1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 32 #include <asm/apic.h> 33 #include <asm/perf_event.h> 34 #include <asm/tlbflush.h> 35 #include <asm/desc.h> 36 #include <asm/debugreg.h> 37 #include <asm/kvm_para.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/spec-ctrl.h> 40 #include <asm/cpu_device_id.h> 41 #include <asm/traps.h> 42 #include <asm/reboot.h> 43 #include <asm/fpu/api.h> 44 45 #include <trace/events/ipi.h> 46 47 #include "trace.h" 48 49 #include "svm.h" 50 #include "svm_ops.h" 51 52 #include "kvm_onhyperv.h" 53 #include "svm_onhyperv.h" 54 55 MODULE_AUTHOR("Qumranet"); 56 MODULE_LICENSE("GPL"); 57 58 #ifdef MODULE 59 static const struct x86_cpu_id svm_cpu_id[] = { 60 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 61 {} 62 }; 63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 64 #endif 65 66 #define SEG_TYPE_LDT 2 67 #define SEG_TYPE_BUSY_TSS16 3 68 69 static bool erratum_383_found __read_mostly; 70 71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 72 73 /* 74 * Set osvw_len to higher value when updated Revision Guides 75 * are published and we know what the new status bits are 76 */ 77 static uint64_t osvw_len = 4, osvw_status; 78 79 static DEFINE_PER_CPU(u64, current_tsc_ratio); 80 81 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 82 83 static const struct svm_direct_access_msrs { 84 u32 index; /* Index of the MSR */ 85 bool always; /* True if intercept is initially cleared */ 86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 87 { .index = MSR_STAR, .always = true }, 88 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 89 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 90 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 91 #ifdef CONFIG_X86_64 92 { .index = MSR_GS_BASE, .always = true }, 93 { .index = MSR_FS_BASE, .always = true }, 94 { .index = MSR_KERNEL_GS_BASE, .always = true }, 95 { .index = MSR_LSTAR, .always = true }, 96 { .index = MSR_CSTAR, .always = true }, 97 { .index = MSR_SYSCALL_MASK, .always = true }, 98 #endif 99 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 100 { .index = MSR_IA32_PRED_CMD, .always = false }, 101 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 102 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 103 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 104 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 105 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 106 { .index = MSR_EFER, .always = false }, 107 { .index = MSR_IA32_CR_PAT, .always = false }, 108 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 109 { .index = MSR_TSC_AUX, .always = false }, 110 { .index = X2APIC_MSR(APIC_ID), .always = false }, 111 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 112 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 113 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 114 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 115 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 116 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 117 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 118 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 119 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 120 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 121 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 122 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 123 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 124 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 125 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 126 127 /* 128 * Note: 129 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 130 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 131 * the AVIC hardware would generate GP fault. Therefore, always 132 * intercept the MSR 0x832, and do not setup direct_access_msr. 133 */ 134 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 135 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 136 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 137 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 138 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 139 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 140 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 141 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 142 { .index = MSR_INVALID, .always = false }, 143 }; 144 145 /* 146 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 147 * pause_filter_count: On processors that support Pause filtering(indicated 148 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 149 * count value. On VMRUN this value is loaded into an internal counter. 150 * Each time a pause instruction is executed, this counter is decremented 151 * until it reaches zero at which time a #VMEXIT is generated if pause 152 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 153 * Intercept Filtering for more details. 154 * This also indicate if ple logic enabled. 155 * 156 * pause_filter_thresh: In addition, some processor families support advanced 157 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 158 * the amount of time a guest is allowed to execute in a pause loop. 159 * In this mode, a 16-bit pause filter threshold field is added in the 160 * VMCB. The threshold value is a cycle count that is used to reset the 161 * pause counter. As with simple pause filtering, VMRUN loads the pause 162 * count value from VMCB into an internal counter. Then, on each pause 163 * instruction the hardware checks the elapsed number of cycles since 164 * the most recent pause instruction against the pause filter threshold. 165 * If the elapsed cycle count is greater than the pause filter threshold, 166 * then the internal pause count is reloaded from the VMCB and execution 167 * continues. If the elapsed cycle count is less than the pause filter 168 * threshold, then the internal pause count is decremented. If the count 169 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 170 * triggered. If advanced pause filtering is supported and pause filter 171 * threshold field is set to zero, the filter will operate in the simpler, 172 * count only mode. 173 */ 174 175 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 176 module_param(pause_filter_thresh, ushort, 0444); 177 178 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 179 module_param(pause_filter_count, ushort, 0444); 180 181 /* Default doubles per-vcpu window every exit. */ 182 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 183 module_param(pause_filter_count_grow, ushort, 0444); 184 185 /* Default resets per-vcpu window every exit to pause_filter_count. */ 186 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 187 module_param(pause_filter_count_shrink, ushort, 0444); 188 189 /* Default is to compute the maximum so we can never overflow. */ 190 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 191 module_param(pause_filter_count_max, ushort, 0444); 192 193 /* 194 * Use nested page tables by default. Note, NPT may get forced off by 195 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 196 */ 197 bool npt_enabled = true; 198 module_param_named(npt, npt_enabled, bool, 0444); 199 200 /* allow nested virtualization in KVM/SVM */ 201 static int nested = true; 202 module_param(nested, int, S_IRUGO); 203 204 /* enable/disable Next RIP Save */ 205 int nrips = true; 206 module_param(nrips, int, 0444); 207 208 /* enable/disable Virtual VMLOAD VMSAVE */ 209 static int vls = true; 210 module_param(vls, int, 0444); 211 212 /* enable/disable Virtual GIF */ 213 int vgif = true; 214 module_param(vgif, int, 0444); 215 216 /* enable/disable LBR virtualization */ 217 static int lbrv = true; 218 module_param(lbrv, int, 0444); 219 220 static int tsc_scaling = true; 221 module_param(tsc_scaling, int, 0444); 222 223 /* 224 * enable / disable AVIC. Because the defaults differ for APICv 225 * support between VMX and SVM we cannot use module_param_named. 226 */ 227 static bool avic; 228 module_param(avic, bool, 0444); 229 230 bool __read_mostly dump_invalid_vmcb; 231 module_param(dump_invalid_vmcb, bool, 0644); 232 233 234 bool intercept_smi = true; 235 module_param(intercept_smi, bool, 0444); 236 237 bool vnmi = true; 238 module_param(vnmi, bool, 0444); 239 240 static bool svm_gp_erratum_intercept = true; 241 242 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 243 244 static unsigned long iopm_base; 245 246 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 247 248 /* 249 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 250 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 251 * 252 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 253 * defer the restoration of TSC_AUX until the CPU returns to userspace. 254 */ 255 static int tsc_aux_uret_slot __read_mostly = -1; 256 257 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 258 259 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 260 #define MSRS_RANGE_SIZE 2048 261 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 262 263 u32 svm_msrpm_offset(u32 msr) 264 { 265 u32 offset; 266 int i; 267 268 for (i = 0; i < NUM_MSR_MAPS; i++) { 269 if (msr < msrpm_ranges[i] || 270 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 271 continue; 272 273 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 274 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 275 276 /* Now we have the u8 offset - but need the u32 offset */ 277 return offset / 4; 278 } 279 280 /* MSR not in any range */ 281 return MSR_INVALID; 282 } 283 284 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 285 286 static int get_npt_level(void) 287 { 288 #ifdef CONFIG_X86_64 289 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 290 #else 291 return PT32E_ROOT_LEVEL; 292 #endif 293 } 294 295 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 296 { 297 struct vcpu_svm *svm = to_svm(vcpu); 298 u64 old_efer = vcpu->arch.efer; 299 vcpu->arch.efer = efer; 300 301 if (!npt_enabled) { 302 /* Shadow paging assumes NX to be available. */ 303 efer |= EFER_NX; 304 305 if (!(efer & EFER_LMA)) 306 efer &= ~EFER_LME; 307 } 308 309 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 310 if (!(efer & EFER_SVME)) { 311 svm_leave_nested(vcpu); 312 svm_set_gif(svm, true); 313 /* #GP intercept is still needed for vmware backdoor */ 314 if (!enable_vmware_backdoor) 315 clr_exception_intercept(svm, GP_VECTOR); 316 317 /* 318 * Free the nested guest state, unless we are in SMM. 319 * In this case we will return to the nested guest 320 * as soon as we leave SMM. 321 */ 322 if (!is_smm(vcpu)) 323 svm_free_nested(svm); 324 325 } else { 326 int ret = svm_allocate_nested(svm); 327 328 if (ret) { 329 vcpu->arch.efer = old_efer; 330 return ret; 331 } 332 333 /* 334 * Never intercept #GP for SEV guests, KVM can't 335 * decrypt guest memory to workaround the erratum. 336 */ 337 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 338 set_exception_intercept(svm, GP_VECTOR); 339 } 340 } 341 342 svm->vmcb->save.efer = efer | EFER_SVME; 343 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 344 return 0; 345 } 346 347 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 348 { 349 struct vcpu_svm *svm = to_svm(vcpu); 350 u32 ret = 0; 351 352 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 353 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 354 return ret; 355 } 356 357 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 358 { 359 struct vcpu_svm *svm = to_svm(vcpu); 360 361 if (mask == 0) 362 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 363 else 364 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 365 366 } 367 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 368 void *insn, int insn_len); 369 370 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 371 bool commit_side_effects) 372 { 373 struct vcpu_svm *svm = to_svm(vcpu); 374 unsigned long old_rflags; 375 376 /* 377 * SEV-ES does not expose the next RIP. The RIP update is controlled by 378 * the type of exit and the #VC handler in the guest. 379 */ 380 if (sev_es_guest(vcpu->kvm)) 381 goto done; 382 383 if (nrips && svm->vmcb->control.next_rip != 0) { 384 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 385 svm->next_rip = svm->vmcb->control.next_rip; 386 } 387 388 if (!svm->next_rip) { 389 /* 390 * FIXME: Drop this when kvm_emulate_instruction() does the 391 * right thing and treats "can't emulate" as outright failure 392 * for EMULTYPE_SKIP. 393 */ 394 if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0)) 395 return 0; 396 397 if (unlikely(!commit_side_effects)) 398 old_rflags = svm->vmcb->save.rflags; 399 400 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 401 return 0; 402 403 if (unlikely(!commit_side_effects)) 404 svm->vmcb->save.rflags = old_rflags; 405 } else { 406 kvm_rip_write(vcpu, svm->next_rip); 407 } 408 409 done: 410 if (likely(commit_side_effects)) 411 svm_set_interrupt_shadow(vcpu, 0); 412 413 return 1; 414 } 415 416 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 417 { 418 return __svm_skip_emulated_instruction(vcpu, true); 419 } 420 421 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 422 { 423 unsigned long rip, old_rip = kvm_rip_read(vcpu); 424 struct vcpu_svm *svm = to_svm(vcpu); 425 426 /* 427 * Due to architectural shortcomings, the CPU doesn't always provide 428 * NextRIP, e.g. if KVM intercepted an exception that occurred while 429 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 430 * the instruction even if NextRIP is supported to acquire the next 431 * RIP so that it can be shoved into the NextRIP field, otherwise 432 * hardware will fail to advance guest RIP during event injection. 433 * Drop the exception/interrupt if emulation fails and effectively 434 * retry the instruction, it's the least awful option. If NRIPS is 435 * in use, the skip must not commit any side effects such as clearing 436 * the interrupt shadow or RFLAGS.RF. 437 */ 438 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 439 return -EIO; 440 441 rip = kvm_rip_read(vcpu); 442 443 /* 444 * Save the injection information, even when using next_rip, as the 445 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 446 * doesn't complete due to a VM-Exit occurring while the CPU is 447 * vectoring the event. Decoding the instruction isn't guaranteed to 448 * work as there may be no backing instruction, e.g. if the event is 449 * being injected by L1 for L2, or if the guest is patching INT3 into 450 * a different instruction. 451 */ 452 svm->soft_int_injected = true; 453 svm->soft_int_csbase = svm->vmcb->save.cs.base; 454 svm->soft_int_old_rip = old_rip; 455 svm->soft_int_next_rip = rip; 456 457 if (nrips) 458 kvm_rip_write(vcpu, old_rip); 459 460 if (static_cpu_has(X86_FEATURE_NRIPS)) 461 svm->vmcb->control.next_rip = rip; 462 463 return 0; 464 } 465 466 static void svm_inject_exception(struct kvm_vcpu *vcpu) 467 { 468 struct kvm_queued_exception *ex = &vcpu->arch.exception; 469 struct vcpu_svm *svm = to_svm(vcpu); 470 471 kvm_deliver_exception_payload(vcpu, ex); 472 473 if (kvm_exception_is_soft(ex->vector) && 474 svm_update_soft_interrupt_rip(vcpu)) 475 return; 476 477 svm->vmcb->control.event_inj = ex->vector 478 | SVM_EVTINJ_VALID 479 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 480 | SVM_EVTINJ_TYPE_EXEPT; 481 svm->vmcb->control.event_inj_err = ex->error_code; 482 } 483 484 static void svm_init_erratum_383(void) 485 { 486 u32 low, high; 487 int err; 488 u64 val; 489 490 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 491 return; 492 493 /* Use _safe variants to not break nested virtualization */ 494 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 495 if (err) 496 return; 497 498 val |= (1ULL << 47); 499 500 low = lower_32_bits(val); 501 high = upper_32_bits(val); 502 503 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 504 505 erratum_383_found = true; 506 } 507 508 static void svm_init_osvw(struct kvm_vcpu *vcpu) 509 { 510 /* 511 * Guests should see errata 400 and 415 as fixed (assuming that 512 * HLT and IO instructions are intercepted). 513 */ 514 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 515 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 516 517 /* 518 * By increasing VCPU's osvw.length to 3 we are telling the guest that 519 * all osvw.status bits inside that length, including bit 0 (which is 520 * reserved for erratum 298), are valid. However, if host processor's 521 * osvw_len is 0 then osvw_status[0] carries no information. We need to 522 * be conservative here and therefore we tell the guest that erratum 298 523 * is present (because we really don't know). 524 */ 525 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 526 vcpu->arch.osvw.status |= 1; 527 } 528 529 static bool __kvm_is_svm_supported(void) 530 { 531 int cpu = smp_processor_id(); 532 struct cpuinfo_x86 *c = &cpu_data(cpu); 533 534 u64 vm_cr; 535 536 if (c->x86_vendor != X86_VENDOR_AMD && 537 c->x86_vendor != X86_VENDOR_HYGON) { 538 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 539 return false; 540 } 541 542 if (!cpu_has(c, X86_FEATURE_SVM)) { 543 pr_err("SVM not supported by CPU %d\n", cpu); 544 return false; 545 } 546 547 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 548 pr_info("KVM is unsupported when running as an SEV guest\n"); 549 return false; 550 } 551 552 rdmsrl(MSR_VM_CR, vm_cr); 553 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) { 554 pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu); 555 return false; 556 } 557 558 return true; 559 } 560 561 static bool kvm_is_svm_supported(void) 562 { 563 bool supported; 564 565 migrate_disable(); 566 supported = __kvm_is_svm_supported(); 567 migrate_enable(); 568 569 return supported; 570 } 571 572 static int svm_check_processor_compat(void) 573 { 574 if (!__kvm_is_svm_supported()) 575 return -EIO; 576 577 return 0; 578 } 579 580 static void __svm_write_tsc_multiplier(u64 multiplier) 581 { 582 if (multiplier == __this_cpu_read(current_tsc_ratio)) 583 return; 584 585 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 586 __this_cpu_write(current_tsc_ratio, multiplier); 587 } 588 589 static inline void kvm_cpu_svm_disable(void) 590 { 591 uint64_t efer; 592 593 wrmsrl(MSR_VM_HSAVE_PA, 0); 594 rdmsrl(MSR_EFER, efer); 595 if (efer & EFER_SVME) { 596 /* 597 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 598 * NMI aren't blocked. 599 */ 600 stgi(); 601 wrmsrl(MSR_EFER, efer & ~EFER_SVME); 602 } 603 } 604 605 static void svm_emergency_disable(void) 606 { 607 kvm_rebooting = true; 608 609 kvm_cpu_svm_disable(); 610 } 611 612 static void svm_hardware_disable(void) 613 { 614 /* Make sure we clean up behind us */ 615 if (tsc_scaling) 616 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 617 618 kvm_cpu_svm_disable(); 619 620 amd_pmu_disable_virt(); 621 } 622 623 static int svm_hardware_enable(void) 624 { 625 626 struct svm_cpu_data *sd; 627 uint64_t efer; 628 int me = raw_smp_processor_id(); 629 630 rdmsrl(MSR_EFER, efer); 631 if (efer & EFER_SVME) 632 return -EBUSY; 633 634 sd = per_cpu_ptr(&svm_data, me); 635 sd->asid_generation = 1; 636 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 637 sd->next_asid = sd->max_asid + 1; 638 sd->min_asid = max_sev_asid + 1; 639 640 wrmsrl(MSR_EFER, efer | EFER_SVME); 641 642 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 643 644 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 645 /* 646 * Set the default value, even if we don't use TSC scaling 647 * to avoid having stale value in the msr 648 */ 649 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 650 } 651 652 653 /* 654 * Get OSVW bits. 655 * 656 * Note that it is possible to have a system with mixed processor 657 * revisions and therefore different OSVW bits. If bits are not the same 658 * on different processors then choose the worst case (i.e. if erratum 659 * is present on one processor and not on another then assume that the 660 * erratum is present everywhere). 661 */ 662 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 663 uint64_t len, status = 0; 664 int err; 665 666 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 667 if (!err) 668 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 669 &err); 670 671 if (err) 672 osvw_status = osvw_len = 0; 673 else { 674 if (len < osvw_len) 675 osvw_len = len; 676 osvw_status |= status; 677 osvw_status &= (1ULL << osvw_len) - 1; 678 } 679 } else 680 osvw_status = osvw_len = 0; 681 682 svm_init_erratum_383(); 683 684 amd_pmu_enable_virt(); 685 686 /* 687 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type 688 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. 