1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 32 #include <asm/apic.h> 33 #include <asm/perf_event.h> 34 #include <asm/tlbflush.h> 35 #include <asm/desc.h> 36 #include <asm/debugreg.h> 37 #include <asm/kvm_para.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/spec-ctrl.h> 40 #include <asm/cpu_device_id.h> 41 #include <asm/traps.h> 42 #include <asm/reboot.h> 43 #include <asm/fpu/api.h> 44 45 #include <trace/events/ipi.h> 46 47 #include "trace.h" 48 49 #include "svm.h" 50 #include "svm_ops.h" 51 52 #include "kvm_onhyperv.h" 53 #include "svm_onhyperv.h" 54 55 MODULE_AUTHOR("Qumranet"); 56 MODULE_LICENSE("GPL"); 57 58 #ifdef MODULE 59 static const struct x86_cpu_id svm_cpu_id[] = { 60 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 61 {} 62 }; 63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 64 #endif 65 66 #define SEG_TYPE_LDT 2 67 #define SEG_TYPE_BUSY_TSS16 3 68 69 static bool erratum_383_found __read_mostly; 70 71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 72 73 /* 74 * Set osvw_len to higher value when updated Revision Guides 75 * are published and we know what the new status bits are 76 */ 77 static uint64_t osvw_len = 4, osvw_status; 78 79 static DEFINE_PER_CPU(u64, current_tsc_ratio); 80 81 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 82 83 static const struct svm_direct_access_msrs { 84 u32 index; /* Index of the MSR */ 85 bool always; /* True if intercept is initially cleared */ 86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 87 { .index = MSR_STAR, .always = true }, 88 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 89 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 90 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 91 #ifdef CONFIG_X86_64 92 { .index = MSR_GS_BASE, .always = true }, 93 { .index = MSR_FS_BASE, .always = true }, 94 { .index = MSR_KERNEL_GS_BASE, .always = true }, 95 { .index = MSR_LSTAR, .always = true }, 96 { .index = MSR_CSTAR, .always = true }, 97 { .index = MSR_SYSCALL_MASK, .always = true }, 98 #endif 99 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 100 { .index = MSR_IA32_PRED_CMD, .always = false }, 101 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 102 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 103 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 104 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 105 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 106 { .index = MSR_EFER, .always = false }, 107 { .index = MSR_IA32_CR_PAT, .always = false }, 108 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 109 { .index = MSR_TSC_AUX, .always = false }, 110 { .index = X2APIC_MSR(APIC_ID), .always = false }, 111 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 112 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 113 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 114 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 115 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 116 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 117 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 118 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 119 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 120 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 121 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 122 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 123 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 124 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 125 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 126 127 /* 128 * Note: 129 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 130 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 131 * the AVIC hardware would generate GP fault. Therefore, always 132 * intercept the MSR 0x832, and do not setup direct_access_msr. 133 */ 134 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 135 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 136 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 137 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 138 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 139 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 140 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 141 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 142 { .index = MSR_INVALID, .always = false }, 143 }; 144 145 /* 146 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 147 * pause_filter_count: On processors that support Pause filtering(indicated 148 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 149 * count value. On VMRUN this value is loaded into an internal counter. 150 * Each time a pause instruction is executed, this counter is decremented 151 * until it reaches zero at which time a #VMEXIT is generated if pause 152 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 153 * Intercept Filtering for more details. 154 * This also indicate if ple logic enabled. 155 * 156 * pause_filter_thresh: In addition, some processor families support advanced 157 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 158 * the amount of time a guest is allowed to execute in a pause loop. 159 * In this mode, a 16-bit pause filter threshold field is added in the 160 * VMCB. The threshold value is a cycle count that is used to reset the 161 * pause counter. As with simple pause filtering, VMRUN loads the pause 162 * count value from VMCB into an internal counter. Then, on each pause 163 * instruction the hardware checks the elapsed number of cycles since 164 * the most recent pause instruction against the pause filter threshold. 165 * If the elapsed cycle count is greater than the pause filter threshold, 166 * then the internal pause count is reloaded from the VMCB and execution 167 * continues. If the elapsed cycle count is less than the pause filter 168 * threshold, then the internal pause count is decremented. If the count 169 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 170 * triggered. If advanced pause filtering is supported and pause filter 171 * threshold field is set to zero, the filter will operate in the simpler, 172 * count only mode. 173 */ 174 175 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 176 module_param(pause_filter_thresh, ushort, 0444); 177 178 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 179 module_param(pause_filter_count, ushort, 0444); 180 181 /* Default doubles per-vcpu window every exit. */ 182 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 183 module_param(pause_filter_count_grow, ushort, 0444); 184 185 /* Default resets per-vcpu window every exit to pause_filter_count. */ 186 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 187 module_param(pause_filter_count_shrink, ushort, 0444); 188 189 /* Default is to compute the maximum so we can never overflow. */ 190 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 191 module_param(pause_filter_count_max, ushort, 0444); 192 193 /* 194 * Use nested page tables by default. Note, NPT may get forced off by 195 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 196 */ 197 bool npt_enabled = true; 198 module_param_named(npt, npt_enabled, bool, 0444); 199 200 /* allow nested virtualization in KVM/SVM */ 201 static int nested = true; 202 module_param(nested, int, S_IRUGO); 203 204 /* enable/disable Next RIP Save */ 205 int nrips = true; 206 module_param(nrips, int, 0444); 207 208 /* enable/disable Virtual VMLOAD VMSAVE */ 209 static int vls = true; 210 module_param(vls, int, 0444); 211 212 /* enable/disable Virtual GIF */ 213 int vgif = true; 214 module_param(vgif, int, 0444); 215 216 /* enable/disable LBR virtualization */ 217 static int lbrv = true; 218 module_param(lbrv, int, 0444); 219 220 static int tsc_scaling = true; 221 module_param(tsc_scaling, int, 0444); 222 223 /* 224 * enable / disable AVIC. Because the defaults differ for APICv 225 * support between VMX and SVM we cannot use module_param_named. 226 */ 227 static bool avic; 228 module_param(avic, bool, 0444); 229 230 bool __read_mostly dump_invalid_vmcb; 231 module_param(dump_invalid_vmcb, bool, 0644); 232 233 234 bool intercept_smi = true; 235 module_param(intercept_smi, bool, 0444); 236 237 bool vnmi = true; 238 module_param(vnmi, bool, 0444); 239 240 static bool svm_gp_erratum_intercept = true; 241 242 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 243 244 static unsigned long iopm_base; 245 246 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 247 248 /* 249 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 250 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 251 * 252 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 253 * defer the restoration of TSC_AUX until the CPU returns to userspace. 254 */ 255 static int tsc_aux_uret_slot __read_mostly = -1; 256 257 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 258 259 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 260 #define MSRS_RANGE_SIZE 2048 261 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 262 263 u32 svm_msrpm_offset(u32 msr) 264 { 265 u32 offset; 266 int i; 267 268 for (i = 0; i < NUM_MSR_MAPS; i++) { 269 if (msr < msrpm_ranges[i] || 270 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 271 continue; 272 273 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 274 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 275 276 /* Now we have the u8 offset - but need the u32 offset */ 277 return offset / 4; 278 } 279 280 /* MSR not in any range */ 281 return MSR_INVALID; 282 } 283 284 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 285 286 static int get_npt_level(void) 287 { 288 #ifdef CONFIG_X86_64 289 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 290 #else 291 return PT32E_ROOT_LEVEL; 292 #endif 293 } 294 295 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 296 { 297 struct vcpu_svm *svm = to_svm(vcpu); 298 u64 old_efer = vcpu->arch.efer; 299 vcpu->arch.efer = efer; 300 301 if (!npt_enabled) { 302 /* Shadow paging assumes NX to be available. */ 303 efer |= EFER_NX; 304 305 if (!(efer & EFER_LMA)) 306 efer &= ~EFER_LME; 307 } 308 309 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 310 if (!(efer & EFER_SVME)) { 311 svm_leave_nested(vcpu); 312 svm_set_gif(svm, true); 313 /* #GP intercept is still needed for vmware backdoor */ 314 if (!enable_vmware_backdoor) 315 clr_exception_intercept(svm, GP_VECTOR); 316 317 /* 318 * Free the nested guest state, unless we are in SMM. 319 * In this case we will return to the nested guest 320 * as soon as we leave SMM. 321 */ 322 if (!is_smm(vcpu)) 323 svm_free_nested(svm); 324 325 } else { 326 int ret = svm_allocate_nested(svm); 327 328 if (ret) { 329 vcpu->arch.efer = old_efer; 330 return ret; 331 } 332 333 /* 334 * Never intercept #GP for SEV guests, KVM can't 335 * decrypt guest memory to workaround the erratum. 336 */ 337 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 338 set_exception_intercept(svm, GP_VECTOR); 339 } 340 } 341 342 svm->vmcb->save.efer = efer | EFER_SVME; 343 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 344 return 0; 345 } 346 347 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 348 { 349 struct vcpu_svm *svm = to_svm(vcpu); 350 u32 ret = 0; 351 352 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 353 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 354 return ret; 355 } 356 357 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 358 { 359 struct vcpu_svm *svm = to_svm(vcpu); 360 361 if (mask == 0) 362 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 363 else 364 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 365 366 } 367 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 368 void *insn, int insn_len); 369 370 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 371 bool commit_side_effects) 372 { 373 struct vcpu_svm *svm = to_svm(vcpu); 374 unsigned long old_rflags; 375 376 /* 377 * SEV-ES does not expose the next RIP. The RIP update is controlled by 378 * the type of exit and the #VC handler in the guest. 379 */ 380 if (sev_es_guest(vcpu->kvm)) 381 goto done; 382 383 if (nrips && svm->vmcb->control.next_rip != 0) { 384 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 385 svm->next_rip = svm->vmcb->control.next_rip; 386 } 387 388 if (!svm->next_rip) { 389 /* 390 * FIXME: Drop this when kvm_emulate_instruction() does the 391 * right thing and treats "can't emulate" as outright failure 392 * for EMULTYPE_SKIP. 393 */ 394 if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0)) 395 return 0; 396 397 if (unlikely(!commit_side_effects)) 398 old_rflags = svm->vmcb->save.rflags; 399 400 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 401 return 0; 402 403 if (unlikely(!commit_side_effects)) 404 svm->vmcb->save.rflags = old_rflags; 405 } else { 406 kvm_rip_write(vcpu, svm->next_rip); 407 } 408 409 done: 410 if (likely(commit_side_effects)) 411 svm_set_interrupt_shadow(vcpu, 0); 412 413 return 1; 414 } 415 416 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 417 { 418 return __svm_skip_emulated_instruction(vcpu, true); 419 } 420 421 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 422 { 423 unsigned long rip, old_rip = kvm_rip_read(vcpu); 424 struct vcpu_svm *svm = to_svm(vcpu); 425 426 /* 427 * Due to architectural shortcomings, the CPU doesn't always provide 428 * NextRIP, e.g. if KVM intercepted an exception that occurred while 429 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 430 * the instruction even if NextRIP is supported to acquire the next 431 * RIP so that it can be shoved into the NextRIP field, otherwise 432 * hardware will fail to advance guest RIP during event injection. 433 * Drop the exception/interrupt if emulation fails and effectively 434 * retry the instruction, it's the least awful option. If NRIPS is 435 * in use, the skip must not commit any side effects such as clearing 436 * the interrupt shadow or RFLAGS.RF. 437 */ 438 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 439 return -EIO; 440 441 rip = kvm_rip_read(vcpu); 442 443 /* 444 * Save the injection information, even when using next_rip, as the 445 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 446 * doesn't complete due to a VM-Exit occurring while the CPU is 447 * vectoring the event. Decoding the instruction isn't guaranteed to 448 * work as there may be no backing instruction, e.g. if the event is 449 * being injected by L1 for L2, or if the guest is patching INT3 into 450 * a different instruction. 451 */ 452 svm->soft_int_injected = true; 453 svm->soft_int_csbase = svm->vmcb->save.cs.base; 454 svm->soft_int_old_rip = old_rip; 455 svm->soft_int_next_rip = rip; 456 457 if (nrips) 458 kvm_rip_write(vcpu, old_rip); 459 460 if (static_cpu_has(X86_FEATURE_NRIPS)) 461 svm->vmcb->control.next_rip = rip; 462 463 return 0; 464 } 465 466 static void svm_inject_exception(struct kvm_vcpu *vcpu) 467 { 468 struct kvm_queued_exception *ex = &vcpu->arch.exception; 469 struct vcpu_svm *svm = to_svm(vcpu); 470 471 kvm_deliver_exception_payload(vcpu, ex); 472 473 if (kvm_exception_is_soft(ex->vector) && 474 svm_update_soft_interrupt_rip(vcpu)) 475 return; 476 477 svm->vmcb->control.event_inj = ex->vector 478 | SVM_EVTINJ_VALID 479 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 480 | SVM_EVTINJ_TYPE_EXEPT; 481 svm->vmcb->control.event_inj_err = ex->error_code; 482 } 483 484 static void svm_init_erratum_383(void) 485 { 486 u32 low, high; 487 int err; 488 u64 val; 489 490 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 491 return; 492 493 /* Use _safe variants to not break nested virtualization */ 494 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 495 if (err) 496 return; 497 498 val |= (1ULL << 47); 499 500 low = lower_32_bits(val); 501 high = upper_32_bits(val); 502 503 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 504 505 erratum_383_found = true; 506 } 507 508 static void svm_init_osvw(struct kvm_vcpu *vcpu) 509 { 510 /* 511 * Guests should see errata 400 and 415 as fixed (assuming that 512 * HLT and IO instructions are intercepted). 513 */ 514 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 515 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 516 517 /* 518 * By increasing VCPU's osvw.length to 3 we are telling the guest that 519 * all osvw.status bits inside that length, including bit 0 (which is 520 * reserved for erratum 298), are valid. However, if host processor's 521 * osvw_len is 0 then osvw_status[0] carries no information. We need to 522 * be conservative here and therefore we tell the guest that erratum 298 523 * is present (because we really don't know). 524 */ 525 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 526 vcpu->arch.osvw.status |= 1; 527 } 528 529 static bool __kvm_is_svm_supported(void) 530 { 531 int cpu = smp_processor_id(); 532 struct cpuinfo_x86 *c = &cpu_data(cpu); 533 534 u64 vm_cr; 535 536 if (c->x86_vendor != X86_VENDOR_AMD && 537 c->x86_vendor != X86_VENDOR_HYGON) { 538 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 539 return false; 540 } 541 542 if (!cpu_has(c, X86_FEATURE_SVM)) { 543 pr_err("SVM not supported by CPU %d\n", cpu); 544 return false; 545 } 546 547 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 548 pr_info("KVM is unsupported when running as an SEV guest\n"); 549 return false; 550 } 551 552 rdmsrl(MSR_VM_CR, vm_cr); 553 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) { 554 pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu); 555 return false; 556 } 557 558 return true; 559 } 560 561 static bool kvm_is_svm_supported(void) 562 { 563 bool supported; 564 565 migrate_disable(); 566 supported = __kvm_is_svm_supported(); 567 migrate_enable(); 568 569 return supported; 570 } 571 572 static int svm_check_processor_compat(void) 573 { 574 if (!__kvm_is_svm_supported()) 575 return -EIO; 576 577 return 0; 578 } 579 580 static void __svm_write_tsc_multiplier(u64 multiplier) 581 { 582 if (multiplier == __this_cpu_read(current_tsc_ratio)) 583 return; 584 585 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 586 __this_cpu_write(current_tsc_ratio, multiplier); 587 } 588 589 static inline void kvm_cpu_svm_disable(void) 590 { 591 uint64_t efer; 592 593 wrmsrl(MSR_VM_HSAVE_PA, 0); 594 rdmsrl(MSR_EFER, efer); 595 if (efer & EFER_SVME) { 596 /* 597 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 598 * NMI aren't blocked. 599 */ 600 stgi(); 601 wrmsrl(MSR_EFER, efer & ~EFER_SVME); 602 } 603 } 604 605 static void svm_emergency_disable(void) 606 { 607 kvm_rebooting = true; 608 609 kvm_cpu_svm_disable(); 610 } 611 612 static void svm_hardware_disable(void) 613 { 614 /* Make sure we clean up behind us */ 615 if (tsc_scaling) 616 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 617 618 kvm_cpu_svm_disable(); 619 620 amd_pmu_disable_virt(); 621 } 622 623 static int svm_hardware_enable(void) 624 { 625 626 struct svm_cpu_data *sd; 627 uint64_t efer; 628 int me = raw_smp_processor_id(); 629 630 rdmsrl(MSR_EFER, efer); 631 if (efer & EFER_SVME) 632 return -EBUSY; 633 634 sd = per_cpu_ptr(&svm_data, me); 635 sd->asid_generation = 1; 636 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 637 sd->next_asid = sd->max_asid + 1; 638 sd->min_asid = max_sev_asid + 1; 639 640 wrmsrl(MSR_EFER, efer | EFER_SVME); 641 642 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 643 644 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 645 /* 646 * Set the default value, even if we don't use TSC scaling 647 * to avoid having stale value in the msr 648 */ 649 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 650 } 651 652 653 /* 654 * Get OSVW bits. 655 * 656 * Note that it is possible to have a system with mixed processor 657 * revisions and therefore different OSVW bits. If bits are not the same 658 * on different processors then choose the worst case (i.e. if erratum 659 * is present on one processor and not on another then assume that the 660 * erratum is present everywhere). 661 */ 662 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 663 uint64_t len, status = 0; 664 int err; 665 666 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 667 if (!err) 668 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 669 &err); 670 671 if (err) 672 osvw_status = osvw_len = 0; 673 else { 674 if (len < osvw_len) 675 osvw_len = len; 676 osvw_status |= status; 677 osvw_status &= (1ULL << osvw_len) - 1; 678 } 679 } else 680 osvw_status = osvw_len = 0; 681 682 svm_init_erratum_383(); 683 684 amd_pmu_enable_virt(); 685 686 /* 687 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type 688 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. 