu_svm *svm = to_svm(vcpu); 2014 struct kvm_run *kvm_run = vcpu->run; 2015 2016 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2017 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2018 kvm_run->debug.arch.exception = BP_VECTOR; 2019 return 0; 2020 } 2021 2022 static int ud_interception(struct kvm_vcpu *vcpu) 2023 { 2024 return handle_ud(vcpu); 2025 } 2026 2027 static int ac_interception(struct kvm_vcpu *vcpu) 2028 { 2029 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2030 return 1; 2031 } 2032 2033 static bool is_erratum_383(void) 2034 { 2035 int err, i; 2036 u64 value; 2037 2038 if (!erratum_383_found) 2039 return false; 2040 2041 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2042 if (err) 2043 return false; 2044 2045 /* Bit 62 may or may not be set for this mce */ 2046 value &= ~(1ULL << 62); 2047 2048 if (value != 0xb600000000010015ULL) 2049 return false; 2050 2051 /* Clear MCi_STATUS registers */ 2052 for (i = 0; i < 6; ++i) 2053 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2054 2055 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2056 if (!err) { 2057 u32 low, high; 2058 2059 value &= ~(1ULL << 2); 2060 low = lower_32_bits(value); 2061 high = upper_32_bits(value); 2062 2063 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2064 } 2065 2066 /* Flush tlb to evict multi-match entries */ 2067 __flush_tlb_all(); 2068 2069 return true; 2070 } 2071 2072 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2073 { 2074 if (is_erratum_383()) { 2075 /* 2076 * Erratum 383 triggered. Guest state is corrupt so kill the 2077 * guest. 2078 */ 2079 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 2080 2081 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2082 2083 return; 2084 } 2085 2086 /* 2087 * On an #MC intercept the MCE handler is not called automatically in 2088 * the host. So do it by hand here. 2089 */ 2090 kvm_machine_check(); 2091 } 2092 2093 static int mc_interception(struct kvm_vcpu *vcpu) 2094 { 2095 return 1; 2096 } 2097 2098 static int shutdown_interception(struct kvm_vcpu *vcpu) 2099 { 2100 struct kvm_run *kvm_run = vcpu->run; 2101 struct vcpu_svm *svm = to_svm(vcpu); 2102 2103 /* 2104 * The VM save area has already been encrypted so it 2105 * cannot be reinitialized - just terminate. 2106 */ 2107 if (sev_es_guest(vcpu->kvm)) 2108 return -EINVAL; 2109 2110 /* 2111 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2112 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2113 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2114 * userspace. At a platform view, INIT is acceptable behavior as 2115 * there exist bare metal platforms that automatically INIT the CPU 2116 * in response to shutdown. 2117 */ 2118 clear_page(svm->vmcb); 2119 kvm_vcpu_reset(vcpu, true); 2120 2121 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2122 return 0; 2123 } 2124 2125 static int io_interception(struct kvm_vcpu *vcpu) 2126 { 2127 struct vcpu_svm *svm = to_svm(vcpu); 2128 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2129 int size, in, string; 2130 unsigned port; 2131 2132 ++vcpu->stat.io_exits; 2133 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2134 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2135 port = io_info >> 16; 2136 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2137 2138 if (string) { 2139 if (sev_es_guest(vcpu->kvm)) 2140 return sev_es_string_io(svm, size, port, in); 2141 else 2142 return kvm_emulate_instruction(vcpu, 0); 2143 } 2144 2145 svm->next_rip = svm->vmcb->control.exit_info_2; 2146 2147 return kvm_fast_pio(vcpu, size, port, in); 2148 } 2149 2150 static int nmi_interception(struct kvm_vcpu *vcpu) 2151 { 2152 return 1; 2153 } 2154 2155 static int smi_interception(struct kvm_vcpu *vcpu) 2156 { 2157 return 1; 2158 } 2159 2160 static int intr_interception(struct kvm_vcpu *vcpu) 2161 { 2162 ++vcpu->stat.irq_exits; 2163 return 1; 2164 } 2165 2166 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2167 { 2168 struct vcpu_svm *svm = to_svm(vcpu); 2169 struct vmcb *vmcb12; 2170 struct kvm_host_map map; 2171 int ret; 2172 2173 if (nested_svm_check_permissions(vcpu)) 2174 return 1; 2175 2176 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2177 if (ret) { 2178 if (ret == -EINVAL) 2179 kvm_inject_gp(vcpu, 0); 2180 return 1; 2181 } 2182 2183 vmcb12 = map.hva; 2184 2185 ret = kvm_skip_emulated_instruction(vcpu); 2186 2187 if (vmload) { 2188 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2189 svm->sysenter_eip_hi = 0; 2190 svm->sysenter_esp_hi = 0; 2191 } else { 2192 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2193 } 2194 2195 kvm_vcpu_unmap(vcpu, &map, true); 2196 2197 return ret; 2198 } 2199 2200 static int vmload_interception(struct kvm_vcpu *vcpu) 2201 { 2202 return vmload_vmsave_interception(vcpu, true); 2203 } 2204 2205 static int vmsave_interception(struct kvm_vcpu *vcpu) 2206 { 2207 return vmload_vmsave_interception(vcpu, false); 2208 } 2209 2210 static int vmrun_interception(struct kvm_vcpu *vcpu) 2211 { 2212 if (nested_svm_check_permissions(vcpu)) 2213 return 1; 2214 2215 return nested_svm_vmrun(vcpu); 2216 } 2217 2218 enum { 2219 NONE_SVM_INSTR, 2220 SVM_INSTR_VMRUN, 2221 SVM_INSTR_VMLOAD, 2222 SVM_INSTR_VMSAVE, 2223 }; 2224 2225 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2226 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2227 { 2228 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2229 2230 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2231 return NONE_SVM_INSTR; 2232 2233 switch (ctxt->modrm) { 2234 case 0xd8: /* VMRUN */ 2235 return SVM_INSTR_VMRUN; 2236 case 0xda: /* VMLOAD */ 2237 return SVM_INSTR_VMLOAD; 2238 case 0xdb: /* VMSAVE */ 2239 return SVM_INSTR_VMSAVE; 2240 default: 2241 break; 2242 } 2243 2244 return NONE_SVM_INSTR; 2245 } 2246 2247 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2248 { 2249 const int guest_mode_exit_codes[] = { 2250 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2251 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2252 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2253 }; 2254 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2255 [SVM_INSTR_VMRUN] = vmrun_interception, 2256 [SVM_INSTR_VMLOAD] = vmload_interception, 2257 [SVM_INSTR_VMSAVE] = vmsave_interception, 2258 }; 2259 struct vcpu_svm *svm = to_svm(vcpu); 2260 int ret; 2261 2262 if (is_guest_mode(vcpu)) { 2263 /* Returns '1' or -errno on failure, '0' on success. */ 2264 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2265 if (ret) 2266 return ret; 2267 return 1; 2268 } 2269 return svm_instr_handlers[opcode](vcpu); 2270 } 2271 2272 /* 2273 * #GP handling code. Note that #GP can be triggered under the following two 2274 * cases: 2275 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2276 * some AMD CPUs when EAX of these instructions are in the reserved memory 2277 * regions (e.g. SMM memory on host). 2278 * 2) VMware backdoor 2279 */ 2280 static int gp_interception(struct kvm_vcpu *vcpu) 2281 { 2282 struct vcpu_svm *svm = to_svm(vcpu); 2283 u32 error_code = svm->vmcb->control.exit_info_1; 2284 int opcode; 2285 2286 /* Both #GP cases have zero error_code */ 2287 if (error_code) 2288 goto reinject; 2289 2290 /* Decode the instruction for usage later */ 2291 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2292 goto reinject; 2293 2294 opcode = svm_instr_opcode(vcpu); 2295 2296 if (opcode == NONE_SVM_INSTR) { 2297 if (!enable_vmware_backdoor) 2298 goto reinject; 2299 2300 /* 2301 * VMware backdoor emulation on #GP interception only handles 2302 * IN{S}, OUT{S}, and RDPMC. 2303 */ 2304 if (!is_guest_mode(vcpu)) 2305 return kvm_emulate_instruction(vcpu, 2306 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2307 } else { 2308 /* All SVM instructions expect page aligned RAX */ 2309 if (svm->vmcb->save.rax & ~PAGE_MASK) 2310 goto reinject; 2311 2312 return emulate_svm_instr(vcpu, opcode); 2313 } 2314 2315 reinject: 2316 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2317 return 1; 2318 } 2319 2320 void svm_set_gif(struct vcpu_svm *svm, bool value) 2321 { 2322 if (value) { 2323 /* 2324 * If VGIF is enabled, the STGI intercept is only added to 2325 * detect the opening of the SMI/NMI window; remove it now. 2326 * Likewise, clear the VINTR intercept, we will set it 2327 * again while processing KVM_REQ_EVENT if needed. 2328 */ 2329 if (vgif) 2330 svm_clr_intercept(svm, INTERCEPT_STGI); 2331 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2332 svm_clear_vintr(svm); 2333 2334 enable_gif(svm); 2335 if (svm->vcpu.arch.smi_pending || 2336 svm->vcpu.arch.nmi_pending || 2337 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2338 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2339 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2340 } else { 2341 disable_gif(svm); 2342 2343 /* 2344 * After a CLGI no interrupts should come. But if vGIF is 2345 * in use, we still rely on the VINTR intercept (rather than 2346 * STGI) to detect an open interrupt window. 2347 */ 2348 if (!vgif) 2349 svm_clear_vintr(svm); 2350 } 2351 } 2352 2353 static int stgi_interception(struct kvm_vcpu *vcpu) 2354 { 2355 int ret; 2356 2357 if (nested_svm_check_permissions(vcpu)) 2358 return 1; 2359 2360 ret = kvm_skip_emulated_instruction(vcpu); 2361 svm_set_gif(to_svm(vcpu), true); 2362 return ret; 2363 } 2364 2365 static int clgi_interception(struct kvm_vcpu *vcpu) 2366 { 2367 int ret; 2368 2369 if (nested_svm_check_permissions(vcpu)) 2370 return 1; 2371 2372 ret = kvm_skip_emulated_instruction(vcpu); 2373 svm_set_gif(to_svm(vcpu), false); 2374 return ret; 2375 } 2376 2377 static int invlpga_interception(struct kvm_vcpu *vcpu) 2378 { 2379 gva_t gva = kvm_rax_read(vcpu); 2380 u32 asid = kvm_rcx_read(vcpu); 2381 2382 /* FIXME: Handle an address size prefix. */ 2383 if (!is_long_mode(vcpu)) 2384 gva = (u32)gva; 2385 2386 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2387 2388 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2389 kvm_mmu_invlpg(vcpu, gva); 2390 2391 return kvm_skip_emulated_instruction(vcpu); 2392 } 2393 2394 static int skinit_interception(struct kvm_vcpu *vcpu) 2395 { 2396 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2397 2398 kvm_queue_exception(vcpu, UD_VECTOR); 2399 return 1; 2400 } 2401 2402 static int task_switch_interception(struct kvm_vcpu *vcpu) 2403 { 2404 struct vcpu_svm *svm = to_svm(vcpu); 2405 u16 tss_selector; 2406 int reason; 2407 int int_type = svm->vmcb->control.exit_int_info & 2408 SVM_EXITINTINFO_TYPE_MASK; 2409 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2410 uint32_t type = 2411 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2412 uint32_t idt_v = 2413 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2414 bool has_error_code = false; 2415 u32 error_code = 0; 2416 2417 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2418 2419 if (svm->vmcb->control.exit_info_2 & 2420 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2421 reason = TASK_SWITCH_IRET; 2422 else if (svm->vmcb->control.exit_info_2 & 2423 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2424 reason = TASK_SWITCH_JMP; 2425 else if (idt_v) 2426 reason = TASK_SWITCH_GATE; 2427 else 2428 reason = TASK_SWITCH_CALL; 2429 2430 if (reason == TASK_SWITCH_GATE) { 2431 switch (type) { 2432 case SVM_EXITINTINFO_TYPE_NMI: 2433 vcpu->arch.nmi_injected = false; 2434 break; 2435 case SVM_EXITINTINFO_TYPE_EXEPT: 2436 if (svm->vmcb->control.exit_info_2 & 2437 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2438 has_error_code = true; 2439 error_code = 2440 (u32)svm->vmcb->control.exit_info_2; 2441 } 2442 kvm_clear_exception_queue(vcpu); 2443 break; 2444 case SVM_EXITINTINFO_TYPE_INTR: 2445 case SVM_EXITINTINFO_TYPE_SOFT: 2446 kvm_clear_interrupt_queue(vcpu); 2447 break; 2448 default: 2449 break; 2450 } 2451 } 2452 2453 if (reason != TASK_SWITCH_GATE || 2454 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2455 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2456 