1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 29 #include <asm/apic.h> 30 #include <asm/perf_event.h> 31 #include <asm/tlbflush.h> 32 #include <asm/desc.h> 33 #include <asm/debugreg.h> 34 #include <asm/kvm_para.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/spec-ctrl.h> 37 #include <asm/cpu_device_id.h> 38 #include <asm/traps.h> 39 40 #include <asm/virtext.h> 41 #include "trace.h" 42 43 #include "svm.h" 44 #include "svm_ops.h" 45 46 #define __ex(x) __kvm_handle_fault_on_reboot(x) 47 48 MODULE_AUTHOR("Qumranet"); 49 MODULE_LICENSE("GPL"); 50 51 #ifdef MODULE 52 static const struct x86_cpu_id svm_cpu_id[] = { 53 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 54 {} 55 }; 56 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 57 #endif 58 59 #define IOPM_ALLOC_ORDER 2 60 #define MSRPM_ALLOC_ORDER 1 61 62 #define SEG_TYPE_LDT 2 63 #define SEG_TYPE_BUSY_TSS16 3 64 65 #define SVM_FEATURE_LBRV (1 << 1) 66 #define SVM_FEATURE_SVML (1 << 2) 67 #define SVM_FEATURE_TSC_RATE (1 << 4) 68 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 69 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 70 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 71 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 72 73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 74 75 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 76 #define TSC_RATIO_MIN 0x0000000000000001ULL 77 #define TSC_RATIO_MAX 0x000000ffffffffffULL 78 79 static bool erratum_383_found __read_mostly; 80 81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 82 83 /* 84 * Set osvw_len to higher value when updated Revision Guides 85 * are published and we know what the new status bits are 86 */ 87 static uint64_t osvw_len = 4, osvw_status; 88 89 static DEFINE_PER_CPU(u64, current_tsc_ratio); 90 #define TSC_RATIO_DEFAULT 0x0100000000ULL 91 92 static const struct svm_direct_access_msrs { 93 u32 index; /* Index of the MSR */ 94 bool always; /* True if intercept is initially cleared */ 95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 96 { .index = MSR_STAR, .always = true }, 97 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 98 #ifdef CONFIG_X86_64 99 { .index = MSR_GS_BASE, .always = true }, 100 { .index = MSR_FS_BASE, .always = true }, 101 { .index = MSR_KERNEL_GS_BASE, .always = true }, 102 { .index = MSR_LSTAR, .always = true }, 103 { .index = MSR_CSTAR, .always = true }, 104 { .index = MSR_SYSCALL_MASK, .always = true }, 105 #endif 106 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 107 { .index = MSR_IA32_PRED_CMD, .always = false }, 108 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 109 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 110 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 111 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 112 { .index = MSR_EFER, .always = false }, 113 { .index = MSR_IA32_CR_PAT, .always = false }, 114 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 115 { .index = MSR_INVALID, .always = false }, 116 }; 117 118 /* enable NPT for AMD64 and X86 with PAE */ 119 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 120 bool npt_enabled = true; 121 #else 122 bool npt_enabled; 123 #endif 124 125 /* 126 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 127 * pause_filter_count: On processors that support Pause filtering(indicated 128 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 129 * count value. On VMRUN this value is loaded into an internal counter. 130 * Each time a pause instruction is executed, this counter is decremented 131 * until it reaches zero at which time a #VMEXIT is generated if pause 132 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 133 * Intercept Filtering for more details. 134 * This also indicate if ple logic enabled. 135 * 136 * pause_filter_thresh: In addition, some processor families support advanced 137 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 138 * the amount of time a guest is allowed to execute in a pause loop. 139 * In this mode, a 16-bit pause filter threshold field is added in the 140 * VMCB. The threshold value is a cycle count that is used to reset the 141 * pause counter. As with simple pause filtering, VMRUN loads the pause 142 * count value from VMCB into an internal counter. Then, on each pause 143 * instruction the hardware checks the elapsed number of cycles since 144 * the most recent pause instruction against the pause filter threshold. 145 * If the elapsed cycle count is greater than the pause filter threshold, 146 * then the internal pause count is reloaded from the VMCB and execution 147 * continues. If the elapsed cycle count is less than the pause filter 148 * threshold, then the internal pause count is decremented. If the count 149 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 150 * triggered. If advanced pause filtering is supported and pause filter 151 * threshold field is set to zero, the filter will operate in the simpler, 152 * count only mode. 153 */ 154 155 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 156 module_param(pause_filter_thresh, ushort, 0444); 157 158 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 159 module_param(pause_filter_count, ushort, 0444); 160 161 /* Default doubles per-vcpu window every exit. */ 162 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 163 module_param(pause_filter_count_grow, ushort, 0444); 164 165 /* Default resets per-vcpu window every exit to pause_filter_count. */ 166 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 167 module_param(pause_filter_count_shrink, ushort, 0444); 168 169 /* Default is to compute the maximum so we can never overflow. */ 170 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 171 module_param(pause_filter_count_max, ushort, 0444); 172 173 /* allow nested paging (virtualized MMU) for all guests */ 174 static int npt = true; 175 module_param(npt, int, S_IRUGO); 176 177 /* allow nested virtualization in KVM/SVM */ 178 static int nested = true; 179 module_param(nested, int, S_IRUGO); 180 181 /* enable/disable Next RIP Save */ 182 static int nrips = true; 183 module_param(nrips, int, 0444); 184 185 /* enable/disable Virtual VMLOAD VMSAVE */ 186 static int vls = true; 187 module_param(vls, int, 0444); 188 189 /* enable/disable Virtual GIF */ 190 static int vgif = true; 191 module_param(vgif, int, 0444); 192 193 /* enable/disable SEV support */ 194 int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); 195 module_param(sev, int, 0444); 196 197 /* enable/disable SEV-ES support */ 198 int sev_es = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); 199 module_param(sev_es, int, 0444); 200 201 bool __read_mostly dump_invalid_vmcb; 202 module_param(dump_invalid_vmcb, bool, 0644); 203 204 static bool svm_gp_erratum_intercept = true; 205 206 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 207 208 static unsigned long iopm_base; 209 210 struct kvm_ldttss_desc { 211 u16 limit0; 212 u16 base0; 213 unsigned base1:8, type:5, dpl:2, p:1; 214 unsigned limit1:4, zero0:3, g:1, base2:8; 215 u32 base3; 216 u32 zero1; 217 } __attribute__((packed)); 218 219 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 220 221 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 222 223 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 224 #define MSRS_RANGE_SIZE 2048 225 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 226 227 u32 svm_msrpm_offset(u32 msr) 228 { 229 u32 offset; 230 int i; 231 232 for (i = 0; i < NUM_MSR_MAPS; i++) { 233 if (msr < msrpm_ranges[i] || 234 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 235 continue; 236 237 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 238 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 239 240 /* Now we have the u8 offset - but need the u32 offset */ 241 return offset / 4; 242 } 243 244 /* MSR not in any range */ 245 return MSR_INVALID; 246 } 247 248 #define MAX_INST_SIZE 15 249 250 static int get_max_npt_level(void) 251 { 252 #ifdef CONFIG_X86_64 253 return PT64_ROOT_4LEVEL; 254 #else 255 return PT32E_ROOT_LEVEL; 256 #endif 257 } 258 259 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 260 { 261 struct vcpu_svm *svm = to_svm(vcpu); 262 u64 old_efer = vcpu->arch.efer; 263 vcpu->arch.efer = efer; 264 265 if (!npt_enabled) { 266 /* Shadow paging assumes NX to be available. */ 267 efer |= EFER_NX; 268 269 if (!(efer & EFER_LMA)) 270 efer &= ~EFER_LME; 271 } 272 273 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 274 if (!