689 * Since Linux does not change the value of TSC_AUX once set, prime the 690 * TSC_AUX field now to avoid a RDMSR on every vCPU run. 691 */ 692 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 693 struct sev_es_save_area *hostsa; 694 u32 __maybe_unused msr_hi; 695 696 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 697 698 rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi); 699 } 700 701 return 0; 702 } 703 704 static void svm_cpu_uninit(int cpu) 705 { 706 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 707 708 if (!sd->save_area) 709 return; 710 711 kfree(sd->sev_vmcbs); 712 __free_page(sd->save_area); 713 sd->save_area_pa = 0; 714 sd->save_area = NULL; 715 } 716 717 static int svm_cpu_init(int cpu) 718 { 719 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 720 int ret = -ENOMEM; 721 722 memset(sd, 0, sizeof(struct svm_cpu_data)); 723 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 724 if (!sd->save_area) 725 return ret; 726 727 ret = sev_cpu_init(sd); 728 if (ret) 729 goto free_save_area; 730 731 sd->save_area_pa = __sme_page_pa(sd->save_area); 732 return 0; 733 734 free_save_area: 735 __free_page(sd->save_area); 736 sd->save_area = NULL; 737 return ret; 738 739 } 740 741 static void set_dr_intercepts(struct vcpu_svm *svm) 742 { 743 struct vmcb *vmcb = svm->vmcb01.ptr; 744 745 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 746 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 747 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 748 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 749 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 750 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 751 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 752 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 753 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 754 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 755 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 756 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 757 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 758 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 759 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 760 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 761 762 recalc_intercepts(svm); 763 } 764 765 static void clr_dr_intercepts(struct vcpu_svm *svm) 766 { 767 struct vmcb *vmcb = svm->vmcb01.ptr; 768 769 vmcb->control.intercepts[INTERCEPT_DR] = 0; 770 771 recalc_intercepts(svm); 772 } 773 774 static int direct_access_msr_slot(u32 msr) 775 { 776 u32 i; 777 778 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 779 if (direct_access_msrs[i].index == msr) 780 return i; 781 782 return -ENOENT; 783 } 784 785 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 786 int write) 787 { 788 struct vcpu_svm *svm = to_svm(vcpu); 789 int slot = direct_access_msr_slot(msr); 790 791 if (slot == -ENOENT) 792 return; 793 794 /* Set the shadow bitmaps to the desired intercept states */ 795 if (read) 796 set_bit(slot, svm->shadow_msr_intercept.read); 797 else 798 clear_bit(slot, svm->shadow_msr_intercept.read); 799 800 if (write) 801 set_bit(slot, svm->shadow_msr_intercept.write); 802 else 803 clear_bit(slot, svm->shadow_msr_intercept.write); 804 } 805 806 static bool valid_msr_intercept(u32 index) 807 { 808 return direct_access_msr_slot(index) != -ENOENT; 809 } 810 811 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 812 { 813 u8 bit_write; 814 unsigned long tmp; 815 u32 offset; 816 u32 *msrpm; 817 818 /* 819 * For non-nested case: 820 * If the L01 MSR bitmap does not intercept the MSR, then we need to 821 * save it. 822 * 823 * For nested case: 824 * If the L02 MSR bitmap does not intercept the MSR, then we need to 825 * save it. 826 */ 827 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 828 to_svm(vcpu)->msrpm; 829 830 offset = svm_msrpm_offset(msr); 831 bit_write = 2 * (msr & 0x0f) + 1; 832 tmp = msrpm[offset]; 833 834 BUG_ON(offset == MSR_INVALID); 835 836 return test_bit(bit_write, &tmp); 837 } 838 839 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 840 u32 msr, int read, int write) 841 { 842 struct vcpu_svm *svm = to_svm(vcpu); 843 u8 bit_read, bit_write; 844 unsigned long tmp; 845 u32 offset; 846 847 /* 848 * If this warning triggers extend the direct_access_msrs list at the 849 * beginning of the file 850 */ 851 WARN_ON(!valid_msr_intercept(msr)); 852 853 /* Enforce non allowed MSRs to trap */ 854 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 855 read = 0; 856 857 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 858 write = 0; 859 860 offset = svm_msrpm_offset(msr); 861 bit_read = 2 * (msr & 0x0f); 862 bit_write = 2 * (msr & 0x0f) + 1; 863 tmp = msrpm[offset]; 864 865 BUG_ON(offset == MSR_INVALID); 866 867 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 868 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 869 870 msrpm[offset] = tmp; 871 872 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 873 svm->nested.force_msr_bitmap_recalc = true; 874 } 875 876 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 877 int read, int write) 878 { 879 set_shadow_msr_intercept(vcpu, msr, read, write); 880 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 881 } 882 883 u32 *svm_vcpu_alloc_msrpm(void) 884 { 885 unsigned int order = get_order(MSRPM_SIZE); 886 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 887 u32 *msrpm; 888 889 if (!pages) 890 return NULL; 891 892 msrpm = page_address(pages); 893 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 894 895 return msrpm; 896 } 897 898 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 899 { 900 int i; 901 902 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 903 if (!direct_access_msrs[i].always) 904 continue; 905 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 906 } 907 } 908 909 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 910 { 911 int i; 912 913 if (intercept == svm->x2avic_msrs_intercepted) 914 return; 915 916 if (!x2avic_enabled) 917 return; 918 919 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 920 int index = direct_access_msrs[i].index; 921 922 if ((index < APIC_BASE_MSR) || 923 (index > APIC_BASE_MSR + 0xff)) 924 continue; 925 set_msr_interception(&svm->vcpu, svm->msrpm, index, 926 !intercept, !intercept); 927 } 928 929 svm->x2avic_msrs_intercepted = intercept; 930 } 931 932 void svm_vcpu_free_msrpm(u32 *msrpm) 933 { 934 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 935 } 936 937 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 938 { 939 struct vcpu_svm *svm = to_svm(vcpu); 940 u32 i; 941 942 /* 943 * Set intercept permissions for all direct access MSRs again. They 944 * will automatically get filtered through the MSR filter, so we are 945 * back in sync after this. 946 */ 947 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 948 u32 msr = direct_access_msrs[i].index; 949 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 950 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 951 952 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 953 } 954 } 955 956 static void add_msr_offset(u32 offset) 957 { 958 int i; 959 960 for (i = 0; i < MSRPM_OFFSETS; ++i) { 961 962 /* Offset already in list? */ 963 if (msrpm_offsets[i] == offset) 964 return; 965 966 /* Slot used by another offset? */ 967 if (msrpm_offsets[i] != MSR_INVALID) 968 continue; 969 970 /* Add offset to list */ 971 msrpm_offsets[i] = offset; 972 973 return; 974 } 975 976 /* 977 * If this BUG triggers the msrpm_offsets table has an overflow. Just 978 * increase MSRPM_OFFSETS in this case. 979 */ 980 BUG(); 981 } 982 983 static void init_msrpm_offsets(void) 984 { 985 int i; 986 987 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 988 989 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 990 u32 offset; 991 992 offset = svm_msrpm_offset(direct_access_msrs[i].index); 993 BUG_ON(offset == MSR_INVALID); 994 995 add_msr_offset(offset); 996 } 997 } 998 999 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 1000 { 1001 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 1002 to_vmcb->save.br_from = from_vmcb->save.br_from; 1003 to_vmcb->save.br_to = from_vmcb->save.br_to; 1004 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 1005 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 1006 1007 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 1008 } 1009 1010 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 1011 { 1012 struct vcpu_svm *svm = to_svm(vcpu); 1013 1014 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 1015 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 1016 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 1017 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 1018 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1019 1020 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1021 if (is_guest_mode(vcpu)) 1022 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1023 } 1024 1025 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1026 { 1027 struct vcpu_svm *svm = to_svm(vcpu); 1028 1029 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1030 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1031 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1032 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1033 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1034 1035 /* 1036 * Move the LBR msrs back to the vmcb01 to avoid copying them 1037 * on nested guest entries. 1038 */ 1039 if (is_guest_mode(vcpu)) 1040 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1041 } 1042 1043 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1044 { 1045 /* 1046 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1047 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1048 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1049 */ 1050 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1051 svm->vmcb01.ptr; 1052 } 1053 1054 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1055 { 1056 struct vcpu_svm *svm = to_svm(vcpu); 1057 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1058 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1059 (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) && 1060 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1061 1062 if (enable_lbrv == current_enable_lbrv) 1063 return; 1064 1065 if (enable_lbrv) 1066 svm_enable_lbrv(vcpu); 1067 else 1068 svm_disable_lbrv(vcpu); 1069 } 1070 1071 void disable_nmi_singlestep(struct vcpu_svm *svm) 1072 { 1073 svm->nmi_singlestep = false; 1074 1075 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1076 /* Clear our flags if they were not set by the guest */ 1077 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1078 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1079 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1080 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1081 } 1082 } 1083 1084 static void grow_ple_window(struct kvm_vcpu *vcpu) 1085 { 1086 struct vcpu_svm *svm = to_svm(vcpu); 1087 struct vmcb_control_area *control = &svm->vmcb->control; 1088 int old = control->pause_filter_count; 1089 1090 if (kvm_pause_in_guest(vcpu->kvm)) 1091 return; 1092 1093 control->pause_filter_count = __grow_ple_window(old, 1094 pause_filter_count, 1095 pause_filter_count_grow, 1096 pause_filter_count_max); 1097 1098 if (control->pause_filter_count != old) { 1099 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1100 trace_kvm_ple_window_update(vcpu->vcpu_id, 1101 control->pause_filter_count, old); 1102 } 1103 } 1104 1105 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1106 { 1107 struct vcpu_svm *svm = to_svm(vcpu); 1108 struct vmcb_control_area *control = &svm->vmcb->control; 1109 int old = control->pause_filter_count; 1110 1111 if (kvm_pause_in_guest(vcpu->kvm)) 1112 return; 1113 1114 control->pause_filter_count = 1115 __shrink_ple_window(old, 1116 pause_filter_count, 1117 pause_filter_count_shrink, 1118 pause_filter_count); 1119 if (control->pause_filter_count != old) { 1120 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1121 trace_kvm_ple_window_update(vcpu->vcpu_id, 1122 control->pause_filter_count, old); 1123 } 1124 } 1125 1126 static void svm_hardware_unsetup(void) 1127 { 1128 int cpu; 1129 1130 sev_hardware_unsetup(); 1131 1132 for_each_possible_cpu(cpu) 1133 svm_cpu_uninit(cpu); 1134 1135 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 1136 get_order(IOPM_SIZE)); 1137 iopm_base = 0; 1138 } 1139 1140 static void init_seg(struct vmcb_seg *seg) 1141 { 1142 seg->selector = 0; 1143 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1144 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1145 seg->limit = 0xffff; 1146 seg->base = 0; 1147 } 1148 1149 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1150 { 1151 seg->selector = 0; 1152 seg->attrib = SVM_SELECTOR_P_MASK | type; 1153 seg->limit = 0xffff; 1154 seg->base = 0; 1155 } 1156 1157 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1158 { 1159 struct vcpu_svm *svm = to_svm(vcpu); 1160 1161 return svm->nested.ctl.tsc_offset; 1162 } 1163 1164 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1165 { 1166 struct vcpu_svm *svm = to_svm(vcpu); 1167 1168 return svm->tsc_ratio_msr; 1169 } 1170 1171 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1172 { 1173 struct vcpu_svm *svm = to_svm(vcpu); 1174 1175 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1176 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1177 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1178 } 1179 1180 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1181 { 1182 preempt_disable(); 1183 if (to_svm(vcpu)->guest_state_loaded) 1184 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1185 preempt_enable(); 1186 } 1187 1188 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1189 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1190 struct vcpu_svm *svm) 1191 { 1192 /* 1193 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1194 * roots, or if INVPCID is disabled in the guest to inject #UD. 1195 */ 1196 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1197 if (!npt_enabled || 1198 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1199 svm_set_intercept(svm, INTERCEPT_INVPCID); 1200 else 1201 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1202 } 1203 1204 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1205 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1206 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1207 else 1208 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1209 } 1210 } 1211 1212 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1213 { 1214 struct vcpu_svm *svm = to_svm(vcpu); 1215 1216 if (guest_cpuid_is_intel(vcpu)) { 1217 /* 1218 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1219 * accesses because the processor only stores 32 bits. 1220 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1221 */ 1222 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1223 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1224 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1225 1226 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1227 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1228 } else { 1229 /* 1230 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1231 * in VMCB and clear intercepts to avoid #VMEXIT. 1232 */ 1233 if (vls) { 1234 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1235 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1236 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1237 } 1238 /* No need to intercept these MSRs */ 1239 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1240 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1241 } 1242 } 1243 1244 static void init_vmcb(struct kvm_vcpu *vcpu) 1245 { 1246 struct vcpu_svm *svm = to_svm(vcpu); 1247 struct vmcb *vmcb = svm->vmcb01.ptr; 1248 struct vmcb_control_area *control = &vmcb->control; 1249 struct vmcb_save_area *save = &vmcb->save; 1250 1251 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1252 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1253 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1254 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1255 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1256 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1257 if (!kvm_vcpu_apicv_active(vcpu)) 1258 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1259 1260 set_dr_intercepts(svm); 1261 1262 set_exception_intercept(svm, PF_VECTOR); 1263 set_exception_intercept(svm, UD_VECTOR); 1264 set_exception_intercept(svm, MC_VECTOR); 1265 set_exception_intercept(svm, AC_VECTOR); 1266 set_exception_intercept(svm, DB_VECTOR); 1267 /* 1268 * Guest access to VMware backdoor ports could legitimately 1269 * trigger #GP because of TSS I/O permission bitmap. 1270 * We intercept those #GP and allow access to them anyway 1271 * as VMware does. 1272 */ 1273 if (enable_vmware_backdoor) 1274 set_exception_intercept(svm, GP_VECTOR); 1275 1276 svm_set_intercept(svm, INTERCEPT_INTR); 1277 svm_set_intercept(svm, INTERCEPT_NMI); 1278 1279 if (intercept_smi) 1280 svm_set_intercept(svm, INTERCEPT_SMI); 1281 1282 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1283 svm_set_intercept(svm, INTERCEPT_RDPMC); 1284 svm_set_intercept(svm, INTERCEPT_CPUID); 1285 svm_set_intercept(svm, INTERCEPT_INVD); 1286 svm_set_intercept(svm, INTERCEPT_INVLPG); 1287 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1288 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1289 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1290 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1291 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1292 svm_set_intercept(svm, INTERCEPT_VMRUN); 1293 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1294 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1295 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1296 svm_set_intercept(svm, INTERCEPT_STGI); 1297 svm_set_intercept(svm, INTERCEPT_CLGI); 1298 svm_set_intercept(svm, INTERCEPT_SKINIT); 1299 svm_set_intercept(svm, INTERCEPT_WBINVD); 1300 svm_set_intercept(svm, INTERCEPT_XSETBV); 1301 svm_set_intercept(svm, INTERCEPT_RDPRU); 1302 svm_set_intercept(svm, INTERCEPT_RSM); 1303 1304 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1305 svm_set_intercept(svm, INTERCEPT_MONITOR); 1306 svm_set_intercept(svm, INTERCEPT_MWAIT); 1307 } 1308 1309 if (!kvm_hlt_in_guest(vcpu->kvm)) 1310 svm_set_intercept(svm, INTERCEPT_HLT); 1311 1312 control->iopm_base_pa = __sme_set(iopm_base); 1313 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1314 control->int_ctl = V_INTR_MASKING_MASK; 1315 1316 init_seg(&save->es); 1317 init_seg(&save->ss); 1318 init_seg(&save->ds); 1319 init_seg(&save->fs); 1320 init_seg(&save->gs); 1321 1322 save->cs.selector = 0xf000; 1323 save->cs.base = 0xffff0000; 1324 /* Executable/Readable Code Segment */ 1325 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1326 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1327 save->cs.limit = 0xffff; 1328 1329 save->gdtr.base = 0; 1330 save->gdtr.limit = 0xffff; 1331 save->idtr.base = 0; 1332 save->idtr.limit = 0xffff; 1333 1334 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1335 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1336 1337 if (npt_enabled) { 1338 /* Setup VMCB for Nested Paging */ 1339 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1340 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1341 clr_exception_intercept(svm, PF_VECTOR); 1342 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1343 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1344 save->g_pat = vcpu->arch.pat; 1345 save->cr3 = 0; 1346 } 1347 svm->current_vmcb->asid_generation = 0; 1348 svm->asid = 0; 1349 1350 svm->nested.vmcb12_gpa = INVALID_GPA; 1351 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1352 1353 if (!kvm_pause_in_guest(vcpu->kvm)) { 1354 control->pause_filter_count = pause_filter_count; 1355 if (pause_filter_thresh) 1356 control->pause_filter_thresh = pause_filter_thresh; 1357 svm_set_intercept(svm, INTERCEPT_PAUSE); 1358 } else { 1359 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1360 } 1361 1362 svm_recalc_instruction_intercepts(vcpu, svm); 1363 1364 /* 1365 * If the host supports V_SPEC_CTRL then disable the interception 1366 * of MSR_IA32_SPEC_CTRL. 1367 */ 1368 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1369 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1370 1371 if (kvm_vcpu_apicv_active(vcpu)) 1372 avic_init_vmcb(svm, vmcb); 1373 1374 if (vnmi) 1375 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1376 1377 if (vgif) { 1378 svm_clr_intercept(svm, INTERCEPT_STGI); 1379 svm_clr_intercept(svm, INTERCEPT_CLGI); 1380 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1381 } 1382 1383 if (sev_guest(vcpu->kvm)) 1384 sev_init_vmcb(svm); 1385 1386 svm_hv_init_vmcb(vmcb); 1387 init_vmcb_after_set_cpuid(vcpu); 1388 1389 vmcb_mark_all_dirty(vmcb); 1390 1391 enable_gif(svm); 1392 } 1393 1394 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1395 { 1396 struct vcpu_svm *svm = to_svm(vcpu); 1397 1398 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1399 1400 svm_init_osvw(vcpu); 1401 vcpu->arch.microcode_version = 0x01000065; 1402 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1403 1404 svm->nmi_masked = false; 1405 svm->awaiting_iret_completion = false; 1406 1407 if (sev_es_guest(vcpu->kvm)) 1408 sev_es_vcpu_reset(svm); 1409 } 1410 1411 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1412 { 1413 struct vcpu_svm *svm = to_svm(vcpu); 1414 1415 svm->spec_ctrl = 0; 1416 svm->virt_spec_ctrl = 0; 1417 1418 init_vmcb(vcpu); 1419 1420 if (!init_event) 1421 __svm_vcpu_reset(vcpu); 1422 } 1423 1424 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1425 { 1426 svm->current_vmcb = target_vmcb; 1427 svm->vmcb = target_vmcb->ptr; 1428 } 1429 1430 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1431 { 1432 struct vcpu_svm *svm; 1433 struct page *vmcb01_page; 1434 struct page *vmsa_page = NULL; 1435 int err; 1436 1437 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1438 svm = to_svm(vcpu); 1439 1440 err = -ENOMEM; 1441 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1442 if (!vmcb01_page) 1443 goto out; 1444 1445 if (sev_es_guest(vcpu->kvm)) { 1446 /* 1447 * SEV-ES guests require a separate VMSA page used to contain 1448 * the encrypted register state of the guest. 