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2457 if (!svm_skip_emulated_instruction(vcpu)) 2458 return 0; 2459 } 2460 2461 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2462 int_vec = -1; 2463 2464 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2465 has_error_code, error_code); 2466 } 2467 2468 static int iret_interception(struct kvm_vcpu *vcpu) 2469 { 2470 struct vcpu_svm *svm = to_svm(vcpu); 2471 2472 ++vcpu->stat.nmi_window_exits; 2473 vcpu->arch.hflags |= HF_IRET_MASK; 2474 if (!sev_es_guest(vcpu->kvm)) { 2475 svm_clr_intercept(svm, INTERCEPT_IRET); 2476 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2477 } 2478 kvm_make_request(KVM_REQ_EVENT, vcpu); 2479 return 1; 2480 } 2481 2482 static int invlpg_interception(struct kvm_vcpu *vcpu) 2483 { 2484 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2485 return kvm_emulate_instruction(vcpu, 0); 2486 2487 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2488 return kvm_skip_emulated_instruction(vcpu); 2489 } 2490 2491 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2492 { 2493 return kvm_emulate_instruction(vcpu, 0); 2494 } 2495 2496 static int rsm_interception(struct kvm_vcpu *vcpu) 2497 { 2498 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2499 } 2500 2501 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2502 unsigned long val) 2503 { 2504 struct vcpu_svm *svm = to_svm(vcpu); 2505 unsigned long cr0 = vcpu->arch.cr0; 2506 bool ret = false; 2507 2508 if (!is_guest_mode(vcpu) || 2509 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2510 return false; 2511 2512 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2513 val &= ~SVM_CR0_SELECTIVE_MASK; 2514 2515 if (cr0 ^ val) { 2516 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2517 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2518 } 2519 2520 return ret; 2521 } 2522 2523 #define CR_VALID (1ULL << 63) 2524 2525 static int cr_interception(struct kvm_vcpu *vcpu) 2526 { 2527 struct vcpu_svm *svm = to_svm(vcpu); 2528 int reg, cr; 2529 unsigned long val; 2530 int err; 2531 2532 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2533 return emulate_on_interception(vcpu); 2534 2535 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2536 return emulate_on_interception(vcpu); 2537 2538 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2539 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2540 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2541 else 2542 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2543 2544 err = 0; 2545 if (cr >= 16) { /* mov to cr */ 2546 cr -= 16; 2547 val = kvm_register_read(vcpu, reg); 2548 trace_kvm_cr_write(cr, val); 2549 switch (cr) { 2550 case 0: 2551 if (!check_selective_cr0_intercepted(vcpu, val)) 2552 err = kvm_set_cr0(vcpu, val); 2553 else 2554 return 1; 2555 2556 break; 2557 case 3: 2558 err = kvm_set_cr3(vcpu, val); 2559 break; 2560 case 4: 2561 err = kvm_set_cr4(vcpu, val); 2562 break; 2563 case 8: 2564 err = kvm_set_cr8(vcpu, val); 2565 break; 2566 default: 2567 WARN(1, "unhandled write to CR%d", cr); 2568 kvm_queue_exception(vcpu, UD_VECTOR); 2569 return 1; 2570 } 2571 } else { /* mov from cr */ 2572 switch (cr) { 2573 case 0: 2574 val = kvm_read_cr0(vcpu); 2575 break; 2576 case 2: 2577 val = vcpu->arch.cr2; 2578 break; 2579 case 3: 2580 val = kvm_read_cr3(vcpu); 2581 break; 2582 case 4: 2583 val = kvm_read_cr4(vcpu); 2584 break; 2585 case 8: 2586 val = kvm_get_cr8(vcpu); 2587 break; 2588 default: 2589 WARN(1, "unhandled read from CR%d", cr); 2590 kvm_queue_exception(vcpu, UD_VECTOR); 2591 return 1; 2592 } 2593 kvm_register_write(vcpu, reg, val); 2594 trace_kvm_cr_read(cr, val); 2595 } 2596 return kvm_complete_insn_gp(vcpu, err); 2597 } 2598 2599 static int cr_trap(struct kvm_vcpu *vcpu) 2600 { 2601 struct vcpu_svm *svm = to_svm(vcpu); 2602 unsigned long old_value, new_value; 2603 unsigned int cr; 2604 int ret = 0; 2605 2606 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2607 2608 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2609 switch (cr) { 2610 case 0: 2611 old_value = kvm_read_cr0(vcpu); 2612 svm_set_cr0(vcpu, new_value); 2613 2614 kvm_post_set_cr0(vcpu, old_value, new_value); 2615 break; 2616 case 4: 2617 old_value = kvm_read_cr4(vcpu); 2618 svm_set_cr4(vcpu, new_value); 2619 2620 kvm_post_set_cr4(vcpu, old_value, new_value); 2621 break; 2622 case 8: 2623 ret = kvm_set_cr8(vcpu, new_value); 2624 break; 2625 default: 2626 WARN(1, "unhandled CR%d write trap", cr); 2627 kvm_queue_exception(vcpu, UD_VECTOR); 2628 return 1; 2629 } 2630 2631 return kvm_complete_insn_gp(vcpu, ret); 2632 } 2633 2634 static int dr_interception(struct kvm_vcpu *vcpu) 2635 { 2636 struct vcpu_svm *svm = to_svm(vcpu); 2637 int reg, dr; 2638 unsigned long val; 2639 int err = 0; 2640 2641 if (vcpu->guest_debug == 0) { 2642 /* 2643 * No more DR vmexits; force a reload of the debug registers 2644 * and reenter on this instruction. The next vmexit will 2645 * retrieve the full state of the debug registers. 2646 */ 2647 clr_dr_intercepts(svm); 2648 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2649 return 1; 2650 } 2651 2652 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2653 return emulate_on_interception(vcpu); 2654 2655 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2656 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2657 if (dr >= 16) { /* mov to DRn */ 2658 dr -= 16; 2659 val = kvm_register_read(vcpu, reg); 2660 err = kvm_set_dr(vcpu, dr, val); 2661 } else { 2662 kvm_get_dr(vcpu, dr, &val); 2663 kvm_register_write(vcpu, reg, val); 2664 } 2665 2666 return kvm_complete_insn_gp(vcpu, err); 2667 } 2668 2669 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2670 { 2671 int r; 2672 2673 u8 cr8_prev = kvm_get_cr8(vcpu); 2674 /* instruction emulation calls kvm_set_cr8() */ 2675 r = cr_interception(vcpu); 2676 if (lapic_in_kernel(vcpu)) 2677 return r; 2678 if (cr8_prev <= kvm_get_cr8(vcpu)) 2679 return r; 2680 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2681 return 0; 2682 } 2683 2684 static int efer_trap(struct kvm_vcpu *vcpu) 2685 { 2686 struct msr_data msr_info; 2687 int ret; 2688 2689 /* 2690 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2691 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2692 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2693 * the guest doesn't have X86_FEATURE_SVM. 2694 */ 2695 msr_info.host_initiated = false; 2696 msr_info.index = MSR_EFER; 2697 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2698 ret = kvm_set_msr_common(vcpu, &msr_info); 2699 2700 return kvm_complete_insn_gp(vcpu, ret); 2701 } 2702 2703 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2704 { 2705 msr->data = 0; 2706 2707 switch (msr->index) { 2708 case MSR_AMD64_DE_CFG: 2709 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2710 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2711 break; 2712 default: 2713 return KVM_MSR_RET_INVALID; 2714 } 2715 2716 return 0; 2717 } 2718 2719 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2720 { 2721 struct vcpu_svm *svm = to_svm(vcpu); 2722 2723 switch (msr_info->index) { 2724 case MSR_AMD64_TSC_RATIO: 2725 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled) 2726 return 1; 2727 msr_info->data = svm->tsc_ratio_msr; 2728 break; 2729 case MSR_STAR: 2730 msr_info->data = svm->vmcb01.ptr->save.star; 2731 break; 2732 #ifdef CONFIG_X86_64 2733 case MSR_LSTAR: 2734 msr_info->data = svm->vmcb01.ptr->save.lstar; 2735 break; 2736 case MSR_CSTAR: 2737 msr_info->data = svm->vmcb01.ptr->save.cstar; 2738 break; 2739 case MSR_KERNEL_GS_BASE: 2740 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2741 break; 2742 case MSR_SYSCALL_MASK: 2743 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2744 break; 2745 #endif 2746 case MSR_IA32_SYSENTER_CS: 2747 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2748 break; 2749 case MSR_IA32_SYSENTER_EIP: 2750 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2751 if (guest_cpuid_is_intel(vcpu)) 2752 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2753 break; 2754 case MSR_IA32_SYSENTER_ESP: 2755 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2756 if (guest_cpuid_is_intel(vcpu)) 2757 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2758 break; 2759 case MSR_TSC_AUX: 2760 msr_info->data = svm->tsc_aux; 2761 break; 2762 case MSR_IA32_DEBUGCTLMSR: 2763 case MSR_IA32_LASTBRANCHFROMIP: 2764 case MSR_IA32_LASTBRANCHTOIP: 2765 case MSR_IA32_LASTINTFROMIP: 2766 case MSR_IA32_LASTINTTOIP: 2767 msr_info->data = svm_get_lbr_msr(svm, msr_info->index); 2768 break; 2769 case MSR_VM_HSAVE_PA: 2770 msr_info->data = svm->nested.hsave_msr; 2771 break; 2772 case MSR_VM_CR: 2773 msr_info->data = svm->nested.vm_cr_msr; 2774 break; 2775 case MSR_IA32_SPEC_CTRL: 2776 if (!msr_info->host_initiated && 2777 !guest_has_spec_ctrl_msr(vcpu)) 2778 return 1; 2779 2780 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2781 msr_info->data = svm->vmcb->save.spec_ctrl; 2782 else 2783 msr_info->data = svm->spec_ctrl; 2784 break; 2785 case MSR_AMD64_VIRT_SPEC_CTRL: 2786 if (!msr_info->host_initiated && 2787 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2788 return 1; 2789 2790 msr_info->data = svm->virt_spec_ctrl; 2791 break; 2792 case MSR_F15H_IC_CFG: { 2793 2794 int family, model; 2795 2796 family = guest_cpuid_family(vcpu); 2797 model = guest_cpuid_model(vcpu); 2798 2799 if (family < 0 || model < 0) 2800 return kvm_get_msr_common(vcpu, msr_info); 2801 2802 msr_info->data = 0; 2803 2804 if (family == 0x15 && 2805 (model >= 0x2 && model < 0x20)) 2806 msr_info->data = 0x1E; 2807 } 2808 break; 2809 case MSR_AMD64_DE_CFG: 2810 msr_info->data = svm->msr_decfg; 2811 break; 2812 default: 2813 return kvm_get_msr_common(vcpu, msr_info); 2814 } 2815 return 0; 2816 } 2817 2818 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2819 { 2820 struct vcpu_svm *svm = to_svm(vcpu); 2821 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2822 return kvm_complete_insn_gp(vcpu, err); 2823 2824 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2825 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2826 X86_TRAP_GP | 2827 SVM_EVTINJ_TYPE_EXEPT | 2828 SVM_EVTINJ_VALID); 2829 return 1; 2830 } 2831 2832 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2833 { 2834 struct vcpu_svm *svm = to_svm(vcpu); 2835 int svm_dis, chg_mask; 2836 2837 if (data & ~SVM_VM_CR_VALID_MASK) 2838 return 1; 2839 2840 chg_mask = SVM_VM_CR_VALID_MASK; 2841 2842 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2843 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2844 2845 svm->nested.vm_cr_msr &= ~chg_mask; 2846 svm->nested.vm_cr_msr |= (data & chg_mask); 2847 2848 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2849 2850 /* check for svm_disable while efer.svme is set */ 2851 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2852 return 1; 2853 2854 return 0; 2855 } 2856 2857 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2858 { 2859 struct vcpu_svm *svm = to_svm(vcpu); 2860 int r; 2861 2862 u32 ecx = msr->index; 2863 u64 data = msr->data; 2864 switch (ecx) { 2865 case MSR_AMD64_TSC_RATIO: 2866 2867 if (!svm->tsc_scaling_enabled) { 2868 2869 if (!msr->host_initiated) 2870 return 1; 2871 /* 2872 * In case TSC scaling is not enabled, always 2873 * leave this MSR at the default value. 2874 * 2875 * Due to bug in qemu 6.2.0, it would try to set 2876 * this msr to 0 if tsc scaling is not enabled. 2877 * Ignore this value as well. 2878 */ 2879 if (data != 0 && data != svm->tsc_ratio_msr) 2880 return 1; 2881 break; 2882 } 2883 2884 if (data & SVM_TSC_RATIO_RSVD) 2885 return 1; 2886 2887 svm->tsc_ratio_msr = data; 2888 2889 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu)) 2890 nested_svm_update_tsc_ratio_msr(vcpu); 2891 2892 break; 2893 case MSR_IA32_CR_PAT: 2894 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2895 return 1; 2896 vcpu->arch.pat = data; 2897 svm->vmcb01.ptr->save.g_pat = data; 2898 if (is_guest_mode(vcpu)) 2899 nested_vmcb02_compute_g_pat(svm); 2900 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2901 break; 2902 case MSR_IA32_SPEC_CTRL: 2903 if (!msr->host_initiated && 2904 !guest_has_spec_ctrl_msr(vcpu)) 2905 return 1; 2906 2907 if (kvm_spec_ctrl_test_value(data)) 2908 return 1; 2909 2910 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2911 svm->vmcb->save.spec_ctrl = data; 2912 else 2913 svm->spec_ctrl = data; 2914 if (!data) 2915 break; 2916 2917 /* 2918 * For non-nested: 2919 * When it's written (to non-zero) for the first time, pass 2920 * it through. 