(efer & EFER_SVME)) { 275 svm_leave_nested(svm); 276 svm_set_gif(svm, true); 277 /* #GP intercept is still needed for vmware backdoor */ 278 if (!enable_vmware_backdoor) 279 clr_exception_intercept(svm, GP_VECTOR); 280 281 /* 282 * Free the nested guest state, unless we are in SMM. 283 * In this case we will return to the nested guest 284 * as soon as we leave SMM. 285 */ 286 if (!is_smm(&svm->vcpu)) 287 svm_free_nested(svm); 288 289 } else { 290 int ret = svm_allocate_nested(svm); 291 292 if (ret) { 293 vcpu->arch.efer = old_efer; 294 return ret; 295 } 296 297 if (svm_gp_erratum_intercept) 298 set_exception_intercept(svm, GP_VECTOR); 299 } 300 } 301 302 svm->vmcb->save.efer = efer | EFER_SVME; 303 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 304 return 0; 305 } 306 307 static int is_external_interrupt(u32 info) 308 { 309 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 310 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 311 } 312 313 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 314 { 315 struct vcpu_svm *svm = to_svm(vcpu); 316 u32 ret = 0; 317 318 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 319 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 320 return ret; 321 } 322 323 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 324 { 325 struct vcpu_svm *svm = to_svm(vcpu); 326 327 if (mask == 0) 328 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 329 else 330 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 331 332 } 333 334 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 335 { 336 struct vcpu_svm *svm = to_svm(vcpu); 337 338 /* 339 * SEV-ES does not expose the next RIP. The RIP update is controlled by 340 * the type of exit and the #VC handler in the guest. 341 */ 342 if (sev_es_guest(vcpu->kvm)) 343 goto done; 344 345 if (nrips && svm->vmcb->control.next_rip != 0) { 346 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 347 svm->next_rip = svm->vmcb->control.next_rip; 348 } 349 350 if (!svm->next_rip) { 351 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 352 return 0; 353 } else { 354 kvm_rip_write(vcpu, svm->next_rip); 355 } 356 357 done: 358 svm_set_interrupt_shadow(vcpu, 0); 359 360 return 1; 361 } 362 363 static void svm_queue_exception(struct kvm_vcpu *vcpu) 364 { 365 struct vcpu_svm *svm = to_svm(vcpu); 366 unsigned nr = vcpu->arch.exception.nr; 367 bool has_error_code = vcpu->arch.exception.has_error_code; 368 u32 error_code = vcpu->arch.exception.error_code; 369 370 kvm_deliver_exception_payload(&svm->vcpu); 371 372 if (nr == BP_VECTOR && !nrips) { 373 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); 374 375 /* 376 * For guest debugging where we have to reinject #BP if some 377 * INT3 is guest-owned: 378 * Emulate nRIP by moving RIP forward. Will fail if injection 379 * raises a fault that is not intercepted. Still better than 380 * failing in all cases. 381 */ 382 (void)skip_emulated_instruction(&svm->vcpu); 383 rip = kvm_rip_read(&svm->vcpu); 384 svm->int3_rip = rip + svm->vmcb->save.cs.base; 385 svm->int3_injected = rip - old_rip; 386 } 387 388 svm->vmcb->control.event_inj = nr 389 | SVM_EVTINJ_VALID 390 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 391 | SVM_EVTINJ_TYPE_EXEPT; 392 svm->vmcb->control.event_inj_err = error_code; 393 } 394 395 static void svm_init_erratum_383(void) 396 { 397 u32 low, high; 398 int err; 399 u64 val; 400 401 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 402 return; 403 404 /* Use _safe variants to not break nested virtualization */ 405 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 406 if (err) 407 return; 408 409 val |= (1ULL << 47); 410 411 low = lower_32_bits(val); 412 high = upper_32_bits(val); 413 414 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 415 416 erratum_383_found = true; 417 } 418 419 static void svm_init_osvw(struct kvm_vcpu *vcpu) 420 { 421 /* 422 * Guests should see errata 400 and 415 as fixed (assuming that 423 * HLT and IO instructions are intercepted). 424 */ 425 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 426 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 427 428 /* 429 * By increasing VCPU's osvw.length to 3 we are telling the guest that 430 * all osvw.status bits inside that length, including bit 0 (which is 431 * reserved for erratum 298), are valid. However, if host processor's 432 * osvw_len is 0 then osvw_status[0] carries no information. We need to 433 * be conservative here and therefore we tell the guest that erratum 298 434 * is present (because we really don't know). 435 */ 436 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 437 vcpu->arch.osvw.status |= 1; 438 } 439 440 static int has_svm(void) 441 { 442 const char *msg; 443 444 if (!cpu_has_svm(&msg)) { 445 printk(KERN_INFO "has_svm: %s\n", msg); 446 return 0; 447 } 448 449 if (sev_active()) { 450 pr_info("KVM is unsupported when running as an SEV guest\n"); 451 return 0; 452 } 453 454 return 1; 455 } 456 457 static void svm_hardware_disable(void) 458 { 459 /* Make sure we clean up behind us */ 460 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) 461 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 462 463 cpu_svm_disable(); 464 465 amd_pmu_disable_virt(); 466 } 467 468 static int svm_hardware_enable(void) 469 { 470 471 struct svm_cpu_data *sd; 472 uint64_t efer; 473 struct desc_struct *gdt; 474 int me = raw_smp_processor_id(); 475 476 rdmsrl(MSR_EFER, efer); 477 if (efer & EFER_SVME) 478 return -EBUSY; 479 480 if (!has_svm()) { 481 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 482 return -EINVAL; 483 } 484 sd = per_cpu(svm_data, me); 485 if (!sd) { 486 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 487 return -EINVAL; 488 } 489 490 sd->asid_generation = 1; 491 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 492 sd->next_asid = sd->max_asid + 1; 493 sd->min_asid = max_sev_asid + 1; 494 495 gdt = get_current_gdt_rw(); 496 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 497 498 wrmsrl(MSR_EFER, efer | EFER_SVME); 499 500 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); 501 502 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 503 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 504 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 505 } 506 507 508 /* 509 * Get OSVW bits. 510 * 511 * Note that it is possible to have a system with mixed processor 512 * revisions and therefore different OSVW bits. If bits are not the same 513 * on different processors then choose the worst case (i.e. if erratum 514 * is present on one processor and not on another then assume that the 515 * erratum is present everywhere). 516 */ 517 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 518 uint64_t len, status = 0; 519 int err; 520 521 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 522 if (!err) 523 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 524 &err); 525 526 if (err) 527 osvw_status = osvw_len = 0; 528 else { 529 if (len < osvw_len) 530 osvw_len = len; 531 osvw_status |= status; 532 osvw_status &= (1ULL << osvw_len) - 1; 533 } 534 } else 535 osvw_status = osvw_len = 0; 536 537 svm_init_erratum_383(); 538 539 amd_pmu_enable_virt(); 540 541 return 0; 542 } 543 544 static void svm_cpu_uninit(int cpu) 545 { 546 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 547 548 if (!sd) 549 return; 550 551 per_cpu(svm_data, cpu) = NULL; 552 kfree(sd->sev_vmcbs); 553 __free_page(sd->save_area); 554 kfree(sd); 555 } 556 557 static int svm_cpu_init(int cpu) 558 { 559 struct svm_cpu_data *sd; 560 561 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 562 if (!sd) 563 return -ENOMEM; 564 sd->cpu = cpu; 565 sd->save_area = alloc_page(GFP_KERNEL); 566 if (!sd->save_area) 567 goto free_cpu_data; 568 clear_page(page_address(sd->save_area)); 569 570 if (svm_sev_enabled()) { 571 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1, 572 sizeof(void *), 573 GFP_KERNEL); 574 if (!sd->sev_vmcbs) 575 goto free_save_area; 576 } 577 578 per_cpu(svm_data, cpu) = sd; 579 580 return 0; 581 582 free_save_area: 583 __free_page(sd->save_area); 584 free_cpu_data: 585 kfree(sd); 586 return -ENOMEM; 587 588 } 589 590 static int direct_access_msr_slot(u32 msr) 591 { 592 u32 i; 593 594 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 595 if (direct_access_msrs[i].index == msr) 596 return i; 597 598 return -ENOENT; 599 } 600 601 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 602 int write) 603 { 604 struct vcpu_svm *svm = to_svm(vcpu); 605 int slot = direct_access_msr_slot(msr); 606 607 if (slot == -ENOENT) 608 return; 609 610 /* Set the shadow bitmaps to the desired intercept states */ 611 if (read) 612 set_bit(slot, svm->shadow_msr_intercept.read); 613 else 614 clear_bit(slot, svm->shadow_msr_intercept.read); 615 616 if (write) 617 set_bit(slot, svm->shadow_msr_intercept.write); 618 else 619 clear_bit(slot, svm->shadow_msr_intercept.write); 620 } 621 622 static bool valid_msr_intercept(u32 index) 623 { 624 return direct_access_msr_slot(index) != -ENOENT; 625 } 626 627 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 628 { 629 u8 