689 * Since Linux does not change the value of TSC_AUX once set, prime the 690 * TSC_AUX field now to avoid a RDMSR on every vCPU run. 691 */ 692 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 693 struct sev_es_save_area *hostsa; 694 u32 __maybe_unused msr_hi; 695 696 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 697 698 rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi); 699 } 700 701 return 0; 702 } 703 704 static void svm_cpu_uninit(int cpu) 705 { 706 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 707 708 if (!sd->save_area) 709 return; 710 711 kfree(sd->sev_vmcbs); 712 __free_page(sd->save_area); 713 sd->save_area_pa = 0; 714 sd->save_area = NULL; 715 } 716 717 static int svm_cpu_init(int cpu) 718 { 719 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 720 int ret = -ENOMEM; 721 722 memset(sd, 0, sizeof(struct svm_cpu_data)); 723 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 724 if (!sd->save_area) 725 return ret; 726 727 ret = sev_cpu_init(sd); 728 if (ret) 729 goto free_save_area; 730 731 sd->save_area_pa = __sme_page_pa(sd->save_area); 732 return 0; 733 734 free_save_area: 735 __free_page(sd->save_area); 736 sd->save_area = NULL; 737 return ret; 738 739 } 740 741 static void set_dr_intercepts(struct vcpu_svm *svm) 742 { 743 struct vmcb *vmcb = svm->vmcb01.ptr; 744 745 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 746 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 747 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 748 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 749 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 750 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 751 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 752 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 753 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 754 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 755 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 756 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 757 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 758 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 759 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 760 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 761 762 recalc_intercepts(svm); 763 } 764 765 static void clr_dr_intercepts(struct vcpu_svm *svm) 766 { 767 struct vmcb *vmcb = svm->vmcb01.ptr; 768 769 vmcb->control.intercepts[INTERCEPT_DR] = 0; 770 771 recalc_intercepts(svm); 772 } 773 774 static int direct_access_msr_slot(u32 msr) 775 { 776 u32 i; 777 778 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 779 if (direct_access_msrs[i].index == msr) 780 return i; 781 782 return -ENOENT; 783 } 784 785 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 786 int write) 787 { 788 struct vcpu_svm *svm = to_svm(vcpu); 789 int slot = direct_access_msr_slot(msr); 790 791 if (slot == -ENOENT) 792 return; 793 794 /* Set the shadow bitmaps to the desired intercept states */ 795 if (read) 796 set_bit(slot, svm->shadow_msr_intercept.read); 797 else 798 clear_bit(slot, svm->shadow_msr_intercept.read); 799 800 if (write) 801 set_bit(slot, svm->shadow_msr_intercept.write); 802 else 803 clear_bit(slot, svm->shadow_msr_intercept.write); 804 } 805 806 static bool valid_msr_intercept(u32 index) 807 { 808 return direct_access_msr_slot(index) != -ENOENT; 809 } 810 811 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 812 { 813 u8 bit_write; 814 unsigned long tmp; 815 u32 offset; 816 u32 *msrpm; 817 818 /* 819 * For non-nested case: 820 * If the L01 MSR bitmap does not intercept the MSR, then we need to 821 * save it. 822 * 823 * For nested case: 824 * If the L02 MSR bitmap does not intercept the MSR, then we need to 825 * save it. 826 */ 827 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 828 to_svm(vcpu)->msrpm; 829 830 offset = svm_msrpm_offset(msr); 831 bit_write = 2 * (msr & 0x0f) + 1; 832 tmp = msrpm[offset]; 833 834 BUG_ON(offset == MSR_INVALID); 835 836 return test_bit(bit_write, &tmp); 837 } 838 839 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 840 u32 msr, int read, int write) 841 { 842 struct vcpu_svm *svm = to_svm(vcpu); 843 u8 bit_read, bit_write; 844 unsigned long tmp; 845 u32 offset; 846 847 /* 848 * If this warning triggers extend the direct_access_msrs list at the 849 * beginning of the file 850 */ 851 WARN_ON(!valid_msr_intercept(msr)); 852 853 /* Enforce non allowed MSRs to trap */ 854 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 855 read = 0; 856 857 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 858 write = 0; 859 860 offset = svm_msrpm_offset(msr); 861 bit_read = 2 * (msr & 0x0f); 862 bit_write = 2 * (msr & 0x0f) + 1; 863 tmp = msrpm[offset]; 864 865 BUG_ON(offset == MSR_INVALID); 866 867 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 868 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 869 870 msrpm[offset] = tmp; 871 872 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 873 svm->nested.force_msr_bitmap_recalc = true; 874 } 875 876 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 877 int read, int write) 878 { 879 set_shadow_msr_intercept(vcpu, msr, read, write); 880 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 881 } 882 883 u32 *svm_vcpu_alloc_msrpm(void) 884 { 885 unsigned int order = get_order(MSRPM_SIZE); 886 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 887 u32 *msrpm; 888 889 if (!pages) 890 return NULL; 891 892 msrpm = page_address(pages); 893 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 894 895 return msrpm; 896 } 897 898 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 899 { 900 int i; 901 902 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 903 if (!direct_access_msrs[i].always) 904 continue; 905 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 906 } 907 } 908 909 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 910 { 911 int i; 912 913 if (intercept == svm->x2avic_msrs_intercepted) 914 return; 915 916 if (!x2avic_enabled) 917 return; 918 919 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 920 int index = direct_access_msrs[i].index; 921 922 if ((index < APIC_BASE_MSR) || 923 (index > APIC_BASE_MSR + 0xff)) 924 continue; 925 set_msr_interception(&svm->vcpu, svm->msrpm, index, 926 !intercept, !intercept); 927 } 928 929 svm->x2avic_msrs_intercepted = intercept; 930 } 931 932 void svm_vcpu_free_msrpm(u32 *msrpm) 933 { 934 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 935 } 936 937 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 938 { 939 struct vcpu_svm *svm = to_svm(vcpu); 940 u32 i; 941 942 /* 943 * Set intercept permissions for all direct access MSRs again. They 944 * will automatically get filtered through the MSR filter, so we are 945 * back in sync after this. 946 */ 947 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 948 u32 msr = direct_access_msrs[i].index; 949 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 950 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 951 952 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 953 } 954 } 955 956 static void add_msr_offset(u32 offset) 957 { 958 int i; 959 960 for (i = 0; i < MSRPM_OFFSETS; ++i) { 961 962 /* Offset already in list? */ 963 if (msrpm_offsets[i] == offset) 964 return; 965 966 /* Slot used by another offset? */ 967 if (msrpm_offsets[i] != MSR_INVALID) 968 continue; 969 970 /* Add offset to list */ 971 msrpm_offsets[i] = offset; 972 973 return; 974 } 975 976 /* 977 * If this BUG triggers the msrpm_offsets table has an overflow. Just 978 * increase MSRPM_OFFSETS in this case. 979 */ 980 BUG(); 981 } 982 983 static void init_msrpm_offsets(void) 984 { 985 int i; 986 987 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 988 989 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 990 u32 offset; 991 992 offset = svm_msrpm_offset(direct_access_msrs[i].index); 993 BUG_ON(offset == MSR_INVALID); 994 995 add_msr_offset(offset); 996 } 997 } 998 999 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 1000 { 1001 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 1002 to_vmcb->save.br_from = from_vmcb->save.br_from; 1003 to_vmcb->save.br_to = from_vmcb->save.br_to; 1004 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 1005 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 1006 1007 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 1008 } 1009 1010 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 1011 { 1012 struct vcpu_svm *svm = to_svm(vcpu); 1013 1014 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 1015 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 1016 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 1017 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 1018 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1019 1020 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1021 if (is_guest_mode(vcpu)) 1022 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1023 } 1024 1025 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1026 { 1027 struct vcpu_svm *svm = to_svm(vcpu); 1028 1029 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1030 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1031 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1032 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1033 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1034 1035 /* 1036 * Move the LBR msrs back to the vmcb01 to avoid copying them 1037 * on nested guest entries. 1038 */ 1039 if (is_guest_mode(vcpu)) 1040 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1041 } 1042 1043 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1044 { 1045 /* 1046 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1047 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1048 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1049 */ 1050 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1051 svm->vmcb01.ptr; 1052 } 1053 1054 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1055 { 1056 struct vcpu_svm *svm = to_svm(vcpu); 1057 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1058 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1059 (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) && 1060 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1061 1062 if (enable_lbrv == current_enable_lbrv) 1063 return; 1064 1065 if (enable_lbrv) 1066 svm_enable_lbrv(vcpu); 1067 else 1068 svm_disable_lbrv(vcpu); 1069 } 1070 1071 void disable_nmi_singlestep(struct vcpu_svm *svm) 1072 { 1073 svm->nmi_singlestep = false; 1074 1075 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1076 /* Clear our flags if they were not set by the guest */ 1077 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1078 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1079 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1080 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1081 } 1082 } 1083 1084 static void grow_ple_window(struct kvm_vcpu *vcpu) 1085 { 1086 struct vcpu_svm *svm = to_svm(vcpu); 1087 struct vmcb_control_area *control = &svm->vmcb->control; 1088 int old = control->pause_filter_count; 1089 1090 if (kvm_pause_in_guest(vcpu->kvm)) 1091 return; 1092 1093 control->pause_filter_count = __grow_ple_window(old, 1094 pause_filter_count, 1095 pause_filter_count_grow, 1096 pause_filter_count_max); 1097 1098 if (control->pause_filter_count != old) { 1099 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1100 trace_kvm_ple_window_update(vcpu->vcpu_id, 1101 control->pause_filter_count, old); 1102 } 1103 } 1104 1105 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1106 { 1107 struct vcpu_svm *svm = to_svm(vcpu); 1108 struct vmcb_control_area *control = &svm->vmcb->control; 1109 int old = control->pause_filter_count; 1110 1111 if (kvm_pause_in_guest(vcpu->kvm)) 1112 return; 1113 1114 control->pause_filter_count = 1115 __shrink_ple_window(old, 1116 pause_filter_count, 1117 pause_filter_count_shrink, 1118 pause_filter_count); 1119 if (control->pause_filter_count != old) { 1120 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1121 trace_kvm_ple_window_update(vcpu->vcpu_id, 1122 control->pause_filter_count, old); 1123 } 1124 } 1125 1126 static void svm_hardware_unsetup(void) 1127 { 1128 int cpu; 1129 1130 sev_hardware_unsetup(); 1131 1132 for_each_possible_cpu(cpu) 1133 svm_cpu_uninit(cpu); 1134 1135 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 1136 get_order(IOPM_SIZE)); 1137 iopm_base = 0; 1138 } 1139 1140 static void init_seg(struct vmcb_seg *seg) 1141 { 1142 seg->selector = 0; 1143 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1144 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1145 seg->limit = 0xffff; 1146 seg->base = 0; 1147 } 1148 1149 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1150 { 1151 seg->selector = 0; 1152 seg->attrib = SVM_SELECTOR_P_MASK | type; 1153 seg->limit = 0xffff; 1154 seg->base = 0; 1155 } 1156 1157 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1158 { 1159 struct vcpu_svm *svm = to_svm(vcpu); 1160 1161 return svm->nested.ctl.tsc_offset; 1162 } 1163 1164 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1165 { 1166 struct vcpu_svm *svm = to_svm(vcpu); 1167 1168 return svm->tsc_ratio_msr; 1169 } 1170 1171 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1172 { 1173 struct vcpu_svm *svm = to_svm(vcpu); 1174 1175 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1176 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1177 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1178 } 1179 1180 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1181 { 1182 preempt_disable(); 1183 if (to_svm(vcpu)->guest_state_loaded) 1184 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1185 preempt_enable(); 1186 } 1187 1188 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1189 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1190 struct vcpu_svm *svm) 1191 { 1192 /* 1193 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1194 * roots, or if INVPCID is disabled in the guest to inject #UD. 1195 */ 1196 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1197 if (!npt_enabled || 1198 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1199 svm_set_intercept(svm, INTERCEPT_INVPCID); 1200 else 1201 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1202 } 1203 1204 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1205 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1206 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1207 else 1208 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1209 } 1210 } 1211 1212 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1213 { 1214 struct vcpu_svm *svm = to_svm(vcpu); 1215 1216 if (guest_cpuid_is_intel(vcpu)) { 1217 /* 1218 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1219 * accesses because the processor only stores 32 bits. 1220 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1221 */ 1222 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1223 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1224 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1225 1226 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1227 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1228 } else { 1229 /* 1230 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1231 * in VMCB and clear intercepts to avoid #VMEXIT. 1232 */ 1233 if (vls) { 1234 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1235 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1236 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1237 } 1238 /* No need to intercept these MSRs */ 1239 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1240 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1241 } 1242 } 1243 1244 static void init_vmcb(struct kvm_vcpu *vcpu) 1245 { 1246 struct vcpu_svm *svm = to_svm(vcpu); 1247 struct vmcb *vmcb = svm->vmcb01.ptr; 1248 struct vmcb_control_area *control = &vmcb->control; 1249 struct vmcb_save_area *save = &vmcb->save; 1250 1251 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1252 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1253 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1254 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1255 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1256 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1257 if (!kvm_vcpu_apicv_active(vcpu)) 1258 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1259 1260 set_dr_intercepts(svm); 1261 1262 set_exception_intercept(svm, PF_VECTOR); 1263 set_exception_intercept(svm, UD_VECTOR); 1264 set_exception_intercept(svm, MC_VECTOR); 1265 set_exception_intercept(svm, AC_VECTOR); 1266 set_exception_intercept(svm, DB_VECTOR); 1267 /* 1268 * Guest access to VMware backdoor ports could legitimately 1269 * trigger #GP because of TSS I/O permission bitmap. 1270 * We intercept those #GP and allow access to them anyway 1271 * as VMware does. 1272 */ 1273 if (enable_vmware_backdoor) 1274 set_exception_intercept(svm, GP_VECTOR); 1275 1276 svm_set_intercept(svm, INTERCEPT_INTR); 1277 svm_set_intercept(svm, INTERCEPT_NMI); 1278 1279 if (intercept_smi) 1280 svm_set_intercept(svm, INTERCEPT_SMI); 1281 1282 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1283 svm_set_intercept(svm, INTERCEPT_RDPMC); 1284 svm_set_intercept(svm, INTERCEPT_CPUID); 1285 svm_set_intercept(svm, INTERCEPT_INVD); 1286 svm_set_intercept(svm, INTERCEPT_INVLPG); 1287 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1288 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1289 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1290 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1291 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1292 svm_set_intercept(svm, INTERCEPT_VMRUN); 1293 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1294 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1295 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1296 svm_set_intercept(svm, INTERCEPT_STGI); 1297 svm_set_intercept(svm, INTERCEPT_CLGI); 1298 svm_set_intercept(svm, INTERCEPT_SKINIT); 1299 svm_set_intercept(svm, INTERCEPT_WBINVD); 1300 svm_set_intercept(svm, INTERCEPT_XSETBV); 1301 svm_set_intercept(svm, INTERCEPT_RDPRU); 1302 svm_set_intercept(svm, INTERCEPT_RSM); 1303 1304 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1305 svm_set_intercept(svm, INTERCEPT_MONITOR); 1306 svm_set_intercept(svm, INTERCEPT_MWAIT); 1307 } 1308 1309 if (!kvm_hlt_in_guest(vcpu->kvm)) 1310 svm_set_intercept(svm, INTERCEPT_HLT); 1311 1312 control->iopm_base_pa = __sme_set(iopm_base); 1313 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1314 control->int_ctl = V_INTR_MASKING_MASK; 1315 1316 init_seg(&save->es); 1317 init_seg(&save->ss); 1318 init_seg(&save->ds); 1319 init_seg(&save->fs); 1320 init_seg(&save->gs); 1321 1322 save->cs.selector = 0xf000; 1323 save->cs.base = 0xffff0000; 1324 /* Executable/Readable Code Segment */ 1325 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1326 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1327 save->cs.limit = 0xffff; 1328 1329 save->gdtr.base = 0; 1330 save->gdtr.limit = 0xffff; 1331 save->idtr.base = 0; 1332 save->idtr.limit = 0xffff; 1333 1334 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1335 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1336 1337 if (npt_enabled) { 1338 /* Setup VMCB for Nested Paging */ 1339 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1340 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1341 clr_exception_intercept(svm, PF_VECTOR); 1342 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1343 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1344 save->g_pat = vcpu->arch.pat; 1345 save->cr3 = 0; 1346 } 1347 svm->current_vmcb->asid_generation = 0; 1348 svm->asid = 0; 1349 1350 svm->nested.vmcb12_gpa = INVALID_GPA; 1351 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1352 1353 if (!kvm_pause_in_guest(vcpu->kvm)) { 1354 control->pause_filter_count = pause_filter_count; 1355 if (pause_filter_thresh) 1356 control->pause_filter_thresh = pause_filter_thresh; 1357 svm_set_intercept(svm, INTERCEPT_PAUSE); 1358 } else { 1359 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1360 } 1361 1362 svm_recalc_instruction_intercepts(vcpu, svm); 1363 1364 /* 1365 * If the host supports V_SPEC_CTRL then disable the interception 1366 * of MSR_IA32_SPEC_CTRL. 1367 */ 1368 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1369 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1370 1371 if (kvm_vcpu_apicv_active(vcpu)) 1372 avic_init_vmcb(svm, vmcb); 1373 1374 if (vnmi) 1375 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1376 1377 if (vgif) { 1378 svm_clr_intercept(svm, INTERCEPT_STGI); 1379 svm_clr_intercept(svm, INTERCEPT_CLGI); 1380 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1381 } 1382 1383 if (sev_guest(vcpu->kvm)) 1384 sev_init_vmcb(svm); 1385 1386 svm_hv_init_vmcb(vmcb); 1387 init_vmcb_after_set_cpuid(vcpu); 1388 1389 vmcb_mark_all_dirty(vmcb); 1390 1391 enable_gif(svm); 1392 } 1393 1394 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1395 { 1396 struct vcpu_svm *svm = to_svm(vcpu); 1397 1398 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1399 1400 svm_init_osvw(vcpu); 1401 vcpu->arch.microcode_version = 0x01000065; 1402 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1403 1404 svm->nmi_masked = false; 1405 svm->awaiting_iret_completion = false; 1406 1407 if (sev_es_guest(vcpu->kvm)) 1408 sev_es_vcpu_reset(svm); 1409 } 1410 1411 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1412 { 1413 struct vcpu_svm *svm = to_svm(vcpu); 1414 1415 svm->spec_ctrl = 0; 1416 svm->virt_spec_ctrl = 0; 1417 1418 init_vmcb(vcpu); 1419 1420 if (!init_event) 1421 __svm_vcpu_reset(vcpu); 1422 } 1423 1424 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1425 { 1426 svm->current_vmcb = target_vmcb; 1427 svm->vmcb = target_vmcb->ptr; 1428 } 1429 1430 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1431 { 1432 struct vcpu_svm *svm; 1433 struct page *vmcb01_page; 1434 struct page *vmsa_page = NULL; 1435 int err; 1436 1437 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1438 svm = to_svm(vcpu); 1439 1440 err = -ENOMEM; 1441 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1442 if (!vmcb01_page) 1443 goto out; 1444 1445 if (sev_es_guest(vcpu->kvm)) { 1446 /* 1447 * SEV-ES guests require a separate VMSA page used to contain 1448 * the encrypted register state of the guest. 