1449 */ 1450 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1451 if (!vmsa_page) 1452 goto error_free_vmcb_page; 1453 1454 /* 1455 * SEV-ES guests maintain an encrypted version of their FPU 1456 * state which is restored and saved on VMRUN and VMEXIT. 1457 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1458 * do xsave/xrstor on it. 1459 */ 1460 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1461 } 1462 1463 err = avic_init_vcpu(svm); 1464 if (err) 1465 goto error_free_vmsa_page; 1466 1467 svm->msrpm = svm_vcpu_alloc_msrpm(); 1468 if (!svm->msrpm) { 1469 err = -ENOMEM; 1470 goto error_free_vmsa_page; 1471 } 1472 1473 svm->x2avic_msrs_intercepted = true; 1474 1475 svm->vmcb01.ptr = page_address(vmcb01_page); 1476 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1477 svm_switch_vmcb(svm, &svm->vmcb01); 1478 1479 if (vmsa_page) 1480 svm->sev_es.vmsa = page_address(vmsa_page); 1481 1482 svm->guest_state_loaded = false; 1483 1484 return 0; 1485 1486 error_free_vmsa_page: 1487 if (vmsa_page) 1488 __free_page(vmsa_page); 1489 error_free_vmcb_page: 1490 __free_page(vmcb01_page); 1491 out: 1492 return err; 1493 } 1494 1495 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1496 { 1497 int i; 1498 1499 for_each_online_cpu(i) 1500 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1501 } 1502 1503 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1504 { 1505 struct vcpu_svm *svm = to_svm(vcpu); 1506 1507 /* 1508 * The vmcb page can be recycled, causing a false negative in 1509 * svm_vcpu_load(). So, ensure that no logical CPU has this 1510 * vmcb page recorded as its current vmcb. 1511 */ 1512 svm_clear_current_vmcb(svm->vmcb); 1513 1514 svm_leave_nested(vcpu); 1515 svm_free_nested(svm); 1516 1517 sev_free_vcpu(vcpu); 1518 1519 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1520 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1521 } 1522 1523 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1524 { 1525 struct vcpu_svm *svm = to_svm(vcpu); 1526 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1527 1528 if (sev_es_guest(vcpu->kvm)) 1529 sev_es_unmap_ghcb(svm); 1530 1531 if (svm->guest_state_loaded) 1532 return; 1533 1534 /* 1535 * Save additional host state that will be restored on VMEXIT (sev-es) 1536 * or subsequent vmload of host save area. 1537 */ 1538 vmsave(sd->save_area_pa); 1539 if (sev_es_guest(vcpu->kvm)) { 1540 struct sev_es_save_area *hostsa; 1541 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 1542 1543 sev_es_prepare_switch_to_guest(hostsa); 1544 } 1545 1546 if (tsc_scaling) 1547 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1548 1549 /* 1550 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 1551 * available. The user return MSR support is not required in this case 1552 * because TSC_AUX is restored on #VMEXIT from the host save area 1553 * (which has been initialized in svm_hardware_enable()). 1554 */ 1555 if (likely(tsc_aux_uret_slot >= 0) && 1556 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1557 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1558 1559 svm->guest_state_loaded = true; 1560 } 1561 1562 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1563 { 1564 to_svm(vcpu)->guest_state_loaded = false; 1565 } 1566 1567 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1568 { 1569 struct vcpu_svm *svm = to_svm(vcpu); 1570 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1571 1572 if (sd->current_vmcb != svm->vmcb) { 1573 sd->current_vmcb = svm->vmcb; 1574 1575 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT)) 1576 indirect_branch_prediction_barrier(); 1577 } 1578 if (kvm_vcpu_apicv_active(vcpu)) 1579 avic_vcpu_load(vcpu, cpu); 1580 } 1581 1582 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1583 { 1584 if (kvm_vcpu_apicv_active(vcpu)) 1585 avic_vcpu_put(vcpu); 1586 1587 svm_prepare_host_switch(vcpu); 1588 1589 ++vcpu->stat.host_state_reload; 1590 } 1591 1592 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1593 { 1594 struct vcpu_svm *svm = to_svm(vcpu); 1595 unsigned long rflags = svm->vmcb->save.rflags; 1596 1597 if (svm->nmi_singlestep) { 1598 /* Hide our flags if they were not set by the guest */ 1599 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1600 rflags &= ~X86_EFLAGS_TF; 1601 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1602 rflags &= ~X86_EFLAGS_RF; 1603 } 1604 return rflags; 1605 } 1606 1607 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1608 { 1609 if (to_svm(vcpu)->nmi_singlestep) 1610 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1611 1612 /* 1613 * Any change of EFLAGS.VM is accompanied by a reload of SS 1614 * (caused by either a task switch or an inter-privilege IRET), 1615 * so we do not need to update the CPL here. 1616 */ 1617 to_svm(vcpu)->vmcb->save.rflags = rflags; 1618 } 1619 1620 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1621 { 1622 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1623 1624 return sev_es_guest(vcpu->kvm) 1625 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1626 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1627 } 1628 1629 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1630 { 1631 kvm_register_mark_available(vcpu, reg); 1632 1633 switch (reg) { 1634 case VCPU_EXREG_PDPTR: 1635 /* 1636 * When !npt_enabled, mmu->pdptrs[] is already available since 1637 * it is always updated per SDM when moving to CRs. 1638 */ 1639 if (npt_enabled) 1640 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1641 break; 1642 default: 1643 KVM_BUG_ON(1, vcpu->kvm); 1644 } 1645 } 1646 1647 static void svm_set_vintr(struct vcpu_svm *svm) 1648 { 1649 struct vmcb_control_area *control; 1650 1651 /* 1652 * The following fields are ignored when AVIC is enabled 1653 */ 1654 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1655 1656 svm_set_intercept(svm, INTERCEPT_VINTR); 1657 1658 /* 1659 * Recalculating intercepts may have cleared the VINTR intercept. If 1660 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1661 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1662 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1663 * interrupts will never be unblocked while L2 is running. 1664 */ 1665 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1666 return; 1667 1668 /* 1669 * This is just a dummy VINTR to actually cause a vmexit to happen. 1670 * Actual injection of virtual interrupts happens through EVENTINJ. 1671 */ 1672 control = &svm->vmcb->control; 1673 control->int_vector = 0x0; 1674 control->int_ctl &= ~V_INTR_PRIO_MASK; 1675 control->int_ctl |= V_IRQ_MASK | 1676 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1677 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1678 } 1679 1680 static void svm_clear_vintr(struct vcpu_svm *svm) 1681 { 1682 svm_clr_intercept(svm, INTERCEPT_VINTR); 1683 1684 /* Drop int_ctl fields related to VINTR injection. */ 1685 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1686 if (is_guest_mode(&svm->vcpu)) { 1687 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1688 1689 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1690 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1691 1692 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1693 V_IRQ_INJECTION_BITS_MASK; 1694 1695 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1696 } 1697 1698 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1699 } 1700 1701 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1702 { 1703 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1704 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1705 1706 switch (seg) { 1707 case VCPU_SREG_CS: return &save->cs; 1708 case VCPU_SREG_DS: return &save->ds; 1709 case VCPU_SREG_ES: return &save->es; 1710 case VCPU_SREG_FS: return &save01->fs; 1711 case VCPU_SREG_GS: return &save01->gs; 1712 case VCPU_SREG_SS: return &save->ss; 1713 case VCPU_SREG_TR: return &save01->tr; 1714 case VCPU_SREG_LDTR: return &save01->ldtr; 1715 } 1716 BUG(); 1717 return NULL; 1718 } 1719 1720 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1721 { 1722 struct vmcb_seg *s = svm_seg(vcpu, seg); 1723 1724 return s->base; 1725 } 1726 1727 static void svm_get_segment(struct kvm_vcpu *vcpu, 1728 struct kvm_segment *var, int seg) 1729 { 1730 struct vmcb_seg *s = svm_seg(vcpu, seg); 1731 1732 var->base = s->base; 1733 var->limit = s->limit; 1734 var->selector = s->selector; 1735 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1736 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1737 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1738 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1739 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1740 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1741 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1742 1743 /* 1744 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1745 * However, the SVM spec states that the G bit is not observed by the 1746 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1747 * So let's synthesize a legal G bit for all segments, this helps 1748 * running KVM nested. It also helps cross-vendor migration, because 1749 * Intel's vmentry has a check on the 'G' bit. 1750 */ 1751 var->g = s->limit > 0xfffff; 1752 1753 /* 1754 * AMD's VMCB does not have an explicit unusable field, so emulate it 1755 * for cross vendor migration purposes by "not present" 1756 */ 1757 var->unusable = !var->present; 1758 1759 switch (seg) { 1760 case VCPU_SREG_TR: 1761 /* 1762 * Work around a bug where the busy flag in the tr selector 1763 * isn't exposed 1764 */ 1765 var->type |= 0x2; 1766 break; 1767 case VCPU_SREG_DS: 1768 case VCPU_SREG_ES: 1769 case VCPU_SREG_FS: 1770 case VCPU_SREG_GS: 1771 /* 1772 * The accessed bit must always be set in the segment 1773 * descriptor cache, although it can be cleared in the 1774 * descriptor, the cached bit always remains at 1. Since 1775 * Intel has a check on this, set it here to support 1776 * cross-vendor migration. 1777 */ 1778 if (!var->unusable) 1779 var->type |= 0x1; 1780 break; 1781 case VCPU_SREG_SS: 1782 /* 1783 * On AMD CPUs sometimes the DB bit in the segment 1784 * descriptor is left as 1, although the whole segment has 1785 * been made unusable. Clear it here to pass an Intel VMX 1786 * entry check when cross vendor migrating. 1787 */ 1788 if (var->unusable) 1789 var->db = 0; 1790 /* This is symmetric with svm_set_segment() */ 1791 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1792 break; 1793 } 1794 } 1795 1796 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1797 { 1798 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1799 1800 return save->cpl; 1801 } 1802 1803 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1804 { 1805 struct kvm_segment cs; 1806 1807 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1808 *db = cs.db; 1809 *l = cs.l; 1810 } 1811 1812 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1813 { 1814 struct vcpu_svm *svm = to_svm(vcpu); 1815 1816 dt->size = svm->vmcb->save.idtr.limit; 1817 dt->address = svm->vmcb->save.idtr.base; 1818 } 1819 1820 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1821 { 1822 struct vcpu_svm *svm = to_svm(vcpu); 1823 1824 svm->vmcb->save.idtr.limit = dt->size; 1825 svm->vmcb->save.idtr.base = dt->address ; 1826 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1827 } 1828 1829 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1830 { 1831 struct vcpu_svm *svm = to_svm(vcpu); 1832 1833 dt->size = svm->vmcb->save.gdtr.limit; 1834 dt->address = svm->vmcb->save.gdtr.base; 1835 } 1836 1837 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1838 { 1839 struct vcpu_svm *svm = to_svm(vcpu); 1840 1841 svm->vmcb->save.gdtr.limit = dt->size; 1842 svm->vmcb->save.gdtr.base = dt->address ; 1843 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1844 } 1845 1846 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1847 { 1848 struct vcpu_svm *svm = to_svm(vcpu); 1849 1850 /* 1851 * For guests that don't set guest_state_protected, the cr3 update is 1852 * handled via kvm_mmu_load() while entering the guest. For guests 1853 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1854 * VMCB save area now, since the save area will become the initial 1855 * contents of the VMSA, and future VMCB save area updates won't be 1856 * seen. 1857 */ 1858 if (sev_es_guest(vcpu->kvm)) { 1859 svm->vmcb->save.cr3 = cr3; 1860 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1861 } 1862 } 1863 1864 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1865 { 1866 return true; 1867 } 1868 1869 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1870 { 1871 struct vcpu_svm *svm = to_svm(vcpu); 1872 u64 hcr0 = cr0; 1873 bool old_paging = is_paging(vcpu); 1874 1875 #ifdef CONFIG_X86_64 1876 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1877 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1878 vcpu->arch.efer |= EFER_LMA; 1879 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1880 } 1881 1882 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1883 vcpu->arch.efer &= ~EFER_LMA; 1884 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1885 } 1886 } 1887 #endif 1888 vcpu->arch.cr0 = cr0; 1889 1890 if (!npt_enabled) { 1891 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1892 if (old_paging != is_paging(vcpu)) 1893 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1894 } 1895 1896 /* 1897 * re-enable caching here because the QEMU bios 1898 * does not do it - this results in some delay at 1899 * reboot 1900 */ 1901 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1902 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1903 1904 svm->vmcb->save.cr0 = hcr0; 1905 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1906 1907 /* 1908 * SEV-ES guests must always keep the CR intercepts cleared. CR 1909 * tracking is done using the CR write traps. 1910 */ 1911 if (sev_es_guest(vcpu->kvm)) 1912 return; 1913 1914 if (hcr0 == cr0) { 1915 /* Selective CR0 write remains on. */ 1916 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1917 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1918 } else { 1919 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1920 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1921 } 1922 } 1923 1924 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1925 { 1926 return true; 1927 } 1928 1929 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1930 { 1931 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1932 unsigned long old_cr4 = vcpu->arch.cr4; 1933 1934 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1935 svm_flush_tlb_current(vcpu); 1936 1937 vcpu->arch.cr4 = cr4; 1938 if (!npt_enabled) { 1939 cr4 |= X86_CR4_PAE; 1940 1941 if (!is_paging(vcpu)) 1942 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1943 } 1944 cr4 |= host_cr4_mce; 1945 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1946 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1947 1948 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1949 kvm_update_cpuid_runtime(vcpu); 1950 } 1951 1952 static void svm_set_segment(struct kvm_vcpu *vcpu, 1953 struct kvm_segment *var, int seg) 1954 { 1955 struct vcpu_svm *svm = to_svm(vcpu); 1956 struct vmcb_seg *s = svm_seg(vcpu, seg); 1957 1958 s->base = var->base; 1959 s->limit = var->limit; 1960 s->selector = var->selector; 1961 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1962 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1963 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1964 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1965 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1966 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1967 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1968 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1969 1970 /* 1971 * This is always accurate, except if SYSRET returned to a segment 1972 * with SS.DPL != 3. Intel does not have this quirk, and always 1973 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1974 * would entail passing the CPL to userspace and back. 1975 */ 1976 if (seg == VCPU_SREG_SS) 1977 /* This is symmetric with svm_get_segment() */ 1978 svm->vmcb->save.cpl = (var->dpl & 3); 1979 1980 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1981 } 1982 1983 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1984 { 1985 struct vcpu_svm *svm = to_svm(vcpu); 1986 1987 clr_exception_intercept(svm, BP_VECTOR); 1988 1989 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1990 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1991 set_exception_intercept(svm, BP_VECTOR); 1992 } 1993 } 1994 1995 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1996 { 1997 if (sd->next_asid > sd->max_asid) { 1998 ++sd->asid_generation; 1999 sd->next_asid = sd->min_asid; 2000 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 2001 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2002 } 2003 2004 svm->current_vmcb->asid_generation = sd->asid_generation; 2005 svm->asid = sd->next_asid++; 2006 } 2007 2008 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 2009 { 2010 struct vmcb *vmcb = svm->vmcb; 2011 2012 if (svm->vcpu.arch.guest_state_protected) 2013 return; 2014 2015 if (unlikely(value != vmcb->save.dr6)) { 2016 vmcb->save.dr6 = value; 2017 vmcb_mark_dirty(vmcb, VMCB_DR); 2018 } 2019 } 2020 2021 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2022 { 2023 struct vcpu_svm *svm = to_svm(vcpu); 2024 2025 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2026 return; 2027 2028 get_debugreg(vcpu->arch.db[0], 0); 2029 get_debugreg(vcpu->arch.db[1], 1); 2030 get_debugreg(vcpu->arch.db[2], 2); 2031 get_debugreg(vcpu->arch.db[3], 3); 2032 /* 2033 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2034 * because db_interception might need it. We can do it before vmentry. 2035 */ 2036 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2037 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2038 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2039 set_dr_intercepts(svm); 2040 } 2041 2042 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2043 { 2044 struct vcpu_svm *svm = to_svm(vcpu); 2045 2046 if (vcpu->arch.guest_state_protected) 2047 return; 2048 2049 svm->vmcb->save.dr7 = value; 2050 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2051 } 2052 2053 static int pf_interception(struct kvm_vcpu *vcpu) 2054 { 2055 struct vcpu_svm *svm = to_svm(vcpu); 2056 2057 u64 fault_address = svm->vmcb->control.exit_info_2; 2058 u64 error_code = svm->vmcb->control.exit_info_1; 2059 2060 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2061 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2062 svm->vmcb->control.insn_bytes : NULL, 2063 svm->vmcb->control.insn_len); 2064 } 2065 2066 static int npf_interception(struct kvm_vcpu *vcpu) 2067 { 2068 struct vcpu_svm *svm = to_svm(vcpu); 2069 2070 u64 fault_address = svm->vmcb->control.exit_info_2; 2071 u64 error_code = svm->vmcb->control.exit_info_1; 2072 2073 trace_kvm_page_fault(vcpu, fault_address, error_code); 2074 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 2075 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2076 svm->vmcb->control.insn_bytes : NULL, 2077 svm->vmcb->control.insn_len); 2078 } 2079 2080 static int db_interception(struct kvm_vcpu *vcpu) 2081 { 2082 struct kvm_run *kvm_run = vcpu->run; 2083 struct vcpu_svm *svm = to_svm(vcpu); 2084 2085 if (!