xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision 2154aca21408752eaa3eeaf2ba6e942724ff2a4d)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 #include <linux/cc_platform.h>
29 
30 #include <asm/apic.h>
31 #include <asm/perf_event.h>
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/debugreg.h>
35 #include <asm/kvm_para.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 #include <asm/traps.h>
40 #include <asm/fpu/api.h>
41 
42 #include <asm/virtext.h>
43 #include "trace.h"
44 
45 #include "svm.h"
46 #include "svm_ops.h"
47 
48 #include "kvm_onhyperv.h"
49 #include "svm_onhyperv.h"
50 
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53 
54 #ifdef MODULE
55 static const struct x86_cpu_id svm_cpu_id[] = {
56 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
57 	{}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
60 #endif
61 
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64 
65 static bool erratum_383_found __read_mostly;
66 
67 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
68 
69 /*
70  * Set osvw_len to higher value when updated Revision Guides
71  * are published and we know what the new status bits are
72  */
73 static uint64_t osvw_len = 4, osvw_status;
74 
75 static DEFINE_PER_CPU(u64, current_tsc_ratio);
76 
77 #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
78 
79 static const struct svm_direct_access_msrs {
80 	u32 index;   /* Index of the MSR */
81 	bool always; /* True if intercept is initially cleared */
82 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
83 	{ .index = MSR_STAR,				.always = true  },
84 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
85 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
86 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
87 #ifdef CONFIG_X86_64
88 	{ .index = MSR_GS_BASE,				.always = true  },
89 	{ .index = MSR_FS_BASE,				.always = true  },
90 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
91 	{ .index = MSR_LSTAR,				.always = true  },
92 	{ .index = MSR_CSTAR,				.always = true  },
93 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
94 #endif
95 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
96 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
97 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
98 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
99 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
100 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
101 	{ .index = MSR_EFER,				.always = false },
102 	{ .index = MSR_IA32_CR_PAT,			.always = false },
103 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
104 	{ .index = MSR_TSC_AUX,				.always = false },
105 	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
106 	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
107 	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
108 	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
109 	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
110 	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
111 	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
112 	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
113 	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
114 	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
115 	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
116 	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
117 	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
118 	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
119 	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
120 	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
121 
122 	/*
123 	 * Note:
124 	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
125 	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
126 	 * the AVIC hardware would generate GP fault. Therefore, always
127 	 * intercept the MSR 0x832, and do not setup direct_access_msr.
128 	 */
129 	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
130 	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
131 	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
132 	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
133 	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
134 	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
135 	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
136 	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
137 	{ .index = MSR_INVALID,				.always = false },
138 };
139 
140 /*
141  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
142  * pause_filter_count: On processors that support Pause filtering(indicated
143  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
144  *	count value. On VMRUN this value is loaded into an internal counter.
145  *	Each time a pause instruction is executed, this counter is decremented
146  *	until it reaches zero at which time a #VMEXIT is generated if pause
147  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
148  *	Intercept Filtering for more details.
149  *	This also indicate if ple logic enabled.
150  *
151  * pause_filter_thresh: In addition, some processor families support advanced
152  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
153  *	the amount of time a guest is allowed to execute in a pause loop.
154  *	In this mode, a 16-bit pause filter threshold field is added in the
155  *	VMCB. The threshold value is a cycle count that is used to reset the
156  *	pause counter. As with simple pause filtering, VMRUN loads the pause
157  *	count value from VMCB into an internal counter. Then, on each pause
158  *	instruction the hardware checks the elapsed number of cycles since
159  *	the most recent pause instruction against the pause filter threshold.
160  *	If the elapsed cycle count is greater than the pause filter threshold,
161  *	then the internal pause count is reloaded from the VMCB and execution
162  *	continues. If the elapsed cycle count is less than the pause filter
163  *	threshold, then the internal pause count is decremented. If the count
164  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
165  *	triggered. If advanced pause filtering is supported and pause filter
166  *	threshold field is set to zero, the filter will operate in the simpler,
167  *	count only mode.
168  */
169 
170 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
171 module_param(pause_filter_thresh, ushort, 0444);
172 
173 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
174 module_param(pause_filter_count, ushort, 0444);
175 
176 /* Default doubles per-vcpu window every exit. */
177 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
178 module_param(pause_filter_count_grow, ushort, 0444);
179 
180 /* Default resets per-vcpu window every exit to pause_filter_count. */
181 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
182 module_param(pause_filter_count_shrink, ushort, 0444);
183 
184 /* Default is to compute the maximum so we can never overflow. */
185 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
186 module_param(pause_filter_count_max, ushort, 0444);
187 
188 /*
189  * Use nested page tables by default.  Note, NPT may get forced off by
190  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
191  */
192 bool npt_enabled = true;
193 module_param_named(npt, npt_enabled, bool, 0444);
194 
195 /* allow nested virtualization in KVM/SVM */
196 static int nested = true;
197 module_param(nested, int, S_IRUGO);
198 
199 /* enable/disable Next RIP Save */
200 static int nrips = true;
201 module_param(nrips, int, 0444);
202 
203 /* enable/disable Virtual VMLOAD VMSAVE */
204 static int vls = true;
205 module_param(vls, int, 0444);
206 
207 /* enable/disable Virtual GIF */
208 int vgif = true;
209 module_param(vgif, int, 0444);
210 
211 /* enable/disable LBR virtualization */
212 static int lbrv = true;
213 module_param(lbrv, int, 0444);
214 
215 static int tsc_scaling = true;
216 module_param(tsc_scaling, int, 0444);
217 
218 /*
219  * enable / disable AVIC.  Because the defaults differ for APICv
220  * support between VMX and SVM we cannot use module_param_named.
221  */
222 static bool avic;
223 module_param(avic, bool, 0444);
224 
225 bool __read_mostly dump_invalid_vmcb;
226 module_param(dump_invalid_vmcb, bool, 0644);
227 
228 
229 bool intercept_smi = true;
230 module_param(intercept_smi, bool, 0444);
231 
232 
233 static bool svm_gp_erratum_intercept = true;
234 
235 static u8 rsm_ins_bytes[] = "\x0f\xaa";
236 
237 static unsigned long iopm_base;
238 
239 struct kvm_ldttss_desc {
240 	u16 limit0;
241 	u16 base0;
242 	unsigned base1:8, type:5, dpl:2, p:1;
243 	unsigned limit1:4, zero0:3, g:1, base2:8;
244 	u32 base3;
245 	u32 zero1;
246 } __attribute__((packed));
247 
248 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
249 
250 /*
251  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
252  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
253  *
254  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
255  * defer the restoration of TSC_AUX until the CPU returns to userspace.
256  */
257 static int tsc_aux_uret_slot __read_mostly = -1;
258 
259 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
260 
261 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
262 #define MSRS_RANGE_SIZE 2048
263 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
264 
265 u32 svm_msrpm_offset(u32 msr)
266 {
267 	u32 offset;
268 	int i;
269 
270 	for (i = 0; i < NUM_MSR_MAPS; i++) {
271 		if (msr < msrpm_ranges[i] ||
272 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
273 			continue;
274 
275 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
276 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
277 
278 		/* Now we have the u8 offset - but need the u32 offset */
279 		return offset / 4;
280 	}
281 
282 	/* MSR not in any range */
283 	return MSR_INVALID;
284 }
285 
286 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
287 
288 static int get_npt_level(void)
289 {
290 #ifdef CONFIG_X86_64
291 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
292 #else
293 	return PT32E_ROOT_LEVEL;
294 #endif
295 }
296 
297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
298 {
299 	struct vcpu_svm *svm = to_svm(vcpu);
300 	u64 old_efer = vcpu->arch.efer;
301 	vcpu->arch.efer = efer;
302 
303 	if (!npt_enabled) {
304 		/* Shadow paging assumes NX to be available.  */
305 		efer |= EFER_NX;
306 
307 		if (!(efer & EFER_LMA))
308 			efer &= ~EFER_LME;
309 	}
310 
311 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
312 		if (!(efer & EFER_SVME)) {
313 			svm_leave_nested(vcpu);
314 			svm_set_gif(svm, true);
315 			/* #GP intercept is still needed for vmware backdoor */
316 			if (!enable_vmware_backdoor)
317 				clr_exception_intercept(svm, GP_VECTOR);
318 
319 			/*
320 			 * Free the nested guest state, unless we are in SMM.
321 			 * In this case we will return to the nested guest
322 			 * as soon as we leave SMM.
323 			 */
324 			if (!is_smm(vcpu))
325 				svm_free_nested(svm);
326 
327 		} else {
328 			int ret = svm_allocate_nested(svm);
329 
330 			if (ret) {
331 				vcpu->arch.efer = old_efer;
332 				return ret;
333 			}
334 
335 			/*
336 			 * Never intercept #GP for SEV guests, KVM can't
337 			 * decrypt guest memory to workaround the erratum.
338 			 */
339 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
340 				set_exception_intercept(svm, GP_VECTOR);
341 		}
342 	}
343 
344 	svm->vmcb->save.efer = efer | EFER_SVME;
345 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
346 	return 0;
347 }
348 
349 static int is_external_interrupt(u32 info)
350 {
351 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
352 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
353 }
354 
355 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
356 {
357 	struct vcpu_svm *svm = to_svm(vcpu);
358 	u32 ret = 0;
359 
360 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
361 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
362 	return ret;
363 }
364 
365 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
366 {
367 	struct vcpu_svm *svm = to_svm(vcpu);
368 
369 	if (mask == 0)
370 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
371 	else
372 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
373 
374 }
375 
376 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
377 					   bool commit_side_effects)
378 {
379 	struct vcpu_svm *svm = to_svm(vcpu);
380 	unsigned long old_rflags;
381 
382 	/*
383 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
384 	 * the type of exit and the #VC handler in the guest.
385 	 */
386 	if (sev_es_guest(vcpu->kvm))
387 		goto done;
388 
389 	if (nrips && svm->vmcb->control.next_rip != 0) {
390 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
391 		svm->next_rip = svm->vmcb->control.next_rip;
392 	}
393 
394 	if (!svm->next_rip) {
395 		if (unlikely(!commit_side_effects))
396 			old_rflags = svm->vmcb->save.rflags;
397 
398 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
399 			return 0;
400 
401 		if (unlikely(!commit_side_effects))
402 			svm->vmcb->save.rflags = old_rflags;
403 	} else {
404 		kvm_rip_write(vcpu, svm->next_rip);
405 	}
406 
407 done:
408 	if (likely(commit_side_effects))
409 		svm_set_interrupt_shadow(vcpu, 0);
410 
411 	return 1;
412 }
413 
414 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
415 {
416 	return __svm_skip_emulated_instruction(vcpu, true);
417 }
418 
419 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
420 {
421 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
422 	struct vcpu_svm *svm = to_svm(vcpu);
423 
424 	/*
425 	 * Due to architectural shortcomings, the CPU doesn't always provide
426 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
427 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
428 	 * the instruction even if NextRIP is supported to acquire the next
429 	 * RIP so that it can be shoved into the NextRIP field, otherwise
430 	 * hardware will fail to advance guest RIP during event injection.
431 	 * Drop the exception/interrupt if emulation fails and effectively
432 	 * retry the instruction, it's the least awful option.  If NRIPS is
433 	 * in use, the skip must not commit any side effects such as clearing
434 	 * the interrupt shadow or RFLAGS.RF.
435 	 */
436 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
437 		return -EIO;
438 
439 	rip = kvm_rip_read(vcpu);
440 
441 	/*
442 	 * Save the injection information, even when using next_rip, as the
443 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
444 	 * doesn't complete due to a VM-Exit occurring while the CPU is
445 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
446 	 * work as there may be no backing instruction, e.g. if the event is
447 	 * being injected by L1 for L2, or if the guest is patching INT3 into
448 	 * a different instruction.
449 	 */
450 	svm->soft_int_injected = true;
451 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
452 	svm->soft_int_old_rip = old_rip;
453 	svm->soft_int_next_rip = rip;
454 
455 	if (nrips)
456 		kvm_rip_write(vcpu, old_rip);
457 
458 	if (static_cpu_has(X86_FEATURE_NRIPS))
459 		svm->vmcb->control.next_rip = rip;
460 
461 	return 0;
462 }
463 
464 static void svm_queue_exception(struct kvm_vcpu *vcpu)
465 {
466 	struct vcpu_svm *svm = to_svm(vcpu);
467 	unsigned nr = vcpu->arch.exception.nr;
468 	bool has_error_code = vcpu->arch.exception.has_error_code;
469 	u32 error_code = vcpu->arch.exception.error_code;
470 
471 	kvm_deliver_exception_payload(vcpu);
472 
473 	if (kvm_exception_is_soft(nr) &&
474 	    svm_update_soft_interrupt_rip(vcpu))
475 		return;
476 
477 	svm->vmcb->control.event_inj = nr
478 		| SVM_EVTINJ_VALID
479 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
480 		| SVM_EVTINJ_TYPE_EXEPT;
481 	svm->vmcb->control.event_inj_err = error_code;
482 }
483 
484 static void svm_init_erratum_383(void)
485 {
486 	u32 low, high;
487 	int err;
488 	u64 val;
489 
490 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
491 		return;
492 
493 	/* Use _safe variants to not break nested virtualization */
494 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
495 	if (err)
496 		return;
497 
498 	val |= (1ULL << 47);
499 
500 	low  = lower_32_bits(val);
501 	high = upper_32_bits(val);
502 
503 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
504 
505 	erratum_383_found = true;
506 }
507 
508 static void svm_init_osvw(struct kvm_vcpu *vcpu)
509 {
510 	/*
511 	 * Guests should see errata 400 and 415 as fixed (assuming that
512 	 * HLT and IO instructions are intercepted).
513 	 */
514 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
515 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
516 
517 	/*
518 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
519 	 * all osvw.status bits inside that length, including bit 0 (which is
520 	 * reserved for erratum 298), are valid. However, if host processor's
521 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
522 	 * be conservative here and therefore we tell the guest that erratum 298
523 	 * is present (because we really don't know).
524 	 */
525 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
526 		vcpu->arch.osvw.status |= 1;
527 }
528 
529 static int has_svm(void)
530 {
531 	const char *msg;
532 
533 	if (!cpu_has_svm(&msg)) {
534 		printk(KERN_INFO "has_svm: %s\n", msg);
535 		return 0;
536 	}
537 
538 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
539 		pr_info("KVM is unsupported when running as an SEV guest\n");
540 		return 0;
541 	}
542 
543 	return 1;
544 }
545 
546 void __svm_write_tsc_multiplier(u64 multiplier)
547 {
548 	preempt_disable();
549 
550 	if (multiplier == __this_cpu_read(current_tsc_ratio))
551 		goto out;
552 
553 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
554 	__this_cpu_write(current_tsc_ratio, multiplier);
555 out:
556 	preempt_enable();
557 }
558 
559 static void svm_hardware_disable(void)
560 {
561 	/* Make sure we clean up behind us */
562 	if (tsc_scaling)
563 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
564 
565 	cpu_svm_disable();
566 
567 	amd_pmu_disable_virt();
568 }
569 
570 static int svm_hardware_enable(void)
571 {
572 
573 	struct svm_cpu_data *sd;
574 	uint64_t efer;
575 	struct desc_struct *gdt;
576 	int me = raw_smp_processor_id();
577 
578 	rdmsrl(MSR_EFER, efer);
579 	if (efer & EFER_SVME)
580 		return -EBUSY;
581 
582 	if (!has_svm()) {
583 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
584 		return -EINVAL;
585 	}
586 	sd = per_cpu(svm_data, me);
587 	if (!sd) {
588 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
589 		return -EINVAL;
590 	}
591 
592 	sd->asid_generation = 1;
593 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
594 	sd->next_asid = sd->max_asid + 1;
595 	sd->min_asid = max_sev_asid + 1;
596 
597 	gdt = get_current_gdt_rw();
598 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
599 
600 	wrmsrl(MSR_EFER, efer | EFER_SVME);
601 
602 	wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
603 
604 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
605 		/*
606 		 * Set the default value, even if we don't use TSC scaling
607 		 * to avoid having stale value in the msr
608 		 */
609 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
610 	}
611 
612 
613 	/*
614 	 * Get OSVW bits.
615 	 *
616 	 * Note that it is possible to have a system with mixed processor
617 	 * revisions and therefore different OSVW bits. If bits are not the same
618 	 * on different processors then choose the worst case (i.e. if erratum
619 	 * is present on one processor and not on another then assume that the
620 	 * erratum is present everywhere).