1449 */ 1450 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1451 if (!vmsa_page) 1452 goto error_free_vmcb_page; 1453 1454 /* 1455 * SEV-ES guests maintain an encrypted version of their FPU 1456 * state which is restored and saved on VMRUN and VMEXIT. 1457 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1458 * do xsave/xrstor on it. 1459 */ 1460 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1461 } 1462 1463 err = avic_init_vcpu(svm); 1464 if (err) 1465 goto error_free_vmsa_page; 1466 1467 svm->msrpm = svm_vcpu_alloc_msrpm(); 1468 if (!svm->msrpm) { 1469 err = -ENOMEM; 1470 goto error_free_vmsa_page; 1471 } 1472 1473 svm->x2avic_msrs_intercepted = true; 1474 1475 svm->vmcb01.ptr = page_address(vmcb01_page); 1476 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1477 svm_switch_vmcb(svm, &svm->vmcb01); 1478 1479 if (vmsa_page) 1480 svm->sev_es.vmsa = page_address(vmsa_page); 1481 1482 svm->guest_state_loaded = false; 1483 1484 return 0; 1485 1486 error_free_vmsa_page: 1487 if (vmsa_page) 1488 __free_page(vmsa_page); 1489 error_free_vmcb_page: 1490 __free_page(vmcb01_page); 1491 out: 1492 return err; 1493 } 1494 1495 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1496 { 1497 int i; 1498 1499 for_each_online_cpu(i) 1500 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1501 } 1502 1503 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1504 { 1505 struct vcpu_svm *svm = to_svm(vcpu); 1506 1507 /* 1508 * The vmcb page can be recycled, causing a false negative in 1509 * svm_vcpu_load(). So, ensure that no logical CPU has this 1510 * vmcb page recorded as its current vmcb. 1511 */ 1512 svm_clear_current_vmcb(svm->vmcb); 1513 1514 svm_leave_nested(vcpu); 1515 svm_free_nested(svm); 1516 1517 sev_free_vcpu(vcpu); 1518 1519 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1520 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1521 } 1522 1523 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1524 { 1525 struct vcpu_svm *svm = to_svm(vcpu); 1526 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1527 1528 if (sev_es_guest(vcpu->kvm)) 1529 sev_es_unmap_ghcb(svm); 1530 1531 if (svm->guest_state_loaded) 1532 return; 1533 1534 /* 1535 * Save additional host state that will be restored on VMEXIT (sev-es) 1536 * or subsequent vmload of host save area. 1537 */ 1538 vmsave(sd->save_area_pa); 1539 if (sev_es_guest(vcpu->kvm)) { 1540 struct sev_es_save_area *hostsa; 1541 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 1542 1543 sev_es_prepare_switch_to_guest(hostsa); 1544 } 1545 1546 if (tsc_scaling) 1547 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1548 1549 /* 1550 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 1551 * available. The user return MSR support is not required in this case 1552 * because TSC_AUX is restored on #VMEXIT from the host save area 1553 * (which has been initialized in svm_hardware_enable()). 1554 */ 1555 if (likely(tsc_aux_uret_slot >= 0) && 1556 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1557 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1558 1559 svm->guest_state_loaded = true; 1560 } 1561 1562 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1563 { 1564 to_svm(vcpu)->guest_state_loaded = false; 1565 } 1566 1567 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1568 { 1569 struct vcpu_svm *svm = to_svm(vcpu); 1570 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1571 1572 if (sd->current_vmcb != svm->vmcb) { 1573 sd->current_vmcb = svm->vmcb; 1574 1575 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT)) 1576 indirect_branch_prediction_barrier(); 1577 } 1578 if (kvm_vcpu_apicv_active(vcpu)) 1579 avic_vcpu_load(vcpu, cpu); 1580 } 1581 1582 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1583 { 1584 if (kvm_vcpu_apicv_active(vcpu)) 1585 avic_vcpu_put(vcpu); 1586 1587 svm_prepare_host_switch(vcpu); 1588 1589 ++vcpu->stat.host_state_reload; 1590 } 1591 1592 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1593 { 1594 struct vcpu_svm *svm = to_svm(vcpu); 1595 unsigned long rflags = svm->vmcb->save.rflags; 1596 1597 if (svm->nmi_singlestep) { 1598 /* Hide our flags if they were not set by the guest */ 1599 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1600 rflags &= ~X86_EFLAGS_TF; 1601 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1602 rflags &= ~X86_EFLAGS_RF; 1603 } 1604 return rflags; 1605 } 1606 1607 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1608 { 1609 if (to_svm(vcpu)->nmi_singlestep) 1610 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1611 1612 /* 1613 * Any change of EFLAGS.VM is accompanied by a reload of SS 1614 * (caused by either a task switch or an inter-privilege IRET), 1615 * so we do not need to update the CPL here. 1616 */ 1617 to_svm(vcpu)->vmcb->save.rflags = rflags; 1618 } 1619 1620 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1621 { 1622 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1623 1624 return sev_es_guest(vcpu->kvm) 1625 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1626 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1627 } 1628 1629 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1630 { 1631 kvm_register_mark_available(vcpu, reg); 1632 1633 switch (reg) { 1634 case VCPU_EXREG_PDPTR: 1635 /* 1636 * When !npt_enabled, mmu->pdptrs[] is already available since 1637 * it is always updated per SDM when moving to CRs. 1638 */ 1639 if (npt_enabled) 1640 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1641 break; 1642 default: 1643 KVM_BUG_ON(1, vcpu->kvm); 1644 } 1645 } 1646 1647 static void svm_set_vintr(struct vcpu_svm *svm) 1648 { 1649 struct vmcb_control_area *control; 1650 1651 /* 1652 * The following fields are ignored when AVIC is enabled 1653 */ 1654 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1655 1656 svm_set_intercept(svm, INTERCEPT_VINTR); 1657 1658 /* 1659 * Recalculating intercepts may have cleared the VINTR intercept. If 1660 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1661 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1662 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1663 * interrupts will never be unblocked while L2 is running. 1664 */ 1665 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1666 return; 1667 1668 /* 1669 * This is just a dummy VINTR to actually cause a vmexit to happen. 1670 * Actual injection of virtual interrupts happens through EVENTINJ. 1671 */ 1672 control = &svm->vmcb->control; 1673 control->int_vector = 0x0; 1674 control->int_ctl &= ~V_INTR_PRIO_MASK; 1675 control->int_ctl |= V_IRQ_MASK | 1676 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1677 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1678 } 1679 1680 static void svm_clear_vintr(struct vcpu_svm *svm) 1681 { 1682 svm_clr_intercept(svm, INTERCEPT_VINTR); 1683 1684 /* Drop int_ctl fields related to VINTR injection. */ 1685 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1686 if (is_guest_mode(&svm->vcpu)) { 1687 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1688 1689 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1690 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1691 1692 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1693 V_IRQ_INJECTION_BITS_MASK; 1694 1695 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1696 } 1697 1698 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1699 } 1700 1701 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1702 { 1703 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1704 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1705 1706 switch (seg) { 1707 case VCPU_SREG_CS: return &save->cs; 1708 case VCPU_SREG_DS: return &save->ds; 1709 case VCPU_SREG_ES: return &save->es; 1710 case VCPU_SREG_FS: return &save01->fs; 1711 case VCPU_SREG_GS: return &save01->gs; 1712 case VCPU_SREG_SS: return &save->ss; 1713 case VCPU_SREG_TR: return &save01->tr; 1714 case VCPU_SREG_LDTR: return &save01->ldtr; 1715 } 1716 BUG(); 1717 return NULL; 1718 } 1719 1720 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1721 { 1722 struct vmcb_seg *s = svm_seg(vcpu, seg); 1723 1724 return s->base; 1725 } 1726 1727 static void svm_get_segment(struct kvm_vcpu *vcpu, 1728 struct kvm_segment *var, int seg) 1729 { 1730 struct vmcb_seg *s = svm_seg(vcpu, seg); 1731 1732 var->base = s->base; 1733 var->limit = s->limit; 1734 var->selector = s->selector; 1735 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1736 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1737 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1738 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1739 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1740 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1741 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1742 1743 /* 1744 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1745 * However, the SVM spec states that the G bit is not observed by the 1746 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1747 * So let's synthesize a legal G bit for all segments, this helps 1748 * running KVM nested. It also helps cross-vendor migration, because 1749 * Intel's vmentry has a check on the 'G' bit. 1750 */ 1751 var->g = s->limit > 0xfffff; 1752 1753 /* 1754 * AMD's VMCB does not have an explicit unusable field, so emulate it 1755 * for cross vendor migration purposes by "not present" 1756 */ 1757 var->unusable = !var->present; 1758 1759 switch (seg) { 1760 case VCPU_SREG_TR: 1761 /* 1762 * Work around a bug where the busy flag in the tr selector 1763 * isn't exposed 1764 */ 1765 var->type |= 0x2; 1766 break; 1767 case VCPU_SREG_DS: 1768 case VCPU_SREG_ES: 1769 case VCPU_SREG_FS: 1770 case VCPU_SREG_GS: 1771 /* 1772 * The accessed bit must always be set in the segment 1773 * descriptor cache, although it can be cleared in the 1774 * descriptor, the cached bit always remains at 1. Since 1775 * Intel has a check on this, set it here to support 1776 * cross-vendor migration. 1777 */ 1778 if (!var->unusable) 1779 var->type |= 0x1; 1780 break; 1781 case VCPU_SREG_SS: 1782 /* 1783 * On AMD CPUs sometimes the DB bit in the segment 1784 * descriptor is left as 1, although the whole segment has 1785 * been made unusable. Clear it here to pass an Intel VMX 1786 * entry check when cross vendor migrating. 1787 */ 1788 if (var->unusable) 1789 var->db = 0; 1790 /* This is symmetric with svm_set_segment() */ 1791 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1792 break; 1793 } 1794 } 1795 1796 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1797 { 1798 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1799 1800 return save->cpl; 1801 } 1802 1803 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1804 { 1805 struct kvm_segment cs; 1806 1807 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1808 *db = cs.db; 1809 *l = cs.l; 1810 } 1811 1812 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1813 { 1814 struct vcpu_svm *svm = to_svm(vcpu); 1815 1816 dt->size = svm->vmcb->save.idtr.limit; 1817 dt->address = svm->vmcb->save.idtr.base; 1818 } 1819 1820 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1821 { 1822 struct vcpu_svm *svm = to_svm(vcpu); 1823 1824 svm->vmcb->save.idtr.limit = dt->size; 1825 svm->vmcb->save.idtr.base = dt->address ; 1826 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1827 } 1828 1829 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1830 { 1831 struct vcpu_svm *svm = to_svm(vcpu); 1832 1833 dt->size = svm->vmcb->save.gdtr.limit; 1834 dt->address = svm->vmcb->save.gdtr.base; 1835 } 1836 1837 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1838 { 1839 struct vcpu_svm *svm = to_svm(vcpu); 1840 1841 svm->vmcb->save.gdtr.limit = dt->size; 1842 svm->vmcb->save.gdtr.base = dt->address ; 1843 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1844 } 1845 1846 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1847 { 1848 struct vcpu_svm *svm = to_svm(vcpu); 1849 1850 /* 1851 * For guests that don't set guest_state_protected, the cr3 update is 1852 * handled via kvm_mmu_load() while entering the guest. For guests 1853 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1854 * VMCB save area now, since the save area will become the initial 1855 * contents of the VMSA, and future VMCB save area updates won't be 1856 * seen. 1857 */ 1858 if (sev_es_guest(vcpu->kvm)) { 1859 svm->vmcb->save.cr3 = cr3; 1860 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1861 } 1862 } 1863 1864 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1865 { 1866 return true; 1867 } 1868 1869 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1870 { 1871 struct vcpu_svm *svm = to_svm(vcpu); 1872 u64 hcr0 = cr0; 1873 bool old_paging = is_paging(vcpu); 1874 1875 #ifdef CONFIG_X86_64 1876 if (vcpu->arch.efer & EFER_LME) { 1877 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1878 vcpu->arch.efer |= EFER_LMA; 1879 if (!vcpu->arch.guest_state_protected) 1880 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1881 } 1882 1883 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1884 vcpu->arch.efer &= ~EFER_LMA; 1885 if (!vcpu->arch.guest_state_protected) 1886 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1887 } 1888 } 1889 #endif 1890 vcpu->arch.cr0 = cr0; 1891 1892 if (!npt_enabled) { 1893 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1894 if (old_paging != is_paging(vcpu)) 1895 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1896 } 1897 1898 /* 1899 * re-enable caching here because the QEMU bios 1900 * does not do it - this results in some delay at 1901 * reboot 1902 */ 1903 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1904 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1905 1906 svm->vmcb->save.cr0 = hcr0; 1907 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1908 1909 /* 1910 * SEV-ES guests must always keep the CR intercepts cleared. CR 1911 * tracking is done using the CR write traps. 1912 */ 1913 if (sev_es_guest(vcpu->kvm)) 1914 return; 1915 1916 if (hcr0 == cr0) { 1917 /* Selective CR0 write remains on. */ 1918 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1919 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1920 } else { 1921 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1922 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1923 } 1924 } 1925 1926 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1927 { 1928 return true; 1929 } 1930 1931 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1932 { 1933 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1934 unsigned long old_cr4 = vcpu->arch.cr4; 1935 1936 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1937 svm_flush_tlb_current(vcpu); 1938 1939 vcpu->arch.cr4 = cr4; 1940 if (!npt_enabled) { 1941 cr4 |= X86_CR4_PAE; 1942 1943 if (!is_paging(vcpu)) 1944 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1945 } 1946 cr4 |= host_cr4_mce; 1947 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1948 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1949 1950 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1951 kvm_update_cpuid_runtime(vcpu); 1952 } 1953 1954 static void svm_set_segment(struct kvm_vcpu *vcpu, 1955 struct kvm_segment *var, int seg) 1956 { 1957 struct vcpu_svm *svm = to_svm(vcpu); 1958 struct vmcb_seg *s = svm_seg(vcpu, seg); 1959 1960 s->base = var->base; 1961 s->limit = var->limit; 1962 s->selector = var->selector; 1963 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1964 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1965 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1966 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1967 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1968 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1969 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1970 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1971 1972 /* 1973 * This is always accurate, except if SYSRET returned to a segment 1974 * with SS.DPL != 3. Intel does not have this quirk, and always 1975 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1976 * would entail passing the CPL to userspace and back. 1977 */ 1978 if (seg == VCPU_SREG_SS) 1979 /* This is symmetric with svm_get_segment() */ 1980 svm->vmcb->save.cpl = (var->dpl & 3); 1981 1982 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1983 } 1984 1985 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1986 { 1987 struct vcpu_svm *svm = to_svm(vcpu); 1988 1989 clr_exception_intercept(svm, BP_VECTOR); 1990 1991 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1992 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1993 set_exception_intercept(svm, BP_VECTOR); 1994 } 1995 } 1996 1997 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1998 { 1999 if (sd->next_asid > sd->max_asid) { 2000 ++sd->asid_generation; 2001 sd->next_asid = sd->min_asid; 2002 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 2003 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2004 } 2005 2006 svm->current_vmcb->asid_generation = sd->asid_generation; 2007 svm->asid = sd->next_asid++; 2008 } 2009 2010 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 2011 { 2012 struct vmcb *vmcb = svm->vmcb; 2013 2014 if (svm->vcpu.arch.guest_state_protected) 2015 return; 2016 2017 if (unlikely(value != vmcb->save.dr6)) { 2018 vmcb->save.dr6 = value; 2019 vmcb_mark_dirty(vmcb, VMCB_DR); 2020 } 2021 } 2022 2023 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2024 { 2025 struct vcpu_svm *svm = to_svm(vcpu); 2026 2027 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2028 return; 2029 2030 get_debugreg(vcpu->arch.db[0], 0); 2031 get_debugreg(vcpu->arch.db[1], 1); 2032 get_debugreg(vcpu->arch.db[2], 2); 2033 get_debugreg(vcpu->arch.db[3], 3); 2034 /* 2035 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2036 * because db_interception might need it. We can do it before vmentry. 2037 */ 2038 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2039 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2040 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2041 set_dr_intercepts(svm); 2042 } 2043 2044 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2045 { 2046 struct vcpu_svm *svm = to_svm(vcpu); 2047 2048 if (vcpu->arch.guest_state_protected) 2049 return; 2050 2051 svm->vmcb->save.dr7 = value; 2052 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2053 } 2054 2055 static int pf_interception(struct kvm_vcpu *vcpu) 2056 { 2057 struct vcpu_svm *svm = to_svm(vcpu); 2058 2059 u64 fault_address = svm->vmcb->control.exit_info_2; 2060 u64 error_code = svm->vmcb->control.exit_info_1; 2061 2062 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2063 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2064 svm->vmcb->control.insn_bytes : NULL, 2065 svm->vmcb->control.insn_len); 2066 } 2067 2068 static int npf_interception(struct kvm_vcpu *vcpu) 2069 { 2070 struct vcpu_svm *svm = to_svm(vcpu); 2071 2072 u64 fault_address = svm->vmcb->control.exit_info_2; 2073 u64 error_code = svm->vmcb->control.exit_info_1; 2074 2075 trace_kvm_page_fault(vcpu, fault_address, error_code); 2076 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 2077 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2078 svm->vmcb->control.insn_bytes : NULL, 2079 svm->vmcb->control.insn_len); 2080 } 2081 2082 static int db_interception(struct kvm_vcpu *vcpu) 2083 { 2084 struct kvm_run *kvm_run = vcpu->run; 2085 struct vcpu_svm *svm = to_svm(vcpu); 2086 2087 if (!