2921 * 2922 * For nested: 2923 * The handling of the MSR bitmap for L2 guests is done in 2924 * nested_svm_vmrun_msrpm. 2925 * We update the L1 MSR bit as well since it will end up 2926 * touching the MSR anyway now. 2927 */ 2928 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2929 break; 2930 case MSR_IA32_PRED_CMD: 2931 if (!msr->host_initiated && 2932 !guest_has_pred_cmd_msr(vcpu)) 2933 return 1; 2934 2935 if (data & ~PRED_CMD_IBPB) 2936 return 1; 2937 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2938 return 1; 2939 if (!data) 2940 break; 2941 2942 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2943 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2944 break; 2945 case MSR_AMD64_VIRT_SPEC_CTRL: 2946 if (!msr->host_initiated && 2947 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2948 return 1; 2949 2950 if (data & ~SPEC_CTRL_SSBD) 2951 return 1; 2952 2953 svm->virt_spec_ctrl = data; 2954 break; 2955 case MSR_STAR: 2956 svm->vmcb01.ptr->save.star = data; 2957 break; 2958 #ifdef CONFIG_X86_64 2959 case MSR_LSTAR: 2960 svm->vmcb01.ptr->save.lstar = data; 2961 break; 2962 case MSR_CSTAR: 2963 svm->vmcb01.ptr->save.cstar = data; 2964 break; 2965 case MSR_KERNEL_GS_BASE: 2966 svm->vmcb01.ptr->save.kernel_gs_base = data; 2967 break; 2968 case MSR_SYSCALL_MASK: 2969 svm->vmcb01.ptr->save.sfmask = data; 2970 break; 2971 #endif 2972 case MSR_IA32_SYSENTER_CS: 2973 svm->vmcb01.ptr->save.sysenter_cs = data; 2974 break; 2975 case MSR_IA32_SYSENTER_EIP: 2976 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2977 /* 2978 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2979 * when we spoof an Intel vendor ID (for cross vendor migration). 2980 * In this case we use this intercept to track the high 2981 * 32 bit part of these msrs to support Intel's 2982 * implementation of SYSENTER/SYSEXIT. 2983 */ 2984 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2985 break; 2986 case MSR_IA32_SYSENTER_ESP: 2987 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 2988 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2989 break; 2990 case MSR_TSC_AUX: 2991 /* 2992 * TSC_AUX is usually changed only during boot and never read 2993 * directly. Intercept TSC_AUX instead of exposing it to the 2994 * guest via direct_access_msrs, and switch it via user return. 2995 */ 2996 preempt_disable(); 2997 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 2998 preempt_enable(); 2999 if (r) 3000 return 1; 3001 3002 svm->tsc_aux = data; 3003 break; 3004 case MSR_IA32_DEBUGCTLMSR: 3005 if (!lbrv) { 3006 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 3007 __func__, data); 3008 break; 3009 } 3010 if (data & DEBUGCTL_RESERVED_BITS) 3011 return 1; 3012 3013 if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) 3014 svm->vmcb->save.dbgctl = data; 3015 else 3016 svm->vmcb01.ptr->save.dbgctl = data; 3017 3018 svm_update_lbrv(vcpu); 3019 3020 break; 3021 case MSR_VM_HSAVE_PA: 3022 /* 3023 * Old kernels did not validate the value written to 3024 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3025 * value to allow live migrating buggy or malicious guests 3026 * originating from those kernels. 3027 */ 3028 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3029 return 1; 3030 3031 svm->nested.hsave_msr = data & PAGE_MASK; 3032 break; 3033 case MSR_VM_CR: 3034 return svm_set_vm_cr(vcpu, data); 3035 case MSR_VM_IGNNE: 3036 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 3037 break; 3038 case MSR_AMD64_DE_CFG: { 3039 struct kvm_msr_entry msr_entry; 3040 3041 msr_entry.index = msr->index; 3042 if (svm_get_msr_feature(&msr_entry)) 3043 return 1; 3044 3045 /* Check the supported bits */ 3046 if (data & ~msr_entry.data) 3047 return 1; 3048 3049 /* Don't allow the guest to change a bit, #GP */ 3050 if (!msr->host_initiated && (data ^ msr_entry.data)) 3051 return 1; 3052 3053 svm->msr_decfg = data; 3054 break; 3055 } 3056 default: 3057 return kvm_set_msr_common(vcpu, msr); 3058 } 3059 return 0; 3060 } 3061 3062 static int msr_interception(struct kvm_vcpu *vcpu) 3063 { 3064 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3065 return kvm_emulate_wrmsr(vcpu); 3066 else 3067 return kvm_emulate_rdmsr(vcpu); 3068 } 3069 3070 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3071 { 3072 kvm_make_request(KVM_REQ_EVENT, vcpu); 3073 svm_clear_vintr(to_svm(vcpu)); 3074 3075 /* 3076 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3077 * In this case AVIC was temporarily disabled for 3078 * requesting the IRQ window and we have to re-enable it. 3079 * 3080 * If running nested, still remove the VM wide AVIC inhibit to 3081 * support case in which the interrupt window was requested when the 3082 * vCPU was not running nested. 3083 3084 * All vCPUs which run still run nested, will remain to have their 3085 * AVIC still inhibited due to per-cpu AVIC inhibition. 3086 */ 3087 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3088 3089 ++vcpu->stat.irq_window_exits; 3090 return 1; 3091 } 3092 3093 static int pause_interception(struct kvm_vcpu *vcpu) 3094 { 3095 bool in_kernel; 3096 /* 3097 * CPL is not made available for an SEV-ES guest, therefore 3098 * vcpu->arch.preempted_in_kernel can never be true. Just 3099 * set in_kernel to false as well. 3100 */ 3101 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3102 3103 grow_ple_window(vcpu); 3104 3105 kvm_vcpu_on_spin(vcpu, in_kernel); 3106 return kvm_skip_emulated_instruction(vcpu); 3107 } 3108 3109 static int invpcid_interception(struct kvm_vcpu *vcpu) 3110 { 3111 struct vcpu_svm *svm = to_svm(vcpu); 3112 unsigned long type; 3113 gva_t gva; 3114 3115 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3116 kvm_queue_exception(vcpu, UD_VECTOR); 3117 return 1; 3118 } 3119 3120 /* 3121 * For an INVPCID intercept: 3122 * EXITINFO1 provides the linear address of the memory operand. 3123 * EXITINFO2 provides the contents of the register operand. 3124 */ 3125 type = svm->vmcb->control.exit_info_2; 3126 gva = svm->vmcb->control.exit_info_1; 3127 3128 return kvm_handle_invpcid(vcpu, type, gva); 3129 } 3130 3131 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3132 [SVM_EXIT_READ_CR0] = cr_interception, 3133 [SVM_EXIT_READ_CR3] = cr_interception, 3134 [SVM_EXIT_READ_CR4] = cr_interception, 3135 [SVM_EXIT_READ_CR8] = cr_interception, 3136 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3137 [SVM_EXIT_WRITE_CR0] = cr_interception, 3138 [SVM_EXIT_WRITE_CR3] = cr_interception, 3139 [SVM_EXIT_WRITE_CR4] = cr_interception, 3140 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3141 [SVM_EXIT_READ_DR0] = dr_interception, 3142 [SVM_EXIT_READ_DR1] = dr_interception, 3143 [SVM_EXIT_READ_DR2] = dr_interception, 3144 [SVM_EXIT_READ_DR3] = dr_interception, 3145 [SVM_EXIT_READ_DR4] = dr_interception, 3146 [SVM_EXIT_READ_DR5] = dr_interception, 3147 [SVM_EXIT_READ_DR6] = dr_interception, 3148 [SVM_EXIT_READ_DR7] = dr_interception, 3149 [SVM_EXIT_WRITE_DR0] = dr_interception, 3150 [SVM_EXIT_WRITE_DR1] = dr_interception, 3151 [SVM_EXIT_WRITE_DR2] = dr_interception, 3152 [SVM_EXIT_WRITE_DR3] = dr_interception, 3153 [SVM_EXIT_WRITE_DR4] = dr_interception, 3154 [SVM_EXIT_WRITE_DR5] = dr_interception, 3155 [SVM_EXIT_WRITE_DR6] = dr_interception, 3156 [SVM_EXIT_WRITE_DR7] = dr_interception, 3157 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3158 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3159 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3160 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3161 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3162 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3163 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3164 [SVM_EXIT_INTR] = intr_interception, 3165 [SVM_EXIT_NMI] = nmi_interception, 3166 [SVM_EXIT_SMI] = smi_interception, 3167 [SVM_EXIT_VINTR] = interrupt_window_interception, 3168 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3169 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3170 [SVM_EXIT_IRET] = iret_interception, 3171 [SVM_EXIT_INVD] = kvm_emulate_invd, 3172 [SVM_EXIT_PAUSE] = pause_interception, 3173 [SVM_EXIT_HLT] = kvm_emulate_halt, 3174 [SVM_EXIT_INVLPG] = invlpg_interception, 3175 [SVM_EXIT_INVLPGA] = invlpga_interception, 3176 [SVM_EXIT_IOIO] = io_interception, 3177 [SVM_EXIT_MSR] = msr_interception, 3178 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3179 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3180 [SVM_EXIT_VMRUN] = vmrun_interception, 3181 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3182 [SVM_EXIT_VMLOAD] = vmload_interception, 3183 [SVM_EXIT_VMSAVE] = vmsave_interception, 3184 [SVM_EXIT_STGI] = stgi_interception, 3185 [SVM_EXIT_CLGI] = clgi_interception, 3186 [SVM_EXIT_SKINIT] = skinit_interception, 3187 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3188 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3189 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3190 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3191 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3192 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3193 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3194 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3195 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3196 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3197 [SVM_EXIT_INVPCID] = invpcid_interception, 3198 [SVM_EXIT_NPF] = npf_interception, 3199 [SVM_EXIT_RSM] = rsm_interception, 3200 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3201 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3202 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3203 }; 3204 3205 static void dump_vmcb(struct kvm_vcpu *vcpu) 3206 { 3207 struct vcpu_svm *svm = to_svm(vcpu); 3208 struct vmcb_control_area *control = &svm->vmcb->control; 3209 struct vmcb_save_area *save = &svm->vmcb->save; 3210 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3211 3212 if (!dump_invalid_vmcb) { 3213 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3214 return; 3215 } 3216 3217 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3218 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3219 pr_err("VMCB Control Area:\n"); 3220 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3221 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3222 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3223 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3224 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3225 pr_err("%-20s%08x %08x\n", "intercepts:", 3226 control->intercepts[INTERCEPT_WORD3], 3227 control->intercepts[INTERCEPT_WORD4]); 3228 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3229 pr_err("%-20s%d\n", "pause filter threshold:", 3230 control->pause_filter_thresh); 3231 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3232 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3233 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3234 pr_err("%-20s%d\n", "asid:", control->asid); 3235 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3236 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3237 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3238 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3239 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3240 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3241 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3242 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3243 