621 	 */
622 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
623 		uint64_t len, status = 0;
624 		int err;
625 
626 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
627 		if (!err)
628 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
629 						      &err);
630 
631 		if (err)
632 			osvw_status = osvw_len = 0;
633 		else {
634 			if (len < osvw_len)
635 				osvw_len = len;
636 			osvw_status |= status;
637 			osvw_status &= (1ULL << osvw_len) - 1;
638 		}
639 	} else
640 		osvw_status = osvw_len = 0;
641 
642 	svm_init_erratum_383();
643 
644 	amd_pmu_enable_virt();
645 
646 	return 0;
647 }
648 
649 static void svm_cpu_uninit(int cpu)
650 {
651 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
652 
653 	if (!sd)
654 		return;
655 
656 	per_cpu(svm_data, cpu) = NULL;
657 	kfree(sd->sev_vmcbs);
658 	__free_page(sd->save_area);
659 	kfree(sd);
660 }
661 
662 static int svm_cpu_init(int cpu)
663 {
664 	struct svm_cpu_data *sd;
665 	int ret = -ENOMEM;
666 
667 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
668 	if (!sd)
669 		return ret;
670 	sd->cpu = cpu;
671 	sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
672 	if (!sd->save_area)
673 		goto free_cpu_data;
674 
675 	ret = sev_cpu_init(sd);
676 	if (ret)
677 		goto free_save_area;
678 
679 	per_cpu(svm_data, cpu) = sd;
680 
681 	return 0;
682 
683 free_save_area:
684 	__free_page(sd->save_area);
685 free_cpu_data:
686 	kfree(sd);
687 	return ret;
688 
689 }
690 
691 static int direct_access_msr_slot(u32 msr)
692 {
693 	u32 i;
694 
695 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
696 		if (direct_access_msrs[i].index == msr)
697 			return i;
698 
699 	return -ENOENT;
700 }
701 
702 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
703 				     int write)
704 {
705 	struct vcpu_svm *svm = to_svm(vcpu);
706 	int slot = direct_access_msr_slot(msr);
707 
708 	if (slot == -ENOENT)
709 		return;
710 
711 	/* Set the shadow bitmaps to the desired intercept states */
712 	if (read)
713 		set_bit(slot, svm->shadow_msr_intercept.read);
714 	else
715 		clear_bit(slot, svm->shadow_msr_intercept.read);
716 
717 	if (write)
718 		set_bit(slot, svm->shadow_msr_intercept.write);
719 	else
720 		clear_bit(slot, svm->shadow_msr_intercept.write);
721 }
722 
723 static bool valid_msr_intercept(u32 index)
724 {
725 	return direct_access_msr_slot(index) != -ENOENT;
726 }
727 
728 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
729 {
730 	u8 bit_write;
731 	unsigned long tmp;
732 	u32 offset;
733 	u32 *msrpm;
734 
735 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
736 				      to_svm(vcpu)->msrpm;
737 
738 	offset    = svm_msrpm_offset(msr);
739 	bit_write = 2 * (msr & 0x0f) + 1;
740 	tmp       = msrpm[offset];
741 
742 	BUG_ON(offset == MSR_INVALID);
743 
744 	return !!test_bit(bit_write,  &tmp);
745 }
746 
747 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
748 					u32 msr, int read, int write)
749 {
750 	struct vcpu_svm *svm = to_svm(vcpu);
751 	u8 bit_read, bit_write;
752 	unsigned long tmp;
753 	u32 offset;
754 
755 	/*
756 	 * If this warning triggers extend the direct_access_msrs list at the
757 	 * beginning of the file
758 	 */
759 	WARN_ON(!valid_msr_intercept(msr));
760 
761 	/* Enforce non allowed MSRs to trap */
762 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
763 		read = 0;
764 
765 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
766 		write = 0;
767 
768 	offset    = svm_msrpm_offset(msr);
769 	bit_read  = 2 * (msr & 0x0f);
770 	bit_write = 2 * (msr & 0x0f) + 1;
771 	tmp       = msrpm[offset];
772 
773 	BUG_ON(offset == MSR_INVALID);
774 
775 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
776 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
777 
778 	msrpm[offset] = tmp;
779 
780 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
781 	svm->nested.force_msr_bitmap_recalc = true;
782 }
783 
784 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
785 			  int read, int write)
786 {
787 	set_shadow_msr_intercept(vcpu, msr, read, write);
788 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
789 }
790 
791 u32 *svm_vcpu_alloc_msrpm(void)
792 {
793 	unsigned int order = get_order(MSRPM_SIZE);
794 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
795 	u32 *msrpm;
796 
797 	if (!pages)
798 		return NULL;
799 
800 	msrpm = page_address(pages);
801 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
802 
803 	return msrpm;
804 }
805 
806 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
807 {
808 	int i;
809 
810 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
811 		if (!direct_access_msrs[i].always)
812 			continue;
813 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
814 	}
815 }
816 
817 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
818 {
819 	int i;
820 
821 	if (intercept == svm->x2avic_msrs_intercepted)
822 		return;
823 
824 	if (avic_mode != AVIC_MODE_X2 ||
825 	    !apic_x2apic_mode(svm->vcpu.arch.apic))
826 		return;
827 
828 	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
829 		int index = direct_access_msrs[i].index;
830 
831 		if ((index < APIC_BASE_MSR) ||
832 		    (index > APIC_BASE_MSR + 0xff))
833 			continue;
834 		set_msr_interception(&svm->vcpu, svm->msrpm, index,
835 				     !intercept, !intercept);
836 	}
837 
838 	svm->x2avic_msrs_intercepted = intercept;
839 }
840 
841 void svm_vcpu_free_msrpm(u32 *msrpm)
842 {
843 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
844 }
845 
846 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
847 {
848 	struct vcpu_svm *svm = to_svm(vcpu);
849 	u32 i;
850 
851 	/*
852 	 * Set intercept permissions for all direct access MSRs again. They
853 	 * will automatically get filtered through the MSR filter, so we are
854 	 * back in sync after this.
855 	 */
856 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
857 		u32 msr = direct_access_msrs[i].index;
858 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
859 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
860 
861 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
862 	}
863 }
864 
865 static void add_msr_offset(u32 offset)
866 {
867 	int i;
868 
869 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
870 
871 		/* Offset already in list? */
872 		if (msrpm_offsets[i] == offset)
873 			return;
874 
875 		/* Slot used by another offset? */
876 		if (msrpm_offsets[i] != MSR_INVALID)
877 			continue;
878 
879 		/* Add offset to list */
880 		msrpm_offsets[i] = offset;
881 
882 		return;
883 	}
884 
885 	/*
886 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
887 	 * increase MSRPM_OFFSETS in this case.
888 	 */
889 	BUG();
890 }
891 
892 static void init_msrpm_offsets(void)
893 {
894 	int i;
895 
896 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
897 
898 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
899 		u32 offset;
900 
901 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
902 		BUG_ON(offset == MSR_INVALID);
903 
904 		add_msr_offset(offset);
905 	}
906 }
907 
908 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
909 {
910 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
911 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
912 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
913 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
914 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
915 
916 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
917 }
918 
919 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
920 {
921 	struct vcpu_svm *svm = to_svm(vcpu);
922 
923 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
924 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
925 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
926 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
927 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
928 
929 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
930 	if (is_guest_mode(vcpu))
931 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
932 }
933 
934 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
935 {
936 	struct vcpu_svm *svm = to_svm(vcpu);
937 
938 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
939 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
940 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
941 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
942 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
943 
944 	/*
945 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
946 	 * on nested guest entries.
947 	 */
948 	if (is_guest_mode(vcpu))
949 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
950 }
951 
952 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
953 {
954 	/*
955 	 * If the LBR virtualization is disabled, the LBR msrs are always
956 	 * kept in the vmcb01 to avoid copying them on nested guest entries.
957 	 *
958 	 * If nested, and the LBR virtualization is enabled/disabled, the msrs
959 	 * are moved between the vmcb01 and vmcb02 as needed.
960 	 */
961 	struct vmcb *vmcb =
962 		(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
963 			svm->vmcb : svm->vmcb01.ptr;
964 
965 	switch (index) {
966 	case MSR_IA32_DEBUGCTLMSR:
967 		return vmcb->save.dbgctl;
968 	case MSR_IA32_LASTBRANCHFROMIP:
969 		return vmcb->save.br_from;
970 	case MSR_IA32_LASTBRANCHTOIP:
971 		return vmcb->save.br_to;
972 	case MSR_IA32_LASTINTFROMIP:
973 		return vmcb->save.last_excp_from;
974 	case MSR_IA32_LASTINTTOIP:
975 		return vmcb->save.last_excp_to;
976 	default:
977 		KVM_BUG(false, svm->vcpu.kvm,
978 			"%s: Unknown MSR 0x%x", __func__, index);
979 		return 0;
980 	}
981 }
982 
983 void svm_update_lbrv(struct kvm_vcpu *vcpu)
984 {
985 	struct vcpu_svm *svm = to_svm(vcpu);
986 
987 	bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
988 					   DEBUGCTLMSR_LBR;
989 
990 	bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
991 				      LBR_CTL_ENABLE_MASK);
992 
993 	if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
994 		if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
995 			enable_lbrv = true;
996 
997 	if (enable_lbrv == current_enable_lbrv)
998 		return;
999 
1000 	if (enable_lbrv)
1001 		svm_enable_lbrv(vcpu);
1002 	else
1003 		svm_disable_lbrv(vcpu);
1004 }
1005 
1006 void disable_nmi_singlestep(struct vcpu_svm *svm)
1007 {
1008 	svm->nmi_singlestep = false;
1009 
1010 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1011 		/* Clear our flags if they were not set by the guest */
1012 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1013 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1014 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1015 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1016 	}
1017 }
1018 
1019 static void grow_ple_window(struct kvm_vcpu *vcpu)
1020 {
1021 	struct vcpu_svm *svm = to_svm(vcpu);
1022 	struct vmcb_control_area *control = &svm->vmcb->control;
1023 	int old = control->pause_filter_count;
1024 
1025 	if (kvm_pause_in_guest(vcpu->kvm))
1026 		return;
1027 
1028 	control->pause_filter_count = __grow_ple_window(old,
1029 							pause_filter_count,
1030 							pause_filter_count_grow,
1031 							pause_filter_count_max);
1032 
1033 	if (control->pause_filter_count != old) {
1034 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1035 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1036 					    control->pause_filter_count, old);
1037 	}
1038 }
1039 
1040 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1041 {
1042 	struct vcpu_svm *svm = to_svm(vcpu);
1043 	struct vmcb_control_area *control = &svm->vmcb->control;
1044 	int old = control->pause_filter_count;
1045 
1046 	if (kvm_pause_in_guest(vcpu->kvm))
1047 		return;
1048 
1049 	control->pause_filter_count =
1050 				__shrink_ple_window(old,
1051 						    pause_filter_count,
1052 						    pause_filter_count_shrink,
1053 						    pause_filter_count);
1054 	if (control->pause_filter_count != old) {
1055 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1056 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1057 					    control->pause_filter_count, old);
1058 	}
1059 }
1060 
1061 static void svm_hardware_unsetup(void)
1062 {
1063 	int cpu;
1064 
1065 	sev_hardware_unsetup();
1066 
1067 	for_each_possible_cpu(cpu)
1068 		svm_cpu_uninit(cpu);
1069 
1070 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1071 	get_order(IOPM_SIZE));
1072 	iopm_base = 0;
1073 }
1074 
1075 static void init_seg(struct vmcb_seg *seg)
1076 {
1077 	seg->selector = 0;
1078 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1079 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1080 	seg->limit = 0xffff;
1081 	seg->base = 0;
1082 }
1083 
1084 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1085 {
1086 	seg->selector = 0;
1087 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1088 	seg->limit = 0xffff;
1089 	seg->base = 0;
1090 }
1091 
1092 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1093 {
1094 	struct vcpu_svm *svm = to_svm(vcpu);
1095 
1096 	return svm->nested.ctl.tsc_offset;
1097 }
1098 
1099 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1100 {
1101 	struct vcpu_svm *svm = to_svm(vcpu);
1102 
1103 	return svm->tsc_ratio_msr;
1104 }
1105 
1106 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1107 {
1108 	struct vcpu_svm *svm = to_svm(vcpu);
1109 
1110 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1111 	svm->vmcb->control.tsc_offset = offset;
1112 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1113 }
1114 
1115 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1116 {
1117 	__svm_write_tsc_multiplier(multiplier);
1118 }
1119 
1120 
1121 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1122 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1123 					      struct vcpu_svm *svm)
1124 {
1125 	/*
1126 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1127 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1128 	 */
1129 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1130 		if (!npt_enabled ||
1131 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1132 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1133 		else
1134 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1135 	}
1136 
1137 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1138 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1139 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1140 		else
1141 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1142 	}
1143 }
1144 
1145 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1146 {
1147 	struct vcpu_svm *svm = to_svm(vcpu);
1148 
1149 	if (guest_cpuid_is_intel(vcpu)) {
1150 		/*
1151 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1152 		 * accesses because the processor only stores 32 bits.
1153 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1154 		 */
1155 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1156 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1157 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1158 
1159 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1160 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1161 
1162 		svm->v_vmload_vmsave_enabled = false;
1163 	} else {
1164 		/*
1165 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1166 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1167 		 */
1168 		if (vls) {
1169 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1170 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1171 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1172 		}
1173 		/* No need to intercept these MSRs */
1174 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1175 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1176 	}
1177 }
1178 
1179 static void init_vmcb(struct kvm_vcpu *vcpu)
1180 {
1181 	struct vcpu_svm *svm = to_svm(vcpu);
1182 	struct vmcb *vmcb = svm->vmcb01.ptr;
1183 	struct vmcb_control_area *control = &vmcb->control;
1184 	struct vmcb_save_area *save = &vmcb->save;
1185 
1186 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1187 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1188 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1189 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1190 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1191 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1192 	if (!kvm_vcpu_apicv_active(vcpu))
1193 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1194 
1195 	set_dr_intercepts(svm);
1196 
1197 	set_exception_intercept(svm, PF_VECTOR);
1198 	set_exception_intercept(svm, UD_VECTOR);
1199 	set_exception_intercept(svm, MC_VECTOR);
1200 	set_exception_intercept(svm, AC_VECTOR);
1201 	set_exception_intercept(svm, DB_VECTOR);
1202 	/*
1203 	 * Guest access to VMware backdoor ports could legitimately
1204 	 * trigger #GP because of TSS I/O permission bitmap.
1205 	 * We intercept those #GP and allow access to them anyway
1206 	 * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
1207 	 * decrypt guest memory to decode the faulting instruction.
1208 	 */
1209 	if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1210 		set_exception_intercept(svm, GP_VECTOR);
1211 
1212 	svm_set_intercept(svm, INTERCEPT_INTR);
1213 	svm_set_intercept(svm, INTERCEPT_NMI);
1214 
1215 	if (intercept_smi)
1216 		svm_set_intercept(svm, INTERCEPT_SMI);
1217 
1218 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1219 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1220 	svm_set_intercept(svm, INTERCEPT_CPUID);
1221 	svm_set_intercept(svm, INTERCEPT_INVD);
1222 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1223 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1224 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1225 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1226 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1227 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1228 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1229 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1230 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1231 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1232 	svm_set_intercept(svm, INTERCEPT_STGI);
1233 	svm_set_intercept(svm, INTERCEPT_CLGI);
1234 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1235 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1236 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1237 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1238 	svm_set_intercept(svm, INTERCEPT_RSM);
1239 
1240 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1241 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1242 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1243 	}
1244 
1245 	if (!kvm_hlt_in_guest(vcpu->kvm))
1246 		svm_set_intercept(svm, INTERCEPT_HLT);
1247 
1248 	control->iopm_base_pa = __sme_set(iopm_base);
1249 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1250 	control->int_ctl = V_INTR_MASKING_MASK;
1251 
1252 	init_seg(&save->es);
1253 	init_seg(&save->ss);
1254 	init_seg(&save->ds);
1255 	init_seg(&save->fs);
1256 	init_seg(&save->gs);
1257 
1258 	save->cs.selector = 0xf000;
1259 	save->cs.base = 0xffff0000;
1260 	/* Executable/Readable Code Segment */
1261 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1262 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1263 	save->cs.limit = 0xffff;
1264 
1265 	save->gdtr.base = 0;
1266 	save->gdtr.limit = 0xffff;
1267 	save->idtr.base = 0;
1268 	save->idtr.limit = 0xffff;
1269 
1270 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1271 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1272 
1273 	if (npt_enabled) {
1274 		/* Setup VMCB for Nested Paging */
1275 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1276 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1277 		clr_exception_intercept(svm, PF_VECTOR);
1278 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1279 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1280 		save->g_pat = vcpu->arch.pat;
1281 		save->cr3 = 0;
1282 	}
1283 	svm->current_vmcb->asid_generation = 0;
1284 	svm->asid = 0;
1285 
1286 	svm->nested.vmcb12_gpa = INVALID_GPA;
1287 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1288 
1289 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1290 		control->pause_filter_count = pause_filter_count;
1291 		if (pause_filter_thresh)
1292 			control->pause_filter_thresh = pause_filter_thresh;
1293 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1294 	} else {
1295 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1296 	}
1297 
1298 	svm_recalc_instruction_intercepts(vcpu, svm);
1299 
1300 	/*
1301 	 * If the host supports V_SPEC_CTRL then disable the interception
1302 	 * of MSR_IA32_SPEC_CTRL.
1303 	 */
1304 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1305 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1306 
1307 	if (kvm_vcpu_apicv_active(vcpu))
1308 		avic_init_vmcb(svm, vmcb);
1309 
1310 	if (vgif) {
1311 		svm_clr_intercept(svm, INTERCEPT_STGI);
1312 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1313 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1314 	}
1315 
1316 	if (sev_guest(vcpu->kvm))
1317 		sev_init_vmcb(svm);
1318 
1319 	svm_hv_init_vmcb(vmcb);
1320 	init_vmcb_after_set_cpuid(vcpu);
1321 
1322 	vmcb_mark_all_dirty(vmcb);
1323 
1324 	enable_gif(svm);
1325 }
1326 
1327 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1328 {
1329 	struct vcpu_svm *svm = to_svm(vcpu);
1330 
1331 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1332 
1333 	svm_init_osvw(vcpu);
1334 	vcpu->arch.microcode_version = 0x01000065;
1335 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1336 
1337 	if (sev_es_guest(vcpu->kvm))
1338 		sev_es_vcpu_reset(svm);
1339 }
1340 
1341 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1342 {
1343 	struct vcpu_svm *svm = to_svm(vcpu);
1344 
1345 	svm->spec_ctrl = 0;
1346 	svm->virt_spec_ctrl = 0;
1347 
1348 	init_vmcb(vcpu);
1349 
1350 	if (!init_event)
1351 		__svm_vcpu_reset(vcpu);
1352 }
1353 
1354 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1355 {
1356 	svm->current_vmcb = target_vmcb;
1357 	svm->vmcb = target_vmcb->ptr;
1358 }
1359 
1360 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1361 {
1362 	struct vcpu_svm *svm;
1363 	struct page *vmcb01_page;
1364 	struct page *vmsa_page = NULL;
1365 	int err;
1366 
1367 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1368 	svm = to_svm(vcpu);
1369 
1370 	err = -ENOMEM;
1371 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1372 	if (!vmcb01_page)
1373 		goto out;
1374 
1375 	if (sev_es_guest(vcpu->kvm)) {
1376 		/*
1377 		 * SEV-ES guests require a separate VMSA page used to contain
1378 		 * the encrypted register state of the guest.
1379 		 */
1380 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1381 		if (!vmsa_page)
1382 			goto error_free_vmcb_page;
1383 
1384 		/*
1385 		 * SEV-ES guests maintain an encrypted version of their FPU
1386 		 * state which is restored and saved on VMRUN and VMEXIT.
1387 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1388 		 * do xsave/xrstor on it.
