1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 32 #include <asm/apic.h> 33 #include <asm/perf_event.h> 34 #include <asm/tlbflush.h> 35 #include <asm/desc.h> 36 #include <asm/debugreg.h> 37 #include <asm/kvm_para.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/spec-ctrl.h> 40 #include <asm/cpu_device_id.h> 41 #include <asm/traps.h> 42 #include <asm/reboot.h> 43 #include <asm/fpu/api.h> 44 45 #include <trace/events/ipi.h> 46 47 #include "trace.h" 48 49 #include "svm.h" 50 #include "svm_ops.h" 51 52 #include "kvm_onhyperv.h" 53 #include "svm_onhyperv.h" 54 55 MODULE_AUTHOR("Qumranet"); 56 MODULE_LICENSE("GPL"); 57 58 #ifdef MODULE 59 static const struct x86_cpu_id svm_cpu_id[] = { 60 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 61 {} 62 }; 63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 64 #endif 65 66 #define SEG_TYPE_LDT 2 67 #define SEG_TYPE_BUSY_TSS16 3 68 69 static bool erratum_383_found __read_mostly; 70 71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 72 73 /* 74 * Set osvw_len to higher value when updated Revision Guides 75 * are published and we know what the new status bits are 76 */ 77 static uint64_t osvw_len = 4, osvw_status; 78 79 static DEFINE_PER_CPU(u64, current_tsc_ratio); 80 81 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 82 83 static const struct svm_direct_access_msrs { 84 u32 index; /* Index of the MSR */ 85 bool always; /* True if intercept is initially cleared */ 86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 87 { .index = MSR_STAR, .always = true }, 88 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 89 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 90 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 91 #ifdef CONFIG_X86_64 92 { .index = MSR_GS_BASE, .always = true }, 93 { .index = MSR_FS_BASE, .always = true }, 94 { .index = MSR_KERNEL_GS_BASE, .always = true }, 95 { .index = MSR_LSTAR, .always = true }, 96 { .index = MSR_CSTAR, .always = true }, 97 { .index = MSR_SYSCALL_MASK, .always = true }, 98 #endif 99 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 100 { .index = MSR_IA32_PRED_CMD, .always = false }, 101 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 102 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 103 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 104 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 105 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 106 { .index = MSR_EFER, .always = false }, 107 { .index = MSR_IA32_CR_PAT, .always = false }, 108 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 109 { .index = MSR_TSC_AUX, .always = false }, 110 { .index = X2APIC_MSR(APIC_ID), .always = false }, 111 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 112 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 113 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 114 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 115 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 116 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 117 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 118 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 119 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 120 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 121 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 122 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 123 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 124 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 125 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 126 127 /* 128 * Note: 129 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 130 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 131 * the AVIC hardware would generate GP fault. Therefore, always 132 * intercept the MSR 0x832, and do not setup direct_access_msr. 133 */ 134 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 135 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 136 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 137 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 138 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 139 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 140 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 141 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 142 { .index = MSR_INVALID, .always = false }, 143 }; 144 145 /* 146 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 147 * pause_filter_count: On processors that support Pause filtering(indicated 148 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 149 * count value. On VMRUN this value is loaded into an internal counter. 150 * Each time a pause instruction is executed, this counter is decremented 151 * until it reaches zero at which time a #VMEXIT is generated if pause 152 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 153 * Intercept Filtering for more details. 154 * This also indicate if ple logic enabled. 155 * 156 * pause_filter_thresh: In addition, some processor families support advanced 157 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 158 * the amount of time a guest is allowed to execute in a pause loop. 159 * In this mode, a 16-bit pause filter threshold field is added in the 160 * VMCB. The threshold value is a cycle count that is used to reset the 161 * pause counter. As with simple pause filtering, VMRUN loads the pause 162 * count value from VMCB into an internal counter. Then, on each pause 163 * instruction the hardware checks the elapsed number of cycles since 164 * the most recent pause instruction against the pause filter threshold. 165 * If the elapsed cycle count is greater than the pause filter threshold, 166 * then the internal pause count is reloaded from the VMCB and execution 167 * continues. If the elapsed cycle count is less than the pause filter 168 * threshold, then the internal pause count is decremented. If the count 169 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 170 * triggered. If advanced pause filtering is supported and pause filter 171 * threshold field is set to zero, the filter will operate in the simpler, 172 * count only mode. 173 */ 174 175 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 176 module_param(pause_filter_thresh, ushort, 0444); 177 178 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 179 module_param(pause_filter_count, ushort, 0444); 180 181 /* Default doubles per-vcpu window every exit. */ 182 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 183 module_param(pause_filter_count_grow, ushort, 0444); 184 185 /* Default resets per-vcpu window every exit to pause_filter_count. */ 186 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 187 module_param(pause_filter_count_shrink, ushort, 0444); 188 189 /* Default is to compute the maximum so we can never overflow. */ 190 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 191 module_param(pause_filter_count_max, ushort, 0444); 192 193 /* 194 * Use nested page tables by default. Note, NPT may get forced off by 195 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 196 */ 197 bool npt_enabled = true; 198 module_param_named(npt, npt_enabled, bool, 0444); 199 200 /* allow nested virtualization in KVM/SVM */ 201 static int nested = true; 202 module_param(nested, int, S_IRUGO); 203 204 /* enable/disable Next RIP Save */ 205 int nrips = true; 206 module_param(nrips, int, 0444); 207 208 /* enable/disable Virtual VMLOAD VMSAVE */ 209 static int vls = true; 210 module_param(vls, int, 0444); 211 212 /* enable/disable Virtual GIF */ 213 int vgif = true; 214 module_param(vgif, int, 0444); 215 216 /* enable/disable LBR virtualization */ 217 static int lbrv = true; 218 module_param(lbrv, int, 0444); 219 220 static int tsc_scaling = true; 221 module_param(tsc_scaling, int, 0444); 222 223 /* 224 * enable / disable AVIC. Because the defaults differ for APICv 225 * support between VMX and SVM we cannot use module_param_named. 226 */ 227 static bool avic; 228 module_param(avic, bool, 0444); 229 230 bool __read_mostly dump_invalid_vmcb; 231 module_param(dump_invalid_vmcb, bool, 0644); 232 233 234 bool intercept_smi = true; 235 module_param(intercept_smi, bool, 0444); 236 237 bool vnmi = true; 238 module_param(vnmi, bool, 0444); 239 240 static bool svm_gp_erratum_intercept = true; 241 242 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 243 244 static unsigned long iopm_base; 245 246 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 247 248 /* 249 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 250 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 251 * 252 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 253 * defer the restoration of TSC_AUX until the CPU returns to userspace. 254 */ 255 static int tsc_aux_uret_slot __read_mostly = -1; 256 257 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 258 259 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 260 #define MSRS_RANGE_SIZE 2048 261 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 262 263 u32 svm_msrpm_offset(u32 msr) 264 { 265 u32 offset; 266 int i; 267 268 for (i = 0; i < NUM_MSR_MAPS; i++) { 269 if (msr < msrpm_ranges[i] || 270 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 271 continue; 272 273 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 274 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 275 276 /* Now we have the u8 offset - but need the u32 offset */ 277 return offset / 4; 278 } 279 280 /* MSR not in any range */ 281 return MSR_INVALID; 282 } 283 284 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 285 286 static int get_npt_level(void) 287 { 288 #ifdef CONFIG_X86_64 289 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 290 #else 291 return PT32E_ROOT_LEVEL; 292 #endif 293 } 294 295 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 296 { 297 struct vcpu_svm *svm = to_svm(vcpu); 298 u64 old_efer = vcpu->arch.efer; 299 vcpu->arch.efer = efer; 300 301 if (!npt_enabled) { 302 /* Shadow paging assumes NX to be available. */ 303 efer |= EFER_NX; 304 305 if (!(efer & EFER_LMA)) 306 efer &= ~EFER_LME; 307 } 308 309 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 310 if (!(efer & EFER_SVME)) { 311 svm_leave_nested(vcpu); 312 svm_set_gif(svm, true); 313 /* #GP intercept is still needed for vmware backdoor */ 314 if (!enable_vmware_backdoor) 315 clr_exception_intercept(svm, GP_VECTOR); 316 317 /* 318 * Free the nested guest state, unless we are in SMM. 319 * In this case we will return to the nested guest 320 * as soon as we leave SMM. 321 */ 322 if (!is_smm(vcpu)) 323 svm_free_nested(svm); 324 325 } else { 326 int ret = svm_allocate_nested(svm); 327 328 if (ret) { 329 vcpu->arch.efer = old_efer; 330 return ret; 331 } 332 333 /* 334 * Never intercept #GP for SEV guests, KVM can't 335 * decrypt guest memory to workaround the erratum. 336 */ 337 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 338 set_exception_intercept(svm, GP_VECTOR); 339 } 340 } 341 342 svm->vmcb->save.efer = efer | EFER_SVME; 343 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 344 return 0; 345 } 346 347 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 348 { 349 struct vcpu_svm *svm = to_svm(vcpu); 350 u32 ret = 0; 351 352 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 353 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 354 return ret; 355 } 356 357 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 358 { 359 struct vcpu_svm *svm = to_svm(vcpu); 360 361 if (mask == 0) 362 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 363 else 364 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 365 366 } 367 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 368 void *insn, int insn_len); 369 370 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 371 bool commit_side_effects) 372 { 373 struct vcpu_svm *svm = to_svm(vcpu); 374 unsigned long old_rflags; 375 376 /* 377 * SEV-ES does not expose the next RIP. The RIP update is controlled by 378 * the type of exit and the #VC handler in the guest. 379 */ 380 if (sev_es_guest(vcpu->kvm)) 381 goto done; 382 383 if (nrips && svm->vmcb->control.next_rip != 0) { 384 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 385 svm->next_rip = svm->vmcb->control.next_rip; 386 } 387 388 if (!svm->next_rip) { 389 /* 390 * FIXME: Drop this when kvm_emulate_instruction() does the 391 * right thing and treats "can't emulate" as outright failure 392 * for EMULTYPE_SKIP. 393 */ 394 if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0)) 395 return 0; 396 397 if (unlikely(!commit_side_effects)) 398 old_rflags = svm->vmcb->save.rflags; 399 400 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 401 return 0; 402 403 if (unlikely(!commit_side_effects)) 404 svm->vmcb->save.rflags = old_rflags; 405 } else { 406 kvm_rip_write(vcpu, svm->next_rip); 407 } 408 409 done: 410 if (likely(commit_side_effects)) 411 svm_set_interrupt_shadow(vcpu, 0); 412 413 return 1; 414 } 415 416 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 417 { 418 return __svm_skip_emulated_instruction(vcpu, true); 419 } 420 421 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 422 { 423 unsigned long rip, old_rip = kvm_rip_read(vcpu); 424 struct vcpu_svm *svm = to_svm(vcpu); 425 426 /* 427 * Due to architectural shortcomings, the CPU doesn't always provide 428 * NextRIP, e.g. if KVM intercepted an exception that occurred while 429 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 430 * the instruction even if NextRIP is supported to acquire the next 431 * RIP so that it can be shoved into the NextRIP field, otherwise 432 * hardware will fail to advance guest RIP during event injection. 433 * Drop the exception/interrupt if emulation fails and effectively 434 * retry the instruction, it's the least awful option. If NRIPS is 435 * in use, the skip must not commit any side effects such as clearing 436 * the interrupt shadow or RFLAGS.RF. 437 */ 438 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 439 return -EIO; 440 441 rip = kvm_rip_read(vcpu); 442 443 /* 444 * Save the injection information, even when using next_rip, as the 445 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 446 * doesn't complete due to a VM-Exit occurring while the CPU is 447 * vectoring the event. Decoding the instruction isn't guaranteed to 448 * work as there may be no backing instruction, e.g. if the event is 449 * being injected by L1 for L2, or if the guest is patching INT3 into 450 * a different instruction. 451 */ 452 svm->soft_int_injected = true; 453 svm->soft_int_csbase = svm->vmcb->save.cs.base; 454 svm->soft_int_old_rip = old_rip; 455 svm->soft_int_next_rip = rip; 456 457 if (nrips) 458 kvm_rip_write(vcpu, old_rip); 459 460 if (static_cpu_has(X86_FEATURE_NRIPS)) 461 svm->vmcb->control.next_rip = rip; 462 463 return 0; 464 } 465 466 static void svm_inject_exception(struct kvm_vcpu *vcpu) 467 { 468 struct kvm_queued_exception *ex = &vcpu->arch.exception; 469 struct vcpu_svm *svm = to_svm(vcpu); 470 471 kvm_deliver_exception_payload(vcpu, ex); 472 473 if (kvm_exception_is_soft(ex->vector) && 474 svm_update_soft_interrupt_rip(vcpu)) 475 return; 476 477 svm->vmcb->control.event_inj = ex->vector 478 | SVM_EVTINJ_VALID 479 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 480 | SVM_EVTINJ_TYPE_EXEPT; 481 svm->vmcb->control.event_inj_err = ex->error_code; 482 } 483 484 static void svm_init_erratum_383(void) 485 { 486 u32 low, high; 487 int err; 488 u64 val; 489 490 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 491 return; 492 493 /* Use _safe variants to not break nested virtualization */ 494 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 495 if (err) 496 return; 497 498 val |= (1ULL << 47); 499 500 low = lower_32_bits(val); 501 high = upper_32_bits(val); 502 503 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 504 505 erratum_383_found = true; 506 } 507 508 static void svm_init_osvw(struct kvm_vcpu *vcpu) 509 { 510 /* 511 * Guests should see errata 400 and 415 as fixed (assuming that 512 * HLT and IO instructions are intercepted). 513 */ 514 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 515 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 516 517 /* 518 * By increasing VCPU's osvw.length to 3 we are telling the guest that 519 * all osvw.status bits inside that length, including bit 0 (which is 520 * reserved for erratum 298), are valid. However, if host processor's 521 * osvw_len is 0 then osvw_status[0] carries no information. We need to 522 * be conservative here and therefore we tell the guest that erratum 298 523 * is present (because we really don't know). 524 */ 525 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 526 vcpu->arch.osvw.status |= 1; 527 } 528 529 static bool __kvm_is_svm_supported(void) 530 { 531 int cpu = smp_processor_id(); 532 struct cpuinfo_x86 *c = &cpu_data(cpu); 533 534 u64 vm_cr; 535 536 if (c->x86_vendor != X86_VENDOR_AMD && 537 c->x86_vendor != X86_VENDOR_HYGON) { 538 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 539 return false; 540 } 541 542 if (!cpu_has(c, X86_FEATURE_SVM)) { 543 pr_err("SVM not supported by CPU %d\n", cpu); 544 return false; 545 } 546 547 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 548 pr_info("KVM is unsupported when running as an SEV guest\n"); 549 return false; 550 } 551 552 rdmsrl(MSR_VM_CR, vm_cr); 553 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) { 554 pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu); 555 return false; 556 } 557 558 return true; 559 } 560 561 static bool kvm_is_svm_supported(void) 562 { 563 bool supported; 564 565 migrate_disable(); 566 supported = __kvm_is_svm_supported(); 567 migrate_enable(); 568 569 return supported; 570 } 571 572 static int svm_check_processor_compat(void) 573 { 574 if (!__kvm_is_svm_supported()) 575 return -EIO; 576 577 return 0; 578 } 579 580 static void __svm_write_tsc_multiplier(u64 multiplier) 581 { 582 if (multiplier == __this_cpu_read(current_tsc_ratio)) 583 return; 584 585 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 586 __this_cpu_write(current_tsc_ratio, multiplier); 587 } 588 589 static inline void kvm_cpu_svm_disable(void) 590 { 591 uint64_t efer; 592 593 wrmsrl(MSR_VM_HSAVE_PA, 0); 594 rdmsrl(MSR_EFER, efer); 595 if (efer & EFER_SVME) { 596 /* 597 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 598 * NMI aren't blocked. 599 */ 600 stgi(); 601 wrmsrl(MSR_EFER, efer & ~EFER_SVME); 602 } 603 } 604 605 static void svm_emergency_disable(void) 606 { 607 kvm_rebooting = true; 608 609 kvm_cpu_svm_disable(); 610 } 611 612 static void svm_hardware_disable(void) 613 { 614 /* Make sure we clean up behind us */ 615 if (tsc_scaling) 616 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 617 618 kvm_cpu_svm_disable(); 619 620 amd_pmu_disable_virt(); 621 } 622 623 static int svm_hardware_enable(void) 624 { 625 626 struct svm_cpu_data *sd; 627 uint64_t efer; 628 int me = raw_smp_processor_id(); 629 630 rdmsrl(MSR_EFER, efer); 631 if (efer & EFER_SVME) 632 return -EBUSY; 633 634 sd = per_cpu_ptr(&svm_data, me); 635 sd->asid_generation = 1; 636 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 637 sd->next_asid = sd->max_asid + 1; 638 sd->min_asid = max_sev_asid + 1; 639 640 wrmsrl(MSR_EFER, efer | EFER_SVME); 641 642 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 643 644 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 645 /* 646 * Set the default value, even if we don't use TSC scaling 647 * to avoid having stale value in the msr 648 */ 649 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 650 } 651 652 653 /* 654 * Get OSVW bits. 655 * 656 * Note that it is possible to have a system with mixed processor 657 * revisions and therefore different OSVW bits. If bits are not the same 658 * on different processors then choose the worst case (i.e. if erratum 659 * is present on one processor and not on another then assume that the 660 * erratum is present everywhere). 661 */ 662 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 663 uint64_t len, status = 0; 664 int err; 665 666 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 667 if (!err) 668 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 669 &err); 670 671 if (err) 672 osvw_status = osvw_len = 0; 673 else { 674 if (len < osvw_len) 675 osvw_len = len; 676 osvw_status |= status; 677 osvw_status &= (1ULL << osvw_len) - 1; 678 } 679 } else 680 osvw_status = osvw_len = 0; 681 682 svm_init_erratum_383(); 683 684 amd_pmu_enable_virt(); 685 686 /* 687 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type 688 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. 