(vcpu->guest_debug & 2088 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2089 !svm->nmi_singlestep) { 2090 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2091 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2092 return 1; 2093 } 2094 2095 if (svm->nmi_singlestep) { 2096 disable_nmi_singlestep(svm); 2097 /* Make sure we check for pending NMIs upon entry */ 2098 kvm_make_request(KVM_REQ_EVENT, vcpu); 2099 } 2100 2101 if (vcpu->guest_debug & 2102 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2103 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2104 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2105 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2106 kvm_run->debug.arch.pc = 2107 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2108 kvm_run->debug.arch.exception = DB_VECTOR; 2109 return 0; 2110 } 2111 2112 return 1; 2113 } 2114 2115 static int bp_interception(struct kvm_vcpu *vcpu) 2116 { 2117 struct vcpu_svm *svm = to_svm(vcpu); 2118 struct kvm_run *kvm_run = vcpu->run; 2119 2120 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2121 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2122 kvm_run->debug.arch.exception = BP_VECTOR; 2123 return 0; 2124 } 2125 2126 static int ud_interception(struct kvm_vcpu *vcpu) 2127 { 2128 return handle_ud(vcpu); 2129 } 2130 2131 static int ac_interception(struct kvm_vcpu *vcpu) 2132 { 2133 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2134 return 1; 2135 } 2136 2137 static bool is_erratum_383(void) 2138 { 2139 int err, i; 2140 u64 value; 2141 2142 if (!erratum_383_found) 2143 return false; 2144 2145 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2146 if (err) 2147 return false; 2148 2149 /* Bit 62 may or may not be set for this mce */ 2150 value &= ~(1ULL << 62); 2151 2152 if (value != 0xb600000000010015ULL) 2153 return false; 2154 2155 /* Clear MCi_STATUS registers */ 2156 for (i = 0; i < 6; ++i) 2157 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2158 2159 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2160 if (!err) { 2161 u32 low, high; 2162 2163 value &= ~(1ULL << 2); 2164 low = lower_32_bits(value); 2165 high = upper_32_bits(value); 2166 2167 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2168 } 2169 2170 /* Flush tlb to evict multi-match entries */ 2171 __flush_tlb_all(); 2172 2173 return true; 2174 } 2175 2176 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2177 { 2178 if (is_erratum_383()) { 2179 /* 2180 * Erratum 383 triggered. Guest state is corrupt so kill the 2181 * guest. 2182 */ 2183 pr_err("Guest triggered AMD Erratum 383\n"); 2184 2185 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2186 2187 return; 2188 } 2189 2190 /* 2191 * On an #MC intercept the MCE handler is not called automatically in 2192 * the host. So do it by hand here. 2193 */ 2194 kvm_machine_check(); 2195 } 2196 2197 static int mc_interception(struct kvm_vcpu *vcpu) 2198 { 2199 return 1; 2200 } 2201 2202 static int shutdown_interception(struct kvm_vcpu *vcpu) 2203 { 2204 struct kvm_run *kvm_run = vcpu->run; 2205 struct vcpu_svm *svm = to_svm(vcpu); 2206 2207 /* 2208 * The VM save area has already been encrypted so it 2209 * cannot be reinitialized - just terminate. 2210 */ 2211 if (sev_es_guest(vcpu->kvm)) 2212 return -EINVAL; 2213 2214 /* 2215 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2216 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2217 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2218 * userspace. At a platform view, INIT is acceptable behavior as 2219 * there exist bare metal platforms that automatically INIT the CPU 2220 * in response to shutdown. 2221 */ 2222 clear_page(svm->vmcb); 2223 kvm_vcpu_reset(vcpu, true); 2224 2225 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2226 return 0; 2227 } 2228 2229 static int io_interception(struct kvm_vcpu *vcpu) 2230 { 2231 struct vcpu_svm *svm = to_svm(vcpu); 2232 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2233 int size, in, string; 2234 unsigned port; 2235 2236 ++vcpu->stat.io_exits; 2237 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2238 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2239 port = io_info >> 16; 2240 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2241 2242 if (string) { 2243 if (sev_es_guest(vcpu->kvm)) 2244 return sev_es_string_io(svm, size, port, in); 2245 else 2246 return kvm_emulate_instruction(vcpu, 0); 2247 } 2248 2249 svm->next_rip = svm->vmcb->control.exit_info_2; 2250 2251 return kvm_fast_pio(vcpu, size, port, in); 2252 } 2253 2254 static int nmi_interception(struct kvm_vcpu *vcpu) 2255 { 2256 return 1; 2257 } 2258 2259 static int smi_interception(struct kvm_vcpu *vcpu) 2260 { 2261 return 1; 2262 } 2263 2264 static int intr_interception(struct kvm_vcpu *vcpu) 2265 { 2266 ++vcpu->stat.irq_exits; 2267 return 1; 2268 } 2269 2270 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2271 { 2272 struct vcpu_svm *svm = to_svm(vcpu); 2273 struct vmcb *vmcb12; 2274 struct kvm_host_map map; 2275 int ret; 2276 2277 if (nested_svm_check_permissions(vcpu)) 2278 return 1; 2279 2280 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2281 if (ret) { 2282 if (ret == -EINVAL) 2283 kvm_inject_gp(vcpu, 0); 2284 return 1; 2285 } 2286 2287 vmcb12 = map.hva; 2288 2289 ret = kvm_skip_emulated_instruction(vcpu); 2290 2291 if (vmload) { 2292 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2293 svm->sysenter_eip_hi = 0; 2294 svm->sysenter_esp_hi = 0; 2295 } else { 2296 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2297 } 2298 2299 kvm_vcpu_unmap(vcpu, &map, true); 2300 2301 return ret; 2302 } 2303 2304 static int vmload_interception(struct kvm_vcpu *vcpu) 2305 { 2306 return vmload_vmsave_interception(vcpu, true); 2307 } 2308 2309 static int vmsave_interception(struct kvm_vcpu *vcpu) 2310 { 2311 return vmload_vmsave_interception(vcpu, false); 2312 } 2313 2314 static int vmrun_interception(struct kvm_vcpu *vcpu) 2315 { 2316 if (nested_svm_check_permissions(vcpu)) 2317 return 1; 2318 2319 return nested_svm_vmrun(vcpu); 2320 } 2321 2322 enum { 2323 NONE_SVM_INSTR, 2324 SVM_INSTR_VMRUN, 2325 SVM_INSTR_VMLOAD, 2326 SVM_INSTR_VMSAVE, 2327 }; 2328 2329 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2330 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2331 { 2332 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2333 2334 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2335 return NONE_SVM_INSTR; 2336 2337 switch (ctxt->modrm) { 2338 case 0xd8: /* VMRUN */ 2339 return SVM_INSTR_VMRUN; 2340 case 0xda: /* VMLOAD */ 2341 return SVM_INSTR_VMLOAD; 2342 case 0xdb: /* VMSAVE */ 2343 return SVM_INSTR_VMSAVE; 2344 default: 2345 break; 2346 } 2347 2348 return NONE_SVM_INSTR; 2349 } 2350 2351 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2352 { 2353 const int guest_mode_exit_codes[] = { 2354 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2355 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2356 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2357 }; 2358 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2359 [SVM_INSTR_VMRUN] = vmrun_interception, 2360 [SVM_INSTR_VMLOAD] = vmload_interception, 2361 [SVM_INSTR_VMSAVE] = vmsave_interception, 2362 }; 2363 struct vcpu_svm *svm = to_svm(vcpu); 2364 int ret; 2365 2366 if (is_guest_mode(vcpu)) { 2367 /* Returns '1' or -errno on failure, '0' on success. */ 2368 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2369 if (ret) 2370 return ret; 2371 return 1; 2372 } 2373 return svm_instr_handlers[opcode](vcpu); 2374 } 2375 2376 /* 2377 * #GP handling code. Note that #GP can be triggered under the following two 2378 * cases: 2379 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2380 * some AMD CPUs when EAX of these instructions are in the reserved memory 2381 * regions (e.g. SMM memory on host). 2382 * 2) VMware backdoor 2383 */ 2384 static int gp_interception(struct kvm_vcpu *vcpu) 2385 { 2386 struct vcpu_svm *svm = to_svm(vcpu); 2387 u32 error_code = svm->vmcb->control.exit_info_1; 2388 int opcode; 2389 2390 /* Both #GP cases have zero error_code */ 2391 if (error_code) 2392 goto reinject; 2393 2394 /* Decode the instruction for usage later */ 2395 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2396 goto reinject; 2397 2398 opcode = svm_instr_opcode(vcpu); 2399 2400 if (opcode == NONE_SVM_INSTR) { 2401 if (!enable_vmware_backdoor) 2402 goto reinject; 2403 2404 /* 2405 * VMware backdoor emulation on #GP interception only handles 2406 * IN{S}, OUT{S}, and RDPMC. 2407 */ 2408 if (!is_guest_mode(vcpu)) 2409 return kvm_emulate_instruction(vcpu, 2410 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2411 } else { 2412 /* All SVM instructions expect page aligned RAX */ 2413 if (svm->vmcb->save.rax & ~PAGE_MASK) 2414 goto reinject; 2415 2416 return emulate_svm_instr(vcpu, opcode); 2417 } 2418 2419 reinject: 2420 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2421 return 1; 2422 } 2423 2424 void svm_set_gif(struct vcpu_svm *svm, bool value) 2425 { 2426 if (value) { 2427 /* 2428 * If VGIF is enabled, the STGI intercept is only added to 2429 * detect the opening of the SMI/NMI window; remove it now. 2430 * Likewise, clear the VINTR intercept, we will set it 2431 * again while processing KVM_REQ_EVENT if needed. 2432 */ 2433 if (vgif) 2434 svm_clr_intercept(svm, INTERCEPT_STGI); 2435 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2436 svm_clear_vintr(svm); 2437 2438 enable_gif(svm); 2439 if (svm->vcpu.arch.smi_pending || 2440 svm->vcpu.arch.nmi_pending || 2441 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2442 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2443 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2444 } else { 2445 disable_gif(svm); 2446 2447 /* 2448 * After a CLGI no interrupts should come. But if vGIF is 2449 * in use, we still rely on the VINTR intercept (rather than 2450 * STGI) to detect an open interrupt window. 2451 */ 2452 if (!vgif) 2453 svm_clear_vintr(svm); 2454 } 2455 } 2456 2457 static int stgi_interception(struct kvm_vcpu *vcpu) 2458 { 2459 int ret; 2460 2461 if (nested_svm_check_permissions(vcpu)) 2462 return 1; 2463 2464 ret = kvm_skip_emulated_instruction(vcpu); 2465 svm_set_gif(to_svm(vcpu), true); 2466 return ret; 2467 } 2468 2469 static int clgi_interception(struct kvm_vcpu *vcpu) 2470 { 2471 int ret; 2472 2473 if (nested_svm_check_permissions(vcpu)) 2474 return 1; 2475 2476 ret = kvm_skip_emulated_instruction(vcpu); 2477 svm_set_gif(to_svm(vcpu), false); 2478 return ret; 2479 } 2480 2481 static int invlpga_interception(struct kvm_vcpu *vcpu) 2482 { 2483 gva_t gva = kvm_rax_read(vcpu); 2484 u32 asid = kvm_rcx_read(vcpu); 2485 2486 /* FIXME: Handle an address size prefix. */ 2487 if (!is_long_mode(vcpu)) 2488 gva = (u32)gva; 2489 2490 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2491 2492 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2493 kvm_mmu_invlpg(vcpu, gva); 2494 2495 return kvm_skip_emulated_instruction(vcpu); 2496 } 2497 2498 static int skinit_interception(struct kvm_vcpu *vcpu) 2499 { 2500 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2501 2502 kvm_queue_exception(vcpu, UD_VECTOR); 2503 return 1; 2504 } 2505 2506 static int task_switch_interception(struct kvm_vcpu *vcpu) 2507 { 2508 struct vcpu_svm *svm = to_svm(vcpu); 2509 u16 tss_selector; 2510 int reason; 2511 int int_type = svm->vmcb->control.exit_int_info & 2512 SVM_EXITINTINFO_TYPE_MASK; 2513 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2514 uint32_t type = 2515 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2516 uint32_t idt_v = 2517 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2518 bool has_error_code = false; 2519 u32 error_code = 0; 2520 2521 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2522 2523 if (svm->vmcb->control.exit_info_2 & 2524 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2525 reason = TASK_SWITCH_IRET; 2526 else if (svm->vmcb->control.exit_info_2 & 2527 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2528 reason = TASK_SWITCH_JMP; 2529 else if (idt_v) 2530 reason = TASK_SWITCH_GATE; 2531 else 2532 reason = TASK_SWITCH_CALL; 2533 2534 if (reason == TASK_SWITCH_GATE) { 2535 switch (type) { 2536 case SVM_EXITINTINFO_TYPE_NMI: 2537 vcpu->arch.nmi_injected = false; 2538 break; 2539 case SVM_EXITINTINFO_TYPE_EXEPT: 2540 if (svm->vmcb->control.exit_info_2 & 2541 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2542 has_error_code = true; 2543 error_code = 2544 (u32)svm->vmcb->control.exit_info_2; 2545 } 2546 kvm_clear_exception_queue(vcpu); 2547 break; 2548 case SVM_EXITINTINFO_TYPE_INTR: 2549 case SVM_EXITINTINFO_TYPE_SOFT: 2550 kvm_clear_interrupt_queue(vcpu); 2551 break; 2552 default: 2553 break; 2554 } 2555 } 2556 2557 if (reason != TASK_SWITCH_GATE || 2558 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2559 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2560 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2561 if (!svm_skip_emulated_instruction(vcpu)) 2562 return 0; 2563 } 2564 2565 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2566 int_vec = -1; 2567 2568 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2569 has_error_code, error_code); 2570 } 2571 2572 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2573 { 2574 if (!sev_es_guest(svm->vcpu.kvm)) 2575 svm_clr_intercept(svm, INTERCEPT_IRET); 2576 } 2577 2578 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2579 { 2580 if (!sev_es_guest(svm->vcpu.kvm)) 2581 svm_set_intercept(svm, INTERCEPT_IRET); 2582 } 2583 2584 static int iret_interception(struct kvm_vcpu *vcpu) 2585 { 2586 struct vcpu_svm *svm = to_svm(vcpu); 2587 2588 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2589 2590 ++vcpu->stat.nmi_window_exits; 2591 svm->awaiting_iret_completion = true; 2592 2593 svm_clr_iret_intercept(svm); 2594 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2595 2596 kvm_make_request(KVM_REQ_EVENT, vcpu); 2597 return 1; 2598 } 2599 2600 static int invlpg_interception(struct kvm_vcpu *vcpu) 2601 { 2602 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2603 return kvm_emulate_instruction(vcpu, 0); 2604 2605 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2606 return kvm_skip_emulated_instruction(vcpu); 2607 } 2608 2609 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2610 { 2611 return kvm_emulate_instruction(vcpu, 0); 2612 } 2613 2614 static int rsm_interception(struct kvm_vcpu *vcpu) 2615 { 2616 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2617 } 2618 2619 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2620 unsigned long val) 2621 { 2622 struct vcpu_svm *svm = to_svm(vcpu); 2623 unsigned long cr0 = vcpu->arch.cr0; 2624 bool ret = false; 2625 2626 if (!is_guest_mode(vcpu) || 2627 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2628 return false; 2629 2630 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2631 val &= ~SVM_CR0_SELECTIVE_MASK; 2632 2633 if (cr0 ^ val) { 2634 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2635 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2636 } 2637 2638 return ret; 2639 } 2640 2641 #define CR_VALID (1ULL << 63) 2642 2643 static int cr_interception(struct kvm_vcpu *vcpu) 2644 { 2645 struct vcpu_svm *svm = to_svm(vcpu); 2646 int reg, cr; 2647 unsigned long val; 2648 int err; 2649 2650 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2651 return emulate_on_interception(vcpu); 2652 2653 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2654 return emulate_on_interception(vcpu); 2655 2656 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2657 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2658 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2659 else 2660 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2661 2662 err = 0; 2663 if (cr >= 16) { /* mov to cr */ 2664 cr -= 16; 2665 val = kvm_register_read(vcpu, reg); 2666 trace_kvm_cr_write(cr, val); 2667 switch (cr) { 2668 case 0: 2669 if (!check_selective_cr0_intercepted(vcpu, val)) 2670 err = kvm_set_cr0(vcpu, val); 2671 else 2672 return 1; 2673 2674 break; 2675 case 3: 2676 err = kvm_set_cr3(vcpu, val); 2677 break; 2678 case 4: 2679 err = kvm_set_cr4(vcpu, val); 2680 break; 2681 case 8: 2682 err = kvm_set_cr8(vcpu, val); 2683 break; 2684 default: 2685 WARN(1, "unhandled write to CR%d", cr); 2686 kvm_queue_exception(vcpu, UD_VECTOR); 2687 return 1; 2688 } 2689 } else { /* mov from cr */ 2690 switch (cr) { 2691 case 0: 2692 val = kvm_read_cr0(vcpu); 2693 break; 2694 case 2: 2695 val = vcpu->arch.cr2; 2696 break; 2697 case 3: 2698 val = kvm_read_cr3(vcpu); 2699 break; 2700 case 4: 2701 val = kvm_read_cr4(vcpu); 2702 break; 2703 case 8: 2704 val = kvm_get_cr8(vcpu); 2705 break; 2706 default: 2707 WARN(1, "unhandled read from CR%d", cr); 2708 kvm_queue_exception(vcpu, UD_VECTOR); 2709 return 1; 2710 } 2711 kvm_register_write(vcpu, reg, val); 2712 trace_kvm_cr_read(cr, val); 2713 } 2714 return kvm_complete_insn_gp(vcpu, err); 2715 } 2716 2717 static int cr_trap(struct kvm_vcpu *vcpu) 2718 { 2719 struct vcpu_svm *svm = to_svm(vcpu); 2720 unsigned long old_value, new_value; 2721 unsigned int cr; 2722 int ret = 0; 2723 2724 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2725 2726 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2727 switch (cr) { 2728 case 0: 2729 old_value = kvm_read_cr0(vcpu); 2730 svm_set_cr0(vcpu, new_value); 2731 2732 kvm_post_set_cr0(vcpu, old_value, new_value); 2733 break; 2734 case 4: 2735 old_value = kvm_read_cr4(vcpu); 2736 svm_set_cr4(vcpu, new_value); 2737 2738 kvm_post_set_cr4(vcpu, old_value, new_value); 2739 break; 2740 case 8: 2741 ret = kvm_set_cr8(vcpu, new_value); 2742 break; 2743 default: 2744 WARN(1, "unhandled CR%d write trap", cr); 2745 kvm_queue_exception(vcpu, UD_VECTOR); 2746 return 1; 2747 } 2748 2749 return kvm_complete_insn_gp(vcpu, ret); 2750 } 2751 2752 static int dr_interception(struct kvm_vcpu *vcpu) 2753 { 2754 struct vcpu_svm *svm = to_svm(vcpu); 2755 int reg, dr; 2756 unsigned long val; 2757 int err = 0; 2758 2759 /* 2760 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2761 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2762 */ 2763 if (sev_es_guest(vcpu->kvm)) 2764 return 1; 2765 2766 if (vcpu->guest_debug == 0) { 2767 /* 2768 * No more DR vmexits; force a reload of the debug registers 2769 * and reenter on this instruction. The next vmexit will 2770 * retrieve the full state of the debug registers. 2771 */ 2772 clr_dr_intercepts(svm); 2773 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2774 return 1; 2775 } 2776 2777 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2778 return emulate_on_interception(vcpu); 2779 2780 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2781 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2782 if (dr >= 16) { /* mov to DRn */ 2783 dr -= 16; 2784 val = kvm_register_read(vcpu, reg); 2785 err = kvm_set_dr(vcpu, dr, val); 2786 } else { 2787 kvm_get_dr(vcpu, dr, &val); 2788 kvm_register_write(vcpu, reg, val); 2789 } 2790 2791 return kvm_complete_insn_gp(vcpu, err); 2792 } 2793 2794 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2795 { 2796 int r; 2797 2798 u8 cr8_prev = kvm_get_cr8(vcpu); 2799 /* instruction emulation calls kvm_set_cr8() */ 2800 r = cr_interception(vcpu); 2801 if (lapic_in_kernel(vcpu)) 2802 return r; 2803 if (cr8_prev <= kvm_get_cr8(vcpu)) 2804 return r; 2805 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2806 return 0; 2807 } 2808 2809 static int efer_trap(struct kvm_vcpu *vcpu) 2810 { 2811 struct msr_data msr_info; 2812 int ret; 2813 2814 /* 2815 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2816 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2817 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2818 * the guest doesn't have X86_FEATURE_SVM. 2819 */ 2820 msr_info.host_initiated = false; 2821 msr_info.index = MSR_EFER; 2822 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2823 ret = kvm_set_msr_common(vcpu, &msr_info); 2824 2825 return kvm_complete_insn_gp(vcpu, ret); 2826 } 2827 2828 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2829 { 2830 msr->data = 0; 2831 2832 switch (msr->index) { 2833 case MSR_AMD64_DE_CFG: 2834 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2835 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2836 break; 2837 default: 2838 return KVM_MSR_RET_INVALID; 2839 } 2840 2841 return 0; 2842 } 2843 2844 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2845 { 2846 struct vcpu_svm *svm = to_svm(vcpu); 2847 2848 switch (msr_info->index) { 2849 case MSR_AMD64_TSC_RATIO: 2850 if (!msr_info->host_initiated && 2851 !