1389 		 */
1390 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1391 	}
1392 
1393 	err = avic_init_vcpu(svm);
1394 	if (err)
1395 		goto error_free_vmsa_page;
1396 
1397 	svm->msrpm = svm_vcpu_alloc_msrpm();
1398 	if (!svm->msrpm) {
1399 		err = -ENOMEM;
1400 		goto error_free_vmsa_page;
1401 	}
1402 
1403 	svm->x2avic_msrs_intercepted = true;
1404 
1405 	svm->vmcb01.ptr = page_address(vmcb01_page);
1406 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1407 	svm_switch_vmcb(svm, &svm->vmcb01);
1408 
1409 	if (vmsa_page)
1410 		svm->sev_es.vmsa = page_address(vmsa_page);
1411 
1412 	svm->guest_state_loaded = false;
1413 
1414 	return 0;
1415 
1416 error_free_vmsa_page:
1417 	if (vmsa_page)
1418 		__free_page(vmsa_page);
1419 error_free_vmcb_page:
1420 	__free_page(vmcb01_page);
1421 out:
1422 	return err;
1423 }
1424 
1425 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1426 {
1427 	int i;
1428 
1429 	for_each_online_cpu(i)
1430 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1431 }
1432 
1433 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1434 {
1435 	struct vcpu_svm *svm = to_svm(vcpu);
1436 
1437 	/*
1438 	 * The vmcb page can be recycled, causing a false negative in
1439 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1440 	 * vmcb page recorded as its current vmcb.
1441 	 */
1442 	svm_clear_current_vmcb(svm->vmcb);
1443 
1444 	svm_free_nested(svm);
1445 
1446 	sev_free_vcpu(vcpu);
1447 
1448 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1449 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1450 }
1451 
1452 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1453 {
1454 	struct vcpu_svm *svm = to_svm(vcpu);
1455 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1456 
1457 	if (sev_es_guest(vcpu->kvm))
1458 		sev_es_unmap_ghcb(svm);
1459 
1460 	if (svm->guest_state_loaded)
1461 		return;
1462 
1463 	/*
1464 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1465 	 * or subsequent vmload of host save area.
1466 	 */
1467 	vmsave(__sme_page_pa(sd->save_area));
1468 	if (sev_es_guest(vcpu->kvm)) {
1469 		struct sev_es_save_area *hostsa;
1470 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1471 
1472 		sev_es_prepare_switch_to_guest(hostsa);
1473 	}
1474 
1475 	if (tsc_scaling)
1476 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1477 
1478 	if (likely(tsc_aux_uret_slot >= 0))
1479 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1480 
1481 	svm->guest_state_loaded = true;
1482 }
1483 
1484 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1485 {
1486 	to_svm(vcpu)->guest_state_loaded = false;
1487 }
1488 
1489 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1490 {
1491 	struct vcpu_svm *svm = to_svm(vcpu);
1492 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1493 
1494 	if (sd->current_vmcb != svm->vmcb) {
1495 		sd->current_vmcb = svm->vmcb;
1496 		indirect_branch_prediction_barrier();
1497 	}
1498 	if (kvm_vcpu_apicv_active(vcpu))
1499 		avic_vcpu_load(vcpu, cpu);
1500 }
1501 
1502 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1503 {
1504 	if (kvm_vcpu_apicv_active(vcpu))
1505 		avic_vcpu_put(vcpu);
1506 
1507 	svm_prepare_host_switch(vcpu);
1508 
1509 	++vcpu->stat.host_state_reload;
1510 }
1511 
1512 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1513 {
1514 	struct vcpu_svm *svm = to_svm(vcpu);
1515 	unsigned long rflags = svm->vmcb->save.rflags;
1516 
1517 	if (svm->nmi_singlestep) {
1518 		/* Hide our flags if they were not set by the guest */
1519 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1520 			rflags &= ~X86_EFLAGS_TF;
1521 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1522 			rflags &= ~X86_EFLAGS_RF;
1523 	}
1524 	return rflags;
1525 }
1526 
1527 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1528 {
1529 	if (to_svm(vcpu)->nmi_singlestep)
1530 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1531 
1532        /*
1533         * Any change of EFLAGS.VM is accompanied by a reload of SS
1534         * (caused by either a task switch or an inter-privilege IRET),
1535         * so we do not need to update the CPL here.
1536         */
1537 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1538 }
1539 
1540 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1541 {
1542 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1543 
1544 	return sev_es_guest(vcpu->kvm)
1545 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1546 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1547 }
1548 
1549 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1550 {
1551 	kvm_register_mark_available(vcpu, reg);
1552 
1553 	switch (reg) {
1554 	case VCPU_EXREG_PDPTR:
1555 		/*
1556 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1557 		 * it is always updated per SDM when moving to CRs.
1558 		 */
1559 		if (npt_enabled)
1560 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1561 		break;
1562 	default:
1563 		KVM_BUG_ON(1, vcpu->kvm);
1564 	}
1565 }
1566 
1567 static void svm_set_vintr(struct vcpu_svm *svm)
1568 {
1569 	struct vmcb_control_area *control;
1570 
1571 	/*
1572 	 * The following fields are ignored when AVIC is enabled
1573 	 */
1574 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1575 
1576 	svm_set_intercept(svm, INTERCEPT_VINTR);
1577 
1578 	/*
1579 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1580 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1581 	 */
1582 	control = &svm->vmcb->control;
1583 	control->int_vector = 0x0;
1584 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1585 	control->int_ctl |= V_IRQ_MASK |
1586 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1587 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1588 }
1589 
1590 static void svm_clear_vintr(struct vcpu_svm *svm)
1591 {
1592 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1593 
1594 	/* Drop int_ctl fields related to VINTR injection.  */
1595 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1596 	if (is_guest_mode(&svm->vcpu)) {
1597 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1598 
1599 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1600 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1601 
1602 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1603 			V_IRQ_INJECTION_BITS_MASK;
1604 
1605 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1606 	}
1607 
1608 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1609 }
1610 
1611 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1612 {
1613 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1614 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1615 
1616 	switch (seg) {
1617 	case VCPU_SREG_CS: return &save->cs;
1618 	case VCPU_SREG_DS: return &save->ds;
1619 	case VCPU_SREG_ES: return &save->es;
1620 	case VCPU_SREG_FS: return &save01->fs;
1621 	case VCPU_SREG_GS: return &save01->gs;
1622 	case VCPU_SREG_SS: return &save->ss;
1623 	case VCPU_SREG_TR: return &save01->tr;
1624 	case VCPU_SREG_LDTR: return &save01->ldtr;
1625 	}
1626 	BUG();
1627 	return NULL;
1628 }
1629 
1630 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1631 {
1632 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1633 
1634 	return s->base;
1635 }
1636 
1637 static void svm_get_segment(struct kvm_vcpu *vcpu,
1638 			    struct kvm_segment *var, int seg)
1639 {
1640 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1641 
1642 	var->base = s->base;
1643 	var->limit = s->limit;
1644 	var->selector = s->selector;
1645 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1646 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1647 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1648 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1649 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1650 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1651 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1652 
1653 	/*
1654 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1655 	 * However, the SVM spec states that the G bit is not observed by the
1656 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1657 	 * So let's synthesize a legal G bit for all segments, this helps
1658 	 * running KVM nested. It also helps cross-vendor migration, because
1659 	 * Intel's vmentry has a check on the 'G' bit.
1660 	 */
1661 	var->g = s->limit > 0xfffff;
1662 
1663 	/*
1664 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1665 	 * for cross vendor migration purposes by "not present"
1666 	 */
1667 	var->unusable = !var->present;
1668 
1669 	switch (seg) {
1670 	case VCPU_SREG_TR:
1671 		/*
1672 		 * Work around a bug where the busy flag in the tr selector
1673 		 * isn't exposed
1674 		 */
1675 		var->type |= 0x2;
1676 		break;
1677 	case VCPU_SREG_DS:
1678 	case VCPU_SREG_ES:
1679 	case VCPU_SREG_FS:
1680 	case VCPU_SREG_GS:
1681 		/*
1682 		 * The accessed bit must always be set in the segment
1683 		 * descriptor cache, although it can be cleared in the
1684 		 * descriptor, the cached bit always remains at 1. Since
1685 		 * Intel has a check on this, set it here to support
1686 		 * cross-vendor migration.
1687 		 */
1688 		if (!var->unusable)
1689 			var->type |= 0x1;
1690 		break;
1691 	case VCPU_SREG_SS:
1692 		/*
1693 		 * On AMD CPUs sometimes the DB bit in the segment
1694 		 * descriptor is left as 1, although the whole segment has
1695 		 * been made unusable. Clear it here to pass an Intel VMX
1696 		 * entry check when cross vendor migrating.
1697 		 */
1698 		if (var->unusable)
1699 			var->db = 0;
1700 		/* This is symmetric with svm_set_segment() */
1701 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1702 		break;
1703 	}
1704 }
1705 
1706 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1707 {
1708 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1709 
1710 	return save->cpl;
1711 }
1712 
1713 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1714 {
1715 	struct kvm_segment cs;
1716 
1717 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1718 	*db = cs.db;
1719 	*l = cs.l;
1720 }
1721 
1722 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1723 {
1724 	struct vcpu_svm *svm = to_svm(vcpu);
1725 
1726 	dt->size = svm->vmcb->save.idtr.limit;
1727 	dt->address = svm->vmcb->save.idtr.base;
1728 }
1729 
1730 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1731 {
1732 	struct vcpu_svm *svm = to_svm(vcpu);
1733 
1734 	svm->vmcb->save.idtr.limit = dt->size;
1735 	svm->vmcb->save.idtr.base = dt->address ;
1736 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1737 }
1738 
1739 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1740 {
1741 	struct vcpu_svm *svm = to_svm(vcpu);
1742 
1743 	dt->size = svm->vmcb->save.gdtr.limit;
1744 	dt->address = svm->vmcb->save.gdtr.base;
1745 }
1746 
1747 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1748 {
1749 	struct vcpu_svm *svm = to_svm(vcpu);
1750 
1751 	svm->vmcb->save.gdtr.limit = dt->size;
1752 	svm->vmcb->save.gdtr.base = dt->address ;
1753 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1754 }
1755 
1756 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1757 {
1758 	struct vcpu_svm *svm = to_svm(vcpu);
1759 
1760 	/*
1761 	 * For guests that don't set guest_state_protected, the cr3 update is
1762 	 * handled via kvm_mmu_load() while entering the guest. For guests
1763 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1764 	 * VMCB save area now, since the save area will become the initial
1765 	 * contents of the VMSA, and future VMCB save area updates won't be
1766 	 * seen.
1767 	 */
1768 	if (sev_es_guest(vcpu->kvm)) {
1769 		svm->vmcb->save.cr3 = cr3;
1770 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1771 	}
1772 }
1773 
1774 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1775 {
1776 	struct vcpu_svm *svm = to_svm(vcpu);
1777 	u64 hcr0 = cr0;
1778 	bool old_paging = is_paging(vcpu);
1779 
1780 #ifdef CONFIG_X86_64
1781 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1782 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1783 			vcpu->arch.efer |= EFER_LMA;
1784 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1785 		}
1786 
1787 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1788 			vcpu->arch.efer &= ~EFER_LMA;
1789 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1790 		}
1791 	}
1792 #endif
1793 	vcpu->arch.cr0 = cr0;
1794 
1795 	if (!npt_enabled) {
1796 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1797 		if (old_paging != is_paging(vcpu))
1798 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1799 	}
1800 
1801 	/*
1802 	 * re-enable caching here because the QEMU bios
1803 	 * does not do it - this results in some delay at
1804 	 * reboot
1805 	 */
1806 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1807 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1808 
1809 	svm->vmcb->save.cr0 = hcr0;
1810 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1811 
1812 	/*
1813 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1814 	 * tracking is done using the CR write traps.
1815 	 */
1816 	if (sev_es_guest(vcpu->kvm))
1817 		return;
1818 
1819 	if (hcr0 == cr0) {
1820 		/* Selective CR0 write remains on.  */
1821 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1822 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1823 	} else {
1824 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1825 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1826 	}
1827 }
1828 
1829 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1830 {
1831 	return true;
1832 }
1833 
1834 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1835 {
1836 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1837 	unsigned long old_cr4 = vcpu->arch.cr4;
1838 
1839 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1840 		svm_flush_tlb_current(vcpu);
1841 
1842 	vcpu->arch.cr4 = cr4;
1843 	if (!npt_enabled) {
1844 		cr4 |= X86_CR4_PAE;
1845 
1846 		if (!is_paging(vcpu))
1847 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1848 	}
1849 	cr4 |= host_cr4_mce;
1850 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1851 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1852 
1853 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1854 		kvm_update_cpuid_runtime(vcpu);
1855 }
1856 
1857 static void svm_set_segment(struct kvm_vcpu *vcpu,
1858 			    struct kvm_segment *var, int seg)
1859 {
1860 	struct vcpu_svm *svm = to_svm(vcpu);
1861 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1862 
1863 	s->base = var->base;
1864 	s->limit = var->limit;
1865 	s->selector = var->selector;
1866 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1867 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1868 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1869 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1870 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1871 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1872 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1873 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1874 
1875 	/*
1876 	 * This is always accurate, except if SYSRET returned to a segment
1877 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1878 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1879 	 * would entail passing the CPL to userspace and back.
1880 	 */
1881 	if (seg == VCPU_SREG_SS)
1882 		/* This is symmetric with svm_get_segment() */
1883 		svm->vmcb->save.cpl = (var->dpl & 3);
1884 
1885 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1886 }
1887 
1888 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1889 {
1890 	struct vcpu_svm *svm = to_svm(vcpu);
1891 
1892 	clr_exception_intercept(svm, BP_VECTOR);
1893 
1894 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1895 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1896 			set_exception_intercept(svm, BP_VECTOR);
1897 	}
1898 }
1899 
1900 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1901 {
1902 	if (sd->next_asid > sd->max_asid) {
1903 		++sd->asid_generation;
1904 		sd->next_asid = sd->min_asid;
1905 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1906 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1907 	}
1908 
1909 	svm->current_vmcb->asid_generation = sd->asid_generation;
1910 	svm->asid = sd->next_asid++;
1911 }
1912 
1913 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1914 {
1915 	struct vmcb *vmcb = svm->vmcb;
1916 
1917 	if (svm->vcpu.arch.guest_state_protected)
1918 		return;
1919 
1920 	if (unlikely(value != vmcb->save.dr6)) {
1921 		vmcb->save.dr6 = value;
1922 		vmcb_mark_dirty(vmcb, VMCB_DR);
1923 	}
1924 }
1925 
1926 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1927 {
1928 	struct vcpu_svm *svm = to_svm(vcpu);
1929 
1930 	if (vcpu->arch.guest_state_protected)
1931 		return;
1932 
1933 	get_debugreg(vcpu->arch.db[0], 0);
1934 	get_debugreg(vcpu->arch.db[1], 1);
1935 	get_debugreg(vcpu->arch.db[2], 2);
1936 	get_debugreg(vcpu->arch.db[3], 3);
1937 	/*
1938 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1939 	 * because db_interception might need it.  We can do it before vmentry.
1940 	 */
1941 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1942 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1943 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1944 	set_dr_intercepts(svm);
1945 }
1946 
1947 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1948 {
1949 	struct vcpu_svm *svm = to_svm(vcpu);
1950 
1951 	if (vcpu->arch.guest_state_protected)
1952 		return;
1953 
1954 	svm->vmcb->save.dr7 = value;
1955 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1956 }
1957 
1958 static int pf_interception(struct kvm_vcpu *vcpu)
1959 {
1960 	struct vcpu_svm *svm = to_svm(vcpu);
1961 
1962 	u64 fault_address = svm->vmcb->control.exit_info_2;
1963 	u64 error_code = svm->vmcb->control.exit_info_1;
1964 
1965 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1966 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1967 			svm->vmcb->control.insn_bytes : NULL,
1968 			svm->vmcb->control.insn_len);
1969 }
1970 
1971 static int npf_interception(struct kvm_vcpu *vcpu)
1972 {
1973 	struct vcpu_svm *svm = to_svm(vcpu);
1974 
1975 	u64 fault_address = svm->vmcb->control.exit_info_2;
1976 	u64 error_code = svm->vmcb->control.exit_info_1;
1977 
1978 	trace_kvm_page_fault(fault_address, error_code);
1979 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1980 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1981 			svm->vmcb->control.insn_bytes : NULL,
1982 			svm->vmcb->control.insn_len);
1983 }
1984 
1985 static int db_interception(struct kvm_vcpu *vcpu)
1986 {
1987 	struct kvm_run *kvm_run = vcpu->run;
1988 	struct vcpu_svm *svm = to_svm(vcpu);
1989 
1990 	if (!(vcpu->guest_debug &
1991 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1992 		!svm->nmi_singlestep) {
1993 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1994 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1995 		return 1;
1996 	}
1997 
1998 	if (svm->nmi_singlestep) {
1999 		disable_nmi_singlestep(svm);
2000 		/* Make sure we check for pending NMIs upon entry */
2001 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2002 	}
2003 
2004 	if (vcpu->guest_debug &
2005 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2006 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2007 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2008 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2009 		kvm_run->debug.arch.pc =
2010 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2011 		kvm_run->debug.arch.exception = DB_VECTOR;
2012 		return 0;
2013 	}
2014 
2015 	return 1;
2016 }
2017 
2018 static int bp_interception(struct kvm_vcpu *vcpu)
2019 {
2020 	struct vcpu_svm *svm = to_svm(vcpu);
2021 	struct kvm_run *kvm_run = vcpu->run;
2022 
2023 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2024 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2025 	kvm_run->debug.arch.exception = BP_VECTOR;
2026 	return 0;
2027 }
2028 
2029 static int ud_interception(struct kvm_vcpu *vcpu)
2030 {
2031 	return handle_ud(vcpu);
2032 }
2033 
2034 static int ac_interception(struct kvm_vcpu *vcpu)
2035 {
2036 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2037 	return 1;
2038 }
2039 
2040 static bool is_erratum_383(void)
2041 {
2042 	int err, i;
2043 	u64 value;
2044 
2045 	if (!erratum_383_found)
2046 		return false;
2047 
2048 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2049 	if (err)
2050 		return false;
2051 
2052 	/* Bit 62 may or may not be set for this mce */
2053 	value &= ~(1ULL << 62);
2054 
2055 	if (value != 0xb600000000010015ULL)
2056 		return false;
2057 
2058 	/* Clear MCi_STATUS registers */
2059 	for (i = 0; i < 6; ++i)
2060 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2061 
2062 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2063 	if (!err) {
2064 		u32 low, high;
2065 
2066 		value &= ~(1ULL << 2);
2067 		low    = lower_32_bits(value);
2068 		high   = upper_32_bits(value);
2069 
2070 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2071 	}
2072 
2073 	/* Flush tlb to evict multi-match entries */
2074 	__flush_tlb_all();
2075 
2076 	return true;
2077 }
2078 
2079 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2080 {
2081 	if (is_erratum_383()) {
2082 		/*
2083 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2084 		 * guest.
