xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision 1edd0337)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 
31 #include <asm/apic.h>
32 #include <asm/perf_event.h>
33 #include <asm/tlbflush.h>
34 #include <asm/desc.h>
35 #include <asm/debugreg.h>
36 #include <asm/kvm_para.h>
37 #include <asm/irq_remapping.h>
38 #include <asm/spec-ctrl.h>
39 #include <asm/cpu_device_id.h>
40 #include <asm/traps.h>
41 #include <asm/fpu/api.h>
42 
43 #include <asm/virtext.h>
44 #include "trace.h"
45 
46 #include "svm.h"
47 #include "svm_ops.h"
48 
49 #include "kvm_onhyperv.h"
50 #include "svm_onhyperv.h"
51 
52 MODULE_AUTHOR("Qumranet");
53 MODULE_LICENSE("GPL");
54 
55 #ifdef MODULE
56 static const struct x86_cpu_id svm_cpu_id[] = {
57 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
58 	{}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
61 #endif
62 
63 #define SEG_TYPE_LDT 2
64 #define SEG_TYPE_BUSY_TSS16 3
65 
66 static bool erratum_383_found __read_mostly;
67 
68 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
69 
70 /*
71  * Set osvw_len to higher value when updated Revision Guides
72  * are published and we know what the new status bits are
73  */
74 static uint64_t osvw_len = 4, osvw_status;
75 
76 static DEFINE_PER_CPU(u64, current_tsc_ratio);
77 
78 #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
79 
80 static const struct svm_direct_access_msrs {
81 	u32 index;   /* Index of the MSR */
82 	bool always; /* True if intercept is initially cleared */
83 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
84 	{ .index = MSR_STAR,				.always = true  },
85 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
86 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
87 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
88 #ifdef CONFIG_X86_64
89 	{ .index = MSR_GS_BASE,				.always = true  },
90 	{ .index = MSR_FS_BASE,				.always = true  },
91 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
92 	{ .index = MSR_LSTAR,				.always = true  },
93 	{ .index = MSR_CSTAR,				.always = true  },
94 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
95 #endif
96 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
97 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
98 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
99 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
100 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
101 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
102 	{ .index = MSR_EFER,				.always = false },
103 	{ .index = MSR_IA32_CR_PAT,			.always = false },
104 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
105 	{ .index = MSR_TSC_AUX,				.always = false },
106 	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
107 	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
108 	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
109 	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
110 	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
111 	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
112 	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
113 	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
114 	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
115 	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
116 	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
117 	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
118 	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
119 	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
120 	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
121 	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
122 
123 	/*
124 	 * Note:
125 	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
126 	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
127 	 * the AVIC hardware would generate GP fault. Therefore, always
128 	 * intercept the MSR 0x832, and do not setup direct_access_msr.
129 	 */
130 	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
131 	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
132 	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
133 	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
134 	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
135 	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
136 	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
137 	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
138 	{ .index = MSR_INVALID,				.always = false },
139 };
140 
141 /*
142  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
143  * pause_filter_count: On processors that support Pause filtering(indicated
144  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
145  *	count value. On VMRUN this value is loaded into an internal counter.
146  *	Each time a pause instruction is executed, this counter is decremented
147  *	until it reaches zero at which time a #VMEXIT is generated if pause
148  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
149  *	Intercept Filtering for more details.
150  *	This also indicate if ple logic enabled.
151  *
152  * pause_filter_thresh: In addition, some processor families support advanced
153  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
154  *	the amount of time a guest is allowed to execute in a pause loop.
155  *	In this mode, a 16-bit pause filter threshold field is added in the
156  *	VMCB. The threshold value is a cycle count that is used to reset the
157  *	pause counter. As with simple pause filtering, VMRUN loads the pause
158  *	count value from VMCB into an internal counter. Then, on each pause
159  *	instruction the hardware checks the elapsed number of cycles since
160  *	the most recent pause instruction against the pause filter threshold.
161  *	If the elapsed cycle count is greater than the pause filter threshold,
162  *	then the internal pause count is reloaded from the VMCB and execution
163  *	continues. If the elapsed cycle count is less than the pause filter
164  *	threshold, then the internal pause count is decremented. If the count
165  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
166  *	triggered. If advanced pause filtering is supported and pause filter
167  *	threshold field is set to zero, the filter will operate in the simpler,
168  *	count only mode.
169  */
170 
171 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
172 module_param(pause_filter_thresh, ushort, 0444);
173 
174 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
175 module_param(pause_filter_count, ushort, 0444);
176 
177 /* Default doubles per-vcpu window every exit. */
178 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
179 module_param(pause_filter_count_grow, ushort, 0444);
180 
181 /* Default resets per-vcpu window every exit to pause_filter_count. */
182 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
183 module_param(pause_filter_count_shrink, ushort, 0444);
184 
185 /* Default is to compute the maximum so we can never overflow. */
186 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
187 module_param(pause_filter_count_max, ushort, 0444);
188 
189 /*
190  * Use nested page tables by default.  Note, NPT may get forced off by
191  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
192  */
193 bool npt_enabled = true;
194 module_param_named(npt, npt_enabled, bool, 0444);
195 
196 /* allow nested virtualization in KVM/SVM */
197 static int nested = true;
198 module_param(nested, int, S_IRUGO);
199 
200 /* enable/disable Next RIP Save */
201 static int nrips = true;
202 module_param(nrips, int, 0444);
203 
204 /* enable/disable Virtual VMLOAD VMSAVE */
205 static int vls = true;
206 module_param(vls, int, 0444);
207 
208 /* enable/disable Virtual GIF */
209 int vgif = true;
210 module_param(vgif, int, 0444);
211 
212 /* enable/disable LBR virtualization */
213 static int lbrv = true;
214 module_param(lbrv, int, 0444);
215 
216 static int tsc_scaling = true;
217 module_param(tsc_scaling, int, 0444);
218 
219 /*
220  * enable / disable AVIC.  Because the defaults differ for APICv
221  * support between VMX and SVM we cannot use module_param_named.
222  */
223 static bool avic;
224 module_param(avic, bool, 0444);
225 
226 bool __read_mostly dump_invalid_vmcb;
227 module_param(dump_invalid_vmcb, bool, 0644);
228 
229 
230 bool intercept_smi = true;
231 module_param(intercept_smi, bool, 0444);
232 
233 
234 static bool svm_gp_erratum_intercept = true;
235 
236 static u8 rsm_ins_bytes[] = "\x0f\xaa";
237 
238 static unsigned long iopm_base;
239 
240 struct kvm_ldttss_desc {
241 	u16 limit0;
242 	u16 base0;
243 	unsigned base1:8, type:5, dpl:2, p:1;
244 	unsigned limit1:4, zero0:3, g:1, base2:8;
245 	u32 base3;
246 	u32 zero1;
247 } __attribute__((packed));
248 
249 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
250 
251 /*
252  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
253  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
254  *
255  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
256  * defer the restoration of TSC_AUX until the CPU returns to userspace.
257  */
258 static int tsc_aux_uret_slot __read_mostly = -1;
259 
260 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
261 
262 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
263 #define MSRS_RANGE_SIZE 2048
264 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
265 
266 u32 svm_msrpm_offset(u32 msr)
267 {
268 	u32 offset;
269 	int i;
270 
271 	for (i = 0; i < NUM_MSR_MAPS; i++) {
272 		if (msr < msrpm_ranges[i] ||
273 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
274 			continue;
275 
276 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
277 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
278 
279 		/* Now we have the u8 offset - but need the u32 offset */
280 		return offset / 4;
281 	}
282 
283 	/* MSR not in any range */
284 	return MSR_INVALID;
285 }
286 
287 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
288 
289 static int get_npt_level(void)
290 {
291 #ifdef CONFIG_X86_64
292 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
293 #else
294 	return PT32E_ROOT_LEVEL;
295 #endif
296 }
297 
298 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
299 {
300 	struct vcpu_svm *svm = to_svm(vcpu);
301 	u64 old_efer = vcpu->arch.efer;
302 	vcpu->arch.efer = efer;
303 
304 	if (!npt_enabled) {
305 		/* Shadow paging assumes NX to be available.  */
306 		efer |= EFER_NX;
307 
308 		if (!(efer & EFER_LMA))
309 			efer &= ~EFER_LME;
310 	}
311 
312 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
313 		if (!(efer & EFER_SVME)) {
314 			svm_leave_nested(vcpu);
315 			svm_set_gif(svm, true);
316 			/* #GP intercept is still needed for vmware backdoor */
317 			if (!enable_vmware_backdoor)
318 				clr_exception_intercept(svm, GP_VECTOR);
319 
320 			/*
321 			 * Free the nested guest state, unless we are in SMM.
322 			 * In this case we will return to the nested guest
323 			 * as soon as we leave SMM.
324 			 */
325 			if (!is_smm(vcpu))
326 				svm_free_nested(svm);
327 
328 		} else {
329 			int ret = svm_allocate_nested(svm);
330 
331 			if (ret) {
332 				vcpu->arch.efer = old_efer;
333 				return ret;
334 			}
335 
336 			/*
337 			 * Never intercept #GP for SEV guests, KVM can't
338 			 * decrypt guest memory to workaround the erratum.
339 			 */
340 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
341 				set_exception_intercept(svm, GP_VECTOR);
342 		}
343 	}
344 
345 	svm->vmcb->save.efer = efer | EFER_SVME;
346 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
347 	return 0;
348 }
349 
350 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
351 {
352 	struct vcpu_svm *svm = to_svm(vcpu);
353 	u32 ret = 0;
354 
355 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
356 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
357 	return ret;
358 }
359 
360 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
361 {
362 	struct vcpu_svm *svm = to_svm(vcpu);
363 
364 	if (mask == 0)
365 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
366 	else
367 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
368 
369 }
370 
371 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
372 					   bool commit_side_effects)
373 {
374 	struct vcpu_svm *svm = to_svm(vcpu);
375 	unsigned long old_rflags;
376 
377 	/*
378 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
379 	 * the type of exit and the #VC handler in the guest.
380 	 */
381 	if (sev_es_guest(vcpu->kvm))
382 		goto done;
383 
384 	if (nrips && svm->vmcb->control.next_rip != 0) {
385 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
386 		svm->next_rip = svm->vmcb->control.next_rip;
387 	}
388 
389 	if (!svm->next_rip) {
390 		if (unlikely(!commit_side_effects))
391 			old_rflags = svm->vmcb->save.rflags;
392 
393 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
394 			return 0;
395 
396 		if (unlikely(!commit_side_effects))
397 			svm->vmcb->save.rflags = old_rflags;
398 	} else {
399 		kvm_rip_write(vcpu, svm->next_rip);
400 	}
401 
402 done:
403 	if (likely(commit_side_effects))
404 		svm_set_interrupt_shadow(vcpu, 0);
405 
406 	return 1;
407 }
408 
409 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
410 {
411 	return __svm_skip_emulated_instruction(vcpu, true);
412 }
413 
414 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
415 {
416 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
417 	struct vcpu_svm *svm = to_svm(vcpu);
418 
419 	/*
420 	 * Due to architectural shortcomings, the CPU doesn't always provide
421 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
422 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
423 	 * the instruction even if NextRIP is supported to acquire the next
424 	 * RIP so that it can be shoved into the NextRIP field, otherwise
425 	 * hardware will fail to advance guest RIP during event injection.
426 	 * Drop the exception/interrupt if emulation fails and effectively
427 	 * retry the instruction, it's the least awful option.  If NRIPS is
428 	 * in use, the skip must not commit any side effects such as clearing
429 	 * the interrupt shadow or RFLAGS.RF.
430 	 */
431 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
432 		return -EIO;
433 
434 	rip = kvm_rip_read(vcpu);
435 
436 	/*
437 	 * Save the injection information, even when using next_rip, as the
438 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
439 	 * doesn't complete due to a VM-Exit occurring while the CPU is
440 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
441 	 * work as there may be no backing instruction, e.g. if the event is
442 	 * being injected by L1 for L2, or if the guest is patching INT3 into
443 	 * a different instruction.
444 	 */
445 	svm->soft_int_injected = true;
446 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
447 	svm->soft_int_old_rip = old_rip;
448 	svm->soft_int_next_rip = rip;
449 
450 	if (nrips)
451 		kvm_rip_write(vcpu, old_rip);
452 
453 	if (static_cpu_has(X86_FEATURE_NRIPS))
454 		svm->vmcb->control.next_rip = rip;
455 
456 	return 0;
457 }
458 
459 static void svm_inject_exception(struct kvm_vcpu *vcpu)
460 {
461 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
462 	struct vcpu_svm *svm = to_svm(vcpu);
463 
464 	kvm_deliver_exception_payload(vcpu, ex);
465 
466 	if (kvm_exception_is_soft(ex->vector) &&
467 	    svm_update_soft_interrupt_rip(vcpu))
468 		return;
469 
470 	svm->vmcb->control.event_inj = ex->vector
471 		| SVM_EVTINJ_VALID
472 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
473 		| SVM_EVTINJ_TYPE_EXEPT;
474 	svm->vmcb->control.event_inj_err = ex->error_code;
475 }
476 
477 static void svm_init_erratum_383(void)
478 {
479 	u32 low, high;
480 	int err;
481 	u64 val;
482 
483 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
484 		return;
485 
486 	/* Use _safe variants to not break nested virtualization */
487 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
488 	if (err)
489 		return;
490 
491 	val |= (1ULL << 47);
492 
493 	low  = lower_32_bits(val);
494 	high = upper_32_bits(val);
495 
496 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
497 
498 	erratum_383_found = true;
499 }
500 
501 static void svm_init_osvw(struct kvm_vcpu *vcpu)
502 {
503 	/*
504 	 * Guests should see errata 400 and 415 as fixed (assuming that
505 	 * HLT and IO instructions are intercepted).
506 	 */
507 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
508 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
509 
510 	/*
511 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
512 	 * all osvw.status bits inside that length, including bit 0 (which is
513 	 * reserved for erratum 298), are valid. However, if host processor's
514 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
515 	 * be conservative here and therefore we tell the guest that erratum 298
516 	 * is present (because we really don't know).
517 	 */
518 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
519 		vcpu->arch.osvw.status |= 1;
520 }
521 
522 static bool kvm_is_svm_supported(void)
523 {
524 	int cpu = raw_smp_processor_id();
525 	const char *msg;
526 	u64 vm_cr;
527 
528 	if (!cpu_has_svm(&msg)) {
529 		pr_err("SVM not supported by CPU %d, %s\n", cpu, msg);
530 		return false;
531 	}
532 
533 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
534 		pr_info("KVM is unsupported when running as an SEV guest\n");
535 		return false;
536 	}
537 
538 	rdmsrl(MSR_VM_CR, vm_cr);
539 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) {
540 		pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu);
541 		return false;
542 	}
543 
544 	return true;
545 }
546 
547 static int svm_check_processor_compat(void)
548 {
549 	if (!kvm_is_svm_supported())
550 		return -EIO;
551 
552 	return 0;
553 }
554 
555 void __svm_write_tsc_multiplier(u64 multiplier)
556 {
557 	preempt_disable();
558 
559 	if (multiplier == __this_cpu_read(current_tsc_ratio))
560 		goto out;
561 
562 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
563 	__this_cpu_write(current_tsc_ratio, multiplier);
564 out:
565 	preempt_enable();
566 }
567 
568 static void svm_hardware_disable(void)
569 {
570 	/* Make sure we clean up behind us */
571 	if (tsc_scaling)
572 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
573 
574 	cpu_svm_disable();
575 
576 	amd_pmu_disable_virt();
577 }
578 
579 static int svm_hardware_enable(void)
580 {
581 
582 	struct svm_cpu_data *sd;
583 	uint64_t efer;
584 	struct desc_struct *gdt;
585 	int me = raw_smp_processor_id();
586 
587 	rdmsrl(MSR_EFER, efer);
588 	if (efer & EFER_SVME)
589 		return -EBUSY;
590 
591 	sd = per_cpu_ptr(&svm_data, me);
592 	sd->asid_generation = 1;
593 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
594 	sd->next_asid = sd->max_asid + 1;
595 	sd->min_asid = max_sev_asid + 1;
596 
597 	gdt = get_current_gdt_rw();
598 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
599 
600 	wrmsrl(MSR_EFER, efer | EFER_SVME);
601 
602 	wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
603 
604 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
605 		/*
606 		 * Set the default value, even if we don't use TSC scaling
607 		 * to avoid having stale value in the msr
608 		 */
609 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
610 	}
611 
612 
613 	/*
614 	 * Get OSVW bits.
615 	 *
616 	 * Note that it is possible to have a system with mixed processor
617 	 * revisions and therefore different OSVW bits. If bits are not the same
618 	 * on different processors then choose the worst case (i.e. if erratum
619 	 * is present on one processor and not on another then assume that the
620 	 * erratum is present everywhere).
621 	 */
622 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
623 		uint64_t len, status = 0;
624 		int err;
625 
626 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
627 		if (!err)
628 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
629 						      &err);
630 
631 		if (err)
632 			osvw_status = osvw_len = 0;
633 		else {
634 			if (len < osvw_len)
635 				osvw_len = len;
636 			osvw_status |= status;
637 			osvw_status &= (1ULL << osvw_len) - 1;
638 		}
639 	} else
640 		osvw_status = osvw_len = 0;
641 
642 	svm_init_erratum_383();
643 
644 	amd_pmu_enable_virt();
645 
646 	return 0;
647 }
648 
649 static void svm_cpu_uninit(int cpu)
650 {
651 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
652 
653 	if (!sd->save_area)
654 		return;
655 
656 	kfree(sd->sev_vmcbs);
657 	__free_page(sd->save_area);
658 	sd->save_area_pa = 0;
659 	sd->save_area = NULL;
660 }
661 
662 static int svm_cpu_init(int cpu)
663 {
664 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
665 	int ret = -ENOMEM;
666 
667 	memset(sd, 0, sizeof(struct svm_cpu_data));
668 	sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
669 	if (!sd->save_area)
670 		return ret;
671 
672 	ret = sev_cpu_init(sd);
673 	if (ret)
674 		goto free_save_area;
675 
676 	sd->save_area_pa = __sme_page_pa(sd->save_area);
677 	return 0;
678 
679 free_save_area:
680 	__free_page(sd->save_area);
681 	sd->save_area = NULL;
682 	return ret;
683 
684 }
685 
686 static int direct_access_msr_slot(u32 msr)
687 {
688 	u32 i;
689 
690 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
691 		if (direct_access_msrs[i].index == msr)
692 			return i;
693 
694 	return -ENOENT;
695 }
696 
697 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
698 				     int write)
699 {
700 	struct vcpu_svm *svm = to_svm(vcpu);
701 	int slot = direct_access_msr_slot(msr);
702 
703 	if (slot == -ENOENT)
704 		return;
705 
706 	/* Set the shadow bitmaps to the desired intercept states */
707 	if (read)
708 		set_bit(slot, svm->shadow_msr_intercept.read);
709 	else
710 		clear_bit(slot, svm->shadow_msr_intercept.read);
711 
712 	if (write)
713 		set_bit(slot, svm->shadow_msr_intercept.write);
714 	else
715 		clear_bit(slot, svm->shadow_msr_intercept.write);
716 }
717 
718 static bool valid_msr_intercept(u32 index)
719 {
720 	return direct_access_msr_slot(index) != -ENOENT;
721 }
722 
723 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
724 {
725 	u8 bit_write;
726 	unsigned long tmp;
727 	u32 offset;
728 	u32 *msrpm;
729 
730 	/*
731 	 * For non-nested case:
732 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
733 	 * save it.