bit_write; 630 unsigned long tmp; 631 u32 offset; 632 u32 *msrpm; 633 634 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 635 to_svm(vcpu)->msrpm; 636 637 offset = svm_msrpm_offset(msr); 638 bit_write = 2 * (msr & 0x0f) + 1; 639 tmp = msrpm[offset]; 640 641 BUG_ON(offset == MSR_INVALID); 642 643 return !!test_bit(bit_write, &tmp); 644 } 645 646 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 647 u32 msr, int read, int write) 648 { 649 u8 bit_read, bit_write; 650 unsigned long tmp; 651 u32 offset; 652 653 /* 654 * If this warning triggers extend the direct_access_msrs list at the 655 * beginning of the file 656 */ 657 WARN_ON(!valid_msr_intercept(msr)); 658 659 /* Enforce non allowed MSRs to trap */ 660 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 661 read = 0; 662 663 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 664 write = 0; 665 666 offset = svm_msrpm_offset(msr); 667 bit_read = 2 * (msr & 0x0f); 668 bit_write = 2 * (msr & 0x0f) + 1; 669 tmp = msrpm[offset]; 670 671 BUG_ON(offset == MSR_INVALID); 672 673 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 674 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 675 676 msrpm[offset] = tmp; 677 } 678 679 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 680 int read, int write) 681 { 682 set_shadow_msr_intercept(vcpu, msr, read, write); 683 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 684 } 685 686 u32 *svm_vcpu_alloc_msrpm(void) 687 { 688 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER); 689 u32 *msrpm; 690 691 if (!pages) 692 return NULL; 693 694 msrpm = page_address(pages); 695 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); 696 697 return msrpm; 698 } 699 700 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 701 { 702 int i; 703 704 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 705 if (!direct_access_msrs[i].always) 706 continue; 707 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 708 } 709 } 710 711 712 void svm_vcpu_free_msrpm(u32 *msrpm) 713 { 714 __free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER); 715 } 716 717 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 718 { 719 struct vcpu_svm *svm = to_svm(vcpu); 720 u32 i; 721 722 /* 723 * Set intercept permissions for all direct access MSRs again. They 724 * will automatically get filtered through the MSR filter, so we are 725 * back in sync after this. 726 */ 727 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 728 u32 msr = direct_access_msrs[i].index; 729 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 730 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 731 732 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 733 } 734 } 735 736 static void add_msr_offset(u32 offset) 737 { 738 int i; 739 740 for (i = 0; i < MSRPM_OFFSETS; ++i) { 741 742 /* Offset already in list? */ 743 if (msrpm_offsets[i] == offset) 744 return; 745 746 /* Slot used by another offset? */ 747 if (msrpm_offsets[i] != MSR_INVALID) 748 continue; 749 750 /* Add offset to list */ 751 msrpm_offsets[i] = offset; 752 753 return; 754 } 755 756 /* 757 * If this BUG triggers the msrpm_offsets table has an overflow. Just 758 * increase MSRPM_OFFSETS in this case. 759 */ 760 BUG(); 761 } 762 763 static void init_msrpm_offsets(void) 764 { 765 int i; 766 767 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 768 769 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 770 u32 offset; 771 772 offset = svm_msrpm_offset(direct_access_msrs[i].index); 773 BUG_ON(offset == MSR_INVALID); 774 775 add_msr_offset(offset); 776 } 777 } 778 779 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 780 { 781 struct vcpu_svm *svm = to_svm(vcpu); 782 783 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 784 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 785 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 786 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 787 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 788 } 789 790 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 791 { 792 struct vcpu_svm *svm = to_svm(vcpu); 793 794 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 795 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 796 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 797 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 798 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 799 } 800 801 void disable_nmi_singlestep(struct vcpu_svm *svm) 802 { 803 svm->nmi_singlestep = false; 804 805 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 806 /* Clear our flags if they were not set by the guest */ 807 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 808 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 809 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 810 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 811 } 812 } 813 814 static void grow_ple_window(struct kvm_vcpu *vcpu) 815 { 816 struct vcpu_svm *svm = to_svm(vcpu); 817 struct vmcb_control_area *control = &svm->vmcb->control; 818 int old = control->pause_filter_count; 819 820 control->pause_filter_count = __grow_ple_window(old, 821 pause_filter_count, 822 pause_filter_count_grow, 823 pause_filter_count_max); 824 825 if (control->pause_filter_count != old) { 826 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 827 trace_kvm_ple_window_update(vcpu->vcpu_id, 828 control->pause_filter_count, old); 829 } 830 } 831 832 static void shrink_ple_window(struct kvm_vcpu *vcpu) 833 { 834 struct vcpu_svm *svm = to_svm(vcpu); 835 struct vmcb_control_area *control = &svm->vmcb->control; 836 int old = control->pause_filter_count; 837 838 control->pause_filter_count = 839 __shrink_ple_window(old, 840 pause_filter_count, 841 pause_filter_count_shrink, 842 pause_filter_count); 843 if (control->pause_filter_count != old) { 844 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 845 trace_kvm_ple_window_update(vcpu->vcpu_id, 846 control->pause_filter_count, old); 847 } 848 } 849 850 /* 851 * The default MMIO mask is a single bit (excluding the present bit), 852 * which could conflict with the memory encryption bit. Check for 853 * memory encryption support and override the default MMIO mask if 854 * memory encryption is enabled. 855 */ 856 static __init void svm_adjust_mmio_mask(void) 857 { 858 unsigned int enc_bit, mask_bit; 859 u64 msr, mask; 860 861 /* If there is no memory encryption support, use existing mask */ 862 if (cpuid_eax(0x80000000) < 0x8000001f) 863 return; 864 865 /* If memory encryption is not enabled, use existing mask */ 866 rdmsrl(MSR_K8_SYSCFG, msr); 867 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) 868 return; 869 870 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 871 mask_bit = boot_cpu_data.x86_phys_bits; 872 873 /* Increment the mask bit if it is the same as the encryption bit */ 874 if (enc_bit == mask_bit) 875 mask_bit++; 876 877 /* 878 * If the mask bit location is below 52, then some bits above the 879 * physical addressing limit will always be reserved, so use the 880 * rsvd_bits() function to generate the mask. This mask, along with 881 * the present bit, will be used to generate a page fault with 882 * PFER.RSV = 1. 883 * 884 * If the mask bit location is 52 (or above), then clear the mask. 885 */ 886 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 887 888 kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK); 889 } 890 891 static void svm_hardware_teardown(void) 892 { 893 int cpu; 894 895 if (svm_sev_enabled()) 896 sev_hardware_teardown(); 897 898 for_each_possible_cpu(cpu) 899 svm_cpu_uninit(cpu); 900 901 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); 902 iopm_base = 0; 903 } 904 905 static __init void svm_set_cpu_caps(void) 906 { 907 kvm_set_cpu_caps(); 908 909 supported_xss = 0; 910 911 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 912 if (nested) { 913 kvm_cpu_cap_set(X86_FEATURE_SVM); 914 915 if (nrips) 916 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 917 918 if (npt_enabled) 919 kvm_cpu_cap_set(X86_FEATURE_NPT); 920 921 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 922 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 923 } 924 925 /* CPUID 0x80000008 */ 926 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 927 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 928 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 929 } 930 931 static __init int svm_hardware_setup(void) 932 { 933 int cpu; 934 struct page *iopm_pages; 935 void *iopm_va; 936 int r; 937 938 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); 939 940 if (!iopm_pages) 941 return -ENOMEM; 942 943 iopm_va = page_address(iopm_pages); 944 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); 945 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 946 947 