2085 		 */
2086 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2087 
2088 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2089 
2090 		return;
2091 	}
2092 
2093 	/*
2094 	 * On an #MC intercept the MCE handler is not called automatically in
2095 	 * the host. So do it by hand here.
2096 	 */
2097 	kvm_machine_check();
2098 }
2099 
2100 static int mc_interception(struct kvm_vcpu *vcpu)
2101 {
2102 	return 1;
2103 }
2104 
2105 static int shutdown_interception(struct kvm_vcpu *vcpu)
2106 {
2107 	struct kvm_run *kvm_run = vcpu->run;
2108 	struct vcpu_svm *svm = to_svm(vcpu);
2109 
2110 	/*
2111 	 * The VM save area has already been encrypted so it
2112 	 * cannot be reinitialized - just terminate.
2113 	 */
2114 	if (sev_es_guest(vcpu->kvm))
2115 		return -EINVAL;
2116 
2117 	/*
2118 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2119 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2120 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2121 	 * userspace.  At a platform view, INIT is acceptable behavior as
2122 	 * there exist bare metal platforms that automatically INIT the CPU
2123 	 * in response to shutdown.
2124 	 */
2125 	clear_page(svm->vmcb);
2126 	kvm_vcpu_reset(vcpu, true);
2127 
2128 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2129 	return 0;
2130 }
2131 
2132 static int io_interception(struct kvm_vcpu *vcpu)
2133 {
2134 	struct vcpu_svm *svm = to_svm(vcpu);
2135 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2136 	int size, in, string;
2137 	unsigned port;
2138 
2139 	++vcpu->stat.io_exits;
2140 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2141 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2142 	port = io_info >> 16;
2143 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2144 
2145 	if (string) {
2146 		if (sev_es_guest(vcpu->kvm))
2147 			return sev_es_string_io(svm, size, port, in);
2148 		else
2149 			return kvm_emulate_instruction(vcpu, 0);
2150 	}
2151 
2152 	svm->next_rip = svm->vmcb->control.exit_info_2;
2153 
2154 	return kvm_fast_pio(vcpu, size, port, in);
2155 }
2156 
2157 static int nmi_interception(struct kvm_vcpu *vcpu)
2158 {
2159 	return 1;
2160 }
2161 
2162 static int smi_interception(struct kvm_vcpu *vcpu)
2163 {
2164 	return 1;
2165 }
2166 
2167 static int intr_interception(struct kvm_vcpu *vcpu)
2168 {
2169 	++vcpu->stat.irq_exits;
2170 	return 1;
2171 }
2172 
2173 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2174 {
2175 	struct vcpu_svm *svm = to_svm(vcpu);
2176 	struct vmcb *vmcb12;
2177 	struct kvm_host_map map;
2178 	int ret;
2179 
2180 	if (nested_svm_check_permissions(vcpu))
2181 		return 1;
2182 
2183 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2184 	if (ret) {
2185 		if (ret == -EINVAL)
2186 			kvm_inject_gp(vcpu, 0);
2187 		return 1;
2188 	}
2189 
2190 	vmcb12 = map.hva;
2191 
2192 	ret = kvm_skip_emulated_instruction(vcpu);
2193 
2194 	if (vmload) {
2195 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2196 		svm->sysenter_eip_hi = 0;
2197 		svm->sysenter_esp_hi = 0;
2198 	} else {
2199 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2200 	}
2201 
2202 	kvm_vcpu_unmap(vcpu, &map, true);
2203 
2204 	return ret;
2205 }
2206 
2207 static int vmload_interception(struct kvm_vcpu *vcpu)
2208 {
2209 	return vmload_vmsave_interception(vcpu, true);
2210 }
2211 
2212 static int vmsave_interception(struct kvm_vcpu *vcpu)
2213 {
2214 	return vmload_vmsave_interception(vcpu, false);
2215 }
2216 
2217 static int vmrun_interception(struct kvm_vcpu *vcpu)
2218 {
2219 	if (nested_svm_check_permissions(vcpu))
2220 		return 1;
2221 
2222 	return nested_svm_vmrun(vcpu);
2223 }
2224 
2225 enum {
2226 	NONE_SVM_INSTR,
2227 	SVM_INSTR_VMRUN,
2228 	SVM_INSTR_VMLOAD,
2229 	SVM_INSTR_VMSAVE,
2230 };
2231 
2232 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2233 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2234 {
2235 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2236 
2237 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2238 		return NONE_SVM_INSTR;
2239 
2240 	switch (ctxt->modrm) {
2241 	case 0xd8: /* VMRUN */
2242 		return SVM_INSTR_VMRUN;
2243 	case 0xda: /* VMLOAD */
2244 		return SVM_INSTR_VMLOAD;
2245 	case 0xdb: /* VMSAVE */
2246 		return SVM_INSTR_VMSAVE;
2247 	default:
2248 		break;
2249 	}
2250 
2251 	return NONE_SVM_INSTR;
2252 }
2253 
2254 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2255 {
2256 	const int guest_mode_exit_codes[] = {
2257 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2258 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2259 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2260 	};
2261 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2262 		[SVM_INSTR_VMRUN] = vmrun_interception,
2263 		[SVM_INSTR_VMLOAD] = vmload_interception,
2264 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2265 	};
2266 	struct vcpu_svm *svm = to_svm(vcpu);
2267 	int ret;
2268 
2269 	if (is_guest_mode(vcpu)) {
2270 		/* Returns '1' or -errno on failure, '0' on success. */
2271 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2272 		if (ret)
2273 			return ret;
2274 		return 1;
2275 	}
2276 	return svm_instr_handlers[opcode](vcpu);
2277 }
2278 
2279 /*
2280  * #GP handling code. Note that #GP can be triggered under the following two
2281  * cases:
2282  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2283  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2284  *      regions (e.g. SMM memory on host).
2285  *   2) VMware backdoor
2286  */
2287 static int gp_interception(struct kvm_vcpu *vcpu)
2288 {
2289 	struct vcpu_svm *svm = to_svm(vcpu);
2290 	u32 error_code = svm->vmcb->control.exit_info_1;
2291 	int opcode;
2292 
2293 	/* Both #GP cases have zero error_code */
2294 	if (error_code)
2295 		goto reinject;
2296 
2297 	/* Decode the instruction for usage later */
2298 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2299 		goto reinject;
2300 
2301 	opcode = svm_instr_opcode(vcpu);
2302 
2303 	if (opcode == NONE_SVM_INSTR) {
2304 		if (!enable_vmware_backdoor)
2305 			goto reinject;
2306 
2307 		/*
2308 		 * VMware backdoor emulation on #GP interception only handles
2309 		 * IN{S}, OUT{S}, and RDPMC.
2310 		 */
2311 		if (!is_guest_mode(vcpu))
2312 			return kvm_emulate_instruction(vcpu,
2313 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2314 	} else {
2315 		/* All SVM instructions expect page aligned RAX */
2316 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2317 			goto reinject;
2318 
2319 		return emulate_svm_instr(vcpu, opcode);
2320 	}
2321 
2322 reinject:
2323 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2324 	return 1;
2325 }
2326 
2327 void svm_set_gif(struct vcpu_svm *svm, bool value)
2328 {
2329 	if (value) {
2330 		/*
2331 		 * If VGIF is enabled, the STGI intercept is only added to
2332 		 * detect the opening of the SMI/NMI window; remove it now.
2333 		 * Likewise, clear the VINTR intercept, we will set it
2334 		 * again while processing KVM_REQ_EVENT if needed.
2335 		 */
2336 		if (vgif)
2337 			svm_clr_intercept(svm, INTERCEPT_STGI);
2338 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2339 			svm_clear_vintr(svm);
2340 
2341 		enable_gif(svm);
2342 		if (svm->vcpu.arch.smi_pending ||
2343 		    svm->vcpu.arch.nmi_pending ||
2344 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2345 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2346 	} else {
2347 		disable_gif(svm);
2348 
2349 		/*
2350 		 * After a CLGI no interrupts should come.  But if vGIF is
2351 		 * in use, we still rely on the VINTR intercept (rather than
2352 		 * STGI) to detect an open interrupt window.
2353 		*/
2354 		if (!vgif)
2355 			svm_clear_vintr(svm);
2356 	}
2357 }
2358 
2359 static int stgi_interception(struct kvm_vcpu *vcpu)
2360 {
2361 	int ret;
2362 
2363 	if (nested_svm_check_permissions(vcpu))
2364 		return 1;
2365 
2366 	ret = kvm_skip_emulated_instruction(vcpu);
2367 	svm_set_gif(to_svm(vcpu), true);
2368 	return ret;
2369 }
2370 
2371 static int clgi_interception(struct kvm_vcpu *vcpu)
2372 {
2373 	int ret;
2374 
2375 	if (nested_svm_check_permissions(vcpu))
2376 		return 1;
2377 
2378 	ret = kvm_skip_emulated_instruction(vcpu);
2379 	svm_set_gif(to_svm(vcpu), false);
2380 	return ret;
2381 }
2382 
2383 static int invlpga_interception(struct kvm_vcpu *vcpu)
2384 {
2385 	gva_t gva = kvm_rax_read(vcpu);
2386 	u32 asid = kvm_rcx_read(vcpu);
2387 
2388 	/* FIXME: Handle an address size prefix. */
2389 	if (!is_long_mode(vcpu))
2390 		gva = (u32)gva;
2391 
2392 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2393 
2394 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2395 	kvm_mmu_invlpg(vcpu, gva);
2396 
2397 	return kvm_skip_emulated_instruction(vcpu);
2398 }
2399 
2400 static int skinit_interception(struct kvm_vcpu *vcpu)
2401 {
2402 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2403 
2404 	kvm_queue_exception(vcpu, UD_VECTOR);
2405 	return 1;
2406 }
2407 
2408 static int task_switch_interception(struct kvm_vcpu *vcpu)
2409 {
2410 	struct vcpu_svm *svm = to_svm(vcpu);
2411 	u16 tss_selector;
2412 	int reason;
2413 	int int_type = svm->vmcb->control.exit_int_info &
2414 		SVM_EXITINTINFO_TYPE_MASK;
2415 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2416 	uint32_t type =
2417 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2418 	uint32_t idt_v =
2419 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2420 	bool has_error_code = false;
2421 	u32 error_code = 0;
2422 
2423 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2424 
2425 	if (svm->vmcb->control.exit_info_2 &
2426 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2427 		reason = TASK_SWITCH_IRET;
2428 	else if (svm->vmcb->control.exit_info_2 &
2429 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2430 		reason = TASK_SWITCH_JMP;
2431 	else if (idt_v)
2432 		reason = TASK_SWITCH_GATE;
2433 	else
2434 		reason = TASK_SWITCH_CALL;
2435 
2436 	if (reason == TASK_SWITCH_GATE) {
2437 		switch (type) {
2438 		case SVM_EXITINTINFO_TYPE_NMI:
2439 			vcpu->arch.nmi_injected = false;
2440 			break;
2441 		case SVM_EXITINTINFO_TYPE_EXEPT:
2442 			if (svm->vmcb->control.exit_info_2 &
2443 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2444 				has_error_code = true;
2445 				error_code =
2446 					(u32)svm->vmcb->control.exit_info_2;
2447 			}
2448 			kvm_clear_exception_queue(vcpu);
2449 			break;
2450 		case SVM_EXITINTINFO_TYPE_INTR:
2451 		case SVM_EXITINTINFO_TYPE_SOFT:
2452 			kvm_clear_interrupt_queue(vcpu);
2453 			break;
2454 		default:
2455 			break;
2456 		}
2457 	}
2458 
2459 	if (reason != TASK_SWITCH_GATE ||
2460 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2461 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2462 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2463 		if (!svm_skip_emulated_instruction(vcpu))
2464 			return 0;
2465 	}
2466 
2467 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2468 		int_vec = -1;
2469 
2470 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2471 			       has_error_code, error_code);
2472 }
2473 
2474 static int iret_interception(struct kvm_vcpu *vcpu)
2475 {
2476 	struct vcpu_svm *svm = to_svm(vcpu);
2477 
2478 	++vcpu->stat.nmi_window_exits;
2479 	vcpu->arch.hflags |= HF_IRET_MASK;
2480 	if (!sev_es_guest(vcpu->kvm)) {
2481 		svm_clr_intercept(svm, INTERCEPT_IRET);
2482 		svm->nmi_iret_rip = kvm_rip_read(vcpu);
2483 	}
2484 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2485 	return 1;
2486 }
2487 
2488 static int invlpg_interception(struct kvm_vcpu *vcpu)
2489 {
2490 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2491 		return kvm_emulate_instruction(vcpu, 0);
2492 
2493 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2494 	return kvm_skip_emulated_instruction(vcpu);
2495 }
2496 
2497 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2498 {
2499 	return kvm_emulate_instruction(vcpu, 0);
2500 }
2501 
2502 static int rsm_interception(struct kvm_vcpu *vcpu)
2503 {
2504 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2505 }
2506 
2507 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2508 					    unsigned long val)
2509 {
2510 	struct vcpu_svm *svm = to_svm(vcpu);
2511 	unsigned long cr0 = vcpu->arch.cr0;
2512 	bool ret = false;
2513 
2514 	if (!is_guest_mode(vcpu) ||
2515 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2516 		return false;
2517 
2518 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2519 	val &= ~SVM_CR0_SELECTIVE_MASK;
2520 
2521 	if (cr0 ^ val) {
2522 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2523 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2524 	}
2525 
2526 	return ret;
2527 }
2528 
2529 #define CR_VALID (1ULL << 63)
2530 
2531 static int cr_interception(struct kvm_vcpu *vcpu)
2532 {
2533 	struct vcpu_svm *svm = to_svm(vcpu);
2534 	int reg, cr;
2535 	unsigned long val;
2536 	int err;
2537 
2538 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2539 		return emulate_on_interception(vcpu);
2540 
2541 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2542 		return emulate_on_interception(vcpu);
2543 
2544 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2545 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2546 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2547 	else
2548 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2549 
2550 	err = 0;
2551 	if (cr >= 16) { /* mov to cr */
2552 		cr -= 16;
2553 		val = kvm_register_read(vcpu, reg);
2554 		trace_kvm_cr_write(cr, val);
2555 		switch (cr) {
2556 		case 0:
2557 			if (!check_selective_cr0_intercepted(vcpu, val))
2558 				err = kvm_set_cr0(vcpu, val);
2559 			else
2560 				return 1;
2561 
2562 			break;
2563 		case 3:
2564 			err = kvm_set_cr3(vcpu, val);
2565 			break;
2566 		case 4:
2567 			err = kvm_set_cr4(vcpu, val);
2568 			break;
2569 		case 8:
2570 			err = kvm_set_cr8(vcpu, val);
2571 			break;
2572 		default:
2573 			WARN(1, "unhandled write to CR%d", cr);
2574 			kvm_queue_exception(vcpu, UD_VECTOR);
2575 			return 1;
2576 		}
2577 	} else { /* mov from cr */
2578 		switch (cr) {
2579 		case 0:
2580 			val = kvm_read_cr0(vcpu);
2581 			break;
2582 		case 2:
2583 			val = vcpu->arch.cr2;
2584 			break;
2585 		case 3:
2586 			val = kvm_read_cr3(vcpu);
2587 			break;
2588 		case 4:
2589 			val = kvm_read_cr4(vcpu);
2590 			break;
2591 		case 8:
2592 			val = kvm_get_cr8(vcpu);
2593 			break;
2594 		default:
2595 			WARN(1, "unhandled read from CR%d", cr);
2596 			kvm_queue_exception(vcpu, UD_VECTOR);
2597 			return 1;
2598 		}
2599 		kvm_register_write(vcpu, reg, val);
2600 		trace_kvm_cr_read(cr, val);
2601 	}
2602 	return kvm_complete_insn_gp(vcpu, err);
2603 }
2604 
2605 static int cr_trap(struct kvm_vcpu *vcpu)
2606 {
2607 	struct vcpu_svm *svm = to_svm(vcpu);
2608 	unsigned long old_value, new_value;
2609 	unsigned int cr;
2610 	int ret = 0;
2611 
2612 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2613 
2614 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2615 	switch (cr) {
2616 	case 0:
2617 		old_value = kvm_read_cr0(vcpu);
2618 		svm_set_cr0(vcpu, new_value);
2619 
2620 		kvm_post_set_cr0(vcpu, old_value, new_value);
2621 		break;
2622 	case 4:
2623 		old_value = kvm_read_cr4(vcpu);
2624 		svm_set_cr4(vcpu, new_value);
2625 
2626 		kvm_post_set_cr4(vcpu, old_value, new_value);
2627 		break;
2628 	case 8:
2629 		ret = kvm_set_cr8(vcpu, new_value);
2630 		break;
2631 	default:
2632 		WARN(1, "unhandled CR%d write trap", cr);
2633 		kvm_queue_exception(vcpu, UD_VECTOR);
2634 		return 1;
2635 	}
2636 
2637 	return kvm_complete_insn_gp(vcpu, ret);
2638 }
2639 
2640 static int dr_interception(struct kvm_vcpu *vcpu)
2641 {
2642 	struct vcpu_svm *svm = to_svm(vcpu);
2643 	int reg, dr;
2644 	unsigned long val;
2645 	int err = 0;
2646 
2647 	if (vcpu->guest_debug == 0) {
2648 		/*
2649 		 * No more DR vmexits; force a reload of the debug registers
2650 		 * and reenter on this instruction.  The next vmexit will
2651 		 * retrieve the full state of the debug registers.
2652 		 */
2653 		clr_dr_intercepts(svm);
2654 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2655 		return 1;
2656 	}
2657 
2658 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2659 		return emulate_on_interception(vcpu);
2660 
2661 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2662 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2663 	if (dr >= 16) { /* mov to DRn  */
2664 		dr -= 16;
2665 		val = kvm_register_read(vcpu, reg);
2666 		err = kvm_set_dr(vcpu, dr, val);
2667 	} else {
2668 		kvm_get_dr(vcpu, dr, &val);
2669 		kvm_register_write(vcpu, reg, val);
2670 	}
2671 
2672 	return kvm_complete_insn_gp(vcpu, err);
2673 }
2674 
2675 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2676 {
2677 	int r;
2678 
2679 	u8 cr8_prev = kvm_get_cr8(vcpu);
2680 	/* instruction emulation calls kvm_set_cr8() */
2681 	r = cr_interception(vcpu);
2682 	if (lapic_in_kernel(vcpu))
2683 		return r;
2684 	if (cr8_prev <= kvm_get_cr8(vcpu))
2685 		return r;
2686 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2687 	return 0;
2688 }
2689 
2690 static int efer_trap(struct kvm_vcpu *vcpu)
2691 {
2692 	struct msr_data msr_info;
2693 	int ret;
2694 
2695 	/*
2696 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2697 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2698 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2699 	 * the guest doesn't have X86_FEATURE_SVM.