734 	 *
735 	 * For nested case:
736 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
737 	 * save it.
738 	 */
739 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
740 				      to_svm(vcpu)->msrpm;
741 
742 	offset    = svm_msrpm_offset(msr);
743 	bit_write = 2 * (msr & 0x0f) + 1;
744 	tmp       = msrpm[offset];
745 
746 	BUG_ON(offset == MSR_INVALID);
747 
748 	return !!test_bit(bit_write,  &tmp);
749 }
750 
751 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
752 					u32 msr, int read, int write)
753 {
754 	struct vcpu_svm *svm = to_svm(vcpu);
755 	u8 bit_read, bit_write;
756 	unsigned long tmp;
757 	u32 offset;
758 
759 	/*
760 	 * If this warning triggers extend the direct_access_msrs list at the
761 	 * beginning of the file
762 	 */
763 	WARN_ON(!valid_msr_intercept(msr));
764 
765 	/* Enforce non allowed MSRs to trap */
766 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
767 		read = 0;
768 
769 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
770 		write = 0;
771 
772 	offset    = svm_msrpm_offset(msr);
773 	bit_read  = 2 * (msr & 0x0f);
774 	bit_write = 2 * (msr & 0x0f) + 1;
775 	tmp       = msrpm[offset];
776 
777 	BUG_ON(offset == MSR_INVALID);
778 
779 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
780 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
781 
782 	msrpm[offset] = tmp;
783 
784 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
785 	svm->nested.force_msr_bitmap_recalc = true;
786 }
787 
788 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
789 			  int read, int write)
790 {
791 	set_shadow_msr_intercept(vcpu, msr, read, write);
792 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
793 }
794 
795 u32 *svm_vcpu_alloc_msrpm(void)
796 {
797 	unsigned int order = get_order(MSRPM_SIZE);
798 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
799 	u32 *msrpm;
800 
801 	if (!pages)
802 		return NULL;
803 
804 	msrpm = page_address(pages);
805 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
806 
807 	return msrpm;
808 }
809 
810 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
811 {
812 	int i;
813 
814 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
815 		if (!direct_access_msrs[i].always)
816 			continue;
817 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
818 	}
819 }
820 
821 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
822 {
823 	int i;
824 
825 	if (intercept == svm->x2avic_msrs_intercepted)
826 		return;
827 
828 	if (!x2avic_enabled ||
829 	    !apic_x2apic_mode(svm->vcpu.arch.apic))
830 		return;
831 
832 	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
833 		int index = direct_access_msrs[i].index;
834 
835 		if ((index < APIC_BASE_MSR) ||
836 		    (index > APIC_BASE_MSR + 0xff))
837 			continue;
838 		set_msr_interception(&svm->vcpu, svm->msrpm, index,
839 				     !intercept, !intercept);
840 	}
841 
842 	svm->x2avic_msrs_intercepted = intercept;
843 }
844 
845 void svm_vcpu_free_msrpm(u32 *msrpm)
846 {
847 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
848 }
849 
850 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
851 {
852 	struct vcpu_svm *svm = to_svm(vcpu);
853 	u32 i;
854 
855 	/*
856 	 * Set intercept permissions for all direct access MSRs again. They
857 	 * will automatically get filtered through the MSR filter, so we are
858 	 * back in sync after this.
859 	 */
860 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
861 		u32 msr = direct_access_msrs[i].index;
862 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
863 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
864 
865 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
866 	}
867 }
868 
869 static void add_msr_offset(u32 offset)
870 {
871 	int i;
872 
873 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
874 
875 		/* Offset already in list? */
876 		if (msrpm_offsets[i] == offset)
877 			return;
878 
879 		/* Slot used by another offset? */
880 		if (msrpm_offsets[i] != MSR_INVALID)
881 			continue;
882 
883 		/* Add offset to list */
884 		msrpm_offsets[i] = offset;
885 
886 		return;
887 	}
888 
889 	/*
890 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
891 	 * increase MSRPM_OFFSETS in this case.
892 	 */
893 	BUG();
894 }
895 
896 static void init_msrpm_offsets(void)
897 {
898 	int i;
899 
900 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
901 
902 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
903 		u32 offset;
904 
905 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
906 		BUG_ON(offset == MSR_INVALID);
907 
908 		add_msr_offset(offset);
909 	}
910 }
911 
912 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
913 {
914 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
915 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
916 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
917 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
918 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
919 
920 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
921 }
922 
923 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
924 {
925 	struct vcpu_svm *svm = to_svm(vcpu);
926 
927 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
928 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
929 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
930 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
931 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
932 
933 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
934 	if (is_guest_mode(vcpu))
935 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
936 }
937 
938 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
939 {
940 	struct vcpu_svm *svm = to_svm(vcpu);
941 
942 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
943 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
944 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
945 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
946 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
947 
948 	/*
949 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
950 	 * on nested guest entries.
951 	 */
952 	if (is_guest_mode(vcpu))
953 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
954 }
955 
956 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
957 {
958 	/*
959 	 * If the LBR virtualization is disabled, the LBR msrs are always
960 	 * kept in the vmcb01 to avoid copying them on nested guest entries.
961 	 *
962 	 * If nested, and the LBR virtualization is enabled/disabled, the msrs
963 	 * are moved between the vmcb01 and vmcb02 as needed.
964 	 */
965 	struct vmcb *vmcb =
966 		(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
967 			svm->vmcb : svm->vmcb01.ptr;
968 
969 	switch (index) {
970 	case MSR_IA32_DEBUGCTLMSR:
971 		return vmcb->save.dbgctl;
972 	case MSR_IA32_LASTBRANCHFROMIP:
973 		return vmcb->save.br_from;
974 	case MSR_IA32_LASTBRANCHTOIP:
975 		return vmcb->save.br_to;
976 	case MSR_IA32_LASTINTFROMIP:
977 		return vmcb->save.last_excp_from;
978 	case MSR_IA32_LASTINTTOIP:
979 		return vmcb->save.last_excp_to;
980 	default:
981 		KVM_BUG(false, svm->vcpu.kvm,
982 			"%s: Unknown MSR 0x%x", __func__, index);
983 		return 0;
984 	}
985 }
986 
987 void svm_update_lbrv(struct kvm_vcpu *vcpu)
988 {
989 	struct vcpu_svm *svm = to_svm(vcpu);
990 
991 	bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
992 					   DEBUGCTLMSR_LBR;
993 
994 	bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
995 				      LBR_CTL_ENABLE_MASK);
996 
997 	if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
998 		if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
999 			enable_lbrv = true;
1000 
1001 	if (enable_lbrv == current_enable_lbrv)
1002 		return;
1003 
1004 	if (enable_lbrv)
1005 		svm_enable_lbrv(vcpu);
1006 	else
1007 		svm_disable_lbrv(vcpu);
1008 }
1009 
1010 void disable_nmi_singlestep(struct vcpu_svm *svm)
1011 {
1012 	svm->nmi_singlestep = false;
1013 
1014 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1015 		/* Clear our flags if they were not set by the guest */
1016 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1017 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1018 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1019 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1020 	}
1021 }
1022 
1023 static void grow_ple_window(struct kvm_vcpu *vcpu)
1024 {
1025 	struct vcpu_svm *svm = to_svm(vcpu);
1026 	struct vmcb_control_area *control = &svm->vmcb->control;
1027 	int old = control->pause_filter_count;
1028 
1029 	if (kvm_pause_in_guest(vcpu->kvm))
1030 		return;
1031 
1032 	control->pause_filter_count = __grow_ple_window(old,
1033 							pause_filter_count,
1034 							pause_filter_count_grow,
1035 							pause_filter_count_max);
1036 
1037 	if (control->pause_filter_count != old) {
1038 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1039 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1040 					    control->pause_filter_count, old);
1041 	}
1042 }
1043 
1044 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1045 {
1046 	struct vcpu_svm *svm = to_svm(vcpu);
1047 	struct vmcb_control_area *control = &svm->vmcb->control;
1048 	int old = control->pause_filter_count;
1049 
1050 	if (kvm_pause_in_guest(vcpu->kvm))
1051 		return;
1052 
1053 	control->pause_filter_count =
1054 				__shrink_ple_window(old,
1055 						    pause_filter_count,
1056 						    pause_filter_count_shrink,
1057 						    pause_filter_count);
1058 	if (control->pause_filter_count != old) {
1059 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1060 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1061 					    control->pause_filter_count, old);
1062 	}
1063 }
1064 
1065 static void svm_hardware_unsetup(void)
1066 {
1067 	int cpu;
1068 
1069 	sev_hardware_unsetup();
1070 
1071 	for_each_possible_cpu(cpu)
1072 		svm_cpu_uninit(cpu);
1073 
1074 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1075 	get_order(IOPM_SIZE));
1076 	iopm_base = 0;
1077 }
1078 
1079 static void init_seg(struct vmcb_seg *seg)
1080 {
1081 	seg->selector = 0;
1082 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1083 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1084 	seg->limit = 0xffff;
1085 	seg->base = 0;
1086 }
1087 
1088 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1089 {
1090 	seg->selector = 0;
1091 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1092 	seg->limit = 0xffff;
1093 	seg->base = 0;
1094 }
1095 
1096 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1097 {
1098 	struct vcpu_svm *svm = to_svm(vcpu);
1099 
1100 	return svm->nested.ctl.tsc_offset;
1101 }
1102 
1103 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1104 {
1105 	struct vcpu_svm *svm = to_svm(vcpu);
1106 
1107 	return svm->tsc_ratio_msr;
1108 }
1109 
1110 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1111 {
1112 	struct vcpu_svm *svm = to_svm(vcpu);
1113 
1114 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1115 	svm->vmcb->control.tsc_offset = offset;
1116 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1117 }
1118 
1119 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1120 {
1121 	__svm_write_tsc_multiplier(multiplier);
1122 }
1123 
1124 
1125 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1126 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1127 					      struct vcpu_svm *svm)
1128 {
1129 	/*
1130 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1131 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1132 	 */
1133 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1134 		if (!npt_enabled ||
1135 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1136 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1137 		else
1138 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1139 	}
1140 
1141 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1142 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1143 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1144 		else
1145 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1146 	}
1147 }
1148 
1149 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1150 {
1151 	struct vcpu_svm *svm = to_svm(vcpu);
1152 
1153 	if (guest_cpuid_is_intel(vcpu)) {
1154 		/*
1155 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1156 		 * accesses because the processor only stores 32 bits.
1157 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1158 		 */
1159 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1160 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1161 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1162 
1163 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1164 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1165 
1166 		svm->v_vmload_vmsave_enabled = false;
1167 	} else {
1168 		/*
1169 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1170 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1171 		 */
1172 		if (vls) {
1173 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1174 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1175 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1176 		}
1177 		/* No need to intercept these MSRs */
1178 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1179 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1180 	}
1181 }
1182 
1183 static void init_vmcb(struct kvm_vcpu *vcpu)
1184 {
1185 	struct vcpu_svm *svm = to_svm(vcpu);
1186 	struct vmcb *vmcb = svm->vmcb01.ptr;
1187 	struct vmcb_control_area *control = &vmcb->control;
1188 	struct vmcb_save_area *save = &vmcb->save;
1189 
1190 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1191 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1192 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1193 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1194 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1195 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1196 	if (!kvm_vcpu_apicv_active(vcpu))
1197 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1198 
1199 	set_dr_intercepts(svm);
1200 
1201 	set_exception_intercept(svm, PF_VECTOR);
1202 	set_exception_intercept(svm, UD_VECTOR);
1203 	set_exception_intercept(svm, MC_VECTOR);
1204 	set_exception_intercept(svm, AC_VECTOR);
1205 	set_exception_intercept(svm, DB_VECTOR);
1206 	/*
1207 	 * Guest access to VMware backdoor ports could legitimately
1208 	 * trigger #GP because of TSS I/O permission bitmap.
1209 	 * We intercept those #GP and allow access to them anyway
1210 	 * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
1211 	 * decrypt guest memory to decode the faulting instruction.
1212 	 */
1213 	if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1214 		set_exception_intercept(svm, GP_VECTOR);
1215 
1216 	svm_set_intercept(svm, INTERCEPT_INTR);
1217 	svm_set_intercept(svm, INTERCEPT_NMI);
1218 
1219 	if (intercept_smi)
1220 		svm_set_intercept(svm, INTERCEPT_SMI);
1221 
1222 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1223 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1224 	svm_set_intercept(svm, INTERCEPT_CPUID);
1225 	svm_set_intercept(svm, INTERCEPT_INVD);
1226 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1227 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1228 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1229 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1230 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1231 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1232 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1233 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1234 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1235 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1236 	svm_set_intercept(svm, INTERCEPT_STGI);
1237 	svm_set_intercept(svm, INTERCEPT_CLGI);
1238 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1239 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1240 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1241 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1242 	svm_set_intercept(svm, INTERCEPT_RSM);
1243 
1244 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1245 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1246 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1247 	}
1248 
1249 	if (!kvm_hlt_in_guest(vcpu->kvm))
1250 		svm_set_intercept(svm, INTERCEPT_HLT);
1251 
1252 	control->iopm_base_pa = __sme_set(iopm_base);
1253 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1254 	control->int_ctl = V_INTR_MASKING_MASK;
1255 
1256 	init_seg(&save->es);
1257 	init_seg(&save->ss);
1258 	init_seg(&save->ds);
1259 	init_seg(&save->fs);
1260 	init_seg(&save->gs);
1261 
1262 	save->cs.selector = 0xf000;
1263 	save->cs.base = 0xffff0000;
1264 	/* Executable/Readable Code Segment */
1265 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1266 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1267 	save->cs.limit = 0xffff;
1268 
1269 	save->gdtr.base = 0;
1270 	save->gdtr.limit = 0xffff;
1271 	save->idtr.base = 0;
1272 	save->idtr.limit = 0xffff;
1273 
1274 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1275 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1276 
1277 	if (npt_enabled) {
1278 		/* Setup VMCB for Nested Paging */
1279 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1280 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1281 		clr_exception_intercept(svm, PF_VECTOR);
1282 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1283 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1284 		save->g_pat = vcpu->arch.pat;
1285 		save->cr3 = 0;
1286 	}
1287 	svm->current_vmcb->asid_generation = 0;
1288 	svm->asid = 0;
1289 
1290 	svm->nested.vmcb12_gpa = INVALID_GPA;
1291 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1292 
1293 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1294 		control->pause_filter_count = pause_filter_count;
1295 		if (pause_filter_thresh)
1296 			control->pause_filter_thresh = pause_filter_thresh;
1297 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1298 	} else {
1299 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1300 	}
1301 
1302 	svm_recalc_instruction_intercepts(vcpu, svm);
1303 
1304 	/*
1305 	 * If the host supports V_SPEC_CTRL then disable the interception
1306 	 * of MSR_IA32_SPEC_CTRL.
1307 	 */
1308 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1309 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1310 
1311 	if (kvm_vcpu_apicv_active(vcpu))
1312 		avic_init_vmcb(svm, vmcb);
1313 
1314 	if (vgif) {
1315 		svm_clr_intercept(svm, INTERCEPT_STGI);
1316 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1317 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1318 	}
1319 
1320 	if (sev_guest(vcpu->kvm))
1321 		sev_init_vmcb(svm);
1322 
1323 	svm_hv_init_vmcb(vmcb);
1324 	init_vmcb_after_set_cpuid(vcpu);
1325 
1326 	vmcb_mark_all_dirty(vmcb);
1327 
1328 	enable_gif(svm);
1329 }
1330 
1331 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1332 {
1333 	struct vcpu_svm *svm = to_svm(vcpu);
1334 
1335 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1336 
1337 	svm_init_osvw(vcpu);
1338 	vcpu->arch.microcode_version = 0x01000065;
1339 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1340 
1341 	svm->nmi_masked = false;
1342 	svm->awaiting_iret_completion = false;
1343 
1344 	if (sev_es_guest(vcpu->kvm))
1345 		sev_es_vcpu_reset(svm);
1346 }
1347 
1348 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1349 {
1350 	struct vcpu_svm *svm = to_svm(vcpu);
1351 
1352 	svm->spec_ctrl = 0;
1353 	svm->virt_spec_ctrl = 0;
1354 
1355 	init_vmcb(vcpu);
1356 
1357 	if (!init_event)
1358 		__svm_vcpu_reset(vcpu);
1359 }
1360 
1361 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1362 {
1363 	svm->current_vmcb = target_vmcb;
1364 	svm->vmcb = target_vmcb->ptr;
1365 }
1366 
1367 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1368 {
1369 	struct vcpu_svm *svm;
1370 	struct page *vmcb01_page;
1371 	struct page *vmsa_page = NULL;
1372 	int err;
1373 
1374 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1375 	svm = to_svm(vcpu);
1376 
1377 	err = -ENOMEM;
1378 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1379 	if (!vmcb01_page)
1380 		goto out;
1381 
1382 	if (sev_es_guest(vcpu->kvm)) {
1383 		/*
1384 		 * SEV-ES guests require a separate VMSA page used to contain
1385 		 * the encrypted register state of the guest.
1386 		 */
1387 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1388 		if (!vmsa_page)
1389 			goto error_free_vmcb_page;
1390 
1391 		/*
1392 		 * SEV-ES guests maintain an encrypted version of their FPU
1393 		 * state which is restored and saved on VMRUN and VMEXIT.
1394 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1395 		 * do xsave/xrstor on it.