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) 2852 return 1; 2853 msr_info->data = svm->tsc_ratio_msr; 2854 break; 2855 case MSR_STAR: 2856 msr_info->data = svm->vmcb01.ptr->save.star; 2857 break; 2858 #ifdef CONFIG_X86_64 2859 case MSR_LSTAR: 2860 msr_info->data = svm->vmcb01.ptr->save.lstar; 2861 break; 2862 case MSR_CSTAR: 2863 msr_info->data = svm->vmcb01.ptr->save.cstar; 2864 break; 2865 case MSR_KERNEL_GS_BASE: 2866 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2867 break; 2868 case MSR_SYSCALL_MASK: 2869 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2870 break; 2871 #endif 2872 case MSR_IA32_SYSENTER_CS: 2873 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2874 break; 2875 case MSR_IA32_SYSENTER_EIP: 2876 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2877 if (guest_cpuid_is_intel(vcpu)) 2878 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2879 break; 2880 case MSR_IA32_SYSENTER_ESP: 2881 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2882 if (guest_cpuid_is_intel(vcpu)) 2883 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2884 break; 2885 case MSR_TSC_AUX: 2886 msr_info->data = svm->tsc_aux; 2887 break; 2888 case MSR_IA32_DEBUGCTLMSR: 2889 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2890 break; 2891 case MSR_IA32_LASTBRANCHFROMIP: 2892 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2893 break; 2894 case MSR_IA32_LASTBRANCHTOIP: 2895 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2896 break; 2897 case MSR_IA32_LASTINTFROMIP: 2898 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2899 break; 2900 case MSR_IA32_LASTINTTOIP: 2901 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2902 break; 2903 case MSR_VM_HSAVE_PA: 2904 msr_info->data = svm->nested.hsave_msr; 2905 break; 2906 case MSR_VM_CR: 2907 msr_info->data = svm->nested.vm_cr_msr; 2908 break; 2909 case MSR_IA32_SPEC_CTRL: 2910 if (!msr_info->host_initiated && 2911 !guest_has_spec_ctrl_msr(vcpu)) 2912 return 1; 2913 2914 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2915 msr_info->data = svm->vmcb->save.spec_ctrl; 2916 else 2917 msr_info->data = svm->spec_ctrl; 2918 break; 2919 case MSR_AMD64_VIRT_SPEC_CTRL: 2920 if (!msr_info->host_initiated && 2921 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2922 return 1; 2923 2924 msr_info->data = svm->virt_spec_ctrl; 2925 break; 2926 case MSR_F15H_IC_CFG: { 2927 2928 int family, model; 2929 2930 family = guest_cpuid_family(vcpu); 2931 model = guest_cpuid_model(vcpu); 2932 2933 if (family < 0 || model < 0) 2934 return kvm_get_msr_common(vcpu, msr_info); 2935 2936 msr_info->data = 0; 2937 2938 if (family == 0x15 && 2939 (model >= 0x2 && model < 0x20)) 2940 msr_info->data = 0x1E; 2941 } 2942 break; 2943 case MSR_AMD64_DE_CFG: 2944 msr_info->data = svm->msr_decfg; 2945 break; 2946 default: 2947 return kvm_get_msr_common(vcpu, msr_info); 2948 } 2949 return 0; 2950 } 2951 2952 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2953 { 2954 struct vcpu_svm *svm = to_svm(vcpu); 2955 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2956 return kvm_complete_insn_gp(vcpu, err); 2957 2958 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2959 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2960 X86_TRAP_GP | 2961 SVM_EVTINJ_TYPE_EXEPT | 2962 SVM_EVTINJ_VALID); 2963 return 1; 2964 } 2965 2966 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2967 { 2968 struct vcpu_svm *svm = to_svm(vcpu); 2969 int svm_dis, chg_mask; 2970 2971 if (data & ~SVM_VM_CR_VALID_MASK) 2972 return 1; 2973 2974 chg_mask = SVM_VM_CR_VALID_MASK; 2975 2976 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2977 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2978 2979 svm->nested.vm_cr_msr &= ~chg_mask; 2980 svm->nested.vm_cr_msr |= (data & chg_mask); 2981 2982 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2983 2984 /* check for svm_disable while efer.svme is set */ 2985 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2986 return 1; 2987 2988 return 0; 2989 } 2990 2991 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2992 { 2993 struct vcpu_svm *svm = to_svm(vcpu); 2994 int ret = 0; 2995 2996 u32 ecx = msr->index; 2997 u64 data = msr->data; 2998 switch (ecx) { 2999 case MSR_AMD64_TSC_RATIO: 3000 3001 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) { 3002 3003 if (!msr->host_initiated) 3004 return 1; 3005 /* 3006 * In case TSC scaling is not enabled, always 3007 * leave this MSR at the default value. 3008 * 3009 * Due to bug in qemu 6.2.0, it would try to set 3010 * this msr to 0 if tsc scaling is not enabled. 3011 * Ignore this value as well. 3012 */ 3013 if (data != 0 && data != svm->tsc_ratio_msr) 3014 return 1; 3015 break; 3016 } 3017 3018 if (data & SVM_TSC_RATIO_RSVD) 3019 return 1; 3020 3021 svm->tsc_ratio_msr = data; 3022 3023 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) && 3024 is_guest_mode(vcpu)) 3025 nested_svm_update_tsc_ratio_msr(vcpu); 3026 3027 break; 3028 case MSR_IA32_CR_PAT: 3029 ret = kvm_set_msr_common(vcpu, msr); 3030 if (ret) 3031 break; 3032 3033 svm->vmcb01.ptr->save.g_pat = data; 3034 if (is_guest_mode(vcpu)) 3035 nested_vmcb02_compute_g_pat(svm); 3036 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3037 break; 3038 case MSR_IA32_SPEC_CTRL: 3039 if (!msr->host_initiated && 3040 !guest_has_spec_ctrl_msr(vcpu)) 3041 return 1; 3042 3043 if (kvm_spec_ctrl_test_value(data)) 3044 return 1; 3045 3046 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3047 svm->vmcb->save.spec_ctrl = data; 3048 else 3049 svm->spec_ctrl = data; 3050 if (!data) 3051 break; 3052 3053 /* 3054 * For non-nested: 3055 * When it's written (to non-zero) for the first time, pass 3056 * it through. 3057 * 3058 * For nested: 3059 * The handling of the MSR bitmap for L2 guests is done in 3060 * nested_svm_vmrun_msrpm. 3061 * We update the L1 MSR bit as well since it will end up 3062 * touching the MSR anyway now. 3063 */ 3064 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3065 break; 3066 case MSR_AMD64_VIRT_SPEC_CTRL: 3067 if (!msr->host_initiated && 3068 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3069 return 1; 3070 3071 if (data & ~SPEC_CTRL_SSBD) 3072 return 1; 3073 3074 svm->virt_spec_ctrl = data; 3075 break; 3076 case MSR_STAR: 3077 svm->vmcb01.ptr->save.star = data; 3078 break; 3079 #ifdef CONFIG_X86_64 3080 case MSR_LSTAR: 3081 svm->vmcb01.ptr->save.lstar = data; 3082 break; 3083 case MSR_CSTAR: 3084 svm->vmcb01.ptr->save.cstar = data; 3085 break; 3086 case MSR_KERNEL_GS_BASE: 3087 svm->vmcb01.ptr->save.kernel_gs_base = data; 3088 break; 3089 case MSR_SYSCALL_MASK: 3090 svm->vmcb01.ptr->save.sfmask = data; 3091 break; 3092 #endif 3093 case MSR_IA32_SYSENTER_CS: 3094 svm->vmcb01.ptr->save.sysenter_cs = data; 3095 break; 3096 case MSR_IA32_SYSENTER_EIP: 3097 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3098 /* 3099 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3100 * when we spoof an Intel vendor ID (for cross vendor migration). 3101 * In this case we use this intercept to track the high 3102 * 32 bit part of these msrs to support Intel's 3103 * implementation of SYSENTER/SYSEXIT. 3104 */ 3105 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3106 break; 3107 case MSR_IA32_SYSENTER_ESP: 3108 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3109 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3110 break; 3111 case MSR_TSC_AUX: 3112 /* 3113 * TSC_AUX is always virtualized for SEV-ES guests when the 3114 * feature is available. The user return MSR support is not 3115 * required in this case because TSC_AUX is restored on #VMEXIT 3116 * from the host save area (which has been initialized in 3117 * svm_hardware_enable()). 3118 */ 3119 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3120 break; 3121 3122 /* 3123 * TSC_AUX is usually changed only during boot and never read 3124 * directly. Intercept TSC_AUX instead of exposing it to the 3125 * guest via direct_access_msrs, and switch it via user return. 3126 */ 3127 preempt_disable(); 3128 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3129 preempt_enable(); 3130 if (ret) 3131 break; 3132 3133 svm->tsc_aux = data; 3134 break; 3135 case MSR_IA32_DEBUGCTLMSR: 3136 if (!lbrv) { 3137 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3138 break; 3139 } 3140 if (data & DEBUGCTL_RESERVED_BITS) 3141 return 1; 3142 3143 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3144 svm_update_lbrv(vcpu); 3145 break; 3146 case MSR_VM_HSAVE_PA: 3147 /* 3148 * Old kernels did not validate the value written to 3149 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3150 * value to allow live migrating buggy or malicious guests 3151 * originating from those kernels. 3152 */ 3153 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3154 return 1; 3155 3156 svm->nested.hsave_msr = data & PAGE_MASK; 3157 break; 3158 case MSR_VM_CR: 3159 return svm_set_vm_cr(vcpu, data); 3160 case MSR_VM_IGNNE: 3161 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3162 break; 3163 case MSR_AMD64_DE_CFG: { 3164 struct kvm_msr_entry msr_entry; 3165 3166 msr_entry.index = msr->index; 3167 if (svm_get_msr_feature(&msr_entry)) 3168 return 1; 3169 3170 /* Check the supported bits */ 3171 if (data & ~msr_entry.data) 3172 return 1; 3173 3174 /* Don't allow the guest to change a bit, #GP */ 3175 if (!msr->host_initiated && (data ^ msr_entry.data)) 3176 return 1; 3177 3178 svm->msr_decfg = data; 3179 break; 3180 } 3181 default: 3182 return kvm_set_msr_common(vcpu, msr); 3183 } 3184 return ret; 3185 } 3186 3187 static int msr_interception(struct kvm_vcpu *vcpu) 3188 { 3189 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3190 return kvm_emulate_wrmsr(vcpu); 3191 else 3192 return kvm_emulate_rdmsr(vcpu); 3193 } 3194 3195 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3196 { 3197 kvm_make_request(KVM_REQ_EVENT, vcpu); 3198 svm_clear_vintr(to_svm(vcpu)); 3199 3200 /* 3201 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3202 * In this case AVIC was temporarily disabled for 3203 * requesting the IRQ window and we have to re-enable it. 3204 * 3205 * If running nested, still remove the VM wide AVIC inhibit to 3206 * support case in which the interrupt window was requested when the 3207 * vCPU was not running nested. 3208 3209 * All vCPUs which run still run nested, will remain to have their 3210 * AVIC still inhibited due to per-cpu AVIC inhibition. 3211 */ 3212 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3213 3214 ++vcpu->stat.irq_window_exits; 3215 return 1; 3216 } 3217 3218 static int pause_interception(struct kvm_vcpu *vcpu) 3219 { 3220 bool in_kernel; 3221 /* 3222 * CPL is not made available for an SEV-ES guest, therefore 3223 * vcpu->arch.preempted_in_kernel can never be true. Just 3224 * set in_kernel to false as well. 3225 */ 3226 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3227 3228 grow_ple_window(vcpu); 3229 3230 kvm_vcpu_on_spin(vcpu, in_kernel); 3231 return kvm_skip_emulated_instruction(vcpu); 3232 } 3233 3234 static int invpcid_interception(struct kvm_vcpu *vcpu) 3235 { 3236 struct vcpu_svm *svm = to_svm(vcpu); 3237 unsigned long type; 3238 gva_t gva; 3239 3240 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3241 kvm_queue_exception(vcpu, UD_VECTOR); 3242 return 1; 3243 } 3244 3245 /* 3246 * For an INVPCID intercept: 3247 * EXITINFO1 provides the linear address of the memory operand. 3248 * EXITINFO2 provides the contents of the register operand. 3249 */ 3250 type = svm->vmcb->control.exit_info_2; 3251 gva = svm->vmcb->control.exit_info_1; 3252 3253 return kvm_handle_invpcid(vcpu, type, gva); 3254 } 3255 3256 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3257 [SVM_EXIT_READ_CR0] = cr_interception, 3258 [SVM_EXIT_READ_CR3] = cr_interception, 3259 [SVM_EXIT_READ_CR4] = cr_interception, 3260 [SVM_EXIT_READ_CR8] = cr_interception, 3261 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3262 [SVM_EXIT_WRITE_CR0] = cr_interception, 3263 [SVM_EXIT_WRITE_CR3] = cr_interception, 3264 [SVM_EXIT_WRITE_CR4] = cr_interception, 3265 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3266 [SVM_EXIT_READ_DR0] = dr_interception, 3267 [SVM_EXIT_READ_DR1] = dr_interception, 3268 [SVM_EXIT_READ_DR2] = dr_interception, 3269 [SVM_EXIT_READ_DR3] = dr_interception, 3270 [SVM_EXIT_READ_DR4] = dr_interception, 3271 [SVM_EXIT_READ_DR5] = dr_interception, 3272 [SVM_EXIT_READ_DR6] = dr_interception, 3273 [SVM_EXIT_READ_DR7] = dr_interception, 3274 [SVM_EXIT_WRITE_DR0] = dr_interception, 3275 [SVM_EXIT_WRITE_DR1] = dr_interception, 3276 [SVM_EXIT_WRITE_DR2] = dr_interception, 3277 [SVM_EXIT_WRITE_DR3] = dr_interception, 3278 [SVM_EXIT_WRITE_DR4] = dr_interception, 3279 [SVM_EXIT_WRITE_DR5] = dr_interception, 3280 [SVM_EXIT_WRITE_DR6] = dr_interception, 3281 [SVM_EXIT_WRITE_DR7] = dr_interception, 3282 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3283 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3284 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3285 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3286 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3287 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3288 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3289 [SVM_EXIT_INTR] = intr_interception, 3290 [SVM_EXIT_NMI] = nmi_interception, 3291 [SVM_EXIT_SMI] = smi_interception, 3292 [SVM_EXIT_VINTR] = interrupt_window_interception, 3293 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3294 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3295 [SVM_EXIT_IRET] = iret_interception, 3296 [SVM_EXIT_INVD] = kvm_emulate_invd, 3297 [SVM_EXIT_PAUSE] = pause_interception, 3298 [SVM_EXIT_HLT] = kvm_emulate_halt, 3299 [SVM_EXIT_INVLPG] = invlpg_interception, 3300 [SVM_EXIT_INVLPGA] = invlpga_interception, 3301 [SVM_EXIT_IOIO] = io_interception, 3302 [SVM_EXIT_MSR] = msr_interception, 3303 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3304 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3305 [SVM_EXIT_VMRUN] = vmrun_interception, 3306 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3307 [SVM_EXIT_VMLOAD] = vmload_interception, 3308 [SVM_EXIT_VMSAVE] = vmsave_interception, 3309 [SVM_EXIT_STGI] = stgi_interception, 3310 [SVM_EXIT_CLGI] = clgi_interception, 3311 [SVM_EXIT_SKINIT] = skinit_interception, 3312 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3313 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3314 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3315 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3316 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3317 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3318 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3319 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3320 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3321 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3322 [SVM_EXIT_INVPCID] = invpcid_interception, 3323 [SVM_EXIT_NPF] = npf_interception, 3324 [SVM_EXIT_RSM] = rsm_interception, 3325 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3326 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3327 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3328 }; 3329 3330 static void dump_vmcb(struct kvm_vcpu *vcpu) 3331 { 3332 struct vcpu_svm *svm = to_svm(vcpu); 3333 struct vmcb_control_area *control = &svm->vmcb->control; 3334 struct vmcb_save_area *save = &svm->vmcb->save; 3335 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3336 3337 if (!dump_invalid_vmcb) { 3338 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3339 return; 3340 } 3341 3342 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3343 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3344 pr_err("VMCB Control Area:\n"); 3345 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3346 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3347 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3348 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3349 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3350 pr_err("%-20s%08x %08x\n", "intercepts:", 3351 control->intercepts[INTERCEPT_WORD3], 3352 control->intercepts[INTERCEPT_WORD4]); 3353 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3354 pr_err("%-20s%d\n", "pause filter threshold:", 3355 control->pause_filter_thresh); 3356 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3357 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3358 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3359 pr_err("%-20s%d\n", "asid:", control->asid); 3360 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3361 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3362 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3363 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3364 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3365 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3366 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3367 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3368 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3369 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3370 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3371 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3372 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3373 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3374 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3375 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3376 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3377 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3378 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3379 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3380 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3381 pr_err("VMCB State Save Area:\n"); 3382 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3383 "es:", 3384 save->es.selector, save->es.attrib, 3385 save->es.limit, save->es.base); 3386 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3387 "cs:", 3388 save->cs.selector, save->cs.attrib, 3389 save->cs.limit, save->cs.base); 3390 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3391 "ss:", 3392 save->ss.selector, save->ss.attrib, 3393 save->ss.limit, save->ss.base); 3394 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3395 "ds:", 3396 save->ds.selector, save->ds.attrib, 3397 save->ds.limit, save->ds.base); 3398 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3399 "fs:", 3400 save01->fs.selector, save01->fs.attrib, 3401 save01->fs.limit, save01->fs.base); 3402 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3403 "gs:", 3404 save01->gs.selector, save01->gs.attrib, 3405 save01->gs.limit, save01->gs.base); 3406 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3407 "gdtr:", 3408 save->gdtr.selector, save->gdtr.attrib, 3409 save->gdtr.limit, save->gdtr.base); 3410 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3411 "ldtr:", 3412 save01->ldtr.selector, save01->ldtr.attrib, 3413 save01->ldtr.limit, save01->ldtr.base); 3414 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3415 "idtr:", 3416 save->idtr.selector, save->idtr.attrib, 3417 save->idtr.limit, save->idtr.base); 3418 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3419 "tr:", 3420 save01->tr.selector, save01->tr.attrib, 3421 save01->tr.limit, save01->tr.base); 3422 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3423 save->vmpl, save->cpl, save->efer); 3424 pr_err("%-15s %016llx %-13s %016llx\n", 3425 "cr0:", save->cr0, "cr2:", save->cr2); 3426 pr_err("%-15s %016llx %-13s %016llx\n", 3427 "cr3:", save->cr3, "cr4:", save->cr4); 3428 pr_err("%-15s %016llx %-13s %016llx\n", 3429 "dr6:", save->dr6, "dr7:", save->dr7); 3430 pr_err("%-15s %016llx %-13s %016llx\n", 3431 "rip:", save->rip, "rflags:", save->rflags); 3432 pr_err("%-15s %016llx %-13s %016llx\n", 3433 "rsp:", save->rsp, "rax:", save->rax); 3434 pr_err("%-15s %016llx %-13s %016llx\n", 3435 "star:", save01->star, "lstar:", save01->lstar); 3436 pr_err("%-15s %016llx %-13s %016llx\n", 3437 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3438 pr_err("%-15s %016llx %-13s %016llx\n", 3439 "kernel_gs_base:", save01->kernel_gs_base, 3440 "sysenter_cs:", save01->sysenter_cs); 3441 pr_err("%-15s %016llx %-13s %016llx\n", 3442 "sysenter_esp:", save01->sysenter_esp, 3443 "sysenter_eip:", save01->sysenter_eip); 3444 pr_err("%-15s %016llx %-13s %016llx\n", 3445 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3446 pr_err("%-15s %016llx %-13s %016llx\n", 3447 "br_from:", save->br_from, "br_to:", save->br_to); 3448 pr_err("%-15s %016llx %-13s %016llx\n", 3449 "excp_from:", save->last_excp_from, 3450 "excp_to:", save->last_excp_to); 3451 } 3452 3453 static bool svm_check_exit_valid(u64 exit_code) 3454 { 3455 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3456 svm_exit_handlers[exit_code]); 3457 } 3458 3459 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3460 { 3461 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3462 dump_vmcb(vcpu); 3463 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3464 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3465 vcpu->run->internal.ndata = 2; 3466 vcpu->run->internal.data[0] = exit_code; 3467 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3468 return 0; 3469 } 3470 3471 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3472 { 3473 if (!svm_check_exit_valid(exit_code)) 3474 return svm_handle_invalid_exit(vcpu, exit_code); 3475 3476 #ifdef CONFIG_RETPOLINE 3477 if (exit_code == SVM_EXIT_MSR) 3478 return msr_interception(vcpu); 3479 else if (exit_code == SVM_EXIT_VINTR) 3480 return interrupt_window_interception(vcpu); 3481 else if (exit_code == SVM_EXIT_INTR) 3482 return intr_interception(vcpu); 3483 else if (exit_code == SVM_EXIT_HLT) 3484 return kvm_emulate_halt(vcpu); 3485 else if (exit_code == SVM_EXIT_NPF) 3486 return npf_interception(vcpu); 3487 #endif 3488 return svm_exit_handlers[exit_code](vcpu); 3489 } 3490 3491 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3492 u64 *info1, u64 *info2, 3493 u32 *intr_info, u32 *error_code) 3494 { 3495 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3496 3497 *reason = control->exit_code; 3498 *info1 = control->exit_info_1; 3499 *info2 = control->exit_info_2; 3500 *intr_info = control->exit_int_info; 3501 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3502 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3503 *error_code = control->exit_int_info_err; 3504 else 3505 *error_code = 0; 3506 } 3507 3508 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3509 { 3510 struct vcpu_svm *svm = to_svm(vcpu); 3511 struct kvm_run *kvm_run = vcpu->run; 3512 u32 exit_code = svm->vmcb->control.exit_code; 3513 3514 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3515 if (!sev_es_guest(vcpu->kvm)) { 3516 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3517 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3518 if (npt_enabled) 3519 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3520 } 3521 3522 if (is_guest_mode(vcpu)) { 3523 int vmexit; 3524 3525 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3526 3527 vmexit = nested_svm_exit_special(svm); 3528 3529 if (vmexit == NESTED_EXIT_CONTINUE) 3530 vmexit = nested_svm_exit_handled(svm); 3531 3532 if (vmexit == NESTED_EXIT_DONE) 3533 return 1; 3534 } 3535 3536 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3537 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3538 kvm_run->fail_entry.hardware_entry_failure_reason 3539 = svm->vmcb->control.exit_code; 3540 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3541 dump_vmcb(vcpu); 3542 return 0; 3543 } 3544 3545 if (exit_fastpath != EXIT_FASTPATH_NONE) 3546 return 1; 3547 3548 return svm_invoke_exit_handler(vcpu, exit_code); 3549 } 3550 3551 static void pre_svm_run(struct kvm_vcpu *vcpu) 3552 { 3553 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3554 struct vcpu_svm *svm = to_svm(vcpu); 3555 3556 /* 3557 * If the previous vmrun of the vmcb occurred on a different physical 3558 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3559 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3560 */ 3561 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3562 svm->current_vmcb->asid_generation = 0; 3563 vmcb_mark_all_dirty(svm->vmcb); 3564 svm->current_vmcb->cpu = vcpu->cpu; 3565 } 3566 3567 if (sev_guest(vcpu->kvm)) 3568 return pre_sev_run(svm, vcpu->cpu); 3569 3570 /* FIXME: handle wraparound of asid_generation */ 3571 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3572 new_asid(svm, sd); 3573 } 3574 3575 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3576 { 3577 struct vcpu_svm *svm = to_svm(vcpu); 3578 3579 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3580 3581 if (svm->nmi_l1_to_l2) 3582 return; 3583 3584 svm->nmi_masked = true; 3585 svm_set_iret_intercept(svm); 3586 ++vcpu->stat.nmi_injections; 3587 } 3588 3589 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3590 { 3591 struct vcpu_svm *svm = to_svm(vcpu); 3592 3593 if (!is_vnmi_enabled(svm)) 3594 return false; 3595 3596 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3597 } 3598 3599 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3600 { 3601 struct vcpu_svm *svm = to_svm(vcpu); 3602 3603 if (!is_vnmi_enabled(svm)) 3604 return false; 3605 3606 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3607 return false; 3608 3609 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3610 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3611 3612 /* 3613 * Because the pending NMI is serviced by hardware, KVM can't know when 3614 * the NMI is "injected", but for all intents and purposes, passing the 3615 * NMI off to hardware counts as injection. 3616 */ 3617 ++vcpu->stat.nmi_injections; 3618 3619 return true; 3620 } 3621 3622 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3623 { 3624 struct vcpu_svm *svm = to_svm(vcpu); 3625 u32 type; 3626 3627 if (vcpu->arch.interrupt.soft) { 3628 if (svm_update_soft_interrupt_rip(vcpu)) 3629 return; 3630 3631 type = SVM_EVTINJ_TYPE_SOFT; 3632 } else { 3633 type = SVM_EVTINJ_TYPE_INTR; 3634 } 3635 3636 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3637 vcpu->arch.interrupt.soft, reinjected); 3638 ++vcpu->stat.irq_injections; 3639 3640 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3641 SVM_EVTINJ_VALID | type; 3642 } 3643 3644 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3645 int trig_mode, int vector) 3646 { 3647 /* 3648 * apic->apicv_active must be read after vcpu->mode. 3649 * Pairs with smp_store_release in vcpu_enter_guest. 3650 */ 3651 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3652 3653 /* Note, this is called iff the local APIC is in-kernel. */ 3654 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3655 /* Process the interrupt via kvm_check_and_inject_events(). */ 3656 kvm_make_request(KVM_REQ_EVENT, vcpu); 3657 kvm_vcpu_kick(vcpu); 3658 return; 3659 } 3660 3661 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3662 if (in_guest_mode) { 3663 /* 3664 * Signal the doorbell to tell hardware to inject the IRQ. If 3665 * the vCPU exits the guest before the doorbell chimes, hardware 3666 * will automatically process AVIC interrupts at the next VMRUN. 3667 */ 3668 avic_ring_doorbell(vcpu); 3669 } else { 3670 /* 3671 * Wake the vCPU if it was blocking. KVM will then detect the 3672 * pending IRQ when checking if the vCPU has a wake event. 3673 */ 3674 kvm_vcpu_wake_up(vcpu); 3675 } 3676 } 3677 3678 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3679 int trig_mode, int vector) 3680 { 3681 kvm_lapic_set_irr(vector, apic); 3682 3683 /* 3684 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3685 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3686 * the read of guest_mode. This guarantees that either VMRUN will see 3687 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3688 * will signal the doorbell if the CPU has already entered the guest. 3689 */ 3690 smp_mb__after_atomic(); 3691 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3692 } 3693 3694 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3695 { 3696 struct vcpu_svm *svm = to_svm(vcpu); 3697 3698 /* 3699 * SEV-ES guests must always keep the CR intercepts cleared. CR 3700 * tracking is done using the CR write traps. 3701 */ 3702 if (sev_es_guest(vcpu->kvm)) 3703 return; 3704 3705 if (nested_svm_virtualize_tpr(vcpu)) 3706 return; 3707 3708 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3709 3710 if (irr == -1) 3711 return; 3712 3713 if (tpr >= irr) 3714 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3715 } 3716 3717 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3718 { 3719 struct vcpu_svm *svm = to_svm(vcpu); 3720 3721 if (is_vnmi_enabled(svm)) 3722 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3723 else 3724 return svm->nmi_masked; 3725 } 3726 3727 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3728 { 3729 struct vcpu_svm *svm = to_svm(vcpu); 3730 3731 if (is_vnmi_enabled(svm)) { 3732 if (masked) 3733 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3734 else 3735 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3736 3737 } else { 3738 svm->nmi_masked = masked; 3739 if (masked) 3740 svm_set_iret_intercept(svm); 3741 else 3742 svm_clr_iret_intercept(svm); 3743 } 3744 } 3745 3746 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3747 { 3748 struct vcpu_svm *svm = to_svm(vcpu); 3749 struct vmcb *vmcb = svm->vmcb; 3750 3751 if (!gif_set(svm)) 3752 return true; 3753 3754 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3755 return false; 3756 3757 if (svm_get_nmi_mask(vcpu)) 3758 return true; 3759 3760 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3761 } 3762 3763 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3764 { 3765 struct vcpu_svm *svm = to_svm(vcpu); 3766 if (svm->nested.nested_run_pending) 3767 return -EBUSY; 3768 3769 if (svm_nmi_blocked(vcpu)) 3770 return 0; 3771 3772 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3773 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3774 return -EBUSY; 3775 return 1; 3776 } 3777 3778 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3779 { 3780 struct vcpu_svm *svm = to_svm(vcpu); 3781 struct vmcb *vmcb = svm->vmcb; 3782 3783 if (!gif_set(svm)) 3784 return true; 3785 3786 if (is_guest_mode(vcpu)) { 3787 /* As long as interrupts are being delivered... */ 3788 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3789 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3790 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3791 return true; 3792 3793 /* ... vmexits aren't blocked by the interrupt shadow */ 3794 if (nested_exit_on_intr(svm)) 3795 return false; 3796 } else { 3797 if (!svm_get_if_flag(vcpu)) 3798 return true; 3799 } 3800 3801 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3802 } 3803 3804 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3805 { 3806 struct vcpu_svm *svm = to_svm(vcpu); 3807 3808 if (svm->nested.nested_run_pending) 3809 return -EBUSY; 3810 3811 if (svm_interrupt_blocked(vcpu)) 3812 return 0; 3813 3814 /* 3815 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3816 * e.g. if the IRQ arrived asynchronously after checking nested events. 3817 */ 3818 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3819 return -EBUSY; 3820 3821 return 1; 3822 } 3823 3824 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3825 { 3826 struct vcpu_svm *svm = to_svm(vcpu); 3827 3828 /* 3829 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3830 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3831 * get that intercept, this function will be called again though and 3832 * we'll get the vintr intercept. However, if the vGIF feature is 3833 * enabled, the STGI interception will not occur. Enable the irq 3834 * window under the assumption that the hardware will set the GIF. 3835 */ 3836 if (vgif || gif_set(svm)) { 3837 /* 3838 * IRQ window is not needed when AVIC is enabled, 3839 * unless we have pending ExtINT since it cannot be injected 3840 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3841 * and fallback to injecting IRQ via V_IRQ. 3842 * 3843 * If running nested, AVIC is already locally inhibited 3844 * on this vCPU, therefore there is no need to request 3845 * the VM wide AVIC inhibition. 3846 */ 3847 if (!is_guest_mode(vcpu)) 3848 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3849 3850 svm_set_vintr(svm); 3851 } 3852 } 3853 3854 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3855 { 3856 struct vcpu_svm *svm = to_svm(vcpu); 3857 3858 /* 3859 * If NMIs are outright masked, i.e. the vCPU is already handling an 3860 * NMI, and KVM has not yet intercepted an IRET, then there is nothing 3861 * more to do at this time as KVM has already enabled IRET intercepts. 3862 * If KVM has already intercepted IRET, then single-step over the IRET, 3863 * as NMIs aren't architecturally unmasked until the IRET completes. 3864 * 3865 * If vNMI is enabled, KVM should never request an NMI window if NMIs 3866 * are masked, as KVM allows at most one to-be-injected NMI and one 3867 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one 3868 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are 3869 * unmasked. KVM _will_ request an NMI window in some situations, e.g. 3870 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately 3871 * inject the NMI. In those situations, KVM needs to single-step over 3872 * the STI shadow or intercept STGI. 3873 */ 3874 if (svm_get_nmi_mask(vcpu)) { 3875 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3876 3877 if (!svm->awaiting_iret_completion) 3878 return; /* IRET will cause a vm exit */ 3879 } 3880 3881 /* 3882 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3883 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3884 * KVM can't intercept and single-step IRET to detect when NMIs are 3885 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3886 * 3887 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3888 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3889 * supported NAEs in the GHCB protocol. 3890 */ 3891 if (sev_es_guest(vcpu->kvm)) 3892 return; 3893 3894 if (!gif_set(svm)) { 3895 if (vgif) 3896 svm_set_intercept(svm, INTERCEPT_STGI); 3897 return; /* STGI will cause a vm exit */ 3898 } 3899 3900 /* 3901 * Something prevents NMI from been injected. Single step over possible 3902 * problem (IRET or exception injection or interrupt shadow) 3903 */ 3904 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3905 svm->nmi_singlestep = true; 3906 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3907 } 3908 3909 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3910 { 3911 struct vcpu_svm *svm = to_svm(vcpu); 3912 3913 /* 3914 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3915 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3916 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3917 */ 3918 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3919 3920 /* 3921 * Flush only the current ASID even if the TLB flush was invoked via 3922 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3923 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3924 * unconditionally does a TLB flush on both nested VM-Enter and nested 3925 * VM-Exit (via kvm_mmu_reset_context()). 3926 */ 3927 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3928 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3929 else 3930 svm->current_vmcb->asid_generation--; 3931 } 3932 3933 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3934 { 3935 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 3936 3937 /* 3938 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 3939 * flush the NPT mappings via hypercall as flushing the ASID only 3940 * affects virtual to physical mappings, it does not invalidate guest 3941 * physical to host physical mappings. 3942 */ 3943 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 3944 hyperv_flush_guest_mapping(root_tdp); 3945 3946 svm_flush_tlb_asid(vcpu); 3947 } 3948 3949 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 3950 { 3951 /* 3952 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 3953 * flushes should be routed to hv_flush_remote_tlbs() without requesting 3954 * a "regular" remote flush. Reaching this point means either there's 3955 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 3956 * which might be fatal to the guest. Yell, but try to recover. 3957 */ 3958 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 3959 hv_flush_remote_tlbs(vcpu->kvm); 3960 3961 svm_flush_tlb_asid(vcpu); 3962 } 3963 3964 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3965 { 3966 struct vcpu_svm *svm = to_svm(vcpu); 3967 3968 invlpga(gva, svm->vmcb->control.asid); 3969 } 3970 3971 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3972 { 3973 struct vcpu_svm *svm = to_svm(vcpu); 3974 3975 if (nested_svm_virtualize_tpr(vcpu)) 3976 return; 3977 3978 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3979 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3980 kvm_set_cr8(vcpu, cr8); 3981 } 3982 } 3983 3984 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3985 { 3986 struct vcpu_svm *svm = to_svm(vcpu); 3987 u64 cr8; 3988 3989 if (nested_svm_virtualize_tpr(vcpu) || 3990 kvm_vcpu_apicv_active(vcpu)) 3991 return; 3992 3993 cr8 = kvm_get_cr8(vcpu); 3994 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3995 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3996 } 3997 3998 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 3999 int type) 4000 { 4001 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 4002 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 4003 struct vcpu_svm *svm = to_svm(vcpu); 4004 4005 /* 4006 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 4007 * associated with the original soft exception/interrupt. next_rip is 4008 * cleared on all exits that can occur while vectoring an event, so KVM 4009 * needs to manually set next_rip for re-injection. Unlike the !nrips 4010 * case below, this needs to be done if and only if KVM is re-injecting 4011 * the same event, i.e. if the event is a soft exception/interrupt, 4012 * otherwise next_rip is unused on VMRUN. 4013 */ 4014 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4015 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4016 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4017 /* 4018 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4019 * injecting the soft exception/interrupt. That advancement needs to 4020 * be unwound if vectoring didn't complete. Note, the new event may 4021 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4022 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4023 * be the reported vectored event, but RIP still needs to be unwound. 4024 */ 4025 else if (!nrips && (is_soft || is_exception) && 4026 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4027 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4028 } 4029 4030 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4031 { 4032 struct vcpu_svm *svm = to_svm(vcpu); 4033 u8 vector; 4034 int type; 4035 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4036 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4037 bool soft_int_injected = svm->soft_int_injected; 4038 4039 svm->nmi_l1_to_l2 = false; 4040 svm->soft_int_injected = false; 4041 4042 /* 4043 * If we've made progress since setting awaiting_iret_completion, we've 4044 * executed an IRET and can allow NMI injection. 4045 */ 4046 if (svm->awaiting_iret_completion && 4047 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4048 svm->awaiting_iret_completion = false; 4049 svm->nmi_masked = false; 4050 kvm_make_request(KVM_REQ_EVENT, vcpu); 4051 } 4052 4053 vcpu->arch.nmi_injected = false; 4054 kvm_clear_exception_queue(vcpu); 4055 kvm_clear_interrupt_queue(vcpu); 4056 4057 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4058 return; 4059 4060 kvm_make_request(KVM_REQ_EVENT, vcpu); 4061 4062 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4063 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4064 4065 if (soft_int_injected) 4066 svm_complete_soft_interrupt(vcpu, vector, type); 4067 4068 switch (type) { 4069 case SVM_EXITINTINFO_TYPE_NMI: 4070 vcpu->arch.nmi_injected = true; 4071 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4072 break; 4073 case SVM_EXITINTINFO_TYPE_EXEPT: 4074 /* 4075 * Never re-inject a #VC exception. 