(vcpu->guest_debug & 2086 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2087 !svm->nmi_singlestep) { 2088 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2089 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2090 return 1; 2091 } 2092 2093 if (svm->nmi_singlestep) { 2094 disable_nmi_singlestep(svm); 2095 /* Make sure we check for pending NMIs upon entry */ 2096 kvm_make_request(KVM_REQ_EVENT, vcpu); 2097 } 2098 2099 if (vcpu->guest_debug & 2100 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2101 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2102 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2103 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2104 kvm_run->debug.arch.pc = 2105 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2106 kvm_run->debug.arch.exception = DB_VECTOR; 2107 return 0; 2108 } 2109 2110 return 1; 2111 } 2112 2113 static int bp_interception(struct kvm_vcpu *vcpu) 2114 { 2115 struct vcpu_svm *svm = to_svm(vcpu); 2116 struct kvm_run *kvm_run = vcpu->run; 2117 2118 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2119 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2120 kvm_run->debug.arch.exception = BP_VECTOR; 2121 return 0; 2122 } 2123 2124 static int ud_interception(struct kvm_vcpu *vcpu) 2125 { 2126 return handle_ud(vcpu); 2127 } 2128 2129 static int ac_interception(struct kvm_vcpu *vcpu) 2130 { 2131 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2132 return 1; 2133 } 2134 2135 static bool is_erratum_383(void) 2136 { 2137 int err, i; 2138 u64 value; 2139 2140 if (!erratum_383_found) 2141 return false; 2142 2143 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2144 if (err) 2145 return false; 2146 2147 /* Bit 62 may or may not be set for this mce */ 2148 value &= ~(1ULL << 62); 2149 2150 if (value != 0xb600000000010015ULL) 2151 return false; 2152 2153 /* Clear MCi_STATUS registers */ 2154 for (i = 0; i < 6; ++i) 2155 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2156 2157 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2158 if (!err) { 2159 u32 low, high; 2160 2161 value &= ~(1ULL << 2); 2162 low = lower_32_bits(value); 2163 high = upper_32_bits(value); 2164 2165 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2166 } 2167 2168 /* Flush tlb to evict multi-match entries */ 2169 __flush_tlb_all(); 2170 2171 return true; 2172 } 2173 2174 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2175 { 2176 if (is_erratum_383()) { 2177 /* 2178 * Erratum 383 triggered. Guest state is corrupt so kill the 2179 * guest. 2180 */ 2181 pr_err("Guest triggered AMD Erratum 383\n"); 2182 2183 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2184 2185 return; 2186 } 2187 2188 /* 2189 * On an #MC intercept the MCE handler is not called automatically in 2190 * the host. So do it by hand here. 2191 */ 2192 kvm_machine_check(); 2193 } 2194 2195 static int mc_interception(struct kvm_vcpu *vcpu) 2196 { 2197 return 1; 2198 } 2199 2200 static int shutdown_interception(struct kvm_vcpu *vcpu) 2201 { 2202 struct kvm_run *kvm_run = vcpu->run; 2203 struct vcpu_svm *svm = to_svm(vcpu); 2204 2205 /* 2206 * The VM save area has already been encrypted so it 2207 * cannot be reinitialized - just terminate. 2208 */ 2209 if (sev_es_guest(vcpu->kvm)) 2210 return -EINVAL; 2211 2212 /* 2213 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2214 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2215 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2216 * userspace. At a platform view, INIT is acceptable behavior as 2217 * there exist bare metal platforms that automatically INIT the CPU 2218 * in response to shutdown. 2219 */ 2220 clear_page(svm->vmcb); 2221 kvm_vcpu_reset(vcpu, true); 2222 2223 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2224 return 0; 2225 } 2226 2227 static int io_interception(struct kvm_vcpu *vcpu) 2228 { 2229 struct vcpu_svm *svm = to_svm(vcpu); 2230 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2231 int size, in, string; 2232 unsigned port; 2233 2234 ++vcpu->stat.io_exits; 2235 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2236 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2237 port = io_info >> 16; 2238 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2239 2240 if (string) { 2241 if (sev_es_guest(vcpu->kvm)) 2242 return sev_es_string_io(svm, size, port, in); 2243 else 2244 return kvm_emulate_instruction(vcpu, 0); 2245 } 2246 2247 svm->next_rip = svm->vmcb->control.exit_info_2; 2248 2249 return kvm_fast_pio(vcpu, size, port, in); 2250 } 2251 2252 static int nmi_interception(struct kvm_vcpu *vcpu) 2253 { 2254 return 1; 2255 } 2256 2257 static int smi_interception(struct kvm_vcpu *vcpu) 2258 { 2259 return 1; 2260 } 2261 2262 static int intr_interception(struct kvm_vcpu *vcpu) 2263 { 2264 ++vcpu->stat.irq_exits; 2265 return 1; 2266 } 2267 2268 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2269 { 2270 struct vcpu_svm *svm = to_svm(vcpu); 2271 struct vmcb *vmcb12; 2272 struct kvm_host_map map; 2273 int ret; 2274 2275 if (nested_svm_check_permissions(vcpu)) 2276 return 1; 2277 2278 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2279 if (ret) { 2280 if (ret == -EINVAL) 2281 kvm_inject_gp(vcpu, 0); 2282 return 1; 2283 } 2284 2285 vmcb12 = map.hva; 2286 2287 ret = kvm_skip_emulated_instruction(vcpu); 2288 2289 if (vmload) { 2290 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2291 svm->sysenter_eip_hi = 0; 2292 svm->sysenter_esp_hi = 0; 2293 } else { 2294 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2295 } 2296 2297 kvm_vcpu_unmap(vcpu, &map, true); 2298 2299 return ret; 2300 } 2301 2302 static int vmload_interception(struct kvm_vcpu *vcpu) 2303 { 2304 return vmload_vmsave_interception(vcpu, true); 2305 } 2306 2307 static int vmsave_interception(struct kvm_vcpu *vcpu) 2308 { 2309 return vmload_vmsave_interception(vcpu, false); 2310 } 2311 2312 static int vmrun_interception(struct kvm_vcpu *vcpu) 2313 { 2314 if (nested_svm_check_permissions(vcpu)) 2315 return 1; 2316 2317 return nested_svm_vmrun(vcpu); 2318 } 2319 2320 enum { 2321 NONE_SVM_INSTR, 2322 SVM_INSTR_VMRUN, 2323 SVM_INSTR_VMLOAD, 2324 SVM_INSTR_VMSAVE, 2325 }; 2326 2327 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2328 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2329 { 2330 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2331 2332 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2333 return NONE_SVM_INSTR; 2334 2335 switch (ctxt->modrm) { 2336 case 0xd8: /* VMRUN */ 2337 return SVM_INSTR_VMRUN; 2338 case 0xda: /* VMLOAD */ 2339 return SVM_INSTR_VMLOAD; 2340 case 0xdb: /* VMSAVE */ 2341 return SVM_INSTR_VMSAVE; 2342 default: 2343 break; 2344 } 2345 2346 return NONE_SVM_INSTR; 2347 } 2348 2349 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2350 { 2351 const int guest_mode_exit_codes[] = { 2352 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2353 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2354 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2355 }; 2356 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2357 [SVM_INSTR_VMRUN] = vmrun_interception, 2358 [SVM_INSTR_VMLOAD] = vmload_interception, 2359 [SVM_INSTR_VMSAVE] = vmsave_interception, 2360 }; 2361 struct vcpu_svm *svm = to_svm(vcpu); 2362 int ret; 2363 2364 if (is_guest_mode(vcpu)) { 2365 /* Returns '1' or -errno on failure, '0' on success. */ 2366 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2367 if (ret) 2368 return ret; 2369 return 1; 2370 } 2371 return svm_instr_handlers[opcode](vcpu); 2372 } 2373 2374 /* 2375 * #GP handling code. Note that #GP can be triggered under the following two 2376 * cases: 2377 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2378 * some AMD CPUs when EAX of these instructions are in the reserved memory 2379 * regions (e.g. SMM memory on host). 2380 * 2) VMware backdoor 2381 */ 2382 static int gp_interception(struct kvm_vcpu *vcpu) 2383 { 2384 struct vcpu_svm *svm = to_svm(vcpu); 2385 u32 error_code = svm->vmcb->control.exit_info_1; 2386 int opcode; 2387 2388 /* Both #GP cases have zero error_code */ 2389 if (error_code) 2390 goto reinject; 2391 2392 /* Decode the instruction for usage later */ 2393 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2394 goto reinject; 2395 2396 opcode = svm_instr_opcode(vcpu); 2397 2398 if (opcode == NONE_SVM_INSTR) { 2399 if (!enable_vmware_backdoor) 2400 goto reinject; 2401 2402 /* 2403 * VMware backdoor emulation on #GP interception only handles 2404 * IN{S}, OUT{S}, and RDPMC. 2405 */ 2406 if (!is_guest_mode(vcpu)) 2407 return kvm_emulate_instruction(vcpu, 2408 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2409 } else { 2410 /* All SVM instructions expect page aligned RAX */ 2411 if (svm->vmcb->save.rax & ~PAGE_MASK) 2412 goto reinject; 2413 2414 return emulate_svm_instr(vcpu, opcode); 2415 } 2416 2417 reinject: 2418 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2419 return 1; 2420 } 2421 2422 void svm_set_gif(struct vcpu_svm *svm, bool value) 2423 { 2424 if (value) { 2425 /* 2426 * If VGIF is enabled, the STGI intercept is only added to 2427 * detect the opening of the SMI/NMI window; remove it now. 2428 * Likewise, clear the VINTR intercept, we will set it 2429 * again while processing KVM_REQ_EVENT if needed. 2430 */ 2431 if (vgif) 2432 svm_clr_intercept(svm, INTERCEPT_STGI); 2433 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2434 svm_clear_vintr(svm); 2435 2436 enable_gif(svm); 2437 if (svm->vcpu.arch.smi_pending || 2438 svm->vcpu.arch.nmi_pending || 2439 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2440 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2441 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2442 } else { 2443 disable_gif(svm); 2444 2445 /* 2446 * After a CLGI no interrupts should come. But if vGIF is 2447 * in use, we still rely on the VINTR intercept (rather than 2448 * STGI) to detect an open interrupt window. 2449 */ 2450 if (!vgif) 2451 svm_clear_vintr(svm); 2452 } 2453 } 2454 2455 static int stgi_interception(struct kvm_vcpu *vcpu) 2456 { 2457 int ret; 2458 2459 if (nested_svm_check_permissions(vcpu)) 2460 return 1; 2461 2462 ret = kvm_skip_emulated_instruction(vcpu); 2463 svm_set_gif(to_svm(vcpu), true); 2464 return ret; 2465 } 2466 2467 static int clgi_interception(struct kvm_vcpu *vcpu) 2468 { 2469 int ret; 2470 2471 if (nested_svm_check_permissions(vcpu)) 2472 return 1; 2473 2474 ret = kvm_skip_emulated_instruction(vcpu); 2475 svm_set_gif(to_svm(vcpu), false); 2476 return ret; 2477 } 2478 2479 static int invlpga_interception(struct kvm_vcpu *vcpu) 2480 { 2481 gva_t gva = kvm_rax_read(vcpu); 2482 u32 asid = kvm_rcx_read(vcpu); 2483 2484 /* FIXME: Handle an address size prefix. */ 2485 if (!is_long_mode(vcpu)) 2486 gva = (u32)gva; 2487 2488 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2489 2490 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2491 kvm_mmu_invlpg(vcpu, gva); 2492 2493 return kvm_skip_emulated_instruction(vcpu); 2494 } 2495 2496 static int skinit_interception(struct kvm_vcpu *vcpu) 2497 { 2498 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2499 2500 kvm_queue_exception(vcpu, UD_VECTOR); 2501 return 1; 2502 } 2503 2504 static int task_switch_interception(struct kvm_vcpu *vcpu) 2505 { 2506 struct vcpu_svm *svm = to_svm(vcpu); 2507 u16 tss_selector; 2508 int reason; 2509 int int_type = svm->vmcb->control.exit_int_info & 2510 SVM_EXITINTINFO_TYPE_MASK; 2511 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2512 uint32_t type = 2513 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2514 uint32_t idt_v = 2515 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2516 bool has_error_code = false; 2517 u32 error_code = 0; 2518 2519 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2520 2521 if (svm->vmcb->control.exit_info_2 & 2522 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2523 reason = TASK_SWITCH_IRET; 2524 else if (svm->vmcb->control.exit_info_2 & 2525 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2526 reason = TASK_SWITCH_JMP; 2527 else if (idt_v) 2528 reason = TASK_SWITCH_GATE; 2529 else 2530 reason = TASK_SWITCH_CALL; 2531 2532 if (reason == TASK_SWITCH_GATE) { 2533 switch (type) { 2534 case SVM_EXITINTINFO_TYPE_NMI: 2535 vcpu->arch.nmi_injected = false; 2536 break; 2537 case SVM_EXITINTINFO_TYPE_EXEPT: 2538 if (svm->vmcb->control.exit_info_2 & 2539 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2540 has_error_code = true; 2541 error_code = 2542 (u32)svm->vmcb->control.exit_info_2; 2543 } 2544 kvm_clear_exception_queue(vcpu); 2545 break; 2546 case SVM_EXITINTINFO_TYPE_INTR: 2547 case SVM_EXITINTINFO_TYPE_SOFT: 2548 kvm_clear_interrupt_queue(vcpu); 2549 break; 2550 default: 2551 break; 2552 } 2553 } 2554 2555 if (reason != TASK_SWITCH_GATE || 2556 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2557 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2558 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2559 if (!svm_skip_emulated_instruction(vcpu)) 2560 return 0; 2561 } 2562 2563 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2564 int_vec = -1; 2565 2566 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2567 has_error_code, error_code); 2568 } 2569 2570 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2571 { 2572 if (!sev_es_guest(svm->vcpu.kvm)) 2573 svm_clr_intercept(svm, INTERCEPT_IRET); 2574 } 2575 2576 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2577 { 2578 if (!sev_es_guest(svm->vcpu.kvm)) 2579 svm_set_intercept(svm, INTERCEPT_IRET); 2580 } 2581 2582 static int iret_interception(struct kvm_vcpu *vcpu) 2583 { 2584 struct vcpu_svm *svm = to_svm(vcpu); 2585 2586 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2587 2588 ++vcpu->stat.nmi_window_exits; 2589 svm->awaiting_iret_completion = true; 2590 2591 svm_clr_iret_intercept(svm); 2592 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2593 2594 kvm_make_request(KVM_REQ_EVENT, vcpu); 2595 return 1; 2596 } 2597 2598 static int invlpg_interception(struct kvm_vcpu *vcpu) 2599 { 2600 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2601 return kvm_emulate_instruction(vcpu, 0); 2602 2603 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2604 return kvm_skip_emulated_instruction(vcpu); 2605 } 2606 2607 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2608 { 2609 return kvm_emulate_instruction(vcpu, 0); 2610 } 2611 2612 static int rsm_interception(struct kvm_vcpu *vcpu) 2613 { 2614 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2615 } 2616 2617 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2618 unsigned long val) 2619 { 2620 struct vcpu_svm *svm = to_svm(vcpu); 2621 unsigned long cr0 = vcpu->arch.cr0; 2622 bool ret = false; 2623 2624 if (!is_guest_mode(vcpu) || 2625 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2626 return false; 2627 2628 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2629 val &= ~SVM_CR0_SELECTIVE_MASK; 2630 2631 if (cr0 ^ val) { 2632 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2633 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2634 } 2635 2636 return ret; 2637 } 2638 2639 #define CR_VALID (1ULL << 63) 2640 2641 static int cr_interception(struct kvm_vcpu *vcpu) 2642 { 2643 struct vcpu_svm *svm = to_svm(vcpu); 2644 int reg, cr; 2645 unsigned long val; 2646 int err; 2647 2648 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2649 return emulate_on_interception(vcpu); 2650 2651 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2652 return emulate_on_interception(vcpu); 2653 2654 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2655 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2656 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2657 else 2658 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2659 2660 err = 0; 2661 if (cr >= 16) { /* mov to cr */ 2662 cr -= 16; 2663 val = kvm_register_read(vcpu, reg); 2664 trace_kvm_cr_write(cr, val); 2665 switch (cr) { 2666 case 0: 2667 if (!check_selective_cr0_intercepted(vcpu, val)) 2668 err = kvm_set_cr0(vcpu, val); 2669 else 2670 return 1; 2671 2672 break; 2673 case 3: 2674 err = kvm_set_cr3(vcpu, val); 2675 break; 2676 case 4: 2677 err = kvm_set_cr4(vcpu, val); 2678 break; 2679 case 8: 2680 err = kvm_set_cr8(vcpu, val); 2681 break; 2682 default: 2683 WARN(1, "unhandled write to CR%d", cr); 2684 kvm_queue_exception(vcpu, UD_VECTOR); 2685 return 1; 2686 } 2687 } else { /* mov from cr */ 2688 switch (cr) { 2689 case 0: 2690 val = kvm_read_cr0(vcpu); 2691 break; 2692 case 2: 2693 val = vcpu->arch.cr2; 2694 break; 2695 case 3: 2696 val = kvm_read_cr3(vcpu); 2697 break; 2698 case 4: 2699 val = kvm_read_cr4(vcpu); 2700 break; 2701 case 8: 2702 val = kvm_get_cr8(vcpu); 2703 break; 2704 default: 2705 WARN(1, "unhandled read from CR%d", cr); 2706 kvm_queue_exception(vcpu, UD_VECTOR); 2707 return 1; 2708 } 2709 kvm_register_write(vcpu, reg, val); 2710 trace_kvm_cr_read(cr, val); 2711 } 2712 return kvm_complete_insn_gp(vcpu, err); 2713 } 2714 2715 static int cr_trap(struct kvm_vcpu *vcpu) 2716 { 2717 struct vcpu_svm *svm = to_svm(vcpu); 2718 unsigned long old_value, new_value; 2719 unsigned int cr; 2720 int ret = 0; 2721 2722 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2723 2724 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2725 switch (cr) { 2726 case 0: 2727 old_value = kvm_read_cr0(vcpu); 2728 svm_set_cr0(vcpu, new_value); 2729 2730 kvm_post_set_cr0(vcpu, old_value, new_value); 2731 break; 2732 case 4: 2733 old_value = kvm_read_cr4(vcpu); 2734 svm_set_cr4(vcpu, new_value); 2735 2736 kvm_post_set_cr4(vcpu, old_value, new_value); 2737 break; 2738 case 8: 2739 ret = kvm_set_cr8(vcpu, new_value); 2740 break; 2741 default: 2742 WARN(1, "unhandled CR%d write trap", cr); 2743 kvm_queue_exception(vcpu, UD_VECTOR); 2744 return 1; 2745 } 2746 2747 return kvm_complete_insn_gp(vcpu, ret); 2748 } 2749 2750 static int dr_interception(struct kvm_vcpu *vcpu) 2751 { 2752 struct vcpu_svm *svm = to_svm(vcpu); 2753 int reg, dr; 2754 unsigned long val; 2755 int err = 0; 2756 2757 /* 2758 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2759 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2760 */ 2761 if (sev_es_guest(vcpu->kvm)) 2762 return 1; 2763 2764 if (vcpu->guest_debug == 0) { 2765 /* 2766 * No more DR vmexits; force a reload of the debug registers 2767 * and reenter on this instruction. The next vmexit will 2768 * retrieve the full state of the debug registers. 2769 */ 2770 clr_dr_intercepts(svm); 2771 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2772 return 1; 2773 } 2774 2775 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2776 return emulate_on_interception(vcpu); 2777 2778 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2779 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2780 if (dr >= 16) { /* mov to DRn */ 2781 dr -= 16; 2782 val = kvm_register_read(vcpu, reg); 2783 err = kvm_set_dr(vcpu, dr, val); 2784 } else { 2785 kvm_get_dr(vcpu, dr, &val); 2786 kvm_register_write(vcpu, reg, val); 2787 } 2788 2789 return kvm_complete_insn_gp(vcpu, err); 2790 } 2791 2792 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2793 { 2794 int r; 2795 2796 u8 cr8_prev = kvm_get_cr8(vcpu); 2797 /* instruction emulation calls kvm_set_cr8() */ 2798 r = cr_interception(vcpu); 2799 if (lapic_in_kernel(vcpu)) 2800 return r; 2801 if (cr8_prev <= kvm_get_cr8(vcpu)) 2802 return r; 2803 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2804 return 0; 2805 } 2806 2807 static int efer_trap(struct kvm_vcpu *vcpu) 2808 { 2809 struct msr_data msr_info; 2810 int ret; 2811 2812 /* 2813 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2814 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2815 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2816 * the guest doesn't have X86_FEATURE_SVM. 2817 */ 2818 msr_info.host_initiated = false; 2819 msr_info.index = MSR_EFER; 2820 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2821 ret = kvm_set_msr_common(vcpu, &msr_info); 2822 2823 return kvm_complete_insn_gp(vcpu, ret); 2824 } 2825 2826 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2827 { 2828 msr->data = 0; 2829 2830 switch (msr->index) { 2831 case MSR_AMD64_DE_CFG: 2832 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2833 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2834 break; 2835 default: 2836 return KVM_MSR_RET_INVALID; 2837 } 2838 2839 return 0; 2840 } 2841 2842 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2843 { 2844 struct vcpu_svm *svm = to_svm(vcpu); 2845 2846 switch (msr_info->index) { 2847 case MSR_AMD64_TSC_RATIO: 2848 if (!msr_info->host_initiated && 2849 !