2700 	 */
2701 	msr_info.host_initiated = false;
2702 	msr_info.index = MSR_EFER;
2703 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2704 	ret = kvm_set_msr_common(vcpu, &msr_info);
2705 
2706 	return kvm_complete_insn_gp(vcpu, ret);
2707 }
2708 
2709 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2710 {
2711 	msr->data = 0;
2712 
2713 	switch (msr->index) {
2714 	case MSR_F10H_DECFG:
2715 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2716 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2717 		break;
2718 	case MSR_IA32_PERF_CAPABILITIES:
2719 		return 0;
2720 	default:
2721 		return KVM_MSR_RET_INVALID;
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2728 {
2729 	struct vcpu_svm *svm = to_svm(vcpu);
2730 
2731 	switch (msr_info->index) {
2732 	case MSR_AMD64_TSC_RATIO:
2733 		if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2734 			return 1;
2735 		msr_info->data = svm->tsc_ratio_msr;
2736 		break;
2737 	case MSR_STAR:
2738 		msr_info->data = svm->vmcb01.ptr->save.star;
2739 		break;
2740 #ifdef CONFIG_X86_64
2741 	case MSR_LSTAR:
2742 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2743 		break;
2744 	case MSR_CSTAR:
2745 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2746 		break;
2747 	case MSR_KERNEL_GS_BASE:
2748 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2749 		break;
2750 	case MSR_SYSCALL_MASK:
2751 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2752 		break;
2753 #endif
2754 	case MSR_IA32_SYSENTER_CS:
2755 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2756 		break;
2757 	case MSR_IA32_SYSENTER_EIP:
2758 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2759 		if (guest_cpuid_is_intel(vcpu))
2760 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2761 		break;
2762 	case MSR_IA32_SYSENTER_ESP:
2763 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2764 		if (guest_cpuid_is_intel(vcpu))
2765 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2766 		break;
2767 	case MSR_TSC_AUX:
2768 		msr_info->data = svm->tsc_aux;
2769 		break;
2770 	case MSR_IA32_DEBUGCTLMSR:
2771 	case MSR_IA32_LASTBRANCHFROMIP:
2772 	case MSR_IA32_LASTBRANCHTOIP:
2773 	case MSR_IA32_LASTINTFROMIP:
2774 	case MSR_IA32_LASTINTTOIP:
2775 		msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
2776 		break;
2777 	case MSR_VM_HSAVE_PA:
2778 		msr_info->data = svm->nested.hsave_msr;
2779 		break;
2780 	case MSR_VM_CR:
2781 		msr_info->data = svm->nested.vm_cr_msr;
2782 		break;
2783 	case MSR_IA32_SPEC_CTRL:
2784 		if (!msr_info->host_initiated &&
2785 		    !guest_has_spec_ctrl_msr(vcpu))
2786 			return 1;
2787 
2788 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2789 			msr_info->data = svm->vmcb->save.spec_ctrl;
2790 		else
2791 			msr_info->data = svm->spec_ctrl;
2792 		break;
2793 	case MSR_AMD64_VIRT_SPEC_CTRL:
2794 		if (!msr_info->host_initiated &&
2795 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2796 			return 1;
2797 
2798 		msr_info->data = svm->virt_spec_ctrl;
2799 		break;
2800 	case MSR_F15H_IC_CFG: {
2801 
2802 		int family, model;
2803 
2804 		family = guest_cpuid_family(vcpu);
2805 		model  = guest_cpuid_model(vcpu);
2806 
2807 		if (family < 0 || model < 0)
2808 			return kvm_get_msr_common(vcpu, msr_info);
2809 
2810 		msr_info->data = 0;
2811 
2812 		if (family == 0x15 &&
2813 		    (model >= 0x2 && model < 0x20))
2814 			msr_info->data = 0x1E;
2815 		}
2816 		break;
2817 	case MSR_F10H_DECFG:
2818 		msr_info->data = svm->msr_decfg;
2819 		break;
2820 	default:
2821 		return kvm_get_msr_common(vcpu, msr_info);
2822 	}
2823 	return 0;
2824 }
2825 
2826 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2827 {
2828 	struct vcpu_svm *svm = to_svm(vcpu);
2829 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2830 		return kvm_complete_insn_gp(vcpu, err);
2831 
2832 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2833 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2834 				X86_TRAP_GP |
2835 				SVM_EVTINJ_TYPE_EXEPT |
2836 				SVM_EVTINJ_VALID);
2837 	return 1;
2838 }
2839 
2840 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2841 {
2842 	struct vcpu_svm *svm = to_svm(vcpu);
2843 	int svm_dis, chg_mask;
2844 
2845 	if (data & ~SVM_VM_CR_VALID_MASK)
2846 		return 1;
2847 
2848 	chg_mask = SVM_VM_CR_VALID_MASK;
2849 
2850 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2851 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2852 
2853 	svm->nested.vm_cr_msr &= ~chg_mask;
2854 	svm->nested.vm_cr_msr |= (data & chg_mask);
2855 
2856 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2857 
2858 	/* check for svm_disable while efer.svme is set */
2859 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2860 		return 1;
2861 
2862 	return 0;
2863 }
2864 
2865 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2866 {
2867 	struct vcpu_svm *svm = to_svm(vcpu);
2868 	int r;
2869 
2870 	u32 ecx = msr->index;
2871 	u64 data = msr->data;
2872 	switch (ecx) {
2873 	case MSR_AMD64_TSC_RATIO:
2874 
2875 		if (!svm->tsc_scaling_enabled) {
2876 
2877 			if (!msr->host_initiated)
2878 				return 1;
2879 			/*
2880 			 * In case TSC scaling is not enabled, always
2881 			 * leave this MSR at the default value.
2882 			 *
2883 			 * Due to bug in qemu 6.2.0, it would try to set
2884 			 * this msr to 0 if tsc scaling is not enabled.
2885 			 * Ignore this value as well.
2886 			 */
2887 			if (data != 0 && data != svm->tsc_ratio_msr)
2888 				return 1;
2889 			break;
2890 		}
2891 
2892 		if (data & SVM_TSC_RATIO_RSVD)
2893 			return 1;
2894 
2895 		svm->tsc_ratio_msr = data;
2896 
2897 		if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2898 			nested_svm_update_tsc_ratio_msr(vcpu);
2899 
2900 		break;
2901 	case MSR_IA32_CR_PAT:
2902 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2903 			return 1;
2904 		vcpu->arch.pat = data;
2905 		svm->vmcb01.ptr->save.g_pat = data;
2906 		if (is_guest_mode(vcpu))
2907 			nested_vmcb02_compute_g_pat(svm);
2908 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2909 		break;
2910 	case MSR_IA32_SPEC_CTRL:
2911 		if (!msr->host_initiated &&
2912 		    !guest_has_spec_ctrl_msr(vcpu))
2913 			return 1;
2914 
2915 		if (kvm_spec_ctrl_test_value(data))
2916 			return 1;
2917 
2918 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2919 			svm->vmcb->save.spec_ctrl = data;
2920 		else
2921 			svm->spec_ctrl = data;
2922 		if (!data)
2923 			break;
2924 
2925 		/*
2926 		 * For non-nested:
2927 		 * When it's written (to non-zero) for the first time, pass
2928 		 * it through.
2929 		 *
2930 		 * For nested:
2931 		 * The handling of the MSR bitmap for L2 guests is done in
2932 		 * nested_svm_vmrun_msrpm.
2933 		 * We update the L1 MSR bit as well since it will end up
2934 		 * touching the MSR anyway now.
2935 		 */
2936 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2937 		break;
2938 	case MSR_IA32_PRED_CMD:
2939 		if (!msr->host_initiated &&
2940 		    !guest_has_pred_cmd_msr(vcpu))
2941 			return 1;
2942 
2943 		if (data & ~PRED_CMD_IBPB)
2944 			return 1;
2945 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2946 			return 1;
2947 		if (!data)
2948 			break;
2949 
2950 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2951 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2952 		break;
2953 	case MSR_AMD64_VIRT_SPEC_CTRL:
2954 		if (!msr->host_initiated &&
2955 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2956 			return 1;
2957 
2958 		if (data & ~SPEC_CTRL_SSBD)
2959 			return 1;
2960 
2961 		svm->virt_spec_ctrl = data;
2962 		break;
2963 	case MSR_STAR:
2964 		svm->vmcb01.ptr->save.star = data;
2965 		break;
2966 #ifdef CONFIG_X86_64
2967 	case MSR_LSTAR:
2968 		svm->vmcb01.ptr->save.lstar = data;
2969 		break;
2970 	case MSR_CSTAR:
2971 		svm->vmcb01.ptr->save.cstar = data;
2972 		break;
2973 	case MSR_KERNEL_GS_BASE:
2974 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2975 		break;
2976 	case MSR_SYSCALL_MASK:
2977 		svm->vmcb01.ptr->save.sfmask = data;
2978 		break;
2979 #endif
2980 	case MSR_IA32_SYSENTER_CS:
2981 		svm->vmcb01.ptr->save.sysenter_cs = data;
2982 		break;
2983 	case MSR_IA32_SYSENTER_EIP:
2984 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2985 		/*
2986 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2987 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2988 		 * In this case we use this intercept to track the high
2989 		 * 32 bit part of these msrs to support Intel's
2990 		 * implementation of SYSENTER/SYSEXIT.
2991 		 */
2992 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2993 		break;
2994 	case MSR_IA32_SYSENTER_ESP:
2995 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2996 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2997 		break;
2998 	case MSR_TSC_AUX:
2999 		/*
3000 		 * TSC_AUX is usually changed only during boot and never read
3001 		 * directly.  Intercept TSC_AUX instead of exposing it to the
3002 		 * guest via direct_access_msrs, and switch it via user return.
3003 		 */
3004 		preempt_disable();
3005 		r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3006 		preempt_enable();
3007 		if (r)
3008 			return 1;
3009 
3010 		svm->tsc_aux = data;
3011 		break;
3012 	case MSR_IA32_DEBUGCTLMSR:
3013 		if (!lbrv) {
3014 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3015 				    __func__, data);
3016 			break;
3017 		}
3018 		if (data & DEBUGCTL_RESERVED_BITS)
3019 			return 1;
3020 
3021 		if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
3022 			svm->vmcb->save.dbgctl = data;
3023 		else
3024 			svm->vmcb01.ptr->save.dbgctl = data;
3025 
3026 		svm_update_lbrv(vcpu);
3027 
3028 		break;
3029 	case MSR_VM_HSAVE_PA:
3030 		/*
3031 		 * Old kernels did not validate the value written to
3032 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3033 		 * value to allow live migrating buggy or malicious guests
3034 		 * originating from those kernels.
3035 		 */
3036 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3037 			return 1;
3038 
3039 		svm->nested.hsave_msr = data & PAGE_MASK;
3040 		break;
3041 	case MSR_VM_CR:
3042 		return svm_set_vm_cr(vcpu, data);
3043 	case MSR_VM_IGNNE:
3044 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3045 		break;
3046 	case MSR_F10H_DECFG: {
3047 		struct kvm_msr_entry msr_entry;
3048 
3049 		msr_entry.index = msr->index;
3050 		if (svm_get_msr_feature(&msr_entry))
3051 			return 1;
3052 
3053 		/* Check the supported bits */
3054 		if (data & ~msr_entry.data)
3055 			return 1;
3056 
3057 		/* Don't allow the guest to change a bit, #GP */
3058 		if (!msr->host_initiated && (data ^ msr_entry.data))
3059 			return 1;
3060 
3061 		svm->msr_decfg = data;
3062 		break;
3063 	}
3064 	default:
3065 		return kvm_set_msr_common(vcpu, msr);
3066 	}
3067 	return 0;
3068 }
3069 
3070 static int msr_interception(struct kvm_vcpu *vcpu)
3071 {
3072 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3073 		return kvm_emulate_wrmsr(vcpu);
3074 	else
3075 		return kvm_emulate_rdmsr(vcpu);
3076 }
3077 
3078 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3079 {
3080 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3081 	svm_clear_vintr(to_svm(vcpu));
3082 
3083 	/*
3084 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3085 	 * In this case AVIC was temporarily disabled for
3086 	 * requesting the IRQ window and we have to re-enable it.
3087 	 *
3088 	 * If running nested, still remove the VM wide AVIC inhibit to
3089 	 * support case in which the interrupt window was requested when the
3090 	 * vCPU was not running nested.
3091 
3092 	 * All vCPUs which run still run nested, will remain to have their
3093 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3094 	 */
3095 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3096 
3097 	++vcpu->stat.irq_window_exits;
3098 	return 1;
3099 }
3100 
3101 static int pause_interception(struct kvm_vcpu *vcpu)
3102 {
3103 	bool in_kernel;
3104 	/*
3105 	 * CPL is not made available for an SEV-ES guest, therefore
3106 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3107 	 * set in_kernel to false as well.
3108 	 */
3109 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3110 
3111 	grow_ple_window(vcpu);
3112 
3113 	kvm_vcpu_on_spin(vcpu, in_kernel);
3114 	return kvm_skip_emulated_instruction(vcpu);
3115 }
3116 
3117 static int invpcid_interception(struct kvm_vcpu *vcpu)
3118 {
3119 	struct vcpu_svm *svm = to_svm(vcpu);
3120 	unsigned long type;
3121 	gva_t gva;
3122 
3123 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3124 		kvm_queue_exception(vcpu, UD_VECTOR);
3125 		return 1;
3126 	}
3127 
3128 	/*
3129 	 * For an INVPCID intercept:
3130 	 * EXITINFO1 provides the linear address of the memory operand.
3131 	 * EXITINFO2 provides the contents of the register operand.