1396 		 */
1397 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1398 	}
1399 
1400 	err = avic_init_vcpu(svm);
1401 	if (err)
1402 		goto error_free_vmsa_page;
1403 
1404 	svm->msrpm = svm_vcpu_alloc_msrpm();
1405 	if (!svm->msrpm) {
1406 		err = -ENOMEM;
1407 		goto error_free_vmsa_page;
1408 	}
1409 
1410 	svm->x2avic_msrs_intercepted = true;
1411 
1412 	svm->vmcb01.ptr = page_address(vmcb01_page);
1413 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1414 	svm_switch_vmcb(svm, &svm->vmcb01);
1415 
1416 	if (vmsa_page)
1417 		svm->sev_es.vmsa = page_address(vmsa_page);
1418 
1419 	svm->guest_state_loaded = false;
1420 
1421 	return 0;
1422 
1423 error_free_vmsa_page:
1424 	if (vmsa_page)
1425 		__free_page(vmsa_page);
1426 error_free_vmcb_page:
1427 	__free_page(vmcb01_page);
1428 out:
1429 	return err;
1430 }
1431 
1432 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1433 {
1434 	int i;
1435 
1436 	for_each_online_cpu(i)
1437 		cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1438 }
1439 
1440 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1441 {
1442 	struct vcpu_svm *svm = to_svm(vcpu);
1443 
1444 	/*
1445 	 * The vmcb page can be recycled, causing a false negative in
1446 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1447 	 * vmcb page recorded as its current vmcb.
1448 	 */
1449 	svm_clear_current_vmcb(svm->vmcb);
1450 
1451 	svm_leave_nested(vcpu);
1452 	svm_free_nested(svm);
1453 
1454 	sev_free_vcpu(vcpu);
1455 
1456 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1457 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1458 }
1459 
1460 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1461 {
1462 	struct vcpu_svm *svm = to_svm(vcpu);
1463 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1464 
1465 	if (sev_es_guest(vcpu->kvm))
1466 		sev_es_unmap_ghcb(svm);
1467 
1468 	if (svm->guest_state_loaded)
1469 		return;
1470 
1471 	/*
1472 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1473 	 * or subsequent vmload of host save area.
1474 	 */
1475 	vmsave(sd->save_area_pa);
1476 	if (sev_es_guest(vcpu->kvm)) {
1477 		struct sev_es_save_area *hostsa;
1478 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1479 
1480 		sev_es_prepare_switch_to_guest(hostsa);
1481 	}
1482 
1483 	if (tsc_scaling)
1484 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1485 
1486 	if (likely(tsc_aux_uret_slot >= 0))
1487 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1488 
1489 	svm->guest_state_loaded = true;
1490 }
1491 
1492 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1493 {
1494 	to_svm(vcpu)->guest_state_loaded = false;
1495 }
1496 
1497 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1498 {
1499 	struct vcpu_svm *svm = to_svm(vcpu);
1500 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1501 
1502 	if (sd->current_vmcb != svm->vmcb) {
1503 		sd->current_vmcb = svm->vmcb;
1504 		indirect_branch_prediction_barrier();
1505 	}
1506 	if (kvm_vcpu_apicv_active(vcpu))
1507 		avic_vcpu_load(vcpu, cpu);
1508 }
1509 
1510 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1511 {
1512 	if (kvm_vcpu_apicv_active(vcpu))
1513 		avic_vcpu_put(vcpu);
1514 
1515 	svm_prepare_host_switch(vcpu);
1516 
1517 	++vcpu->stat.host_state_reload;
1518 }
1519 
1520 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1521 {
1522 	struct vcpu_svm *svm = to_svm(vcpu);
1523 	unsigned long rflags = svm->vmcb->save.rflags;
1524 
1525 	if (svm->nmi_singlestep) {
1526 		/* Hide our flags if they were not set by the guest */
1527 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1528 			rflags &= ~X86_EFLAGS_TF;
1529 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1530 			rflags &= ~X86_EFLAGS_RF;
1531 	}
1532 	return rflags;
1533 }
1534 
1535 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1536 {
1537 	if (to_svm(vcpu)->nmi_singlestep)
1538 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1539 
1540        /*
1541         * Any change of EFLAGS.VM is accompanied by a reload of SS
1542         * (caused by either a task switch or an inter-privilege IRET),
1543         * so we do not need to update the CPL here.
1544         */
1545 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1546 }
1547 
1548 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1549 {
1550 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1551 
1552 	return sev_es_guest(vcpu->kvm)
1553 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1554 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1555 }
1556 
1557 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1558 {
1559 	kvm_register_mark_available(vcpu, reg);
1560 
1561 	switch (reg) {
1562 	case VCPU_EXREG_PDPTR:
1563 		/*
1564 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1565 		 * it is always updated per SDM when moving to CRs.
1566 		 */
1567 		if (npt_enabled)
1568 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1569 		break;
1570 	default:
1571 		KVM_BUG_ON(1, vcpu->kvm);
1572 	}
1573 }
1574 
1575 static void svm_set_vintr(struct vcpu_svm *svm)
1576 {
1577 	struct vmcb_control_area *control;
1578 
1579 	/*
1580 	 * The following fields are ignored when AVIC is enabled
1581 	 */
1582 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1583 
1584 	svm_set_intercept(svm, INTERCEPT_VINTR);
1585 
1586 	/*
1587 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1588 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1589 	 */
1590 	control = &svm->vmcb->control;
1591 	control->int_vector = 0x0;
1592 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1593 	control->int_ctl |= V_IRQ_MASK |
1594 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1595 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1596 }
1597 
1598 static void svm_clear_vintr(struct vcpu_svm *svm)
1599 {
1600 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1601 
1602 	/* Drop int_ctl fields related to VINTR injection.  */
1603 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1604 	if (is_guest_mode(&svm->vcpu)) {
1605 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1606 
1607 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1608 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1609 
1610 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1611 			V_IRQ_INJECTION_BITS_MASK;
1612 
1613 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1614 	}
1615 
1616 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1617 }
1618 
1619 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1620 {
1621 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1622 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1623 
1624 	switch (seg) {
1625 	case VCPU_SREG_CS: return &save->cs;
1626 	case VCPU_SREG_DS: return &save->ds;
1627 	case VCPU_SREG_ES: return &save->es;
1628 	case VCPU_SREG_FS: return &save01->fs;
1629 	case VCPU_SREG_GS: return &save01->gs;
1630 	case VCPU_SREG_SS: return &save->ss;
1631 	case VCPU_SREG_TR: return &save01->tr;
1632 	case VCPU_SREG_LDTR: return &save01->ldtr;
1633 	}
1634 	BUG();
1635 	return NULL;
1636 }
1637 
1638 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1639 {
1640 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1641 
1642 	return s->base;
1643 }
1644 
1645 static void svm_get_segment(struct kvm_vcpu *vcpu,
1646 			    struct kvm_segment *var, int seg)
1647 {
1648 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1649 
1650 	var->base = s->base;
1651 	var->limit = s->limit;
1652 	var->selector = s->selector;
1653 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1654 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1655 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1656 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1657 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1658 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1659 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1660 
1661 	/*
1662 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1663 	 * However, the SVM spec states that the G bit is not observed by the
1664 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1665 	 * So let's synthesize a legal G bit for all segments, this helps
1666 	 * running KVM nested. It also helps cross-vendor migration, because
1667 	 * Intel's vmentry has a check on the 'G' bit.
1668 	 */
1669 	var->g = s->limit > 0xfffff;
1670 
1671 	/*
1672 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1673 	 * for cross vendor migration purposes by "not present"
1674 	 */
1675 	var->unusable = !var->present;
1676 
1677 	switch (seg) {
1678 	case VCPU_SREG_TR:
1679 		/*
1680 		 * Work around a bug where the busy flag in the tr selector
1681 		 * isn't exposed
1682 		 */
1683 		var->type |= 0x2;
1684 		break;
1685 	case VCPU_SREG_DS:
1686 	case VCPU_SREG_ES:
1687 	case VCPU_SREG_FS:
1688 	case VCPU_SREG_GS:
1689 		/*
1690 		 * The accessed bit must always be set in the segment
1691 		 * descriptor cache, although it can be cleared in the
1692 		 * descriptor, the cached bit always remains at 1. Since
1693 		 * Intel has a check on this, set it here to support
1694 		 * cross-vendor migration.
1695 		 */
1696 		if (!var->unusable)
1697 			var->type |= 0x1;
1698 		break;
1699 	case VCPU_SREG_SS:
1700 		/*
1701 		 * On AMD CPUs sometimes the DB bit in the segment
1702 		 * descriptor is left as 1, although the whole segment has
1703 		 * been made unusable. Clear it here to pass an Intel VMX
1704 		 * entry check when cross vendor migrating.
1705 		 */
1706 		if (var->unusable)
1707 			var->db = 0;
1708 		/* This is symmetric with svm_set_segment() */
1709 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1710 		break;
1711 	}
1712 }
1713 
1714 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1715 {
1716 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1717 
1718 	return save->cpl;
1719 }
1720 
1721 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1722 {
1723 	struct kvm_segment cs;
1724 
1725 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1726 	*db = cs.db;
1727 	*l = cs.l;
1728 }
1729 
1730 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1731 {
1732 	struct vcpu_svm *svm = to_svm(vcpu);
1733 
1734 	dt->size = svm->vmcb->save.idtr.limit;
1735 	dt->address = svm->vmcb->save.idtr.base;
1736 }
1737 
1738 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1739 {
1740 	struct vcpu_svm *svm = to_svm(vcpu);
1741 
1742 	svm->vmcb->save.idtr.limit = dt->size;
1743 	svm->vmcb->save.idtr.base = dt->address ;
1744 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1745 }
1746 
1747 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1748 {
1749 	struct vcpu_svm *svm = to_svm(vcpu);
1750 
1751 	dt->size = svm->vmcb->save.gdtr.limit;
1752 	dt->address = svm->vmcb->save.gdtr.base;
1753 }
1754 
1755 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1756 {
1757 	struct vcpu_svm *svm = to_svm(vcpu);
1758 
1759 	svm->vmcb->save.gdtr.limit = dt->size;
1760 	svm->vmcb->save.gdtr.base = dt->address ;
1761 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1762 }
1763 
1764 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1765 {
1766 	struct vcpu_svm *svm = to_svm(vcpu);
1767 
1768 	/*
1769 	 * For guests that don't set guest_state_protected, the cr3 update is
1770 	 * handled via kvm_mmu_load() while entering the guest. For guests
1771 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1772 	 * VMCB save area now, since the save area will become the initial
1773 	 * contents of the VMSA, and future VMCB save area updates won't be
1774 	 * seen.
1775 	 */
1776 	if (sev_es_guest(vcpu->kvm)) {
1777 		svm->vmcb->save.cr3 = cr3;
1778 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1779 	}
1780 }
1781 
1782 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1783 {
1784 	struct vcpu_svm *svm = to_svm(vcpu);
1785 	u64 hcr0 = cr0;
1786 	bool old_paging = is_paging(vcpu);
1787 
1788 #ifdef CONFIG_X86_64
1789 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1790 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1791 			vcpu->arch.efer |= EFER_LMA;
1792 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1793 		}
1794 
1795 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1796 			vcpu->arch.efer &= ~EFER_LMA;
1797 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1798 		}
1799 	}
1800 #endif
1801 	vcpu->arch.cr0 = cr0;
1802 
1803 	if (!npt_enabled) {
1804 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1805 		if (old_paging != is_paging(vcpu))
1806 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1807 	}
1808 
1809 	/*
1810 	 * re-enable caching here because the QEMU bios
1811 	 * does not do it - this results in some delay at
1812 	 * reboot
1813 	 */
1814 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1815 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1816 
1817 	svm->vmcb->save.cr0 = hcr0;
1818 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1819 
1820 	/*
1821 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1822 	 * tracking is done using the CR write traps.
1823 	 */
1824 	if (sev_es_guest(vcpu->kvm))
1825 		return;
1826 
1827 	if (hcr0 == cr0) {
1828 		/* Selective CR0 write remains on.  */
1829 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1830 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1831 	} else {
1832 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1833 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1834 	}
1835 }
1836 
1837 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1838 {
1839 	return true;
1840 }
1841 
1842 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1843 {
1844 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1845 	unsigned long old_cr4 = vcpu->arch.cr4;
1846 
1847 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1848 		svm_flush_tlb_current(vcpu);
1849 
1850 	vcpu->arch.cr4 = cr4;
1851 	if (!npt_enabled) {
1852 		cr4 |= X86_CR4_PAE;
1853 
1854 		if (!is_paging(vcpu))
1855 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1856 	}
1857 	cr4 |= host_cr4_mce;
1858 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1859 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1860 
1861 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1862 		kvm_update_cpuid_runtime(vcpu);
1863 }
1864 
1865 static void svm_set_segment(struct kvm_vcpu *vcpu,
1866 			    struct kvm_segment *var, int seg)
1867 {
1868 	struct vcpu_svm *svm = to_svm(vcpu);
1869 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1870 
1871 	s->base = var->base;
1872 	s->limit = var->limit;
1873 	s->selector = var->selector;
1874 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1875 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1876 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1877 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1878 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1879 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1880 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1881 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1882 
1883 	/*
1884 	 * This is always accurate, except if SYSRET returned to a segment
1885 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1886 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1887 	 * would entail passing the CPL to userspace and back.
1888 	 */
1889 	if (seg == VCPU_SREG_SS)
1890 		/* This is symmetric with svm_get_segment() */
1891 		svm->vmcb->save.cpl = (var->dpl & 3);
1892 
1893 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1894 }
1895 
1896 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1897 {
1898 	struct vcpu_svm *svm = to_svm(vcpu);
1899 
1900 	clr_exception_intercept(svm, BP_VECTOR);
1901 
1902 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1903 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1904 			set_exception_intercept(svm, BP_VECTOR);
1905 	}
1906 }
1907 
1908 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1909 {
1910 	if (sd->next_asid > sd->max_asid) {
1911 		++sd->asid_generation;
1912 		sd->next_asid = sd->min_asid;
1913 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1914 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1915 	}
1916 
1917 	svm->current_vmcb->asid_generation = sd->asid_generation;
1918 	svm->asid = sd->next_asid++;
1919 }
1920 
1921 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1922 {
1923 	struct vmcb *vmcb = svm->vmcb;
1924 
1925 	if (svm->vcpu.arch.guest_state_protected)
1926 		return;
1927 
1928 	if (unlikely(value != vmcb->save.dr6)) {
1929 		vmcb->save.dr6 = value;
1930 		vmcb_mark_dirty(vmcb, VMCB_DR);
1931 	}
1932 }
1933 
1934 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1935 {
1936 	struct vcpu_svm *svm = to_svm(vcpu);
1937 
1938 	if (vcpu->arch.guest_state_protected)
1939 		return;
1940 
1941 	get_debugreg(vcpu->arch.db[0], 0);
1942 	get_debugreg(vcpu->arch.db[1], 1);
1943 	get_debugreg(vcpu->arch.db[2], 2);
1944 	get_debugreg(vcpu->arch.db[3], 3);
1945 	/*
1946 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1947 	 * because db_interception might need it.  We can do it before vmentry.
1948 	 */
1949 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1950 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1951 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1952 	set_dr_intercepts(svm);
1953 }
1954 
1955 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1956 {
1957 	struct vcpu_svm *svm = to_svm(vcpu);
1958 
1959 	if (vcpu->arch.guest_state_protected)
1960 		return;
1961 
1962 	svm->vmcb->save.dr7 = value;
1963 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1964 }
1965 
1966 static int pf_interception(struct kvm_vcpu *vcpu)
1967 {
1968 	struct vcpu_svm *svm = to_svm(vcpu);
1969 
1970 	u64 fault_address = svm->vmcb->control.exit_info_2;
1971 	u64 error_code = svm->vmcb->control.exit_info_1;
1972 
1973 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1974 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1975 			svm->vmcb->control.insn_bytes : NULL,
1976 			svm->vmcb->control.insn_len);
1977 }
1978 
1979 static int npf_interception(struct kvm_vcpu *vcpu)
1980 {
1981 	struct vcpu_svm *svm = to_svm(vcpu);
1982 
1983 	u64 fault_address = svm->vmcb->control.exit_info_2;
1984 	u64 error_code = svm->vmcb->control.exit_info_1;
1985 
1986 	trace_kvm_page_fault(vcpu, fault_address, error_code);
1987 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1988 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1989 			svm->vmcb->control.insn_bytes : NULL,
1990 			svm->vmcb->control.insn_len);
1991 }
1992 
1993 static int db_interception(struct kvm_vcpu *vcpu)
1994 {
1995 	struct kvm_run *kvm_run = vcpu->run;
1996 	struct vcpu_svm *svm = to_svm(vcpu);
1997 
1998 	if (!(vcpu->guest_debug &
1999 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2000 		!svm->nmi_singlestep) {
2001 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2002 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2003 		return 1;
2004 	}
2005 
2006 	if (svm->nmi_singlestep) {
2007 		disable_nmi_singlestep(svm);
2008 		/* Make sure we check for pending NMIs upon entry */
2009 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2010 	}
2011 
2012 	if (vcpu->guest_debug &
2013 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2014 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2015 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2016 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2017 		kvm_run->debug.arch.pc =
2018 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2019 		kvm_run->debug.arch.exception = DB_VECTOR;
2020 		return 0;
2021 	}
2022 
2023 	return 1;
2024 }
2025 
2026 static int bp_interception(struct kvm_vcpu *vcpu)
2027 {
2028 	struct vcpu_svm *svm = to_svm(vcpu);
2029 	struct kvm_run *kvm_run = vcpu->run;
2030 
2031 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2032 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2033 	kvm_run->debug.arch.exception = BP_VECTOR;
2034 	return 0;
2035 }
2036 
2037 static int ud_interception(struct kvm_vcpu *vcpu)
2038 {
2039 	return handle_ud(vcpu);
2040 }
2041 
2042 static int ac_interception(struct kvm_vcpu *vcpu)
2043 {
2044 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2045 	return 1;
2046 }
2047 
2048 static bool is_erratum_383(void)
2049 {
2050 	int err, i;
2051 	u64 value;
2052 
2053 	if (!erratum_383_found)
2054 		return false;
2055 
2056 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2057 	if (err)
2058 		return false;
2059 
2060 	/* Bit 62 may or may not be set for this mce */
2061 	value &= ~(1ULL << 62);
2062 
2063 	if (value != 0xb600000000010015ULL)
2064 		return false;
2065 
2066 	/* Clear MCi_STATUS registers */
2067 	for (i = 0; i < 6; ++i)
2068 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2069 
2070 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2071 	if (!err) {
2072 		u32 low, high;
2073 
2074 		value &= ~(1ULL << 2);
2075 		low    = lower_32_bits(value);
2076 		high   = upper_32_bits(value);
2077 
2078 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2079 	}
2080 
2081 	/* Flush tlb to evict multi-match entries */
2082 	__flush_tlb_all();
2083 
2084 	return true;
2085 }
2086 
2087 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2088 {
2089 	if (is_erratum_383()) {
2090 		/*
2091 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2092 		 * guest.