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3244 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3245 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3246 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3247 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3248 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3249 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3250 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3251 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3252 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3253 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3254 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3255 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3256 pr_err("VMCB State Save Area:\n"); 3257 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3258 "es:", 3259 save->es.selector, save->es.attrib, 3260 save->es.limit, save->es.base); 3261 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3262 "cs:", 3263 save->cs.selector, save->cs.attrib, 3264 save->cs.limit, save->cs.base); 3265 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3266 "ss:", 3267 save->ss.selector, save->ss.attrib, 3268 save->ss.limit, save->ss.base); 3269 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3270 "ds:", 3271 save->ds.selector, save->ds.attrib, 3272 save->ds.limit, save->ds.base); 3273 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3274 "fs:", 3275 save01->fs.selector, save01->fs.attrib, 3276 save01->fs.limit, save01->fs.base); 3277 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3278 "gs:", 3279 save01->gs.selector, save01->gs.attrib, 3280 save01->gs.limit, save01->gs.base); 3281 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3282 "gdtr:", 3283 save->gdtr.selector, save->gdtr.attrib, 3284 save->gdtr.limit, save->gdtr.base); 3285 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3286 "ldtr:", 3287 save01->ldtr.selector, save01->ldtr.attrib, 3288 save01->ldtr.limit, save01->ldtr.base); 3289 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3290 "idtr:", 3291 save->idtr.selector, save->idtr.attrib, 3292 save->idtr.limit, save->idtr.base); 3293 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3294 "tr:", 3295 save01->tr.selector, save01->tr.attrib, 3296 save01->tr.limit, save01->tr.base); 3297 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3298 save->vmpl, save->cpl, save->efer); 3299 pr_err("%-15s %016llx %-13s %016llx\n", 3300 "cr0:", save->cr0, "cr2:", save->cr2); 3301 pr_err("%-15s %016llx %-13s %016llx\n", 3302 "cr3:", save->cr3, "cr4:", save->cr4); 3303 pr_err("%-15s %016llx %-13s %016llx\n", 3304 "dr6:", save->dr6, "dr7:", save->dr7); 3305 pr_err("%-15s %016llx %-13s %016llx\n", 3306 "rip:", save->rip, "rflags:", save->rflags); 3307 pr_err("%-15s %016llx %-13s %016llx\n", 3308 "rsp:", save->rsp, "rax:", save->rax); 3309 pr_err("%-15s %016llx %-13s %016llx\n", 3310 "star:", save01->star, "lstar:", save01->lstar); 3311 pr_err("%-15s %016llx %-13s %016llx\n", 3312 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3313 pr_err("%-15s %016llx %-13s %016llx\n", 3314 "kernel_gs_base:", save01->kernel_gs_base, 3315 "sysenter_cs:", save01->sysenter_cs); 3316 pr_err("%-15s %016llx %-13s %016llx\n", 3317 "sysenter_esp:", save01->sysenter_esp, 3318 "sysenter_eip:", save01->sysenter_eip); 3319 pr_err("%-15s %016llx %-13s %016llx\n", 3320 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3321 pr_err("%-15s %016llx %-13s %016llx\n", 3322 "br_from:", save->br_from, "br_to:", save->br_to); 3323 pr_err("%-15s %016llx %-13s %016llx\n", 3324 "excp_from:", save->last_excp_from, 3325 "excp_to:", save->last_excp_to); 3326 } 3327 3328 static bool svm_check_exit_valid(u64 exit_code) 3329 { 3330 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3331 svm_exit_handlers[exit_code]); 3332 } 3333 3334 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3335 { 3336 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3337 dump_vmcb(vcpu); 3338 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3339 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3340 vcpu->run->internal.ndata = 2; 3341 vcpu->run->internal.data[0] = exit_code; 3342 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3343 return 0; 3344 } 3345 3346 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3347 { 3348 if (!svm_check_exit_valid(exit_code)) 3349 return svm_handle_invalid_exit(vcpu, exit_code); 3350 3351 #ifdef CONFIG_RETPOLINE 3352 if (exit_code == SVM_EXIT_MSR) 3353 return msr_interception(vcpu); 3354 else if (exit_code == SVM_EXIT_VINTR) 3355 return interrupt_window_interception(vcpu); 3356 else if (exit_code == SVM_EXIT_INTR) 3357 return intr_interception(vcpu); 3358 else if (exit_code == SVM_EXIT_HLT) 3359 return kvm_emulate_halt(vcpu); 3360 else if (exit_code == SVM_EXIT_NPF) 3361 return npf_interception(vcpu); 3362 #endif 3363 return svm_exit_handlers[exit_code](vcpu); 3364 } 3365 3366 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3367 u64 *info1, u64 *info2, 3368 u32 *intr_info, u32 *error_code) 3369 { 3370 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3371 3372 *reason = control->exit_code; 3373 *info1 = control->exit_info_1; 3374 *info2 = control->exit_info_2; 3375 *intr_info = control->exit_int_info; 3376 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3377 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3378 *error_code = control->exit_int_info_err; 3379 else 3380 *error_code = 0; 3381 } 3382 3383 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3384 { 3385 struct vcpu_svm *svm = to_svm(vcpu); 3386 struct kvm_run *kvm_run = vcpu->run; 3387 u32 exit_code = svm->vmcb->control.exit_code; 3388 3389 trace_kvm_exit(vcpu, KVM_ISA_SVM); 3390 3391 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3392 if (!sev_es_guest(vcpu->kvm)) { 3393 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3394 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3395 if (npt_enabled) 3396 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3397 } 3398 3399 if (is_guest_mode(vcpu)) { 3400 int vmexit; 3401 3402 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3403 3404 vmexit = nested_svm_exit_special(svm); 3405 3406 if (vmexit == NESTED_EXIT_CONTINUE) 3407 vmexit = nested_svm_exit_handled(svm); 3408 3409 if (vmexit == NESTED_EXIT_DONE) 3410 return 1; 3411 } 3412 3413 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3414 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3415 kvm_run->fail_entry.hardware_entry_failure_reason 3416 = svm->vmcb->control.exit_code; 3417 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3418 dump_vmcb(vcpu); 3419 return 0; 3420 } 3421 3422 if (exit_fastpath != EXIT_FASTPATH_NONE) 3423 return 1; 3424 3425 return svm_invoke_exit_handler(vcpu, exit_code); 3426 } 3427 3428 static void reload_tss(struct kvm_vcpu *vcpu) 3429 { 3430 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3431 3432 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3433 load_TR_desc(); 3434 } 3435 3436 static void pre_svm_run(struct kvm_vcpu *vcpu) 3437 { 3438 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3439 struct vcpu_svm *svm = to_svm(vcpu); 3440 3441 /* 3442 * If the previous vmrun of the vmcb occurred on a different physical 3443 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3444 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3445 */ 3446 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3447 svm->current_vmcb->asid_generation = 0; 3448 vmcb_mark_all_dirty(svm->vmcb); 3449 svm->current_vmcb->cpu = vcpu->cpu; 3450 } 3451 3452 if (sev_guest(vcpu->kvm)) 3453 return pre_sev_run(svm, vcpu->cpu); 3454 3455 /* FIXME: handle wraparound of asid_generation */ 3456 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3457 new_asid(svm, sd); 3458 } 3459 3460 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3461 { 3462 struct vcpu_svm *svm = to_svm(vcpu); 3463 3464 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3465 3466 if (svm->nmi_l1_to_l2) 3467 return; 3468 3469 vcpu->arch.hflags |= HF_NMI_MASK; 3470 if (!sev_es_guest(vcpu->kvm)) 3471 svm_set_intercept(svm, INTERCEPT_IRET); 3472 ++vcpu->stat.nmi_injections; 3473 } 3474 3475 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3476 { 3477 struct vcpu_svm *svm = to_svm(vcpu); 3478 u32 type; 3479 3480 if (vcpu->arch.interrupt.soft) { 3481 if (svm_update_soft_interrupt_rip(vcpu)) 3482 return; 3483 3484 type = SVM_EVTINJ_TYPE_SOFT; 3485 } else { 3486 type = SVM_EVTINJ_TYPE_INTR; 3487 } 3488 3489 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3490 vcpu->arch.interrupt.soft, reinjected); 3491 ++vcpu->stat.irq_injections; 3492 3493 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3494 SVM_EVTINJ_VALID | type; 3495 } 3496 3497 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3498 int trig_mode, int vector) 3499 { 3500 /* 3501 * apic->apicv_active must be read after vcpu->mode. 3502 * Pairs with smp_store_release in vcpu_enter_guest. 3503 */ 3504 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3505 3506 /* Note, this is called iff the local APIC is in-kernel. */ 3507 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3508 /* Process the interrupt via kvm_check_and_inject_events(). */ 3509 kvm_make_request(KVM_REQ_EVENT, vcpu); 3510 kvm_vcpu_kick(vcpu); 3511 return; 3512 } 3513 3514 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3515 if (in_guest_mode) { 3516 /* 3517 * Signal the doorbell to tell hardware to inject the IRQ. If 3518 * the vCPU exits the guest before the doorbell chimes, hardware 3519 * will automatically process AVIC interrupts at the next VMRUN. 3520 */ 3521 avic_ring_doorbell(vcpu); 3522 } else { 3523 /* 3524 * Wake the vCPU if it was blocking. KVM will then detect the 3525 * pending IRQ when checking if the vCPU has a wake event. 3526 */ 3527 kvm_vcpu_wake_up(vcpu); 3528 } 3529 } 3530 3531 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3532 int trig_mode, int vector) 3533 { 3534 kvm_lapic_set_irr(vector, apic); 3535 3536 /* 3537 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3538 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3539 * the read of guest_mode. This guarantees that either VMRUN will see 3540 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3541 * will signal the doorbell if the CPU has already entered the guest. 3542 */ 3543 smp_mb__after_atomic(); 3544 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3545 } 3546 3547 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3548 { 3549 struct vcpu_svm *svm = to_svm(vcpu); 3550 3551 /* 3552 * SEV-ES guests must always keep the CR intercepts cleared. CR 3553 * tracking is done using the CR write traps. 3554 */ 3555 if (sev_es_guest(vcpu->kvm)) 3556 return; 3557 3558 if (nested_svm_virtualize_tpr(vcpu)) 3559 return; 3560 3561 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3562 3563 if (irr == -1) 3564 return; 3565 3566 if (tpr >= irr) 3567 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3568 } 3569 3570 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3571 { 3572 struct vcpu_svm *svm = to_svm(vcpu); 3573 struct vmcb *vmcb = svm->vmcb; 3574 bool ret; 3575 3576 if (!gif_set(svm)) 3577 return true; 3578 3579 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3580 return false; 3581 3582 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3583 (vcpu->arch.hflags & HF_NMI_MASK); 3584 3585 return ret; 3586 } 3587 3588 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3589 { 3590 struct vcpu_svm *svm = to_svm(vcpu); 3591 if (svm->nested.nested_run_pending) 3592 return -EBUSY; 3593 3594 if (svm_nmi_blocked(vcpu)) 3595 return 0; 3596 3597 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3598 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3599 return -EBUSY; 3600 return 1; 3601 } 3602 3603 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3604 { 3605 return !!