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) 2850 return 1; 2851 msr_info->data = svm->tsc_ratio_msr; 2852 break; 2853 case MSR_STAR: 2854 msr_info->data = svm->vmcb01.ptr->save.star; 2855 break; 2856 #ifdef CONFIG_X86_64 2857 case MSR_LSTAR: 2858 msr_info->data = svm->vmcb01.ptr->save.lstar; 2859 break; 2860 case MSR_CSTAR: 2861 msr_info->data = svm->vmcb01.ptr->save.cstar; 2862 break; 2863 case MSR_KERNEL_GS_BASE: 2864 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2865 break; 2866 case MSR_SYSCALL_MASK: 2867 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2868 break; 2869 #endif 2870 case MSR_IA32_SYSENTER_CS: 2871 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2872 break; 2873 case MSR_IA32_SYSENTER_EIP: 2874 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2875 if (guest_cpuid_is_intel(vcpu)) 2876 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2877 break; 2878 case MSR_IA32_SYSENTER_ESP: 2879 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2880 if (guest_cpuid_is_intel(vcpu)) 2881 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2882 break; 2883 case MSR_TSC_AUX: 2884 msr_info->data = svm->tsc_aux; 2885 break; 2886 case MSR_IA32_DEBUGCTLMSR: 2887 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2888 break; 2889 case MSR_IA32_LASTBRANCHFROMIP: 2890 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2891 break; 2892 case MSR_IA32_LASTBRANCHTOIP: 2893 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2894 break; 2895 case MSR_IA32_LASTINTFROMIP: 2896 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2897 break; 2898 case MSR_IA32_LASTINTTOIP: 2899 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2900 break; 2901 case MSR_VM_HSAVE_PA: 2902 msr_info->data = svm->nested.hsave_msr; 2903 break; 2904 case MSR_VM_CR: 2905 msr_info->data = svm->nested.vm_cr_msr; 2906 break; 2907 case MSR_IA32_SPEC_CTRL: 2908 if (!msr_info->host_initiated && 2909 !guest_has_spec_ctrl_msr(vcpu)) 2910 return 1; 2911 2912 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2913 msr_info->data = svm->vmcb->save.spec_ctrl; 2914 else 2915 msr_info->data = svm->spec_ctrl; 2916 break; 2917 case MSR_AMD64_VIRT_SPEC_CTRL: 2918 if (!msr_info->host_initiated && 2919 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2920 return 1; 2921 2922 msr_info->data = svm->virt_spec_ctrl; 2923 break; 2924 case MSR_F15H_IC_CFG: { 2925 2926 int family, model; 2927 2928 family = guest_cpuid_family(vcpu); 2929 model = guest_cpuid_model(vcpu); 2930 2931 if (family < 0 || model < 0) 2932 return kvm_get_msr_common(vcpu, msr_info); 2933 2934 msr_info->data = 0; 2935 2936 if (family == 0x15 && 2937 (model >= 0x2 && model < 0x20)) 2938 msr_info->data = 0x1E; 2939 } 2940 break; 2941 case MSR_AMD64_DE_CFG: 2942 msr_info->data = svm->msr_decfg; 2943 break; 2944 default: 2945 return kvm_get_msr_common(vcpu, msr_info); 2946 } 2947 return 0; 2948 } 2949 2950 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2951 { 2952 struct vcpu_svm *svm = to_svm(vcpu); 2953 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2954 return kvm_complete_insn_gp(vcpu, err); 2955 2956 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2957 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2958 X86_TRAP_GP | 2959 SVM_EVTINJ_TYPE_EXEPT | 2960 SVM_EVTINJ_VALID); 2961 return 1; 2962 } 2963 2964 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2965 { 2966 struct vcpu_svm *svm = to_svm(vcpu); 2967 int svm_dis, chg_mask; 2968 2969 if (data & ~SVM_VM_CR_VALID_MASK) 2970 return 1; 2971 2972 chg_mask = SVM_VM_CR_VALID_MASK; 2973 2974 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2975 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2976 2977 svm->nested.vm_cr_msr &= ~chg_mask; 2978 svm->nested.vm_cr_msr |= (data & chg_mask); 2979 2980 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2981 2982 /* check for svm_disable while efer.svme is set */ 2983 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2984 return 1; 2985 2986 return 0; 2987 } 2988 2989 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2990 { 2991 struct vcpu_svm *svm = to_svm(vcpu); 2992 int ret = 0; 2993 2994 u32 ecx = msr->index; 2995 u64 data = msr->data; 2996 switch (ecx) { 2997 case MSR_AMD64_TSC_RATIO: 2998 2999 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) { 3000 3001 if (!msr->host_initiated) 3002 return 1; 3003 /* 3004 * In case TSC scaling is not enabled, always 3005 * leave this MSR at the default value. 3006 * 3007 * Due to bug in qemu 6.2.0, it would try to set 3008 * this msr to 0 if tsc scaling is not enabled. 3009 * Ignore this value as well. 3010 */ 3011 if (data != 0 && data != svm->tsc_ratio_msr) 3012 return 1; 3013 break; 3014 } 3015 3016 if (data & SVM_TSC_RATIO_RSVD) 3017 return 1; 3018 3019 svm->tsc_ratio_msr = data; 3020 3021 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) && 3022 is_guest_mode(vcpu)) 3023 nested_svm_update_tsc_ratio_msr(vcpu); 3024 3025 break; 3026 case MSR_IA32_CR_PAT: 3027 ret = kvm_set_msr_common(vcpu, msr); 3028 if (ret) 3029 break; 3030 3031 svm->vmcb01.ptr->save.g_pat = data; 3032 if (is_guest_mode(vcpu)) 3033 nested_vmcb02_compute_g_pat(svm); 3034 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3035 break; 3036 case MSR_IA32_SPEC_CTRL: 3037 if (!msr->host_initiated && 3038 !guest_has_spec_ctrl_msr(vcpu)) 3039 return 1; 3040 3041 if (kvm_spec_ctrl_test_value(data)) 3042 return 1; 3043 3044 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3045 svm->vmcb->save.spec_ctrl = data; 3046 else 3047 svm->spec_ctrl = data; 3048 if (!data) 3049 break; 3050 3051 /* 3052 * For non-nested: 3053 * When it's written (to non-zero) for the first time, pass 3054 * it through. 3055 * 3056 * For nested: 3057 * The handling of the MSR bitmap for L2 guests is done in 3058 * nested_svm_vmrun_msrpm. 3059 * We update the L1 MSR bit as well since it will end up 3060 * touching the MSR anyway now. 3061 */ 3062 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3063 break; 3064 case MSR_AMD64_VIRT_SPEC_CTRL: 3065 if (!msr->host_initiated && 3066 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3067 return 1; 3068 3069 if (data & ~SPEC_CTRL_SSBD) 3070 return 1; 3071 3072 svm->virt_spec_ctrl = data; 3073 break; 3074 case MSR_STAR: 3075 svm->vmcb01.ptr->save.star = data; 3076 break; 3077 #ifdef CONFIG_X86_64 3078 case MSR_LSTAR: 3079 svm->vmcb01.ptr->save.lstar = data; 3080 break; 3081 case MSR_CSTAR: 3082 svm->vmcb01.ptr->save.cstar = data; 3083 break; 3084 case MSR_KERNEL_GS_BASE: 3085 svm->vmcb01.ptr->save.kernel_gs_base = data; 3086 break; 3087 case MSR_SYSCALL_MASK: 3088 svm->vmcb01.ptr->save.sfmask = data; 3089 break; 3090 #endif 3091 case MSR_IA32_SYSENTER_CS: 3092 svm->vmcb01.ptr->save.sysenter_cs = data; 3093 break; 3094 case MSR_IA32_SYSENTER_EIP: 3095 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3096 /* 3097 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3098 * when we spoof an Intel vendor ID (for cross vendor migration). 3099 * In this case we use this intercept to track the high 3100 * 32 bit part of these msrs to support Intel's 3101 * implementation of SYSENTER/SYSEXIT. 3102 */ 3103 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3104 break; 3105 case MSR_IA32_SYSENTER_ESP: 3106 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3107 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3108 break; 3109 case MSR_TSC_AUX: 3110 /* 3111 * TSC_AUX is always virtualized for SEV-ES guests when the 3112 * feature is available. The user return MSR support is not 3113 * required in this case because TSC_AUX is restored on #VMEXIT 3114 * from the host save area (which has been initialized in 3115 * svm_hardware_enable()). 3116 */ 3117 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3118 break; 3119 3120 /* 3121 * TSC_AUX is usually changed only during boot and never read 3122 * directly. Intercept TSC_AUX instead of exposing it to the 3123 * guest via direct_access_msrs, and switch it via user return. 3124 */ 3125 preempt_disable(); 3126 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3127 preempt_enable(); 3128 if (ret) 3129 break; 3130 3131 svm->tsc_aux = data; 3132 break; 3133 case MSR_IA32_DEBUGCTLMSR: 3134 if (!lbrv) { 3135 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3136 break; 3137 } 3138 if (data & DEBUGCTL_RESERVED_BITS) 3139 return 1; 3140 3141 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3142 svm_update_lbrv(vcpu); 3143 break; 3144 case MSR_VM_HSAVE_PA: 3145 /* 3146 * Old kernels did not validate the value written to 3147 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3148 * value to allow live migrating buggy or malicious guests 3149 * originating from those kernels. 3150 */ 3151 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3152 return 1; 3153 3154 svm->nested.hsave_msr = data & PAGE_MASK; 3155 break; 3156 case MSR_VM_CR: 3157 return svm_set_vm_cr(vcpu, data); 3158 case MSR_VM_IGNNE: 3159 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3160 break; 3161 case MSR_AMD64_DE_CFG: { 3162 struct kvm_msr_entry msr_entry; 3163 3164 msr_entry.index = msr->index; 3165 if (svm_get_msr_feature(&msr_entry)) 3166 return 1; 3167 3168 /* Check the supported bits */ 3169 if (data & ~msr_entry.data) 3170 return 1; 3171 3172 /* Don't allow the guest to change a bit, #GP */ 3173 if (!msr->host_initiated && (data ^ msr_entry.data)) 3174 return 1; 3175 3176 svm->msr_decfg = data; 3177 break; 3178 } 3179 default: 3180 return kvm_set_msr_common(vcpu, msr); 3181 } 3182 return ret; 3183 } 3184 3185 static int msr_interception(struct kvm_vcpu *vcpu) 3186 { 3187 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3188 return kvm_emulate_wrmsr(vcpu); 3189 else 3190 return kvm_emulate_rdmsr(vcpu); 3191 } 3192 3193 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3194 { 3195 kvm_make_request(KVM_REQ_EVENT, vcpu); 3196 svm_clear_vintr(to_svm(vcpu)); 3197 3198 /* 3199 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3200 * In this case AVIC was temporarily disabled for 3201 * requesting the IRQ window and we have to re-enable it. 3202 * 3203 * If running nested, still remove the VM wide AVIC inhibit to 3204 * support case in which the interrupt window was requested when the 3205 * vCPU was not running nested. 3206 3207 * All vCPUs which run still run nested, will remain to have their 3208 * AVIC still inhibited due to per-cpu AVIC inhibition. 3209 */ 3210 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3211 3212 ++vcpu->stat.irq_window_exits; 3213 return 1; 3214 } 3215 3216 static int pause_interception(struct kvm_vcpu *vcpu) 3217 { 3218 bool in_kernel; 3219 /* 3220 * CPL is not made available for an SEV-ES guest, therefore 3221 * vcpu->arch.preempted_in_kernel can never be true. Just 3222 * set in_kernel to false as well. 3223 */ 3224 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3225 3226 grow_ple_window(vcpu); 3227 3228 kvm_vcpu_on_spin(vcpu, in_kernel); 3229 return kvm_skip_emulated_instruction(vcpu); 3230 } 3231 3232 static int invpcid_interception(struct kvm_vcpu *vcpu) 3233 { 3234 struct vcpu_svm *svm = to_svm(vcpu); 3235 unsigned long type; 3236 gva_t gva; 3237 3238 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3239 kvm_queue_exception(vcpu, UD_VECTOR); 3240 return 1; 3241 } 3242 3243 /* 3244 * For an INVPCID intercept: 3245 * EXITINFO1 provides the linear address of the memory operand. 3246 * EXITINFO2 provides the contents of the register operand. 3247 */ 3248 type = svm->vmcb->control.exit_info_2; 3249 gva = svm->vmcb->control.exit_info_1; 3250 3251 return kvm_handle_invpcid(vcpu, type, gva); 3252 } 3253 3254 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3255 [SVM_EXIT_READ_CR0] = cr_interception, 3256 [SVM_EXIT_READ_CR3] = cr_interception, 3257 [SVM_EXIT_READ_CR4] = cr_interception, 3258 [SVM_EXIT_READ_CR8] = cr_interception, 3259 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3260 [SVM_EXIT_WRITE_CR0] = cr_interception, 3261 [SVM_EXIT_WRITE_CR3] = cr_interception, 3262 [SVM_EXIT_WRITE_CR4] = cr_interception, 3263 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3264 [SVM_EXIT_READ_DR0] = dr_interception, 3265 [SVM_EXIT_READ_DR1] = dr_interception, 3266 [SVM_EXIT_READ_DR2] = dr_interception, 3267 [SVM_EXIT_READ_DR3] = dr_interception, 3268 [SVM_EXIT_READ_DR4] = dr_interception, 3269 [SVM_EXIT_READ_DR5] = dr_interception, 3270 [SVM_EXIT_READ_DR6] = dr_interception, 3271 [SVM_EXIT_READ_DR7] = dr_interception, 3272 [SVM_EXIT_WRITE_DR0] = dr_interception, 3273 [SVM_EXIT_WRITE_DR1] = dr_interception, 3274 [SVM_EXIT_WRITE_DR2] = dr_interception, 3275 [SVM_EXIT_WRITE_DR3] = dr_interception, 3276 [SVM_EXIT_WRITE_DR4] = dr_interception, 3277 [SVM_EXIT_WRITE_DR5] = dr_interception, 3278 [SVM_EXIT_WRITE_DR6] = dr_interception, 3279 [SVM_EXIT_WRITE_DR7] = dr_interception, 3280 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3281 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3282 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3283 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3284 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3285 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3286 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3287 [SVM_EXIT_INTR] = intr_interception, 3288 [SVM_EXIT_NMI] = nmi_interception, 3289 [SVM_EXIT_SMI] = smi_interception, 3290 [SVM_EXIT_VINTR] = interrupt_window_interception, 3291 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3292 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3293 [SVM_EXIT_IRET] = iret_interception, 3294 [SVM_EXIT_INVD] = kvm_emulate_invd, 3295 [SVM_EXIT_PAUSE] = pause_interception, 3296 [SVM_EXIT_HLT] = kvm_emulate_halt, 3297 [SVM_EXIT_INVLPG] = invlpg_interception, 3298 [SVM_EXIT_INVLPGA] = invlpga_interception, 3299 [SVM_EXIT_IOIO] = io_interception, 3300 [SVM_EXIT_MSR] = msr_interception, 3301 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3302 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3303 [SVM_EXIT_VMRUN] = vmrun_interception, 3304 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3305 [SVM_EXIT_VMLOAD] = vmload_interception, 3306 [SVM_EXIT_VMSAVE] = vmsave_interception, 3307 [SVM_EXIT_STGI] = stgi_interception, 3308 [SVM_EXIT_CLGI] = clgi_interception, 3309 [SVM_EXIT_SKINIT] = skinit_interception, 3310 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3311 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3312 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3313 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3314 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3315 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3316 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3317 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3318 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3319 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3320 [SVM_EXIT_INVPCID] = invpcid_interception, 3321 [SVM_EXIT_NPF] = npf_interception, 3322 [SVM_EXIT_RSM] = rsm_interception, 3323 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3324 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3325 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3326 }; 3327 3328 static void dump_vmcb(struct kvm_vcpu *vcpu) 3329 { 3330 struct vcpu_svm *svm = to_svm(vcpu); 3331 struct vmcb_control_area *control = &svm->vmcb->control; 3332 struct vmcb_save_area *save = &svm->vmcb->save; 3333 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3334 3335 if (!dump_invalid_vmcb) { 3336 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3337 return; 3338 } 3339 3340 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3341 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3342 pr_err("VMCB Control Area:\n"); 3343 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3344 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3345 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3346 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3347 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3348 pr_err("%-20s%08x %08x\n", "intercepts:", 3349 control->intercepts[INTERCEPT_WORD3], 3350 control->intercepts[INTERCEPT_WORD4]); 3351 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3352 pr_err("%-20s%d\n", "pause filter threshold:", 3353 control->pause_filter_thresh); 3354 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3355 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3356 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3357 pr_err("%-20s%d\n", "asid:", control->asid); 3358 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3359 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3360 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3361 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3362 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3363 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3364 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3365 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3366 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3367 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3368 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3369 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3370 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3371 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3372 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3373 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3374 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3375 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3376 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3377 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3378 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3379 pr_err("VMCB State Save Area:\n"); 3380 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3381 "es:", 3382 save->es.selector, save->es.attrib, 3383 save->es.limit, save->es.base); 3384 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3385 "cs:", 3386 save->cs.selector, save->cs.attrib, 3387 save->cs.limit, save->cs.base); 3388 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3389 "ss:", 3390 save->ss.selector, save->ss.attrib, 3391 save->ss.limit, save->ss.base); 3392 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3393 "ds:", 3394 save->ds.selector, save->ds.attrib, 3395 save->ds.limit, save->ds.base); 3396 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3397 "fs:", 3398 save01->fs.selector, save01->fs.attrib, 3399 save01->fs.limit, save01->fs.base); 3400 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3401 "gs:", 3402 save01->gs.selector, save01->gs.attrib, 3403 save01->gs.limit, save01->gs.base); 3404 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3405 "gdtr:", 3406 save->gdtr.selector, save->gdtr.attrib, 3407 save->gdtr.limit, save->gdtr.base); 3408 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3409 "ldtr:", 3410 save01->ldtr.selector, save01->ldtr.attrib, 3411 save01->ldtr.limit, save01->ldtr.base); 3412 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3413 "idtr:", 3414 save->idtr.selector, save->idtr.attrib, 3415 save->idtr.limit, save->idtr.base); 3416 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3417 "tr:", 3418 save01->tr.selector, save01->tr.attrib, 3419 save01->tr.limit, save01->tr.base); 3420 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3421 save->vmpl, save->cpl, save->efer); 3422 pr_err("%-15s %016llx %-13s %016llx\n", 3423 "cr0:", save->cr0, "cr2:", save->cr2); 3424 pr_err("%-15s %016llx %-13s %016llx\n", 3425 "cr3:", save->cr3, "cr4:", save->cr4); 3426 pr_err("%-15s %016llx %-13s %016llx\n", 3427 "dr6:", save->dr6, "dr7:", save->dr7); 3428 pr_err("%-15s %016llx %-13s %016llx\n", 3429 "rip:", save->rip, "rflags:", save->rflags); 3430 pr_err("%-15s %016llx %-13s %016llx\n", 3431 "rsp:", save->rsp, "rax:", save->rax); 3432 pr_err("%-15s %016llx %-13s %016llx\n", 3433 "star:", save01->star, "lstar:", save01->lstar); 3434 pr_err("%-15s %016llx %-13s %016llx\n", 3435 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3436 