init_msrpm_offsets(); 948 949 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 950 951 if (boot_cpu_has(X86_FEATURE_NX)) 952 kvm_enable_efer_bits(EFER_NX); 953 954 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 955 kvm_enable_efer_bits(EFER_FFXSR); 956 957 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 958 kvm_has_tsc_control = true; 959 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 960 kvm_tsc_scaling_ratio_frac_bits = 32; 961 } 962 963 /* Check for pause filtering support */ 964 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 965 pause_filter_count = 0; 966 pause_filter_thresh = 0; 967 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 968 pause_filter_thresh = 0; 969 } 970 971 if (nested) { 972 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 973 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 974 } 975 976 if (IS_ENABLED(CONFIG_KVM_AMD_SEV) && sev) { 977 sev_hardware_setup(); 978 } else { 979 sev = false; 980 sev_es = false; 981 } 982 983 svm_adjust_mmio_mask(); 984 985 for_each_possible_cpu(cpu) { 986 r = svm_cpu_init(cpu); 987 if (r) 988 goto err; 989 } 990 991 if (!boot_cpu_has(X86_FEATURE_NPT)) 992 npt_enabled = false; 993 994 if (npt_enabled && !npt) 995 npt_enabled = false; 996 997 kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G); 998 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 999 1000 if (nrips) { 1001 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 1002 nrips = false; 1003 } 1004 1005 if (avic) { 1006 if (!npt_enabled || 1007 !boot_cpu_has(X86_FEATURE_AVIC) || 1008 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { 1009 avic = false; 1010 } else { 1011 pr_info("AVIC enabled\n"); 1012 1013 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 1014 } 1015 } 1016 1017 if (vls) { 1018 if (!npt_enabled || 1019 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 1020 !IS_ENABLED(CONFIG_X86_64)) { 1021 vls = false; 1022 } else { 1023 pr_info("Virtual VMLOAD VMSAVE supported\n"); 1024 } 1025 } 1026 1027 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 1028 svm_gp_erratum_intercept = false; 1029 1030 if (vgif) { 1031 if (!boot_cpu_has(X86_FEATURE_VGIF)) 1032 vgif = false; 1033 else 1034 pr_info("Virtual GIF supported\n"); 1035 } 1036 1037 svm_set_cpu_caps(); 1038 1039 /* 1040 * It seems that on AMD processors PTE's accessed bit is 1041 * being set by the CPU hardware before the NPF vmexit. 1042 * This is not expected behaviour and our tests fail because 1043 * of it. 1044 * A workaround here is to disable support for 1045 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 1046 * In this case userspace can know if there is support using 1047 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 1048 * it 1049 * If future AMD CPU models change the behaviour described above, 1050 * this variable can be changed accordingly 1051 */ 1052 allow_smaller_maxphyaddr = !npt_enabled; 1053 1054 return 0; 1055 1056 err: 1057 svm_hardware_teardown(); 1058 return r; 1059 } 1060 1061 static void init_seg(struct vmcb_seg *seg) 1062 { 1063 seg->selector = 0; 1064 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1065 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1066 seg->limit = 0xffff; 1067 seg->base = 0; 1068 } 1069 1070 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1071 { 1072 seg->selector = 0; 1073 seg->attrib = SVM_SELECTOR_P_MASK | type; 1074 seg->limit = 0xffff; 1075 seg->base = 0; 1076 } 1077 1078 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1079 { 1080 struct vcpu_svm *svm = to_svm(vcpu); 1081 u64 g_tsc_offset = 0; 1082 1083 if (is_guest_mode(vcpu)) { 1084 /* Write L1's TSC offset. */ 1085 g_tsc_offset = svm->vmcb->control.tsc_offset - 1086 svm->nested.hsave->control.tsc_offset; 1087 svm->nested.hsave->control.tsc_offset = offset; 1088 } 1089 1090 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1091 svm->vmcb->control.tsc_offset - g_tsc_offset, 1092 offset); 1093 1094 svm->vmcb->control.tsc_offset = offset + g_tsc_offset; 1095 1096 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1097 return svm->vmcb->control.tsc_offset; 1098 } 1099 1100 static void svm_check_invpcid(struct vcpu_svm *svm) 1101 { 1102 /* 1103 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1104 * roots, or if INVPCID is disabled in the guest to inject #UD. 1105 */ 1106 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1107 if (!npt_enabled || 1108 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1109 svm_set_intercept(svm, INTERCEPT_INVPCID); 1110 else 1111 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1112 } 1113 } 1114 1115 static void init_vmcb(struct vcpu_svm *svm) 1116 { 1117 struct vmcb_control_area *control = &svm->vmcb->control; 1118 struct vmcb_save_area *save = &svm->vmcb->save; 1119 1120 svm->vcpu.arch.hflags = 0; 1121 1122 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1123 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1124 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1125 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1126 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1127 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1128 if (!kvm_vcpu_apicv_active(&svm->vcpu)) 1129 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1130 1131 set_dr_intercepts(svm); 1132 1133 set_exception_intercept(svm, PF_VECTOR); 1134 set_exception_intercept(svm, UD_VECTOR); 1135 set_exception_intercept(svm, MC_VECTOR); 1136 set_exception_intercept(svm, AC_VECTOR); 1137 set_exception_intercept(svm, DB_VECTOR); 1138 /* 1139 * Guest access to VMware backdoor ports could legitimately 1140 * trigger #GP because of TSS I/O permission bitmap. 1141 * We intercept those #GP and allow access to them anyway 1142 * as VMware does. 1143 */ 1144 if (enable_vmware_backdoor) 1145 set_exception_intercept(svm, GP_VECTOR); 1146 1147 svm_set_intercept(svm, INTERCEPT_INTR); 1148 svm_set_intercept(svm, INTERCEPT_NMI); 1149 svm_set_intercept(svm, INTERCEPT_SMI); 1150 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1151 svm_set_intercept(svm, INTERCEPT_RDPMC); 1152 svm_set_intercept(svm, INTERCEPT_CPUID); 1153 svm_set_intercept(svm, INTERCEPT_INVD); 1154 svm_set_intercept(svm, INTERCEPT_INVLPG); 1155 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1156 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1157 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1158 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1159 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1160 svm_set_intercept(svm, INTERCEPT_VMRUN); 1161 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1162 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1163 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1164 svm_set_intercept(svm, INTERCEPT_STGI); 1165 svm_set_intercept(svm, INTERCEPT_CLGI); 1166 svm_set_intercept(svm, INTERCEPT_SKINIT); 1167 svm_set_intercept(svm, INTERCEPT_WBINVD); 1168 svm_set_intercept(svm, INTERCEPT_XSETBV); 1169 svm_set_intercept(svm, INTERCEPT_RDPRU); 1170 svm_set_intercept(svm, INTERCEPT_RSM); 1171 1172 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) { 1173 svm_set_intercept(svm, INTERCEPT_MONITOR); 1174 svm_set_intercept(svm, INTERCEPT_MWAIT); 1175 } 1176 1177 if (!kvm_hlt_in_guest(svm->vcpu.kvm)) 1178 svm_set_intercept(svm, INTERCEPT_HLT); 1179 1180 control->iopm_base_pa = __sme_set(iopm_base); 1181 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1182 control->int_ctl = V_INTR_MASKING_MASK; 1183 1184 init_seg(&save->es); 1185 init_seg(&save->ss); 1186 init_seg(&save->ds); 1187 init_seg(&save->fs); 1188 init_seg(&save->gs); 1189 1190 save->cs.selector = 0xf000; 1191 save->cs.base = 0xffff0000; 1192 /* Executable/Readable Code Segment */ 1193 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1194 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1195 save->cs.limit = 0xffff; 1196 1197 save->gdtr.limit = 0xffff; 1198 save->idtr.limit = 0xffff; 1199 1200 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1201 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1202 1203 svm_set_cr4(&svm->vcpu, 0); 1204 svm_set_efer(&svm->vcpu, 0); 1205 save->dr6 = 0xffff0ff0; 1206 kvm_set_rflags(&svm->vcpu, X86_EFLAGS_FIXED); 1207 save->rip = 0x0000fff0; 1208 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; 1209 1210 /* 1211 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. 1212 * It also updates the guest-visible cr0 value. 