689 * Since Linux does not change the value of TSC_AUX once set, prime the 690 * TSC_AUX field now to avoid a RDMSR on every vCPU run. 691 */ 692 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 693 struct sev_es_save_area *hostsa; 694 u32 msr_hi; 695 696 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 697 698 rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi); 699 } 700 701 return 0; 702 } 703 704 static void svm_cpu_uninit(int cpu) 705 { 706 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 707 708 if (!sd->save_area) 709 return; 710 711 kfree(sd->sev_vmcbs); 712 __free_page(sd->save_area); 713 sd->save_area_pa = 0; 714 sd->save_area = NULL; 715 } 716 717 static int svm_cpu_init(int cpu) 718 { 719 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 720 int ret = -ENOMEM; 721 722 memset(sd, 0, sizeof(struct svm_cpu_data)); 723 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 724 if (!sd->save_area) 725 return ret; 726 727 ret = sev_cpu_init(sd); 728 if (ret) 729 goto free_save_area; 730 731 sd->save_area_pa = __sme_page_pa(sd->save_area); 732 return 0; 733 734 free_save_area: 735 __free_page(sd->save_area); 736 sd->save_area = NULL; 737 return ret; 738 739 } 740 741 static void set_dr_intercepts(struct vcpu_svm *svm) 742 { 743 struct vmcb *vmcb = svm->vmcb01.ptr; 744 745 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 746 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 747 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 748 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 749 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 750 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 751 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 752 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 753 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 754 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 755 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 756 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 757 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 758 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 759 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 760 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 761 762 recalc_intercepts(svm); 763 } 764 765 static void clr_dr_intercepts(struct vcpu_svm *svm) 766 { 767 struct vmcb *vmcb = svm->vmcb01.ptr; 768 769 vmcb->control.intercepts[INTERCEPT_DR] = 0; 770 771 recalc_intercepts(svm); 772 } 773 774 static int direct_access_msr_slot(u32 msr) 775 { 776 u32 i; 777 778 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 779 if (direct_access_msrs[i].index == msr) 780 return i; 781 782 return -ENOENT; 783 } 784 785 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 786 int write) 787 { 788 struct vcpu_svm *svm = to_svm(vcpu); 789 int slot = direct_access_msr_slot(msr); 790 791 if (slot == -ENOENT) 792 return; 793 794 /* Set the shadow bitmaps to the desired intercept states */ 795 if (read) 796 set_bit(slot, svm->shadow_msr_intercept.read); 797 else 798 clear_bit(slot, svm->shadow_msr_intercept.read); 799 800 if (write) 801 set_bit(slot, svm->shadow_msr_intercept.write); 802 else 803 clear_bit(slot, svm->shadow_msr_intercept.write); 804 } 805 806 static bool valid_msr_intercept(u32 index) 807 { 808 return direct_access_msr_slot(index) != -ENOENT; 809 } 810 811 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 812 { 813 u8 bit_write; 814 unsigned long tmp; 815 u32 offset; 816 u32 *msrpm; 817 818 /* 819 * For non-nested case: 820 * If the L01 MSR bitmap does not intercept the MSR, then we need to 821 * save it. 822 * 823 * For nested case: 824 * If the L02 MSR bitmap does not intercept the MSR, then we need to 825 * save it. 826 */ 827 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 828 to_svm(vcpu)->msrpm; 829 830 offset = svm_msrpm_offset(msr); 831 bit_write = 2 * (msr & 0x0f) + 1; 832 tmp = msrpm[offset]; 833 834 BUG_ON(offset == MSR_INVALID); 835 836 return test_bit(bit_write, &tmp); 837 } 838 839 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 840 u32 msr, int read, int write) 841 { 842 struct vcpu_svm *svm = to_svm(vcpu); 843 u8 bit_read, bit_write; 844 unsigned long tmp; 845 u32 offset; 846 847 /* 848 * If this warning triggers extend the direct_access_msrs list at the 849 * beginning of the file 850 */ 851 WARN_ON(!valid_msr_intercept(msr)); 852 853 /* Enforce non allowed MSRs to trap */ 854 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 855 read = 0; 856 857 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 858 write = 0; 859 860 offset = svm_msrpm_offset(msr); 861 bit_read = 2 * (msr & 0x0f); 862 bit_write = 2 * (msr & 0x0f) + 1; 863 tmp = msrpm[offset]; 864 865 BUG_ON(offset == MSR_INVALID); 866 867 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 868 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 869 870 msrpm[offset] = tmp; 871 872 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 873 svm->nested.force_msr_bitmap_recalc = true; 874 } 875 876 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 877 int read, int write) 878 { 879 set_shadow_msr_intercept(vcpu, msr, read, write); 880 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 881 } 882 883 u32 *svm_vcpu_alloc_msrpm(void) 884 { 885 unsigned int order = get_order(MSRPM_SIZE); 886 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 887 u32 *msrpm; 888 889 if (!pages) 890 return NULL; 891 892 msrpm = page_address(pages); 893 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 894 895 return msrpm; 896 } 897 898 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 899 { 900 int i; 901 902 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 903 if (!direct_access_msrs[i].always) 904 continue; 905 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 906 } 907 } 908 909 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 910 { 911 int i; 912 913 if (intercept == svm->x2avic_msrs_intercepted) 914 return; 915 916 if (!x2avic_enabled || 917 !apic_x2apic_mode(svm->vcpu.arch.apic)) 918 return; 919 920 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 921 int index = direct_access_msrs[i].index; 922 923 if ((index < APIC_BASE_MSR) || 924 (index > APIC_BASE_MSR + 0xff)) 925 continue; 926 set_msr_interception(&svm->vcpu, svm->msrpm, index, 927 !intercept, !intercept); 928 } 929 930 svm->x2avic_msrs_intercepted = intercept; 931 } 932 933 void svm_vcpu_free_msrpm(u32 *msrpm) 934 { 935 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 936 } 937 938 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 939 { 940 struct vcpu_svm *svm = to_svm(vcpu); 941 u32 i; 942 943 /* 944 * Set intercept permissions for all direct access MSRs again. They 945 * will automatically get filtered through the MSR filter, so we are 946 * back in sync after this. 947 */ 948 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 949 u32 msr = direct_access_msrs[i].index; 950 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 951 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 952 953 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 954 } 955 } 956 957 static void add_msr_offset(u32 offset) 958 { 959 int i; 960 961 for (i = 0; i < MSRPM_OFFSETS; ++i) { 962 963 /* Offset already in list? */ 964 if (msrpm_offsets[i] == offset) 965 return; 966 967 /* Slot used by another offset? */ 968 if (msrpm_offsets[i] != MSR_INVALID) 969 continue; 970 971 /* Add offset to list */ 972 msrpm_offsets[i] = offset; 973 974 return; 975 } 976 977 /* 978 * If this BUG triggers the msrpm_offsets table has an overflow. Just 979 * increase MSRPM_OFFSETS in this case. 980 */ 981 BUG(); 982 } 983 984 static void init_msrpm_offsets(void) 985 { 986 int i; 987 988 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 989 990 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 991 u32 offset; 992 993 offset = svm_msrpm_offset(direct_access_msrs[i].index); 994 BUG_ON(offset == MSR_INVALID); 995 996 add_msr_offset(offset); 997 } 998 } 999 1000 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 1001 { 1002 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 1003 to_vmcb->save.br_from = from_vmcb->save.br_from; 1004 to_vmcb->save.br_to = from_vmcb->save.br_to; 1005 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 1006 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 1007 1008 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 1009 } 1010 1011 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 1012 { 1013 struct vcpu_svm *svm = to_svm(vcpu); 1014 1015 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 1016 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 1017 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 1018 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 1019 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1020 1021 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1022 if (is_guest_mode(vcpu)) 1023 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1024 } 1025 1026 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1027 { 1028 struct vcpu_svm *svm = to_svm(vcpu); 1029 1030 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1031 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1032 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1033 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1034 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1035 1036 /* 1037 * Move the LBR msrs back to the vmcb01 to avoid copying them 1038 * on nested guest entries. 1039 */ 1040 if (is_guest_mode(vcpu)) 1041 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1042 } 1043 1044 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1045 { 1046 /* 1047 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1048 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1049 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1050 */ 1051 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1052 svm->vmcb01.ptr; 1053 } 1054 1055 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1056 { 1057 struct vcpu_svm *svm = to_svm(vcpu); 1058 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1059 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1060 (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) && 1061 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1062 1063 if (enable_lbrv == current_enable_lbrv) 1064 return; 1065 1066 if (enable_lbrv) 1067 svm_enable_lbrv(vcpu); 1068 else 1069 svm_disable_lbrv(vcpu); 1070 } 1071 1072 void disable_nmi_singlestep(struct vcpu_svm *svm) 1073 { 1074 svm->nmi_singlestep = false; 1075 1076 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1077 /* Clear our flags if they were not set by the guest */ 1078 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1079 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1080 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1081 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1082 } 1083 } 1084 1085 static void grow_ple_window(struct kvm_vcpu *vcpu) 1086 { 1087 struct vcpu_svm *svm = to_svm(vcpu); 1088 struct vmcb_control_area *control = &svm->vmcb->control; 1089 int old = control->pause_filter_count; 1090 1091 if (kvm_pause_in_guest(vcpu->kvm)) 1092 return; 1093 1094 control->pause_filter_count = __grow_ple_window(old, 1095 pause_filter_count, 1096 pause_filter_count_grow, 1097 pause_filter_count_max); 1098 1099 if (control->pause_filter_count != old) { 1100 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1101 trace_kvm_ple_window_update(vcpu->vcpu_id, 1102 control->pause_filter_count, old); 1103 } 1104 } 1105 1106 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1107 { 1108 struct vcpu_svm *svm = to_svm(vcpu); 1109 struct vmcb_control_area *control = &svm->vmcb->control; 1110 int old = control->pause_filter_count; 1111 1112 if (kvm_pause_in_guest(vcpu->kvm)) 1113 return; 1114 1115 control->pause_filter_count = 1116 __shrink_ple_window(old, 1117 pause_filter_count, 1118 pause_filter_count_shrink, 1119 pause_filter_count); 1120 if (control->pause_filter_count != old) { 1121 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1122 trace_kvm_ple_window_update(vcpu->vcpu_id, 1123 control->pause_filter_count, old); 1124 } 1125 } 1126 1127 static void svm_hardware_unsetup(void) 1128 { 1129 int cpu; 1130 1131 sev_hardware_unsetup(); 1132 1133 for_each_possible_cpu(cpu) 1134 svm_cpu_uninit(cpu); 1135 1136 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 1137 get_order(IOPM_SIZE)); 1138 iopm_base = 0; 1139 } 1140 1141 static void init_seg(struct vmcb_seg *seg) 1142 { 1143 seg->selector = 0; 1144 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1145 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1146 seg->limit = 0xffff; 1147 seg->base = 0; 1148 } 1149 1150 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1151 { 1152 seg->selector = 0; 1153 seg->attrib = SVM_SELECTOR_P_MASK | type; 1154 seg->limit = 0xffff; 1155 seg->base = 0; 1156 } 1157 1158 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1159 { 1160 struct vcpu_svm *svm = to_svm(vcpu); 1161 1162 return svm->nested.ctl.tsc_offset; 1163 } 1164 1165 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1166 { 1167 struct vcpu_svm *svm = to_svm(vcpu); 1168 1169 return svm->tsc_ratio_msr; 1170 } 1171 1172 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1173 { 1174 struct vcpu_svm *svm = to_svm(vcpu); 1175 1176 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1177 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1178 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1179 } 1180 1181 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1182 { 1183 preempt_disable(); 1184 if (to_svm(vcpu)->guest_state_loaded) 1185 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1186 preempt_enable(); 1187 } 1188 1189 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1190 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1191 struct vcpu_svm *svm) 1192 { 1193 /* 1194 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1195 * roots, or if INVPCID is disabled in the guest to inject #UD. 1196 */ 1197 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1198 if (!npt_enabled || 1199 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1200 svm_set_intercept(svm, INTERCEPT_INVPCID); 1201 else 1202 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1203 } 1204 1205 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1206 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1207 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1208 else 1209 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1210 } 1211 } 1212 1213 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1214 { 1215 struct vcpu_svm *svm = to_svm(vcpu); 1216 1217 if (guest_cpuid_is_intel(vcpu)) { 1218 /* 1219 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1220 * accesses because the processor only stores 32 bits. 1221 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1222 */ 1223 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1224 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1225 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1226 1227 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1228 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1229 } else { 1230 /* 1231 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1232 * in VMCB and clear intercepts to avoid #VMEXIT. 1233 */ 1234 if (vls) { 1235 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1236 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1237 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1238 } 1239 /* No need to intercept these MSRs */ 1240 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1241 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1242 } 1243 } 1244 1245 static void init_vmcb(struct kvm_vcpu *vcpu) 1246 { 1247 struct vcpu_svm *svm = to_svm(vcpu); 1248 struct vmcb *vmcb = svm->vmcb01.ptr; 1249 struct vmcb_control_area *control = &vmcb->control; 1250 struct vmcb_save_area *save = &vmcb->save; 1251 1252 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1253 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1254 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1255 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1256 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1257 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1258 if (!kvm_vcpu_apicv_active(vcpu)) 1259 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1260 1261 set_dr_intercepts(svm); 1262 1263 set_exception_intercept(svm, PF_VECTOR); 1264 set_exception_intercept(svm, UD_VECTOR); 1265 set_exception_intercept(svm, MC_VECTOR); 1266 set_exception_intercept(svm, AC_VECTOR); 1267 set_exception_intercept(svm, DB_VECTOR); 1268 /* 1269 * Guest access to VMware backdoor ports could legitimately 1270 * trigger #GP because of TSS I/O permission bitmap. 1271 * We intercept those #GP and allow access to them anyway 1272 * as VMware does. 1273 */ 1274 if (enable_vmware_backdoor) 1275 set_exception_intercept(svm, GP_VECTOR); 1276 1277 svm_set_intercept(svm, INTERCEPT_INTR); 1278 svm_set_intercept(svm, INTERCEPT_NMI); 1279 1280 if (intercept_smi) 1281 svm_set_intercept(svm, INTERCEPT_SMI); 1282 1283 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1284 svm_set_intercept(svm, INTERCEPT_RDPMC); 1285 svm_set_intercept(svm, INTERCEPT_CPUID); 1286 svm_set_intercept(svm, INTERCEPT_INVD); 1287 svm_set_intercept(svm, INTERCEPT_INVLPG); 1288 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1289 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1290 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1291 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1292 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1293 svm_set_intercept(svm, INTERCEPT_VMRUN); 1294 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1295 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1296 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1297 svm_set_intercept(svm, INTERCEPT_STGI); 1298 svm_set_intercept(svm, INTERCEPT_CLGI); 1299 svm_set_intercept(svm, INTERCEPT_SKINIT); 1300 svm_set_intercept(svm, INTERCEPT_WBINVD); 1301 svm_set_intercept(svm, INTERCEPT_XSETBV); 1302 svm_set_intercept(svm, INTERCEPT_RDPRU); 1303 svm_set_intercept(svm, INTERCEPT_RSM); 1304 1305 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1306 svm_set_intercept(svm, INTERCEPT_MONITOR); 1307 svm_set_intercept(svm, INTERCEPT_MWAIT); 1308 } 1309 1310 if (!kvm_hlt_in_guest(vcpu->kvm)) 1311 svm_set_intercept(svm, INTERCEPT_HLT); 1312 1313 control->iopm_base_pa = __sme_set(iopm_base); 1314 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1315 control->int_ctl = V_INTR_MASKING_MASK; 1316 1317 init_seg(&save->es); 1318 init_seg(&save->ss); 1319 init_seg(&save->ds); 1320 init_seg(&save->fs); 1321 init_seg(&save->gs); 1322 1323 save->cs.selector = 0xf000; 1324 save->cs.base = 0xffff0000; 1325 /* Executable/Readable Code Segment */ 1326 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1327 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1328 save->cs.limit = 0xffff; 1329 1330 save->gdtr.base = 0; 1331 save->gdtr.limit = 0xffff; 1332 save->idtr.base = 0; 1333 save->idtr.limit = 0xffff; 1334 1335 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1336 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1337 1338 if (npt_enabled) { 1339 /* Setup VMCB for Nested Paging */ 1340 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1341 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1342 clr_exception_intercept(svm, PF_VECTOR); 1343 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1344 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1345 save->g_pat = vcpu->arch.pat; 1346 save->cr3 = 0; 1347 } 1348 svm->current_vmcb->asid_generation = 0; 1349 svm->asid = 0; 1350 1351 svm->nested.vmcb12_gpa = INVALID_GPA; 1352 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1353 1354 if (!kvm_pause_in_guest(vcpu->kvm)) { 1355 control->pause_filter_count = pause_filter_count; 1356 if (pause_filter_thresh) 1357 control->pause_filter_thresh = pause_filter_thresh; 1358 svm_set_intercept(svm, INTERCEPT_PAUSE); 1359 } else { 1360 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1361 } 1362 1363 svm_recalc_instruction_intercepts(vcpu, svm); 1364 1365 /* 1366 * If the host supports V_SPEC_CTRL then disable the interception 1367 * of MSR_IA32_SPEC_CTRL. 1368 */ 1369 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1370 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1371 1372 if (kvm_vcpu_apicv_active(vcpu)) 1373 avic_init_vmcb(svm, vmcb); 1374 1375 if (vnmi) 1376 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1377 1378 if (vgif) { 1379 svm_clr_intercept(svm, INTERCEPT_STGI); 1380 svm_clr_intercept(svm, INTERCEPT_CLGI); 1381 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1382 } 1383 1384 if (sev_guest(vcpu->kvm)) 1385 sev_init_vmcb(svm); 1386 1387 svm_hv_init_vmcb(vmcb); 1388 init_vmcb_after_set_cpuid(vcpu); 1389 1390 vmcb_mark_all_dirty(vmcb); 1391 1392 enable_gif(svm); 1393 } 1394 1395 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1396 { 1397 struct vcpu_svm *svm = to_svm(vcpu); 1398 1399 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1400 1401 svm_init_osvw(vcpu); 1402 vcpu->arch.microcode_version = 0x01000065; 1403 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1404 1405 svm->nmi_masked = false; 1406 svm->awaiting_iret_completion = false; 1407 1408 if (sev_es_guest(vcpu->kvm)) 1409 sev_es_vcpu_reset(svm); 1410 } 1411 1412 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1413 { 1414 struct vcpu_svm *svm = to_svm(vcpu); 1415 1416 svm->spec_ctrl = 0; 1417 svm->virt_spec_ctrl = 0; 1418 1419 init_vmcb(vcpu); 1420 1421 if (!init_event) 1422 __svm_vcpu_reset(vcpu); 1423 } 1424 1425 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1426 { 1427 svm->current_vmcb = target_vmcb; 1428 svm->vmcb = target_vmcb->ptr; 1429 } 1430 1431 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1432 { 1433 struct vcpu_svm *svm; 1434 struct page *vmcb01_page; 1435 struct page *vmsa_page = NULL; 1436 int err; 1437 1438 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1439 svm = to_svm(vcpu); 1440 1441 err = -ENOMEM; 1442 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1443 if (!vmcb01_page) 1444 goto out; 1445 1446 if (sev_es_guest(vcpu->kvm)) { 1447 /* 1448 * SEV-ES guests require a separate VMSA page used to contain 1449 * the encrypted register state of the guest. 