pr_err("%-15s %016llx %-13s %016llx\n", 3437 "kernel_gs_base:", save01->kernel_gs_base, 3438 "sysenter_cs:", save01->sysenter_cs); 3439 pr_err("%-15s %016llx %-13s %016llx\n", 3440 "sysenter_esp:", save01->sysenter_esp, 3441 "sysenter_eip:", save01->sysenter_eip); 3442 pr_err("%-15s %016llx %-13s %016llx\n", 3443 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3444 pr_err("%-15s %016llx %-13s %016llx\n", 3445 "br_from:", save->br_from, "br_to:", save->br_to); 3446 pr_err("%-15s %016llx %-13s %016llx\n", 3447 "excp_from:", save->last_excp_from, 3448 "excp_to:", save->last_excp_to); 3449 } 3450 3451 static bool svm_check_exit_valid(u64 exit_code) 3452 { 3453 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3454 svm_exit_handlers[exit_code]); 3455 } 3456 3457 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3458 { 3459 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3460 dump_vmcb(vcpu); 3461 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3462 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3463 vcpu->run->internal.ndata = 2; 3464 vcpu->run->internal.data[0] = exit_code; 3465 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3466 return 0; 3467 } 3468 3469 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3470 { 3471 if (!svm_check_exit_valid(exit_code)) 3472 return svm_handle_invalid_exit(vcpu, exit_code); 3473 3474 #ifdef CONFIG_RETPOLINE 3475 if (exit_code == SVM_EXIT_MSR) 3476 return msr_interception(vcpu); 3477 else if (exit_code == SVM_EXIT_VINTR) 3478 return interrupt_window_interception(vcpu); 3479 else if (exit_code == SVM_EXIT_INTR) 3480 return intr_interception(vcpu); 3481 else if (exit_code == SVM_EXIT_HLT) 3482 return kvm_emulate_halt(vcpu); 3483 else if (exit_code == SVM_EXIT_NPF) 3484 return npf_interception(vcpu); 3485 #endif 3486 return svm_exit_handlers[exit_code](vcpu); 3487 } 3488 3489 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3490 u64 *info1, u64 *info2, 3491 u32 *intr_info, u32 *error_code) 3492 { 3493 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3494 3495 *reason = control->exit_code; 3496 *info1 = control->exit_info_1; 3497 *info2 = control->exit_info_2; 3498 *intr_info = control->exit_int_info; 3499 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3500 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3501 *error_code = control->exit_int_info_err; 3502 else 3503 *error_code = 0; 3504 } 3505 3506 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3507 { 3508 struct vcpu_svm *svm = to_svm(vcpu); 3509 struct kvm_run *kvm_run = vcpu->run; 3510 u32 exit_code = svm->vmcb->control.exit_code; 3511 3512 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3513 if (!sev_es_guest(vcpu->kvm)) { 3514 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3515 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3516 if (npt_enabled) 3517 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3518 } 3519 3520 if (is_guest_mode(vcpu)) { 3521 int vmexit; 3522 3523 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3524 3525 vmexit = nested_svm_exit_special(svm); 3526 3527 if (vmexit == NESTED_EXIT_CONTINUE) 3528 vmexit = nested_svm_exit_handled(svm); 3529 3530 if (vmexit == NESTED_EXIT_DONE) 3531 return 1; 3532 } 3533 3534 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3535 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3536 kvm_run->fail_entry.hardware_entry_failure_reason 3537 = svm->vmcb->control.exit_code; 3538 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3539 dump_vmcb(vcpu); 3540 return 0; 3541 } 3542 3543 if (exit_fastpath != EXIT_FASTPATH_NONE) 3544 return 1; 3545 3546 return svm_invoke_exit_handler(vcpu, exit_code); 3547 } 3548 3549 static void pre_svm_run(struct kvm_vcpu *vcpu) 3550 { 3551 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3552 struct vcpu_svm *svm = to_svm(vcpu); 3553 3554 /* 3555 * If the previous vmrun of the vmcb occurred on a different physical 3556 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3557 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3558 */ 3559 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3560 svm->current_vmcb->asid_generation = 0; 3561 vmcb_mark_all_dirty(svm->vmcb); 3562 svm->current_vmcb->cpu = vcpu->cpu; 3563 } 3564 3565 if (sev_guest(vcpu->kvm)) 3566 return pre_sev_run(svm, vcpu->cpu); 3567 3568 /* FIXME: handle wraparound of asid_generation */ 3569 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3570 new_asid(svm, sd); 3571 } 3572 3573 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3574 { 3575 struct vcpu_svm *svm = to_svm(vcpu); 3576 3577 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3578 3579 if (svm->nmi_l1_to_l2) 3580 return; 3581 3582 svm->nmi_masked = true; 3583 svm_set_iret_intercept(svm); 3584 ++vcpu->stat.nmi_injections; 3585 } 3586 3587 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3588 { 3589 struct vcpu_svm *svm = to_svm(vcpu); 3590 3591 if (!is_vnmi_enabled(svm)) 3592 return false; 3593 3594 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3595 } 3596 3597 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3598 { 3599 struct vcpu_svm *svm = to_svm(vcpu); 3600 3601 if (!is_vnmi_enabled(svm)) 3602 return false; 3603 3604 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3605 return false; 3606 3607 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3608 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3609 3610 /* 3611 * Because the pending NMI is serviced by hardware, KVM can't know when 3612 * the NMI is "injected", but for all intents and purposes, passing the 3613 * NMI off to hardware counts as injection. 3614 */ 3615 ++vcpu->stat.nmi_injections; 3616 3617 return true; 3618 } 3619 3620 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3621 { 3622 struct vcpu_svm *svm = to_svm(vcpu); 3623 u32 type; 3624 3625 if (vcpu->arch.interrupt.soft) { 3626 if (svm_update_soft_interrupt_rip(vcpu)) 3627 return; 3628 3629 type = SVM_EVTINJ_TYPE_SOFT; 3630 } else { 3631 type = SVM_EVTINJ_TYPE_INTR; 3632 } 3633 3634 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3635 vcpu->arch.interrupt.soft, reinjected); 3636 ++vcpu->stat.irq_injections; 3637 3638 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3639 SVM_EVTINJ_VALID | type; 3640 } 3641 3642 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3643 int trig_mode, int vector) 3644 { 3645 /* 3646 * apic->apicv_active must be read after vcpu->mode. 3647 * Pairs with smp_store_release in vcpu_enter_guest. 3648 */ 3649 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3650 3651 /* Note, this is called iff the local APIC is in-kernel. */ 3652 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3653 /* Process the interrupt via kvm_check_and_inject_events(). */ 3654 kvm_make_request(KVM_REQ_EVENT, vcpu); 3655 kvm_vcpu_kick(vcpu); 3656 return; 3657 } 3658 3659 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3660 if (in_guest_mode) { 3661 /* 3662 * Signal the doorbell to tell hardware to inject the IRQ. If 3663 * the vCPU exits the guest before the doorbell chimes, hardware 3664 * will automatically process AVIC interrupts at the next VMRUN. 3665 */ 3666 avic_ring_doorbell(vcpu); 3667 } else { 3668 /* 3669 * Wake the vCPU if it was blocking. KVM will then detect the 3670 * pending IRQ when checking if the vCPU has a wake event. 3671 */ 3672 kvm_vcpu_wake_up(vcpu); 3673 } 3674 } 3675 3676 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3677 int trig_mode, int vector) 3678 { 3679 kvm_lapic_set_irr(vector, apic); 3680 3681 /* 3682 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3683 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3684 * the read of guest_mode. This guarantees that either VMRUN will see 3685 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3686 * will signal the doorbell if the CPU has already entered the guest. 3687 */ 3688 smp_mb__after_atomic(); 3689 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3690 } 3691 3692 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3693 { 3694 struct vcpu_svm *svm = to_svm(vcpu); 3695 3696 /* 3697 * SEV-ES guests must always keep the CR intercepts cleared. CR 3698 * tracking is done using the CR write traps. 3699 */ 3700 if (sev_es_guest(vcpu->kvm)) 3701 return; 3702 3703 if (nested_svm_virtualize_tpr(vcpu)) 3704 return; 3705 3706 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3707 3708 if (irr == -1) 3709 return; 3710 3711 if (tpr >= irr) 3712 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3713 } 3714 3715 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3716 { 3717 struct vcpu_svm *svm = to_svm(vcpu); 3718 3719 if (is_vnmi_enabled(svm)) 3720 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3721 else 3722 return svm->nmi_masked; 3723 } 3724 3725 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3726 { 3727 struct vcpu_svm *svm = to_svm(vcpu); 3728 3729 if (is_vnmi_enabled(svm)) { 3730 if (masked) 3731 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3732 else 3733 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3734 3735 } else { 3736 svm->nmi_masked = masked; 3737 if (masked) 3738 svm_set_iret_intercept(svm); 3739 else 3740 svm_clr_iret_intercept(svm); 3741 } 3742 } 3743 3744 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3745 { 3746 struct vcpu_svm *svm = to_svm(vcpu); 3747 struct vmcb *vmcb = svm->vmcb; 3748 3749 if (!gif_set(svm)) 3750 return true; 3751 3752 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3753 return false; 3754 3755 if (svm_get_nmi_mask(vcpu)) 3756 return true; 3757 3758 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3759 } 3760 3761 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3762 { 3763 struct vcpu_svm *svm = to_svm(vcpu); 3764 if (svm->nested.nested_run_pending) 3765 return -EBUSY; 3766 3767 if (svm_nmi_blocked(vcpu)) 3768 return 0; 3769 3770 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3771 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3772 return -EBUSY; 3773 return 1; 3774 } 3775 3776 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3777 { 3778 struct vcpu_svm *svm = to_svm(vcpu); 3779 struct vmcb *vmcb = svm->vmcb; 3780 3781 if (!gif_set(svm)) 3782 return true; 3783 3784 if (is_guest_mode(vcpu)) { 3785 /* As long as interrupts are being delivered... */ 3786 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3787 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3788 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3789 return true; 3790 3791 /* ... vmexits aren't blocked by the interrupt shadow */ 3792 if (nested_exit_on_intr(svm)) 3793 return false; 3794 } else { 3795 if (!svm_get_if_flag(vcpu)) 3796 return true; 3797 } 3798 3799 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3800 } 3801 3802 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3803 { 3804 struct vcpu_svm *svm = to_svm(vcpu); 3805 3806 if (svm->nested.nested_run_pending) 3807 return -EBUSY; 3808 3809 if (svm_interrupt_blocked(vcpu)) 3810 return 0; 3811 3812 /* 3813 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3814 * e.g. if the IRQ arrived asynchronously after checking nested events. 3815 */ 3816 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3817 return -EBUSY; 3818 3819 return 1; 3820 } 3821 3822 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3823 { 3824 struct vcpu_svm *svm = to_svm(vcpu); 3825 3826 /* 3827 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3828 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3829 * get that intercept, this function will be called again though and 3830 * we'll get the vintr intercept. However, if the vGIF feature is 3831 * enabled, the STGI interception will not occur. Enable the irq 3832 * window under the assumption that the hardware will set the GIF. 3833 */ 3834 if (vgif || gif_set(svm)) { 3835 /* 3836 * IRQ window is not needed when AVIC is enabled, 3837 * unless we have pending ExtINT since it cannot be injected 3838 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3839 * and fallback to injecting IRQ via V_IRQ. 3840 * 3841 * If running nested, AVIC is already locally inhibited 3842 * on this vCPU, therefore there is no need to request 3843 * the VM wide AVIC inhibition. 3844 */ 3845 if (!is_guest_mode(vcpu)) 3846 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3847 3848 svm_set_vintr(svm); 3849 } 3850 } 3851 3852 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3853 { 3854 struct vcpu_svm *svm = to_svm(vcpu); 3855 3856 /* 3857 * KVM should never request an NMI window when vNMI is enabled, as KVM 3858 * allows at most one to-be-injected NMI and one pending NMI, i.e. if 3859 * two NMIs arrive simultaneously, KVM will inject one and set 3860 * V_NMI_PENDING for the other. WARN, but continue with the standard 3861 * single-step approach to try and salvage the pending NMI. 3862 */ 3863 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3864 3865 if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion) 3866 return; /* IRET will cause a vm exit */ 3867 3868 /* 3869 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3870 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3871 * KVM can't intercept and single-step IRET to detect when NMIs are 3872 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3873 * 3874 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3875 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3876 * supported NAEs in the GHCB protocol. 3877 */ 3878 if (sev_es_guest(vcpu->kvm)) 3879 return; 3880 3881 if (!gif_set(svm)) { 3882 if (vgif) 3883 svm_set_intercept(svm, INTERCEPT_STGI); 3884 return; /* STGI will cause a vm exit */ 3885 } 3886 3887 /* 3888 * Something prevents NMI from been injected. Single step over possible 3889 * problem (IRET or exception injection or interrupt shadow) 3890 */ 3891 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3892 svm->nmi_singlestep = true; 3893 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3894 } 3895 3896 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3897 { 3898 struct vcpu_svm *svm = to_svm(vcpu); 3899 3900 /* 3901 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3902 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3903 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3904 */ 3905 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3906 3907 /* 3908 * Flush only the current ASID even if the TLB flush was invoked via 3909 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3910 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3911 * unconditionally does a TLB flush on both nested VM-Enter and nested 3912 * VM-Exit (via kvm_mmu_reset_context()). 3913 */ 3914 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3915 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3916 else 3917 svm->current_vmcb->asid_generation--; 3918 } 3919 3920 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3921 { 3922 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 3923 3924 /* 3925 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 3926 * flush the NPT mappings via hypercall as flushing the ASID only 3927 * affects virtual to physical mappings, it does not invalidate guest 3928 * physical to host physical mappings. 3929 */ 3930 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 3931 hyperv_flush_guest_mapping(root_tdp); 3932 3933 svm_flush_tlb_asid(vcpu); 3934 } 3935 3936 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 3937 { 3938 /* 3939 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 3940 * flushes should be routed to hv_flush_remote_tlbs() without requesting 3941 * a "regular" remote flush. Reaching this point means either there's 3942 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 3943 * which might be fatal to the guest. Yell, but try to recover. 3944 */ 3945 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 3946 hv_flush_remote_tlbs(vcpu->kvm); 3947 3948 svm_flush_tlb_asid(vcpu); 3949 } 3950 3951 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3952 { 3953 struct vcpu_svm *svm = to_svm(vcpu); 3954 3955 invlpga(gva, svm->vmcb->control.asid); 3956 } 3957 3958 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3959 { 3960 struct vcpu_svm *svm = to_svm(vcpu); 3961 3962 if (nested_svm_virtualize_tpr(vcpu)) 3963 return; 3964 3965 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3966 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3967 kvm_set_cr8(vcpu, cr8); 3968 } 3969 } 3970 3971 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3972 { 3973 struct vcpu_svm *svm = to_svm(vcpu); 3974 u64 cr8; 3975 3976 if (nested_svm_virtualize_tpr(vcpu) || 3977 kvm_vcpu_apicv_active(vcpu)) 3978 return; 3979 3980 cr8 = kvm_get_cr8(vcpu); 3981 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3982 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3983 } 3984 3985 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 3986 int type) 3987 { 3988 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 3989 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 3990 struct vcpu_svm *svm = to_svm(vcpu); 3991 3992 /* 3993 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 3994 * associated with the original soft exception/interrupt. next_rip is 3995 * cleared on all exits that can occur while vectoring an event, so KVM 3996 * needs to manually set next_rip for re-injection. Unlike the !nrips 3997 * case below, this needs to be done if and only if KVM is re-injecting 3998 * the same event, i.e. if the event is a soft exception/interrupt, 3999 * otherwise next_rip is unused on VMRUN. 4000 */ 4001 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4002 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4003 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4004 /* 4005 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4006 * injecting the soft exception/interrupt. That advancement needs to 4007 * be unwound if vectoring didn't complete. Note, the new event may 4008 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4009 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4010 * be the reported vectored event, but RIP still needs to be unwound. 4011 */ 4012 else if (!nrips && (is_soft || is_exception) && 4013 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4014 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4015 } 4016 4017 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4018 { 4019 struct vcpu_svm *svm = to_svm(vcpu); 4020 u8 vector; 4021 int type; 4022 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4023 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4024 bool soft_int_injected = svm->soft_int_injected; 4025 4026 svm->nmi_l1_to_l2 = false; 4027 svm->soft_int_injected = false; 4028 4029 /* 4030 * If we've made progress since setting awaiting_iret_completion, we've 4031 * executed an IRET and can allow NMI injection. 4032 */ 4033 if (svm->awaiting_iret_completion && 4034 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4035 svm->awaiting_iret_completion = false; 4036 svm->nmi_masked = false; 4037 kvm_make_request(KVM_REQ_EVENT, vcpu); 4038 } 4039 4040 vcpu->arch.nmi_injected = false; 4041 kvm_clear_exception_queue(vcpu); 4042 kvm_clear_interrupt_queue(vcpu); 4043 4044 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4045 return; 4046 4047 kvm_make_request(KVM_REQ_EVENT, vcpu); 4048 4049 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4050 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4051 4052 if (soft_int_injected) 4053 svm_complete_soft_interrupt(vcpu, vector, type); 4054 4055 switch (type) { 4056 case SVM_EXITINTINFO_TYPE_NMI: 4057 vcpu->arch.nmi_injected = true; 4058 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4059 break; 4060 case SVM_EXITINTINFO_TYPE_EXEPT: 4061 /* 4062 * Never re-inject a #VC exception. 