2093 		 */
2094 		pr_err("Guest triggered AMD Erratum 383\n");
2095 
2096 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2097 
2098 		return;
2099 	}
2100 
2101 	/*
2102 	 * On an #MC intercept the MCE handler is not called automatically in
2103 	 * the host. So do it by hand here.
2104 	 */
2105 	kvm_machine_check();
2106 }
2107 
2108 static int mc_interception(struct kvm_vcpu *vcpu)
2109 {
2110 	return 1;
2111 }
2112 
2113 static int shutdown_interception(struct kvm_vcpu *vcpu)
2114 {
2115 	struct kvm_run *kvm_run = vcpu->run;
2116 	struct vcpu_svm *svm = to_svm(vcpu);
2117 
2118 	/*
2119 	 * The VM save area has already been encrypted so it
2120 	 * cannot be reinitialized - just terminate.
2121 	 */
2122 	if (sev_es_guest(vcpu->kvm))
2123 		return -EINVAL;
2124 
2125 	/*
2126 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2127 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2128 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2129 	 * userspace.  At a platform view, INIT is acceptable behavior as
2130 	 * there exist bare metal platforms that automatically INIT the CPU
2131 	 * in response to shutdown.
2132 	 */
2133 	clear_page(svm->vmcb);
2134 	kvm_vcpu_reset(vcpu, true);
2135 
2136 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2137 	return 0;
2138 }
2139 
2140 static int io_interception(struct kvm_vcpu *vcpu)
2141 {
2142 	struct vcpu_svm *svm = to_svm(vcpu);
2143 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2144 	int size, in, string;
2145 	unsigned port;
2146 
2147 	++vcpu->stat.io_exits;
2148 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2149 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2150 	port = io_info >> 16;
2151 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2152 
2153 	if (string) {
2154 		if (sev_es_guest(vcpu->kvm))
2155 			return sev_es_string_io(svm, size, port, in);
2156 		else
2157 			return kvm_emulate_instruction(vcpu, 0);
2158 	}
2159 
2160 	svm->next_rip = svm->vmcb->control.exit_info_2;
2161 
2162 	return kvm_fast_pio(vcpu, size, port, in);
2163 }
2164 
2165 static int nmi_interception(struct kvm_vcpu *vcpu)
2166 {
2167 	return 1;
2168 }
2169 
2170 static int smi_interception(struct kvm_vcpu *vcpu)
2171 {
2172 	return 1;
2173 }
2174 
2175 static int intr_interception(struct kvm_vcpu *vcpu)
2176 {
2177 	++vcpu->stat.irq_exits;
2178 	return 1;
2179 }
2180 
2181 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2182 {
2183 	struct vcpu_svm *svm = to_svm(vcpu);
2184 	struct vmcb *vmcb12;
2185 	struct kvm_host_map map;
2186 	int ret;
2187 
2188 	if (nested_svm_check_permissions(vcpu))
2189 		return 1;
2190 
2191 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2192 	if (ret) {
2193 		if (ret == -EINVAL)
2194 			kvm_inject_gp(vcpu, 0);
2195 		return 1;
2196 	}
2197 
2198 	vmcb12 = map.hva;
2199 
2200 	ret = kvm_skip_emulated_instruction(vcpu);
2201 
2202 	if (vmload) {
2203 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2204 		svm->sysenter_eip_hi = 0;
2205 		svm->sysenter_esp_hi = 0;
2206 	} else {
2207 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2208 	}
2209 
2210 	kvm_vcpu_unmap(vcpu, &map, true);
2211 
2212 	return ret;
2213 }
2214 
2215 static int vmload_interception(struct kvm_vcpu *vcpu)
2216 {
2217 	return vmload_vmsave_interception(vcpu, true);
2218 }
2219 
2220 static int vmsave_interception(struct kvm_vcpu *vcpu)
2221 {
2222 	return vmload_vmsave_interception(vcpu, false);
2223 }
2224 
2225 static int vmrun_interception(struct kvm_vcpu *vcpu)
2226 {
2227 	if (nested_svm_check_permissions(vcpu))
2228 		return 1;
2229 
2230 	return nested_svm_vmrun(vcpu);
2231 }
2232 
2233 enum {
2234 	NONE_SVM_INSTR,
2235 	SVM_INSTR_VMRUN,
2236 	SVM_INSTR_VMLOAD,
2237 	SVM_INSTR_VMSAVE,
2238 };
2239 
2240 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2241 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2242 {
2243 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2244 
2245 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2246 		return NONE_SVM_INSTR;
2247 
2248 	switch (ctxt->modrm) {
2249 	case 0xd8: /* VMRUN */
2250 		return SVM_INSTR_VMRUN;
2251 	case 0xda: /* VMLOAD */
2252 		return SVM_INSTR_VMLOAD;
2253 	case 0xdb: /* VMSAVE */
2254 		return SVM_INSTR_VMSAVE;
2255 	default:
2256 		break;
2257 	}
2258 
2259 	return NONE_SVM_INSTR;
2260 }
2261 
2262 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2263 {
2264 	const int guest_mode_exit_codes[] = {
2265 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2266 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2267 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2268 	};
2269 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2270 		[SVM_INSTR_VMRUN] = vmrun_interception,
2271 		[SVM_INSTR_VMLOAD] = vmload_interception,
2272 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2273 	};
2274 	struct vcpu_svm *svm = to_svm(vcpu);
2275 	int ret;
2276 
2277 	if (is_guest_mode(vcpu)) {
2278 		/* Returns '1' or -errno on failure, '0' on success. */
2279 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2280 		if (ret)
2281 			return ret;
2282 		return 1;
2283 	}
2284 	return svm_instr_handlers[opcode](vcpu);
2285 }
2286 
2287 /*
2288  * #GP handling code. Note that #GP can be triggered under the following two
2289  * cases:
2290  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2291  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2292  *      regions (e.g. SMM memory on host).
2293  *   2) VMware backdoor
2294  */
2295 static int gp_interception(struct kvm_vcpu *vcpu)
2296 {
2297 	struct vcpu_svm *svm = to_svm(vcpu);
2298 	u32 error_code = svm->vmcb->control.exit_info_1;
2299 	int opcode;
2300 
2301 	/* Both #GP cases have zero error_code */
2302 	if (error_code)
2303 		goto reinject;
2304 
2305 	/* Decode the instruction for usage later */
2306 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2307 		goto reinject;
2308 
2309 	opcode = svm_instr_opcode(vcpu);
2310 
2311 	if (opcode == NONE_SVM_INSTR) {
2312 		if (!enable_vmware_backdoor)
2313 			goto reinject;
2314 
2315 		/*
2316 		 * VMware backdoor emulation on #GP interception only handles
2317 		 * IN{S}, OUT{S}, and RDPMC.
2318 		 */
2319 		if (!is_guest_mode(vcpu))
2320 			return kvm_emulate_instruction(vcpu,
2321 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2322 	} else {
2323 		/* All SVM instructions expect page aligned RAX */
2324 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2325 			goto reinject;
2326 
2327 		return emulate_svm_instr(vcpu, opcode);
2328 	}
2329 
2330 reinject:
2331 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2332 	return 1;
2333 }
2334 
2335 void svm_set_gif(struct vcpu_svm *svm, bool value)
2336 {
2337 	if (value) {
2338 		/*
2339 		 * If VGIF is enabled, the STGI intercept is only added to
2340 		 * detect the opening of the SMI/NMI window; remove it now.
2341 		 * Likewise, clear the VINTR intercept, we will set it
2342 		 * again while processing KVM_REQ_EVENT if needed.
2343 		 */
2344 		if (vgif)
2345 			svm_clr_intercept(svm, INTERCEPT_STGI);
2346 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2347 			svm_clear_vintr(svm);
2348 
2349 		enable_gif(svm);
2350 		if (svm->vcpu.arch.smi_pending ||
2351 		    svm->vcpu.arch.nmi_pending ||
2352 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2353 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2354 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2355 	} else {
2356 		disable_gif(svm);
2357 
2358 		/*
2359 		 * After a CLGI no interrupts should come.  But if vGIF is
2360 		 * in use, we still rely on the VINTR intercept (rather than
2361 		 * STGI) to detect an open interrupt window.
2362 		*/
2363 		if (!vgif)
2364 			svm_clear_vintr(svm);
2365 	}
2366 }
2367 
2368 static int stgi_interception(struct kvm_vcpu *vcpu)
2369 {
2370 	int ret;
2371 
2372 	if (nested_svm_check_permissions(vcpu))
2373 		return 1;
2374 
2375 	ret = kvm_skip_emulated_instruction(vcpu);
2376 	svm_set_gif(to_svm(vcpu), true);
2377 	return ret;
2378 }
2379 
2380 static int clgi_interception(struct kvm_vcpu *vcpu)
2381 {
2382 	int ret;
2383 
2384 	if (nested_svm_check_permissions(vcpu))
2385 		return 1;
2386 
2387 	ret = kvm_skip_emulated_instruction(vcpu);
2388 	svm_set_gif(to_svm(vcpu), false);
2389 	return ret;
2390 }
2391 
2392 static int invlpga_interception(struct kvm_vcpu *vcpu)
2393 {
2394 	gva_t gva = kvm_rax_read(vcpu);
2395 	u32 asid = kvm_rcx_read(vcpu);
2396 
2397 	/* FIXME: Handle an address size prefix. */
2398 	if (!is_long_mode(vcpu))
2399 		gva = (u32)gva;
2400 
2401 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2402 
2403 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2404 	kvm_mmu_invlpg(vcpu, gva);
2405 
2406 	return kvm_skip_emulated_instruction(vcpu);
2407 }
2408 
2409 static int skinit_interception(struct kvm_vcpu *vcpu)
2410 {
2411 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2412 
2413 	kvm_queue_exception(vcpu, UD_VECTOR);
2414 	return 1;
2415 }
2416 
2417 static int task_switch_interception(struct kvm_vcpu *vcpu)
2418 {
2419 	struct vcpu_svm *svm = to_svm(vcpu);
2420 	u16 tss_selector;
2421 	int reason;
2422 	int int_type = svm->vmcb->control.exit_int_info &
2423 		SVM_EXITINTINFO_TYPE_MASK;
2424 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2425 	uint32_t type =
2426 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2427 	uint32_t idt_v =
2428 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2429 	bool has_error_code = false;
2430 	u32 error_code = 0;
2431 
2432 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2433 
2434 	if (svm->vmcb->control.exit_info_2 &
2435 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2436 		reason = TASK_SWITCH_IRET;
2437 	else if (svm->vmcb->control.exit_info_2 &
2438 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2439 		reason = TASK_SWITCH_JMP;
2440 	else if (idt_v)
2441 		reason = TASK_SWITCH_GATE;
2442 	else
2443 		reason = TASK_SWITCH_CALL;
2444 
2445 	if (reason == TASK_SWITCH_GATE) {
2446 		switch (type) {
2447 		case SVM_EXITINTINFO_TYPE_NMI:
2448 			vcpu->arch.nmi_injected = false;
2449 			break;
2450 		case SVM_EXITINTINFO_TYPE_EXEPT:
2451 			if (svm->vmcb->control.exit_info_2 &
2452 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2453 				has_error_code = true;
2454 				error_code =
2455 					(u32)svm->vmcb->control.exit_info_2;
2456 			}
2457 			kvm_clear_exception_queue(vcpu);
2458 			break;
2459 		case SVM_EXITINTINFO_TYPE_INTR:
2460 		case SVM_EXITINTINFO_TYPE_SOFT:
2461 			kvm_clear_interrupt_queue(vcpu);
2462 			break;
2463 		default:
2464 			break;
2465 		}
2466 	}
2467 
2468 	if (reason != TASK_SWITCH_GATE ||
2469 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2470 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2471 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2472 		if (!svm_skip_emulated_instruction(vcpu))
2473 			return 0;
2474 	}
2475 
2476 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2477 		int_vec = -1;
2478 
2479 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2480 			       has_error_code, error_code);
2481 }
2482 
2483 static int iret_interception(struct kvm_vcpu *vcpu)
2484 {
2485 	struct vcpu_svm *svm = to_svm(vcpu);
2486 
2487 	++vcpu->stat.nmi_window_exits;
2488 	svm->awaiting_iret_completion = true;
2489 	if (!sev_es_guest(vcpu->kvm)) {
2490 		svm_clr_intercept(svm, INTERCEPT_IRET);
2491 		svm->nmi_iret_rip = kvm_rip_read(vcpu);
2492 	}
2493 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2494 	return 1;
2495 }
2496 
2497 static int invlpg_interception(struct kvm_vcpu *vcpu)
2498 {
2499 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2500 		return kvm_emulate_instruction(vcpu, 0);
2501 
2502 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2503 	return kvm_skip_emulated_instruction(vcpu);
2504 }
2505 
2506 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2507 {
2508 	return kvm_emulate_instruction(vcpu, 0);
2509 }
2510 
2511 static int rsm_interception(struct kvm_vcpu *vcpu)
2512 {
2513 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2514 }
2515 
2516 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2517 					    unsigned long val)
2518 {
2519 	struct vcpu_svm *svm = to_svm(vcpu);
2520 	unsigned long cr0 = vcpu->arch.cr0;
2521 	bool ret = false;
2522 
2523 	if (!is_guest_mode(vcpu) ||
2524 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2525 		return false;
2526 
2527 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2528 	val &= ~SVM_CR0_SELECTIVE_MASK;
2529 
2530 	if (cr0 ^ val) {
2531 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2532 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2533 	}
2534 
2535 	return ret;
2536 }
2537 
2538 #define CR_VALID (1ULL << 63)
2539 
2540 static int cr_interception(struct kvm_vcpu *vcpu)
2541 {
2542 	struct vcpu_svm *svm = to_svm(vcpu);
2543 	int reg, cr;
2544 	unsigned long val;
2545 	int err;
2546 
2547 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2548 		return emulate_on_interception(vcpu);
2549 
2550 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2551 		return emulate_on_interception(vcpu);
2552 
2553 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2554 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2555 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2556 	else
2557 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2558 
2559 	err = 0;
2560 	if (cr >= 16) { /* mov to cr */
2561 		cr -= 16;
2562 		val = kvm_register_read(vcpu, reg);
2563 		trace_kvm_cr_write(cr, val);
2564 		switch (cr) {
2565 		case 0:
2566 			if (!check_selective_cr0_intercepted(vcpu, val))
2567 				err = kvm_set_cr0(vcpu, val);
2568 			else
2569 				return 1;
2570 
2571 			break;
2572 		case 3:
2573 			err = kvm_set_cr3(vcpu, val);
2574 			break;
2575 		case 4:
2576 			err = kvm_set_cr4(vcpu, val);
2577 			break;
2578 		case 8:
2579 			err = kvm_set_cr8(vcpu, val);
2580 			break;
2581 		default:
2582 			WARN(1, "unhandled write to CR%d", cr);
2583 			kvm_queue_exception(vcpu, UD_VECTOR);
2584 			return 1;
2585 		}
2586 	} else { /* mov from cr */
2587 		switch (cr) {
2588 		case 0:
2589 			val = kvm_read_cr0(vcpu);
2590 			break;
2591 		case 2:
2592 			val = vcpu->arch.cr2;
2593 			break;
2594 		case 3:
2595 			val = kvm_read_cr3(vcpu);
2596 			break;
2597 		case 4:
2598 			val = kvm_read_cr4(vcpu);
2599 			break;
2600 		case 8:
2601 			val = kvm_get_cr8(vcpu);
2602 			break;
2603 		default:
2604 			WARN(1, "unhandled read from CR%d", cr);
2605 			kvm_queue_exception(vcpu, UD_VECTOR);
2606 			return 1;
2607 		}
2608 		kvm_register_write(vcpu, reg, val);
2609 		trace_kvm_cr_read(cr, val);
2610 	}
2611 	return kvm_complete_insn_gp(vcpu, err);
2612 }
2613 
2614 static int cr_trap(struct kvm_vcpu *vcpu)
2615 {
2616 	struct vcpu_svm *svm = to_svm(vcpu);
2617 	unsigned long old_value, new_value;
2618 	unsigned int cr;
2619 	int ret = 0;
2620 
2621 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2622 
2623 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2624 	switch (cr) {
2625 	case 0:
2626 		old_value = kvm_read_cr0(vcpu);
2627 		svm_set_cr0(vcpu, new_value);
2628 
2629 		kvm_post_set_cr0(vcpu, old_value, new_value);
2630 		break;
2631 	case 4:
2632 		old_value = kvm_read_cr4(vcpu);
2633 		svm_set_cr4(vcpu, new_value);
2634 
2635 		kvm_post_set_cr4(vcpu, old_value, new_value);
2636 		break;
2637 	case 8:
2638 		ret = kvm_set_cr8(vcpu, new_value);
2639 		break;
2640 	default:
2641 		WARN(1, "unhandled CR%d write trap", cr);
2642 		kvm_queue_exception(vcpu, UD_VECTOR);
2643 		return 1;
2644 	}
2645 
2646 	return kvm_complete_insn_gp(vcpu, ret);
2647 }
2648 
2649 static int dr_interception(struct kvm_vcpu *vcpu)
2650 {
2651 	struct vcpu_svm *svm = to_svm(vcpu);
2652 	int reg, dr;
2653 	unsigned long val;
2654 	int err = 0;
2655 
2656 	if (vcpu->guest_debug == 0) {
2657 		/*
2658 		 * No more DR vmexits; force a reload of the debug registers
2659 		 * and reenter on this instruction.  The next vmexit will
2660 		 * retrieve the full state of the debug registers.