1450 */ 1451 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1452 if (!vmsa_page) 1453 goto error_free_vmcb_page; 1454 1455 /* 1456 * SEV-ES guests maintain an encrypted version of their FPU 1457 * state which is restored and saved on VMRUN and VMEXIT. 1458 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1459 * do xsave/xrstor on it. 1460 */ 1461 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1462 } 1463 1464 err = avic_init_vcpu(svm); 1465 if (err) 1466 goto error_free_vmsa_page; 1467 1468 svm->msrpm = svm_vcpu_alloc_msrpm(); 1469 if (!svm->msrpm) { 1470 err = -ENOMEM; 1471 goto error_free_vmsa_page; 1472 } 1473 1474 svm->x2avic_msrs_intercepted = true; 1475 1476 svm->vmcb01.ptr = page_address(vmcb01_page); 1477 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1478 svm_switch_vmcb(svm, &svm->vmcb01); 1479 1480 if (vmsa_page) 1481 svm->sev_es.vmsa = page_address(vmsa_page); 1482 1483 svm->guest_state_loaded = false; 1484 1485 return 0; 1486 1487 error_free_vmsa_page: 1488 if (vmsa_page) 1489 __free_page(vmsa_page); 1490 error_free_vmcb_page: 1491 __free_page(vmcb01_page); 1492 out: 1493 return err; 1494 } 1495 1496 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1497 { 1498 int i; 1499 1500 for_each_online_cpu(i) 1501 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1502 } 1503 1504 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1505 { 1506 struct vcpu_svm *svm = to_svm(vcpu); 1507 1508 /* 1509 * The vmcb page can be recycled, causing a false negative in 1510 * svm_vcpu_load(). So, ensure that no logical CPU has this 1511 * vmcb page recorded as its current vmcb. 1512 */ 1513 svm_clear_current_vmcb(svm->vmcb); 1514 1515 svm_leave_nested(vcpu); 1516 svm_free_nested(svm); 1517 1518 sev_free_vcpu(vcpu); 1519 1520 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1521 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1522 } 1523 1524 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1525 { 1526 struct vcpu_svm *svm = to_svm(vcpu); 1527 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1528 1529 if (sev_es_guest(vcpu->kvm)) 1530 sev_es_unmap_ghcb(svm); 1531 1532 if (svm->guest_state_loaded) 1533 return; 1534 1535 /* 1536 * Save additional host state that will be restored on VMEXIT (sev-es) 1537 * or subsequent vmload of host save area. 1538 */ 1539 vmsave(sd->save_area_pa); 1540 if (sev_es_guest(vcpu->kvm)) { 1541 struct sev_es_save_area *hostsa; 1542 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 1543 1544 sev_es_prepare_switch_to_guest(hostsa); 1545 } 1546 1547 if (tsc_scaling) 1548 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1549 1550 /* 1551 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 1552 * available. The user return MSR support is not required in this case 1553 * because TSC_AUX is restored on #VMEXIT from the host save area 1554 * (which has been initialized in svm_hardware_enable()). 1555 */ 1556 if (likely(tsc_aux_uret_slot >= 0) && 1557 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1558 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1559 1560 svm->guest_state_loaded = true; 1561 } 1562 1563 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1564 { 1565 to_svm(vcpu)->guest_state_loaded = false; 1566 } 1567 1568 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1569 { 1570 struct vcpu_svm *svm = to_svm(vcpu); 1571 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1572 1573 if (sd->current_vmcb != svm->vmcb) { 1574 sd->current_vmcb = svm->vmcb; 1575 1576 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT)) 1577 indirect_branch_prediction_barrier(); 1578 } 1579 if (kvm_vcpu_apicv_active(vcpu)) 1580 avic_vcpu_load(vcpu, cpu); 1581 } 1582 1583 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1584 { 1585 if (kvm_vcpu_apicv_active(vcpu)) 1586 avic_vcpu_put(vcpu); 1587 1588 svm_prepare_host_switch(vcpu); 1589 1590 ++vcpu->stat.host_state_reload; 1591 } 1592 1593 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1594 { 1595 struct vcpu_svm *svm = to_svm(vcpu); 1596 unsigned long rflags = svm->vmcb->save.rflags; 1597 1598 if (svm->nmi_singlestep) { 1599 /* Hide our flags if they were not set by the guest */ 1600 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1601 rflags &= ~X86_EFLAGS_TF; 1602 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1603 rflags &= ~X86_EFLAGS_RF; 1604 } 1605 return rflags; 1606 } 1607 1608 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1609 { 1610 if (to_svm(vcpu)->nmi_singlestep) 1611 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1612 1613 /* 1614 * Any change of EFLAGS.VM is accompanied by a reload of SS 1615 * (caused by either a task switch or an inter-privilege IRET), 1616 * so we do not need to update the CPL here. 1617 */ 1618 to_svm(vcpu)->vmcb->save.rflags = rflags; 1619 } 1620 1621 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1622 { 1623 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1624 1625 return sev_es_guest(vcpu->kvm) 1626 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1627 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1628 } 1629 1630 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1631 { 1632 kvm_register_mark_available(vcpu, reg); 1633 1634 switch (reg) { 1635 case VCPU_EXREG_PDPTR: 1636 /* 1637 * When !npt_enabled, mmu->pdptrs[] is already available since 1638 * it is always updated per SDM when moving to CRs. 1639 */ 1640 if (npt_enabled) 1641 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1642 break; 1643 default: 1644 KVM_BUG_ON(1, vcpu->kvm); 1645 } 1646 } 1647 1648 static void svm_set_vintr(struct vcpu_svm *svm) 1649 { 1650 struct vmcb_control_area *control; 1651 1652 /* 1653 * The following fields are ignored when AVIC is enabled 1654 */ 1655 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1656 1657 svm_set_intercept(svm, INTERCEPT_VINTR); 1658 1659 /* 1660 * Recalculating intercepts may have cleared the VINTR intercept. If 1661 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1662 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1663 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1664 * interrupts will never be unblocked while L2 is running. 1665 */ 1666 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1667 return; 1668 1669 /* 1670 * This is just a dummy VINTR to actually cause a vmexit to happen. 1671 * Actual injection of virtual interrupts happens through EVENTINJ. 1672 */ 1673 control = &svm->vmcb->control; 1674 control->int_vector = 0x0; 1675 control->int_ctl &= ~V_INTR_PRIO_MASK; 1676 control->int_ctl |= V_IRQ_MASK | 1677 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1678 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1679 } 1680 1681 static void svm_clear_vintr(struct vcpu_svm *svm) 1682 { 1683 svm_clr_intercept(svm, INTERCEPT_VINTR); 1684 1685 /* Drop int_ctl fields related to VINTR injection. */ 1686 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1687 if (is_guest_mode(&svm->vcpu)) { 1688 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1689 1690 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1691 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1692 1693 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1694 V_IRQ_INJECTION_BITS_MASK; 1695 1696 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1697 } 1698 1699 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1700 } 1701 1702 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1703 { 1704 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1705 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1706 1707 switch (seg) { 1708 case VCPU_SREG_CS: return &save->cs; 1709 case VCPU_SREG_DS: return &save->ds; 1710 case VCPU_SREG_ES: return &save->es; 1711 case VCPU_SREG_FS: return &save01->fs; 1712 case VCPU_SREG_GS: return &save01->gs; 1713 case VCPU_SREG_SS: return &save->ss; 1714 case VCPU_SREG_TR: return &save01->tr; 1715 case VCPU_SREG_LDTR: return &save01->ldtr; 1716 } 1717 BUG(); 1718 return NULL; 1719 } 1720 1721 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1722 { 1723 struct vmcb_seg *s = svm_seg(vcpu, seg); 1724 1725 return s->base; 1726 } 1727 1728 static void svm_get_segment(struct kvm_vcpu *vcpu, 1729 struct kvm_segment *var, int seg) 1730 { 1731 struct vmcb_seg *s = svm_seg(vcpu, seg); 1732 1733 var->base = s->base; 1734 var->limit = s->limit; 1735 var->selector = s->selector; 1736 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1737 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1738 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1739 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1740 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1741 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1742 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1743 1744 /* 1745 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1746 * However, the SVM spec states that the G bit is not observed by the 1747 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1748 * So let's synthesize a legal G bit for all segments, this helps 1749 * running KVM nested. It also helps cross-vendor migration, because 1750 * Intel's vmentry has a check on the 'G' bit. 1751 */ 1752 var->g = s->limit > 0xfffff; 1753 1754 /* 1755 * AMD's VMCB does not have an explicit unusable field, so emulate it 1756 * for cross vendor migration purposes by "not present" 1757 */ 1758 var->unusable = !var->present; 1759 1760 switch (seg) { 1761 case VCPU_SREG_TR: 1762 /* 1763 * Work around a bug where the busy flag in the tr selector 1764 * isn't exposed 1765 */ 1766 var->type |= 0x2; 1767 break; 1768 case VCPU_SREG_DS: 1769 case VCPU_SREG_ES: 1770 case VCPU_SREG_FS: 1771 case VCPU_SREG_GS: 1772 /* 1773 * The accessed bit must always be set in the segment 1774 * descriptor cache, although it can be cleared in the 1775 * descriptor, the cached bit always remains at 1. Since 1776 * Intel has a check on this, set it here to support 1777 * cross-vendor migration. 1778 */ 1779 if (!var->unusable) 1780 var->type |= 0x1; 1781 break; 1782 case VCPU_SREG_SS: 1783 /* 1784 * On AMD CPUs sometimes the DB bit in the segment 1785 * descriptor is left as 1, although the whole segment has 1786 * been made unusable. Clear it here to pass an Intel VMX 1787 * entry check when cross vendor migrating. 1788 */ 1789 if (var->unusable) 1790 var->db = 0; 1791 /* This is symmetric with svm_set_segment() */ 1792 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1793 break; 1794 } 1795 } 1796 1797 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1798 { 1799 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1800 1801 return save->cpl; 1802 } 1803 1804 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1805 { 1806 struct kvm_segment cs; 1807 1808 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1809 *db = cs.db; 1810 *l = cs.l; 1811 } 1812 1813 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1814 { 1815 struct vcpu_svm *svm = to_svm(vcpu); 1816 1817 dt->size = svm->vmcb->save.idtr.limit; 1818 dt->address = svm->vmcb->save.idtr.base; 1819 } 1820 1821 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1822 { 1823 struct vcpu_svm *svm = to_svm(vcpu); 1824 1825 svm->vmcb->save.idtr.limit = dt->size; 1826 svm->vmcb->save.idtr.base = dt->address ; 1827 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1828 } 1829 1830 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1831 { 1832 struct vcpu_svm *svm = to_svm(vcpu); 1833 1834 dt->size = svm->vmcb->save.gdtr.limit; 1835 dt->address = svm->vmcb->save.gdtr.base; 1836 } 1837 1838 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1839 { 1840 struct vcpu_svm *svm = to_svm(vcpu); 1841 1842 svm->vmcb->save.gdtr.limit = dt->size; 1843 svm->vmcb->save.gdtr.base = dt->address ; 1844 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1845 } 1846 1847 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1848 { 1849 struct vcpu_svm *svm = to_svm(vcpu); 1850 1851 /* 1852 * For guests that don't set guest_state_protected, the cr3 update is 1853 * handled via kvm_mmu_load() while entering the guest. For guests 1854 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1855 * VMCB save area now, since the save area will become the initial 1856 * contents of the VMSA, and future VMCB save area updates won't be 1857 * seen. 1858 */ 1859 if (sev_es_guest(vcpu->kvm)) { 1860 svm->vmcb->save.cr3 = cr3; 1861 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1862 } 1863 } 1864 1865 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1866 { 1867 return true; 1868 } 1869 1870 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1871 { 1872 struct vcpu_svm *svm = to_svm(vcpu); 1873 u64 hcr0 = cr0; 1874 bool old_paging = is_paging(vcpu); 1875 1876 #ifdef CONFIG_X86_64 1877 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1878 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1879 vcpu->arch.efer |= EFER_LMA; 1880 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1881 } 1882 1883 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1884 vcpu->arch.efer &= ~EFER_LMA; 1885 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1886 } 1887 } 1888 #endif 1889 vcpu->arch.cr0 = cr0; 1890 1891 if (!npt_enabled) { 1892 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1893 if (old_paging != is_paging(vcpu)) 1894 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1895 } 1896 1897 /* 1898 * re-enable caching here because the QEMU bios 1899 * does not do it - this results in some delay at 1900 * reboot 1901 */ 1902 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1903 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1904 1905 svm->vmcb->save.cr0 = hcr0; 1906 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1907 1908 /* 1909 * SEV-ES guests must always keep the CR intercepts cleared. CR 1910 * tracking is done using the CR write traps. 1911 */ 1912 if (sev_es_guest(vcpu->kvm)) 1913 return; 1914 1915 if (hcr0 == cr0) { 1916 /* Selective CR0 write remains on. */ 1917 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1918 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1919 } else { 1920 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1921 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1922 } 1923 } 1924 1925 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1926 { 1927 return true; 1928 } 1929 1930 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1931 { 1932 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1933 unsigned long old_cr4 = vcpu->arch.cr4; 1934 1935 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1936 svm_flush_tlb_current(vcpu); 1937 1938 vcpu->arch.cr4 = cr4; 1939 if (!npt_enabled) { 1940 cr4 |= X86_CR4_PAE; 1941 1942 if (!is_paging(vcpu)) 1943 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1944 } 1945 cr4 |= host_cr4_mce; 1946 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1947 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1948 1949 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1950 kvm_update_cpuid_runtime(vcpu); 1951 } 1952 1953 static void svm_set_segment(struct kvm_vcpu *vcpu, 1954 struct kvm_segment *var, int seg) 1955 { 1956 struct vcpu_svm *svm = to_svm(vcpu); 1957 struct vmcb_seg *s = svm_seg(vcpu, seg); 1958 1959 s->base = var->base; 1960 s->limit = var->limit; 1961 s->selector = var->selector; 1962 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1963 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1964 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1965 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1966 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1967 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1968 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1969 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1970 1971 /* 1972 * This is always accurate, except if SYSRET returned to a segment 1973 * with SS.DPL != 3. Intel does not have this quirk, and always 1974 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1975 * would entail passing the CPL to userspace and back. 1976 */ 1977 if (seg == VCPU_SREG_SS) 1978 /* This is symmetric with svm_get_segment() */ 1979 svm->vmcb->save.cpl = (var->dpl & 3); 1980 1981 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1982 } 1983 1984 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1985 { 1986 struct vcpu_svm *svm = to_svm(vcpu); 1987 1988 clr_exception_intercept(svm, BP_VECTOR); 1989 1990 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1991 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1992 set_exception_intercept(svm, BP_VECTOR); 1993 } 1994 } 1995 1996 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1997 { 1998 if (sd->next_asid > sd->max_asid) { 1999 ++sd->asid_generation; 2000 sd->next_asid = sd->min_asid; 2001 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 2002 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2003 } 2004 2005 svm->current_vmcb->asid_generation = sd->asid_generation; 2006 svm->asid = sd->next_asid++; 2007 } 2008 2009 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 2010 { 2011 struct vmcb *vmcb = svm->vmcb; 2012 2013 if (svm->vcpu.arch.guest_state_protected) 2014 return; 2015 2016 if (unlikely(value != vmcb->save.dr6)) { 2017 vmcb->save.dr6 = value; 2018 vmcb_mark_dirty(vmcb, VMCB_DR); 2019 } 2020 } 2021 2022 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2023 { 2024 struct vcpu_svm *svm = to_svm(vcpu); 2025 2026 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2027 return; 2028 2029 get_debugreg(vcpu->arch.db[0], 0); 2030 get_debugreg(vcpu->arch.db[1], 1); 2031 get_debugreg(vcpu->arch.db[2], 2); 2032 get_debugreg(vcpu->arch.db[3], 3); 2033 /* 2034 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2035 * because db_interception might need it. We can do it before vmentry. 2036 */ 2037 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2038 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2039 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2040 set_dr_intercepts(svm); 2041 } 2042 2043 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2044 { 2045 struct vcpu_svm *svm = to_svm(vcpu); 2046 2047 if (vcpu->arch.guest_state_protected) 2048 return; 2049 2050 svm->vmcb->save.dr7 = value; 2051 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2052 } 2053 2054 static int pf_interception(struct kvm_vcpu *vcpu) 2055 { 2056 struct vcpu_svm *svm = to_svm(vcpu); 2057 2058 u64 fault_address = svm->vmcb->control.exit_info_2; 2059 u64 error_code = svm->vmcb->control.exit_info_1; 2060 2061 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2062 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2063 svm->vmcb->control.insn_bytes : NULL, 2064 svm->vmcb->control.insn_len); 2065 } 2066 2067 static int npf_interception(struct kvm_vcpu *vcpu) 2068 { 2069 struct vcpu_svm *svm = to_svm(vcpu); 2070 2071 u64 fault_address = svm->vmcb->control.exit_info_2; 2072 u64 error_code = svm->vmcb->control.exit_info_1; 2073 2074 trace_kvm_page_fault(vcpu, fault_address, error_code); 2075 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 2076 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2077 svm->vmcb->control.insn_bytes : NULL, 2078 svm->vmcb->control.insn_len); 2079 } 2080 2081 static int db_interception(struct kvm_vcpu *vcpu) 2082 { 2083 struct kvm_run *kvm_run = vcpu->run; 2084 struct vcpu_svm *svm = to_svm(vcpu); 2085 2086 if (!