(vcpu->arch.hflags & HF_NMI_MASK); 3606 } 3607 3608 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3609 { 3610 struct vcpu_svm *svm = to_svm(vcpu); 3611 3612 if (masked) { 3613 vcpu->arch.hflags |= HF_NMI_MASK; 3614 if (!sev_es_guest(vcpu->kvm)) 3615 svm_set_intercept(svm, INTERCEPT_IRET); 3616 } else { 3617 vcpu->arch.hflags &= ~HF_NMI_MASK; 3618 if (!sev_es_guest(vcpu->kvm)) 3619 svm_clr_intercept(svm, INTERCEPT_IRET); 3620 } 3621 } 3622 3623 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3624 { 3625 struct vcpu_svm *svm = to_svm(vcpu); 3626 struct vmcb *vmcb = svm->vmcb; 3627 3628 if (!gif_set(svm)) 3629 return true; 3630 3631 if (is_guest_mode(vcpu)) { 3632 /* As long as interrupts are being delivered... */ 3633 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3634 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3635 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3636 return true; 3637 3638 /* ... vmexits aren't blocked by the interrupt shadow */ 3639 if (nested_exit_on_intr(svm)) 3640 return false; 3641 } else { 3642 if (!svm_get_if_flag(vcpu)) 3643 return true; 3644 } 3645 3646 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3647 } 3648 3649 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3650 { 3651 struct vcpu_svm *svm = to_svm(vcpu); 3652 3653 if (svm->nested.nested_run_pending) 3654 return -EBUSY; 3655 3656 if (svm_interrupt_blocked(vcpu)) 3657 return 0; 3658 3659 /* 3660 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3661 * e.g. if the IRQ arrived asynchronously after checking nested events. 3662 */ 3663 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3664 return -EBUSY; 3665 3666 return 1; 3667 } 3668 3669 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3670 { 3671 struct vcpu_svm *svm = to_svm(vcpu); 3672 3673 /* 3674 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3675 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3676 * get that intercept, this function will be called again though and 3677 * we'll get the vintr intercept. However, if the vGIF feature is 3678 * enabled, the STGI interception will not occur. Enable the irq 3679 * window under the assumption that the hardware will set the GIF. 3680 */ 3681 if (vgif || gif_set(svm)) { 3682 /* 3683 * IRQ window is not needed when AVIC is enabled, 3684 * unless we have pending ExtINT since it cannot be injected 3685 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3686 * and fallback to injecting IRQ via V_IRQ. 3687 * 3688 * If running nested, AVIC is already locally inhibited 3689 * on this vCPU, therefore there is no need to request 3690 * the VM wide AVIC inhibition. 3691 */ 3692 if (!is_guest_mode(vcpu)) 3693 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3694 3695 svm_set_vintr(svm); 3696 } 3697 } 3698 3699 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3700 { 3701 struct vcpu_svm *svm = to_svm(vcpu); 3702 3703 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) 3704 return; /* IRET will cause a vm exit */ 3705 3706 if (!gif_set(svm)) { 3707 if (vgif) 3708 svm_set_intercept(svm, INTERCEPT_STGI); 3709 return; /* STGI will cause a vm exit */ 3710 } 3711 3712 /* 3713 * Something prevents NMI from been injected. Single step over possible 3714 * problem (IRET or exception injection or interrupt shadow) 3715 */ 3716 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3717 svm->nmi_singlestep = true; 3718 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3719 } 3720 3721 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3722 { 3723 struct vcpu_svm *svm = to_svm(vcpu); 3724 3725 /* 3726 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3727 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3728 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3729 */ 3730 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3731 3732 /* 3733 * Flush only the current ASID even if the TLB flush was invoked via 3734 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3735 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3736 * unconditionally does a TLB flush on both nested VM-Enter and nested 3737 * VM-Exit (via kvm_mmu_reset_context()). 3738 */ 3739 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3740 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3741 else 3742 svm->current_vmcb->asid_generation--; 3743 } 3744 3745 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3746 { 3747 struct vcpu_svm *svm = to_svm(vcpu); 3748 3749 invlpga(gva, svm->vmcb->control.asid); 3750 } 3751 3752 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3753 { 3754 struct vcpu_svm *svm = to_svm(vcpu); 3755 3756 if (nested_svm_virtualize_tpr(vcpu)) 3757 return; 3758 3759 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3760 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3761 kvm_set_cr8(vcpu, cr8); 3762 } 3763 } 3764 3765 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3766 { 3767 struct vcpu_svm *svm = to_svm(vcpu); 3768 u64 cr8; 3769 3770 if (nested_svm_virtualize_tpr(vcpu) || 3771 kvm_vcpu_apicv_active(vcpu)) 3772 return; 3773 3774 cr8 = kvm_get_cr8(vcpu); 3775 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3776 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3777 } 3778 3779 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 3780 int type) 3781 { 3782 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 3783 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 3784 struct vcpu_svm *svm = to_svm(vcpu); 3785 3786 /* 3787 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 3788 * associated with the original soft exception/interrupt. next_rip is 3789 * cleared on all exits that can occur while vectoring an event, so KVM 3790 * needs to manually set next_rip for re-injection. Unlike the !nrips 3791 * case below, this needs to be done if and only if KVM is re-injecting 3792 * the same event, i.e. if the event is a soft exception/interrupt, 3793 * otherwise next_rip is unused on VMRUN. 3794 */ 3795 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 3796 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 3797 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 3798 /* 3799 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 3800 * injecting the soft exception/interrupt. That advancement needs to 3801 * be unwound if vectoring didn't complete. Note, the new event may 3802 * not be the injected event, e.g. if KVM injected an INTn, the INTn 3803 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 3804 * be the reported vectored event, but RIP still needs to be unwound. 3805 */ 3806 else if (!nrips && (is_soft || is_exception) && 3807 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 3808 kvm_rip_write(vcpu, svm->soft_int_old_rip); 3809 } 3810 3811 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3812 { 3813 struct vcpu_svm *svm = to_svm(vcpu); 3814 u8 vector; 3815 int type; 3816 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3817 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 3818 bool soft_int_injected = svm->soft_int_injected; 3819 3820 svm->nmi_l1_to_l2 = false; 3821 svm->soft_int_injected = false; 3822 3823 /* 3824 * If we've made progress since setting HF_IRET_MASK, we've 3825 * executed an IRET and can allow NMI injection. 3826 */ 3827 if ((vcpu->arch.hflags & HF_IRET_MASK) && 3828 (sev_es_guest(vcpu->kvm) || 3829 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { 3830 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3831 kvm_make_request(KVM_REQ_EVENT, vcpu); 3832 } 3833 3834 vcpu->arch.nmi_injected = false; 3835 kvm_clear_exception_queue(vcpu); 3836 kvm_clear_interrupt_queue(vcpu); 3837 3838 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3839 return; 3840 3841 kvm_make_request(KVM_REQ_EVENT, vcpu); 3842 3843 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3844 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3845 3846 if (soft_int_injected) 3847 svm_complete_soft_interrupt(vcpu, vector, type); 3848 3849 switch (type) { 3850 case SVM_EXITINTINFO_TYPE_NMI: 3851 vcpu->arch.nmi_injected = true; 3852 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 3853 break; 3854 case SVM_EXITINTINFO_TYPE_EXEPT: 3855 /* 3856 * Never re-inject a #VC exception. 3857 */ 3858 if (vector == X86_TRAP_VC) 3859 break; 3860 3861 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3862 u32 err = svm->vmcb->control.exit_int_info_err; 3863 kvm_requeue_exception_e(vcpu, vector, err); 3864 3865 } else 3866 kvm_requeue_exception(vcpu, vector); 3867 break; 3868 case SVM_EXITINTINFO_TYPE_INTR: 3869 kvm_queue_interrupt(vcpu, vector, false); 3870 break; 3871 case SVM_EXITINTINFO_TYPE_SOFT: 3872 kvm_queue_interrupt(vcpu, vector, true); 3873 break; 3874 default: 3875 break; 3876 } 3877 3878 } 3879 3880 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3881 { 3882 struct vcpu_svm *svm = to_svm(vcpu); 3883 struct vmcb_control_area *control = &svm->vmcb->control; 3884 3885 control->exit_int_info = control->event_inj; 3886 control->exit_int_info_err = control->event_inj_err; 3887 control->event_inj = 0; 3888 svm_complete_interrupts(vcpu); 3889 } 3890 3891 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 3892 { 3893 return 1; 3894 } 3895 3896 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3897 { 3898 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3899 3900 /* 3901 * Note, the next RIP must be provided as SRCU isn't held, i.e. KVM 3902 * can't read guest memory (dereference memslots) to decode the WRMSR. 3903 */ 3904 if (control->exit_code == SVM_EXIT_MSR && control->exit_info_1 && 3905 nrips && control->next_rip) 3906 return handle_fastpath_set_msr_irqoff(vcpu); 3907 3908 return EXIT_FASTPATH_NONE; 3909 } 3910 3911 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 3912 { 3913 struct vcpu_svm *svm = to_svm(vcpu); 3914 3915 guest_state_enter_irqoff(); 3916 3917 if (sev_es_guest(vcpu->kvm)) 3918 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted); 3919 else 3920 __svm_vcpu_run(svm, spec_ctrl_intercepted); 3921 3922 guest_state_exit_irqoff(); 3923 } 3924 3925 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3926 { 3927 struct vcpu_svm *svm = to_svm(vcpu); 3928 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 3929 3930 trace_kvm_entry(vcpu); 3931 3932 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3933 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3934 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3935 3936 /* 3937 * Disable singlestep if we're injecting an interrupt/exception. 3938 * We don't want our modified rflags to be pushed on the stack where 3939 * we might not be able to easily reset them if we disabled NMI 3940 * singlestep later. 3941 */ 3942 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3943 /* 3944 * Event injection happens before external interrupts cause a 3945 * vmexit and interrupts are disabled here, so smp_send_reschedule 3946 * is enough to force an immediate vmexit. 3947 */ 3948 disable_nmi_singlestep(svm); 3949 smp_send_reschedule(vcpu->cpu); 3950 } 3951 3952 pre_svm_run(vcpu); 3953 3954 sync_lapic_to_cr8(vcpu); 3955 3956 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3957 svm->vmcb->control.asid = svm->asid; 3958 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3959 } 3960 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3961 3962 svm_hv_update_vp_id(svm->vmcb, vcpu); 3963 3964 /* 3965 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3966 * of a #DB. 3967 */ 3968 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3969 svm_set_dr6(svm, vcpu->arch.dr6); 3970 else 3971 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3972 3973 clgi(); 3974 kvm_load_guest_xsave_state(vcpu); 3975 3976 kvm_wait_lapic_expire(vcpu); 3977 3978 /* 3979 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3980 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3981 * is no need to worry about the conditional branch over the wrmsr 3982 * being speculatively taken. 