2661 		 */
2662 		clr_dr_intercepts(svm);
2663 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2664 		return 1;
2665 	}
2666 
2667 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2668 		return emulate_on_interception(vcpu);
2669 
2670 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2671 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2672 	if (dr >= 16) { /* mov to DRn  */
2673 		dr -= 16;
2674 		val = kvm_register_read(vcpu, reg);
2675 		err = kvm_set_dr(vcpu, dr, val);
2676 	} else {
2677 		kvm_get_dr(vcpu, dr, &val);
2678 		kvm_register_write(vcpu, reg, val);
2679 	}
2680 
2681 	return kvm_complete_insn_gp(vcpu, err);
2682 }
2683 
2684 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2685 {
2686 	int r;
2687 
2688 	u8 cr8_prev = kvm_get_cr8(vcpu);
2689 	/* instruction emulation calls kvm_set_cr8() */
2690 	r = cr_interception(vcpu);
2691 	if (lapic_in_kernel(vcpu))
2692 		return r;
2693 	if (cr8_prev <= kvm_get_cr8(vcpu))
2694 		return r;
2695 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2696 	return 0;
2697 }
2698 
2699 static int efer_trap(struct kvm_vcpu *vcpu)
2700 {
2701 	struct msr_data msr_info;
2702 	int ret;
2703 
2704 	/*
2705 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2706 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2707 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2708 	 * the guest doesn't have X86_FEATURE_SVM.
2709 	 */
2710 	msr_info.host_initiated = false;
2711 	msr_info.index = MSR_EFER;
2712 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2713 	ret = kvm_set_msr_common(vcpu, &msr_info);
2714 
2715 	return kvm_complete_insn_gp(vcpu, ret);
2716 }
2717 
2718 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2719 {
2720 	msr->data = 0;
2721 
2722 	switch (msr->index) {
2723 	case MSR_AMD64_DE_CFG:
2724 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2725 			msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2726 		break;
2727 	default:
2728 		return KVM_MSR_RET_INVALID;
2729 	}
2730 
2731 	return 0;
2732 }
2733 
2734 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2735 {
2736 	struct vcpu_svm *svm = to_svm(vcpu);
2737 
2738 	switch (msr_info->index) {
2739 	case MSR_AMD64_TSC_RATIO:
2740 		if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2741 			return 1;
2742 		msr_info->data = svm->tsc_ratio_msr;
2743 		break;
2744 	case MSR_STAR:
2745 		msr_info->data = svm->vmcb01.ptr->save.star;
2746 		break;
2747 #ifdef CONFIG_X86_64
2748 	case MSR_LSTAR:
2749 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2750 		break;
2751 	case MSR_CSTAR:
2752 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2753 		break;
2754 	case MSR_KERNEL_GS_BASE:
2755 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2756 		break;
2757 	case MSR_SYSCALL_MASK:
2758 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2759 		break;
2760 #endif
2761 	case MSR_IA32_SYSENTER_CS:
2762 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2763 		break;
2764 	case MSR_IA32_SYSENTER_EIP:
2765 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2766 		if (guest_cpuid_is_intel(vcpu))
2767 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2768 		break;
2769 	case MSR_IA32_SYSENTER_ESP:
2770 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2771 		if (guest_cpuid_is_intel(vcpu))
2772 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2773 		break;
2774 	case MSR_TSC_AUX:
2775 		msr_info->data = svm->tsc_aux;
2776 		break;
2777 	case MSR_IA32_DEBUGCTLMSR:
2778 	case MSR_IA32_LASTBRANCHFROMIP:
2779 	case MSR_IA32_LASTBRANCHTOIP:
2780 	case MSR_IA32_LASTINTFROMIP:
2781 	case MSR_IA32_LASTINTTOIP:
2782 		msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
2783 		break;
2784 	case MSR_VM_HSAVE_PA:
2785 		msr_info->data = svm->nested.hsave_msr;
2786 		break;
2787 	case MSR_VM_CR:
2788 		msr_info->data = svm->nested.vm_cr_msr;
2789 		break;
2790 	case MSR_IA32_SPEC_CTRL:
2791 		if (!msr_info->host_initiated &&
2792 		    !guest_has_spec_ctrl_msr(vcpu))
2793 			return 1;
2794 
2795 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2796 			msr_info->data = svm->vmcb->save.spec_ctrl;
2797 		else
2798 			msr_info->data = svm->spec_ctrl;
2799 		break;
2800 	case MSR_AMD64_VIRT_SPEC_CTRL:
2801 		if (!msr_info->host_initiated &&
2802 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2803 			return 1;
2804 
2805 		msr_info->data = svm->virt_spec_ctrl;
2806 		break;
2807 	case MSR_F15H_IC_CFG: {
2808 
2809 		int family, model;
2810 
2811 		family = guest_cpuid_family(vcpu);
2812 		model  = guest_cpuid_model(vcpu);
2813 
2814 		if (family < 0 || model < 0)
2815 			return kvm_get_msr_common(vcpu, msr_info);
2816 
2817 		msr_info->data = 0;
2818 
2819 		if (family == 0x15 &&
2820 		    (model >= 0x2 && model < 0x20))
2821 			msr_info->data = 0x1E;
2822 		}
2823 		break;
2824 	case MSR_AMD64_DE_CFG:
2825 		msr_info->data = svm->msr_decfg;
2826 		break;
2827 	default:
2828 		return kvm_get_msr_common(vcpu, msr_info);
2829 	}
2830 	return 0;
2831 }
2832 
2833 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2834 {
2835 	struct vcpu_svm *svm = to_svm(vcpu);
2836 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2837 		return kvm_complete_insn_gp(vcpu, err);
2838 
2839 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2840 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2841 				X86_TRAP_GP |
2842 				SVM_EVTINJ_TYPE_EXEPT |
2843 				SVM_EVTINJ_VALID);
2844 	return 1;
2845 }
2846 
2847 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2848 {
2849 	struct vcpu_svm *svm = to_svm(vcpu);
2850 	int svm_dis, chg_mask;
2851 
2852 	if (data & ~SVM_VM_CR_VALID_MASK)
2853 		return 1;
2854 
2855 	chg_mask = SVM_VM_CR_VALID_MASK;
2856 
2857 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2858 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2859 
2860 	svm->nested.vm_cr_msr &= ~chg_mask;
2861 	svm->nested.vm_cr_msr |= (data & chg_mask);
2862 
2863 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2864 
2865 	/* check for svm_disable while efer.svme is set */
2866 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2867 		return 1;
2868 
2869 	return 0;
2870 }
2871 
2872 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2873 {
2874 	struct vcpu_svm *svm = to_svm(vcpu);
2875 	int r;
2876 
2877 	u32 ecx = msr->index;
2878 	u64 data = msr->data;
2879 	switch (ecx) {
2880 	case MSR_AMD64_TSC_RATIO:
2881 
2882 		if (!svm->tsc_scaling_enabled) {
2883 
2884 			if (!msr->host_initiated)
2885 				return 1;
2886 			/*
2887 			 * In case TSC scaling is not enabled, always
2888 			 * leave this MSR at the default value.
2889 			 *
2890 			 * Due to bug in qemu 6.2.0, it would try to set
2891 			 * this msr to 0 if tsc scaling is not enabled.
2892 			 * Ignore this value as well.
2893 			 */
2894 			if (data != 0 && data != svm->tsc_ratio_msr)
2895 				return 1;
2896 			break;
2897 		}
2898 
2899 		if (data & SVM_TSC_RATIO_RSVD)
2900 			return 1;
2901 
2902 		svm->tsc_ratio_msr = data;
2903 
2904 		if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2905 			nested_svm_update_tsc_ratio_msr(vcpu);
2906 
2907 		break;
2908 	case MSR_IA32_CR_PAT:
2909 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2910 			return 1;
2911 		vcpu->arch.pat = data;
2912 		svm->vmcb01.ptr->save.g_pat = data;
2913 		if (is_guest_mode(vcpu))
2914 			nested_vmcb02_compute_g_pat(svm);
2915 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2916 		break;
2917 	case MSR_IA32_SPEC_CTRL:
2918 		if (!msr->host_initiated &&
2919 		    !guest_has_spec_ctrl_msr(vcpu))
2920 			return 1;
2921 
2922 		if (kvm_spec_ctrl_test_value(data))
2923 			return 1;
2924 
2925 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2926 			svm->vmcb->save.spec_ctrl = data;
2927 		else
2928 			svm->spec_ctrl = data;
2929 		if (!data)
2930 			break;
2931 
2932 		/*
2933 		 * For non-nested:
2934 		 * When it's written (to non-zero) for the first time, pass
2935 		 * it through.
2936 		 *
2937 		 * For nested:
2938 		 * The handling of the MSR bitmap for L2 guests is done in
2939 		 * nested_svm_vmrun_msrpm.
2940 		 * We update the L1 MSR bit as well since it will end up
2941 		 * touching the MSR anyway now.
2942 		 */
2943 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2944 		break;
2945 	case MSR_IA32_PRED_CMD:
2946 		if (!msr->host_initiated &&
2947 		    !guest_has_pred_cmd_msr(vcpu))
2948 			return 1;
2949 
2950 		if (data & ~PRED_CMD_IBPB)
2951 			return 1;
2952 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2953 			return 1;
2954 		if (!data)
2955 			break;
2956 
2957 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2958 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2959 		break;
2960 	case MSR_AMD64_VIRT_SPEC_CTRL:
2961 		if (!msr->host_initiated &&
2962 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2963 			return 1;
2964 
2965 		if (data & ~SPEC_CTRL_SSBD)
2966 			return 1;
2967 
2968 		svm->virt_spec_ctrl = data;
2969 		break;
2970 	case MSR_STAR:
2971 		svm->vmcb01.ptr->save.star = data;
2972 		break;
2973 #ifdef CONFIG_X86_64
2974 	case MSR_LSTAR:
2975 		svm->vmcb01.ptr->save.lstar = data;
2976 		break;
2977 	case MSR_CSTAR:
2978 		svm->vmcb01.ptr->save.cstar = data;
2979 		break;
2980 	case MSR_KERNEL_GS_BASE:
2981 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2982 		break;
2983 	case MSR_SYSCALL_MASK:
2984 		svm->vmcb01.ptr->save.sfmask = data;
2985 		break;
2986 #endif
2987 	case MSR_IA32_SYSENTER_CS:
2988 		svm->vmcb01.ptr->save.sysenter_cs = data;
2989 		break;
2990 	case MSR_IA32_SYSENTER_EIP:
2991 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2992 		/*
2993 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2994 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2995 		 * In this case we use this intercept to track the high
2996 		 * 32 bit part of these msrs to support Intel's
2997 		 * implementation of SYSENTER/SYSEXIT.
2998 		 */
2999 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3000 		break;
3001 	case MSR_IA32_SYSENTER_ESP:
3002 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3003 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3004 		break;
3005 	case MSR_TSC_AUX:
3006 		/*
3007 		 * TSC_AUX is usually changed only during boot and never read
3008 		 * directly.  Intercept TSC_AUX instead of exposing it to the
3009 		 * guest via direct_access_msrs, and switch it via user return.
3010 		 */
3011 		preempt_disable();
3012 		r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3013 		preempt_enable();
3014 		if (r)
3015 			return 1;
3016 
3017 		svm->tsc_aux = data;
3018 		break;
3019 	case MSR_IA32_DEBUGCTLMSR:
3020 		if (!lbrv) {
3021 			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3022 			break;
3023 		}
3024 		if (data & DEBUGCTL_RESERVED_BITS)
3025 			return 1;
3026 
3027 		if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
3028 			svm->vmcb->save.dbgctl = data;
3029 		else
3030 			svm->vmcb01.ptr->save.dbgctl = data;
3031 
3032 		svm_update_lbrv(vcpu);
3033 
3034 		break;
3035 	case MSR_VM_HSAVE_PA:
3036 		/*
3037 		 * Old kernels did not validate the value written to
3038 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3039 		 * value to allow live migrating buggy or malicious guests
3040 		 * originating from those kernels.
3041 		 */
3042 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3043 			return 1;
3044 
3045 		svm->nested.hsave_msr = data & PAGE_MASK;
3046 		break;
3047 	case MSR_VM_CR:
3048 		return svm_set_vm_cr(vcpu, data);
3049 	case MSR_VM_IGNNE:
3050 		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3051 		break;
3052 	case MSR_AMD64_DE_CFG: {
3053 		struct kvm_msr_entry msr_entry;
3054 
3055 		msr_entry.index = msr->index;
3056 		if (svm_get_msr_feature(&msr_entry))
3057 			return 1;
3058 
3059 		/* Check the supported bits */
3060 		if (data & ~msr_entry.data)
3061 			return 1;
3062 
3063 		/* Don't allow the guest to change a bit, #GP */
3064 		if (!msr->host_initiated && (data ^ msr_entry.data))
3065 			return 1;
3066 
3067 		svm->msr_decfg = data;
3068 		break;
3069 	}
3070 	default:
3071 		return kvm_set_msr_common(vcpu, msr);
3072 	}
3073 	return 0;
3074 }
3075 
3076 static int msr_interception(struct kvm_vcpu *vcpu)
3077 {
3078 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3079 		return kvm_emulate_wrmsr(vcpu);
3080 	else
3081 		return kvm_emulate_rdmsr(vcpu);
3082 }
3083 
3084 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3085 {
3086 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3087 	svm_clear_vintr(to_svm(vcpu));
3088 
3089 	/*
3090 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3091 	 * In this case AVIC was temporarily disabled for
3092 	 * requesting the IRQ window and we have to re-enable it.
3093 	 *
3094 	 * If running nested, still remove the VM wide AVIC inhibit to
3095 	 * support case in which the interrupt window was requested when the
3096 	 * vCPU was not running nested.
3097 
3098 	 * All vCPUs which run still run nested, will remain to have their
3099 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3100 	 */
3101 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3102 
3103 	++vcpu->stat.irq_window_exits;
3104 	return 1;
3105 }
3106 
3107 static int pause_interception(struct kvm_vcpu *vcpu)
3108 {
3109 	bool in_kernel;
3110 	/*
3111 	 * CPL is not made available for an SEV-ES guest, therefore
3112 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3113 	 * set in_kernel to false as well.
3114 	 */
3115 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3116 
3117 	grow_ple_window(vcpu);
3118 
3119 	kvm_vcpu_on_spin(vcpu, in_kernel);
3120 	return kvm_skip_emulated_instruction(vcpu);
3121 }
3122 
3123 static int invpcid_interception(struct kvm_vcpu *vcpu)
3124 {
3125 	struct vcpu_svm *svm = to_svm(vcpu);
3126 	unsigned long type;
3127 	gva_t gva;
3128 
3129 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3130 		kvm_queue_exception(vcpu, UD_VECTOR);
3131 		return 1;
3132 	}
3133 
3134 	/*
3135 	 * For an INVPCID intercept:
3136 	 * EXITINFO1 provides the linear address of the memory operand.
3137 	 * EXITINFO2 provides the contents of the register operand.