(vcpu->guest_debug & 2087 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2088 !svm->nmi_singlestep) { 2089 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2090 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2091 return 1; 2092 } 2093 2094 if (svm->nmi_singlestep) { 2095 disable_nmi_singlestep(svm); 2096 /* Make sure we check for pending NMIs upon entry */ 2097 kvm_make_request(KVM_REQ_EVENT, vcpu); 2098 } 2099 2100 if (vcpu->guest_debug & 2101 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2102 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2103 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2104 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2105 kvm_run->debug.arch.pc = 2106 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2107 kvm_run->debug.arch.exception = DB_VECTOR; 2108 return 0; 2109 } 2110 2111 return 1; 2112 } 2113 2114 static int bp_interception(struct kvm_vcpu *vcpu) 2115 { 2116 struct vcpu_svm *svm = to_svm(vcpu); 2117 struct kvm_run *kvm_run = vcpu->run; 2118 2119 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2120 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2121 kvm_run->debug.arch.exception = BP_VECTOR; 2122 return 0; 2123 } 2124 2125 static int ud_interception(struct kvm_vcpu *vcpu) 2126 { 2127 return handle_ud(vcpu); 2128 } 2129 2130 static int ac_interception(struct kvm_vcpu *vcpu) 2131 { 2132 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2133 return 1; 2134 } 2135 2136 static bool is_erratum_383(void) 2137 { 2138 int err, i; 2139 u64 value; 2140 2141 if (!erratum_383_found) 2142 return false; 2143 2144 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2145 if (err) 2146 return false; 2147 2148 /* Bit 62 may or may not be set for this mce */ 2149 value &= ~(1ULL << 62); 2150 2151 if (value != 0xb600000000010015ULL) 2152 return false; 2153 2154 /* Clear MCi_STATUS registers */ 2155 for (i = 0; i < 6; ++i) 2156 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2157 2158 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2159 if (!err) { 2160 u32 low, high; 2161 2162 value &= ~(1ULL << 2); 2163 low = lower_32_bits(value); 2164 high = upper_32_bits(value); 2165 2166 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2167 } 2168 2169 /* Flush tlb to evict multi-match entries */ 2170 __flush_tlb_all(); 2171 2172 return true; 2173 } 2174 2175 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2176 { 2177 if (is_erratum_383()) { 2178 /* 2179 * Erratum 383 triggered. Guest state is corrupt so kill the 2180 * guest. 2181 */ 2182 pr_err("Guest triggered AMD Erratum 383\n"); 2183 2184 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2185 2186 return; 2187 } 2188 2189 /* 2190 * On an #MC intercept the MCE handler is not called automatically in 2191 * the host. So do it by hand here. 2192 */ 2193 kvm_machine_check(); 2194 } 2195 2196 static int mc_interception(struct kvm_vcpu *vcpu) 2197 { 2198 return 1; 2199 } 2200 2201 static int shutdown_interception(struct kvm_vcpu *vcpu) 2202 { 2203 struct kvm_run *kvm_run = vcpu->run; 2204 struct vcpu_svm *svm = to_svm(vcpu); 2205 2206 /* 2207 * The VM save area has already been encrypted so it 2208 * cannot be reinitialized - just terminate. 2209 */ 2210 if (sev_es_guest(vcpu->kvm)) 2211 return -EINVAL; 2212 2213 /* 2214 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2215 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2216 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2217 * userspace. At a platform view, INIT is acceptable behavior as 2218 * there exist bare metal platforms that automatically INIT the CPU 2219 * in response to shutdown. 2220 */ 2221 clear_page(svm->vmcb); 2222 kvm_vcpu_reset(vcpu, true); 2223 2224 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2225 return 0; 2226 } 2227 2228 static int io_interception(struct kvm_vcpu *vcpu) 2229 { 2230 struct vcpu_svm *svm = to_svm(vcpu); 2231 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2232 int size, in, string; 2233 unsigned port; 2234 2235 ++vcpu->stat.io_exits; 2236 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2237 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2238 port = io_info >> 16; 2239 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2240 2241 if (string) { 2242 if (sev_es_guest(vcpu->kvm)) 2243 return sev_es_string_io(svm, size, port, in); 2244 else 2245 return kvm_emulate_instruction(vcpu, 0); 2246 } 2247 2248 svm->next_rip = svm->vmcb->control.exit_info_2; 2249 2250 return kvm_fast_pio(vcpu, size, port, in); 2251 } 2252 2253 static int nmi_interception(struct kvm_vcpu *vcpu) 2254 { 2255 return 1; 2256 } 2257 2258 static int smi_interception(struct kvm_vcpu *vcpu) 2259 { 2260 return 1; 2261 } 2262 2263 static int intr_interception(struct kvm_vcpu *vcpu) 2264 { 2265 ++vcpu->stat.irq_exits; 2266 return 1; 2267 } 2268 2269 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2270 { 2271 struct vcpu_svm *svm = to_svm(vcpu); 2272 struct vmcb *vmcb12; 2273 struct kvm_host_map map; 2274 int ret; 2275 2276 if (nested_svm_check_permissions(vcpu)) 2277 return 1; 2278 2279 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2280 if (ret) { 2281 if (ret == -EINVAL) 2282 kvm_inject_gp(vcpu, 0); 2283 return 1; 2284 } 2285 2286 vmcb12 = map.hva; 2287 2288 ret = kvm_skip_emulated_instruction(vcpu); 2289 2290 if (vmload) { 2291 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2292 svm->sysenter_eip_hi = 0; 2293 svm->sysenter_esp_hi = 0; 2294 } else { 2295 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2296 } 2297 2298 kvm_vcpu_unmap(vcpu, &map, true); 2299 2300 return ret; 2301 } 2302 2303 static int vmload_interception(struct kvm_vcpu *vcpu) 2304 { 2305 return vmload_vmsave_interception(vcpu, true); 2306 } 2307 2308 static int vmsave_interception(struct kvm_vcpu *vcpu) 2309 { 2310 return vmload_vmsave_interception(vcpu, false); 2311 } 2312 2313 static int vmrun_interception(struct kvm_vcpu *vcpu) 2314 { 2315 if (nested_svm_check_permissions(vcpu)) 2316 return 1; 2317 2318 return nested_svm_vmrun(vcpu); 2319 } 2320 2321 enum { 2322 NONE_SVM_INSTR, 2323 SVM_INSTR_VMRUN, 2324 SVM_INSTR_VMLOAD, 2325 SVM_INSTR_VMSAVE, 2326 }; 2327 2328 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2329 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2330 { 2331 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2332 2333 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2334 return NONE_SVM_INSTR; 2335 2336 switch (ctxt->modrm) { 2337 case 0xd8: /* VMRUN */ 2338 return SVM_INSTR_VMRUN; 2339 case 0xda: /* VMLOAD */ 2340 return SVM_INSTR_VMLOAD; 2341 case 0xdb: /* VMSAVE */ 2342 return SVM_INSTR_VMSAVE; 2343 default: 2344 break; 2345 } 2346 2347 return NONE_SVM_INSTR; 2348 } 2349 2350 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2351 { 2352 const int guest_mode_exit_codes[] = { 2353 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2354 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2355 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2356 }; 2357 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2358 [SVM_INSTR_VMRUN] = vmrun_interception, 2359 [SVM_INSTR_VMLOAD] = vmload_interception, 2360 [SVM_INSTR_VMSAVE] = vmsave_interception, 2361 }; 2362 struct vcpu_svm *svm = to_svm(vcpu); 2363 int ret; 2364 2365 if (is_guest_mode(vcpu)) { 2366 /* Returns '1' or -errno on failure, '0' on success. */ 2367 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2368 if (ret) 2369 return ret; 2370 return 1; 2371 } 2372 return svm_instr_handlers[opcode](vcpu); 2373 } 2374 2375 /* 2376 * #GP handling code. Note that #GP can be triggered under the following two 2377 * cases: 2378 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2379 * some AMD CPUs when EAX of these instructions are in the reserved memory 2380 * regions (e.g. SMM memory on host). 2381 * 2) VMware backdoor 2382 */ 2383 static int gp_interception(struct kvm_vcpu *vcpu) 2384 { 2385 struct vcpu_svm *svm = to_svm(vcpu); 2386 u32 error_code = svm->vmcb->control.exit_info_1; 2387 int opcode; 2388 2389 /* Both #GP cases have zero error_code */ 2390 if (error_code) 2391 goto reinject; 2392 2393 /* Decode the instruction for usage later */ 2394 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2395 goto reinject; 2396 2397 opcode = svm_instr_opcode(vcpu); 2398 2399 if (opcode == NONE_SVM_INSTR) { 2400 if (!enable_vmware_backdoor) 2401 goto reinject; 2402 2403 /* 2404 * VMware backdoor emulation on #GP interception only handles 2405 * IN{S}, OUT{S}, and RDPMC. 2406 */ 2407 if (!is_guest_mode(vcpu)) 2408 return kvm_emulate_instruction(vcpu, 2409 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2410 } else { 2411 /* All SVM instructions expect page aligned RAX */ 2412 if (svm->vmcb->save.rax & ~PAGE_MASK) 2413 goto reinject; 2414 2415 return emulate_svm_instr(vcpu, opcode); 2416 } 2417 2418 reinject: 2419 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2420 return 1; 2421 } 2422 2423 void svm_set_gif(struct vcpu_svm *svm, bool value) 2424 { 2425 if (value) { 2426 /* 2427 * If VGIF is enabled, the STGI intercept is only added to 2428 * detect the opening of the SMI/NMI window; remove it now. 2429 * Likewise, clear the VINTR intercept, we will set it 2430 * again while processing KVM_REQ_EVENT if needed. 2431 */ 2432 if (vgif) 2433 svm_clr_intercept(svm, INTERCEPT_STGI); 2434 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2435 svm_clear_vintr(svm); 2436 2437 enable_gif(svm); 2438 if (svm->vcpu.arch.smi_pending || 2439 svm->vcpu.arch.nmi_pending || 2440 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2441 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2442 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2443 } else { 2444 disable_gif(svm); 2445 2446 /* 2447 * After a CLGI no interrupts should come. But if vGIF is 2448 * in use, we still rely on the VINTR intercept (rather than 2449 * STGI) to detect an open interrupt window. 2450 */ 2451 if (!vgif) 2452 svm_clear_vintr(svm); 2453 } 2454 } 2455 2456 static int stgi_interception(struct kvm_vcpu *vcpu) 2457 { 2458 int ret; 2459 2460 if (nested_svm_check_permissions(vcpu)) 2461 return 1; 2462 2463 ret = kvm_skip_emulated_instruction(vcpu); 2464 svm_set_gif(to_svm(vcpu), true); 2465 return ret; 2466 } 2467 2468 static int clgi_interception(struct kvm_vcpu *vcpu) 2469 { 2470 int ret; 2471 2472 if (nested_svm_check_permissions(vcpu)) 2473 return 1; 2474 2475 ret = kvm_skip_emulated_instruction(vcpu); 2476 svm_set_gif(to_svm(vcpu), false); 2477 return ret; 2478 } 2479 2480 static int invlpga_interception(struct kvm_vcpu *vcpu) 2481 { 2482 gva_t gva = kvm_rax_read(vcpu); 2483 u32 asid = kvm_rcx_read(vcpu); 2484 2485 /* FIXME: Handle an address size prefix. */ 2486 if (!is_long_mode(vcpu)) 2487 gva = (u32)gva; 2488 2489 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2490 2491 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2492 kvm_mmu_invlpg(vcpu, gva); 2493 2494 return kvm_skip_emulated_instruction(vcpu); 2495 } 2496 2497 static int skinit_interception(struct kvm_vcpu *vcpu) 2498 { 2499 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2500 2501 kvm_queue_exception(vcpu, UD_VECTOR); 2502 return 1; 2503 } 2504 2505 static int task_switch_interception(struct kvm_vcpu *vcpu) 2506 { 2507 struct vcpu_svm *svm = to_svm(vcpu); 2508 u16 tss_selector; 2509 int reason; 2510 int int_type = svm->vmcb->control.exit_int_info & 2511 SVM_EXITINTINFO_TYPE_MASK; 2512 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2513 uint32_t type = 2514 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2515 uint32_t idt_v = 2516 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2517 bool has_error_code = false; 2518 u32 error_code = 0; 2519 2520 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2521 2522 if (svm->vmcb->control.exit_info_2 & 2523 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2524 reason = TASK_SWITCH_IRET; 2525 else if (svm->vmcb->control.exit_info_2 & 2526 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2527 reason = TASK_SWITCH_JMP; 2528 else if (idt_v) 2529 reason = TASK_SWITCH_GATE; 2530 else 2531 reason = TASK_SWITCH_CALL; 2532 2533 if (reason == TASK_SWITCH_GATE) { 2534 switch (type) { 2535 case SVM_EXITINTINFO_TYPE_NMI: 2536 vcpu->arch.nmi_injected = false; 2537 break; 2538 case SVM_EXITINTINFO_TYPE_EXEPT: 2539 if (svm->vmcb->control.exit_info_2 & 2540 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2541 has_error_code = true; 2542 error_code = 2543 (u32)svm->vmcb->control.exit_info_2; 2544 } 2545 kvm_clear_exception_queue(vcpu); 2546 break; 2547 case SVM_EXITINTINFO_TYPE_INTR: 2548 case SVM_EXITINTINFO_TYPE_SOFT: 2549 kvm_clear_interrupt_queue(vcpu); 2550 break; 2551 default: 2552 break; 2553 } 2554 } 2555 2556 if (reason != TASK_SWITCH_GATE || 2557 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2558 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2559 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2560 if (!svm_skip_emulated_instruction(vcpu)) 2561 return 0; 2562 } 2563 2564 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2565 int_vec = -1; 2566 2567 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2568 has_error_code, error_code); 2569 } 2570 2571 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2572 { 2573 if (!sev_es_guest(svm->vcpu.kvm)) 2574 svm_clr_intercept(svm, INTERCEPT_IRET); 2575 } 2576 2577 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2578 { 2579 if (!sev_es_guest(svm->vcpu.kvm)) 2580 svm_set_intercept(svm, INTERCEPT_IRET); 2581 } 2582 2583 static int iret_interception(struct kvm_vcpu *vcpu) 2584 { 2585 struct vcpu_svm *svm = to_svm(vcpu); 2586 2587 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2588 2589 ++vcpu->stat.nmi_window_exits; 2590 svm->awaiting_iret_completion = true; 2591 2592 svm_clr_iret_intercept(svm); 2593 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2594 2595 kvm_make_request(KVM_REQ_EVENT, vcpu); 2596 return 1; 2597 } 2598 2599 static int invlpg_interception(struct kvm_vcpu *vcpu) 2600 { 2601 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2602 return kvm_emulate_instruction(vcpu, 0); 2603 2604 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2605 return kvm_skip_emulated_instruction(vcpu); 2606 } 2607 2608 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2609 { 2610 return kvm_emulate_instruction(vcpu, 0); 2611 } 2612 2613 static int rsm_interception(struct kvm_vcpu *vcpu) 2614 { 2615 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2616 } 2617 2618 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2619 unsigned long val) 2620 { 2621 struct vcpu_svm *svm = to_svm(vcpu); 2622 unsigned long cr0 = vcpu->arch.cr0; 2623 bool ret = false; 2624 2625 if (!is_guest_mode(vcpu) || 2626 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2627 return false; 2628 2629 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2630 val &= ~SVM_CR0_SELECTIVE_MASK; 2631 2632 if (cr0 ^ val) { 2633 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2634 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2635 } 2636 2637 return ret; 2638 } 2639 2640 #define CR_VALID (1ULL << 63) 2641 2642 static int cr_interception(struct kvm_vcpu *vcpu) 2643 { 2644 struct vcpu_svm *svm = to_svm(vcpu); 2645 int reg, cr; 2646 unsigned long val; 2647 int err; 2648 2649 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2650 return emulate_on_interception(vcpu); 2651 2652 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2653 return emulate_on_interception(vcpu); 2654 2655 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2656 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2657 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2658 else 2659 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2660 2661 err = 0; 2662 if (cr >= 16) { /* mov to cr */ 2663 cr -= 16; 2664 val = kvm_register_read(vcpu, reg); 2665 trace_kvm_cr_write(cr, val); 2666 switch (cr) { 2667 case 0: 2668 if (!check_selective_cr0_intercepted(vcpu, val)) 2669 err = kvm_set_cr0(vcpu, val); 2670 else 2671 return 1; 2672 2673 break; 2674 case 3: 2675 err = kvm_set_cr3(vcpu, val); 2676 break; 2677 case 4: 2678 err = kvm_set_cr4(vcpu, val); 2679 break; 2680 case 8: 2681 err = kvm_set_cr8(vcpu, val); 2682 break; 2683 default: 2684 WARN(1, "unhandled write to CR%d", cr); 2685 kvm_queue_exception(vcpu, UD_VECTOR); 2686 return 1; 2687 } 2688 } else { /* mov from cr */ 2689 switch (cr) { 2690 case 0: 2691 val = kvm_read_cr0(vcpu); 2692 break; 2693 case 2: 2694 val = vcpu->arch.cr2; 2695 break; 2696 case 3: 2697 val = kvm_read_cr3(vcpu); 2698 break; 2699 case 4: 2700 val = kvm_read_cr4(vcpu); 2701 break; 2702 case 8: 2703 val = kvm_get_cr8(vcpu); 2704 break; 2705 default: 2706 WARN(1, "unhandled read from CR%d", cr); 2707 kvm_queue_exception(vcpu, UD_VECTOR); 2708 return 1; 2709 } 2710 kvm_register_write(vcpu, reg, val); 2711 trace_kvm_cr_read(cr, val); 2712 } 2713 return kvm_complete_insn_gp(vcpu, err); 2714 } 2715 2716 static int cr_trap(struct kvm_vcpu *vcpu) 2717 { 2718 struct vcpu_svm *svm = to_svm(vcpu); 2719 unsigned long old_value, new_value; 2720 unsigned int cr; 2721 int ret = 0; 2722 2723 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2724 2725 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2726 switch (cr) { 2727 case 0: 2728 old_value = kvm_read_cr0(vcpu); 2729 svm_set_cr0(vcpu, new_value); 2730 2731 kvm_post_set_cr0(vcpu, old_value, new_value); 2732 break; 2733 case 4: 2734 old_value = kvm_read_cr4(vcpu); 2735 svm_set_cr4(vcpu, new_value); 2736 2737 kvm_post_set_cr4(vcpu, old_value, new_value); 2738 break; 2739 case 8: 2740 ret = kvm_set_cr8(vcpu, new_value); 2741 break; 2742 default: 2743 WARN(1, "unhandled CR%d write trap", cr); 2744 kvm_queue_exception(vcpu, UD_VECTOR); 2745 return 1; 2746 } 2747 2748 return kvm_complete_insn_gp(vcpu, ret); 2749 } 2750 2751 static int dr_interception(struct kvm_vcpu *vcpu) 2752 { 2753 struct vcpu_svm *svm = to_svm(vcpu); 2754 int reg, dr; 2755 unsigned long val; 2756 int err = 0; 2757 2758 /* 2759 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2760 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2761 */ 2762 if (sev_es_guest(vcpu->kvm)) 2763 return 1; 2764 2765 if (vcpu->guest_debug == 0) { 2766 /* 2767 * No more DR vmexits; force a reload of the debug registers 2768 * and reenter on this instruction. The next vmexit will 2769 * retrieve the full state of the debug registers. 2770 */ 2771 clr_dr_intercepts(svm); 2772 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2773 return 1; 2774 } 2775 2776 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2777 return emulate_on_interception(vcpu); 2778 2779 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2780 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2781 if (dr >= 16) { /* mov to DRn */ 2782 dr -= 16; 2783 val = kvm_register_read(vcpu, reg); 2784 err = kvm_set_dr(vcpu, dr, val); 2785 } else { 2786 kvm_get_dr(vcpu, dr, &val); 2787 kvm_register_write(vcpu, reg, val); 2788 } 2789 2790 return kvm_complete_insn_gp(vcpu, err); 2791 } 2792 2793 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2794 { 2795 int r; 2796 2797 u8 cr8_prev = kvm_get_cr8(vcpu); 2798 /* instruction emulation calls kvm_set_cr8() */ 2799 r = cr_interception(vcpu); 2800 if (lapic_in_kernel(vcpu)) 2801 return r; 2802 if (cr8_prev <= kvm_get_cr8(vcpu)) 2803 return r; 2804 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2805 return 0; 2806 } 2807 2808 static int efer_trap(struct kvm_vcpu *vcpu) 2809 { 2810 struct msr_data msr_info; 2811 int ret; 2812 2813 /* 2814 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2815 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2816 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2817 * the guest doesn't have X86_FEATURE_SVM. 2818 */ 2819 msr_info.host_initiated = false; 2820 msr_info.index = MSR_EFER; 2821 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2822 ret = kvm_set_msr_common(vcpu, &msr_info); 2823 2824 return kvm_complete_insn_gp(vcpu, ret); 2825 } 2826 2827 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2828 { 2829 msr->data = 0; 2830 2831 switch (msr->index) { 2832 case MSR_AMD64_DE_CFG: 2833 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2834 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2835 break; 2836 default: 2837 return KVM_MSR_RET_INVALID; 2838 } 2839 2840 return 0; 2841 } 2842 2843 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2844 { 2845 struct vcpu_svm *svm = to_svm(vcpu); 2846 2847 switch (msr_info->index) { 2848 case MSR_AMD64_TSC_RATIO: 2849 if (!msr_info->host_initiated && 2850 !