4076 */ 4077 if (vector == X86_TRAP_VC) 4078 break; 4079 4080 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 4081 u32 err = svm->vmcb->control.exit_int_info_err; 4082 kvm_requeue_exception_e(vcpu, vector, err); 4083 4084 } else 4085 kvm_requeue_exception(vcpu, vector); 4086 break; 4087 case SVM_EXITINTINFO_TYPE_INTR: 4088 kvm_queue_interrupt(vcpu, vector, false); 4089 break; 4090 case SVM_EXITINTINFO_TYPE_SOFT: 4091 kvm_queue_interrupt(vcpu, vector, true); 4092 break; 4093 default: 4094 break; 4095 } 4096 4097 } 4098 4099 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4100 { 4101 struct vcpu_svm *svm = to_svm(vcpu); 4102 struct vmcb_control_area *control = &svm->vmcb->control; 4103 4104 control->exit_int_info = control->event_inj; 4105 control->exit_int_info_err = control->event_inj_err; 4106 control->event_inj = 0; 4107 svm_complete_interrupts(vcpu); 4108 } 4109 4110 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4111 { 4112 return 1; 4113 } 4114 4115 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4116 { 4117 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 4118 to_svm(vcpu)->vmcb->control.exit_info_1) 4119 return handle_fastpath_set_msr_irqoff(vcpu); 4120 4121 return EXIT_FASTPATH_NONE; 4122 } 4123 4124 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4125 { 4126 struct vcpu_svm *svm = to_svm(vcpu); 4127 4128 guest_state_enter_irqoff(); 4129 4130 amd_clear_divider(); 4131 4132 if (sev_es_guest(vcpu->kvm)) 4133 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted); 4134 else 4135 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4136 4137 guest_state_exit_irqoff(); 4138 } 4139 4140 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 4141 { 4142 struct vcpu_svm *svm = to_svm(vcpu); 4143 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4144 4145 trace_kvm_entry(vcpu); 4146 4147 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4148 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4149 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4150 4151 /* 4152 * Disable singlestep if we're injecting an interrupt/exception. 4153 * We don't want our modified rflags to be pushed on the stack where 4154 * we might not be able to easily reset them if we disabled NMI 4155 * singlestep later. 4156 */ 4157 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4158 /* 4159 * Event injection happens before external interrupts cause a 4160 * vmexit and interrupts are disabled here, so smp_send_reschedule 4161 * is enough to force an immediate vmexit. 4162 */ 4163 disable_nmi_singlestep(svm); 4164 smp_send_reschedule(vcpu->cpu); 4165 } 4166 4167 pre_svm_run(vcpu); 4168 4169 sync_lapic_to_cr8(vcpu); 4170 4171 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4172 svm->vmcb->control.asid = svm->asid; 4173 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4174 } 4175 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4176 4177 svm_hv_update_vp_id(svm->vmcb, vcpu); 4178 4179 /* 4180 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4181 * of a #DB. 4182 */ 4183 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 4184 svm_set_dr6(svm, vcpu->arch.dr6); 4185 else 4186 svm_set_dr6(svm, DR6_ACTIVE_LOW); 4187 4188 clgi(); 4189 kvm_load_guest_xsave_state(vcpu); 4190 4191 kvm_wait_lapic_expire(vcpu); 4192 4193 /* 4194 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4195 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4196 * is no need to worry about the conditional branch over the wrmsr 4197 * being speculatively taken. 4198 */ 4199 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4200 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4201 4202 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4203 4204 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4205 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4206 4207 if (!sev_es_guest(vcpu->kvm)) { 4208 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4209 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4210 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4211 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4212 } 4213 vcpu->arch.regs_dirty = 0; 4214 4215 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4216 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4217 4218 kvm_load_host_xsave_state(vcpu); 4219 stgi(); 4220 4221 /* Any pending NMI will happen here */ 4222 4223 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4224 kvm_after_interrupt(vcpu); 4225 4226 sync_cr8_to_lapic(vcpu); 4227 4228 svm->next_rip = 0; 4229 if (is_guest_mode(vcpu)) { 4230 nested_sync_control_from_vmcb02(svm); 4231 4232 /* Track VMRUNs that have made past consistency checking */ 4233 if (svm->nested.nested_run_pending && 4234 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4235 ++vcpu->stat.nested_run; 4236 4237 svm->nested.nested_run_pending = 0; 4238 } 4239 4240 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4241 vmcb_mark_all_clean(svm->vmcb); 4242 4243 /* if exit due to PF check for async PF */ 4244 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4245 vcpu->arch.apf.host_apf_flags = 4246 kvm_read_and_reset_apf_flags(); 4247 4248 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4249 4250 /* 4251 * We need to handle MC intercepts here before the vcpu has a chance to 4252 * change the physical cpu 4253 */ 4254 if (unlikely(svm->vmcb->control.exit_code == 4255 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4256 svm_handle_mce(vcpu); 4257 4258 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4259 4260 svm_complete_interrupts(vcpu); 4261 4262 if (is_guest_mode(vcpu)) 4263 return EXIT_FASTPATH_NONE; 4264 4265 return svm_exit_handlers_fastpath(vcpu); 4266 } 4267 4268 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4269 int root_level) 4270 { 4271 struct vcpu_svm *svm = to_svm(vcpu); 4272 unsigned long cr3; 4273 4274 if (npt_enabled) { 4275 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4276 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4277 4278 hv_track_root_tdp(vcpu, root_hpa); 4279 4280 cr3 = vcpu->arch.cr3; 4281 } else if (root_level >= PT64_ROOT_4LEVEL) { 4282 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4283 } else { 4284 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4285 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4286 cr3 = root_hpa; 4287 } 4288 4289 svm->vmcb->save.cr3 = cr3; 4290 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4291 } 4292 4293 static void 4294 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4295 { 4296 /* 4297 * Patch in the VMMCALL instruction: 4298 */ 4299 hypercall[0] = 0x0f; 4300 hypercall[1] = 0x01; 4301 hypercall[2] = 0xd9; 4302 } 4303 4304 /* 4305 * The kvm parameter can be NULL (module initialization, or invocation before 4306 * VM creation). Be sure to check the kvm parameter before using it. 4307 */ 4308 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4309 { 4310 switch (index) { 4311 case MSR_IA32_MCG_EXT_CTL: 4312 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4313 return false; 4314 case MSR_IA32_SMBASE: 4315 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4316 return false; 4317 /* SEV-ES guests do not support SMM, so report false */ 4318 if (kvm && sev_es_guest(kvm)) 4319 return false; 4320 break; 4321 default: 4322 break; 4323 } 4324 4325 return true; 4326 } 4327 4328 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4329 { 4330 struct vcpu_svm *svm = to_svm(vcpu); 4331 4332 /* 4333 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4334 * can only disable all variants of by disallowing CR4.OSXSAVE from 4335 * being set. As a result, if the host has XSAVE and XSAVES, and the 4336 * guest has XSAVE enabled, the guest can execute XSAVES without 4337 * faulting. Treat XSAVES as enabled in this case regardless of 4338 * whether it's advertised to the guest so that KVM context switches 4339 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4340 * the guest read/write access to the host's XSS. 4341 */ 4342 if (boot_cpu_has(X86_FEATURE_XSAVE) && 4343 boot_cpu_has(X86_FEATURE_XSAVES) && 4344 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 4345 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES); 4346 4347 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS); 4348 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR); 4349 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV); 4350 4351 /* 4352 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that 4353 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4354 * SVM on Intel is bonkers and extremely unlikely to work). 4355 */ 4356 if (!guest_cpuid_is_intel(vcpu)) 4357 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4358 4359 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER); 4360 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD); 4361 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF); 4362 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI); 4363 4364 svm_recalc_instruction_intercepts(vcpu, svm); 4365 4366 if (boot_cpu_has(X86_FEATURE_IBPB)) 4367 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4368 !!guest_has_pred_cmd_msr(vcpu)); 4369 4370 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4371 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4372 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4373 4374 if (sev_guest(vcpu->kvm)) 4375 sev_vcpu_after_set_cpuid(svm); 4376 4377 init_vmcb_after_set_cpuid(vcpu); 4378 } 4379 4380 static bool svm_has_wbinvd_exit(void) 4381 { 4382 return true; 4383 } 4384 4385 #define PRE_EX(exit) { .exit_code = (exit), \ 4386 .stage = X86_ICPT_PRE_EXCEPT, } 4387 #define POST_EX(exit) { .exit_code = (exit), \ 4388 .stage = X86_ICPT_POST_EXCEPT, } 4389 #define POST_MEM(exit) { .exit_code = (exit), \ 4390 .stage = X86_ICPT_POST_MEMACCESS, } 4391 4392 static const struct __x86_intercept { 4393 u32 exit_code; 4394 enum x86_intercept_stage stage; 4395 } x86_intercept_map[] = { 4396 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4397 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4398 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4399 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4400 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4401 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4402 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4403 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4404 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4405 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4406 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4407 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4408 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4409 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4410 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4411 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4412 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4413 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4414 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4415 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4416 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4417 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4418 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4419 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4420 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4421 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4422 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4423 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4424 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4425 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4426 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4427 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4428 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4429 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4430 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4431 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4432 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4433 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4434 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4435 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4436 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4437 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4438 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4439 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4440 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4441 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4442 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4443 }; 4444 4445 #undef PRE_EX 4446 #undef POST_EX 4447 #undef POST_MEM 4448 4449 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4450 struct x86_instruction_info *info, 4451 enum x86_intercept_stage stage, 4452 struct x86_exception *exception) 4453 { 4454 struct vcpu_svm *svm = to_svm(vcpu); 4455 int vmexit, ret = X86EMUL_CONTINUE; 4456 struct __x86_intercept icpt_info; 4457 struct vmcb *vmcb = svm->vmcb; 4458 4459 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4460 goto out; 4461 4462 icpt_info = x86_intercept_map[info->intercept]; 4463 4464 if (stage != icpt_info.stage) 4465 goto out; 4466 4467 switch (icpt_info.exit_code) { 4468 case SVM_EXIT_READ_CR0: 4469 if (info->intercept == x86_intercept_cr_read) 4470 icpt_info.exit_code += info->modrm_reg; 4471 break; 4472 case SVM_EXIT_WRITE_CR0: { 4473 unsigned long cr0, val; 4474 4475 if (info->intercept == x86_intercept_cr_write) 4476 icpt_info.exit_code += info->modrm_reg; 4477 4478 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4479 info->intercept == x86_intercept_clts) 4480 break; 4481 4482 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4483 INTERCEPT_SELECTIVE_CR0))) 4484 break; 4485 4486 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4487 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4488 4489 if (info->intercept == x86_intercept_lmsw) { 4490 cr0 &= 0xfUL; 4491 val &= 0xfUL; 4492 /* lmsw can't clear PE - catch this here */ 4493 if (cr0 & X86_CR0_PE) 4494 val |= X86_CR0_PE; 4495 } 4496 4497 if (cr0 ^ val) 4498 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4499 4500 break; 4501 } 4502 case SVM_EXIT_READ_DR0: 4503 case SVM_EXIT_WRITE_DR0: 4504 icpt_info.exit_code += info->modrm_reg; 4505 break; 4506 case SVM_EXIT_MSR: 4507 if (info->intercept == x86_intercept_wrmsr) 4508 vmcb->control.exit_info_1 = 1; 4509 else 4510 vmcb->control.exit_info_1 = 0; 4511 break; 4512 case SVM_EXIT_PAUSE: 4513 /* 4514 * We get this for NOP only, but pause 4515 * is rep not, check this here 4516 */ 4517 if (info->rep_prefix != REPE_PREFIX) 4518 goto out; 4519 break; 4520 case SVM_EXIT_IOIO: { 4521 u64 exit_info; 4522 u32 bytes; 4523 4524 if (info->intercept == x86_intercept_in || 4525 info->intercept == x86_intercept_ins) { 4526 exit_info = ((info->src_val & 0xffff) << 16) | 4527 SVM_IOIO_TYPE_MASK; 4528 bytes = info->dst_bytes; 4529 } else { 4530 exit_info = (info->dst_val & 0xffff) << 16; 4531 bytes = info->src_bytes; 4532 } 4533 4534 if (info->intercept == x86_intercept_outs || 4535 info->intercept == x86_intercept_ins) 4536 exit_info |= SVM_IOIO_STR_MASK; 4537 4538 if (info->rep_prefix) 4539 exit_info |= SVM_IOIO_REP_MASK; 4540 4541 bytes = min(bytes, 4u); 4542 4543 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4544 4545 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4546 4547 vmcb->control.exit_info_1 = exit_info; 4548 vmcb->control.exit_info_2 = info->next_rip; 4549 4550 break; 4551 } 4552 default: 4553 break; 4554 } 4555 4556 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4557 if (static_cpu_has(X86_FEATURE_NRIPS)) 4558 vmcb->control.next_rip = info->next_rip; 4559 vmcb->control.exit_code = icpt_info.exit_code; 4560 vmexit = nested_svm_exit_handled(svm); 4561 4562 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4563 : X86EMUL_CONTINUE; 4564 4565 out: 4566 return ret; 4567 } 4568 4569 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4570 { 4571 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4572 vcpu->arch.at_instruction_boundary = true; 4573 } 4574 4575 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4576 { 4577 if (!kvm_pause_in_guest(vcpu->kvm)) 4578 shrink_ple_window(vcpu); 4579 } 4580 4581 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4582 { 4583 /* [63:9] are reserved. */ 4584 vcpu->arch.mcg_cap &= 0x1ff; 4585 } 4586 4587 #ifdef CONFIG_KVM_SMM 4588 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4589 { 4590 struct vcpu_svm *svm = to_svm(vcpu); 4591 4592 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4593 if (!gif_set(svm)) 4594 return true; 4595 4596 return is_smm(vcpu); 4597 } 4598 4599 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4600 { 4601 struct vcpu_svm *svm = to_svm(vcpu); 4602 if (svm->nested.nested_run_pending) 4603 return -EBUSY; 4604 4605 if (svm_smi_blocked(vcpu)) 4606 return 0; 4607 4608 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4609 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4610 return -EBUSY; 4611 4612 return 1; 4613 } 4614 4615 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4616 { 4617 struct vcpu_svm *svm = to_svm(vcpu); 4618 struct kvm_host_map map_save; 4619 int ret; 4620 4621 if (!is_guest_mode(vcpu)) 4622 return 0; 4623 4624 /* 4625 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4626 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4627 */ 4628 4629 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4630 return 1; 4631 4632 smram->smram64.svm_guest_flag = 1; 4633 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4634 4635 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4636 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4637 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4638 4639 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4640 if (ret) 4641 return ret; 4642 4643 /* 4644 * KVM uses VMCB01 to store L1 host state while L2 runs but 4645 * VMCB01 is going to be used during SMM and thus the state will 4646 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4647 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4648 * format of the area is identical to guest save area offsetted 4649 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4650 * within 'struct vmcb'). Note: HSAVE area may also be used by 4651 * L1 hypervisor to save additional host context (e.g. KVM does 4652 * that, see svm_prepare_switch_to_guest()) which must be 4653 * preserved. 4654 */ 4655 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4656 return 1; 4657 4658 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4659 4660 svm_copy_vmrun_state(map_save.hva + 0x400, 4661 &svm->vmcb01.ptr->save); 4662 4663 kvm_vcpu_unmap(vcpu, &map_save, true); 4664 return 0; 4665 } 4666 4667 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4668 { 4669 struct vcpu_svm *svm = to_svm(vcpu); 4670 struct kvm_host_map map, map_save; 4671 struct vmcb *vmcb12; 4672 int ret; 4673 4674 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4675 4676 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4677 return 0; 4678 4679 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4680 if (!smram64->svm_guest_flag) 4681 return 0; 4682 4683 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4684 return 1; 4685 4686 if (!(smram64->efer & EFER_SVME)) 4687 return 1; 4688 4689 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4690 return 1; 4691 4692 ret = 1; 4693 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4694 goto unmap_map; 4695 4696 if (svm_allocate_nested(svm)) 4697 goto unmap_save; 4698 4699 /* 4700 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4701 * used during SMM (see svm_enter_smm()) 4702 */ 4703 4704 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4705 4706 /* 4707 * Enter the nested guest now 4708 */ 4709 4710 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4711 4712 vmcb12 = map.hva; 4713 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4714 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4715 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4716 4717 if (ret) 4718 goto unmap_save; 4719 4720 svm->nested.nested_run_pending = 1; 4721 4722 unmap_save: 4723 kvm_vcpu_unmap(vcpu, &map_save, true); 4724 unmap_map: 4725 kvm_vcpu_unmap(vcpu, &map, true); 4726 return ret; 4727 } 4728 4729 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4730 { 4731 struct vcpu_svm *svm = to_svm(vcpu); 4732 4733 if (!gif_set(svm)) { 4734 if (vgif) 4735 svm_set_intercept(svm, INTERCEPT_STGI); 4736 /* STGI will cause a vm exit */ 4737 } else { 4738 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4739 } 4740 } 4741 #endif 4742 4743 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4744 void *insn, int insn_len) 4745 { 4746 bool smep, smap, is_user; 4747 u64 error_code; 4748 4749 /* Emulation is always possible when KVM has access to all guest state. */ 4750 if (!sev_guest(vcpu->kvm)) 4751 return true; 4752 4753 /* #UD and #GP should never be intercepted for SEV guests. */ 4754 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4755 EMULTYPE_TRAP_UD_FORCED | 4756 EMULTYPE_VMWARE_GP)); 4757 4758 /* 4759 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4760 * to guest register state. 