3138 	 */
3139 	type = svm->vmcb->control.exit_info_2;
3140 	gva = svm->vmcb->control.exit_info_1;
3141 
3142 	return kvm_handle_invpcid(vcpu, type, gva);
3143 }
3144 
3145 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3146 	[SVM_EXIT_READ_CR0]			= cr_interception,
3147 	[SVM_EXIT_READ_CR3]			= cr_interception,
3148 	[SVM_EXIT_READ_CR4]			= cr_interception,
3149 	[SVM_EXIT_READ_CR8]			= cr_interception,
3150 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3151 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3152 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3153 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3154 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3155 	[SVM_EXIT_READ_DR0]			= dr_interception,
3156 	[SVM_EXIT_READ_DR1]			= dr_interception,
3157 	[SVM_EXIT_READ_DR2]			= dr_interception,
3158 	[SVM_EXIT_READ_DR3]			= dr_interception,
3159 	[SVM_EXIT_READ_DR4]			= dr_interception,
3160 	[SVM_EXIT_READ_DR5]			= dr_interception,
3161 	[SVM_EXIT_READ_DR6]			= dr_interception,
3162 	[SVM_EXIT_READ_DR7]			= dr_interception,
3163 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3164 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3165 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3166 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3167 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3168 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3169 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3170 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3171 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3172 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3173 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3174 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3175 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3176 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3177 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3178 	[SVM_EXIT_INTR]				= intr_interception,
3179 	[SVM_EXIT_NMI]				= nmi_interception,
3180 	[SVM_EXIT_SMI]				= smi_interception,
3181 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3182 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3183 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3184 	[SVM_EXIT_IRET]                         = iret_interception,
3185 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3186 	[SVM_EXIT_PAUSE]			= pause_interception,
3187 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3188 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3189 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3190 	[SVM_EXIT_IOIO]				= io_interception,
3191 	[SVM_EXIT_MSR]				= msr_interception,
3192 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3193 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3194 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3195 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3196 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3197 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3198 	[SVM_EXIT_STGI]				= stgi_interception,
3199 	[SVM_EXIT_CLGI]				= clgi_interception,
3200 	[SVM_EXIT_SKINIT]			= skinit_interception,
3201 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3202 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3203 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3204 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3205 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3206 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3207 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3208 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3209 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3210 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3211 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3212 	[SVM_EXIT_NPF]				= npf_interception,
3213 	[SVM_EXIT_RSM]                          = rsm_interception,
3214 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3215 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3216 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3217 };
3218 
3219 static void dump_vmcb(struct kvm_vcpu *vcpu)
3220 {
3221 	struct vcpu_svm *svm = to_svm(vcpu);
3222 	struct vmcb_control_area *control = &svm->vmcb->control;
3223 	struct vmcb_save_area *save = &svm->vmcb->save;
3224 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3225 
3226 	if (!dump_invalid_vmcb) {
3227 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3228 		return;
3229 	}
3230 
3231 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3232 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3233 	pr_err("VMCB Control Area:\n");
3234 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3235 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3236 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3237 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3238 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3239 	pr_err("%-20s%08x %08x\n", "intercepts:",
3240               control->intercepts[INTERCEPT_WORD3],
3241 	       control->intercepts[INTERCEPT_WORD4]);
3242 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3243 	pr_err("%-20s%d\n", "pause filter threshold:",
3244 	       control->pause_filter_thresh);
3245 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3246 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3247 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3248 	pr_err("%-20s%d\n", "asid:", control->asid);
3249 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3250 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3251 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3252 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3253 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3254 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3255 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3256 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3257 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3258 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3259 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3260 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3261 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3262 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3263 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3264 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3265 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3266 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3267 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3268 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3269 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3270 	pr_err("VMCB State Save Area:\n");
3271 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3272 	       "es:",
3273 	       save->es.selector, save->es.attrib,
3274 	       save->es.limit, save->es.base);
3275 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3276 	       "cs:",
3277 	       save->cs.selector, save->cs.attrib,
3278 	       save->cs.limit, save->cs.base);
3279 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3280 	       "ss:",
3281 	       save->ss.selector, save->ss.attrib,
3282 	       save->ss.limit, save->ss.base);
3283 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3284 	       "ds:",
3285 	       save->ds.selector, save->ds.attrib,
3286 	       save->ds.limit, save->ds.base);
3287 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3288 	       "fs:",
3289 	       save01->fs.selector, save01->fs.attrib,
3290 	       save01->fs.limit, save01->fs.base);
3291 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3292 	       "gs:",
3293 	       save01->gs.selector, save01->gs.attrib,
3294 	       save01->gs.limit, save01->gs.base);
3295 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3296 	       "gdtr:",
3297 	       save->gdtr.selector, save->gdtr.attrib,
3298 	       save->gdtr.limit, save->gdtr.base);
3299 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3300 	       "ldtr:",
3301 	       save01->ldtr.selector, save01->ldtr.attrib,
3302 	       save01->ldtr.limit, save01->ldtr.base);
3303 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3304 	       "idtr:",
3305 	       save->idtr.selector, save->idtr.attrib,
3306 	       save->idtr.limit, save->idtr.base);
3307 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3308 	       "tr:",
3309 	       save01->tr.selector, save01->tr.attrib,
3310 	       save01->tr.limit, save01->tr.base);
3311 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3312 	       save->vmpl, save->cpl, save->efer);
3313 	pr_err("%-15s %016llx %-13s %016llx\n",
3314 	       "cr0:", save->cr0, "cr2:", save->cr2);
3315 	pr_err("%-15s %016llx %-13s %016llx\n",
3316 	       "cr3:", save->cr3, "cr4:", save->cr4);
3317 	pr_err("%-15s %016llx %-13s %016llx\n",
3318 	       "dr6:", save->dr6, "dr7:", save->dr7);
3319 	pr_err("%-15s %016llx %-13s %016llx\n",
3320 	       "rip:", save->rip, "rflags:", save->rflags);
3321 	pr_err("%-15s %016llx %-13s %016llx\n",
3322 	       "rsp:", save->rsp, "rax:", save->rax);
3323 	pr_err("%-15s %016llx %-13s %016llx\n",
3324 	       "star:", save01->star, "lstar:", save01->lstar);
3325 	pr_err("%-15s %016llx %-13s %016llx\n",
3326 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3327 	pr_err("%-15s %016llx %-13s %016llx\n",
3328 	       "kernel_gs_base:", save01->kernel_gs_base,
3329 	       "sysenter_cs:", save01->sysenter_cs);
3330 	pr_err("%-15s %016llx %-13s %016llx\n",
3331 	       "sysenter_esp:", save01->sysenter_esp,
3332 	       "sysenter_eip:", save01->sysenter_eip);
3333 	pr_err("%-15s %016llx %-13s %016llx\n",
3334 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3335 	pr_err("%-15s %016llx %-13s %016llx\n",
3336 	       "br_from:", save->br_from, "br_to:", save->br_to);
3337 	pr_err("%-15s %016llx %-13s %016llx\n",
3338 	       "excp_from:", save->last_excp_from,
3339 	       "excp_to:", save->last_excp_to);
3340 }
3341 
3342 static bool svm_check_exit_valid(u64 exit_code)
3343 {
3344 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3345 		svm_exit_handlers[exit_code]);
3346 }
3347 
3348 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3349 {
3350 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3351 	dump_vmcb(vcpu);
3352 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3353 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3354 	vcpu->run->internal.ndata = 2;
3355 	vcpu->run->internal.data[0] = exit_code;
3356 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3357 	return 0;
3358 }
3359 
3360 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3361 {
3362 	if (!svm_check_exit_valid(exit_code))
3363 		return svm_handle_invalid_exit(vcpu, exit_code);
3364 
3365 #ifdef CONFIG_RETPOLINE
3366 	if (exit_code == SVM_EXIT_MSR)
3367 		return msr_interception(vcpu);
3368 	else if (exit_code == SVM_EXIT_VINTR)
3369 		return interrupt_window_interception(vcpu);
3370 	else if (exit_code == SVM_EXIT_INTR)
3371 		return intr_interception(vcpu);
3372 	else if (exit_code == SVM_EXIT_HLT)
3373 		return kvm_emulate_halt(vcpu);
3374 	else if (exit_code == SVM_EXIT_NPF)
3375 		return npf_interception(vcpu);
3376 #endif
3377 	return svm_exit_handlers[exit_code](vcpu);
3378 }
3379 
3380 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3381 			      u64 *info1, u64 *info2,
3382 			      u32 *intr_info, u32 *error_code)
3383 {
3384 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3385 
3386 	*reason = control->exit_code;
3387 	*info1 = control->exit_info_1;
3388 	*info2 = control->exit_info_2;
3389 	*intr_info = control->exit_int_info;
3390 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3391 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3392 		*error_code = control->exit_int_info_err;
3393 	else
3394 		*error_code = 0;
3395 }
3396 
3397 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3398 {
3399 	struct vcpu_svm *svm = to_svm(vcpu);
3400 	struct kvm_run *kvm_run = vcpu->run;
3401 	u32 exit_code = svm->vmcb->control.exit_code;
3402 
3403 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
3404 
3405 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3406 	if (!sev_es_guest(vcpu->kvm)) {
3407 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3408 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3409 		if (npt_enabled)
3410 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3411 	}
3412 
3413 	if (is_guest_mode(vcpu)) {
3414 		int vmexit;
3415 
3416 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3417 
3418 		vmexit = nested_svm_exit_special(svm);
3419 
3420 		if (vmexit == NESTED_EXIT_CONTINUE)
3421 			vmexit = nested_svm_exit_handled(svm);
3422 
3423 		if (vmexit == NESTED_EXIT_DONE)
3424 			return 1;
3425 	}
3426 
3427 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3428 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3429 		kvm_run->fail_entry.hardware_entry_failure_reason
3430 			= svm->vmcb->control.exit_code;
3431 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3432 		dump_vmcb(vcpu);
3433 		return 0;
3434 	}
3435 
3436 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3437 		return 1;
3438 
3439 	return svm_invoke_exit_handler(vcpu, exit_code);
3440 }
3441 
3442 static void reload_tss(struct kvm_vcpu *vcpu)
3443 {
3444 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3445 
3446 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3447 	load_TR_desc();
3448 }
3449 
3450 static void pre_svm_run(struct kvm_vcpu *vcpu)
3451 {
3452 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3453 	struct vcpu_svm *svm = to_svm(vcpu);
3454 
3455 	/*
3456 	 * If the previous vmrun of the vmcb occurred on a different physical
3457 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3458 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3459 	 */
3460 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3461 		svm->current_vmcb->asid_generation = 0;
3462 		vmcb_mark_all_dirty(svm->vmcb);
3463 		svm->current_vmcb->cpu = vcpu->cpu;
3464         }
3465 
3466 	if (sev_guest(vcpu->kvm))
3467 		return pre_sev_run(svm, vcpu->cpu);
3468 
3469 	/* FIXME: handle wraparound of asid_generation */
3470 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3471 		new_asid(svm, sd);
3472 }
3473 
3474 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3475 {
3476 	struct vcpu_svm *svm = to_svm(vcpu);
3477 
3478 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3479 
3480 	if (svm->nmi_l1_to_l2)
3481 		return;
3482 
3483 	svm->nmi_masked = true;
3484 	if (!sev_es_guest(vcpu->kvm))
3485 		svm_set_intercept(svm, INTERCEPT_IRET);
3486 	++vcpu->stat.nmi_injections;
3487 }
3488 
3489 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3490 {
3491 	struct vcpu_svm *svm = to_svm(vcpu);
3492 	u32 type;
3493 
3494 	if (vcpu->arch.interrupt.soft) {
3495 		if (svm_update_soft_interrupt_rip(vcpu))
3496 			return;
3497 
3498 		type = SVM_EVTINJ_TYPE_SOFT;
3499 	} else {
3500 		type = SVM_EVTINJ_TYPE_INTR;
3501 	}
3502 
3503 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3504 			   vcpu->arch.interrupt.soft, reinjected);
3505 	++vcpu->stat.irq_injections;
3506 
3507 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3508 				       SVM_EVTINJ_VALID | type;
3509 }
3510 
3511 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3512 				     int trig_mode, int vector)
3513 {
3514 	/*
3515 	 * apic->apicv_active must be read after vcpu->mode.
3516 	 * Pairs with smp_store_release in vcpu_enter_guest.
3517 	 */
3518 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3519 
3520 	/* Note, this is called iff the local APIC is in-kernel. */
3521 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3522 		/* Process the interrupt via kvm_check_and_inject_events(). */
3523 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3524 		kvm_vcpu_kick(vcpu);
3525 		return;
3526 	}
3527 
3528 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3529 	if (in_guest_mode) {
3530 		/*
3531 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3532 		 * the vCPU exits the guest before the doorbell chimes, hardware
3533 		 * will automatically process AVIC interrupts at the next VMRUN.
3534 		 */
3535 		avic_ring_doorbell(vcpu);
3536 	} else {
3537 		/*
3538 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3539 		 * pending IRQ when checking if the vCPU has a wake event.
3540 		 */
3541 		kvm_vcpu_wake_up(vcpu);
3542 	}
3543 }
3544 
3545 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3546 				  int trig_mode, int vector)
3547 {
3548 	kvm_lapic_set_irr(vector, apic);
3549 
3550 	/*
3551 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3552 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3553 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3554 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3555 	 * will signal the doorbell if the CPU has already entered the guest.
3556 	 */
3557 	smp_mb__after_atomic();
3558 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3559 }
3560 
3561 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3562 {
3563 	struct vcpu_svm *svm = to_svm(vcpu);
3564 
3565 	/*
3566 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3567 	 * tracking is done using the CR write traps.
3568 	 */
3569 	if (sev_es_guest(vcpu->kvm))
3570 		return;
3571 
3572 	if (nested_svm_virtualize_tpr(vcpu))
3573 		return;
3574 
3575 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3576 
3577 	if (irr == -1)
3578 		return;
3579 
3580 	if (tpr >= irr)
3581 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3582 }
3583 
3584 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3585 {
3586 	struct vcpu_svm *svm = to_svm(vcpu);
3587 	struct vmcb *vmcb = svm->vmcb;
3588 
3589 	if (!gif_set(svm))
3590 		return true;
3591 
3592 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3593 		return false;
3594 
3595 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3596 	       svm->nmi_masked;
3597 }
3598 
3599 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3600 {
3601 	struct vcpu_svm *svm = to_svm(vcpu);
3602 	if (svm->nested.nested_run_pending)
3603 		return -EBUSY;
3604 
3605 	if (svm_nmi_blocked(vcpu))
3606 		return 0;
3607 
3608 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3609 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3610 		return -EBUSY;
3611 	return 1;
3612 }
3613 
3614 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3615 {
3616 	return to_svm(vcpu)->nmi_masked;
3617 }
3618 
3619 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3620 {
3621 	struct vcpu_svm *svm = to_svm(vcpu);
3622 
3623 	if (masked) {
3624 		svm->nmi_masked = true;
3625 		if (!sev_es_guest(vcpu->kvm))
3626 			svm_set_intercept(svm, INTERCEPT_IRET);
3627 	} else {
3628 		svm->nmi_masked = false;
3629 		if (!sev_es_guest(vcpu->kvm))
3630 			svm_clr_intercept(svm, INTERCEPT_IRET);
3631 	}
3632 }
3633 
3634 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3635 {
3636 	struct vcpu_svm *svm = to_svm(vcpu);
3637 	struct vmcb *vmcb = svm->vmcb;
3638 
3639 	if (!gif_set(svm))
3640 		return true;
3641 
3642 	if (is_guest_mode(vcpu)) {
3643 		/* As long as interrupts are being delivered...  */
3644 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3645 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3646 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3647 			return true;
3648 
3649 		/* ... vmexits aren't blocked by the interrupt shadow  */
3650 		if (nested_exit_on_intr(svm))
3651 			return false;
3652 	} else {
3653 		if (!svm_get_if_flag(vcpu))
3654 			return true;
3655 	}
3656 
3657 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3658 }
3659 
3660 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3661 {
3662 	struct vcpu_svm *svm = to_svm(vcpu);
3663 
3664 	if (svm->nested.nested_run_pending)
3665 		return -EBUSY;
3666 
3667 	if (svm_interrupt_blocked(vcpu))
3668 		return 0;
3669 
3670 	/*
3671 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3672 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3673 	 */
3674 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3675 		return -EBUSY;
3676 
3677 	return 1;
3678 }
3679 
3680 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3681 {
3682 	struct vcpu_svm *svm = to_svm(vcpu);
3683 
3684 	/*
3685 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3686 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3687 	 * get that intercept, this function will be called again though and
3688 	 * we'll get the vintr intercept. However, if the vGIF feature is
3689 	 * enabled, the STGI interception will not occur. Enable the irq
3690 	 * window under the assumption that the hardware will set the GIF.
3691 	 */
3692 	if (vgif || gif_set(svm)) {
3693 		/*
3694 		 * IRQ window is not needed when AVIC is enabled,
3695 		 * unless we have pending ExtINT since it cannot be injected
3696 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3697 		 * and fallback to injecting IRQ via V_IRQ.
3698 		 *
3699 		 * If running nested, AVIC is already locally inhibited
3700 		 * on this vCPU, therefore there is no need to request
3701 		 * the VM wide AVIC inhibition.
3702 		 */
3703 		if (!is_guest_mode(vcpu))
3704 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3705 
3706 		svm_set_vintr(svm);
3707 	}
3708 }
3709 
3710 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3711 {
3712 	struct vcpu_svm *svm = to_svm(vcpu);
3713 
3714 	if (svm->nmi_masked && !svm->awaiting_iret_completion)
3715 		return; /* IRET will cause a vm exit */
3716 
3717 	if (!gif_set(svm)) {
3718 		if (vgif)
3719 			svm_set_intercept(svm, INTERCEPT_STGI);
3720 		return; /* STGI will cause a vm exit */
3721 	}
3722 
3723 	/*
3724 	 * Something prevents NMI from been injected. Single step over possible
3725 	 * problem (IRET or exception injection or interrupt shadow)
3726 	 */
3727 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3728 	svm->nmi_singlestep = true;
3729 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3730 }
3731 
3732 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3733 {
3734 	struct vcpu_svm *svm = to_svm(vcpu);
3735 
3736 	/*
3737 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3738 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3739 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3740 	 */
3741 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3742 
3743 	/*
3744 	 * Flush only the current ASID even if the TLB flush was invoked via
3745 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3746 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3747 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3748 	 * VM-Exit (via kvm_mmu_reset_context()).
3749 	 */
3750 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3751 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3752 	else
3753 		svm->current_vmcb->asid_generation--;
3754 }
3755 
3756 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3757 {
3758 	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3759 
3760 	/*
3761 	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3762 	 * flush the NPT mappings via hypercall as flushing the ASID only
3763 	 * affects virtual to physical mappings, it does not invalidate guest
3764 	 * physical to host physical mappings.
3765 	 */
3766 	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3767 		hyperv_flush_guest_mapping(root_tdp);
3768 
3769 	svm_flush_tlb_asid(vcpu);
3770 }
3771 
3772 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3773 {
3774 	/*
3775 	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3776 	 * flushes should be routed to hv_remote_flush_tlb() without requesting
3777 	 * a "regular" remote flush.  Reaching this point means either there's
3778 	 * a KVM bug or a prior hv_remote_flush_tlb() call failed, both of
3779 	 * which might be fatal to the guest.  Yell, but try to recover.
3780 	 */
3781 	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3782 		hv_remote_flush_tlb(vcpu->kvm);
3783 
3784 	svm_flush_tlb_asid(vcpu);
3785 }
3786 
3787 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3788 {
3789 	struct vcpu_svm *svm = to_svm(vcpu);
3790 
3791 	invlpga(gva, svm->vmcb->control.asid);
3792 }
3793 
3794 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3795 {
3796 	struct vcpu_svm *svm = to_svm(vcpu);
3797 
3798 	if (nested_svm_virtualize_tpr(vcpu))
3799 		return;
3800 
3801 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3802 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3803 		kvm_set_cr8(vcpu, cr8);
3804 	}
3805 }
3806 
3807 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3808 {
3809 	struct vcpu_svm *svm = to_svm(vcpu);
3810 	u64 cr8;
3811 
3812 	if (nested_svm_virtualize_tpr(vcpu) ||
3813 	    kvm_vcpu_apicv_active(vcpu))
3814 		return;
3815 
3816 	cr8 = kvm_get_cr8(vcpu);
3817 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3818 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3819 }
3820 
3821 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3822 					int type)
3823 {
3824 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3825 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3826 	struct vcpu_svm *svm = to_svm(vcpu);
3827 
3828 	/*
3829 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3830 	 * associated with the original soft exception/interrupt.  next_rip is
3831 	 * cleared on all exits that can occur while vectoring an event, so KVM
3832 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
3833 	 * case below, this needs to be done if and only if KVM is re-injecting
3834 	 * the same event, i.e. if the event is a soft exception/interrupt,
3835 	 * otherwise next_rip is unused on VMRUN.
3836 	 */
3837 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3838 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3839 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3840 	/*
3841 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3842 	 * injecting the soft exception/interrupt.  That advancement needs to
3843 	 * be unwound if vectoring didn't complete.  Note, the new event may
3844 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
3845 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3846 	 * be the reported vectored event, but RIP still needs to be unwound.
3847 	 */
3848 	else if (!nrips && (is_soft || is_exception) &&
3849 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3850 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
3851 }
3852 
3853 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3854 {
3855 	struct vcpu_svm *svm = to_svm(vcpu);
3856 	u8 vector;
3857 	int type;
3858 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3859 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
3860 	bool soft_int_injected = svm->soft_int_injected;
3861 
3862 	svm->nmi_l1_to_l2 = false;
3863 	svm->soft_int_injected = false;
3864 
3865 	/*
3866 	 * If we've made progress since setting HF_IRET_MASK, we've
3867 	 * executed an IRET and can allow NMI injection.
3868 	 */
3869 	if (svm->awaiting_iret_completion &&
3870 	    (sev_es_guest(vcpu->kvm) ||
3871 	     kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3872 		svm->awaiting_iret_completion = false;
3873 		svm->nmi_masked = false;
3874 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3875 	}
3876 
3877 	vcpu->arch.nmi_injected = false;
3878 	kvm_clear_exception_queue(vcpu);
3879 	kvm_clear_interrupt_queue(vcpu);
3880 
3881 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3882 		return;
3883 
3884 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3885 
3886 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3887 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3888 
3889 	if (soft_int_injected)
3890 		svm_complete_soft_interrupt(vcpu, vector, type);
3891 
3892 	switch (type) {
3893 	case SVM_EXITINTINFO_TYPE_NMI:
3894 		vcpu->arch.nmi_injected = true;
3895 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
3896 		break;
3897 	case SVM_EXITINTINFO_TYPE_EXEPT:
3898 		/*
3899 		 * Never re-inject a #VC exception.