1213 */ 1214 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); 1215 kvm_mmu_reset_context(&svm->vcpu); 1216 1217 save->cr4 = X86_CR4_PAE; 1218 /* rdx = ?? */ 1219 1220 if (npt_enabled) { 1221 /* Setup VMCB for Nested Paging */ 1222 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1223 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1224 clr_exception_intercept(svm, PF_VECTOR); 1225 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1226 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1227 save->g_pat = svm->vcpu.arch.pat; 1228 save->cr3 = 0; 1229 save->cr4 = 0; 1230 } 1231 svm->asid_generation = 0; 1232 svm->asid = 0; 1233 1234 svm->nested.vmcb12_gpa = 0; 1235 svm->vcpu.arch.hflags = 0; 1236 1237 if (!kvm_pause_in_guest(svm->vcpu.kvm)) { 1238 control->pause_filter_count = pause_filter_count; 1239 if (pause_filter_thresh) 1240 control->pause_filter_thresh = pause_filter_thresh; 1241 svm_set_intercept(svm, INTERCEPT_PAUSE); 1242 } else { 1243 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1244 } 1245 1246 svm_check_invpcid(svm); 1247 1248 if (kvm_vcpu_apicv_active(&svm->vcpu)) 1249 avic_init_vmcb(svm); 1250 1251 /* 1252 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1253 * in VMCB and clear intercepts to avoid #VMEXIT. 1254 */ 1255 if (vls) { 1256 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1257 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1258 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1259 } 1260 1261 if (vgif) { 1262 svm_clr_intercept(svm, INTERCEPT_STGI); 1263 svm_clr_intercept(svm, INTERCEPT_CLGI); 1264 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1265 } 1266 1267 if (sev_guest(svm->vcpu.kvm)) { 1268 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1269 clr_exception_intercept(svm, UD_VECTOR); 1270 1271 if (sev_es_guest(svm->vcpu.kvm)) { 1272 /* Perform SEV-ES specific VMCB updates */ 1273 sev_es_init_vmcb(svm); 1274 } 1275 } 1276 1277 vmcb_mark_all_dirty(svm->vmcb); 1278 1279 enable_gif(svm); 1280 1281 } 1282 1283 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1284 { 1285 struct vcpu_svm *svm = to_svm(vcpu); 1286 u32 dummy; 1287 u32 eax = 1; 1288 1289 svm->spec_ctrl = 0; 1290 svm->virt_spec_ctrl = 0; 1291 1292 if (!init_event) { 1293 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | 1294 MSR_IA32_APICBASE_ENABLE; 1295 if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) 1296 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; 1297 } 1298 init_vmcb(svm); 1299 1300 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false); 1301 kvm_rdx_write(vcpu, eax); 1302 1303 if (kvm_vcpu_apicv_active(vcpu) && !init_event) 1304 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); 1305 } 1306 1307 static int svm_create_vcpu(struct kvm_vcpu *vcpu) 1308 { 1309 struct vcpu_svm *svm; 1310 struct page *vmcb_page; 1311 struct page *vmsa_page = NULL; 1312 int err; 1313 1314 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1315 svm = to_svm(vcpu); 1316 1317 err = -ENOMEM; 1318 vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1319 if (!vmcb_page) 1320 goto out; 1321 1322 if (sev_es_guest(svm->vcpu.kvm)) { 1323 /* 1324 * SEV-ES guests require a separate VMSA page used to contain 1325 * the encrypted register state of the guest. 1326 */ 1327 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1328 if (!vmsa_page) 1329 goto error_free_vmcb_page; 1330 1331 /* 1332 * SEV-ES guests maintain an encrypted version of their FPU 1333 * state which is restored and saved on VMRUN and VMEXIT. 1334 * Free the fpu structure to prevent KVM from attempting to 1335 * access the FPU state. 1336 */ 1337 kvm_free_guest_fpu(vcpu); 1338 } 1339 1340 err = avic_init_vcpu(svm); 1341 if (err) 1342 goto error_free_vmsa_page; 1343 1344 /* We initialize this flag to true to make sure that the is_running 1345 * bit would be set the first time the vcpu is loaded. 1346 */ 1347 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) 1348 svm->avic_is_running = true; 1349 1350 svm->msrpm = svm_vcpu_alloc_msrpm(); 1351 if (!svm->msrpm) { 1352 err = -ENOMEM; 1353 goto error_free_vmsa_page; 1354 } 1355 1356 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1357 1358 svm->vmcb = page_address(vmcb_page); 1359 svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT); 1360 1361 if (vmsa_page) 1362 svm->vmsa = page_address(vmsa_page); 1363 1364 svm->asid_generation = 0; 1365 svm->guest_state_loaded = false; 1366 init_vmcb(svm); 1367 1368 svm_init_osvw(vcpu); 1369 vcpu->arch.microcode_version = 0x01000065; 1370 1371 if (sev_es_guest(svm->vcpu.kvm)) 1372 /* Perform SEV-ES specific VMCB creation updates */ 1373 sev_es_create_vcpu(svm); 1374 1375 return 0; 1376 1377 error_free_vmsa_page: 1378 if (vmsa_page) 1379 __free_page(vmsa_page); 1380 error_free_vmcb_page: 1381 __free_page(vmcb_page); 1382 out: 1383 return err; 1384 } 1385 1386 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1387 { 1388 int i; 1389 1390 for_each_online_cpu(i) 1391 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1392 } 1393 1394 static void svm_free_vcpu(struct kvm_vcpu *vcpu) 1395 { 1396 struct vcpu_svm *svm = to_svm(vcpu); 1397 1398 /* 1399 * The vmcb page can be recycled, causing a false negative in 1400 * svm_vcpu_load(). So, ensure that no logical CPU has this 1401 * vmcb page recorded as its current vmcb. 1402 */ 1403 svm_clear_current_vmcb(svm->vmcb); 1404 1405 svm_free_nested(svm); 1406 1407 sev_free_vcpu(vcpu); 1408 1409 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); 1410 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); 1411 } 1412 1413 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) 1414 { 1415 struct vcpu_svm *svm = to_svm(vcpu); 1416 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 1417 unsigned int i; 1418 1419 if (svm->guest_state_loaded) 1420 return; 1421 1422 /* 1423 * Certain MSRs are restored on VMEXIT (sev-es), or vmload of host save 1424 * area (non-sev-es). Save ones that aren't so we can restore them 1425 * individually later. 1426 */ 1427 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) 1428 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); 1429 1430 /* 1431 * Save additional host state that will be restored on VMEXIT (sev-es) 1432 * or subsequent vmload of host save area. 1433 */ 1434 if (sev_es_guest(svm->vcpu.kvm)) { 1435 sev_es_prepare_guest_switch(svm, vcpu->cpu); 1436 } else { 1437 vmsave(__sme_page_pa(sd->save_area)); 1438 } 1439 1440 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 1441 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1442 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1443 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1444 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1445 } 1446 } 1447 1448 /* This assumes that the kernel never uses MSR_TSC_AUX */ 1449 if (static_cpu_has(X86_FEATURE_RDTSCP)) 1450 wrmsrl(MSR_TSC_AUX, svm->tsc_aux); 1451 1452 svm->guest_state_loaded = true; 1453 } 1454 1455 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1456 { 1457 struct vcpu_svm *svm = to_svm(vcpu); 1458 unsigned int i; 1459 1460 if (!svm->guest_state_loaded) 1461 return; 1462 1463 /* 1464 * Certain MSRs are restored on VMEXIT (sev-es), or vmload of host save 1465 * area (non-sev-es). Restore the ones that weren't. 1466 */ 1467 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) 1468 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); 1469 1470 svm->guest_state_loaded = false; 1471 } 1472 1473 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1474 { 1475 struct vcpu_svm *svm = to_svm(vcpu); 1476 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1477 1478 if (unlikely(cpu != vcpu->cpu)) { 1479 svm->asid_generation = 0; 1480 vmcb_mark_all_dirty(svm->vmcb); 1481 } 1482 1483 if (sd->current_vmcb != svm->vmcb) { 1484 sd->current_vmcb = svm->vmcb; 1485 indirect_branch_prediction_barrier(); 1486 } 1487 avic_vcpu_load(vcpu, cpu); 1488 } 1489 1490 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1491 { 1492 avic_vcpu_put(vcpu); 1493 svm_prepare_host_switch(vcpu); 1494 1495 ++vcpu->stat.host_state_reload; 1496 } 1497 1498 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1499 { 1500 struct vcpu_svm *svm = to_svm(vcpu); 1501 unsigned long rflags = svm->vmcb->save.rflags; 1502 1503 if (svm->nmi_singlestep) { 1504 /* Hide our flags if they were not set by the guest */ 1505 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1506 rflags &= ~X86_EFLAGS_TF; 1507 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1508 rflags &= ~X86_EFLAGS_RF; 1509 } 1510 return rflags; 1511 } 1512 1513 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1514 { 1515 if (to_svm(vcpu)->nmi_singlestep) 1516 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1517 1518 /* 1519 * Any change of EFLAGS.VM is accompanied by a reload of SS 1520 * (caused by either a task switch or an inter-privilege IRET), 1521 * so we do not need to update the CPL here. 1522 */ 1523 to_svm(vcpu)->vmcb->save.rflags = rflags; 1524 } 1525 1526 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1527 { 1528 switch (reg) { 1529 case VCPU_EXREG_PDPTR: 1530 BUG_ON(!npt_enabled); 1531 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 1532 break; 1533 default: 1534 WARN_ON_ONCE(1); 1535 } 1536 } 1537 1538 static void svm_set_vintr(struct vcpu_svm *svm) 1539 { 1540 struct vmcb_control_area *control; 1541 1542 /* The following fields are ignored when AVIC is enabled */ 1543 WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu)); 1544 svm_set_intercept(svm, INTERCEPT_VINTR); 1545 1546 /* 1547 * This is just a dummy VINTR to actually cause a vmexit to happen. 