4063 */ 4064 if (vector == X86_TRAP_VC) 4065 break; 4066 4067 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 4068 u32 err = svm->vmcb->control.exit_int_info_err; 4069 kvm_requeue_exception_e(vcpu, vector, err); 4070 4071 } else 4072 kvm_requeue_exception(vcpu, vector); 4073 break; 4074 case SVM_EXITINTINFO_TYPE_INTR: 4075 kvm_queue_interrupt(vcpu, vector, false); 4076 break; 4077 case SVM_EXITINTINFO_TYPE_SOFT: 4078 kvm_queue_interrupt(vcpu, vector, true); 4079 break; 4080 default: 4081 break; 4082 } 4083 4084 } 4085 4086 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4087 { 4088 struct vcpu_svm *svm = to_svm(vcpu); 4089 struct vmcb_control_area *control = &svm->vmcb->control; 4090 4091 control->exit_int_info = control->event_inj; 4092 control->exit_int_info_err = control->event_inj_err; 4093 control->event_inj = 0; 4094 svm_complete_interrupts(vcpu); 4095 } 4096 4097 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4098 { 4099 return 1; 4100 } 4101 4102 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4103 { 4104 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 4105 to_svm(vcpu)->vmcb->control.exit_info_1) 4106 return handle_fastpath_set_msr_irqoff(vcpu); 4107 4108 return EXIT_FASTPATH_NONE; 4109 } 4110 4111 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4112 { 4113 struct vcpu_svm *svm = to_svm(vcpu); 4114 4115 guest_state_enter_irqoff(); 4116 4117 amd_clear_divider(); 4118 4119 if (sev_es_guest(vcpu->kvm)) 4120 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted); 4121 else 4122 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4123 4124 guest_state_exit_irqoff(); 4125 } 4126 4127 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 4128 { 4129 struct vcpu_svm *svm = to_svm(vcpu); 4130 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4131 4132 trace_kvm_entry(vcpu); 4133 4134 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4135 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4136 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4137 4138 /* 4139 * Disable singlestep if we're injecting an interrupt/exception. 4140 * We don't want our modified rflags to be pushed on the stack where 4141 * we might not be able to easily reset them if we disabled NMI 4142 * singlestep later. 4143 */ 4144 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4145 /* 4146 * Event injection happens before external interrupts cause a 4147 * vmexit and interrupts are disabled here, so smp_send_reschedule 4148 * is enough to force an immediate vmexit. 4149 */ 4150 disable_nmi_singlestep(svm); 4151 smp_send_reschedule(vcpu->cpu); 4152 } 4153 4154 pre_svm_run(vcpu); 4155 4156 sync_lapic_to_cr8(vcpu); 4157 4158 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4159 svm->vmcb->control.asid = svm->asid; 4160 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4161 } 4162 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4163 4164 svm_hv_update_vp_id(svm->vmcb, vcpu); 4165 4166 /* 4167 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4168 * of a #DB. 4169 */ 4170 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 4171 svm_set_dr6(svm, vcpu->arch.dr6); 4172 else 4173 svm_set_dr6(svm, DR6_ACTIVE_LOW); 4174 4175 clgi(); 4176 kvm_load_guest_xsave_state(vcpu); 4177 4178 kvm_wait_lapic_expire(vcpu); 4179 4180 /* 4181 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4182 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4183 * is no need to worry about the conditional branch over the wrmsr 4184 * being speculatively taken. 4185 */ 4186 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4187 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4188 4189 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4190 4191 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4192 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4193 4194 if (!sev_es_guest(vcpu->kvm)) { 4195 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4196 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4197 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4198 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4199 } 4200 vcpu->arch.regs_dirty = 0; 4201 4202 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4203 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4204 4205 kvm_load_host_xsave_state(vcpu); 4206 stgi(); 4207 4208 /* Any pending NMI will happen here */ 4209 4210 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4211 kvm_after_interrupt(vcpu); 4212 4213 sync_cr8_to_lapic(vcpu); 4214 4215 svm->next_rip = 0; 4216 if (is_guest_mode(vcpu)) { 4217 nested_sync_control_from_vmcb02(svm); 4218 4219 /* Track VMRUNs that have made past consistency checking */ 4220 if (svm->nested.nested_run_pending && 4221 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4222 ++vcpu->stat.nested_run; 4223 4224 svm->nested.nested_run_pending = 0; 4225 } 4226 4227 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4228 vmcb_mark_all_clean(svm->vmcb); 4229 4230 /* if exit due to PF check for async PF */ 4231 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4232 vcpu->arch.apf.host_apf_flags = 4233 kvm_read_and_reset_apf_flags(); 4234 4235 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4236 4237 /* 4238 * We need to handle MC intercepts here before the vcpu has a chance to 4239 * change the physical cpu 4240 */ 4241 if (unlikely(svm->vmcb->control.exit_code == 4242 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4243 svm_handle_mce(vcpu); 4244 4245 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4246 4247 svm_complete_interrupts(vcpu); 4248 4249 if (is_guest_mode(vcpu)) 4250 return EXIT_FASTPATH_NONE; 4251 4252 return svm_exit_handlers_fastpath(vcpu); 4253 } 4254 4255 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4256 int root_level) 4257 { 4258 struct vcpu_svm *svm = to_svm(vcpu); 4259 unsigned long cr3; 4260 4261 if (npt_enabled) { 4262 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4263 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4264 4265 hv_track_root_tdp(vcpu, root_hpa); 4266 4267 cr3 = vcpu->arch.cr3; 4268 } else if (root_level >= PT64_ROOT_4LEVEL) { 4269 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4270 } else { 4271 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4272 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4273 cr3 = root_hpa; 4274 } 4275 4276 svm->vmcb->save.cr3 = cr3; 4277 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4278 } 4279 4280 static void 4281 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4282 { 4283 /* 4284 * Patch in the VMMCALL instruction: 4285 */ 4286 hypercall[0] = 0x0f; 4287 hypercall[1] = 0x01; 4288 hypercall[2] = 0xd9; 4289 } 4290 4291 /* 4292 * The kvm parameter can be NULL (module initialization, or invocation before 4293 * VM creation). Be sure to check the kvm parameter before using it. 4294 */ 4295 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4296 { 4297 switch (index) { 4298 case MSR_IA32_MCG_EXT_CTL: 4299 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4300 return false; 4301 case MSR_IA32_SMBASE: 4302 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4303 return false; 4304 /* SEV-ES guests do not support SMM, so report false */ 4305 if (kvm && sev_es_guest(kvm)) 4306 return false; 4307 break; 4308 default: 4309 break; 4310 } 4311 4312 return true; 4313 } 4314 4315 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4316 { 4317 struct vcpu_svm *svm = to_svm(vcpu); 4318 4319 /* 4320 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4321 * can only disable all variants of by disallowing CR4.OSXSAVE from 4322 * being set. As a result, if the host has XSAVE and XSAVES, and the 4323 * guest has XSAVE enabled, the guest can execute XSAVES without 4324 * faulting. Treat XSAVES as enabled in this case regardless of 4325 * whether it's advertised to the guest so that KVM context switches 4326 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4327 * the guest read/write access to the host's XSS. 4328 */ 4329 if (boot_cpu_has(X86_FEATURE_XSAVE) && 4330 boot_cpu_has(X86_FEATURE_XSAVES) && 4331 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 4332 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES); 4333 4334 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS); 4335 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR); 4336 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV); 4337 4338 /* 4339 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that 4340 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4341 * SVM on Intel is bonkers and extremely unlikely to work). 4342 */ 4343 if (!guest_cpuid_is_intel(vcpu)) 4344 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4345 4346 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER); 4347 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD); 4348 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF); 4349 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI); 4350 4351 svm_recalc_instruction_intercepts(vcpu, svm); 4352 4353 if (boot_cpu_has(X86_FEATURE_IBPB)) 4354 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4355 !!guest_has_pred_cmd_msr(vcpu)); 4356 4357 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4358 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4359 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4360 4361 if (sev_guest(vcpu->kvm)) 4362 sev_vcpu_after_set_cpuid(svm); 4363 4364 init_vmcb_after_set_cpuid(vcpu); 4365 } 4366 4367 static bool svm_has_wbinvd_exit(void) 4368 { 4369 return true; 4370 } 4371 4372 #define PRE_EX(exit) { .exit_code = (exit), \ 4373 .stage = X86_ICPT_PRE_EXCEPT, } 4374 #define POST_EX(exit) { .exit_code = (exit), \ 4375 .stage = X86_ICPT_POST_EXCEPT, } 4376 #define POST_MEM(exit) { .exit_code = (exit), \ 4377 .stage = X86_ICPT_POST_MEMACCESS, } 4378 4379 static const struct __x86_intercept { 4380 u32 exit_code; 4381 enum x86_intercept_stage stage; 4382 } x86_intercept_map[] = { 4383 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4384 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4385 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4386 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4387 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4388 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4389 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4390 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4391 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4392 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4393 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4394 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4395 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4396 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4397 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4398 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4399 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4400 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4401 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4402 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4403 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4404 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4405 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4406 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4407 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4408 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4409 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4410 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4411 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4412 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4413 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4414 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4415 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4416 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4417 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4418 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4419 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4420 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4421 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4422 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4423 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4424 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4425 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4426 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4427 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4428 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4429 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4430 }; 4431 4432 #undef PRE_EX 4433 #undef POST_EX 4434 #undef POST_MEM 4435 4436 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4437 struct x86_instruction_info *info, 4438 enum x86_intercept_stage stage, 4439 struct x86_exception *exception) 4440 { 4441 struct vcpu_svm *svm = to_svm(vcpu); 4442 int vmexit, ret = X86EMUL_CONTINUE; 4443 struct __x86_intercept icpt_info; 4444 struct vmcb *vmcb = svm->vmcb; 4445 4446 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4447 goto out; 4448 4449 icpt_info = x86_intercept_map[info->intercept]; 4450 4451 if (stage != icpt_info.stage) 4452 goto out; 4453 4454 switch (icpt_info.exit_code) { 4455 case SVM_EXIT_READ_CR0: 4456 if (info->intercept == x86_intercept_cr_read) 4457 icpt_info.exit_code += info->modrm_reg; 4458 break; 4459 case SVM_EXIT_WRITE_CR0: { 4460 unsigned long cr0, val; 4461 4462 if (info->intercept == x86_intercept_cr_write) 4463 icpt_info.exit_code += info->modrm_reg; 4464 4465 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4466 info->intercept == x86_intercept_clts) 4467 break; 4468 4469 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4470 INTERCEPT_SELECTIVE_CR0))) 4471 break; 4472 4473 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4474 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4475 4476 if (info->intercept == x86_intercept_lmsw) { 4477 cr0 &= 0xfUL; 4478 val &= 0xfUL; 4479 /* lmsw can't clear PE - catch this here */ 4480 if (cr0 & X86_CR0_PE) 4481 val |= X86_CR0_PE; 4482 } 4483 4484 if (cr0 ^ val) 4485 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4486 4487 break; 4488 } 4489 case SVM_EXIT_READ_DR0: 4490 case SVM_EXIT_WRITE_DR0: 4491 icpt_info.exit_code += info->modrm_reg; 4492 break; 4493 case SVM_EXIT_MSR: 4494 if (info->intercept == x86_intercept_wrmsr) 4495 vmcb->control.exit_info_1 = 1; 4496 else 4497 vmcb->control.exit_info_1 = 0; 4498 break; 4499 case SVM_EXIT_PAUSE: 4500 /* 4501 * We get this for NOP only, but pause 4502 * is rep not, check this here 4503 */ 4504 if (info->rep_prefix != REPE_PREFIX) 4505 goto out; 4506 break; 4507 case SVM_EXIT_IOIO: { 4508 u64 exit_info; 4509 u32 bytes; 4510 4511 if (info->intercept == x86_intercept_in || 4512 info->intercept == x86_intercept_ins) { 4513 exit_info = ((info->src_val & 0xffff) << 16) | 4514 SVM_IOIO_TYPE_MASK; 4515 bytes = info->dst_bytes; 4516 } else { 4517 exit_info = (info->dst_val & 0xffff) << 16; 4518 bytes = info->src_bytes; 4519 } 4520 4521 if (info->intercept == x86_intercept_outs || 4522 info->intercept == x86_intercept_ins) 4523 exit_info |= SVM_IOIO_STR_MASK; 4524 4525 if (info->rep_prefix) 4526 exit_info |= SVM_IOIO_REP_MASK; 4527 4528 bytes = min(bytes, 4u); 4529 4530 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4531 4532 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4533 4534 vmcb->control.exit_info_1 = exit_info; 4535 vmcb->control.exit_info_2 = info->next_rip; 4536 4537 break; 4538 } 4539 default: 4540 break; 4541 } 4542 4543 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4544 if (static_cpu_has(X86_FEATURE_NRIPS)) 4545 vmcb->control.next_rip = info->next_rip; 4546 vmcb->control.exit_code = icpt_info.exit_code; 4547 vmexit = nested_svm_exit_handled(svm); 4548 4549 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4550 : X86EMUL_CONTINUE; 4551 4552 out: 4553 return ret; 4554 } 4555 4556 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4557 { 4558 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4559 vcpu->arch.at_instruction_boundary = true; 4560 } 4561 4562 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4563 { 4564 if (!kvm_pause_in_guest(vcpu->kvm)) 4565 shrink_ple_window(vcpu); 4566 } 4567 4568 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4569 { 4570 /* [63:9] are reserved. */ 4571 vcpu->arch.mcg_cap &= 0x1ff; 4572 } 4573 4574 #ifdef CONFIG_KVM_SMM 4575 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4576 { 4577 struct vcpu_svm *svm = to_svm(vcpu); 4578 4579 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4580 if (!gif_set(svm)) 4581 return true; 4582 4583 return is_smm(vcpu); 4584 } 4585 4586 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4587 { 4588 struct vcpu_svm *svm = to_svm(vcpu); 4589 if (svm->nested.nested_run_pending) 4590 return -EBUSY; 4591 4592 if (svm_smi_blocked(vcpu)) 4593 return 0; 4594 4595 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4596 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4597 return -EBUSY; 4598 4599 return 1; 4600 } 4601 4602 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4603 { 4604 struct vcpu_svm *svm = to_svm(vcpu); 4605 struct kvm_host_map map_save; 4606 int ret; 4607 4608 if (!is_guest_mode(vcpu)) 4609 return 0; 4610 4611 /* 4612 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4613 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4614 */ 4615 4616 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4617 return 1; 4618 4619 smram->smram64.svm_guest_flag = 1; 4620 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4621 4622 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4623 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4624 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4625 4626 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4627 if (ret) 4628 return ret; 4629 4630 /* 4631 * KVM uses VMCB01 to store L1 host state while L2 runs but 4632 * VMCB01 is going to be used during SMM and thus the state will 4633 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4634 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4635 * format of the area is identical to guest save area offsetted 4636 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4637 * within 'struct vmcb'). Note: HSAVE area may also be used by 4638 * L1 hypervisor to save additional host context (e.g. KVM does 4639 * that, see svm_prepare_switch_to_guest()) which must be 4640 * preserved. 4641 */ 4642 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4643 return 1; 4644 4645 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4646 4647 svm_copy_vmrun_state(map_save.hva + 0x400, 4648 &svm->vmcb01.ptr->save); 4649 4650 kvm_vcpu_unmap(vcpu, &map_save, true); 4651 return 0; 4652 } 4653 4654 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4655 { 4656 struct vcpu_svm *svm = to_svm(vcpu); 4657 struct kvm_host_map map, map_save; 4658 struct vmcb *vmcb12; 4659 int ret; 4660 4661 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4662 4663 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4664 return 0; 4665 4666 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4667 if (!smram64->svm_guest_flag) 4668 return 0; 4669 4670 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4671 return 1; 4672 4673 if (!(smram64->efer & EFER_SVME)) 4674 return 1; 4675 4676 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4677 return 1; 4678 4679 ret = 1; 4680 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4681 goto unmap_map; 4682 4683 if (svm_allocate_nested(svm)) 4684 goto unmap_save; 4685 4686 /* 4687 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4688 * used during SMM (see svm_enter_smm()) 4689 */ 4690 4691 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4692 4693 /* 4694 * Enter the nested guest now 4695 */ 4696 4697 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4698 4699 vmcb12 = map.hva; 4700 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4701 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4702 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4703 4704 if (ret) 4705 goto unmap_save; 4706 4707 svm->nested.nested_run_pending = 1; 4708 4709 unmap_save: 4710 kvm_vcpu_unmap(vcpu, &map_save, true); 4711 unmap_map: 4712 kvm_vcpu_unmap(vcpu, &map, true); 4713 return ret; 4714 } 4715 4716 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4717 { 4718 struct vcpu_svm *svm = to_svm(vcpu); 4719 4720 if (!gif_set(svm)) { 4721 if (vgif) 4722 svm_set_intercept(svm, INTERCEPT_STGI); 4723 /* STGI will cause a vm exit */ 4724 } else { 4725 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4726 } 4727 } 4728 #endif 4729 4730 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4731 void *insn, int insn_len) 4732 { 4733 bool smep, smap, is_user; 4734 u64 error_code; 4735 4736 /* Emulation is always possible when KVM has access to all guest state. */ 4737 if (!sev_guest(vcpu->kvm)) 4738 return true; 4739 4740 /* #UD and #GP should never be intercepted for SEV guests. */ 4741 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4742 EMULTYPE_TRAP_UD_FORCED | 4743 EMULTYPE_VMWARE_GP)); 4744 4745 /* 4746 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4747 * to guest register state. 4748 */ 4749 if (sev_es_guest(vcpu->kvm)) 4750 return false; 4751 4752 /* 4753 * Emulation is possible if the instruction is already decoded, e.g. 4754 * when completing I/O after returning from userspace. 