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) 2851 return 1; 2852 msr_info->data = svm->tsc_ratio_msr; 2853 break; 2854 case MSR_STAR: 2855 msr_info->data = svm->vmcb01.ptr->save.star; 2856 break; 2857 #ifdef CONFIG_X86_64 2858 case MSR_LSTAR: 2859 msr_info->data = svm->vmcb01.ptr->save.lstar; 2860 break; 2861 case MSR_CSTAR: 2862 msr_info->data = svm->vmcb01.ptr->save.cstar; 2863 break; 2864 case MSR_KERNEL_GS_BASE: 2865 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2866 break; 2867 case MSR_SYSCALL_MASK: 2868 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2869 break; 2870 #endif 2871 case MSR_IA32_SYSENTER_CS: 2872 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2873 break; 2874 case MSR_IA32_SYSENTER_EIP: 2875 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2876 if (guest_cpuid_is_intel(vcpu)) 2877 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2878 break; 2879 case MSR_IA32_SYSENTER_ESP: 2880 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2881 if (guest_cpuid_is_intel(vcpu)) 2882 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2883 break; 2884 case MSR_TSC_AUX: 2885 msr_info->data = svm->tsc_aux; 2886 break; 2887 case MSR_IA32_DEBUGCTLMSR: 2888 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2889 break; 2890 case MSR_IA32_LASTBRANCHFROMIP: 2891 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2892 break; 2893 case MSR_IA32_LASTBRANCHTOIP: 2894 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2895 break; 2896 case MSR_IA32_LASTINTFROMIP: 2897 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2898 break; 2899 case MSR_IA32_LASTINTTOIP: 2900 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2901 break; 2902 case MSR_VM_HSAVE_PA: 2903 msr_info->data = svm->nested.hsave_msr; 2904 break; 2905 case MSR_VM_CR: 2906 msr_info->data = svm->nested.vm_cr_msr; 2907 break; 2908 case MSR_IA32_SPEC_CTRL: 2909 if (!msr_info->host_initiated && 2910 !guest_has_spec_ctrl_msr(vcpu)) 2911 return 1; 2912 2913 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2914 msr_info->data = svm->vmcb->save.spec_ctrl; 2915 else 2916 msr_info->data = svm->spec_ctrl; 2917 break; 2918 case MSR_AMD64_VIRT_SPEC_CTRL: 2919 if (!msr_info->host_initiated && 2920 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2921 return 1; 2922 2923 msr_info->data = svm->virt_spec_ctrl; 2924 break; 2925 case MSR_F15H_IC_CFG: { 2926 2927 int family, model; 2928 2929 family = guest_cpuid_family(vcpu); 2930 model = guest_cpuid_model(vcpu); 2931 2932 if (family < 0 || model < 0) 2933 return kvm_get_msr_common(vcpu, msr_info); 2934 2935 msr_info->data = 0; 2936 2937 if (family == 0x15 && 2938 (model >= 0x2 && model < 0x20)) 2939 msr_info->data = 0x1E; 2940 } 2941 break; 2942 case MSR_AMD64_DE_CFG: 2943 msr_info->data = svm->msr_decfg; 2944 break; 2945 default: 2946 return kvm_get_msr_common(vcpu, msr_info); 2947 } 2948 return 0; 2949 } 2950 2951 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2952 { 2953 struct vcpu_svm *svm = to_svm(vcpu); 2954 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2955 return kvm_complete_insn_gp(vcpu, err); 2956 2957 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2958 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2959 X86_TRAP_GP | 2960 SVM_EVTINJ_TYPE_EXEPT | 2961 SVM_EVTINJ_VALID); 2962 return 1; 2963 } 2964 2965 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2966 { 2967 struct vcpu_svm *svm = to_svm(vcpu); 2968 int svm_dis, chg_mask; 2969 2970 if (data & ~SVM_VM_CR_VALID_MASK) 2971 return 1; 2972 2973 chg_mask = SVM_VM_CR_VALID_MASK; 2974 2975 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2976 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2977 2978 svm->nested.vm_cr_msr &= ~chg_mask; 2979 svm->nested.vm_cr_msr |= (data & chg_mask); 2980 2981 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2982 2983 /* check for svm_disable while efer.svme is set */ 2984 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2985 return 1; 2986 2987 return 0; 2988 } 2989 2990 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2991 { 2992 struct vcpu_svm *svm = to_svm(vcpu); 2993 int ret = 0; 2994 2995 u32 ecx = msr->index; 2996 u64 data = msr->data; 2997 switch (ecx) { 2998 case MSR_AMD64_TSC_RATIO: 2999 3000 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) { 3001 3002 if (!msr->host_initiated) 3003 return 1; 3004 /* 3005 * In case TSC scaling is not enabled, always 3006 * leave this MSR at the default value. 3007 * 3008 * Due to bug in qemu 6.2.0, it would try to set 3009 * this msr to 0 if tsc scaling is not enabled. 3010 * Ignore this value as well. 3011 */ 3012 if (data != 0 && data != svm->tsc_ratio_msr) 3013 return 1; 3014 break; 3015 } 3016 3017 if (data & SVM_TSC_RATIO_RSVD) 3018 return 1; 3019 3020 svm->tsc_ratio_msr = data; 3021 3022 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) && 3023 is_guest_mode(vcpu)) 3024 nested_svm_update_tsc_ratio_msr(vcpu); 3025 3026 break; 3027 case MSR_IA32_CR_PAT: 3028 ret = kvm_set_msr_common(vcpu, msr); 3029 if (ret) 3030 break; 3031 3032 svm->vmcb01.ptr->save.g_pat = data; 3033 if (is_guest_mode(vcpu)) 3034 nested_vmcb02_compute_g_pat(svm); 3035 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3036 break; 3037 case MSR_IA32_SPEC_CTRL: 3038 if (!msr->host_initiated && 3039 !guest_has_spec_ctrl_msr(vcpu)) 3040 return 1; 3041 3042 if (kvm_spec_ctrl_test_value(data)) 3043 return 1; 3044 3045 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3046 svm->vmcb->save.spec_ctrl = data; 3047 else 3048 svm->spec_ctrl = data; 3049 if (!data) 3050 break; 3051 3052 /* 3053 * For non-nested: 3054 * When it's written (to non-zero) for the first time, pass 3055 * it through. 3056 * 3057 * For nested: 3058 * The handling of the MSR bitmap for L2 guests is done in 3059 * nested_svm_vmrun_msrpm. 3060 * We update the L1 MSR bit as well since it will end up 3061 * touching the MSR anyway now. 3062 */ 3063 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3064 break; 3065 case MSR_AMD64_VIRT_SPEC_CTRL: 3066 if (!msr->host_initiated && 3067 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3068 return 1; 3069 3070 if (data & ~SPEC_CTRL_SSBD) 3071 return 1; 3072 3073 svm->virt_spec_ctrl = data; 3074 break; 3075 case MSR_STAR: 3076 svm->vmcb01.ptr->save.star = data; 3077 break; 3078 #ifdef CONFIG_X86_64 3079 case MSR_LSTAR: 3080 svm->vmcb01.ptr->save.lstar = data; 3081 break; 3082 case MSR_CSTAR: 3083 svm->vmcb01.ptr->save.cstar = data; 3084 break; 3085 case MSR_KERNEL_GS_BASE: 3086 svm->vmcb01.ptr->save.kernel_gs_base = data; 3087 break; 3088 case MSR_SYSCALL_MASK: 3089 svm->vmcb01.ptr->save.sfmask = data; 3090 break; 3091 #endif 3092 case MSR_IA32_SYSENTER_CS: 3093 svm->vmcb01.ptr->save.sysenter_cs = data; 3094 break; 3095 case MSR_IA32_SYSENTER_EIP: 3096 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3097 /* 3098 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3099 * when we spoof an Intel vendor ID (for cross vendor migration). 3100 * In this case we use this intercept to track the high 3101 * 32 bit part of these msrs to support Intel's 3102 * implementation of SYSENTER/SYSEXIT. 3103 */ 3104 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3105 break; 3106 case MSR_IA32_SYSENTER_ESP: 3107 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3108 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3109 break; 3110 case MSR_TSC_AUX: 3111 /* 3112 * TSC_AUX is always virtualized for SEV-ES guests when the 3113 * feature is available. The user return MSR support is not 3114 * required in this case because TSC_AUX is restored on #VMEXIT 3115 * from the host save area (which has been initialized in 3116 * svm_hardware_enable()). 3117 */ 3118 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3119 break; 3120 3121 /* 3122 * TSC_AUX is usually changed only during boot and never read 3123 * directly. Intercept TSC_AUX instead of exposing it to the 3124 * guest via direct_access_msrs, and switch it via user return. 3125 */ 3126 preempt_disable(); 3127 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3128 preempt_enable(); 3129 if (ret) 3130 break; 3131 3132 svm->tsc_aux = data; 3133 break; 3134 case MSR_IA32_DEBUGCTLMSR: 3135 if (!lbrv) { 3136 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3137 break; 3138 } 3139 if (data & DEBUGCTL_RESERVED_BITS) 3140 return 1; 3141 3142 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3143 svm_update_lbrv(vcpu); 3144 break; 3145 case MSR_VM_HSAVE_PA: 3146 /* 3147 * Old kernels did not validate the value written to 3148 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3149 * value to allow live migrating buggy or malicious guests 3150 * originating from those kernels. 3151 */ 3152 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3153 return 1; 3154 3155 svm->nested.hsave_msr = data & PAGE_MASK; 3156 break; 3157 case MSR_VM_CR: 3158 return svm_set_vm_cr(vcpu, data); 3159 case MSR_VM_IGNNE: 3160 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3161 break; 3162 case MSR_AMD64_DE_CFG: { 3163 struct kvm_msr_entry msr_entry; 3164 3165 msr_entry.index = msr->index; 3166 if (svm_get_msr_feature(&msr_entry)) 3167 return 1; 3168 3169 /* Check the supported bits */ 3170 if (data & ~msr_entry.data) 3171 return 1; 3172 3173 /* Don't allow the guest to change a bit, #GP */ 3174 if (!msr->host_initiated && (data ^ msr_entry.data)) 3175 return 1; 3176 3177 svm->msr_decfg = data; 3178 break; 3179 } 3180 default: 3181 return kvm_set_msr_common(vcpu, msr); 3182 } 3183 return ret; 3184 } 3185 3186 static int msr_interception(struct kvm_vcpu *vcpu) 3187 { 3188 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3189 return kvm_emulate_wrmsr(vcpu); 3190 else 3191 return kvm_emulate_rdmsr(vcpu); 3192 } 3193 3194 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3195 { 3196 kvm_make_request(KVM_REQ_EVENT, vcpu); 3197 svm_clear_vintr(to_svm(vcpu)); 3198 3199 /* 3200 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3201 * In this case AVIC was temporarily disabled for 3202 * requesting the IRQ window and we have to re-enable it. 3203 * 3204 * If running nested, still remove the VM wide AVIC inhibit to 3205 * support case in which the interrupt window was requested when the 3206 * vCPU was not running nested. 3207 3208 * All vCPUs which run still run nested, will remain to have their 3209 * AVIC still inhibited due to per-cpu AVIC inhibition. 3210 */ 3211 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3212 3213 ++vcpu->stat.irq_window_exits; 3214 return 1; 3215 } 3216 3217 static int pause_interception(struct kvm_vcpu *vcpu) 3218 { 3219 bool in_kernel; 3220 /* 3221 * CPL is not made available for an SEV-ES guest, therefore 3222 * vcpu->arch.preempted_in_kernel can never be true. Just 3223 * set in_kernel to false as well. 3224 */ 3225 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3226 3227 grow_ple_window(vcpu); 3228 3229 kvm_vcpu_on_spin(vcpu, in_kernel); 3230 return kvm_skip_emulated_instruction(vcpu); 3231 } 3232 3233 static int invpcid_interception(struct kvm_vcpu *vcpu) 3234 { 3235 struct vcpu_svm *svm = to_svm(vcpu); 3236 unsigned long type; 3237 gva_t gva; 3238 3239 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3240 kvm_queue_exception(vcpu, UD_VECTOR); 3241 return 1; 3242 } 3243 3244 /* 3245 * For an INVPCID intercept: 3246 * EXITINFO1 provides the linear address of the memory operand. 3247 * EXITINFO2 provides the contents of the register operand. 3248 */ 3249 type = svm->vmcb->control.exit_info_2; 3250 gva = svm->vmcb->control.exit_info_1; 3251 3252 return kvm_handle_invpcid(vcpu, type, gva); 3253 } 3254 3255 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3256 [SVM_EXIT_READ_CR0] = cr_interception, 3257 [SVM_EXIT_READ_CR3] = cr_interception, 3258 [SVM_EXIT_READ_CR4] = cr_interception, 3259 [SVM_EXIT_READ_CR8] = cr_interception, 3260 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3261 [SVM_EXIT_WRITE_CR0] = cr_interception, 3262 [SVM_EXIT_WRITE_CR3] = cr_interception, 3263 [SVM_EXIT_WRITE_CR4] = cr_interception, 3264 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3265 [SVM_EXIT_READ_DR0] = dr_interception, 3266 [SVM_EXIT_READ_DR1] = dr_interception, 3267 [SVM_EXIT_READ_DR2] = dr_interception, 3268 [SVM_EXIT_READ_DR3] = dr_interception, 3269 [SVM_EXIT_READ_DR4] = dr_interception, 3270 [SVM_EXIT_READ_DR5] = dr_interception, 3271 [SVM_EXIT_READ_DR6] = dr_interception, 3272 [SVM_EXIT_READ_DR7] = dr_interception, 3273 [SVM_EXIT_WRITE_DR0] = dr_interception, 3274 [SVM_EXIT_WRITE_DR1] = dr_interception, 3275 [SVM_EXIT_WRITE_DR2] = dr_interception, 3276 [SVM_EXIT_WRITE_DR3] = dr_interception, 3277 [SVM_EXIT_WRITE_DR4] = dr_interception, 3278 [SVM_EXIT_WRITE_DR5] = dr_interception, 3279 [SVM_EXIT_WRITE_DR6] = dr_interception, 3280 [SVM_EXIT_WRITE_DR7] = dr_interception, 3281 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3282 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3283 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3284 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3285 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3286 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3287 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3288 [SVM_EXIT_INTR] = intr_interception, 3289 [SVM_EXIT_NMI] = nmi_interception, 3290 [SVM_EXIT_SMI] = smi_interception, 3291 [SVM_EXIT_VINTR] = interrupt_window_interception, 3292 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3293 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3294 [SVM_EXIT_IRET] = iret_interception, 3295 [SVM_EXIT_INVD] = kvm_emulate_invd, 3296 [SVM_EXIT_PAUSE] = pause_interception, 3297 [SVM_EXIT_HLT] = kvm_emulate_halt, 3298 [SVM_EXIT_INVLPG] = invlpg_interception, 3299 [SVM_EXIT_INVLPGA] = invlpga_interception, 3300 [SVM_EXIT_IOIO] = io_interception, 3301 [SVM_EXIT_MSR] = msr_interception, 3302 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3303 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3304 [SVM_EXIT_VMRUN] = vmrun_interception, 3305 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3306 [SVM_EXIT_VMLOAD] = vmload_interception, 3307 [SVM_EXIT_VMSAVE] = vmsave_interception, 3308 [SVM_EXIT_STGI] = stgi_interception, 3309 [SVM_EXIT_CLGI] = clgi_interception, 3310 [SVM_EXIT_SKINIT] = skinit_interception, 3311 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3312 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3313 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3314 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3315 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3316 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3317 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3318 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3319 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3320 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3321 [SVM_EXIT_INVPCID] = invpcid_interception, 3322 [SVM_EXIT_NPF] = npf_interception, 3323 [SVM_EXIT_RSM] = rsm_interception, 3324 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3325 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3326 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3327 }; 3328 3329 static void dump_vmcb(struct kvm_vcpu *vcpu) 3330 { 3331 struct vcpu_svm *svm = to_svm(vcpu); 3332 struct vmcb_control_area *control = &svm->vmcb->control; 3333 struct vmcb_save_area *save = &svm->vmcb->save; 3334 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3335 3336 if (!dump_invalid_vmcb) { 3337 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3338 return; 3339 } 3340 3341 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3342 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3343 pr_err("VMCB Control Area:\n"); 3344 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3345 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3346 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3347 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3348 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3349 pr_err("%-20s%08x %08x\n", "intercepts:", 3350 control->intercepts[INTERCEPT_WORD3], 3351 control->intercepts[INTERCEPT_WORD4]); 3352 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3353 pr_err("%-20s%d\n", "pause filter threshold:", 3354 control->pause_filter_thresh); 3355 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3356 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3357 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3358 pr_err("%-20s%d\n", "asid:", control->asid); 3359 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3360 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3361 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3362 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3363 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3364 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3365 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3366 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3367 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3368 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3369 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3370 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3371 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3372 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3373 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3374 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3375 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3376 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3377 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3378 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3379 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3380 pr_err("VMCB State Save Area:\n"); 3381 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3382 "es:", 3383 save->es.selector, save->es.attrib, 3384 save->es.limit, save->es.base); 3385 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3386 "cs:", 3387 save->cs.selector, save->cs.attrib, 3388 save->cs.limit, save->cs.base); 3389 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3390 "ss:", 3391 save->ss.selector, save->ss.attrib, 3392 save->ss.limit, save->ss.base); 3393 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3394 "ds:", 3395 save->ds.selector, save->ds.attrib, 3396 save->ds.limit, save->ds.base); 3397 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3398 "fs:", 3399 save01->fs.selector, save01->fs.attrib, 3400 save01->fs.limit, save01->fs.base); 3401 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3402 "gs:", 3403 save01->gs.selector, save01->gs.attrib, 3404 save01->gs.limit, save01->gs.base); 3405 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3406 "gdtr:", 3407 save->gdtr.selector, save->gdtr.attrib, 3408 save->gdtr.limit, save->gdtr.base); 3409 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3410 "ldtr:", 3411 save01->ldtr.selector, save01->ldtr.attrib, 3412 save01->ldtr.limit, save01->ldtr.base); 3413 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3414 "idtr:", 3415 save->idtr.selector, save->idtr.attrib, 3416 save->idtr.limit, save->idtr.base); 3417 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3418 "tr:", 3419 save01->tr.selector, save01->tr.attrib, 3420 save01->tr.limit, save01->tr.base); 3421 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3422 save->vmpl, save->cpl, save->efer); 3423 pr_err("%-15s %016llx %-13s %016llx\n", 3424 "cr0:", save->cr0, "cr2:", save->cr2); 3425 pr_err("%-15s %016llx %-13s %016llx\n", 3426 "cr3:", save->cr3, "cr4:", save->cr4); 3427 pr_err("%-15s %016llx %-13s %016llx\n", 3428 "dr6:", save->dr6, "dr7:", save->dr7); 3429 pr_err("%-15s %016llx %-13s %016llx\n", 3430 "rip:", save->rip, "rflags:", save->rflags); 3431 pr_err("%-15s %016llx %-13s %016llx\n", 3432 "rsp:", save->rsp, "rax:", save->rax); 3433 pr_err("%-15s %016llx %-13s %016llx\n", 3434 "star:", save01->star, "lstar:", save01->lstar); 3435 pr_err("%-15s %016llx %-13s %016llx\n", 3436 