1548 * Actual injection of virtual interrupts happens through EVENTINJ. 1549 */ 1550 control = &svm->vmcb->control; 1551 control->int_vector = 0x0; 1552 control->int_ctl &= ~V_INTR_PRIO_MASK; 1553 control->int_ctl |= V_IRQ_MASK | 1554 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1555 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1556 } 1557 1558 static void svm_clear_vintr(struct vcpu_svm *svm) 1559 { 1560 const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK; 1561 svm_clr_intercept(svm, INTERCEPT_VINTR); 1562 1563 /* Drop int_ctl fields related to VINTR injection. */ 1564 svm->vmcb->control.int_ctl &= mask; 1565 if (is_guest_mode(&svm->vcpu)) { 1566 svm->nested.hsave->control.int_ctl &= mask; 1567 1568 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1569 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1570 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask; 1571 } 1572 1573 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1574 } 1575 1576 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1577 { 1578 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1579 1580 switch (seg) { 1581 case VCPU_SREG_CS: return &save->cs; 1582 case VCPU_SREG_DS: return &save->ds; 1583 case VCPU_SREG_ES: return &save->es; 1584 case VCPU_SREG_FS: return &save->fs; 1585 case VCPU_SREG_GS: return &save->gs; 1586 case VCPU_SREG_SS: return &save->ss; 1587 case VCPU_SREG_TR: return &save->tr; 1588 case VCPU_SREG_LDTR: return &save->ldtr; 1589 } 1590 BUG(); 1591 return NULL; 1592 } 1593 1594 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1595 { 1596 struct vmcb_seg *s = svm_seg(vcpu, seg); 1597 1598 return s->base; 1599 } 1600 1601 static void svm_get_segment(struct kvm_vcpu *vcpu, 1602 struct kvm_segment *var, int seg) 1603 { 1604 struct vmcb_seg *s = svm_seg(vcpu, seg); 1605 1606 var->base = s->base; 1607 var->limit = s->limit; 1608 var->selector = s->selector; 1609 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1610 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1611 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1612 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1613 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1614 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1615 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1616 1617 /* 1618 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1619 * However, the SVM spec states that the G bit is not observed by the 1620 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1621 * So let's synthesize a legal G bit for all segments, this helps 1622 * running KVM nested. It also helps cross-vendor migration, because 1623 * Intel's vmentry has a check on the 'G' bit. 1624 */ 1625 var->g = s->limit > 0xfffff; 1626 1627 /* 1628 * AMD's VMCB does not have an explicit unusable field, so emulate it 1629 * for cross vendor migration purposes by "not present" 1630 */ 1631 var->unusable = !var->present; 1632 1633 switch (seg) { 1634 case VCPU_SREG_TR: 1635 /* 1636 * Work around a bug where the busy flag in the tr selector 1637 * isn't exposed 1638 */ 1639 var->type |= 0x2; 1640 break; 1641 case VCPU_SREG_DS: 1642 case VCPU_SREG_ES: 1643 case VCPU_SREG_FS: 1644 case VCPU_SREG_GS: 1645 /* 1646 * The accessed bit must always be set in the segment 1647 * descriptor cache, although it can be cleared in the 1648 * descriptor, the cached bit always remains at 1. Since 1649 * Intel has a check on this, set it here to support 1650 * cross-vendor migration. 1651 */ 1652 if (!var->unusable) 1653 var->type |= 0x1; 1654 break; 1655 case VCPU_SREG_SS: 1656 /* 1657 * On AMD CPUs sometimes the DB bit in the segment 1658 * descriptor is left as 1, although the whole segment has 1659 * been made unusable. Clear it here to pass an Intel VMX 1660 * entry check when cross vendor migrating. 1661 */ 1662 if (var->unusable) 1663 var->db = 0; 1664 /* This is symmetric with svm_set_segment() */ 1665 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1666 break; 1667 } 1668 } 1669 1670 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1671 { 1672 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1673 1674 return save->cpl; 1675 } 1676 1677 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1678 { 1679 struct vcpu_svm *svm = to_svm(vcpu); 1680 1681 dt->size = svm->vmcb->save.idtr.limit; 1682 dt->address = svm->vmcb->save.idtr.base; 1683 } 1684 1685 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1686 { 1687 struct vcpu_svm *svm = to_svm(vcpu); 1688 1689 svm->vmcb->save.idtr.limit = dt->size; 1690 svm->vmcb->save.idtr.base = dt->address ; 1691 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1692 } 1693 1694 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1695 { 1696 struct vcpu_svm *svm = to_svm(vcpu); 1697 1698 dt->size = svm->vmcb->save.gdtr.limit; 1699 dt->address = svm->vmcb->save.gdtr.base; 1700 } 1701 1702 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1703 { 1704 struct vcpu_svm *svm = to_svm(vcpu); 1705 1706 svm->vmcb->save.gdtr.limit = dt->size; 1707 svm->vmcb->save.gdtr.base = dt->address ; 1708 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1709 } 1710 1711 static void update_cr0_intercept(struct vcpu_svm *svm) 1712 { 1713 ulong gcr0; 1714 u64 *hcr0; 1715 1716 /* 1717 * SEV-ES guests must always keep the CR intercepts cleared. CR 1718 * tracking is done using the CR write traps. 1719 */ 1720 if (sev_es_guest(svm->vcpu.kvm)) 1721 return; 1722 1723 gcr0 = svm->vcpu.arch.cr0; 1724 hcr0 = &svm->vmcb->save.cr0; 1725 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) 1726 | (gcr0 & SVM_CR0_SELECTIVE_MASK); 1727 1728 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1729 1730 if (gcr0 == *hcr0) { 1731 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1732 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1733 } else { 1734 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1735 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1736 } 1737 } 1738 1739 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1740 { 1741 struct vcpu_svm *svm = to_svm(vcpu); 1742 1743 #ifdef CONFIG_X86_64 1744 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1745 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1746 vcpu->arch.efer |= EFER_LMA; 1747 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1748 } 1749 1750 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1751 vcpu->arch.efer &= ~EFER_LMA; 1752 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1753 } 1754 } 1755 #endif 1756 vcpu->arch.cr0 = cr0; 1757 1758 if (!npt_enabled) 1759 cr0 |= X86_CR0_PG | X86_CR0_WP; 1760 1761 /* 1762 * re-enable caching here because the QEMU bios 1763 * does not do it - this results in some delay at 1764 * reboot 1765 */ 1766 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1767 cr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1768 svm->vmcb->save.cr0 = cr0; 1769 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1770 update_cr0_intercept(svm); 1771 } 1772 1773 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1774 { 1775 return true; 1776 } 1777 1778 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1779 { 1780 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1781 unsigned long old_cr4 = vcpu->arch.cr4; 1782 1783 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1784 svm_flush_tlb(vcpu); 1785 1786 vcpu->arch.cr4 = cr4; 1787 if (!npt_enabled) 1788 cr4 |= X86_CR4_PAE; 1789 cr4 |= host_cr4_mce; 1790 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1791 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1792 1793 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1794 kvm_update_cpuid_runtime(vcpu); 1795 } 1796 1797 static void svm_set_segment(struct kvm_vcpu *vcpu, 1798 struct kvm_segment *var, int seg) 1799 { 1800 struct vcpu_svm *svm = to_svm(vcpu); 1801 struct vmcb_seg *s = svm_seg(vcpu, seg); 1802 1803 s->base = var->base; 1804 s->limit = var->limit; 1805 s->selector = var->selector; 1806 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1807 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1808 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1809 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1810 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1811 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1812 