4761 */ 4762 if (sev_es_guest(vcpu->kvm)) 4763 return false; 4764 4765 /* 4766 * Emulation is possible if the instruction is already decoded, e.g. 4767 * when completing I/O after returning from userspace. 4768 */ 4769 if (emul_type & EMULTYPE_NO_DECODE) 4770 return true; 4771 4772 /* 4773 * Emulation is possible for SEV guests if and only if a prefilled 4774 * buffer containing the bytes of the intercepted instruction is 4775 * available. SEV guest memory is encrypted with a guest specific key 4776 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4777 * decode garbage. 4778 * 4779 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4780 * KVM reached this point without an instruction buffer. In practice, 4781 * this path should never be hit by a well-behaved guest, e.g. KVM 4782 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4783 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4784 * access, and needs to be handled by KVM to avoid putting the guest 4785 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4786 * its the least awful option given lack of insight into the guest. 4787 * 4788 * If KVM is trying to skip an instruction, simply resume the guest. 4789 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4790 * will attempt to re-inject the INT3/INTO and skip the instruction. 4791 * In that scenario, retrying the INT3/INTO and hoping the guest will 4792 * make forward progress is the only option that has a chance of 4793 * success (and in practice it will work the vast majority of the time). 4794 */ 4795 if (unlikely(!insn)) { 4796 if (!(emul_type & EMULTYPE_SKIP)) 4797 kvm_queue_exception(vcpu, UD_VECTOR); 4798 return false; 4799 } 4800 4801 /* 4802 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4803 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4804 * the faulting instruction because the code fetch itself faulted, e.g. 4805 * the guest attempted to fetch from emulated MMIO or a guest page 4806 * table used to translate CS:RIP resides in emulated MMIO. 4807 */ 4808 if (likely(insn_len)) 4809 return true; 4810 4811 /* 4812 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4813 * 4814 * Errata: 4815 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4816 * possible that CPU microcode implementing DecodeAssist will fail to 4817 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4818 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4819 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4820 * gives up and does not fill the instruction bytes buffer. 4821 * 4822 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4823 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4824 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4825 * GuestIntrBytes field of the VMCB. 4826 * 4827 * This does _not_ mean that the erratum has been encountered, as the 4828 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4829 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4830 * encountered a reserved/not-present #PF. 4831 * 4832 * To hit the erratum, the following conditions must be true: 4833 * 1. CR4.SMAP=1 (obviously). 4834 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4835 * have been hit as the guest would have encountered a SMEP 4836 * violation #PF, not a #NPF. 4837 * 3. The #NPF is not due to a code fetch, in which case failure to 4838 * retrieve the instruction bytes is legitimate (see abvoe). 4839 * 4840 * In addition, don't apply the erratum workaround if the #NPF occurred 4841 * while translating guest page tables (see below). 4842 */ 4843 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4844 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4845 goto resume_guest; 4846 4847 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4848 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4849 is_user = svm_get_cpl(vcpu) == 3; 4850 if (smap && (!smep || is_user)) { 4851 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4852 4853 /* 4854 * If the fault occurred in userspace, arbitrarily inject #GP 4855 * to avoid killing the guest and to hopefully avoid confusing 4856 * the guest kernel too much, e.g. injecting #PF would not be 4857 * coherent with respect to the guest's page tables. Request 4858 * triple fault if the fault occurred in the kernel as there's 4859 * no fault that KVM can inject without confusing the guest. 4860 * In practice, the triple fault is moot as no sane SEV kernel 4861 * will execute from user memory while also running with SMAP=1. 4862 */ 4863 if (is_user) 4864 kvm_inject_gp(vcpu, 0); 4865 else 4866 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4867 } 4868 4869 resume_guest: 4870 /* 4871 * If the erratum was not hit, simply resume the guest and let it fault 4872 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4873 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4874 * userspace will kill the guest, and letting the emulator read garbage 4875 * will yield random behavior and potentially corrupt the guest. 4876 * 4877 * Simply resuming the guest is technically not a violation of the SEV 4878 * architecture. AMD's APM states that all code fetches and page table 4879 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4880 * APM also states that encrypted accesses to MMIO are "ignored", but 4881 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4882 * the guest spin is technically "ignoring" the access. 4883 */ 4884 return false; 4885 } 4886 4887 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4888 { 4889 struct vcpu_svm *svm = to_svm(vcpu); 4890 4891 return !gif_set(svm); 4892 } 4893 4894 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4895 { 4896 if (!sev_es_guest(vcpu->kvm)) 4897 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4898 4899 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4900 } 4901 4902 static void svm_vm_destroy(struct kvm *kvm) 4903 { 4904 avic_vm_destroy(kvm); 4905 sev_vm_destroy(kvm); 4906 } 4907 4908 static int svm_vm_init(struct kvm *kvm) 4909 { 4910 if (!pause_filter_count || !pause_filter_thresh) 4911 kvm->arch.pause_in_guest = true; 4912 4913 if (enable_apicv) { 4914 int ret = avic_vm_init(kvm); 4915 if (ret) 4916 return ret; 4917 } 4918 4919 return 0; 4920 } 4921 4922 static struct kvm_x86_ops svm_x86_ops __initdata = { 4923 .name = KBUILD_MODNAME, 4924 4925 .check_processor_compatibility = svm_check_processor_compat, 4926 4927 .hardware_unsetup = svm_hardware_unsetup, 4928 .hardware_enable = svm_hardware_enable, 4929 .hardware_disable = svm_hardware_disable, 4930 .has_emulated_msr = svm_has_emulated_msr, 4931 4932 .vcpu_create = svm_vcpu_create, 4933 .vcpu_free = svm_vcpu_free, 4934 .vcpu_reset = svm_vcpu_reset, 4935 4936 .vm_size = sizeof(struct kvm_svm), 4937 .vm_init = svm_vm_init, 4938 .vm_destroy = svm_vm_destroy, 4939 4940 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4941 .vcpu_load = svm_vcpu_load, 4942 .vcpu_put = svm_vcpu_put, 4943 .vcpu_blocking = avic_vcpu_blocking, 4944 .vcpu_unblocking = avic_vcpu_unblocking, 4945 4946 .update_exception_bitmap = svm_update_exception_bitmap, 4947 .get_msr_feature = svm_get_msr_feature, 4948 .get_msr = svm_get_msr, 4949 .set_msr = svm_set_msr, 4950 .get_segment_base = svm_get_segment_base, 4951 .get_segment = svm_get_segment, 4952 .set_segment = svm_set_segment, 4953 .get_cpl = svm_get_cpl, 4954 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4955 .is_valid_cr0 = svm_is_valid_cr0, 4956 .set_cr0 = svm_set_cr0, 4957 .post_set_cr3 = sev_post_set_cr3, 4958 .is_valid_cr4 = svm_is_valid_cr4, 4959 .set_cr4 = svm_set_cr4, 4960 .set_efer = svm_set_efer, 4961 .get_idt = svm_get_idt, 4962 .set_idt = svm_set_idt, 4963 .get_gdt = svm_get_gdt, 4964 .set_gdt = svm_set_gdt, 4965 .set_dr7 = svm_set_dr7, 4966 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4967 .cache_reg = svm_cache_reg, 4968 .get_rflags = svm_get_rflags, 4969 .set_rflags = svm_set_rflags, 4970 .get_if_flag = svm_get_if_flag, 4971 4972 .flush_tlb_all = svm_flush_tlb_all, 4973 .flush_tlb_current = svm_flush_tlb_current, 4974 .flush_tlb_gva = svm_flush_tlb_gva, 4975 .flush_tlb_guest = svm_flush_tlb_asid, 4976 4977 .vcpu_pre_run = svm_vcpu_pre_run, 4978 .vcpu_run = svm_vcpu_run, 4979 .handle_exit = svm_handle_exit, 4980 .skip_emulated_instruction = svm_skip_emulated_instruction, 4981 .update_emulated_instruction = NULL, 4982 .set_interrupt_shadow = svm_set_interrupt_shadow, 4983 .get_interrupt_shadow = svm_get_interrupt_shadow, 4984 .patch_hypercall = svm_patch_hypercall, 4985 .inject_irq = svm_inject_irq, 4986 .inject_nmi = svm_inject_nmi, 4987 .is_vnmi_pending = svm_is_vnmi_pending, 4988 .set_vnmi_pending = svm_set_vnmi_pending, 4989 .inject_exception = svm_inject_exception, 4990 .cancel_injection = svm_cancel_injection, 4991 .interrupt_allowed = svm_interrupt_allowed, 4992 .nmi_allowed = svm_nmi_allowed, 4993 .get_nmi_mask = svm_get_nmi_mask, 4994 .set_nmi_mask = svm_set_nmi_mask, 4995 .enable_nmi_window = svm_enable_nmi_window, 4996 .enable_irq_window = svm_enable_irq_window, 4997 .update_cr8_intercept = svm_update_cr8_intercept, 4998 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 4999 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 5000 .apicv_post_state_restore = avic_apicv_post_state_restore, 5001 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 5002 5003 .get_exit_info = svm_get_exit_info, 5004 5005 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 5006 5007 .has_wbinvd_exit = svm_has_wbinvd_exit, 5008 5009 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 5010 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 5011 .write_tsc_offset = svm_write_tsc_offset, 5012 .write_tsc_multiplier = svm_write_tsc_multiplier, 5013 5014 .load_mmu_pgd = svm_load_mmu_pgd, 5015 5016 .check_intercept = svm_check_intercept, 5017 .handle_exit_irqoff = svm_handle_exit_irqoff, 5018 5019 .request_immediate_exit = __kvm_request_immediate_exit, 5020 5021 .sched_in = svm_sched_in, 5022 5023 .nested_ops = &svm_nested_ops, 5024 5025 .deliver_interrupt = svm_deliver_interrupt, 5026 .pi_update_irte = avic_pi_update_irte, 5027 .setup_mce = svm_setup_mce, 5028 5029 #ifdef CONFIG_KVM_SMM 5030 .smi_allowed = svm_smi_allowed, 5031 .enter_smm = svm_enter_smm, 5032 .leave_smm = svm_leave_smm, 5033 .enable_smi_window = svm_enable_smi_window, 5034 #endif 5035 5036 .mem_enc_ioctl = sev_mem_enc_ioctl, 5037 .mem_enc_register_region = sev_mem_enc_register_region, 5038 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5039 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5040 5041 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5042 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5043 5044 .can_emulate_instruction = svm_can_emulate_instruction, 5045 5046 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5047 5048 .msr_filter_changed = svm_msr_filter_changed, 5049 .complete_emulated_msr = svm_complete_emulated_msr, 5050 5051 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5052 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5053 }; 5054 5055 /* 5056 * The default MMIO mask is a single bit (excluding the present bit), 5057 * which could conflict with the memory encryption bit. Check for 5058 * memory encryption support and override the default MMIO mask if 5059 * memory encryption is enabled. 5060 */ 5061 static __init void svm_adjust_mmio_mask(void) 5062 { 5063 unsigned int enc_bit, mask_bit; 5064 u64 msr, mask; 5065 5066 /* If there is no memory encryption support, use existing mask */ 5067 if (cpuid_eax(0x80000000) < 0x8000001f) 5068 return; 5069 5070 /* If memory encryption is not enabled, use existing mask */ 5071 rdmsrl(MSR_AMD64_SYSCFG, msr); 5072 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5073 return; 5074 5075 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5076 mask_bit = boot_cpu_data.x86_phys_bits; 5077 5078 /* Increment the mask bit if it is the same as the encryption bit */ 5079 if (enc_bit == mask_bit) 5080 mask_bit++; 5081 5082 /* 5083 * If the mask bit location is below 52, then some bits above the 5084 * physical addressing limit will always be reserved, so use the 5085 * rsvd_bits() function to generate the mask. This mask, along with 5086 * the present bit, will be used to generate a page fault with 5087 * PFER.RSV = 1. 5088 * 5089 * If the mask bit location is 52 (or above), then clear the mask. 5090 */ 5091 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5092 5093 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5094 } 5095 5096 static __init void svm_set_cpu_caps(void) 5097 { 5098 kvm_set_cpu_caps(); 5099 5100 kvm_caps.supported_perf_cap = 0; 5101 kvm_caps.supported_xss = 0; 5102 5103 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5104 if (nested) { 5105 kvm_cpu_cap_set(X86_FEATURE_SVM); 5106 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5107 5108 if (nrips) 5109 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5110 5111 if (npt_enabled) 5112 kvm_cpu_cap_set(X86_FEATURE_NPT); 5113 5114 if (tsc_scaling) 5115 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5116 5117 if (vls) 5118 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5119 if (lbrv) 5120 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5121 5122 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5123 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5124 5125 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5126 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5127 5128 if (vgif) 5129 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5130 5131 if (vnmi) 5132 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5133 5134 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5135 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5136 } 5137 5138 /* CPUID 0x80000008 */ 5139 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5140 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5141 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5142 5143 if (enable_pmu) { 5144 /* 5145 * Enumerate support for PERFCTR_CORE if and only if KVM has 5146 * access to enough counters to virtualize "core" support, 5147 * otherwise limit vPMU support to the legacy number of counters. 5148 */ 5149 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5150 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5151 kvm_pmu_cap.num_counters_gp); 5152 else 5153 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5154 5155 if (kvm_pmu_cap.version != 2 || 5156 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5157 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5158 } 5159 5160 /* CPUID 0x8000001F (SME/SEV features) */ 5161 sev_set_cpu_caps(); 5162 } 5163 5164 static __init int svm_hardware_setup(void) 5165 { 5166 int cpu; 5167 struct page *iopm_pages; 5168 void *iopm_va; 5169 int r; 5170 unsigned int order = get_order(IOPM_SIZE); 5171 5172 /* 5173 * NX is required for shadow paging and for NPT if the NX huge pages 5174 * mitigation is enabled. 5175 */ 5176 if (!boot_cpu_has(X86_FEATURE_NX)) { 5177 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5178 return -EOPNOTSUPP; 5179 } 5180 kvm_enable_efer_bits(EFER_NX); 5181 5182 iopm_pages = alloc_pages(GFP_KERNEL, order); 5183 5184 if (!iopm_pages) 5185 return -ENOMEM; 5186 5187 iopm_va = page_address(iopm_pages); 5188 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5189 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 5190 5191 init_msrpm_offsets(); 5192 5193 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5194 XFEATURE_MASK_BNDCSR); 5195 5196 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5197 kvm_enable_efer_bits(EFER_FFXSR); 5198 5199 if (tsc_scaling) { 5200 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5201 tsc_scaling = false; 5202 } else { 5203 pr_info("TSC scaling supported\n"); 5204 kvm_caps.has_tsc_control = true; 5205 } 5206 } 5207 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5208 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5209 5210 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5211 5212 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5213 kvm_enable_efer_bits(EFER_AUTOIBRS); 5214 5215 /* Check for pause filtering support */ 5216 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5217 pause_filter_count = 0; 5218 pause_filter_thresh = 0; 5219 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5220 pause_filter_thresh = 0; 5221 } 5222 5223 if (nested) { 5224 pr_info("Nested Virtualization enabled\n"); 5225 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5226 } 5227 5228 /* 5229 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5230 * NPT isn't supported if the host is using 2-level paging since host 5231 * CR4 is unchanged on VMRUN. 5232 */ 5233 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5234 npt_enabled = false; 5235 5236 if (!boot_cpu_has(X86_FEATURE_NPT)) 5237 npt_enabled = false; 5238 5239 /* Force VM NPT level equal to the host's paging level */ 5240 kvm_configure_mmu(npt_enabled, get_npt_level(), 5241 get_npt_level(), PG_LEVEL_1G); 5242 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5243 5244 /* Setup shadow_me_value and shadow_me_mask */ 5245 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5246 5247 svm_adjust_mmio_mask(); 5248 5249 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5250 5251 /* 5252 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5253 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5254 */ 5255 sev_hardware_setup(); 5256 5257 svm_hv_hardware_setup(); 5258 5259 for_each_possible_cpu(cpu) { 5260 r = svm_cpu_init(cpu); 5261 if (r) 5262 goto err; 5263 } 5264 5265 enable_apicv = avic = avic && avic_hardware_setup(); 5266 5267 if (!enable_apicv) { 5268 svm_x86_ops.vcpu_blocking = NULL; 5269 svm_x86_ops.vcpu_unblocking = NULL; 5270 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5271 } else if (!x2avic_enabled) { 5272 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5273 } 5274 5275 if (vls) { 5276 if (!npt_enabled || 5277 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5278 !IS_ENABLED(CONFIG_X86_64)) { 5279 vls = false; 5280 } else { 5281 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5282 } 5283 } 5284 5285 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5286 svm_gp_erratum_intercept = false; 5287 5288 if (vgif) { 5289 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5290 vgif = false; 5291 else 5292 pr_info("Virtual GIF supported\n"); 5293 } 5294 5295 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5296 if (vnmi) 5297 pr_info("Virtual NMI enabled\n"); 5298 5299 if (!vnmi) { 5300 svm_x86_ops.is_vnmi_pending = NULL; 5301 svm_x86_ops.set_vnmi_pending = NULL; 5302 } 5303 5304 5305 if (lbrv) { 5306 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5307 lbrv = false; 5308 else 5309 pr_info("LBR virtualization supported\n"); 5310 } 5311 5312 if (!enable_pmu) 5313 pr_info("PMU virtualization is disabled\n"); 5314 5315 svm_set_cpu_caps(); 5316 5317 /* 5318 * It seems that on AMD processors PTE's accessed bit is 5319 * being set by the CPU hardware before the NPF vmexit. 5320 * This is not expected behaviour and our tests fail because 5321 * of it. 5322 * A workaround here is to disable support for 5323 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5324 * In this case userspace can know if there is support using 5325 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5326 * it 5327 * If future AMD CPU models change the behaviour described above, 5328 * this variable can be changed accordingly 5329 */ 5330 allow_smaller_maxphyaddr = !npt_enabled; 5331 5332 return 0; 5333 5334 err: 5335 svm_hardware_unsetup(); 5336 return r; 5337 } 5338 5339 5340 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5341 .hardware_setup = svm_hardware_setup, 5342 5343 .runtime_ops = &svm_x86_ops, 5344 .pmu_ops = &amd_pmu_ops, 5345 }; 5346 5347 static void __svm_exit(void) 5348 { 5349 kvm_x86_vendor_exit(); 5350 5351 cpu_emergency_unregister_virt_callback(svm_emergency_disable); 5352 } 5353 5354 static int __init svm_init(void) 5355 { 5356 int r; 5357 5358 __unused_size_checks(); 5359 5360 if (!kvm_is_svm_supported()) 5361 return -EOPNOTSUPP; 5362 5363 r = kvm_x86_vendor_init(&svm_init_ops); 5364 if (r) 5365 return r; 5366 5367 cpu_emergency_register_virt_callback(svm_emergency_disable); 5368 5369 /* 5370 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5371 * exposed to userspace! 5372 */ 5373 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5374 THIS_MODULE); 5375 if (r) 5376 goto err_kvm_init; 5377 5378 return 0; 5379 5380 err_kvm_init: 5381 __svm_exit(); 5382 return r; 5383 } 5384 5385 static void __exit svm_exit(void) 5386 { 5387 kvm_exit(); 5388 __svm_exit(); 5389 } 5390 5391 module_init(svm_init) 5392 module_exit(svm_exit) 5393