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3437 pr_err("%-15s %016llx %-13s %016llx\n", 3438 "kernel_gs_base:", save01->kernel_gs_base, 3439 "sysenter_cs:", save01->sysenter_cs); 3440 pr_err("%-15s %016llx %-13s %016llx\n", 3441 "sysenter_esp:", save01->sysenter_esp, 3442 "sysenter_eip:", save01->sysenter_eip); 3443 pr_err("%-15s %016llx %-13s %016llx\n", 3444 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3445 pr_err("%-15s %016llx %-13s %016llx\n", 3446 "br_from:", save->br_from, "br_to:", save->br_to); 3447 pr_err("%-15s %016llx %-13s %016llx\n", 3448 "excp_from:", save->last_excp_from, 3449 "excp_to:", save->last_excp_to); 3450 } 3451 3452 static bool svm_check_exit_valid(u64 exit_code) 3453 { 3454 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3455 svm_exit_handlers[exit_code]); 3456 } 3457 3458 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3459 { 3460 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3461 dump_vmcb(vcpu); 3462 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3463 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3464 vcpu->run->internal.ndata = 2; 3465 vcpu->run->internal.data[0] = exit_code; 3466 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3467 return 0; 3468 } 3469 3470 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3471 { 3472 if (!svm_check_exit_valid(exit_code)) 3473 return svm_handle_invalid_exit(vcpu, exit_code); 3474 3475 #ifdef CONFIG_RETPOLINE 3476 if (exit_code == SVM_EXIT_MSR) 3477 return msr_interception(vcpu); 3478 else if (exit_code == SVM_EXIT_VINTR) 3479 return interrupt_window_interception(vcpu); 3480 else if (exit_code == SVM_EXIT_INTR) 3481 return intr_interception(vcpu); 3482 else if (exit_code == SVM_EXIT_HLT) 3483 return kvm_emulate_halt(vcpu); 3484 else if (exit_code == SVM_EXIT_NPF) 3485 return npf_interception(vcpu); 3486 #endif 3487 return svm_exit_handlers[exit_code](vcpu); 3488 } 3489 3490 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3491 u64 *info1, u64 *info2, 3492 u32 *intr_info, u32 *error_code) 3493 { 3494 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3495 3496 *reason = control->exit_code; 3497 *info1 = control->exit_info_1; 3498 *info2 = control->exit_info_2; 3499 *intr_info = control->exit_int_info; 3500 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3501 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3502 *error_code = control->exit_int_info_err; 3503 else 3504 *error_code = 0; 3505 } 3506 3507 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3508 { 3509 struct vcpu_svm *svm = to_svm(vcpu); 3510 struct kvm_run *kvm_run = vcpu->run; 3511 u32 exit_code = svm->vmcb->control.exit_code; 3512 3513 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3514 if (!sev_es_guest(vcpu->kvm)) { 3515 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3516 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3517 if (npt_enabled) 3518 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3519 } 3520 3521 if (is_guest_mode(vcpu)) { 3522 int vmexit; 3523 3524 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3525 3526 vmexit = nested_svm_exit_special(svm); 3527 3528 if (vmexit == NESTED_EXIT_CONTINUE) 3529 vmexit = nested_svm_exit_handled(svm); 3530 3531 if (vmexit == NESTED_EXIT_DONE) 3532 return 1; 3533 } 3534 3535 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3536 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3537 kvm_run->fail_entry.hardware_entry_failure_reason 3538 = svm->vmcb->control.exit_code; 3539 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3540 dump_vmcb(vcpu); 3541 return 0; 3542 } 3543 3544 if (exit_fastpath != EXIT_FASTPATH_NONE) 3545 return 1; 3546 3547 return svm_invoke_exit_handler(vcpu, exit_code); 3548 } 3549 3550 static void pre_svm_run(struct kvm_vcpu *vcpu) 3551 { 3552 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3553 struct vcpu_svm *svm = to_svm(vcpu); 3554 3555 /* 3556 * If the previous vmrun of the vmcb occurred on a different physical 3557 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3558 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3559 */ 3560 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3561 svm->current_vmcb->asid_generation = 0; 3562 vmcb_mark_all_dirty(svm->vmcb); 3563 svm->current_vmcb->cpu = vcpu->cpu; 3564 } 3565 3566 if (sev_guest(vcpu->kvm)) 3567 return pre_sev_run(svm, vcpu->cpu); 3568 3569 /* FIXME: handle wraparound of asid_generation */ 3570 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3571 new_asid(svm, sd); 3572 } 3573 3574 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3575 { 3576 struct vcpu_svm *svm = to_svm(vcpu); 3577 3578 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3579 3580 if (svm->nmi_l1_to_l2) 3581 return; 3582 3583 svm->nmi_masked = true; 3584 svm_set_iret_intercept(svm); 3585 ++vcpu->stat.nmi_injections; 3586 } 3587 3588 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3589 { 3590 struct vcpu_svm *svm = to_svm(vcpu); 3591 3592 if (!is_vnmi_enabled(svm)) 3593 return false; 3594 3595 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3596 } 3597 3598 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3599 { 3600 struct vcpu_svm *svm = to_svm(vcpu); 3601 3602 if (!is_vnmi_enabled(svm)) 3603 return false; 3604 3605 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3606 return false; 3607 3608 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3609 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3610 3611 /* 3612 * Because the pending NMI is serviced by hardware, KVM can't know when 3613 * the NMI is "injected", but for all intents and purposes, passing the 3614 * NMI off to hardware counts as injection. 3615 */ 3616 ++vcpu->stat.nmi_injections; 3617 3618 return true; 3619 } 3620 3621 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3622 { 3623 struct vcpu_svm *svm = to_svm(vcpu); 3624 u32 type; 3625 3626 if (vcpu->arch.interrupt.soft) { 3627 if (svm_update_soft_interrupt_rip(vcpu)) 3628 return; 3629 3630 type = SVM_EVTINJ_TYPE_SOFT; 3631 } else { 3632 type = SVM_EVTINJ_TYPE_INTR; 3633 } 3634 3635 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3636 vcpu->arch.interrupt.soft, reinjected); 3637 ++vcpu->stat.irq_injections; 3638 3639 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3640 SVM_EVTINJ_VALID | type; 3641 } 3642 3643 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3644 int trig_mode, int vector) 3645 { 3646 /* 3647 * apic->apicv_active must be read after vcpu->mode. 3648 * Pairs with smp_store_release in vcpu_enter_guest. 3649 */ 3650 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3651 3652 /* Note, this is called iff the local APIC is in-kernel. */ 3653 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3654 /* Process the interrupt via kvm_check_and_inject_events(). */ 3655 kvm_make_request(KVM_REQ_EVENT, vcpu); 3656 kvm_vcpu_kick(vcpu); 3657 return; 3658 } 3659 3660 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3661 if (in_guest_mode) { 3662 /* 3663 * Signal the doorbell to tell hardware to inject the IRQ. If 3664 * the vCPU exits the guest before the doorbell chimes, hardware 3665 * will automatically process AVIC interrupts at the next VMRUN. 3666 */ 3667 avic_ring_doorbell(vcpu); 3668 } else { 3669 /* 3670 * Wake the vCPU if it was blocking. KVM will then detect the 3671 * pending IRQ when checking if the vCPU has a wake event. 3672 */ 3673 kvm_vcpu_wake_up(vcpu); 3674 } 3675 } 3676 3677 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3678 int trig_mode, int vector) 3679 { 3680 kvm_lapic_set_irr(vector, apic); 3681 3682 /* 3683 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3684 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3685 * the read of guest_mode. This guarantees that either VMRUN will see 3686 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3687 * will signal the doorbell if the CPU has already entered the guest. 3688 */ 3689 smp_mb__after_atomic(); 3690 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3691 } 3692 3693 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3694 { 3695 struct vcpu_svm *svm = to_svm(vcpu); 3696 3697 /* 3698 * SEV-ES guests must always keep the CR intercepts cleared. CR 3699 * tracking is done using the CR write traps. 3700 */ 3701 if (sev_es_guest(vcpu->kvm)) 3702 return; 3703 3704 if (nested_svm_virtualize_tpr(vcpu)) 3705 return; 3706 3707 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3708 3709 if (irr == -1) 3710 return; 3711 3712 if (tpr >= irr) 3713 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3714 } 3715 3716 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3717 { 3718 struct vcpu_svm *svm = to_svm(vcpu); 3719 3720 if (is_vnmi_enabled(svm)) 3721 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3722 else 3723 return svm->nmi_masked; 3724 } 3725 3726 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3727 { 3728 struct vcpu_svm *svm = to_svm(vcpu); 3729 3730 if (is_vnmi_enabled(svm)) { 3731 if (masked) 3732 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3733 else 3734 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3735 3736 } else { 3737 svm->nmi_masked = masked; 3738 if (masked) 3739 svm_set_iret_intercept(svm); 3740 else 3741 svm_clr_iret_intercept(svm); 3742 } 3743 } 3744 3745 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3746 { 3747 struct vcpu_svm *svm = to_svm(vcpu); 3748 struct vmcb *vmcb = svm->vmcb; 3749 3750 if (!gif_set(svm)) 3751 return true; 3752 3753 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3754 return false; 3755 3756 if (svm_get_nmi_mask(vcpu)) 3757 return true; 3758 3759 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3760 } 3761 3762 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3763 { 3764 struct vcpu_svm *svm = to_svm(vcpu); 3765 if (svm->nested.nested_run_pending) 3766 return -EBUSY; 3767 3768 if (svm_nmi_blocked(vcpu)) 3769 return 0; 3770 3771 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3772 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3773 return -EBUSY; 3774 return 1; 3775 } 3776 3777 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3778 { 3779 struct vcpu_svm *svm = to_svm(vcpu); 3780 struct vmcb *vmcb = svm->vmcb; 3781 3782 if (!gif_set(svm)) 3783 return true; 3784 3785 if (is_guest_mode(vcpu)) { 3786 /* As long as interrupts are being delivered... */ 3787 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3788 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3789 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3790 return true; 3791 3792 /* ... vmexits aren't blocked by the interrupt shadow */ 3793 if (nested_exit_on_intr(svm)) 3794 return false; 3795 } else { 3796 if (!svm_get_if_flag(vcpu)) 3797 return true; 3798 } 3799 3800 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3801 } 3802 3803 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3804 { 3805 struct vcpu_svm *svm = to_svm(vcpu); 3806 3807 if (svm->nested.nested_run_pending) 3808 return -EBUSY; 3809 3810 if (svm_interrupt_blocked(vcpu)) 3811 return 0; 3812 3813 /* 3814 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3815 * e.g. if the IRQ arrived asynchronously after checking nested events. 3816 */ 3817 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3818 return -EBUSY; 3819 3820 return 1; 3821 } 3822 3823 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3824 { 3825 struct vcpu_svm *svm = to_svm(vcpu); 3826 3827 /* 3828 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3829 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3830 * get that intercept, this function will be called again though and 3831 * we'll get the vintr intercept. However, if the vGIF feature is 3832 * enabled, the STGI interception will not occur. Enable the irq 3833 * window under the assumption that the hardware will set the GIF. 3834 */ 3835 if (vgif || gif_set(svm)) { 3836 /* 3837 * IRQ window is not needed when AVIC is enabled, 3838 * unless we have pending ExtINT since it cannot be injected 3839 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3840 * and fallback to injecting IRQ via V_IRQ. 3841 * 3842 * If running nested, AVIC is already locally inhibited 3843 * on this vCPU, therefore there is no need to request 3844 * the VM wide AVIC inhibition. 3845 */ 3846 if (!is_guest_mode(vcpu)) 3847 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3848 3849 svm_set_vintr(svm); 3850 } 3851 } 3852 3853 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3854 { 3855 struct vcpu_svm *svm = to_svm(vcpu); 3856 3857 /* 3858 * KVM should never request an NMI window when vNMI is enabled, as KVM 3859 * allows at most one to-be-injected NMI and one pending NMI, i.e. if 3860 * two NMIs arrive simultaneously, KVM will inject one and set 3861 * V_NMI_PENDING for the other. WARN, but continue with the standard 3862 * single-step approach to try and salvage the pending NMI. 3863 */ 3864 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3865 3866 if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion) 3867 return; /* IRET will cause a vm exit */ 3868 3869 /* 3870 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3871 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3872 * KVM can't intercept and single-step IRET to detect when NMIs are 3873 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3874 * 3875 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3876 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3877 * supported NAEs in the GHCB protocol. 3878 */ 3879 if (sev_es_guest(vcpu->kvm)) 3880 return; 3881 3882 if (!gif_set(svm)) { 3883 if (vgif) 3884 svm_set_intercept(svm, INTERCEPT_STGI); 3885 return; /* STGI will cause a vm exit */ 3886 } 3887 3888 /* 3889 * Something prevents NMI from been injected. Single step over possible 3890 * problem (IRET or exception injection or interrupt shadow) 3891 */ 3892 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3893 svm->nmi_singlestep = true; 3894 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3895 } 3896 3897 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3898 { 3899 struct vcpu_svm *svm = to_svm(vcpu); 3900 3901 /* 3902 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3903 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3904 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3905 */ 3906 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3907 3908 /* 3909 * Flush only the current ASID even if the TLB flush was invoked via 3910 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3911 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3912 * unconditionally does a TLB flush on both nested VM-Enter and nested 3913 * VM-Exit (via kvm_mmu_reset_context()). 3914 */ 3915 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3916 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3917 else 3918 svm->current_vmcb->asid_generation--; 3919 } 3920 3921 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3922 { 3923 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 3924 3925 /* 3926 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 3927 * flush the NPT mappings via hypercall as flushing the ASID only 3928 * affects virtual to physical mappings, it does not invalidate guest 3929 * physical to host physical mappings. 3930 */ 3931 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 3932 hyperv_flush_guest_mapping(root_tdp); 3933 3934 svm_flush_tlb_asid(vcpu); 3935 } 3936 3937 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 3938 { 3939 /* 3940 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 3941 * flushes should be routed to hv_flush_remote_tlbs() without requesting 3942 * a "regular" remote flush. Reaching this point means either there's 3943 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 3944 * which might be fatal to the guest. Yell, but try to recover. 3945 */ 3946 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 3947 hv_flush_remote_tlbs(vcpu->kvm); 3948 3949 svm_flush_tlb_asid(vcpu); 3950 } 3951 3952 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3953 { 3954 struct vcpu_svm *svm = to_svm(vcpu); 3955 3956 invlpga(gva, svm->vmcb->control.asid); 3957 } 3958 3959 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3960 { 3961 struct vcpu_svm *svm = to_svm(vcpu); 3962 3963 if (nested_svm_virtualize_tpr(vcpu)) 3964 return; 3965 3966 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3967 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3968 kvm_set_cr8(vcpu, cr8); 3969 } 3970 } 3971 3972 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3973 { 3974 struct vcpu_svm *svm = to_svm(vcpu); 3975 u64 cr8; 3976 3977 if (nested_svm_virtualize_tpr(vcpu) || 3978 kvm_vcpu_apicv_active(vcpu)) 3979 return; 3980 3981 cr8 = kvm_get_cr8(vcpu); 3982 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3983 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3984 } 3985 3986 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 3987 int type) 3988 { 3989 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 3990 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 3991 struct vcpu_svm *svm = to_svm(vcpu); 3992 3993 /* 3994 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 3995 * associated with the original soft exception/interrupt. next_rip is 3996 * cleared on all exits that can occur while vectoring an event, so KVM 3997 * needs to manually set next_rip for re-injection. Unlike the !nrips 3998 * case below, this needs to be done if and only if KVM is re-injecting 3999 * the same event, i.e. if the event is a soft exception/interrupt, 4000 * otherwise next_rip is unused on VMRUN. 4001 */ 4002 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4003 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4004 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4005 /* 4006 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4007 * injecting the soft exception/interrupt. That advancement needs to 4008 * be unwound if vectoring didn't complete. Note, the new event may 4009 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4010 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4011 * be the reported vectored event, but RIP still needs to be unwound. 4012 */ 4013 else if (!nrips && (is_soft || is_exception) && 4014 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4015 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4016 } 4017 4018 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4019 { 4020 struct vcpu_svm *svm = to_svm(vcpu); 4021 u8 vector; 4022 int type; 4023 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4024 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4025 bool soft_int_injected = svm->soft_int_injected; 4026 4027 svm->nmi_l1_to_l2 = false; 4028 svm->soft_int_injected = false; 4029 4030 /* 4031 * If we've made progress since setting awaiting_iret_completion, we've 4032 * executed an IRET and can allow NMI injection. 4033 */ 4034 if (svm->awaiting_iret_completion && 4035 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4036 svm->awaiting_iret_completion = false; 4037 svm->nmi_masked = false; 4038 kvm_make_request(KVM_REQ_EVENT, vcpu); 4039 } 4040 4041 vcpu->arch.nmi_injected = false; 4042 kvm_clear_exception_queue(vcpu); 4043 kvm_clear_interrupt_queue(vcpu); 4044 4045 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4046 return; 4047 4048 kvm_make_request(KVM_REQ_EVENT, vcpu); 4049 4050 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4051 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4052 4053 if (soft_int_injected) 4054 svm_complete_soft_interrupt(vcpu, vector, type); 4055 4056 switch (type) { 4057 case SVM_EXITINTINFO_TYPE_NMI: 4058 vcpu->arch.nmi_injected = true; 4059 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4060 break; 4061 case SVM_EXITINTINFO_TYPE_EXEPT: 4062 /* 4063 * Never re-inject a #VC exception. 