4755 */ 4756 if (emul_type & EMULTYPE_NO_DECODE) 4757 return true; 4758 4759 /* 4760 * Emulation is possible for SEV guests if and only if a prefilled 4761 * buffer containing the bytes of the intercepted instruction is 4762 * available. SEV guest memory is encrypted with a guest specific key 4763 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4764 * decode garbage. 4765 * 4766 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4767 * KVM reached this point without an instruction buffer. In practice, 4768 * this path should never be hit by a well-behaved guest, e.g. KVM 4769 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4770 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4771 * access, and needs to be handled by KVM to avoid putting the guest 4772 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4773 * its the least awful option given lack of insight into the guest. 4774 * 4775 * If KVM is trying to skip an instruction, simply resume the guest. 4776 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4777 * will attempt to re-inject the INT3/INTO and skip the instruction. 4778 * In that scenario, retrying the INT3/INTO and hoping the guest will 4779 * make forward progress is the only option that has a chance of 4780 * success (and in practice it will work the vast majority of the time). 4781 */ 4782 if (unlikely(!insn)) { 4783 if (!(emul_type & EMULTYPE_SKIP)) 4784 kvm_queue_exception(vcpu, UD_VECTOR); 4785 return false; 4786 } 4787 4788 /* 4789 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4790 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4791 * the faulting instruction because the code fetch itself faulted, e.g. 4792 * the guest attempted to fetch from emulated MMIO or a guest page 4793 * table used to translate CS:RIP resides in emulated MMIO. 4794 */ 4795 if (likely(insn_len)) 4796 return true; 4797 4798 /* 4799 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4800 * 4801 * Errata: 4802 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4803 * possible that CPU microcode implementing DecodeAssist will fail to 4804 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4805 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4806 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4807 * gives up and does not fill the instruction bytes buffer. 4808 * 4809 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4810 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4811 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4812 * GuestIntrBytes field of the VMCB. 4813 * 4814 * This does _not_ mean that the erratum has been encountered, as the 4815 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4816 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4817 * encountered a reserved/not-present #PF. 4818 * 4819 * To hit the erratum, the following conditions must be true: 4820 * 1. CR4.SMAP=1 (obviously). 4821 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4822 * have been hit as the guest would have encountered a SMEP 4823 * violation #PF, not a #NPF. 4824 * 3. The #NPF is not due to a code fetch, in which case failure to 4825 * retrieve the instruction bytes is legitimate (see abvoe). 4826 * 4827 * In addition, don't apply the erratum workaround if the #NPF occurred 4828 * while translating guest page tables (see below). 4829 */ 4830 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4831 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4832 goto resume_guest; 4833 4834 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4835 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4836 is_user = svm_get_cpl(vcpu) == 3; 4837 if (smap && (!smep || is_user)) { 4838 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4839 4840 /* 4841 * If the fault occurred in userspace, arbitrarily inject #GP 4842 * to avoid killing the guest and to hopefully avoid confusing 4843 * the guest kernel too much, e.g. injecting #PF would not be 4844 * coherent with respect to the guest's page tables. Request 4845 * triple fault if the fault occurred in the kernel as there's 4846 * no fault that KVM can inject without confusing the guest. 4847 * In practice, the triple fault is moot as no sane SEV kernel 4848 * will execute from user memory while also running with SMAP=1. 4849 */ 4850 if (is_user) 4851 kvm_inject_gp(vcpu, 0); 4852 else 4853 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4854 } 4855 4856 resume_guest: 4857 /* 4858 * If the erratum was not hit, simply resume the guest and let it fault 4859 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4860 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4861 * userspace will kill the guest, and letting the emulator read garbage 4862 * will yield random behavior and potentially corrupt the guest. 4863 * 4864 * Simply resuming the guest is technically not a violation of the SEV 4865 * architecture. AMD's APM states that all code fetches and page table 4866 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4867 * APM also states that encrypted accesses to MMIO are "ignored", but 4868 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4869 * the guest spin is technically "ignoring" the access. 4870 */ 4871 return false; 4872 } 4873 4874 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4875 { 4876 struct vcpu_svm *svm = to_svm(vcpu); 4877 4878 return !gif_set(svm); 4879 } 4880 4881 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4882 { 4883 if (!sev_es_guest(vcpu->kvm)) 4884 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4885 4886 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4887 } 4888 4889 static void svm_vm_destroy(struct kvm *kvm) 4890 { 4891 avic_vm_destroy(kvm); 4892 sev_vm_destroy(kvm); 4893 } 4894 4895 static int svm_vm_init(struct kvm *kvm) 4896 { 4897 if (!pause_filter_count || !pause_filter_thresh) 4898 kvm->arch.pause_in_guest = true; 4899 4900 if (enable_apicv) { 4901 int ret = avic_vm_init(kvm); 4902 if (ret) 4903 return ret; 4904 } 4905 4906 return 0; 4907 } 4908 4909 static struct kvm_x86_ops svm_x86_ops __initdata = { 4910 .name = KBUILD_MODNAME, 4911 4912 .check_processor_compatibility = svm_check_processor_compat, 4913 4914 .hardware_unsetup = svm_hardware_unsetup, 4915 .hardware_enable = svm_hardware_enable, 4916 .hardware_disable = svm_hardware_disable, 4917 .has_emulated_msr = svm_has_emulated_msr, 4918 4919 .vcpu_create = svm_vcpu_create, 4920 .vcpu_free = svm_vcpu_free, 4921 .vcpu_reset = svm_vcpu_reset, 4922 4923 .vm_size = sizeof(struct kvm_svm), 4924 .vm_init = svm_vm_init, 4925 .vm_destroy = svm_vm_destroy, 4926 4927 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4928 .vcpu_load = svm_vcpu_load, 4929 .vcpu_put = svm_vcpu_put, 4930 .vcpu_blocking = avic_vcpu_blocking, 4931 .vcpu_unblocking = avic_vcpu_unblocking, 4932 4933 .update_exception_bitmap = svm_update_exception_bitmap, 4934 .get_msr_feature = svm_get_msr_feature, 4935 .get_msr = svm_get_msr, 4936 .set_msr = svm_set_msr, 4937 .get_segment_base = svm_get_segment_base, 4938 .get_segment = svm_get_segment, 4939 .set_segment = svm_set_segment, 4940 .get_cpl = svm_get_cpl, 4941 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4942 .is_valid_cr0 = svm_is_valid_cr0, 4943 .set_cr0 = svm_set_cr0, 4944 .post_set_cr3 = sev_post_set_cr3, 4945 .is_valid_cr4 = svm_is_valid_cr4, 4946 .set_cr4 = svm_set_cr4, 4947 .set_efer = svm_set_efer, 4948 .get_idt = svm_get_idt, 4949 .set_idt = svm_set_idt, 4950 .get_gdt = svm_get_gdt, 4951 .set_gdt = svm_set_gdt, 4952 .set_dr7 = svm_set_dr7, 4953 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4954 .cache_reg = svm_cache_reg, 4955 .get_rflags = svm_get_rflags, 4956 .set_rflags = svm_set_rflags, 4957 .get_if_flag = svm_get_if_flag, 4958 4959 .flush_tlb_all = svm_flush_tlb_all, 4960 .flush_tlb_current = svm_flush_tlb_current, 4961 .flush_tlb_gva = svm_flush_tlb_gva, 4962 .flush_tlb_guest = svm_flush_tlb_asid, 4963 4964 .vcpu_pre_run = svm_vcpu_pre_run, 4965 .vcpu_run = svm_vcpu_run, 4966 .handle_exit = svm_handle_exit, 4967 .skip_emulated_instruction = svm_skip_emulated_instruction, 4968 .update_emulated_instruction = NULL, 4969 .set_interrupt_shadow = svm_set_interrupt_shadow, 4970 .get_interrupt_shadow = svm_get_interrupt_shadow, 4971 .patch_hypercall = svm_patch_hypercall, 4972 .inject_irq = svm_inject_irq, 4973 .inject_nmi = svm_inject_nmi, 4974 .is_vnmi_pending = svm_is_vnmi_pending, 4975 .set_vnmi_pending = svm_set_vnmi_pending, 4976 .inject_exception = svm_inject_exception, 4977 .cancel_injection = svm_cancel_injection, 4978 .interrupt_allowed = svm_interrupt_allowed, 4979 .nmi_allowed = svm_nmi_allowed, 4980 .get_nmi_mask = svm_get_nmi_mask, 4981 .set_nmi_mask = svm_set_nmi_mask, 4982 .enable_nmi_window = svm_enable_nmi_window, 4983 .enable_irq_window = svm_enable_irq_window, 4984 .update_cr8_intercept = svm_update_cr8_intercept, 4985 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 4986 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 4987 .apicv_post_state_restore = avic_apicv_post_state_restore, 4988 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 4989 4990 .get_exit_info = svm_get_exit_info, 4991 4992 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4993 4994 .has_wbinvd_exit = svm_has_wbinvd_exit, 4995 4996 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4997 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4998 .write_tsc_offset = svm_write_tsc_offset, 4999 .write_tsc_multiplier = svm_write_tsc_multiplier, 5000 5001 .load_mmu_pgd = svm_load_mmu_pgd, 5002 5003 .check_intercept = svm_check_intercept, 5004 .handle_exit_irqoff = svm_handle_exit_irqoff, 5005 5006 .request_immediate_exit = __kvm_request_immediate_exit, 5007 5008 .sched_in = svm_sched_in, 5009 5010 .nested_ops = &svm_nested_ops, 5011 5012 .deliver_interrupt = svm_deliver_interrupt, 5013 .pi_update_irte = avic_pi_update_irte, 5014 .setup_mce = svm_setup_mce, 5015 5016 #ifdef CONFIG_KVM_SMM 5017 .smi_allowed = svm_smi_allowed, 5018 .enter_smm = svm_enter_smm, 5019 .leave_smm = svm_leave_smm, 5020 .enable_smi_window = svm_enable_smi_window, 5021 #endif 5022 5023 .mem_enc_ioctl = sev_mem_enc_ioctl, 5024 .mem_enc_register_region = sev_mem_enc_register_region, 5025 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5026 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5027 5028 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5029 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5030 5031 .can_emulate_instruction = svm_can_emulate_instruction, 5032 5033 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5034 5035 .msr_filter_changed = svm_msr_filter_changed, 5036 .complete_emulated_msr = svm_complete_emulated_msr, 5037 5038 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5039 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5040 }; 5041 5042 /* 5043 * The default MMIO mask is a single bit (excluding the present bit), 5044 * which could conflict with the memory encryption bit. Check for 5045 * memory encryption support and override the default MMIO mask if 5046 * memory encryption is enabled. 5047 */ 5048 static __init void svm_adjust_mmio_mask(void) 5049 { 5050 unsigned int enc_bit, mask_bit; 5051 u64 msr, mask; 5052 5053 /* If there is no memory encryption support, use existing mask */ 5054 if (cpuid_eax(0x80000000) < 0x8000001f) 5055 return; 5056 5057 /* If memory encryption is not enabled, use existing mask */ 5058 rdmsrl(MSR_AMD64_SYSCFG, msr); 5059 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5060 return; 5061 5062 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5063 mask_bit = boot_cpu_data.x86_phys_bits; 5064 5065 /* Increment the mask bit if it is the same as the encryption bit */ 5066 if (enc_bit == mask_bit) 5067 mask_bit++; 5068 5069 /* 5070 * If the mask bit location is below 52, then some bits above the 5071 * physical addressing limit will always be reserved, so use the 5072 * rsvd_bits() function to generate the mask. This mask, along with 5073 * the present bit, will be used to generate a page fault with 5074 * PFER.RSV = 1. 5075 * 5076 * If the mask bit location is 52 (or above), then clear the mask. 5077 */ 5078 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5079 5080 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5081 } 5082 5083 static __init void svm_set_cpu_caps(void) 5084 { 5085 kvm_set_cpu_caps(); 5086 5087 kvm_caps.supported_perf_cap = 0; 5088 kvm_caps.supported_xss = 0; 5089 5090 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5091 if (nested) { 5092 kvm_cpu_cap_set(X86_FEATURE_SVM); 5093 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5094 5095 if (nrips) 5096 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5097 5098 if (npt_enabled) 5099 kvm_cpu_cap_set(X86_FEATURE_NPT); 5100 5101 if (tsc_scaling) 5102 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5103 5104 if (vls) 5105 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5106 if (lbrv) 5107 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5108 5109 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5110 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5111 5112 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5113 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5114 5115 if (vgif) 5116 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5117 5118 if (vnmi) 5119 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5120 5121 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5122 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5123 } 5124 5125 /* CPUID 0x80000008 */ 5126 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5127 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5128 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5129 5130 if (enable_pmu) { 5131 /* 5132 * Enumerate support for PERFCTR_CORE if and only if KVM has 5133 * access to enough counters to virtualize "core" support, 5134 * otherwise limit vPMU support to the legacy number of counters. 5135 */ 5136 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5137 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5138 kvm_pmu_cap.num_counters_gp); 5139 else 5140 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5141 5142 if (kvm_pmu_cap.version != 2 || 5143 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5144 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5145 } 5146 5147 /* CPUID 0x8000001F (SME/SEV features) */ 5148 sev_set_cpu_caps(); 5149 } 5150 5151 static __init int svm_hardware_setup(void) 5152 { 5153 int cpu; 5154 struct page *iopm_pages; 5155 void *iopm_va; 5156 int r; 5157 unsigned int order = get_order(IOPM_SIZE); 5158 5159 /* 5160 * NX is required for shadow paging and for NPT if the NX huge pages 5161 * mitigation is enabled. 5162 */ 5163 if (!boot_cpu_has(X86_FEATURE_NX)) { 5164 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5165 return -EOPNOTSUPP; 5166 } 5167 kvm_enable_efer_bits(EFER_NX); 5168 5169 iopm_pages = alloc_pages(GFP_KERNEL, order); 5170 5171 if (!iopm_pages) 5172 return -ENOMEM; 5173 5174 iopm_va = page_address(iopm_pages); 5175 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5176 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 5177 5178 init_msrpm_offsets(); 5179 5180 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5181 XFEATURE_MASK_BNDCSR); 5182 5183 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5184 kvm_enable_efer_bits(EFER_FFXSR); 5185 5186 if (tsc_scaling) { 5187 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5188 tsc_scaling = false; 5189 } else { 5190 pr_info("TSC scaling supported\n"); 5191 kvm_caps.has_tsc_control = true; 5192 } 5193 } 5194 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5195 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5196 5197 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5198 5199 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5200 kvm_enable_efer_bits(EFER_AUTOIBRS); 5201 5202 /* Check for pause filtering support */ 5203 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5204 pause_filter_count = 0; 5205 pause_filter_thresh = 0; 5206 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5207 pause_filter_thresh = 0; 5208 } 5209 5210 if (nested) { 5211 pr_info("Nested Virtualization enabled\n"); 5212 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5213 } 5214 5215 /* 5216 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5217 * NPT isn't supported if the host is using 2-level paging since host 5218 * CR4 is unchanged on VMRUN. 5219 */ 5220 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5221 npt_enabled = false; 5222 5223 if (!boot_cpu_has(X86_FEATURE_NPT)) 5224 npt_enabled = false; 5225 5226 /* Force VM NPT level equal to the host's paging level */ 5227 kvm_configure_mmu(npt_enabled, get_npt_level(), 5228 get_npt_level(), PG_LEVEL_1G); 5229 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5230 5231 /* Setup shadow_me_value and shadow_me_mask */ 5232 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5233 5234 svm_adjust_mmio_mask(); 5235 5236 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5237 5238 /* 5239 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5240 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5241 */ 5242 sev_hardware_setup(); 5243 5244 svm_hv_hardware_setup(); 5245 5246 for_each_possible_cpu(cpu) { 5247 r = svm_cpu_init(cpu); 5248 if (r) 5249 goto err; 5250 } 5251 5252 enable_apicv = avic = avic && avic_hardware_setup(); 5253 5254 if (!enable_apicv) { 5255 svm_x86_ops.vcpu_blocking = NULL; 5256 svm_x86_ops.vcpu_unblocking = NULL; 5257 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5258 } else if (!x2avic_enabled) { 5259 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5260 } 5261 5262 if (vls) { 5263 if (!npt_enabled || 5264 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5265 !IS_ENABLED(CONFIG_X86_64)) { 5266 vls = false; 5267 } else { 5268 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5269 } 5270 } 5271 5272 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5273 svm_gp_erratum_intercept = false; 5274 5275 if (vgif) { 5276 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5277 vgif = false; 5278 else 5279 pr_info("Virtual GIF supported\n"); 5280 } 5281 5282 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5283 if (vnmi) 5284 pr_info("Virtual NMI enabled\n"); 5285 5286 if (!vnmi) { 5287 svm_x86_ops.is_vnmi_pending = NULL; 5288 svm_x86_ops.set_vnmi_pending = NULL; 5289 } 5290 5291 5292 if (lbrv) { 5293 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5294 lbrv = false; 5295 else 5296 pr_info("LBR virtualization supported\n"); 5297 } 5298 5299 if (!enable_pmu) 5300 pr_info("PMU virtualization is disabled\n"); 5301 5302 svm_set_cpu_caps(); 5303 5304 /* 5305 * It seems that on AMD processors PTE's accessed bit is 5306 * being set by the CPU hardware before the NPF vmexit. 5307 * This is not expected behaviour and our tests fail because 5308 * of it. 5309 * A workaround here is to disable support for 5310 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5311 * In this case userspace can know if there is support using 5312 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5313 * it 5314 * If future AMD CPU models change the behaviour described above, 5315 * this variable can be changed accordingly 5316 */ 5317 allow_smaller_maxphyaddr = !npt_enabled; 5318 5319 return 0; 5320 5321 err: 5322 svm_hardware_unsetup(); 5323 return r; 5324 } 5325 5326 5327 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5328 .hardware_setup = svm_hardware_setup, 5329 5330 .runtime_ops = &svm_x86_ops, 5331 .pmu_ops = &amd_pmu_ops, 5332 }; 5333 5334 static void __svm_exit(void) 5335 { 5336 kvm_x86_vendor_exit(); 5337 5338 cpu_emergency_unregister_virt_callback(svm_emergency_disable); 5339 } 5340 5341 static int __init svm_init(void) 5342 { 5343 int r; 5344 5345 __unused_size_checks(); 5346 5347 if (!kvm_is_svm_supported()) 5348 return -EOPNOTSUPP; 5349 5350 r = kvm_x86_vendor_init(&svm_init_ops); 5351 if (r) 5352 return r; 5353 5354 cpu_emergency_register_virt_callback(svm_emergency_disable); 5355 5356 /* 5357 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5358 * exposed to userspace! 5359 */ 5360 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5361 THIS_MODULE); 5362 if (r) 5363 goto err_kvm_init; 5364 5365 return 0; 5366 5367 err_kvm_init: 5368 __svm_exit(); 5369 return r; 5370 } 5371 5372 static void __exit svm_exit(void) 5373 { 5374 kvm_exit(); 5375 __svm_exit(); 5376 } 5377 5378 module_init(svm_init) 5379 module_exit(svm_exit) 5380