3983 */ 3984 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3985 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 3986 3987 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 3988 3989 if (!sev_es_guest(vcpu->kvm)) 3990 reload_tss(vcpu); 3991 3992 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3993 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 3994 3995 if (!sev_es_guest(vcpu->kvm)) { 3996 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3997 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3998 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3999 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4000 } 4001 vcpu->arch.regs_dirty = 0; 4002 4003 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4004 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4005 4006 kvm_load_host_xsave_state(vcpu); 4007 stgi(); 4008 4009 /* Any pending NMI will happen here */ 4010 4011 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4012 kvm_after_interrupt(vcpu); 4013 4014 sync_cr8_to_lapic(vcpu); 4015 4016 svm->next_rip = 0; 4017 if (is_guest_mode(vcpu)) { 4018 nested_sync_control_from_vmcb02(svm); 4019 4020 /* Track VMRUNs that have made past consistency checking */ 4021 if (svm->nested.nested_run_pending && 4022 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4023 ++vcpu->stat.nested_run; 4024 4025 svm->nested.nested_run_pending = 0; 4026 } 4027 4028 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4029 vmcb_mark_all_clean(svm->vmcb); 4030 4031 /* if exit due to PF check for async PF */ 4032 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4033 vcpu->arch.apf.host_apf_flags = 4034 kvm_read_and_reset_apf_flags(); 4035 4036 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4037 4038 /* 4039 * We need to handle MC intercepts here before the vcpu has a chance to 4040 * change the physical cpu 4041 */ 4042 if (unlikely(svm->vmcb->control.exit_code == 4043 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4044 svm_handle_mce(vcpu); 4045 4046 svm_complete_interrupts(vcpu); 4047 4048 if (is_guest_mode(vcpu)) 4049 return EXIT_FASTPATH_NONE; 4050 4051 return svm_exit_handlers_fastpath(vcpu); 4052 } 4053 4054 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4055 int root_level) 4056 { 4057 struct vcpu_svm *svm = to_svm(vcpu); 4058 unsigned long cr3; 4059 4060 if (npt_enabled) { 4061 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4062 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4063 4064 hv_track_root_tdp(vcpu, root_hpa); 4065 4066 cr3 = vcpu->arch.cr3; 4067 } else if (root_level >= PT64_ROOT_4LEVEL) { 4068 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4069 } else { 4070 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4071 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4072 cr3 = root_hpa; 4073 } 4074 4075 svm->vmcb->save.cr3 = cr3; 4076 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4077 } 4078 4079 static int is_disabled(void) 4080 { 4081 u64 vm_cr; 4082 4083 rdmsrl(MSR_VM_CR, vm_cr); 4084 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 4085 return 1; 4086 4087 return 0; 4088 } 4089 4090 static void 4091 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4092 { 4093 /* 4094 * Patch in the VMMCALL instruction: 4095 */ 4096 hypercall[0] = 0x0f; 4097 hypercall[1] = 0x01; 4098 hypercall[2] = 0xd9; 4099 } 4100 4101 static int __init svm_check_processor_compat(void) 4102 { 4103 return 0; 4104 } 4105 4106 /* 4107 * The kvm parameter can be NULL (module initialization, or invocation before 4108 * VM creation). Be sure to check the kvm parameter before using it. 4109 */ 4110 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4111 { 4112 switch (index) { 4113 case MSR_IA32_MCG_EXT_CTL: 4114 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 4115 return false; 4116 case MSR_IA32_SMBASE: 4117 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4118 return false; 4119 /* SEV-ES guests do not support SMM, so report false */ 4120 if (kvm && sev_es_guest(kvm)) 4121 return false; 4122 break; 4123 default: 4124 break; 4125 } 4126 4127 return true; 4128 } 4129 4130 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4131 { 4132 struct vcpu_svm *svm = to_svm(vcpu); 4133 struct kvm_cpuid_entry2 *best; 4134 4135 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4136 boot_cpu_has(X86_FEATURE_XSAVE) && 4137 boot_cpu_has(X86_FEATURE_XSAVES); 4138 4139 /* Update nrips enabled cache */ 4140 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 4141 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); 4142 4143 svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR); 4144 svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV); 4145 4146 svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4147 4148 svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) && 4149 guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER); 4150 4151 svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) && 4152 guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD); 4153 4154 svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF); 4155 4156 svm_recalc_instruction_intercepts(vcpu, svm); 4157 4158 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4159 if (sev_guest(vcpu->kvm)) { 4160 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4161 if (best) 4162 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4163 } 4164 4165 init_vmcb_after_set_cpuid(vcpu); 4166 } 4167 4168 static bool svm_has_wbinvd_exit(void) 4169 { 4170 return true; 4171 } 4172 4173 #define PRE_EX(exit) { .exit_code = (exit), \ 4174 .stage = X86_ICPT_PRE_EXCEPT, } 4175 #define POST_EX(exit) { .exit_code = (exit), \ 4176 .stage = X86_ICPT_POST_EXCEPT, } 4177 #define POST_MEM(exit) { .exit_code = (exit), \ 4178 .stage = X86_ICPT_POST_MEMACCESS, } 4179 4180 static const struct __x86_intercept { 4181 u32 exit_code; 4182 enum x86_intercept_stage stage; 4183 } x86_intercept_map[] = { 4184 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4185 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4186 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4187 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4188 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4189 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4190 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4191 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4192 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4193 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4194 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4195 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4196 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4197 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4198 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4199 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4200 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4201 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4202 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4203 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4204 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4205 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4206 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4207 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4208 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4209 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4210 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4211 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4212 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4213 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4214 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4215 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4216 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4217 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4218 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4219 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4220 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4221 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4222 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4223 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4224 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4225 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4226 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4227 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4228 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4229 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4230 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4231 }; 4232 4233 #undef PRE_EX 4234 #undef POST_EX 4235 #undef POST_MEM 4236 4237 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4238 struct x86_instruction_info *info, 4239 enum x86_intercept_stage stage, 4240 struct x86_exception *exception) 4241 { 4242 struct vcpu_svm *svm = to_svm(vcpu); 4243 int vmexit, ret = X86EMUL_CONTINUE; 4244 struct __x86_intercept icpt_info; 4245 struct vmcb *vmcb = svm->vmcb; 4246 4247 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4248 goto out; 4249 4250 icpt_info = x86_intercept_map[info->intercept]; 4251 4252 if (stage != icpt_info.stage) 4253 goto out; 4254 4255 switch (icpt_info.exit_code) { 4256 case SVM_EXIT_READ_CR0: 4257 if (info->intercept == x86_intercept_cr_read) 4258 icpt_info.exit_code += info->modrm_reg; 4259 break; 4260 case SVM_EXIT_WRITE_CR0: { 4261 unsigned long cr0, val; 4262 4263 if (info->intercept == x86_intercept_cr_write) 4264 icpt_info.exit_code += info->modrm_reg; 4265 4266 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4267 info->intercept == x86_intercept_clts) 4268 break; 4269 4270 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4271 INTERCEPT_SELECTIVE_CR0))) 4272 break; 4273 4274 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4275 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4276 4277 if (info->intercept == x86_intercept_lmsw) { 4278 cr0 &= 0xfUL; 4279 val &= 0xfUL; 4280 /* lmsw can't clear PE - catch this here */ 4281 if (cr0 & X86_CR0_PE) 4282 val |= X86_CR0_PE; 4283 } 4284 4285 if (cr0 ^ val) 4286 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4287 4288 break; 4289 } 4290 case SVM_EXIT_READ_DR0: 4291 case SVM_EXIT_WRITE_DR0: 4292 icpt_info.exit_code += info->modrm_reg; 4293 break; 4294 case SVM_EXIT_MSR: 4295 if (info->intercept == x86_intercept_wrmsr) 4296 vmcb->control.exit_info_1 = 1; 4297 else 4298 vmcb->control.exit_info_1 = 0; 4299 break; 4300 case SVM_EXIT_PAUSE: 4301 /* 4302 * We get this for NOP only, but pause 4303 * is rep not, check this here 4304 */ 4305 if (info->rep_prefix != REPE_PREFIX) 4306 goto out; 4307 break; 4308 case SVM_EXIT_IOIO: { 4309 u64 exit_info; 4310 u32 bytes; 4311 4312 if (info->intercept == x86_intercept_in || 4313 info->intercept == x86_intercept_ins) { 4314 exit_info = ((info->src_val & 0xffff) << 16) | 4315 SVM_IOIO_TYPE_MASK; 4316 bytes = info->dst_bytes; 4317 } else { 4318 exit_info = (info->dst_val & 0xffff) << 16; 4319 bytes = info->src_bytes; 4320 } 4321 4322 if (info->intercept == x86_intercept_outs || 4323 info->intercept == x86_intercept_ins) 4324 exit_info |= SVM_IOIO_STR_MASK; 4325 4326 if (info->rep_prefix) 4327 exit_info |= SVM_IOIO_REP_MASK; 4328 4329 bytes = min(bytes, 4u); 4330 4331 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4332 4333 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4334 4335 vmcb->control.exit_info_1 = exit_info; 4336 vmcb->control.exit_info_2 = info->next_rip; 4337 4338 break; 4339 } 4340 default: 4341 break; 4342 } 4343 4344 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4345 if (static_cpu_has(X86_FEATURE_NRIPS)) 4346 vmcb->control.next_rip = info->next_rip; 4347 vmcb->control.exit_code = icpt_info.exit_code; 4348 vmexit = nested_svm_exit_handled(svm); 4349 4350 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4351 : X86EMUL_CONTINUE; 4352 4353 out: 4354 return ret; 4355 } 4356 4357 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4358 { 4359 