4064 */ 4065 if (vector == X86_TRAP_VC) 4066 break; 4067 4068 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 4069 u32 err = svm->vmcb->control.exit_int_info_err; 4070 kvm_requeue_exception_e(vcpu, vector, err); 4071 4072 } else 4073 kvm_requeue_exception(vcpu, vector); 4074 break; 4075 case SVM_EXITINTINFO_TYPE_INTR: 4076 kvm_queue_interrupt(vcpu, vector, false); 4077 break; 4078 case SVM_EXITINTINFO_TYPE_SOFT: 4079 kvm_queue_interrupt(vcpu, vector, true); 4080 break; 4081 default: 4082 break; 4083 } 4084 4085 } 4086 4087 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4088 { 4089 struct vcpu_svm *svm = to_svm(vcpu); 4090 struct vmcb_control_area *control = &svm->vmcb->control; 4091 4092 control->exit_int_info = control->event_inj; 4093 control->exit_int_info_err = control->event_inj_err; 4094 control->event_inj = 0; 4095 svm_complete_interrupts(vcpu); 4096 } 4097 4098 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4099 { 4100 return 1; 4101 } 4102 4103 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4104 { 4105 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 4106 to_svm(vcpu)->vmcb->control.exit_info_1) 4107 return handle_fastpath_set_msr_irqoff(vcpu); 4108 4109 return EXIT_FASTPATH_NONE; 4110 } 4111 4112 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4113 { 4114 struct vcpu_svm *svm = to_svm(vcpu); 4115 4116 guest_state_enter_irqoff(); 4117 4118 amd_clear_divider(); 4119 4120 if (sev_es_guest(vcpu->kvm)) 4121 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted); 4122 else 4123 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4124 4125 guest_state_exit_irqoff(); 4126 } 4127 4128 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 4129 { 4130 struct vcpu_svm *svm = to_svm(vcpu); 4131 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4132 4133 trace_kvm_entry(vcpu); 4134 4135 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4136 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4137 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4138 4139 /* 4140 * Disable singlestep if we're injecting an interrupt/exception. 4141 * We don't want our modified rflags to be pushed on the stack where 4142 * we might not be able to easily reset them if we disabled NMI 4143 * singlestep later. 4144 */ 4145 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4146 /* 4147 * Event injection happens before external interrupts cause a 4148 * vmexit and interrupts are disabled here, so smp_send_reschedule 4149 * is enough to force an immediate vmexit. 4150 */ 4151 disable_nmi_singlestep(svm); 4152 smp_send_reschedule(vcpu->cpu); 4153 } 4154 4155 pre_svm_run(vcpu); 4156 4157 sync_lapic_to_cr8(vcpu); 4158 4159 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4160 svm->vmcb->control.asid = svm->asid; 4161 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4162 } 4163 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4164 4165 svm_hv_update_vp_id(svm->vmcb, vcpu); 4166 4167 /* 4168 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4169 * of a #DB. 4170 */ 4171 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 4172 svm_set_dr6(svm, vcpu->arch.dr6); 4173 else 4174 svm_set_dr6(svm, DR6_ACTIVE_LOW); 4175 4176 clgi(); 4177 kvm_load_guest_xsave_state(vcpu); 4178 4179 kvm_wait_lapic_expire(vcpu); 4180 4181 /* 4182 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4183 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4184 * is no need to worry about the conditional branch over the wrmsr 4185 * being speculatively taken. 4186 */ 4187 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4188 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4189 4190 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4191 4192 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4193 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4194 4195 if (!sev_es_guest(vcpu->kvm)) { 4196 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4197 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4198 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4199 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4200 } 4201 vcpu->arch.regs_dirty = 0; 4202 4203 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4204 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4205 4206 kvm_load_host_xsave_state(vcpu); 4207 stgi(); 4208 4209 /* Any pending NMI will happen here */ 4210 4211 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4212 kvm_after_interrupt(vcpu); 4213 4214 sync_cr8_to_lapic(vcpu); 4215 4216 svm->next_rip = 0; 4217 if (is_guest_mode(vcpu)) { 4218 nested_sync_control_from_vmcb02(svm); 4219 4220 /* Track VMRUNs that have made past consistency checking */ 4221 if (svm->nested.nested_run_pending && 4222 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4223 ++vcpu->stat.nested_run; 4224 4225 svm->nested.nested_run_pending = 0; 4226 } 4227 4228 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4229 vmcb_mark_all_clean(svm->vmcb); 4230 4231 /* if exit due to PF check for async PF */ 4232 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4233 vcpu->arch.apf.host_apf_flags = 4234 kvm_read_and_reset_apf_flags(); 4235 4236 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4237 4238 /* 4239 * We need to handle MC intercepts here before the vcpu has a chance to 4240 * change the physical cpu 4241 */ 4242 if (unlikely(svm->vmcb->control.exit_code == 4243 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4244 svm_handle_mce(vcpu); 4245 4246 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4247 4248 svm_complete_interrupts(vcpu); 4249 4250 if (is_guest_mode(vcpu)) 4251 return EXIT_FASTPATH_NONE; 4252 4253 return svm_exit_handlers_fastpath(vcpu); 4254 } 4255 4256 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4257 int root_level) 4258 { 4259 struct vcpu_svm *svm = to_svm(vcpu); 4260 unsigned long cr3; 4261 4262 if (npt_enabled) { 4263 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4264 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4265 4266 hv_track_root_tdp(vcpu, root_hpa); 4267 4268 cr3 = vcpu->arch.cr3; 4269 } else if (root_level >= PT64_ROOT_4LEVEL) { 4270 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4271 } else { 4272 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4273 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4274 cr3 = root_hpa; 4275 } 4276 4277 svm->vmcb->save.cr3 = cr3; 4278 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4279 } 4280 4281 static void 4282 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4283 { 4284 /* 4285 * Patch in the VMMCALL instruction: 4286 */ 4287 hypercall[0] = 0x0f; 4288 hypercall[1] = 0x01; 4289 hypercall[2] = 0xd9; 4290 } 4291 4292 /* 4293 * The kvm parameter can be NULL (module initialization, or invocation before 4294 * VM creation). Be sure to check the kvm parameter before using it. 4295 */ 4296 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4297 { 4298 switch (index) { 4299 case MSR_IA32_MCG_EXT_CTL: 4300 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4301 return false; 4302 case MSR_IA32_SMBASE: 4303 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4304 return false; 4305 /* SEV-ES guests do not support SMM, so report false */ 4306 if (kvm && sev_es_guest(kvm)) 4307 return false; 4308 break; 4309 default: 4310 break; 4311 } 4312 4313 return true; 4314 } 4315 4316 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4317 { 4318 struct vcpu_svm *svm = to_svm(vcpu); 4319 4320 /* 4321 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4322 * can only disable all variants of by disallowing CR4.OSXSAVE from 4323 * being set. As a result, if the host has XSAVE and XSAVES, and the 4324 * guest has XSAVE enabled, the guest can execute XSAVES without 4325 * faulting. Treat XSAVES as enabled in this case regardless of 4326 * whether it's advertised to the guest so that KVM context switches 4327 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4328 * the guest read/write access to the host's XSS. 4329 */ 4330 if (boot_cpu_has(X86_FEATURE_XSAVE) && 4331 boot_cpu_has(X86_FEATURE_XSAVES) && 4332 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 4333 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES); 4334 4335 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS); 4336 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR); 4337 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV); 4338 4339 /* 4340 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that 4341 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4342 * SVM on Intel is bonkers and extremely unlikely to work). 4343 */ 4344 if (!guest_cpuid_is_intel(vcpu)) 4345 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4346 4347 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER); 4348 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD); 4349 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF); 4350 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI); 4351 4352 svm_recalc_instruction_intercepts(vcpu, svm); 4353 4354 if (boot_cpu_has(X86_FEATURE_IBPB)) 4355 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4356 !!guest_has_pred_cmd_msr(vcpu)); 4357 4358 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4359 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4360 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4361 4362 if (sev_guest(vcpu->kvm)) 4363 sev_vcpu_after_set_cpuid(svm); 4364 4365 init_vmcb_after_set_cpuid(vcpu); 4366 } 4367 4368 static bool svm_has_wbinvd_exit(void) 4369 { 4370 return true; 4371 } 4372 4373 #define PRE_EX(exit) { .exit_code = (exit), \ 4374 .stage = X86_ICPT_PRE_EXCEPT, } 4375 #define POST_EX(exit) { .exit_code = (exit), \ 4376 .stage = X86_ICPT_POST_EXCEPT, } 4377 #define POST_MEM(exit) { .exit_code = (exit), \ 4378 .stage = X86_ICPT_POST_MEMACCESS, } 4379 4380 static const struct __x86_intercept { 4381 u32 exit_code; 4382 enum x86_intercept_stage stage; 4383 } x86_intercept_map[] = { 4384 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4385 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4386 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4387 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4388 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4389 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4390 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4391 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4392 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4393 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4394 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4395 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4396 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4397 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4398 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4399 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4400 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4401 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4402 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4403 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4404 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4405 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4406 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4407 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4408 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4409 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4410 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4411 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4412 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4413 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4414 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4415 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4416 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4417 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4418 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4419 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4420 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4421 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4422 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4423 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4424 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4425 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4426 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4427 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4428 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4429 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4430 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4431 }; 4432 4433 #undef PRE_EX 4434 #undef POST_EX 4435 #undef POST_MEM 4436 4437 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4438 struct x86_instruction_info *info, 4439 enum x86_intercept_stage stage, 4440 struct x86_exception *exception) 4441 { 4442 struct vcpu_svm *svm = to_svm(vcpu); 4443 int vmexit, ret = X86EMUL_CONTINUE; 4444 struct __x86_intercept icpt_info; 4445 struct vmcb *vmcb = svm->vmcb; 4446 4447 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4448 goto out; 4449 4450 icpt_info = x86_intercept_map[info->intercept]; 4451 4452 if (stage != icpt_info.stage) 4453 goto out; 4454 4455 switch (icpt_info.exit_code) { 4456 case SVM_EXIT_READ_CR0: 4457 if (info->intercept == x86_intercept_cr_read) 4458 icpt_info.exit_code += info->modrm_reg; 4459 break; 4460 case SVM_EXIT_WRITE_CR0: { 4461 unsigned long cr0, val; 4462 4463 if (info->intercept == x86_intercept_cr_write) 4464 icpt_info.exit_code += info->modrm_reg; 4465 4466 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4467 info->intercept == x86_intercept_clts) 4468 break; 4469 4470 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4471 INTERCEPT_SELECTIVE_CR0))) 4472 break; 4473 4474 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4475 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4476 4477 if (info->intercept == x86_intercept_lmsw) { 4478 cr0 &= 0xfUL; 4479 val &= 0xfUL; 4480 /* lmsw can't clear PE - catch this here */ 4481 if (cr0 & X86_CR0_PE) 4482 val |= X86_CR0_PE; 4483 } 4484 4485 if (cr0 ^ val) 4486 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4487 4488 break; 4489 } 4490 case SVM_EXIT_READ_DR0: 4491 case SVM_EXIT_WRITE_DR0: 4492 icpt_info.exit_code += info->modrm_reg; 4493 break; 4494 case SVM_EXIT_MSR: 4495 if (info->intercept == x86_intercept_wrmsr) 4496 vmcb->control.exit_info_1 = 1; 4497 else 4498 vmcb->control.exit_info_1 = 0; 4499 break; 4500 case SVM_EXIT_PAUSE: 4501 /* 4502 * We get this for NOP only, but pause 4503 * is rep not, check this here 4504 */ 4505 if (info->rep_prefix != REPE_PREFIX) 4506 goto out; 4507 break; 4508 case SVM_EXIT_IOIO: { 4509 u64 exit_info; 4510 u32 bytes; 4511 4512 if (info->intercept == x86_intercept_in || 4513 info->intercept == x86_intercept_ins) { 4514 exit_info = ((info->src_val & 0xffff) << 16) | 4515 SVM_IOIO_TYPE_MASK; 4516 bytes = info->dst_bytes; 4517 } else { 4518 exit_info = (info->dst_val & 0xffff) << 16; 4519 bytes = info->src_bytes; 4520 } 4521 4522 if (info->intercept == x86_intercept_outs || 4523 info->intercept == x86_intercept_ins) 4524 exit_info |= SVM_IOIO_STR_MASK; 4525 4526 if (info->rep_prefix) 4527 exit_info |= SVM_IOIO_REP_MASK; 4528 4529 bytes = min(bytes, 4u); 4530 4531 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4532 4533 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4534 4535 vmcb->control.exit_info_1 = exit_info; 4536 vmcb->control.exit_info_2 = info->next_rip; 4537 4538 break; 4539 } 4540 default: 4541 break; 4542 } 4543 4544 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4545 if (static_cpu_has(X86_FEATURE_NRIPS)) 4546 vmcb->control.next_rip = info->next_rip; 4547 vmcb->control.exit_code = icpt_info.exit_code; 4548 vmexit = nested_svm_exit_handled(svm); 4549 4550 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4551 : X86EMUL_CONTINUE; 4552 4553 out: 4554 return ret; 4555 } 4556 4557 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4558 { 4559 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4560 vcpu->arch.at_instruction_boundary = true; 4561 } 4562 4563 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4564 { 4565 if (!kvm_pause_in_guest(vcpu->kvm)) 4566 shrink_ple_window(vcpu); 4567 } 4568 4569 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4570 { 4571 /* [63:9] are reserved. */ 4572 vcpu->arch.mcg_cap &= 0x1ff; 4573 } 4574 4575 #ifdef CONFIG_KVM_SMM 4576 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4577 { 4578 struct vcpu_svm *svm = to_svm(vcpu); 4579 4580 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4581 if (!gif_set(svm)) 4582 return true; 4583 4584 return is_smm(vcpu); 4585 } 4586 4587 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4588 { 4589 struct vcpu_svm *svm = to_svm(vcpu); 4590 if (svm->nested.nested_run_pending) 4591 return -EBUSY; 4592 4593 if (svm_smi_blocked(vcpu)) 4594 return 0; 4595 4596 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4597 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4598 return -EBUSY; 4599 4600 return 1; 4601 } 4602 4603 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4604 { 4605 struct vcpu_svm *svm = to_svm(vcpu); 4606 struct kvm_host_map map_save; 4607 int ret; 4608 4609 if (!is_guest_mode(vcpu)) 4610 return 0; 4611 4612 /* 4613 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4614 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4615 */ 4616 4617 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4618 return 1; 4619 4620 smram->smram64.svm_guest_flag = 1; 4621 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4622 4623 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4624 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4625 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4626 4627 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4628 if (ret) 4629 return ret; 4630 4631 /* 4632 * KVM uses VMCB01 to store L1 host state while L2 runs but 4633 * VMCB01 is going to be used during SMM and thus the state will 4634 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4635 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4636 * format of the area is identical to guest save area offsetted 4637 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4638 * within 'struct vmcb'). Note: HSAVE area may also be used by 4639 * L1 hypervisor to save additional host context (e.g. KVM does 4640 * that, see svm_prepare_switch_to_guest()) which must be 4641 * preserved. 4642 */ 4643 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4644 return 1; 4645 4646 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4647 4648 svm_copy_vmrun_state(map_save.hva + 0x400, 4649 &svm->vmcb01.ptr->save); 4650 4651 kvm_vcpu_unmap(vcpu, &map_save, true); 4652 return 0; 4653 } 4654 4655 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4656 { 4657 struct vcpu_svm *svm = to_svm(vcpu); 4658 struct kvm_host_map map, map_save; 4659 struct vmcb *vmcb12; 4660 int ret; 4661 4662 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4663 4664 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4665 return 0; 4666 4667 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4668 if (!smram64->svm_guest_flag) 4669 return 0; 4670 4671 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4672 return 1; 4673 4674 if (!(smram64->efer & EFER_SVME)) 4675 return 1; 4676 4677 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4678 return 1; 4679 4680 ret = 1; 4681 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4682 goto unmap_map; 4683 4684 if (svm_allocate_nested(svm)) 4685 goto unmap_save; 4686 4687 /* 4688 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4689 * used during SMM (see svm_enter_smm()) 4690 */ 4691 4692 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4693 4694 /* 4695 * Enter the nested guest now 4696 */ 4697 4698 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4699 4700 vmcb12 = map.hva; 4701 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4702 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4703 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4704 4705 if (ret) 4706 goto unmap_save; 4707 4708 svm->nested.nested_run_pending = 1; 4709 4710 unmap_save: 4711 kvm_vcpu_unmap(vcpu, &map_save, true); 4712 unmap_map: 4713 kvm_vcpu_unmap(vcpu, &map, true); 4714 return ret; 4715 } 4716 4717 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4718 { 4719 struct vcpu_svm *svm = to_svm(vcpu); 4720 4721 if (!gif_set(svm)) { 4722 if (vgif) 4723 svm_set_intercept(svm, INTERCEPT_STGI); 4724 /* STGI will cause a vm exit */ 4725 } else { 4726 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4727 } 4728 } 4729 #endif 4730 4731 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4732 void *insn, int insn_len) 4733 { 4734 bool smep, smap, is_user; 4735 u64 error_code; 4736 4737 /* Emulation is always possible when KVM has access to all guest state. */ 4738 if (!sev_guest(vcpu->kvm)) 4739 return true; 4740 4741 /* #UD and #GP should never be intercepted for SEV guests. */ 4742 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4743 EMULTYPE_TRAP_UD_FORCED | 4744 EMULTYPE_VMWARE_GP)); 4745 4746 /* 4747 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4748 * to guest register state. 4749 */ 4750 if (sev_es_guest(vcpu->kvm)) 4751 return false; 4752 4753 /* 4754 * Emulation is possible if the instruction is already decoded, e.g. 4755 * when completing I/O after returning from userspace. 