3900 		 */
3901 		if (vector == X86_TRAP_VC)
3902 			break;
3903 
3904 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3905 			u32 err = svm->vmcb->control.exit_int_info_err;
3906 			kvm_requeue_exception_e(vcpu, vector, err);
3907 
3908 		} else
3909 			kvm_requeue_exception(vcpu, vector);
3910 		break;
3911 	case SVM_EXITINTINFO_TYPE_INTR:
3912 		kvm_queue_interrupt(vcpu, vector, false);
3913 		break;
3914 	case SVM_EXITINTINFO_TYPE_SOFT:
3915 		kvm_queue_interrupt(vcpu, vector, true);
3916 		break;
3917 	default:
3918 		break;
3919 	}
3920 
3921 }
3922 
3923 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3924 {
3925 	struct vcpu_svm *svm = to_svm(vcpu);
3926 	struct vmcb_control_area *control = &svm->vmcb->control;
3927 
3928 	control->exit_int_info = control->event_inj;
3929 	control->exit_int_info_err = control->event_inj_err;
3930 	control->event_inj = 0;
3931 	svm_complete_interrupts(vcpu);
3932 }
3933 
3934 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3935 {
3936 	return 1;
3937 }
3938 
3939 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3940 {
3941 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3942 
3943 	/*
3944 	 * Note, the next RIP must be provided as SRCU isn't held, i.e. KVM
3945 	 * can't read guest memory (dereference memslots) to decode the WRMSR.
3946 	 */
3947 	if (control->exit_code == SVM_EXIT_MSR && control->exit_info_1 &&
3948 	    nrips && control->next_rip)
3949 		return handle_fastpath_set_msr_irqoff(vcpu);
3950 
3951 	return EXIT_FASTPATH_NONE;
3952 }
3953 
3954 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
3955 {
3956 	struct vcpu_svm *svm = to_svm(vcpu);
3957 
3958 	guest_state_enter_irqoff();
3959 
3960 	if (sev_es_guest(vcpu->kvm))
3961 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
3962 	else
3963 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
3964 
3965 	guest_state_exit_irqoff();
3966 }
3967 
3968 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3969 {
3970 	struct vcpu_svm *svm = to_svm(vcpu);
3971 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
3972 
3973 	trace_kvm_entry(vcpu);
3974 
3975 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3976 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3977 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3978 
3979 	/*
3980 	 * Disable singlestep if we're injecting an interrupt/exception.
3981 	 * We don't want our modified rflags to be pushed on the stack where
3982 	 * we might not be able to easily reset them if we disabled NMI
3983 	 * singlestep later.
3984 	 */
3985 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3986 		/*
3987 		 * Event injection happens before external interrupts cause a
3988 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3989 		 * is enough to force an immediate vmexit.
3990 		 */
3991 		disable_nmi_singlestep(svm);
3992 		smp_send_reschedule(vcpu->cpu);
3993 	}
3994 
3995 	pre_svm_run(vcpu);
3996 
3997 	sync_lapic_to_cr8(vcpu);
3998 
3999 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4000 		svm->vmcb->control.asid = svm->asid;
4001 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4002 	}
4003 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4004 
4005 	svm_hv_update_vp_id(svm->vmcb, vcpu);
4006 
4007 	/*
4008 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4009 	 * of a #DB.
4010 	 */
4011 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4012 		svm_set_dr6(svm, vcpu->arch.dr6);
4013 	else
4014 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
4015 
4016 	clgi();
4017 	kvm_load_guest_xsave_state(vcpu);
4018 
4019 	kvm_wait_lapic_expire(vcpu);
4020 
4021 	/*
4022 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4023 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4024 	 * is no need to worry about the conditional branch over the wrmsr
4025 	 * being speculatively taken.
4026 	 */
4027 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4028 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4029 
4030 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4031 
4032 	if (!sev_es_guest(vcpu->kvm))
4033 		reload_tss(vcpu);
4034 
4035 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4036 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4037 
4038 	if (!sev_es_guest(vcpu->kvm)) {
4039 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4040 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4041 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4042 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4043 	}
4044 	vcpu->arch.regs_dirty = 0;
4045 
4046 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4047 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4048 
4049 	kvm_load_host_xsave_state(vcpu);
4050 	stgi();
4051 
4052 	/* Any pending NMI will happen here */
4053 
4054 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4055 		kvm_after_interrupt(vcpu);
4056 
4057 	sync_cr8_to_lapic(vcpu);
4058 
4059 	svm->next_rip = 0;
4060 	if (is_guest_mode(vcpu)) {
4061 		nested_sync_control_from_vmcb02(svm);
4062 
4063 		/* Track VMRUNs that have made past consistency checking */
4064 		if (svm->nested.nested_run_pending &&
4065 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4066                         ++vcpu->stat.nested_run;
4067 
4068 		svm->nested.nested_run_pending = 0;
4069 	}
4070 
4071 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4072 	vmcb_mark_all_clean(svm->vmcb);
4073 
4074 	/* if exit due to PF check for async PF */
4075 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4076 		vcpu->arch.apf.host_apf_flags =
4077 			kvm_read_and_reset_apf_flags();
4078 
4079 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4080 
4081 	/*
4082 	 * We need to handle MC intercepts here before the vcpu has a chance to
4083 	 * change the physical cpu
4084 	 */
4085 	if (unlikely(svm->vmcb->control.exit_code ==
4086 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4087 		svm_handle_mce(vcpu);
4088 
4089 	svm_complete_interrupts(vcpu);
4090 
4091 	if (is_guest_mode(vcpu))
4092 		return EXIT_FASTPATH_NONE;
4093 
4094 	return svm_exit_handlers_fastpath(vcpu);
4095 }
4096 
4097 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4098 			     int root_level)
4099 {
4100 	struct vcpu_svm *svm = to_svm(vcpu);
4101 	unsigned long cr3;
4102 
4103 	if (npt_enabled) {
4104 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4105 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4106 
4107 		hv_track_root_tdp(vcpu, root_hpa);
4108 
4109 		cr3 = vcpu->arch.cr3;
4110 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4111 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4112 	} else {
4113 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4114 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4115 		cr3 = root_hpa;
4116 	}
4117 
4118 	svm->vmcb->save.cr3 = cr3;
4119 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4120 }
4121 
4122 static void
4123 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4124 {
4125 	/*
4126 	 * Patch in the VMMCALL instruction:
4127 	 */
4128 	hypercall[0] = 0x0f;
4129 	hypercall[1] = 0x01;
4130 	hypercall[2] = 0xd9;
4131 }
4132 
4133 /*
4134  * The kvm parameter can be NULL (module initialization, or invocation before
4135  * VM creation). Be sure to check the kvm parameter before using it.
4136  */
4137 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4138 {
4139 	switch (index) {
4140 	case MSR_IA32_MCG_EXT_CTL:
4141 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4142 		return false;
4143 	case MSR_IA32_SMBASE:
4144 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4145 			return false;
4146 		/* SEV-ES guests do not support SMM, so report false */
4147 		if (kvm && sev_es_guest(kvm))
4148 			return false;
4149 		break;
4150 	default:
4151 		break;
4152 	}
4153 
4154 	return true;
4155 }
4156 
4157 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4158 {
4159 	struct vcpu_svm *svm = to_svm(vcpu);
4160 	struct kvm_cpuid_entry2 *best;
4161 
4162 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4163 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
4164 				    boot_cpu_has(X86_FEATURE_XSAVES);
4165 
4166 	/* Update nrips enabled cache */
4167 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4168 			     guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4169 
4170 	svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4171 	svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
4172 
4173 	svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4174 
4175 	svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
4176 			guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
4177 
4178 	svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
4179 			guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
4180 
4181 	svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF);
4182 
4183 	svm_recalc_instruction_intercepts(vcpu, svm);
4184 
4185 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4186 	if (sev_guest(vcpu->kvm)) {
4187 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4188 		if (best)
4189 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4190 	}
4191 
4192 	init_vmcb_after_set_cpuid(vcpu);
4193 }
4194 
4195 static bool svm_has_wbinvd_exit(void)
4196 {
4197 	return true;
4198 }
4199 
4200 #define PRE_EX(exit)  { .exit_code = (exit), \
4201 			.stage = X86_ICPT_PRE_EXCEPT, }
4202 #define POST_EX(exit) { .exit_code = (exit), \
4203 			.stage = X86_ICPT_POST_EXCEPT, }
4204 #define POST_MEM(exit) { .exit_code = (exit), \
4205 			.stage = X86_ICPT_POST_MEMACCESS, }
4206 
4207 static const struct __x86_intercept {
4208 	u32 exit_code;
4209 	enum x86_intercept_stage stage;
4210 } x86_intercept_map[] = {
4211 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4212 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4213 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4214 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4215 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4216 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4217 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4218 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4219 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4220 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4221 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4222 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4223 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4224 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4225 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4226 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4227 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4228 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4229 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4230 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4231 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4232 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4233 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4234 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4235 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4236 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4237 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4238 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4239 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4240 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4241 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4242 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4243 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4244 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4245 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4246 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4247 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4248 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4249 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4250 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4251 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4252 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4253 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4254 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4255 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4256 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4257 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4258 };
4259 
4260 #undef PRE_EX
4261 #undef POST_EX
4262 #undef POST_MEM
4263 
4264 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4265 			       struct x86_instruction_info *info,
4266 			       enum x86_intercept_stage stage,
4267 			       struct x86_exception *exception)
4268 {
4269 	struct vcpu_svm *svm = to_svm(vcpu);
4270 	int vmexit, ret = X86EMUL_CONTINUE;
4271 	struct __x86_intercept icpt_info;
4272 	struct vmcb *vmcb = svm->vmcb;
4273 
4274 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4275 		goto out;
4276 
4277 	icpt_info = x86_intercept_map[info->intercept];
4278 
4279 	if (stage != icpt_info.stage)
4280 		goto out;
4281 
4282 	switch (icpt_info.exit_code) {
4283 	case SVM_EXIT_READ_CR0:
4284 		if (info->intercept == x86_intercept_cr_read)
4285 			icpt_info.exit_code += info->modrm_reg;
4286 		break;
4287 	case SVM_EXIT_WRITE_CR0: {
4288 		unsigned long cr0, val;
4289 
4290 		if (info->intercept == x86_intercept_cr_write)
4291 			icpt_info.exit_code += info->modrm_reg;
4292 
4293 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4294 		    info->intercept == x86_intercept_clts)
4295 			break;
4296 
4297 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4298 					INTERCEPT_SELECTIVE_CR0)))
4299 			break;
4300 
4301 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4302 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4303 
4304 		if (info->intercept == x86_intercept_lmsw) {
4305 			cr0 &= 0xfUL;
4306 			val &= 0xfUL;
4307 			/* lmsw can't clear PE - catch this here */
4308 			if (cr0 & X86_CR0_PE)
4309 				val |= X86_CR0_PE;
4310 		}
4311 
4312 		if (cr0 ^ val)
4313 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4314 
4315 		break;
4316 	}
4317 	case SVM_EXIT_READ_DR0:
4318 	case SVM_EXIT_WRITE_DR0:
4319 		icpt_info.exit_code += info->modrm_reg;
4320 		break;
4321 	case SVM_EXIT_MSR:
4322 		if (info->intercept == x86_intercept_wrmsr)
4323 			vmcb->control.exit_info_1 = 1;
4324 		else
4325 			vmcb->control.exit_info_1 = 0;
4326 		break;
4327 	case SVM_EXIT_PAUSE:
4328 		/*
4329 		 * We get this for NOP only, but pause
4330 		 * is rep not, check this here
4331 		 */
4332 		if (info->rep_prefix != REPE_PREFIX)
4333 			goto out;
4334 		break;
4335 	case SVM_EXIT_IOIO: {
4336 		u64 exit_info;
4337 		u32 bytes;
4338 
4339 		if (info->intercept == x86_intercept_in ||
4340 		    info->intercept == x86_intercept_ins) {
4341 			exit_info = ((info->src_val & 0xffff) << 16) |
4342 				SVM_IOIO_TYPE_MASK;
4343 			bytes = info->dst_bytes;
4344 		} else {
4345 			exit_info = (info->dst_val & 0xffff) << 16;
4346 			bytes = info->src_bytes;
4347 		}
4348 
4349 		if (info->intercept == x86_intercept_outs ||
4350 		    info->intercept == x86_intercept_ins)
4351 			exit_info |= SVM_IOIO_STR_MASK;
4352 
4353 		if (info->rep_prefix)
4354 			exit_info |= SVM_IOIO_REP_MASK;
4355 
4356 		bytes = min(bytes, 4u);
4357 
4358 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4359 
4360 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4361 
4362 		vmcb->control.exit_info_1 = exit_info;
4363 		vmcb->control.exit_info_2 = info->next_rip;
4364 
4365 		break;
4366 	}
4367 	default:
4368 		break;
4369 	}
4370 
4371 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4372 	if (static_cpu_has(X86_FEATURE_NRIPS))
4373 		vmcb->control.next_rip  = info->next_rip;
4374 	vmcb->control.exit_code = icpt_info.exit_code;
4375 	vmexit = nested_svm_exit_handled(svm);
4376 
4377 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4378 					   : X86EMUL_CONTINUE;
4379 
4380 out:
4381 	return ret;
4382 }
4383 
4384 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4385 {
4386 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4387 		vcpu->arch.at_instruction_boundary = true;
4388 }
4389 
4390 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4391 {
4392 	if (!kvm_pause_in_guest(vcpu->kvm))
4393 		shrink_ple_window(vcpu);
4394 }
4395 
4396 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4397 {
4398 	/* [63:9] are reserved. */
4399 	vcpu->arch.mcg_cap &= 0x1ff;
4400 }
4401 
4402 #ifdef CONFIG_KVM_SMM
4403 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4404 {
4405 	struct vcpu_svm *svm = to_svm(vcpu);
4406 
4407 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4408 	if (!gif_set(svm))
4409 		return true;
4410 
4411 	return is_smm(vcpu);
4412 }
4413 
4414 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4415 {
4416 	struct vcpu_svm *svm = to_svm(vcpu);
4417 	if (svm->nested.nested_run_pending)
4418 		return -EBUSY;
4419 
4420 	if (svm_smi_blocked(vcpu))
4421 		return 0;
4422 
4423 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4424 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4425 		return -EBUSY;
4426 
4427 	return 1;
4428 }
4429 
4430 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4431 {
4432 	struct vcpu_svm *svm = to_svm(vcpu);
4433 	struct kvm_host_map map_save;
4434 	int ret;
4435 
4436 	if (!is_guest_mode(vcpu))
4437 		return 0;
4438 
4439 	/*
4440 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4441 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4442 	 */
4443 
4444 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4445 		return 1;
4446 
4447 	smram->smram64.svm_guest_flag = 1;
4448 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4449 
4450 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4451 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4452 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4453 
4454 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4455 	if (ret)
4456 		return ret;
4457 
4458 	/*
4459 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4460 	 * VMCB01 is going to be used during SMM and thus the state will
4461 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4462 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4463 	 * format of the area is identical to guest save area offsetted
4464 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4465 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4466 	 * L1 hypervisor to save additional host context (e.g. KVM does
4467 	 * that, see svm_prepare_switch_to_guest()) which must be
4468 	 * preserved.
4469 	 */
4470 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4471 		return 1;
4472 
4473 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4474 
4475 	svm_copy_vmrun_state(map_save.hva + 0x400,
4476 			     &svm->vmcb01.ptr->save);
4477 
4478 	kvm_vcpu_unmap(vcpu, &map_save, true);
4479 	return 0;
4480 }
4481 
4482 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4483 {
4484 	struct vcpu_svm *svm = to_svm(vcpu);
4485 	struct kvm_host_map map, map_save;
4486 	struct vmcb *vmcb12;
4487 	int ret;
4488 
4489 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4490 
4491 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4492 		return 0;
4493 
4494 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4495 	if (!smram64->svm_guest_flag)
4496 		return 0;
4497 
4498 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4499 		return 1;
4500 
4501 	if (!(smram64->efer & EFER_SVME))
4502 		return 1;
4503 
4504 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4505 		return 1;
4506 
4507 	ret = 1;
4508 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4509 		goto unmap_map;
4510 
4511 	if (svm_allocate_nested(svm))
4512 		goto unmap_save;
4513 
4514 	/*
4515 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4516 	 * used during SMM (see svm_enter_smm())
4517 	 */
4518 
4519 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4520 
4521 	/*
4522 	 * Enter the nested guest now
4523 	 */
4524 
4525 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4526 
4527 	vmcb12 = map.hva;
4528 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4529 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4530 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4531 
4532 	if (ret)
4533 		goto unmap_save;
4534 
4535 	svm->nested.nested_run_pending = 1;
4536 
4537 unmap_save:
4538 	kvm_vcpu_unmap(vcpu, &map_save, true);
4539 unmap_map:
4540 	kvm_vcpu_unmap(vcpu, &map, true);
4541 	return ret;
4542 }
4543 
4544 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4545 {
4546 	struct vcpu_svm *svm = to_svm(vcpu);
4547 
4548 	if (!gif_set(svm)) {
4549 		if (vgif)
4550 			svm_set_intercept(svm, INTERCEPT_STGI);
4551 		/* STGI will cause a vm exit */
4552 	} else {
4553 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4554 	}
4555 }
4556 #endif
4557 
4558 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4559 					void *insn, int insn_len)
4560 {
4561 	bool smep, smap, is_user;
4562 	unsigned long cr4;
4563 	u64 error_code;
4564 
4565 	/* Emulation is always possible when KVM has access to all guest state. */
4566 	if (!sev_guest(vcpu->kvm))
4567 		return true;
4568 
4569 	/* #UD and #GP should never be intercepted for SEV guests. */
4570 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4571 				  EMULTYPE_TRAP_UD_FORCED |
4572 				  EMULTYPE_VMWARE_GP));
4573 
4574 	/*
4575 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4576 	 * to guest register state.
4577 	 */
4578 	if (sev_es_guest(vcpu->kvm))
4579 		return false;
4580 
4581 	/*
4582 	 * Emulation is possible if the instruction is already decoded, e.g.
4583 	 * when completing I/O after returning from userspace.