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4360 vcpu->arch.at_instruction_boundary = true; 4361 } 4362 4363 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4364 { 4365 if (!kvm_pause_in_guest(vcpu->kvm)) 4366 shrink_ple_window(vcpu); 4367 } 4368 4369 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4370 { 4371 /* [63:9] are reserved. */ 4372 vcpu->arch.mcg_cap &= 0x1ff; 4373 } 4374 4375 #ifdef CONFIG_KVM_SMM 4376 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4377 { 4378 struct vcpu_svm *svm = to_svm(vcpu); 4379 4380 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4381 if (!gif_set(svm)) 4382 return true; 4383 4384 return is_smm(vcpu); 4385 } 4386 4387 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4388 { 4389 struct vcpu_svm *svm = to_svm(vcpu); 4390 if (svm->nested.nested_run_pending) 4391 return -EBUSY; 4392 4393 if (svm_smi_blocked(vcpu)) 4394 return 0; 4395 4396 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4397 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4398 return -EBUSY; 4399 4400 return 1; 4401 } 4402 4403 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4404 { 4405 struct vcpu_svm *svm = to_svm(vcpu); 4406 struct kvm_host_map map_save; 4407 int ret; 4408 4409 if (!is_guest_mode(vcpu)) 4410 return 0; 4411 4412 /* 4413 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4414 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4415 */ 4416 4417 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4418 return 1; 4419 4420 smram->smram64.svm_guest_flag = 1; 4421 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4422 4423 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4424 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4425 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4426 4427 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4428 if (ret) 4429 return ret; 4430 4431 /* 4432 * KVM uses VMCB01 to store L1 host state while L2 runs but 4433 * VMCB01 is going to be used during SMM and thus the state will 4434 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4435 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4436 * format of the area is identical to guest save area offsetted 4437 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4438 * within 'struct vmcb'). Note: HSAVE area may also be used by 4439 * L1 hypervisor to save additional host context (e.g. KVM does 4440 * that, see svm_prepare_switch_to_guest()) which must be 4441 * preserved. 4442 */ 4443 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4444 return 1; 4445 4446 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4447 4448 svm_copy_vmrun_state(map_save.hva + 0x400, 4449 &svm->vmcb01.ptr->save); 4450 4451 kvm_vcpu_unmap(vcpu, &map_save, true); 4452 return 0; 4453 } 4454 4455 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4456 { 4457 struct vcpu_svm *svm = to_svm(vcpu); 4458 struct kvm_host_map map, map_save; 4459 struct vmcb *vmcb12; 4460 int ret; 4461 4462 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4463 4464 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4465 return 0; 4466 4467 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4468 if (!smram64->svm_guest_flag) 4469 return 0; 4470 4471 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4472 return 1; 4473 4474 if (!(smram64->efer & EFER_SVME)) 4475 return 1; 4476 4477 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4478 return 1; 4479 4480 ret = 1; 4481 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4482 goto unmap_map; 4483 4484 if (svm_allocate_nested(svm)) 4485 goto unmap_save; 4486 4487 /* 4488 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4489 * used during SMM (see svm_enter_smm()) 4490 */ 4491 4492 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4493 4494 /* 4495 * Enter the nested guest now 4496 */ 4497 4498 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4499 4500 vmcb12 = map.hva; 4501 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4502 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4503 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4504 4505 if (ret) 4506 goto unmap_save; 4507 4508 svm->nested.nested_run_pending = 1; 4509 4510 unmap_save: 4511 kvm_vcpu_unmap(vcpu, &map_save, true); 4512 unmap_map: 4513 kvm_vcpu_unmap(vcpu, &map, true); 4514 return ret; 4515 } 4516 4517 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4518 { 4519 struct vcpu_svm *svm = to_svm(vcpu); 4520 4521 if (!gif_set(svm)) { 4522 if (vgif) 4523 svm_set_intercept(svm, INTERCEPT_STGI); 4524 /* STGI will cause a vm exit */ 4525 } else { 4526 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4527 } 4528 } 4529 #endif 4530 4531 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4532 void *insn, int insn_len) 4533 { 4534 bool smep, smap, is_user; 4535 unsigned long cr4; 4536 u64 error_code; 4537 4538 /* Emulation is always possible when KVM has access to all guest state. */ 4539 if (!sev_guest(vcpu->kvm)) 4540 return true; 4541 4542 /* #UD and #GP should never be intercepted for SEV guests. */ 4543 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4544 EMULTYPE_TRAP_UD_FORCED | 4545 EMULTYPE_VMWARE_GP)); 4546 4547 /* 4548 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4549 * to guest register state. 4550 */ 4551 if (sev_es_guest(vcpu->kvm)) 4552 return false; 4553 4554 /* 4555 * Emulation is possible if the instruction is already decoded, e.g. 4556 * when completing I/O after returning from userspace. 4557 */ 4558 if (emul_type & EMULTYPE_NO_DECODE) 4559 return true; 4560 4561 /* 4562 * Emulation is possible for SEV guests if and only if a prefilled 4563 * buffer containing the bytes of the intercepted instruction is 4564 * available. SEV guest memory is encrypted with a guest specific key 4565 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4566 * decode garbage. 4567 * 4568 * Inject #UD if KVM reached this point without an instruction buffer. 4569 * In practice, this path should never be hit by a well-behaved guest, 4570 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path 4571 * is still theoretically reachable, e.g. via unaccelerated fault-like 4572 * AVIC access, and needs to be handled by KVM to avoid putting the 4573 * guest into an infinite loop. Injecting #UD is somewhat arbitrary, 4574 * but its the least awful option given lack of insight into the guest. 4575 */ 4576 if (unlikely(!insn)) { 4577 kvm_queue_exception(vcpu, UD_VECTOR); 4578 return false; 4579 } 4580 4581 /* 4582 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4583 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4584 * the faulting instruction because the code fetch itself faulted, e.g. 4585 * the guest attempted to fetch from emulated MMIO or a guest page 4586 * table used to translate CS:RIP resides in emulated MMIO. 4587 */ 4588 if (likely(insn_len)) 4589 return true; 4590 4591 /* 4592 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4593 * 4594 * Errata: 4595 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4596 * possible that CPU microcode implementing DecodeAssist will fail to 4597 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4598 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4599 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4600 * gives up and does not fill the instruction bytes buffer. 4601 * 4602 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4603 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4604 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4605 * GuestIntrBytes field of the VMCB. 4606 * 4607 * This does _not_ mean that the erratum has been encountered, as the 4608 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4609 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4610 * encountered a reserved/not-present #PF. 4611 * 4612 * To hit the erratum, the following conditions must be true: 4613 * 1. CR4.SMAP=1 (obviously). 4614 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4615 * have been hit as the guest would have encountered a SMEP 4616 * violation #PF, not a #NPF. 4617 * 3. The #NPF is not due to a code fetch, in which case failure to 4618 * retrieve the instruction bytes is legitimate (see abvoe). 4619 * 4620 * In addition, don't apply the erratum workaround if the #NPF occurred 4621 * while translating guest page tables (see below). 4622 */ 4623 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4624 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4625 goto resume_guest; 4626 4627 cr4 = kvm_read_cr4(vcpu); 4628 smep = cr4 & X86_CR4_SMEP; 4629 smap = cr4 & X86_CR4_SMAP; 4630 is_user = svm_get_cpl(vcpu) == 3; 4631 if (smap && (!smep || is_user)) { 4632 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4633 4634 /* 4635 * If the fault occurred in userspace, arbitrarily inject #GP 4636 * to avoid killing the guest and to hopefully avoid confusing 4637 * the guest kernel too much, e.g. injecting #PF would not be 4638 * coherent with respect to the guest's page tables. Request 4639 * triple fault if the fault occurred in the kernel as there's 4640 * no fault that KVM can inject without confusing the guest. 4641 * In practice, the triple fault is moot as no sane SEV kernel 4642 * will execute from user memory while also running with SMAP=1. 4643 */ 4644 if (is_user) 4645 kvm_inject_gp(vcpu, 0); 4646 else 4647 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4648 } 4649 4650 resume_guest: 4651 /* 4652 * If the erratum was not hit, simply resume the guest and let it fault 4653 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4654 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4655 * userspace will kill the guest, and letting the emulator read garbage 4656 * will yield random behavior and potentially corrupt the guest. 4657 * 4658 * Simply resuming the guest is technically not a violation of the SEV 4659 * architecture. AMD's APM states that all code fetches and page table 4660 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4661 * APM also states that encrypted accesses to MMIO are "ignored", but 4662 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4663 * the guest spin is technically "ignoring" the access. 4664 */ 4665 return false; 4666 } 4667 4668 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4669 { 4670 struct vcpu_svm *svm = to_svm(vcpu); 4671 4672 return !gif_set(svm); 4673 } 4674 4675 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4676 { 4677 if (!sev_es_guest(vcpu->kvm)) 4678 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4679 4680 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4681 } 4682 4683 static void svm_vm_destroy(struct kvm *kvm) 4684 { 4685 avic_vm_destroy(kvm); 4686 sev_vm_destroy(kvm); 4687 } 4688 4689 static int svm_vm_init(struct kvm *kvm) 4690 { 4691 if (!pause_filter_count || !pause_filter_thresh) 4692 kvm->arch.pause_in_guest = true; 4693 4694 if (enable_apicv) { 4695 int ret = avic_vm_init(kvm); 4696 if (ret) 4697 return ret; 4698 } 4699 4700 return 0; 4701 } 4702 4703 static struct kvm_x86_ops svm_x86_ops __initdata = { 4704 .name = "kvm_amd", 4705 4706 .hardware_unsetup = svm_hardware_unsetup, 4707 .hardware_enable = svm_hardware_enable, 4708 .hardware_disable = svm_hardware_disable, 4709 .has_emulated_msr = svm_has_emulated_msr, 4710 4711 .vcpu_create = svm_vcpu_create, 4712 .vcpu_free = svm_vcpu_free, 4713 .vcpu_reset = svm_vcpu_reset, 4714 4715 .vm_size = sizeof(struct kvm_svm), 4716 .vm_init = svm_vm_init, 4717 .vm_destroy = svm_vm_destroy, 4718 4719 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4720 .vcpu_load = svm_vcpu_load, 4721 .vcpu_put = svm_vcpu_put, 4722 .vcpu_blocking = avic_vcpu_blocking, 4723 .vcpu_unblocking = avic_vcpu_unblocking, 4724 4725 .update_exception_bitmap = svm_update_exception_bitmap, 4726 .get_msr_feature = svm_get_msr_feature, 4727 .get_msr = svm_get_msr, 4728 .set_msr = svm_set_msr, 4729 .get_segment_base = svm_get_segment_base, 4730 .get_segment = svm_get_segment, 4731 .set_segment = svm_set_segment, 4732 .get_cpl = svm_get_cpl, 4733 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4734 .set_cr0 = svm_set_cr0, 4735 .post_set_cr3 = sev_post_set_cr3, 4736 .is_valid_cr4 = svm_is_valid_cr4, 4737 .set_cr4 = svm_set_cr4, 4738 .set_efer = svm_set_efer, 4739 .get_idt = svm_get_idt, 4740 .set_idt = svm_set_idt, 4741 .get_gdt = svm_get_gdt, 4742 .set_gdt = svm_set_gdt, 4743 .set_dr7 = svm_set_dr7, 4744 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4745 .cache_reg = svm_cache_reg, 4746 .get_rflags = svm_get_rflags, 4747 .set_rflags = svm_set_rflags, 4748 .get_if_flag = svm_get_if_flag, 4749 4750 .flush_tlb_all = svm_flush_tlb_current, 4751 .flush_tlb_current = svm_flush_tlb_current, 4752 .flush_tlb_gva = svm_flush_tlb_gva, 4753 .flush_tlb_guest = svm_flush_tlb_current, 4754 4755 .vcpu_pre_run = svm_vcpu_pre_run, 4756 .vcpu_run = svm_vcpu_run, 4757 .handle_exit = svm_handle_exit, 4758 .skip_emulated_instruction = svm_skip_emulated_instruction, 4759 .update_emulated_instruction = NULL, 4760 .set_interrupt_shadow = svm_set_interrupt_shadow, 4761 .get_interrupt_shadow = svm_get_interrupt_shadow, 4762 .patch_hypercall = svm_patch_hypercall, 4763 .inject_irq = svm_inject_irq, 4764 .inject_nmi = svm_inject_nmi, 4765 .inject_exception = svm_inject_exception, 4766 .cancel_injection = svm_cancel_injection, 4767 .interrupt_allowed = svm_interrupt_allowed, 4768 .nmi_allowed = svm_nmi_allowed, 4769 .get_nmi_mask = svm_get_nmi_mask, 4770 .set_nmi_mask = svm_set_nmi_mask, 4771 .enable_nmi_window = svm_enable_nmi_window, 4772 .enable_irq_window = svm_enable_irq_window, 4773 .update_cr8_intercept = svm_update_cr8_intercept, 4774 .set_virtual_apic_mode = avic_set_virtual_apic_mode, 4775 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 4776 .check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons, 4777 .apicv_post_state_restore = avic_apicv_post_state_restore, 4778 4779 .get_exit_info = svm_get_exit_info, 4780 4781 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4782 4783 .has_wbinvd_exit = svm_has_wbinvd_exit, 4784 4785 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4786 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4787 .write_tsc_offset = svm_write_tsc_offset, 4788 .write_tsc_multiplier = svm_write_tsc_multiplier, 4789 4790 .load_mmu_pgd = svm_load_mmu_pgd, 4791 4792 .check_intercept = svm_check_intercept, 4793 .handle_exit_irqoff = svm_handle_exit_irqoff, 4794 4795 .request_immediate_exit = __kvm_request_immediate_exit, 4796 4797 .sched_in = svm_sched_in, 4798 4799 .nested_ops = &svm_nested_ops, 4800 4801 .deliver_interrupt = svm_deliver_interrupt, 4802 .pi_update_irte = avic_pi_update_irte, 4803 .setup_mce = svm_setup_mce, 4804 4805 #ifdef CONFIG_KVM_SMM 4806 .smi_allowed = svm_smi_allowed, 4807 .enter_smm = svm_enter_smm, 4808 .leave_smm = svm_leave_smm, 4809 .enable_smi_window = svm_enable_smi_window, 4810 #endif 4811 4812 .mem_enc_ioctl = sev_mem_enc_ioctl, 4813 .mem_enc_register_region = sev_mem_enc_register_region, 4814 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 4815 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 4816 4817 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 4818 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 4819 4820 .can_emulate_instruction = svm_can_emulate_instruction, 4821 4822 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4823 4824 .msr_filter_changed = svm_msr_filter_changed, 4825 .complete_emulated_msr = svm_complete_emulated_msr, 4826 4827 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4828 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 4829 }; 4830 4831 /* 4832 * The default MMIO mask is a single bit (excluding the present bit), 4833 * which could conflict with the memory encryption bit. Check for 4834 * memory encryption support and override the default MMIO mask if 4835 * memory encryption is enabled. 4836 */ 4837 static __init void svm_adjust_mmio_mask(void) 4838 { 4839 unsigned int enc_bit, mask_bit; 4840 u64 msr, mask; 4841 4842 /* If there is no memory encryption support, use existing mask */ 4843 if (cpuid_eax(0x80000000) < 0x8000001f) 4844 return; 4845 4846 /* If memory encryption is not enabled, use existing mask */ 4847 rdmsrl(MSR_AMD64_SYSCFG, msr); 4848 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 4849 return; 4850 4851 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 4852 mask_bit = boot_cpu_data.x86_phys_bits; 4853 4854 /* Increment the mask bit if it is the same as the encryption bit */ 4855 if (enc_bit == mask_bit) 4856 mask_bit++; 4857 4858 /* 4859 * If the mask bit location is below 52, then some bits above the 4860 * physical addressing limit will always be reserved, so use the 4861 * rsvd_bits() function to generate the mask. This mask, along with 4862 * the present bit, will be used to generate a page fault with 4863 * PFER.RSV = 1. 4864 * 4865 * If the mask bit location is 52 (or above), then clear the mask. 4866 */ 4867 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 4868 4869 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 4870 } 4871 4872 static __init void svm_set_cpu_caps(void) 4873 { 4874 kvm_set_cpu_caps(); 4875 4876 kvm_caps.supported_perf_cap = 0; 4877 kvm_caps.supported_xss = 0; 4878 4879 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 4880 if (nested) { 4881 kvm_cpu_cap_set(X86_FEATURE_SVM); 4882 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 4883 4884 if (nrips) 4885 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 4886 4887 if (npt_enabled) 4888 kvm_cpu_cap_set(X86_FEATURE_NPT); 4889 4890 if (tsc_scaling) 4891 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 4892 4893 if (vls) 4894 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 4895 if (lbrv) 4896 kvm_cpu_cap_set(X86_FEATURE_LBRV); 4897 4898 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 4899 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 4900 4901 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 4902 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 4903 4904 if (vgif) 4905 kvm_cpu_cap_set(X86_FEATURE_VGIF); 4906 4907 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 4908 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 4909 } 4910 4911 /* CPUID 0x80000008 */ 4912 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 4913 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 4914 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 4915 4916 /* AMD PMU PERFCTR_CORE CPUID */ 4917 if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE)) 4918 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE); 4919 4920 /* CPUID 0x8000001F (SME/SEV features) */ 4921 sev_set_cpu_caps(); 4922 } 4923 4924 static __init int svm_hardware_setup(void) 4925 { 4926 int cpu; 4927 struct page *iopm_pages; 4928 void *iopm_va; 4929 int r; 4930 unsigned int order = get_order(IOPM_SIZE); 4931 4932 /* 4933 * NX is required for shadow paging and for NPT if the NX huge pages 4934 * mitigation is enabled. 4935 */ 4936 if (!boot_cpu_has(X86_FEATURE_NX)) { 4937 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 4938 return -EOPNOTSUPP; 4939 } 4940 kvm_enable_efer_bits(EFER_NX); 4941 4942 iopm_pages = alloc_pages(GFP_KERNEL, order); 4943 4944 if (!iopm_pages) 4945 return -ENOMEM; 4946 4947 iopm_va = page_address(iopm_pages); 4948 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 4949 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 4950 4951 init_msrpm_offsets(); 4952 4953 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 4954 XFEATURE_MASK_BNDCSR); 4955 4956 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 4957 kvm_enable_efer_bits(EFER_FFXSR); 4958 4959 if (tsc_scaling) { 4960 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 4961 tsc_scaling = false; 4962 } else { 4963 pr_info("TSC scaling supported\n"); 4964 kvm_caps.has_tsc_control = true; 4965 } 4966 } 4967 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 4968 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 4969 4970 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 4971 4972 /* Check for pause filtering support */ 4973 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 4974 pause_filter_count = 0; 4975 pause_filter_thresh = 0; 4976 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 4977 pause_filter_thresh = 0; 4978 } 4979 4980 if (nested) { 4981 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 4982 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 4983 } 4984 4985 /* 4986 * KVM's MMU doesn't support using 2-level paging for itself, and thus 4987 * NPT isn't supported if the host is using 2-level paging since host 4988 * CR4 is unchanged on VMRUN. 4989 */ 4990 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 4991 npt_enabled = false; 4992 4993 if (!boot_cpu_has(X86_FEATURE_NPT)) 4994 npt_enabled = false; 4995 4996 /* Force VM NPT level equal to the host's paging level */ 4997 kvm_configure_mmu(npt_enabled, get_npt_level(), 4998 get_npt_level(), PG_LEVEL_1G); 4999 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5000 5001 /* Setup shadow_me_value and shadow_me_mask */ 5002 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5003 5004 svm_adjust_mmio_mask(); 5005 5006 /* 5007 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5008 * may be modified by svm_adjust_mmio_mask()). 5009 */ 5010 sev_hardware_setup(); 5011 5012 svm_hv_hardware_setup(); 5013 5014 for_each_possible_cpu(cpu) { 5015 r = svm_cpu_init(cpu); 5016 if (r) 5017 goto err; 5018 } 5019 5020 if (nrips) { 5021 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 5022 nrips = false; 5023 } 5024 5025 enable_apicv = avic = avic && avic_hardware_setup(&svm_x86_ops); 5026 5027 if (!enable_apicv) { 5028 svm_x86_ops.vcpu_blocking = NULL; 5029 svm_x86_ops.vcpu_unblocking = NULL; 5030 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5031 } 5032 5033 if (vls) { 5034 if (!npt_enabled || 5035 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5036 !IS_ENABLED(CONFIG_X86_64)) { 5037 vls = false; 5038 } else { 5039 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5040 } 5041 } 5042 5043 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5044 svm_gp_erratum_intercept = false; 5045 5046 if (vgif) { 5047 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5048 vgif = false; 5049 else 5050 pr_info("Virtual GIF supported\n"); 5051 } 5052 5053 if (lbrv) { 5054 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5055 lbrv = false; 5056 else 5057 pr_info("LBR virtualization supported\n"); 5058 } 5059 5060 if (!enable_pmu) 5061 pr_info("PMU virtualization is disabled\n"); 5062 5063 svm_set_cpu_caps(); 5064 5065 /* 5066 * It seems that on AMD processors PTE's accessed bit is 5067 * being set by the CPU hardware before the NPF vmexit. 5068 * This is not expected behaviour and our tests fail because 5069 * of it. 5070 * A workaround here is to disable support for 5071 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5072 * In this case userspace can know if there is support using 5073 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5074 * it 5075 * If future AMD CPU models change the behaviour described above, 5076 * this variable can be changed accordingly 5077 */ 5078 allow_smaller_maxphyaddr = !npt_enabled; 5079 5080 return 0; 5081 5082 err: 5083 svm_hardware_unsetup(); 5084 return r; 5085 } 5086 5087 5088 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5089 .cpu_has_kvm_support = has_svm, 5090 .disabled_by_bios = is_disabled, 5091 .hardware_setup = svm_hardware_setup, 5092 .check_processor_compatibility = svm_check_processor_compat, 5093 5094 .runtime_ops = &svm_x86_ops, 5095 .pmu_ops = &amd_pmu_ops, 5096 }; 5097 5098 static int __init svm_init(void) 5099 { 5100 __unused_size_checks(); 5101 5102 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 5103 __alignof__(struct vcpu_svm), THIS_MODULE); 5104 } 5105 5106 static void __exit svm_exit(void) 5107 { 5108 kvm_exit(); 5109 } 5110 5111 module_init(svm_init) 5112 module_exit(svm_exit) 5113