4756 */ 4757 if (emul_type & EMULTYPE_NO_DECODE) 4758 return true; 4759 4760 /* 4761 * Emulation is possible for SEV guests if and only if a prefilled 4762 * buffer containing the bytes of the intercepted instruction is 4763 * available. SEV guest memory is encrypted with a guest specific key 4764 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4765 * decode garbage. 4766 * 4767 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4768 * KVM reached this point without an instruction buffer. In practice, 4769 * this path should never be hit by a well-behaved guest, e.g. KVM 4770 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4771 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4772 * access, and needs to be handled by KVM to avoid putting the guest 4773 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4774 * its the least awful option given lack of insight into the guest. 4775 * 4776 * If KVM is trying to skip an instruction, simply resume the guest. 4777 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4778 * will attempt to re-inject the INT3/INTO and skip the instruction. 4779 * In that scenario, retrying the INT3/INTO and hoping the guest will 4780 * make forward progress is the only option that has a chance of 4781 * success (and in practice it will work the vast majority of the time). 4782 */ 4783 if (unlikely(!insn)) { 4784 if (!(emul_type & EMULTYPE_SKIP)) 4785 kvm_queue_exception(vcpu, UD_VECTOR); 4786 return false; 4787 } 4788 4789 /* 4790 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4791 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4792 * the faulting instruction because the code fetch itself faulted, e.g. 4793 * the guest attempted to fetch from emulated MMIO or a guest page 4794 * table used to translate CS:RIP resides in emulated MMIO. 4795 */ 4796 if (likely(insn_len)) 4797 return true; 4798 4799 /* 4800 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4801 * 4802 * Errata: 4803 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4804 * possible that CPU microcode implementing DecodeAssist will fail to 4805 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4806 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4807 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4808 * gives up and does not fill the instruction bytes buffer. 4809 * 4810 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4811 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4812 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4813 * GuestIntrBytes field of the VMCB. 4814 * 4815 * This does _not_ mean that the erratum has been encountered, as the 4816 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4817 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4818 * encountered a reserved/not-present #PF. 4819 * 4820 * To hit the erratum, the following conditions must be true: 4821 * 1. CR4.SMAP=1 (obviously). 4822 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4823 * have been hit as the guest would have encountered a SMEP 4824 * violation #PF, not a #NPF. 4825 * 3. The #NPF is not due to a code fetch, in which case failure to 4826 * retrieve the instruction bytes is legitimate (see abvoe). 4827 * 4828 * In addition, don't apply the erratum workaround if the #NPF occurred 4829 * while translating guest page tables (see below). 4830 */ 4831 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4832 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4833 goto resume_guest; 4834 4835 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4836 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4837 is_user = svm_get_cpl(vcpu) == 3; 4838 if (smap && (!smep || is_user)) { 4839 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4840 4841 /* 4842 * If the fault occurred in userspace, arbitrarily inject #GP 4843 * to avoid killing the guest and to hopefully avoid confusing 4844 * the guest kernel too much, e.g. injecting #PF would not be 4845 * coherent with respect to the guest's page tables. Request 4846 * triple fault if the fault occurred in the kernel as there's 4847 * no fault that KVM can inject without confusing the guest. 4848 * In practice, the triple fault is moot as no sane SEV kernel 4849 * will execute from user memory while also running with SMAP=1. 4850 */ 4851 if (is_user) 4852 kvm_inject_gp(vcpu, 0); 4853 else 4854 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4855 } 4856 4857 resume_guest: 4858 /* 4859 * If the erratum was not hit, simply resume the guest and let it fault 4860 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4861 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4862 * userspace will kill the guest, and letting the emulator read garbage 4863 * will yield random behavior and potentially corrupt the guest. 4864 * 4865 * Simply resuming the guest is technically not a violation of the SEV 4866 * architecture. AMD's APM states that all code fetches and page table 4867 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4868 * APM also states that encrypted accesses to MMIO are "ignored", but 4869 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4870 * the guest spin is technically "ignoring" the access. 4871 */ 4872 return false; 4873 } 4874 4875 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4876 { 4877 struct vcpu_svm *svm = to_svm(vcpu); 4878 4879 return !gif_set(svm); 4880 } 4881 4882 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4883 { 4884 if (!sev_es_guest(vcpu->kvm)) 4885 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4886 4887 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4888 } 4889 4890 static void svm_vm_destroy(struct kvm *kvm) 4891 { 4892 avic_vm_destroy(kvm); 4893 sev_vm_destroy(kvm); 4894 } 4895 4896 static int svm_vm_init(struct kvm *kvm) 4897 { 4898 if (!pause_filter_count || !pause_filter_thresh) 4899 kvm->arch.pause_in_guest = true; 4900 4901 if (enable_apicv) { 4902 int ret = avic_vm_init(kvm); 4903 if (ret) 4904 return ret; 4905 } 4906 4907 return 0; 4908 } 4909 4910 static struct kvm_x86_ops svm_x86_ops __initdata = { 4911 .name = KBUILD_MODNAME, 4912 4913 .check_processor_compatibility = svm_check_processor_compat, 4914 4915 .hardware_unsetup = svm_hardware_unsetup, 4916 .hardware_enable = svm_hardware_enable, 4917 .hardware_disable = svm_hardware_disable, 4918 .has_emulated_msr = svm_has_emulated_msr, 4919 4920 .vcpu_create = svm_vcpu_create, 4921 .vcpu_free = svm_vcpu_free, 4922 .vcpu_reset = svm_vcpu_reset, 4923 4924 .vm_size = sizeof(struct kvm_svm), 4925 .vm_init = svm_vm_init, 4926 .vm_destroy = svm_vm_destroy, 4927 4928 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4929 .vcpu_load = svm_vcpu_load, 4930 .vcpu_put = svm_vcpu_put, 4931 .vcpu_blocking = avic_vcpu_blocking, 4932 .vcpu_unblocking = avic_vcpu_unblocking, 4933 4934 .update_exception_bitmap = svm_update_exception_bitmap, 4935 .get_msr_feature = svm_get_msr_feature, 4936 .get_msr = svm_get_msr, 4937 .set_msr = svm_set_msr, 4938 .get_segment_base = svm_get_segment_base, 4939 .get_segment = svm_get_segment, 4940 .set_segment = svm_set_segment, 4941 .get_cpl = svm_get_cpl, 4942 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4943 .is_valid_cr0 = svm_is_valid_cr0, 4944 .set_cr0 = svm_set_cr0, 4945 .post_set_cr3 = sev_post_set_cr3, 4946 .is_valid_cr4 = svm_is_valid_cr4, 4947 .set_cr4 = svm_set_cr4, 4948 .set_efer = svm_set_efer, 4949 .get_idt = svm_get_idt, 4950 .set_idt = svm_set_idt, 4951 .get_gdt = svm_get_gdt, 4952 .set_gdt = svm_set_gdt, 4953 .set_dr7 = svm_set_dr7, 4954 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4955 .cache_reg = svm_cache_reg, 4956 .get_rflags = svm_get_rflags, 4957 .set_rflags = svm_set_rflags, 4958 .get_if_flag = svm_get_if_flag, 4959 4960 .flush_tlb_all = svm_flush_tlb_all, 4961 .flush_tlb_current = svm_flush_tlb_current, 4962 .flush_tlb_gva = svm_flush_tlb_gva, 4963 .flush_tlb_guest = svm_flush_tlb_asid, 4964 4965 .vcpu_pre_run = svm_vcpu_pre_run, 4966 .vcpu_run = svm_vcpu_run, 4967 .handle_exit = svm_handle_exit, 4968 .skip_emulated_instruction = svm_skip_emulated_instruction, 4969 .update_emulated_instruction = NULL, 4970 .set_interrupt_shadow = svm_set_interrupt_shadow, 4971 .get_interrupt_shadow = svm_get_interrupt_shadow, 4972 .patch_hypercall = svm_patch_hypercall, 4973 .inject_irq = svm_inject_irq, 4974 .inject_nmi = svm_inject_nmi, 4975 .is_vnmi_pending = svm_is_vnmi_pending, 4976 .set_vnmi_pending = svm_set_vnmi_pending, 4977 .inject_exception = svm_inject_exception, 4978 .cancel_injection = svm_cancel_injection, 4979 .interrupt_allowed = svm_interrupt_allowed, 4980 .nmi_allowed = svm_nmi_allowed, 4981 .get_nmi_mask = svm_get_nmi_mask, 4982 .set_nmi_mask = svm_set_nmi_mask, 4983 .enable_nmi_window = svm_enable_nmi_window, 4984 .enable_irq_window = svm_enable_irq_window, 4985 .update_cr8_intercept = svm_update_cr8_intercept, 4986 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 4987 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 4988 .apicv_post_state_restore = avic_apicv_post_state_restore, 4989 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 4990 4991 .get_exit_info = svm_get_exit_info, 4992 4993 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4994 4995 .has_wbinvd_exit = svm_has_wbinvd_exit, 4996 4997 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4998 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4999 .write_tsc_offset = svm_write_tsc_offset, 5000 .write_tsc_multiplier = svm_write_tsc_multiplier, 5001 5002 .load_mmu_pgd = svm_load_mmu_pgd, 5003 5004 .check_intercept = svm_check_intercept, 5005 .handle_exit_irqoff = svm_handle_exit_irqoff, 5006 5007 .request_immediate_exit = __kvm_request_immediate_exit, 5008 5009 .sched_in = svm_sched_in, 5010 5011 .nested_ops = &svm_nested_ops, 5012 5013 .deliver_interrupt = svm_deliver_interrupt, 5014 .pi_update_irte = avic_pi_update_irte, 5015 .setup_mce = svm_setup_mce, 5016 5017 #ifdef CONFIG_KVM_SMM 5018 .smi_allowed = svm_smi_allowed, 5019 .enter_smm = svm_enter_smm, 5020 .leave_smm = svm_leave_smm, 5021 .enable_smi_window = svm_enable_smi_window, 5022 #endif 5023 5024 .mem_enc_ioctl = sev_mem_enc_ioctl, 5025 .mem_enc_register_region = sev_mem_enc_register_region, 5026 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5027 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5028 5029 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5030 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5031 5032 .can_emulate_instruction = svm_can_emulate_instruction, 5033 5034 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5035 5036 .msr_filter_changed = svm_msr_filter_changed, 5037 .complete_emulated_msr = svm_complete_emulated_msr, 5038 5039 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5040 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5041 }; 5042 5043 /* 5044 * The default MMIO mask is a single bit (excluding the present bit), 5045 * which could conflict with the memory encryption bit. Check for 5046 * memory encryption support and override the default MMIO mask if 5047 * memory encryption is enabled. 5048 */ 5049 static __init void svm_adjust_mmio_mask(void) 5050 { 5051 unsigned int enc_bit, mask_bit; 5052 u64 msr, mask; 5053 5054 /* If there is no memory encryption support, use existing mask */ 5055 if (cpuid_eax(0x80000000) < 0x8000001f) 5056 return; 5057 5058 /* If memory encryption is not enabled, use existing mask */ 5059 rdmsrl(MSR_AMD64_SYSCFG, msr); 5060 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5061 return; 5062 5063 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5064 mask_bit = boot_cpu_data.x86_phys_bits; 5065 5066 /* Increment the mask bit if it is the same as the encryption bit */ 5067 if (enc_bit == mask_bit) 5068 mask_bit++; 5069 5070 /* 5071 * If the mask bit location is below 52, then some bits above the 5072 * physical addressing limit will always be reserved, so use the 5073 * rsvd_bits() function to generate the mask. This mask, along with 5074 * the present bit, will be used to generate a page fault with 5075 * PFER.RSV = 1. 5076 * 5077 * If the mask bit location is 52 (or above), then clear the mask. 5078 */ 5079 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5080 5081 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5082 } 5083 5084 static __init void svm_set_cpu_caps(void) 5085 { 5086 kvm_set_cpu_caps(); 5087 5088 kvm_caps.supported_perf_cap = 0; 5089 kvm_caps.supported_xss = 0; 5090 5091 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5092 if (nested) { 5093 kvm_cpu_cap_set(X86_FEATURE_SVM); 5094 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5095 5096 if (nrips) 5097 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5098 5099 if (npt_enabled) 5100 kvm_cpu_cap_set(X86_FEATURE_NPT); 5101 5102 if (tsc_scaling) 5103 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5104 5105 if (vls) 5106 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5107 if (lbrv) 5108 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5109 5110 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5111 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5112 5113 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5114 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5115 5116 if (vgif) 5117 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5118 5119 if (vnmi) 5120 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5121 5122 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5123 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5124 } 5125 5126 /* CPUID 0x80000008 */ 5127 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5128 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5129 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5130 5131 if (enable_pmu) { 5132 /* 5133 * Enumerate support for PERFCTR_CORE if and only if KVM has 5134 * access to enough counters to virtualize "core" support, 5135 * otherwise limit vPMU support to the legacy number of counters. 5136 */ 5137 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5138 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5139 kvm_pmu_cap.num_counters_gp); 5140 else 5141 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5142 5143 if (kvm_pmu_cap.version != 2 || 5144 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5145 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5146 } 5147 5148 /* CPUID 0x8000001F (SME/SEV features) */ 5149 sev_set_cpu_caps(); 5150 } 5151 5152 static __init int svm_hardware_setup(void) 5153 { 5154 int cpu; 5155 struct page *iopm_pages; 5156 void *iopm_va; 5157 int r; 5158 unsigned int order = get_order(IOPM_SIZE); 5159 5160 /* 5161 * NX is required for shadow paging and for NPT if the NX huge pages 5162 * mitigation is enabled. 5163 */ 5164 if (!boot_cpu_has(X86_FEATURE_NX)) { 5165 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5166 return -EOPNOTSUPP; 5167 } 5168 kvm_enable_efer_bits(EFER_NX); 5169 5170 iopm_pages = alloc_pages(GFP_KERNEL, order); 5171 5172 if (!iopm_pages) 5173 return -ENOMEM; 5174 5175 iopm_va = page_address(iopm_pages); 5176 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5177 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 5178 5179 init_msrpm_offsets(); 5180 5181 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5182 XFEATURE_MASK_BNDCSR); 5183 5184 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5185 kvm_enable_efer_bits(EFER_FFXSR); 5186 5187 if (tsc_scaling) { 5188 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5189 tsc_scaling = false; 5190 } else { 5191 pr_info("TSC scaling supported\n"); 5192 kvm_caps.has_tsc_control = true; 5193 } 5194 } 5195 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5196 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5197 5198 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5199 5200 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5201 kvm_enable_efer_bits(EFER_AUTOIBRS); 5202 5203 /* Check for pause filtering support */ 5204 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5205 pause_filter_count = 0; 5206 pause_filter_thresh = 0; 5207 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5208 pause_filter_thresh = 0; 5209 } 5210 5211 if (nested) { 5212 pr_info("Nested Virtualization enabled\n"); 5213 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5214 } 5215 5216 /* 5217 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5218 * NPT isn't supported if the host is using 2-level paging since host 5219 * CR4 is unchanged on VMRUN. 5220 */ 5221 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5222 npt_enabled = false; 5223 5224 if (!boot_cpu_has(X86_FEATURE_NPT)) 5225 npt_enabled = false; 5226 5227 /* Force VM NPT level equal to the host's paging level */ 5228 kvm_configure_mmu(npt_enabled, get_npt_level(), 5229 get_npt_level(), PG_LEVEL_1G); 5230 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5231 5232 /* Setup shadow_me_value and shadow_me_mask */ 5233 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5234 5235 svm_adjust_mmio_mask(); 5236 5237 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5238 5239 /* 5240 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5241 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5242 */ 5243 sev_hardware_setup(); 5244 5245 svm_hv_hardware_setup(); 5246 5247 for_each_possible_cpu(cpu) { 5248 r = svm_cpu_init(cpu); 5249 if (r) 5250 goto err; 5251 } 5252 5253 enable_apicv = avic = avic && avic_hardware_setup(); 5254 5255 if (!enable_apicv) { 5256 svm_x86_ops.vcpu_blocking = NULL; 5257 svm_x86_ops.vcpu_unblocking = NULL; 5258 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5259 } else if (!x2avic_enabled) { 5260 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5261 } 5262 5263 if (vls) { 5264 if (!npt_enabled || 5265 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5266 !IS_ENABLED(CONFIG_X86_64)) { 5267 vls = false; 5268 } else { 5269 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5270 } 5271 } 5272 5273 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5274 svm_gp_erratum_intercept = false; 5275 5276 if (vgif) { 5277 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5278 vgif = false; 5279 else 5280 pr_info("Virtual GIF supported\n"); 5281 } 5282 5283 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5284 if (vnmi) 5285 pr_info("Virtual NMI enabled\n"); 5286 5287 if (!vnmi) { 5288 svm_x86_ops.is_vnmi_pending = NULL; 5289 svm_x86_ops.set_vnmi_pending = NULL; 5290 } 5291 5292 5293 if (lbrv) { 5294 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5295 lbrv = false; 5296 else 5297 pr_info("LBR virtualization supported\n"); 5298 } 5299 5300 if (!enable_pmu) 5301 pr_info("PMU virtualization is disabled\n"); 5302 5303 svm_set_cpu_caps(); 5304 5305 /* 5306 * It seems that on AMD processors PTE's accessed bit is 5307 * being set by the CPU hardware before the NPF vmexit. 5308 * This is not expected behaviour and our tests fail because 5309 * of it. 5310 * A workaround here is to disable support for 5311 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5312 * In this case userspace can know if there is support using 5313 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5314 * it 5315 * If future AMD CPU models change the behaviour described above, 5316 * this variable can be changed accordingly 5317 */ 5318 allow_smaller_maxphyaddr = !npt_enabled; 5319 5320 return 0; 5321 5322 err: 5323 svm_hardware_unsetup(); 5324 return r; 5325 } 5326 5327 5328 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5329 .hardware_setup = svm_hardware_setup, 5330 5331 .runtime_ops = &svm_x86_ops, 5332 .pmu_ops = &amd_pmu_ops, 5333 }; 5334 5335 static void __svm_exit(void) 5336 { 5337 kvm_x86_vendor_exit(); 5338 5339 cpu_emergency_unregister_virt_callback(svm_emergency_disable); 5340 } 5341 5342 static int __init svm_init(void) 5343 { 5344 int r; 5345 5346 __unused_size_checks(); 5347 5348 if (!kvm_is_svm_supported()) 5349 return -EOPNOTSUPP; 5350 5351 r = kvm_x86_vendor_init(&svm_init_ops); 5352 if (r) 5353 return r; 5354 5355 cpu_emergency_register_virt_callback(svm_emergency_disable); 5356 5357 /* 5358 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5359 * exposed to userspace! 5360 */ 5361 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5362 THIS_MODULE); 5363 if (r) 5364 goto err_kvm_init; 5365 5366 return 0; 5367 5368 err_kvm_init: 5369 __svm_exit(); 5370 return r; 5371 } 5372 5373 static void __exit svm_exit(void) 5374 { 5375 kvm_exit(); 5376 __svm_exit(); 5377 } 5378 5379 module_init(svm_init) 5380 module_exit(svm_exit) 5381