3132 	 */
3133 	type = svm->vmcb->control.exit_info_2;
3134 	gva = svm->vmcb->control.exit_info_1;
3135 
3136 	return kvm_handle_invpcid(vcpu, type, gva);
3137 }
3138 
3139 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3140 	[SVM_EXIT_READ_CR0]			= cr_interception,
3141 	[SVM_EXIT_READ_CR3]			= cr_interception,
3142 	[SVM_EXIT_READ_CR4]			= cr_interception,
3143 	[SVM_EXIT_READ_CR8]			= cr_interception,
3144 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3145 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3146 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3147 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3148 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3149 	[SVM_EXIT_READ_DR0]			= dr_interception,
3150 	[SVM_EXIT_READ_DR1]			= dr_interception,
3151 	[SVM_EXIT_READ_DR2]			= dr_interception,
3152 	[SVM_EXIT_READ_DR3]			= dr_interception,
3153 	[SVM_EXIT_READ_DR4]			= dr_interception,
3154 	[SVM_EXIT_READ_DR5]			= dr_interception,
3155 	[SVM_EXIT_READ_DR6]			= dr_interception,
3156 	[SVM_EXIT_READ_DR7]			= dr_interception,
3157 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3158 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3159 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3160 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3161 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3162 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3163 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3164 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3165 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3166 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3167 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3168 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3169 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3170 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3171 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3172 	[SVM_EXIT_INTR]				= intr_interception,
3173 	[SVM_EXIT_NMI]				= nmi_interception,
3174 	[SVM_EXIT_SMI]				= smi_interception,
3175 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3176 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3177 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3178 	[SVM_EXIT_IRET]                         = iret_interception,
3179 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3180 	[SVM_EXIT_PAUSE]			= pause_interception,
3181 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3182 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3183 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3184 	[SVM_EXIT_IOIO]				= io_interception,
3185 	[SVM_EXIT_MSR]				= msr_interception,
3186 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3187 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3188 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3189 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3190 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3191 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3192 	[SVM_EXIT_STGI]				= stgi_interception,
3193 	[SVM_EXIT_CLGI]				= clgi_interception,
3194 	[SVM_EXIT_SKINIT]			= skinit_interception,
3195 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3196 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3197 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3198 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3199 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3200 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3201 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3202 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3203 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3204 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3205 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3206 	[SVM_EXIT_NPF]				= npf_interception,
3207 	[SVM_EXIT_RSM]                          = rsm_interception,
3208 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3209 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3210 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3211 };
3212 
3213 static void dump_vmcb(struct kvm_vcpu *vcpu)
3214 {
3215 	struct vcpu_svm *svm = to_svm(vcpu);
3216 	struct vmcb_control_area *control = &svm->vmcb->control;
3217 	struct vmcb_save_area *save = &svm->vmcb->save;
3218 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3219 
3220 	if (!dump_invalid_vmcb) {
3221 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3222 		return;
3223 	}
3224 
3225 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3226 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3227 	pr_err("VMCB Control Area:\n");
3228 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3229 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3230 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3231 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3232 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3233 	pr_err("%-20s%08x %08x\n", "intercepts:",
3234               control->intercepts[INTERCEPT_WORD3],
3235 	       control->intercepts[INTERCEPT_WORD4]);
3236 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3237 	pr_err("%-20s%d\n", "pause filter threshold:",
3238 	       control->pause_filter_thresh);
3239 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3240 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3241 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3242 	pr_err("%-20s%d\n", "asid:", control->asid);
3243 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3244 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3245 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3246 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3247 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3248 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3249 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3250 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3251 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3252 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3253 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3254 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3255 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3256 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3257 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3258 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3259 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3260 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3261 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3262 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3263 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3264 	pr_err("VMCB State Save Area:\n");
3265 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3266 	       "es:",
3267 	       save->es.selector, save->es.attrib,
3268 	       save->es.limit, save->es.base);
3269 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3270 	       "cs:",
3271 	       save->cs.selector, save->cs.attrib,
3272 	       save->cs.limit, save->cs.base);
3273 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3274 	       "ss:",
3275 	       save->ss.selector, save->ss.attrib,
3276 	       save->ss.limit, save->ss.base);
3277 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3278 	       "ds:",
3279 	       save->ds.selector, save->ds.attrib,
3280 	       save->ds.limit, save->ds.base);
3281 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3282 	       "fs:",
3283 	       save01->fs.selector, save01->fs.attrib,
3284 	       save01->fs.limit, save01->fs.base);
3285 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3286 	       "gs:",
3287 	       save01->gs.selector, save01->gs.attrib,
3288 	       save01->gs.limit, save01->gs.base);
3289 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3290 	       "gdtr:",
3291 	       save->gdtr.selector, save->gdtr.attrib,
3292 	       save->gdtr.limit, save->gdtr.base);
3293 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3294 	       "ldtr:",
3295 	       save01->ldtr.selector, save01->ldtr.attrib,
3296 	       save01->ldtr.limit, save01->ldtr.base);
3297 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3298 	       "idtr:",
3299 	       save->idtr.selector, save->idtr.attrib,
3300 	       save->idtr.limit, save->idtr.base);
3301 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3302 	       "tr:",
3303 	       save01->tr.selector, save01->tr.attrib,
3304 	       save01->tr.limit, save01->tr.base);
3305 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3306 	       save->vmpl, save->cpl, save->efer);
3307 	pr_err("%-15s %016llx %-13s %016llx\n",
3308 	       "cr0:", save->cr0, "cr2:", save->cr2);
3309 	pr_err("%-15s %016llx %-13s %016llx\n",
3310 	       "cr3:", save->cr3, "cr4:", save->cr4);
3311 	pr_err("%-15s %016llx %-13s %016llx\n",
3312 	       "dr6:", save->dr6, "dr7:", save->dr7);
3313 	pr_err("%-15s %016llx %-13s %016llx\n",
3314 	       "rip:", save->rip, "rflags:", save->rflags);
3315 	pr_err("%-15s %016llx %-13s %016llx\n",
3316 	       "rsp:", save->rsp, "rax:", save->rax);
3317 	pr_err("%-15s %016llx %-13s %016llx\n",
3318 	       "star:", save01->star, "lstar:", save01->lstar);
3319 	pr_err("%-15s %016llx %-13s %016llx\n",
3320 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3321 	pr_err("%-15s %016llx %-13s %016llx\n",
3322 	       "kernel_gs_base:", save01->kernel_gs_base,
3323 	       "sysenter_cs:", save01->sysenter_cs);
3324 	pr_err("%-15s %016llx %-13s %016llx\n",
3325 	       "sysenter_esp:", save01->sysenter_esp,
3326 	       "sysenter_eip:", save01->sysenter_eip);
3327 	pr_err("%-15s %016llx %-13s %016llx\n",
3328 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3329 	pr_err("%-15s %016llx %-13s %016llx\n",
3330 	       "br_from:", save->br_from, "br_to:", save->br_to);
3331 	pr_err("%-15s %016llx %-13s %016llx\n",
3332 	       "excp_from:", save->last_excp_from,
3333 	       "excp_to:", save->last_excp_to);
3334 }
3335 
3336 static bool svm_check_exit_valid(u64 exit_code)
3337 {
3338 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3339 		svm_exit_handlers[exit_code]);
3340 }
3341 
3342 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3343 {
3344 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3345 	dump_vmcb(vcpu);
3346 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3347 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3348 	vcpu->run->internal.ndata = 2;
3349 	vcpu->run->internal.data[0] = exit_code;
3350 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3351 	return 0;
3352 }
3353 
3354 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3355 {
3356 	if (!svm_check_exit_valid(exit_code))
3357 		return svm_handle_invalid_exit(vcpu, exit_code);
3358 
3359 #ifdef CONFIG_RETPOLINE
3360 	if (exit_code == SVM_EXIT_MSR)
3361 		return msr_interception(vcpu);
3362 	else if (exit_code == SVM_EXIT_VINTR)
3363 		return interrupt_window_interception(vcpu);
3364 	else if (exit_code == SVM_EXIT_INTR)
3365 		return intr_interception(vcpu);
3366 	else if (exit_code == SVM_EXIT_HLT)
3367 		return kvm_emulate_halt(vcpu);
3368 	else if (exit_code == SVM_EXIT_NPF)
3369 		return npf_interception(vcpu);
3370 #endif
3371 	return svm_exit_handlers[exit_code](vcpu);
3372 }
3373 
3374 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3375 			      u64 *info1, u64 *info2,
3376 			      u32 *intr_info, u32 *error_code)
3377 {
3378 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3379 
3380 	*reason = control->exit_code;
3381 	*info1 = control->exit_info_1;
3382 	*info2 = control->exit_info_2;
3383 	*intr_info = control->exit_int_info;
3384 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3385 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3386 		*error_code = control->exit_int_info_err;
3387 	else
3388 		*error_code = 0;
3389 }
3390 
3391 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3392 {
3393 	struct vcpu_svm *svm = to_svm(vcpu);
3394 	struct kvm_run *kvm_run = vcpu->run;
3395 	u32 exit_code = svm->vmcb->control.exit_code;
3396 
3397 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
3398 
3399 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3400 	if (!sev_es_guest(vcpu->kvm)) {
3401 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3402 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3403 		if (npt_enabled)
3404 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3405 	}
3406 
3407 	if (is_guest_mode(vcpu)) {
3408 		int vmexit;
3409 
3410 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3411 
3412 		vmexit = nested_svm_exit_special(svm);
3413 
3414 		if (vmexit == NESTED_EXIT_CONTINUE)
3415 			vmexit = nested_svm_exit_handled(svm);
3416 
3417 		if (vmexit == NESTED_EXIT_DONE)
3418 			return 1;
3419 	}
3420 
3421 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3422 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3423 		kvm_run->fail_entry.hardware_entry_failure_reason
3424 			= svm->vmcb->control.exit_code;
3425 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3426 		dump_vmcb(vcpu);
3427 		return 0;
3428 	}
3429 
3430 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3431 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3432 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3433 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3434 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3435 		       "exit_code 0x%x\n",
3436 		       __func__, svm->vmcb->control.exit_int_info,
3437 		       exit_code);
3438 
3439 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3440 		return 1;
3441 
3442 	return svm_invoke_exit_handler(vcpu, exit_code);
3443 }
3444 
3445 static void reload_tss(struct kvm_vcpu *vcpu)
3446 {
3447 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3448 
3449 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3450 	load_TR_desc();
3451 }
3452 
3453 static void pre_svm_run(struct kvm_vcpu *vcpu)
3454 {
3455 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3456 	struct vcpu_svm *svm = to_svm(vcpu);
3457 
3458 	/*
3459 	 * If the previous vmrun of the vmcb occurred on a different physical
3460 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3461 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3462 	 */
3463 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3464 		svm->current_vmcb->asid_generation = 0;
3465 		vmcb_mark_all_dirty(svm->vmcb);
3466 		svm->current_vmcb->cpu = vcpu->cpu;
3467         }
3468 
3469 	if (sev_guest(vcpu->kvm))
3470 		return pre_sev_run(svm, vcpu->cpu);
3471 
3472 	/* FIXME: handle wraparound of asid_generation */
3473 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3474 		new_asid(svm, sd);
3475 }
3476 
3477 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3478 {
3479 	struct vcpu_svm *svm = to_svm(vcpu);
3480 
3481 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3482 
3483 	if (svm->nmi_l1_to_l2)
3484 		return;
3485 
3486 	vcpu->arch.hflags |= HF_NMI_MASK;
3487 	if (!sev_es_guest(vcpu->kvm))
3488 		svm_set_intercept(svm, INTERCEPT_IRET);
3489 	++vcpu->stat.nmi_injections;
3490 }
3491 
3492 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3493 {
3494 	struct vcpu_svm *svm = to_svm(vcpu);
3495 	u32 type;
3496 
3497 	if (vcpu->arch.interrupt.soft) {
3498 		if (svm_update_soft_interrupt_rip(vcpu))
3499 			return;
3500 
3501 		type = SVM_EVTINJ_TYPE_SOFT;
3502 	} else {
3503 		type = SVM_EVTINJ_TYPE_INTR;
3504 	}
3505 
3506 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3507 			   vcpu->arch.interrupt.soft, reinjected);
3508 	++vcpu->stat.irq_injections;
3509 
3510 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3511 				       SVM_EVTINJ_VALID | type;
3512 }
3513 
3514 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3515 				     int trig_mode, int vector)
3516 {
3517 	/*
3518 	 * apic->apicv_active must be read after vcpu->mode.
3519 	 * Pairs with smp_store_release in vcpu_enter_guest.
3520 	 */
3521 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3522 
3523 	/* Note, this is called iff the local APIC is in-kernel. */
3524 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3525 		/* Process the interrupt via inject_pending_event */
3526 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3527 		kvm_vcpu_kick(vcpu);
3528 		return;
3529 	}
3530 
3531 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3532 	if (in_guest_mode) {
3533 		/*
3534 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3535 		 * the vCPU exits the guest before the doorbell chimes, hardware
3536 		 * will automatically process AVIC interrupts at the next VMRUN.
3537 		 */
3538 		avic_ring_doorbell(vcpu);
3539 	} else {
3540 		/*
3541 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3542 		 * pending IRQ when checking if the vCPU has a wake event.
3543 		 */
3544 		kvm_vcpu_wake_up(vcpu);
3545 	}
3546 }
3547 
3548 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3549 				  int trig_mode, int vector)
3550 {
3551 	kvm_lapic_set_irr(vector, apic);
3552 
3553 	/*
3554 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3555 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3556 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3557 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3558 	 * will signal the doorbell if the CPU has already entered the guest.
3559 	 */
3560 	smp_mb__after_atomic();
3561 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3562 }
3563 
3564 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3565 {
3566 	struct vcpu_svm *svm = to_svm(vcpu);
3567 
3568 	/*
3569 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3570 	 * tracking is done using the CR write traps.
3571 	 */
3572 	if (sev_es_guest(vcpu->kvm))
3573 		return;
3574 
3575 	if (nested_svm_virtualize_tpr(vcpu))
3576 		return;
3577 
3578 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3579 
3580 	if (irr == -1)
3581 		return;
3582 
3583 	if (tpr >= irr)
3584 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3585 }
3586 
3587 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3588 {
3589 	struct vcpu_svm *svm = to_svm(vcpu);
3590 	struct vmcb *vmcb = svm->vmcb;
3591 	bool ret;
3592 
3593 	if (!gif_set(svm))
3594 		return true;
3595 
3596 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3597 		return false;
3598 
3599 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3600 	      (vcpu->arch.hflags & HF_NMI_MASK);
3601 
3602 	return ret;
3603 }
3604 
3605 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3606 {
3607 	struct vcpu_svm *svm = to_svm(vcpu);
3608 	if (svm->nested.nested_run_pending)
3609 		return -EBUSY;
3610 
3611 	if (svm_nmi_blocked(vcpu))
3612 		return 0;
3613 
3614 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3615 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3616 		return -EBUSY;
3617 	return 1;
3618 }
3619 
3620 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3621 {
3622 	return !!(vcpu->arch.hflags & HF_NMI_MASK);
3623 }
3624 
3625 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3626 {
3627 	struct vcpu_svm *svm = to_svm(vcpu);
3628 
3629 	if (masked) {
3630 		vcpu->arch.hflags |= HF_NMI_MASK;
3631 		if (!sev_es_guest(vcpu->kvm))
3632 			svm_set_intercept(svm, INTERCEPT_IRET);
3633 	} else {
3634 		vcpu->arch.hflags &= ~HF_NMI_MASK;
3635 		if (!sev_es_guest(vcpu->kvm))
3636 			svm_clr_intercept(svm, INTERCEPT_IRET);
3637 	}
3638 }
3639 
3640 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3641 {
3642 	struct vcpu_svm *svm = to_svm(vcpu);
3643 	struct vmcb *vmcb = svm->vmcb;
3644 
3645 	if (!gif_set(svm))
3646 		return true;
3647 
3648 	if (is_guest_mode(vcpu)) {
3649 		/* As long as interrupts are being delivered...  */
3650 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3651 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3652 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3653 			return true;
3654 
3655 		/* ... vmexits aren't blocked by the interrupt shadow  */
3656 		if (nested_exit_on_intr(svm))
3657 			return false;
3658 	} else {
3659 		if (!svm_get_if_flag(vcpu))
3660 			return true;
3661 	}
3662 
3663 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3664 }
3665 
3666 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3667 {
3668 	struct vcpu_svm *svm = to_svm(vcpu);
3669 
3670 	if (svm->nested.nested_run_pending)
3671 		return -EBUSY;
3672 
3673 	if (svm_interrupt_blocked(vcpu))
3674 		return 0;
3675 
3676 	/*
3677 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3678 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3679 	 */
3680 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3681 		return -EBUSY;
3682 
3683 	return 1;
3684 }
3685 
3686 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3687 {
3688 	struct vcpu_svm *svm = to_svm(vcpu);
3689 
3690 	/*
3691 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3692 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3693 	 * get that intercept, this function will be called again though and
3694 	 * we'll get the vintr intercept. However, if the vGIF feature is
3695 	 * enabled, the STGI interception will not occur. Enable the irq
3696 	 * window under the assumption that the hardware will set the GIF.
3697 	 */
3698 	if (vgif || gif_set(svm)) {
3699 		/*
3700 		 * IRQ window is not needed when AVIC is enabled,
3701 		 * unless we have pending ExtINT since it cannot be injected
3702 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3703 		 * and fallback to injecting IRQ via V_IRQ.
3704 		 *
3705 		 * If running nested, AVIC is already locally inhibited
3706 		 * on this vCPU, therefore there is no need to request
3707 		 * the VM wide AVIC inhibition.
3708 		 */
3709 		if (!is_guest_mode(vcpu))
3710 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3711 
3712 		svm_set_vintr(svm);
3713 	}
3714 }
3715 
3716 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3717 {
3718 	struct vcpu_svm *svm = to_svm(vcpu);
3719 
3720 	if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3721 		return; /* IRET will cause a vm exit */
3722 
3723 	if (!gif_set(svm)) {
3724 		if (vgif)
3725 			svm_set_intercept(svm, INTERCEPT_STGI);
3726 		return; /* STGI will cause a vm exit */
3727 	}
3728 
3729 	/*
3730 	 * Something prevents NMI from been injected. Single step over possible
3731 	 * problem (IRET or exception injection or interrupt shadow)
3732 	 */
3733 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3734 	svm->nmi_singlestep = true;
3735 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3736 }
3737 
3738 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3739 {
3740 	struct vcpu_svm *svm = to_svm(vcpu);
3741 
3742 	/*
3743 	 * Flush only the current ASID even if the TLB flush was invoked via
3744 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3745 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3746 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3747 	 * VM-Exit (via kvm_mmu_reset_context()).
3748 	 */
3749 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3750 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3751 	else
3752 		svm->current_vmcb->asid_generation--;
3753 }
3754 
3755 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3756 {
3757 	struct vcpu_svm *svm = to_svm(vcpu);
3758 
3759 	invlpga(gva, svm->vmcb->control.asid);
3760 }
3761 
3762 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3763 {
3764 	struct vcpu_svm *svm = to_svm(vcpu);
3765 
3766 	if (nested_svm_virtualize_tpr(vcpu))
3767 		return;
3768 
3769 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3770 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3771 		kvm_set_cr8(vcpu, cr8);
3772 	}
3773 }
3774 
3775 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3776 {
3777 	struct vcpu_svm *svm = to_svm(vcpu);
3778 	u64 cr8;
3779 
3780 	if (nested_svm_virtualize_tpr(vcpu) ||
3781 	    kvm_vcpu_apicv_active(vcpu))
3782 		return;
3783 
3784 	cr8 = kvm_get_cr8(vcpu);
3785 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3786 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3787 }
3788 
3789 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3790 					int type)
3791 {
3792 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3793 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3794 	struct vcpu_svm *svm = to_svm(vcpu);
3795 
3796 	/*
3797 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3798 	 * associated with the original soft exception/interrupt.  next_rip is
3799 	 * cleared on all exits that can occur while vectoring an event, so KVM
3800 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
3801 	 * case below, this needs to be done if and only if KVM is re-injecting
3802 	 * the same event, i.e. if the event is a soft exception/interrupt,
3803 	 * otherwise next_rip is unused on VMRUN.
3804 	 */
3805 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3806 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3807 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3808 	/*
3809 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3810 	 * injecting the soft exception/interrupt.  That advancement needs to
3811 	 * be unwound if vectoring didn't complete.  Note, the new event may
3812 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
3813 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3814 	 * be the reported vectored event, but RIP still needs to be unwound.
3815 	 */
3816 	else if (!nrips && (is_soft || is_exception) &&
3817 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3818 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
3819 }
3820 
3821 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3822 {
3823 	struct vcpu_svm *svm = to_svm(vcpu);
3824 	u8 vector;
3825 	int type;
3826 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3827 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
3828 	bool soft_int_injected = svm->soft_int_injected;
3829 
3830 	svm->nmi_l1_to_l2 = false;
3831 	svm->soft_int_injected = false;
3832 
3833 	/*
3834 	 * If we've made progress since setting HF_IRET_MASK, we've
3835 	 * executed an IRET and can allow NMI injection.
3836 	 */
3837 	if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3838 	    (sev_es_guest(vcpu->kvm) ||
3839 	     kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3840 		vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3841 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3842 	}
3843 
3844 	vcpu->arch.nmi_injected = false;
3845 	kvm_clear_exception_queue(vcpu);
3846 	kvm_clear_interrupt_queue(vcpu);
3847 
3848 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3849 		return;
3850 
3851 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3852 
3853 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3854 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3855 
3856 	if (soft_int_injected)
3857 		svm_complete_soft_interrupt(vcpu, vector, type);
3858 
3859 	switch (type) {
3860 	case SVM_EXITINTINFO_TYPE_NMI:
3861 		vcpu->arch.nmi_injected = true;
3862 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
3863 		break;
3864 	case SVM_EXITINTINFO_TYPE_EXEPT:
3865 		/*
3866 		 * Never re-inject a #VC exception.