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1813 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1814 1815 /* 1816 * This is always accurate, except if SYSRET returned to a segment 1817 * with SS.DPL != 3. Intel does not have this quirk, and always 1818 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1819 * would entail passing the CPL to userspace and back. 1820 */ 1821 if (seg == VCPU_SREG_SS) 1822 /* This is symmetric with svm_get_segment() */ 1823 svm->vmcb->save.cpl = (var->dpl & 3); 1824 1825 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1826 } 1827 1828 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1829 { 1830 struct vcpu_svm *svm = to_svm(vcpu); 1831 1832 clr_exception_intercept(svm, BP_VECTOR); 1833 1834 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1835 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1836 set_exception_intercept(svm, BP_VECTOR); 1837 } 1838 } 1839 1840 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1841 { 1842 if (sd->next_asid > sd->max_asid) { 1843 ++sd->asid_generation; 1844 sd->next_asid = sd->min_asid; 1845 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1846 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1847 } 1848 1849 svm->asid_generation = sd->asid_generation; 1850 svm->asid = sd->next_asid++; 1851 } 1852 1853 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1854 { 1855 struct vmcb *vmcb = svm->vmcb; 1856 1857 if (svm->vcpu.arch.guest_state_protected) 1858 return; 1859 1860 if (unlikely(value != vmcb->save.dr6)) { 1861 vmcb->save.dr6 = value; 1862 vmcb_mark_dirty(vmcb, VMCB_DR); 1863 } 1864 } 1865 1866 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1867 { 1868 struct vcpu_svm *svm = to_svm(vcpu); 1869 1870 if (vcpu->arch.guest_state_protected) 1871 return; 1872 1873 get_debugreg(vcpu->arch.db[0], 0); 1874 get_debugreg(vcpu->arch.db[1], 1); 1875 get_debugreg(vcpu->arch.db[2], 2); 1876 get_debugreg(vcpu->arch.db[3], 3); 1877 /* 1878 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1879 * because db_interception might need it. We can do it before vmentry. 1880 */ 1881 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1882 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1883 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1884 set_dr_intercepts(svm); 1885 } 1886 1887 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1888 { 1889 struct vcpu_svm *svm = to_svm(vcpu); 1890 1891 if (vcpu->arch.guest_state_protected) 1892 return; 1893 1894 svm->vmcb->save.dr7 = value; 1895 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1896 } 1897 1898 static int pf_interception(struct vcpu_svm *svm) 1899 { 1900 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1901 u64 error_code = svm->vmcb->control.exit_info_1; 1902 1903 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address, 1904 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1905 svm->vmcb->control.insn_bytes : NULL, 1906 svm->vmcb->control.insn_len); 1907 } 1908 1909 static int npf_interception(struct vcpu_svm *svm) 1910 { 1911 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1912 u64 error_code = svm->vmcb->control.exit_info_1; 1913 1914 trace_kvm_page_fault(fault_address, error_code); 1915 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, 1916 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1917 svm->vmcb->control.insn_bytes : NULL, 1918 svm->vmcb->control.insn_len); 1919 } 1920 1921 static int db_interception(struct vcpu_svm *svm) 1922 { 1923 struct kvm_run *kvm_run = svm->vcpu.run; 1924 struct kvm_vcpu *vcpu = &svm->vcpu; 1925 1926 if (!(svm->vcpu.guest_debug & 1927 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1928 !svm->nmi_singlestep) { 1929 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1930 kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload); 1931 return 1; 1932 } 1933 1934 if (svm->nmi_singlestep) { 1935 disable_nmi_singlestep(svm); 1936 /* Make sure we check for pending NMIs upon entry */ 1937 kvm_make_request(KVM_REQ_EVENT, vcpu); 1938 } 1939 1940 if (svm->vcpu.guest_debug & 1941 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1942 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1943 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1944 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1945 kvm_run->debug.arch.pc = 1946 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1947 kvm_run->debug.arch.exception = DB_VECTOR; 1948 return 0; 1949 } 1950 1951 return 1; 1952 } 1953 1954 static int bp_interception(struct vcpu_svm *svm) 1955 { 1956 struct kvm_run *kvm_run = svm->vcpu.run; 1957 1958 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1959 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1960 kvm_run->debug.arch.exception = BP_VECTOR; 1961 return 0; 1962 } 1963 1964 static int ud_interception(struct vcpu_svm *svm) 1965 { 1966 return handle_ud(&svm->vcpu); 1967 } 1968 1969 static int ac_interception(struct vcpu_svm *svm) 1970 { 1971 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0); 1972 return 1; 1973 } 1974 1975 static bool is_erratum_383(void) 1976 { 1977 int err, i; 1978 u64 value; 1979 1980 if (!erratum_383_found) 1981 return false; 1982 1983 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 1984 if (err) 1985 return false; 1986 1987 /* Bit 62 may or may not be set for this mce */ 1988 value &= ~(1ULL << 62); 1989 1990 if (value != 0xb600000000010015ULL) 1991 return false; 1992 1993 /* Clear MCi_STATUS registers */ 1994 for (i = 0; i < 6; ++i) 1995 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 1996 1997 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 1998 if (!err) { 1999 u32 low, high; 2000 2001 value &= ~(1ULL << 2); 2002 low = lower_32_bits(value); 2003 high = upper_32_bits(value); 2004 2005 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2006 } 2007 2008 /* Flush tlb to evict multi-match entries */ 2009 __flush_tlb_all(); 2010 2011 return true; 2012 } 2013 2014 static void svm_handle_mce(struct vcpu_svm *svm) 2015 { 2016 if (is_erratum_383()) { 2017 /* 2018 * Erratum 383 triggered. Guest state is corrupt so kill the 2019 * guest. 2020 */ 2021 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 2022 2023 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); 2024 2025 return; 2026 } 2027 2028 /* 2029 * On an #MC intercept the MCE handler is not called automatically in 2030 * the host. So do it by hand here. 2031 */ 2032 kvm_machine_check(); 2033 } 2034 2035 static int mc_interception(struct vcpu_svm *svm) 2036 { 2037 return 1; 2038 } 2039 2040 static int shutdown_interception(struct vcpu_svm *svm) 2041 { 2042 struct kvm_run *kvm_run = svm->vcpu.run; 2043 2044 /* 2045 * The VM save area has already been encrypted so it 2046 * cannot be reinitialized - just terminate. 2047 */ 2048 if (sev_es_guest(svm->vcpu.kvm)) 2049 return -EINVAL; 2050 2051 /* 2052 * VMCB is undefined after a SHUTDOWN intercept 2053 * so reinitialize it. 2054 */ 2055 clear_page(svm->vmcb); 2056 init_vmcb(svm); 2057 2058 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2059 return 0; 2060 } 2061 2062 static int io_interception(struct vcpu_svm *svm) 2063 { 2064 struct kvm_vcpu *vcpu = &svm->vcpu; 2065 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2066 int size, in, string; 2067 unsigned port; 2068 2069 ++svm->vcpu.stat.io_exits; 2070 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2071 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2072 port = io_info >> 16; 2073 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2074 2075 if (string) { 2076 if (sev_es_guest(vcpu->kvm)) 2077 return sev_es_string_io(svm, size, port, in); 2078 else 2079 return kvm_emulate_instruction(vcpu, 0); 2080 } 2081 2082 svm->next_rip = svm->vmcb->control.exit_info_2; 2083 2084 return kvm_fast_pio(&svm->vcpu, size, port, in); 2085 } 2086 2087 static int nmi_interception(struct vcpu_svm *svm) 2088 { 2089 return 1; 2090 } 2091 2092 static int intr_interception(struct vcpu_svm *svm) 2093 { 2094 ++svm->vcpu.stat.irq_exits; 2095 return 1; 2096 } 2097 2098 static int nop_on_interception(struct vcpu_svm *svm) 2099 { 2100 return 1; 2101 } 2102 2103 static int halt_interception(struct vcpu_svm *svm) 2104 { 2105 return kvm_emulate_halt(&svm->vcpu); 2106 } 2107 2108 static int vmmcall_interception(struct vcpu_svm *svm) 2109 { 2110 return kvm_emulate_hypercall(&svm->vcpu); 2111 } 2112 2113 static int vmload_interception(struct vcpu_svm *svm) 2114 { 2115 struct vmcb *nested_vmcb; 2116 struct kvm_host_map map; 2117 int ret; 2118 2119 if (nested_svm_check_permissions(svm)) 2120 return 1; 2121 2122 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2123 if (ret) { 2124 if (ret == -EINVAL) 2125 kvm_inject_gp(&svm->vcpu, 0); 2126 return 1; 2127 } 2128 2129 nested_vmcb = map.hva; 2130 