4584 	 */
4585 	if (emul_type & EMULTYPE_NO_DECODE)
4586 		return true;
4587 
4588 	/*
4589 	 * Emulation is possible for SEV guests if and only if a prefilled
4590 	 * buffer containing the bytes of the intercepted instruction is
4591 	 * available. SEV guest memory is encrypted with a guest specific key
4592 	 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4593 	 * decode garbage.
4594 	 *
4595 	 * Inject #UD if KVM reached this point without an instruction buffer.
4596 	 * In practice, this path should never be hit by a well-behaved guest,
4597 	 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4598 	 * is still theoretically reachable, e.g. via unaccelerated fault-like
4599 	 * AVIC access, and needs to be handled by KVM to avoid putting the
4600 	 * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
4601 	 * but its the least awful option given lack of insight into the guest.
4602 	 */
4603 	if (unlikely(!insn)) {
4604 		kvm_queue_exception(vcpu, UD_VECTOR);
4605 		return false;
4606 	}
4607 
4608 	/*
4609 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4610 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4611 	 * the faulting instruction because the code fetch itself faulted, e.g.
4612 	 * the guest attempted to fetch from emulated MMIO or a guest page
4613 	 * table used to translate CS:RIP resides in emulated MMIO.
4614 	 */
4615 	if (likely(insn_len))
4616 		return true;
4617 
4618 	/*
4619 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4620 	 *
4621 	 * Errata:
4622 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4623 	 * possible that CPU microcode implementing DecodeAssist will fail to
4624 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4625 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4626 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4627 	 * gives up and does not fill the instruction bytes buffer.
4628 	 *
4629 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4630 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4631 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4632 	 * GuestIntrBytes field of the VMCB.
4633 	 *
4634 	 * This does _not_ mean that the erratum has been encountered, as the
4635 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4636 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4637 	 * encountered a reserved/not-present #PF.
4638 	 *
4639 	 * To hit the erratum, the following conditions must be true:
4640 	 *    1. CR4.SMAP=1 (obviously).
4641 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4642 	 *       have been hit as the guest would have encountered a SMEP
4643 	 *       violation #PF, not a #NPF.
4644 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4645 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4646 	 *
4647 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4648 	 * while translating guest page tables (see below).
4649 	 */
4650 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4651 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4652 		goto resume_guest;
4653 
4654 	cr4 = kvm_read_cr4(vcpu);
4655 	smep = cr4 & X86_CR4_SMEP;
4656 	smap = cr4 & X86_CR4_SMAP;
4657 	is_user = svm_get_cpl(vcpu) == 3;
4658 	if (smap && (!smep || is_user)) {
4659 		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4660 
4661 		/*
4662 		 * If the fault occurred in userspace, arbitrarily inject #GP
4663 		 * to avoid killing the guest and to hopefully avoid confusing
4664 		 * the guest kernel too much, e.g. injecting #PF would not be
4665 		 * coherent with respect to the guest's page tables.  Request
4666 		 * triple fault if the fault occurred in the kernel as there's
4667 		 * no fault that KVM can inject without confusing the guest.
4668 		 * In practice, the triple fault is moot as no sane SEV kernel
4669 		 * will execute from user memory while also running with SMAP=1.
4670 		 */
4671 		if (is_user)
4672 			kvm_inject_gp(vcpu, 0);
4673 		else
4674 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4675 	}
4676 
4677 resume_guest:
4678 	/*
4679 	 * If the erratum was not hit, simply resume the guest and let it fault
4680 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4681 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4682 	 * userspace will kill the guest, and letting the emulator read garbage
4683 	 * will yield random behavior and potentially corrupt the guest.
4684 	 *
4685 	 * Simply resuming the guest is technically not a violation of the SEV
4686 	 * architecture.  AMD's APM states that all code fetches and page table
4687 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4688 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4689 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4690 	 * the guest spin is technically "ignoring" the access.
4691 	 */
4692 	return false;
4693 }
4694 
4695 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4696 {
4697 	struct vcpu_svm *svm = to_svm(vcpu);
4698 
4699 	return !gif_set(svm);
4700 }
4701 
4702 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4703 {
4704 	if (!sev_es_guest(vcpu->kvm))
4705 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4706 
4707 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4708 }
4709 
4710 static void svm_vm_destroy(struct kvm *kvm)
4711 {
4712 	avic_vm_destroy(kvm);
4713 	sev_vm_destroy(kvm);
4714 }
4715 
4716 static int svm_vm_init(struct kvm *kvm)
4717 {
4718 	if (!pause_filter_count || !pause_filter_thresh)
4719 		kvm->arch.pause_in_guest = true;
4720 
4721 	if (enable_apicv) {
4722 		int ret = avic_vm_init(kvm);
4723 		if (ret)
4724 			return ret;
4725 	}
4726 
4727 	return 0;
4728 }
4729 
4730 static struct kvm_x86_ops svm_x86_ops __initdata = {
4731 	.name = KBUILD_MODNAME,
4732 
4733 	.check_processor_compatibility = svm_check_processor_compat,
4734 
4735 	.hardware_unsetup = svm_hardware_unsetup,
4736 	.hardware_enable = svm_hardware_enable,
4737 	.hardware_disable = svm_hardware_disable,
4738 	.has_emulated_msr = svm_has_emulated_msr,
4739 
4740 	.vcpu_create = svm_vcpu_create,
4741 	.vcpu_free = svm_vcpu_free,
4742 	.vcpu_reset = svm_vcpu_reset,
4743 
4744 	.vm_size = sizeof(struct kvm_svm),
4745 	.vm_init = svm_vm_init,
4746 	.vm_destroy = svm_vm_destroy,
4747 
4748 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4749 	.vcpu_load = svm_vcpu_load,
4750 	.vcpu_put = svm_vcpu_put,
4751 	.vcpu_blocking = avic_vcpu_blocking,
4752 	.vcpu_unblocking = avic_vcpu_unblocking,
4753 
4754 	.update_exception_bitmap = svm_update_exception_bitmap,
4755 	.get_msr_feature = svm_get_msr_feature,
4756 	.get_msr = svm_get_msr,
4757 	.set_msr = svm_set_msr,
4758 	.get_segment_base = svm_get_segment_base,
4759 	.get_segment = svm_get_segment,
4760 	.set_segment = svm_set_segment,
4761 	.get_cpl = svm_get_cpl,
4762 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4763 	.set_cr0 = svm_set_cr0,
4764 	.post_set_cr3 = sev_post_set_cr3,
4765 	.is_valid_cr4 = svm_is_valid_cr4,
4766 	.set_cr4 = svm_set_cr4,
4767 	.set_efer = svm_set_efer,
4768 	.get_idt = svm_get_idt,
4769 	.set_idt = svm_set_idt,
4770 	.get_gdt = svm_get_gdt,
4771 	.set_gdt = svm_set_gdt,
4772 	.set_dr7 = svm_set_dr7,
4773 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4774 	.cache_reg = svm_cache_reg,
4775 	.get_rflags = svm_get_rflags,
4776 	.set_rflags = svm_set_rflags,
4777 	.get_if_flag = svm_get_if_flag,
4778 
4779 	.flush_tlb_all = svm_flush_tlb_all,
4780 	.flush_tlb_current = svm_flush_tlb_current,
4781 	.flush_tlb_gva = svm_flush_tlb_gva,
4782 	.flush_tlb_guest = svm_flush_tlb_asid,
4783 
4784 	.vcpu_pre_run = svm_vcpu_pre_run,
4785 	.vcpu_run = svm_vcpu_run,
4786 	.handle_exit = svm_handle_exit,
4787 	.skip_emulated_instruction = svm_skip_emulated_instruction,
4788 	.update_emulated_instruction = NULL,
4789 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4790 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4791 	.patch_hypercall = svm_patch_hypercall,
4792 	.inject_irq = svm_inject_irq,
4793 	.inject_nmi = svm_inject_nmi,
4794 	.inject_exception = svm_inject_exception,
4795 	.cancel_injection = svm_cancel_injection,
4796 	.interrupt_allowed = svm_interrupt_allowed,
4797 	.nmi_allowed = svm_nmi_allowed,
4798 	.get_nmi_mask = svm_get_nmi_mask,
4799 	.set_nmi_mask = svm_set_nmi_mask,
4800 	.enable_nmi_window = svm_enable_nmi_window,
4801 	.enable_irq_window = svm_enable_irq_window,
4802 	.update_cr8_intercept = svm_update_cr8_intercept,
4803 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4804 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4805 	.apicv_post_state_restore = avic_apicv_post_state_restore,
4806 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
4807 
4808 	.get_exit_info = svm_get_exit_info,
4809 
4810 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4811 
4812 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4813 
4814 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
4815 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4816 	.write_tsc_offset = svm_write_tsc_offset,
4817 	.write_tsc_multiplier = svm_write_tsc_multiplier,
4818 
4819 	.load_mmu_pgd = svm_load_mmu_pgd,
4820 
4821 	.check_intercept = svm_check_intercept,
4822 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4823 
4824 	.request_immediate_exit = __kvm_request_immediate_exit,
4825 
4826 	.sched_in = svm_sched_in,
4827 
4828 	.nested_ops = &svm_nested_ops,
4829 
4830 	.deliver_interrupt = svm_deliver_interrupt,
4831 	.pi_update_irte = avic_pi_update_irte,
4832 	.setup_mce = svm_setup_mce,
4833 
4834 #ifdef CONFIG_KVM_SMM
4835 	.smi_allowed = svm_smi_allowed,
4836 	.enter_smm = svm_enter_smm,
4837 	.leave_smm = svm_leave_smm,
4838 	.enable_smi_window = svm_enable_smi_window,
4839 #endif
4840 
4841 	.mem_enc_ioctl = sev_mem_enc_ioctl,
4842 	.mem_enc_register_region = sev_mem_enc_register_region,
4843 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
4844 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
4845 
4846 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4847 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
4848 
4849 	.can_emulate_instruction = svm_can_emulate_instruction,
4850 
4851 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4852 
4853 	.msr_filter_changed = svm_msr_filter_changed,
4854 	.complete_emulated_msr = svm_complete_emulated_msr,
4855 
4856 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4857 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
4858 };
4859 
4860 /*
4861  * The default MMIO mask is a single bit (excluding the present bit),
4862  * which could conflict with the memory encryption bit. Check for
4863  * memory encryption support and override the default MMIO mask if
4864  * memory encryption is enabled.
4865  */
4866 static __init void svm_adjust_mmio_mask(void)
4867 {
4868 	unsigned int enc_bit, mask_bit;
4869 	u64 msr, mask;
4870 
4871 	/* If there is no memory encryption support, use existing mask */
4872 	if (cpuid_eax(0x80000000) < 0x8000001f)
4873 		return;
4874 
4875 	/* If memory encryption is not enabled, use existing mask */
4876 	rdmsrl(MSR_AMD64_SYSCFG, msr);
4877 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4878 		return;
4879 
4880 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4881 	mask_bit = boot_cpu_data.x86_phys_bits;
4882 
4883 	/* Increment the mask bit if it is the same as the encryption bit */
4884 	if (enc_bit == mask_bit)
4885 		mask_bit++;
4886 
4887 	/*
4888 	 * If the mask bit location is below 52, then some bits above the
4889 	 * physical addressing limit will always be reserved, so use the
4890 	 * rsvd_bits() function to generate the mask. This mask, along with
4891 	 * the present bit, will be used to generate a page fault with
4892 	 * PFER.RSV = 1.
4893 	 *
4894 	 * If the mask bit location is 52 (or above), then clear the mask.
4895 	 */
4896 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4897 
4898 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4899 }
4900 
4901 static __init void svm_set_cpu_caps(void)
4902 {
4903 	kvm_set_cpu_caps();
4904 
4905 	kvm_caps.supported_perf_cap = 0;
4906 	kvm_caps.supported_xss = 0;
4907 
4908 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
4909 	if (nested) {
4910 		kvm_cpu_cap_set(X86_FEATURE_SVM);
4911 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4912 
4913 		if (nrips)
4914 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4915 
4916 		if (npt_enabled)
4917 			kvm_cpu_cap_set(X86_FEATURE_NPT);
4918 
4919 		if (tsc_scaling)
4920 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4921 
4922 		if (vls)
4923 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
4924 		if (lbrv)
4925 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
4926 
4927 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
4928 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
4929 
4930 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
4931 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
4932 
4933 		if (vgif)
4934 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
4935 
4936 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
4937 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4938 	}
4939 
4940 	/* CPUID 0x80000008 */
4941 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
4942 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
4943 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
4944 
4945 	/* AMD PMU PERFCTR_CORE CPUID */
4946 	if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4947 		kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
4948 
4949 	/* CPUID 0x8000001F (SME/SEV features) */
4950 	sev_set_cpu_caps();
4951 }
4952 
4953 static __init int svm_hardware_setup(void)
4954 {
4955 	int cpu;
4956 	struct page *iopm_pages;
4957 	void *iopm_va;
4958 	int r;
4959 	unsigned int order = get_order(IOPM_SIZE);
4960 
4961 	/*
4962 	 * NX is required for shadow paging and for NPT if the NX huge pages
4963 	 * mitigation is enabled.
4964 	 */
4965 	if (!boot_cpu_has(X86_FEATURE_NX)) {
4966 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
4967 		return -EOPNOTSUPP;
4968 	}
4969 	kvm_enable_efer_bits(EFER_NX);
4970 
4971 	iopm_pages = alloc_pages(GFP_KERNEL, order);
4972 
4973 	if (!iopm_pages)
4974 		return -ENOMEM;
4975 
4976 	iopm_va = page_address(iopm_pages);
4977 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
4978 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
4979 
4980 	init_msrpm_offsets();
4981 
4982 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
4983 				     XFEATURE_MASK_BNDCSR);
4984 
4985 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
4986 		kvm_enable_efer_bits(EFER_FFXSR);
4987 
4988 	if (tsc_scaling) {
4989 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
4990 			tsc_scaling = false;
4991 		} else {
4992 			pr_info("TSC scaling supported\n");
4993 			kvm_caps.has_tsc_control = true;
4994 		}
4995 	}
4996 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
4997 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
4998 
4999 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5000 
5001 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5002 		kvm_enable_efer_bits(EFER_AUTOIBRS);
5003 
5004 	/* Check for pause filtering support */
5005 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5006 		pause_filter_count = 0;
5007 		pause_filter_thresh = 0;
5008 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5009 		pause_filter_thresh = 0;
5010 	}
5011 
5012 	if (nested) {
5013 		pr_info("Nested Virtualization enabled\n");
5014 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5015 	}
5016 
5017 	/*
5018 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5019 	 * NPT isn't supported if the host is using 2-level paging since host
5020 	 * CR4 is unchanged on VMRUN.
5021 	 */
5022 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5023 		npt_enabled = false;
5024 
5025 	if (!boot_cpu_has(X86_FEATURE_NPT))
5026 		npt_enabled = false;
5027 
5028 	/* Force VM NPT level equal to the host's paging level */
5029 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5030 			  get_npt_level(), PG_LEVEL_1G);
5031 	pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5032 
5033 	/* Setup shadow_me_value and shadow_me_mask */
5034 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5035 
5036 	svm_adjust_mmio_mask();
5037 
5038 	/*
5039 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5040 	 * may be modified by svm_adjust_mmio_mask()).
5041 	 */
5042 	sev_hardware_setup();
5043 
5044 	svm_hv_hardware_setup();
5045 
5046 	for_each_possible_cpu(cpu) {
5047 		r = svm_cpu_init(cpu);
5048 		if (r)
5049 			goto err;
5050 	}
5051 
5052 	if (nrips) {
5053 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
5054 			nrips = false;
5055 	}
5056 
5057 	enable_apicv = avic = avic && avic_hardware_setup();
5058 
5059 	if (!enable_apicv) {
5060 		svm_x86_ops.vcpu_blocking = NULL;
5061 		svm_x86_ops.vcpu_unblocking = NULL;
5062 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5063 	} else if (!x2avic_enabled) {
5064 		svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5065 	}
5066 
5067 	if (vls) {
5068 		if (!npt_enabled ||
5069 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5070 		    !IS_ENABLED(CONFIG_X86_64)) {
5071 			vls = false;
5072 		} else {
5073 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5074 		}
5075 	}
5076 
5077 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5078 		svm_gp_erratum_intercept = false;
5079 
5080 	if (vgif) {
5081 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5082 			vgif = false;
5083 		else
5084 			pr_info("Virtual GIF supported\n");
5085 	}
5086 
5087 	if (lbrv) {
5088 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5089 			lbrv = false;
5090 		else
5091 			pr_info("LBR virtualization supported\n");
5092 	}
5093 
5094 	if (!enable_pmu)
5095 		pr_info("PMU virtualization is disabled\n");
5096 
5097 	svm_set_cpu_caps();
5098 
5099 	/*
5100 	 * It seems that on AMD processors PTE's accessed bit is
5101 	 * being set by the CPU hardware before the NPF vmexit.
5102 	 * This is not expected behaviour and our tests fail because
5103 	 * of it.
5104 	 * A workaround here is to disable support for
5105 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5106 	 * In this case userspace can know if there is support using
5107 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5108 	 * it
5109 	 * If future AMD CPU models change the behaviour described above,
5110 	 * this variable can be changed accordingly
5111 	 */
5112 	allow_smaller_maxphyaddr = !npt_enabled;
5113 
5114 	return 0;
5115 
5116 err:
5117 	svm_hardware_unsetup();
5118 	return r;
5119 }
5120 
5121 
5122 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5123 	.hardware_setup = svm_hardware_setup,
5124 
5125 	.runtime_ops = &svm_x86_ops,
5126 	.pmu_ops = &amd_pmu_ops,
5127 };
5128 
5129 static int __init svm_init(void)
5130 {
5131 	int r;
5132 
5133 	__unused_size_checks();
5134 
5135 	if (!kvm_is_svm_supported())
5136 		return -EOPNOTSUPP;
5137 
5138 	r = kvm_x86_vendor_init(&svm_init_ops);
5139 	if (r)
5140 		return r;
5141 
5142 	/*
5143 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5144 	 * exposed to userspace!
5145 	 */
5146 	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5147 		     THIS_MODULE);
5148 	if (r)
5149 		goto err_kvm_init;
5150 
5151 	return 0;
5152 
5153 err_kvm_init:
5154 	kvm_x86_vendor_exit();
5155 	return r;
5156 }
5157 
5158 static void __exit svm_exit(void)
5159 {
5160 	kvm_exit();
5161 	kvm_x86_vendor_exit();
5162 }
5163 
5164 module_init(svm_init)
5165 module_exit(svm_exit)
5166