3867 		 */
3868 		if (vector == X86_TRAP_VC)
3869 			break;
3870 
3871 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3872 			u32 err = svm->vmcb->control.exit_int_info_err;
3873 			kvm_requeue_exception_e(vcpu, vector, err);
3874 
3875 		} else
3876 			kvm_requeue_exception(vcpu, vector);
3877 		break;
3878 	case SVM_EXITINTINFO_TYPE_INTR:
3879 		kvm_queue_interrupt(vcpu, vector, false);
3880 		break;
3881 	case SVM_EXITINTINFO_TYPE_SOFT:
3882 		kvm_queue_interrupt(vcpu, vector, true);
3883 		break;
3884 	default:
3885 		break;
3886 	}
3887 
3888 }
3889 
3890 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3891 {
3892 	struct vcpu_svm *svm = to_svm(vcpu);
3893 	struct vmcb_control_area *control = &svm->vmcb->control;
3894 
3895 	control->exit_int_info = control->event_inj;
3896 	control->exit_int_info_err = control->event_inj_err;
3897 	control->event_inj = 0;
3898 	svm_complete_interrupts(vcpu);
3899 }
3900 
3901 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3902 {
3903 	return 1;
3904 }
3905 
3906 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3907 {
3908 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3909 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3910 		return handle_fastpath_set_msr_irqoff(vcpu);
3911 
3912 	return EXIT_FASTPATH_NONE;
3913 }
3914 
3915 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3916 {
3917 	struct vcpu_svm *svm = to_svm(vcpu);
3918 	unsigned long vmcb_pa = svm->current_vmcb->pa;
3919 
3920 	guest_state_enter_irqoff();
3921 
3922 	if (sev_es_guest(vcpu->kvm)) {
3923 		__svm_sev_es_vcpu_run(vmcb_pa);
3924 	} else {
3925 		struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3926 
3927 		/*
3928 		 * Use a single vmcb (vmcb01 because it's always valid) for
3929 		 * context switching guest state via VMLOAD/VMSAVE, that way
3930 		 * the state doesn't need to be copied between vmcb01 and
3931 		 * vmcb02 when switching vmcbs for nested virtualization.
3932 		 */
3933 		vmload(svm->vmcb01.pa);
3934 		__svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3935 		vmsave(svm->vmcb01.pa);
3936 
3937 		vmload(__sme_page_pa(sd->save_area));
3938 	}
3939 
3940 	guest_state_exit_irqoff();
3941 }
3942 
3943 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3944 {
3945 	struct vcpu_svm *svm = to_svm(vcpu);
3946 
3947 	trace_kvm_entry(vcpu);
3948 
3949 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3950 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3951 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3952 
3953 	/*
3954 	 * Disable singlestep if we're injecting an interrupt/exception.
3955 	 * We don't want our modified rflags to be pushed on the stack where
3956 	 * we might not be able to easily reset them if we disabled NMI
3957 	 * singlestep later.
3958 	 */
3959 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3960 		/*
3961 		 * Event injection happens before external interrupts cause a
3962 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3963 		 * is enough to force an immediate vmexit.
3964 		 */
3965 		disable_nmi_singlestep(svm);
3966 		smp_send_reschedule(vcpu->cpu);
3967 	}
3968 
3969 	pre_svm_run(vcpu);
3970 
3971 	sync_lapic_to_cr8(vcpu);
3972 
3973 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3974 		svm->vmcb->control.asid = svm->asid;
3975 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3976 	}
3977 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3978 
3979 	svm_hv_update_vp_id(svm->vmcb, vcpu);
3980 
3981 	/*
3982 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3983 	 * of a #DB.
3984 	 */
3985 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3986 		svm_set_dr6(svm, vcpu->arch.dr6);
3987 	else
3988 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
3989 
3990 	clgi();
3991 	kvm_load_guest_xsave_state(vcpu);
3992 
3993 	kvm_wait_lapic_expire(vcpu);
3994 
3995 	/*
3996 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3997 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3998 	 * is no need to worry about the conditional branch over the wrmsr
3999 	 * being speculatively taken.
4000 	 */
4001 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4002 		x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
4003 
4004 	svm_vcpu_enter_exit(vcpu);
4005 
4006 	/*
4007 	 * We do not use IBRS in the kernel. If this vCPU has used the
4008 	 * SPEC_CTRL MSR it may have left it on; save the value and
4009 	 * turn it off. This is much more efficient than blindly adding
4010 	 * it to the atomic save/restore list. Especially as the former
4011 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
4012 	 *
4013 	 * For non-nested case:
4014 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
4015 	 * save it.
4016 	 *
4017 	 * For nested case:
4018 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
4019 	 * save it.
4020 	 */
4021 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
4022 	    unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
4023 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
4024 
4025 	if (!sev_es_guest(vcpu->kvm))
4026 		reload_tss(vcpu);
4027 
4028 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4029 		x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
4030 
4031 	if (!sev_es_guest(vcpu->kvm)) {
4032 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4033 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4034 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4035 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4036 	}
4037 	vcpu->arch.regs_dirty = 0;
4038 
4039 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4040 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4041 
4042 	kvm_load_host_xsave_state(vcpu);
4043 	stgi();
4044 
4045 	/* Any pending NMI will happen here */
4046 
4047 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4048 		kvm_after_interrupt(vcpu);
4049 
4050 	sync_cr8_to_lapic(vcpu);
4051 
4052 	svm->next_rip = 0;
4053 	if (is_guest_mode(vcpu)) {
4054 		nested_sync_control_from_vmcb02(svm);
4055 
4056 		/* Track VMRUNs that have made past consistency checking */
4057 		if (svm->nested.nested_run_pending &&
4058 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4059                         ++vcpu->stat.nested_run;
4060 
4061 		svm->nested.nested_run_pending = 0;
4062 	}
4063 
4064 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4065 	vmcb_mark_all_clean(svm->vmcb);
4066 
4067 	/* if exit due to PF check for async PF */
4068 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4069 		vcpu->arch.apf.host_apf_flags =
4070 			kvm_read_and_reset_apf_flags();
4071 
4072 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4073 
4074 	/*
4075 	 * We need to handle MC intercepts here before the vcpu has a chance to
4076 	 * change the physical cpu
4077 	 */
4078 	if (unlikely(svm->vmcb->control.exit_code ==
4079 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4080 		svm_handle_mce(vcpu);
4081 
4082 	svm_complete_interrupts(vcpu);
4083 
4084 	if (is_guest_mode(vcpu))
4085 		return EXIT_FASTPATH_NONE;
4086 
4087 	return svm_exit_handlers_fastpath(vcpu);
4088 }
4089 
4090 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4091 			     int root_level)
4092 {
4093 	struct vcpu_svm *svm = to_svm(vcpu);
4094 	unsigned long cr3;
4095 
4096 	if (npt_enabled) {
4097 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4098 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4099 
4100 		hv_track_root_tdp(vcpu, root_hpa);
4101 
4102 		cr3 = vcpu->arch.cr3;
4103 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4104 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4105 	} else {
4106 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4107 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4108 		cr3 = root_hpa;
4109 	}
4110 
4111 	svm->vmcb->save.cr3 = cr3;
4112 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4113 }
4114 
4115 static int is_disabled(void)
4116 {
4117 	u64 vm_cr;
4118 
4119 	rdmsrl(MSR_VM_CR, vm_cr);
4120 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4121 		return 1;
4122 
4123 	return 0;
4124 }
4125 
4126 static void
4127 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4128 {
4129 	/*
4130 	 * Patch in the VMMCALL instruction:
4131 	 */
4132 	hypercall[0] = 0x0f;
4133 	hypercall[1] = 0x01;
4134 	hypercall[2] = 0xd9;
4135 }
4136 
4137 static int __init svm_check_processor_compat(void)
4138 {
4139 	return 0;
4140 }
4141 
4142 /*
4143  * The kvm parameter can be NULL (module initialization, or invocation before
4144  * VM creation). Be sure to check the kvm parameter before using it.
4145  */
4146 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4147 {
4148 	switch (index) {
4149 	case MSR_IA32_MCG_EXT_CTL:
4150 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4151 		return false;
4152 	case MSR_IA32_SMBASE:
4153 		/* SEV-ES guests do not support SMM, so report false */
4154 		if (kvm && sev_es_guest(kvm))
4155 			return false;
4156 		break;
4157 	default:
4158 		break;
4159 	}
4160 
4161 	return true;
4162 }
4163 
4164 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4165 {
4166 	struct vcpu_svm *svm = to_svm(vcpu);
4167 	struct kvm_cpuid_entry2 *best;
4168 
4169 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4170 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
4171 				    boot_cpu_has(X86_FEATURE_XSAVES);
4172 
4173 	/* Update nrips enabled cache */
4174 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4175 			     guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4176 
4177 	svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4178 	svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
4179 
4180 	svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4181 
4182 	svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
4183 			guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
4184 
4185 	svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
4186 			guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
4187 
4188 	svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF);
4189 
4190 	svm_recalc_instruction_intercepts(vcpu, svm);
4191 
4192 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4193 	if (sev_guest(vcpu->kvm)) {
4194 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4195 		if (best)
4196 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4197 	}
4198 
4199 	init_vmcb_after_set_cpuid(vcpu);
4200 }
4201 
4202 static bool svm_has_wbinvd_exit(void)
4203 {
4204 	return true;
4205 }
4206 
4207 #define PRE_EX(exit)  { .exit_code = (exit), \
4208 			.stage = X86_ICPT_PRE_EXCEPT, }
4209 #define POST_EX(exit) { .exit_code = (exit), \
4210 			.stage = X86_ICPT_POST_EXCEPT, }
4211 #define POST_MEM(exit) { .exit_code = (exit), \
4212 			.stage = X86_ICPT_POST_MEMACCESS, }
4213 
4214 static const struct __x86_intercept {
4215 	u32 exit_code;
4216 	enum x86_intercept_stage stage;
4217 } x86_intercept_map[] = {
4218 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4219 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4220 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4221 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4222 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4223 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4224 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4225 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4226 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4227 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4228 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4229 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4230 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4231 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4232 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4233 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4234 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4235 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4236 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4237 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4238 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4239 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4240 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4241 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4242 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4243 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4244 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4245 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4246 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4247 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4248 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4249 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4250 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4251 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4252 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4253 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4254 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4255 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4256 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4257 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4258 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4259 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4260 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4261 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4262 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4263 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4264 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4265 };
4266 
4267 #undef PRE_EX
4268 #undef POST_EX
4269 #undef POST_MEM
4270 
4271 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4272 			       struct x86_instruction_info *info,
4273 			       enum x86_intercept_stage stage,
4274 			       struct x86_exception *exception)
4275 {
4276 	struct vcpu_svm *svm = to_svm(vcpu);
4277 	int vmexit, ret = X86EMUL_CONTINUE;
4278 	struct __x86_intercept icpt_info;
4279 	struct vmcb *vmcb = svm->vmcb;
4280 
4281 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4282 		goto out;
4283 
4284 	icpt_info = x86_intercept_map[info->intercept];
4285 
4286 	if (stage != icpt_info.stage)
4287 		goto out;
4288 
4289 	switch (icpt_info.exit_code) {
4290 	case SVM_EXIT_READ_CR0:
4291 		if (info->intercept == x86_intercept_cr_read)
4292 			icpt_info.exit_code += info->modrm_reg;
4293 		break;
4294 	case SVM_EXIT_WRITE_CR0: {
4295 		unsigned long cr0, val;
4296 
4297 		if (info->intercept == x86_intercept_cr_write)
4298 			icpt_info.exit_code += info->modrm_reg;
4299 
4300 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4301 		    info->intercept == x86_intercept_clts)
4302 			break;
4303 
4304 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4305 					INTERCEPT_SELECTIVE_CR0)))
4306 			break;
4307 
4308 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4309 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4310 
4311 		if (info->intercept == x86_intercept_lmsw) {
4312 			cr0 &= 0xfUL;
4313 			val &= 0xfUL;
4314 			/* lmsw can't clear PE - catch this here */
4315 			if (cr0 & X86_CR0_PE)
4316 				val |= X86_CR0_PE;
4317 		}
4318 
4319 		if (cr0 ^ val)
4320 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4321 
4322 		break;
4323 	}
4324 	case SVM_EXIT_READ_DR0:
4325 	case SVM_EXIT_WRITE_DR0:
4326 		icpt_info.exit_code += info->modrm_reg;
4327 		break;
4328 	case SVM_EXIT_MSR:
4329 		if (info->intercept == x86_intercept_wrmsr)
4330 			vmcb->control.exit_info_1 = 1;
4331 		else
4332 			vmcb->control.exit_info_1 = 0;
4333 		break;
4334 	case SVM_EXIT_PAUSE:
4335 		/*
4336 		 * We get this for NOP only, but pause
4337 		 * is rep not, check this here
4338 		 */
4339 		if (info->rep_prefix != REPE_PREFIX)
4340 			goto out;
4341 		break;
4342 	case SVM_EXIT_IOIO: {
4343 		u64 exit_info;
4344 		u32 bytes;
4345 
4346 		if (info->intercept == x86_intercept_in ||
4347 		    info->intercept == x86_intercept_ins) {
4348 			exit_info = ((info->src_val & 0xffff) << 16) |
4349 				SVM_IOIO_TYPE_MASK;
4350 			bytes = info->dst_bytes;
4351 		} else {
4352 			exit_info = (info->dst_val & 0xffff) << 16;
4353 			bytes = info->src_bytes;
4354 		}
4355 
4356 		if (info->intercept == x86_intercept_outs ||
4357 		    info->intercept == x86_intercept_ins)
4358 			exit_info |= SVM_IOIO_STR_MASK;
4359 
4360 		if (info->rep_prefix)
4361 			exit_info |= SVM_IOIO_REP_MASK;
4362 
4363 		bytes = min(bytes, 4u);
4364 
4365 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4366 
4367 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4368 
4369 		vmcb->control.exit_info_1 = exit_info;
4370 		vmcb->control.exit_info_2 = info->next_rip;
4371 
4372 		break;
4373 	}
4374 	default:
4375 		break;
4376 	}
4377 
4378 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4379 	if (static_cpu_has(X86_FEATURE_NRIPS))
4380 		vmcb->control.next_rip  = info->next_rip;
4381 	vmcb->control.exit_code = icpt_info.exit_code;
4382 	vmexit = nested_svm_exit_handled(svm);
4383 
4384 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4385 					   : X86EMUL_CONTINUE;
4386 
4387 out:
4388 	return ret;
4389 }
4390 
4391 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4392 {
4393 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4394 		vcpu->arch.at_instruction_boundary = true;
4395 }
4396 
4397 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4398 {
4399 	if (!kvm_pause_in_guest(vcpu->kvm))
4400 		shrink_ple_window(vcpu);
4401 }
4402 
4403 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4404 {
4405 	/* [63:9] are reserved. */
4406 	vcpu->arch.mcg_cap &= 0x1ff;
4407 }
4408 
4409 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4410 {
4411 	struct vcpu_svm *svm = to_svm(vcpu);
4412 
4413 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4414 	if (!gif_set(svm))
4415 		return true;
4416 
4417 	return is_smm(vcpu);
4418 }
4419 
4420 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4421 {
4422 	struct vcpu_svm *svm = to_svm(vcpu);
4423 	if (svm->nested.nested_run_pending)
4424 		return -EBUSY;
4425 
4426 	if (svm_smi_blocked(vcpu))
4427 		return 0;
4428 
4429 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4430 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4431 		return -EBUSY;
4432 
4433 	return 1;
4434 }
4435 
4436 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4437 {
4438 	struct vcpu_svm *svm = to_svm(vcpu);
4439 	struct kvm_host_map map_save;
4440 	int ret;
4441 
4442 	if (!is_guest_mode(vcpu))
4443 		return 0;
4444 
4445 	/* FED8h - SVM Guest */
4446 	put_smstate(u64, smstate, 0x7ed8, 1);
4447 	/* FEE0h - SVM Guest VMCB Physical Address */
4448 	put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4449 
4450 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4451 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4452 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4453 
4454 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4455 	if (ret)
4456 		return ret;
4457 
4458 	/*
4459 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4460 	 * VMCB01 is going to be used during SMM and thus the state will
4461 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4462 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4463 	 * format of the area is identical to guest save area offsetted
4464 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4465 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4466 	 * L1 hypervisor to save additional host context (e.g. KVM does
4467 	 * that, see svm_prepare_switch_to_guest()) which must be
4468 	 * preserved.
4469 	 */
4470 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4471 			 &map_save) == -EINVAL)
4472 		return 1;
4473 
4474 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4475 
4476 	svm_copy_vmrun_state(map_save.hva + 0x400,
4477 			     &svm->vmcb01.ptr->save);
4478 
4479 	kvm_vcpu_unmap(vcpu, &map_save, true);
4480 	return 0;
4481 }
4482 
4483 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4484 {
4485 	struct vcpu_svm *svm = to_svm(vcpu);
4486 	struct kvm_host_map map, map_save;
4487 	u64 saved_efer, vmcb12_gpa;
4488 	struct vmcb *vmcb12;
4489 	int ret;
4490 
4491 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4492 		return 0;
4493 
4494 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4495 	if (!GET_SMSTATE(u64, smstate, 0x7ed8))
4496 		return 0;
4497 
4498 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4499 		return 1;
4500 
4501 	saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4502 	if (!(saved_efer & EFER_SVME))
4503 		return 1;
4504 
4505 	vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4506 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4507 		return 1;
4508 
4509 	ret = 1;
4510 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL)
4511 		goto unmap_map;
4512 
4513 	if (svm_allocate_nested(svm))
4514 		goto unmap_save;
4515 
4516 	/*
4517 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4518 	 * used during SMM (see svm_enter_smm())
4519 	 */
4520 
4521 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4522 
4523 	/*
4524 	 * Enter the nested guest now
4525 	 */
4526 
4527 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4528 
4529 	vmcb12 = map.hva;
4530 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4531 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4532 	ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false);
4533 
4534 	if (ret)
4535 		goto unmap_save;
4536 
4537 	svm->nested.nested_run_pending = 1;
4538 
4539 unmap_save:
4540 	kvm_vcpu_unmap(vcpu, &map_save, true);
4541 unmap_map:
4542 	kvm_vcpu_unmap(vcpu, &map, true);
4543 	return ret;
4544 }
4545 
4546 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4547 {
4548 	struct vcpu_svm *svm = to_svm(vcpu);
4549 
4550 	if (!gif_set(svm)) {
4551 		if (vgif)
4552 			svm_set_intercept(svm, INTERCEPT_STGI);
4553 		/* STGI will cause a vm exit */
4554 	} else {
4555 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4556 	}
4557 }
4558 
4559 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4560 					void *insn, int insn_len)
4561 {
4562 	bool smep, smap, is_user;
4563 	unsigned long cr4;
4564 	u64 error_code;
4565 
4566 	/* Emulation is always possible when KVM has access to all guest state. */
4567 	if (!sev_guest(vcpu->kvm))
4568 		return true;
4569 
4570 	/* #UD and #GP should never be intercepted for SEV guests. */
4571 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4572 				  EMULTYPE_TRAP_UD_FORCED |
4573 				  EMULTYPE_VMWARE_GP));
4574 
4575 	/*
4576 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4577 	 * to guest register state.
4578 	 */
4579 	if (sev_es_guest(vcpu->kvm))
4580 		return false;
4581 
4582 	/*
4583 	 * Emulation is possible if the instruction is already decoded, e.g.
4584 	 * when completing I/O after returning from userspace.
4585 	 */
4586 	if (emul_type & EMULTYPE_NO_DECODE)
4587 		return true;
4588 
4589 	/*
4590 	 * Emulation is possible for SEV guests if and only if a prefilled
4591 	 * buffer containing the bytes of the intercepted instruction is
4592 	 * available. SEV guest memory is encrypted with a guest specific key
4593 	 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4594 	 * decode garbage.
4595 	 *
4596 	 * Inject #UD if KVM reached this point without an instruction buffer.
4597 	 * In practice, this path should never be hit by a well-behaved guest,
4598 	 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4599 	 * is still theoretically reachable, e.g. via unaccelerated fault-like
4600 	 * AVIC access, and needs to be handled by KVM to avoid putting the
4601 	 * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
4602 	 * but its the least awful option given lack of insight into the guest.
4603 	 */
4604 	if (unlikely(!insn)) {
4605 		kvm_queue_exception(vcpu, UD_VECTOR);
4606 		return false;
4607 	}
4608 
4609 	/*
4610 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4611 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4612 	 * the faulting instruction because the code fetch itself faulted, e.g.
4613 	 * the guest attempted to fetch from emulated MMIO or a guest page
4614 	 * table used to translate CS:RIP resides in emulated MMIO.
4615 	 */
4616 	if (likely(insn_len))
4617 		return true;
4618 
4619 	/*
4620 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4621 	 *
4622 	 * Errata:
4623 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4624 	 * possible that CPU microcode implementing DecodeAssist will fail to
4625 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4626 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4627 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4628 	 * gives up and does not fill the instruction bytes buffer.
4629 	 *
4630 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4631 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4632 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4633 	 * GuestIntrBytes field of the VMCB.
4634 	 *
4635 	 * This does _not_ mean that the erratum has been encountered, as the
4636 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4637 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4638 	 * encountered a reserved/not-present #PF.
4639 	 *
4640 	 * To hit the erratum, the following conditions must be true:
4641 	 *    1. CR4.SMAP=1 (obviously).
4642 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4643 	 *       have been hit as the guest would have encountered a SMEP
4644 	 *       violation #PF, not a #NPF.
4645 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4646 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4647 	 *
4648 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4649 	 * while translating guest page tables (see below).
4650 	 */
4651 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4652 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4653 		goto resume_guest;
4654 
4655 	cr4 = kvm_read_cr4(vcpu);
4656 	smep = cr4 & X86_CR4_SMEP;
4657 	smap = cr4 & X86_CR4_SMAP;
4658 	is_user = svm_get_cpl(vcpu) == 3;
4659 	if (smap && (!smep || is_user)) {
4660 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4661 
4662 		/*
4663 		 * If the fault occurred in userspace, arbitrarily inject #GP
4664 		 * to avoid killing the guest and to hopefully avoid confusing
4665 		 * the guest kernel too much, e.g. injecting #PF would not be
4666 		 * coherent with respect to the guest's page tables.  Request
4667 		 * triple fault if the fault occurred in the kernel as there's
4668 		 * no fault that KVM can inject without confusing the guest.
4669 		 * In practice, the triple fault is moot as no sane SEV kernel
4670 		 * will execute from user memory while also running with SMAP=1.
4671 		 */
4672 		if (is_user)
4673 			kvm_inject_gp(vcpu, 0);
4674 		else
4675 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4676 	}
4677 
4678 resume_guest:
4679 	/*
4680 	 * If the erratum was not hit, simply resume the guest and let it fault
4681 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4682 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4683 	 * userspace will kill the guest, and letting the emulator read garbage
4684 	 * will yield random behavior and potentially corrupt the guest.
4685 	 *
4686 	 * Simply resuming the guest is technically not a violation of the SEV
4687 	 * architecture.  AMD's APM states that all code fetches and page table
4688 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4689 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4690 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4691 	 * the guest spin is technically "ignoring" the access.
4692 	 */
4693 	return false;
4694 }
4695 
4696 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4697 {
4698 	struct vcpu_svm *svm = to_svm(vcpu);
4699 
4700 	/*
4701 	 * TODO: Last condition latch INIT signals on vCPU when
4702 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4703 	 * To properly emulate the INIT intercept,
4704 	 * svm_check_nested_events() should call nested_svm_vmexit()
4705 	 * if an INIT signal is pending.
4706 	 */
4707 	return !gif_set(svm) ||
4708 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4709 }
4710 
4711 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4712 {
4713 	if (!sev_es_guest(vcpu->kvm))
4714 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4715 
4716 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4717 }
4718 
4719 static void svm_vm_destroy(struct kvm *kvm)
4720 {
4721 	avic_vm_destroy(kvm);
4722 	sev_vm_destroy(kvm);
4723 }
4724 
4725 static int svm_vm_init(struct kvm *kvm)
4726 {
4727 	if (!pause_filter_count || !pause_filter_thresh)
4728 		kvm->arch.pause_in_guest = true;
4729 
4730 	if (enable_apicv) {
4731 		int ret = avic_vm_init(kvm);
4732 		if (ret)
4733 			return ret;
4734 	}
4735 
4736 	return 0;
4737 }
4738 
4739 static struct kvm_x86_ops svm_x86_ops __initdata = {
4740 	.name = "kvm_amd",
4741 
4742 	.hardware_unsetup = svm_hardware_unsetup,
4743 	.hardware_enable = svm_hardware_enable,
4744 	.hardware_disable = svm_hardware_disable,
4745 	.has_emulated_msr = svm_has_emulated_msr,
4746 
4747 	.vcpu_create = svm_vcpu_create,
4748 	.vcpu_free = svm_vcpu_free,
4749 	.vcpu_reset = svm_vcpu_reset,
4750 
4751 	.vm_size = sizeof(struct kvm_svm),
4752 	.vm_init = svm_vm_init,
4753 	.vm_destroy = svm_vm_destroy,
4754 
4755 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4756 	.vcpu_load = svm_vcpu_load,
4757 	.vcpu_put = svm_vcpu_put,
4758 	.vcpu_blocking = avic_vcpu_blocking,
4759 	.vcpu_unblocking = avic_vcpu_unblocking,
4760 
4761 	.update_exception_bitmap = svm_update_exception_bitmap,
4762 	.get_msr_feature = svm_get_msr_feature,
4763 	.get_msr = svm_get_msr,
4764 	.set_msr = svm_set_msr,
4765 	.get_segment_base = svm_get_segment_base,
4766 	.get_segment = svm_get_segment,
4767 	.set_segment = svm_set_segment,
4768 	.get_cpl = svm_get_cpl,
4769 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4770 	.set_cr0 = svm_set_cr0,
4771 	.post_set_cr3 = sev_post_set_cr3,
4772 	.is_valid_cr4 = svm_is_valid_cr4,
4773 	.set_cr4 = svm_set_cr4,
4774 	.set_efer = svm_set_efer,
4775 	.get_idt = svm_get_idt,
4776 	.set_idt = svm_set_idt,
4777 	.get_gdt = svm_get_gdt,
4778 	.set_gdt = svm_set_gdt,
4779 	.set_dr7 = svm_set_dr7,
4780 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4781 	.cache_reg = svm_cache_reg,
4782 	.get_rflags = svm_get_rflags,
4783 	.set_rflags = svm_set_rflags,
4784 	.get_if_flag = svm_get_if_flag,
4785 
4786 	.flush_tlb_all = svm_flush_tlb_current,
4787 	.flush_tlb_current = svm_flush_tlb_current,
4788 	.flush_tlb_gva = svm_flush_tlb_gva,
4789 	.flush_tlb_guest = svm_flush_tlb_current,
4790 
4791 	.vcpu_pre_run = svm_vcpu_pre_run,
4792 	.vcpu_run = svm_vcpu_run,
4793 	.handle_exit = svm_handle_exit,
4794 	.skip_emulated_instruction = svm_skip_emulated_instruction,
4795 	.update_emulated_instruction = NULL,
4796 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4797 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4798 	.patch_hypercall = svm_patch_hypercall,
4799 	.inject_irq = svm_inject_irq,
4800 	.inject_nmi = svm_inject_nmi,
4801 	.queue_exception = svm_queue_exception,
4802 	.cancel_injection = svm_cancel_injection,
4803 	.interrupt_allowed = svm_interrupt_allowed,
4804 	.nmi_allowed = svm_nmi_allowed,
4805 	.get_nmi_mask = svm_get_nmi_mask,
4806 	.set_nmi_mask = svm_set_nmi_mask,
4807 	.enable_nmi_window = svm_enable_nmi_window,
4808 	.enable_irq_window = svm_enable_irq_window,
4809 	.update_cr8_intercept = svm_update_cr8_intercept,
4810 	.set_virtual_apic_mode = avic_set_virtual_apic_mode,
4811 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4812 	.check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons,
4813 	.apicv_post_state_restore = avic_apicv_post_state_restore,
4814 
4815 	.get_exit_info = svm_get_exit_info,
4816 
4817 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4818 
4819 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4820 
4821 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
4822 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4823 	.write_tsc_offset = svm_write_tsc_offset,
4824 	.write_tsc_multiplier = svm_write_tsc_multiplier,
4825 
4826 	.load_mmu_pgd = svm_load_mmu_pgd,
4827 
4828 	.check_intercept = svm_check_intercept,
4829 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4830 
4831 	.request_immediate_exit = __kvm_request_immediate_exit,
4832 
4833 	.sched_in = svm_sched_in,
4834 
4835 	.nested_ops = &svm_nested_ops,
4836 
4837 	.deliver_interrupt = svm_deliver_interrupt,
4838 	.pi_update_irte = avic_pi_update_irte,
4839 	.setup_mce = svm_setup_mce,
4840 
4841 	.smi_allowed = svm_smi_allowed,
4842 	.enter_smm = svm_enter_smm,
4843 	.leave_smm = svm_leave_smm,
4844 	.enable_smi_window = svm_enable_smi_window,
4845 
4846 	.mem_enc_ioctl = sev_mem_enc_ioctl,
4847 	.mem_enc_register_region = sev_mem_enc_register_region,
4848 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
4849 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
4850 
4851 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4852 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
4853 
4854 	.can_emulate_instruction = svm_can_emulate_instruction,
4855 
4856 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4857 
4858 	.msr_filter_changed = svm_msr_filter_changed,
4859 	.complete_emulated_msr = svm_complete_emulated_msr,
4860 
4861 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4862 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
4863 };
4864 
4865 /*
4866  * The default MMIO mask is a single bit (excluding the present bit),
4867  * which could conflict with the memory encryption bit. Check for
4868  * memory encryption support and override the default MMIO mask if
4869  * memory encryption is enabled.
4870  */
4871 static __init void svm_adjust_mmio_mask(void)
4872 {
4873 	unsigned int enc_bit, mask_bit;
4874 	u64 msr, mask;
4875 
4876 	/* If there is no memory encryption support, use existing mask */
4877 	if (cpuid_eax(0x80000000) < 0x8000001f)
4878 		return;
4879 
4880 	/* If memory encryption is not enabled, use existing mask */
4881 	rdmsrl(MSR_AMD64_SYSCFG, msr);
4882 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4883 		return;
4884 
4885 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4886 	mask_bit = boot_cpu_data.x86_phys_bits;
4887 
4888 	/* Increment the mask bit if it is the same as the encryption bit */
4889 	if (enc_bit == mask_bit)
4890 		mask_bit++;
4891 
4892 	/*
4893 	 * If the mask bit location is below 52, then some bits above the
4894 	 * physical addressing limit will always be reserved, so use the
4895 	 * rsvd_bits() function to generate the mask. This mask, along with
4896 	 * the present bit, will be used to generate a page fault with
4897 	 * PFER.RSV = 1.
4898 	 *
4899 	 * If the mask bit location is 52 (or above), then clear the mask.
4900 	 */
4901 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4902 
4903 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4904 }
4905 
4906 static __init void svm_set_cpu_caps(void)
4907 {
4908 	kvm_set_cpu_caps();
4909 
4910 	kvm_caps.supported_xss = 0;
4911 
4912 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
4913 	if (nested) {
4914 		kvm_cpu_cap_set(X86_FEATURE_SVM);
4915 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4916 
4917 		if (nrips)
4918 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4919 
4920 		if (npt_enabled)
4921 			kvm_cpu_cap_set(X86_FEATURE_NPT);
4922 
4923 		if (tsc_scaling)
4924 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4925 
4926 		if (vls)
4927 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
4928 		if (lbrv)
4929 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
4930 
4931 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
4932 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
4933 
4934 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
4935 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
4936 
4937 		if (vgif)
4938 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
4939 
4940 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
4941 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4942 	}
4943 
4944 	/* CPUID 0x80000008 */
4945 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
4946 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
4947 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
4948 
4949 	/* AMD PMU PERFCTR_CORE CPUID */
4950 	if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4951 		kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
4952 
4953 	/* CPUID 0x8000001F (SME/SEV features) */
4954 	sev_set_cpu_caps();
4955 }
4956 
4957 static __init int svm_hardware_setup(void)
4958 {
4959 	int cpu;
4960 	struct page *iopm_pages;
4961 	void *iopm_va;
4962 	int r;
4963 	unsigned int order = get_order(IOPM_SIZE);
4964 
4965 	/*
4966 	 * NX is required for shadow paging and for NPT if the NX huge pages
4967 	 * mitigation is enabled.
4968 	 */
4969 	if (!boot_cpu_has(X86_FEATURE_NX)) {
4970 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
4971 		return -EOPNOTSUPP;
4972 	}
4973 	kvm_enable_efer_bits(EFER_NX);
4974 
4975 	iopm_pages = alloc_pages(GFP_KERNEL, order);
4976 
4977 	if (!iopm_pages)
4978 		return -ENOMEM;
4979 
4980 	iopm_va = page_address(iopm_pages);
4981 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
4982 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
4983 
4984 	init_msrpm_offsets();
4985 
4986 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
4987 				     XFEATURE_MASK_BNDCSR);
4988 
4989 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
4990 		kvm_enable_efer_bits(EFER_FFXSR);
4991 
4992 	if (tsc_scaling) {
4993 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
4994 			tsc_scaling = false;
4995 		} else {
4996 			pr_info("TSC scaling supported\n");
4997 			kvm_caps.has_tsc_control = true;
4998 		}
4999 	}
5000 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5001 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5002 
5003 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5004 
5005 	/* Check for pause filtering support */
5006 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5007 		pause_filter_count = 0;
5008 		pause_filter_thresh = 0;
5009 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5010 		pause_filter_thresh = 0;
5011 	}
5012 
5013 	if (nested) {
5014 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
5015 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5016 	}
5017 
5018 	/*
5019 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5020 	 * NPT isn't supported if the host is using 2-level paging since host
5021 	 * CR4 is unchanged on VMRUN.
5022 	 */
5023 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5024 		npt_enabled = false;
5025 
5026 	if (!boot_cpu_has(X86_FEATURE_NPT))
5027 		npt_enabled = false;
5028 
5029 	/* Force VM NPT level equal to the host's paging level */
5030 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5031 			  get_npt_level(), PG_LEVEL_1G);
5032 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5033 
5034 	/* Setup shadow_me_value and shadow_me_mask */
5035 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5036 
5037 	svm_adjust_mmio_mask();
5038 
5039 	/*
5040 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5041 	 * may be modified by svm_adjust_mmio_mask()).
5042 	 */
5043 	sev_hardware_setup();
5044 
5045 	svm_hv_hardware_setup();
5046 
5047 	for_each_possible_cpu(cpu) {
5048 		r = svm_cpu_init(cpu);
5049 		if (r)
5050 			goto err;
5051 	}
5052 
5053 	if (nrips) {
5054 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
5055 			nrips = false;
5056 	}
5057 
5058 	enable_apicv = avic = avic && avic_hardware_setup(&svm_x86_ops);
5059 
5060 	if (!enable_apicv) {
5061 		svm_x86_ops.vcpu_blocking = NULL;
5062 		svm_x86_ops.vcpu_unblocking = NULL;
5063 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5064 	}
5065 
5066 	if (vls) {
5067 		if (!npt_enabled ||
5068 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5069 		    !IS_ENABLED(CONFIG_X86_64)) {
5070 			vls = false;
5071 		} else {
5072 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5073 		}
5074 	}
5075 
5076 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5077 		svm_gp_erratum_intercept = false;
5078 
5079 	if (vgif) {
5080 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5081 			vgif = false;
5082 		else
5083 			pr_info("Virtual GIF supported\n");
5084 	}
5085 
5086 	if (lbrv) {
5087 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5088 			lbrv = false;
5089 		else
5090 			pr_info("LBR virtualization supported\n");
5091 	}
5092 
5093 	if (!enable_pmu)
5094 		pr_info("PMU virtualization is disabled\n");
5095 
5096 	svm_set_cpu_caps();
5097 
5098 	/*
5099 	 * It seems that on AMD processors PTE's accessed bit is
5100 	 * being set by the CPU hardware before the NPF vmexit.
5101 	 * This is not expected behaviour and our tests fail because
5102 	 * of it.
5103 	 * A workaround here is to disable support for
5104 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5105 	 * In this case userspace can know if there is support using
5106 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5107 	 * it
5108 	 * If future AMD CPU models change the behaviour described above,
5109 	 * this variable can be changed accordingly
5110 	 */
5111 	allow_smaller_maxphyaddr = !npt_enabled;
5112 
5113 	return 0;
5114 
5115 err:
5116 	svm_hardware_unsetup();
5117 	return r;
5118 }
5119 
5120 
5121 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5122 	.cpu_has_kvm_support = has_svm,
5123 	.disabled_by_bios = is_disabled,
5124 	.hardware_setup = svm_hardware_setup,
5125 	.check_processor_compatibility = svm_check_processor_compat,
5126 
5127 	.runtime_ops = &svm_x86_ops,
5128 	.pmu_ops = &amd_pmu_ops,
5129 };
5130 
5131 static int __init svm_init(void)
5132 {
5133 	__unused_size_checks();
5134 
5135 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
5136 			__alignof__(struct vcpu_svm), THIS_MODULE);
5137 }
5138 
5139 static void __exit svm_exit(void)
5140 {
5141 	kvm_exit();
5142 }
5143 
5144 module_init(svm_init)
5145 module_exit(svm_exit)
5146