2131 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2132 2133 nested_svm_vmloadsave(nested_vmcb, svm->vmcb); 2134 kvm_vcpu_unmap(&svm->vcpu, &map, true); 2135 2136 return ret; 2137 } 2138 2139 static int vmsave_interception(struct vcpu_svm *svm) 2140 { 2141 struct vmcb *nested_vmcb; 2142 struct kvm_host_map map; 2143 int ret; 2144 2145 if (nested_svm_check_permissions(svm)) 2146 return 1; 2147 2148 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2149 if (ret) { 2150 if (ret == -EINVAL) 2151 kvm_inject_gp(&svm->vcpu, 0); 2152 return 1; 2153 } 2154 2155 nested_vmcb = map.hva; 2156 2157 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2158 2159 nested_svm_vmloadsave(svm->vmcb, nested_vmcb); 2160 kvm_vcpu_unmap(&svm->vcpu, &map, true); 2161 2162 return ret; 2163 } 2164 2165 static int vmrun_interception(struct vcpu_svm *svm) 2166 { 2167 if (nested_svm_check_permissions(svm)) 2168 return 1; 2169 2170 return nested_svm_vmrun(svm); 2171 } 2172 2173 enum { 2174 NONE_SVM_INSTR, 2175 SVM_INSTR_VMRUN, 2176 SVM_INSTR_VMLOAD, 2177 SVM_INSTR_VMSAVE, 2178 }; 2179 2180 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2181 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2182 { 2183 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2184 2185 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2186 return NONE_SVM_INSTR; 2187 2188 switch (ctxt->modrm) { 2189 case 0xd8: /* VMRUN */ 2190 return SVM_INSTR_VMRUN; 2191 case 0xda: /* VMLOAD */ 2192 return SVM_INSTR_VMLOAD; 2193 case 0xdb: /* VMSAVE */ 2194 return SVM_INSTR_VMSAVE; 2195 default: 2196 break; 2197 } 2198 2199 return NONE_SVM_INSTR; 2200 } 2201 2202 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2203 { 2204 const int guest_mode_exit_codes[] = { 2205 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2206 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2207 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2208 }; 2209 int (*const svm_instr_handlers[])(struct vcpu_svm *svm) = { 2210 [SVM_INSTR_VMRUN] = vmrun_interception, 2211 [SVM_INSTR_VMLOAD] = vmload_interception, 2212 [SVM_INSTR_VMSAVE] = vmsave_interception, 2213 }; 2214 struct vcpu_svm *svm = to_svm(vcpu); 2215 int ret; 2216 2217 if (is_guest_mode(vcpu)) { 2218 svm->vmcb->control.exit_code = guest_mode_exit_codes[opcode]; 2219 svm->vmcb->control.exit_info_1 = 0; 2220 svm->vmcb->control.exit_info_2 = 0; 2221 2222 /* Returns '1' or -errno on failure, '0' on success. */ 2223 ret = nested_svm_vmexit(svm); 2224 if (ret) 2225 return ret; 2226 return 1; 2227 } 2228 return svm_instr_handlers[opcode](svm); 2229 } 2230 2231 /* 2232 * #GP handling code. Note that #GP can be triggered under the following two 2233 * cases: 2234 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2235 * some AMD CPUs when EAX of these instructions are in the reserved memory 2236 * regions (e.g. SMM memory on host). 2237 * 2) VMware backdoor 2238 */ 2239 static int gp_interception(struct vcpu_svm *svm) 2240 { 2241 struct kvm_vcpu *vcpu = &svm->vcpu; 2242 u32 error_code = svm->vmcb->control.exit_info_1; 2243 int opcode; 2244 2245 /* Both #GP cases have zero error_code */ 2246 if (error_code) 2247 goto reinject; 2248 2249 /* Decode the instruction for usage later */ 2250 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2251 goto reinject; 2252 2253 opcode = svm_instr_opcode(vcpu); 2254 2255 if (opcode == NONE_SVM_INSTR) { 2256 if (!enable_vmware_backdoor) 2257 goto reinject; 2258 2259 /* 2260 * VMware backdoor emulation on #GP interception only handles 2261 * IN{S}, OUT{S}, and RDPMC. 2262 */ 2263 if (!is_guest_mode(vcpu)) 2264 return kvm_emulate_instruction(vcpu, 2265 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2266 } else 2267 return emulate_svm_instr(vcpu, opcode); 2268 2269 reinject: 2270 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2271 return 1; 2272 } 2273 2274 void svm_set_gif(struct vcpu_svm *svm, bool value) 2275 { 2276 if (value) { 2277 /* 2278 * If VGIF is enabled, the STGI intercept is only added to 2279 * detect the opening of the SMI/NMI window; remove it now. 2280 * Likewise, clear the VINTR intercept, we will set it 2281 * again while processing KVM_REQ_EVENT if needed. 2282 */ 2283 if (vgif_enabled(svm)) 2284 svm_clr_intercept(svm, INTERCEPT_STGI); 2285 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2286 svm_clear_vintr(svm); 2287 2288 enable_gif(svm); 2289 if (svm->vcpu.arch.smi_pending || 2290 svm->vcpu.arch.nmi_pending || 2291 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2292 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2293 } else { 2294 disable_gif(svm); 2295 2296 /* 2297 * After a CLGI no interrupts should come. But if vGIF is 2298 * in use, we still rely on the VINTR intercept (rather than 2299 * STGI) to detect an open interrupt window. 2300 */ 2301 if (!vgif_enabled(svm)) 2302 svm_clear_vintr(svm); 2303 } 2304 } 2305 2306 static int stgi_interception(struct vcpu_svm *svm) 2307 { 2308 int ret; 2309 2310 if (nested_svm_check_permissions(svm)) 2311 return 1; 2312 2313 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2314 svm_set_gif(svm, true); 2315 return ret; 2316 } 2317 2318 static int clgi_interception(struct vcpu_svm *svm) 2319 { 2320 int ret; 2321 2322 if (nested_svm_check_permissions(svm)) 2323 return 1; 2324 2325 ret = kvm_skip_emulated_instruction(&svm->vcpu); 2326 svm_set_gif(svm, false); 2327 return ret; 2328 } 2329 2330 static int invlpga_interception(struct vcpu_svm *svm) 2331 { 2332 struct kvm_vcpu *vcpu = &svm->vcpu; 2333 2334 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu), 2335 kvm_rax_read(&svm->vcpu)); 2336 2337 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2338 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu)); 2339 2340 return kvm_skip_emulated_instruction(&svm->vcpu); 2341 } 2342 2343 static int skinit_interception(struct vcpu_svm *svm) 2344 { 2345 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu)); 2346 2347 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2348 return 1; 2349 } 2350 2351 static int wbinvd_interception(struct vcpu_svm *svm) 2352 { 2353 return kvm_emulate_wbinvd(&svm->vcpu); 2354 } 2355 2356 static int xsetbv_interception(struct vcpu_svm *svm) 2357 { 2358 u64 new_bv = kvm_read_edx_eax(&svm->vcpu); 2359 u32 index = kvm_rcx_read(&svm->vcpu); 2360 2361 int err = kvm_set_xcr(&svm->vcpu, index, new_bv); 2362 return kvm_complete_insn_gp(&svm->vcpu, err); 2363 } 2364 2365 static int rdpru_interception(struct vcpu_svm *svm) 2366 { 2367 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2368 return 1; 2369 } 2370 2371 static int task_switch_interception(struct vcpu_svm *svm) 2372 { 2373 u16 tss_selector; 2374 int reason; 2375 int int_type = svm->vmcb->control.exit_int_info & 2376 SVM_EXITINTINFO_TYPE_MASK; 2377 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2378 uint32_t type = 2379 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2380 uint32_t idt_v = 2381 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2382 bool has_error_code = false; 2383 u32 error_code = 0; 2384 2385 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2386 2387 if (svm->vmcb->control.exit_info_2 & 2388 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2389 reason = TASK_SWITCH_IRET; 2390 else if (svm->vmcb->control.exit_info_2 & 2391 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2392 reason = TASK_SWITCH_JMP; 2393 else if (idt_v) 2394 reason = TASK_SWITCH_GATE; 2395 else 2396 reason = TASK_SWITCH_CALL; 2397 2398 if (reason == TASK_SWITCH_GATE) { 2399 switch (type) { 2400 case SVM_EXITINTINFO_TYPE_NMI: 2401 svm->vcpu.arch.nmi_injected = false; 2402 break; 2403 case SVM_EXITINTINFO_TYPE_EXEPT: 2404 if (svm->vmcb->control.exit_info_2 & 2405 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2406 has_error_code = true; 2407 error_code = 2408 (u32)svm->vmcb->control.exit_info_2; 2409 } 2410 kvm_clear_exception_queue(&svm->vcpu); 2411 break; 2412 case SVM_EXITINTINFO_TYPE_INTR: 2413 kvm_clear_interrupt_queue(&svm->vcpu); 2414 break; 2415 default: 2416 break; 2417 } 2418 } 2419 2420 if (reason != TASK_SWITCH_GATE || 2421 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2422 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2423 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2424 if (!skip_emulated_instruction(&svm->vcpu)) 2425 return 0; 2426 } 2427 2428 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2429 int_vec = -1; 2430 2431 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, 2432 has_error_code, error_code); 2433 } 2434 2435 static int cpuid_interception(struct vcpu_svm *svm) 2436 { 2437 return kvm_emulate_cpuid(&svm->vcpu); 2438 } 2439 2440 static int iret_interception(struct vcpu_svm *svm) 2441 { 2442 ++svm->vcpu.stat.nmi_window_exits; 2443 svm->vcpu.arch.hflags |= HF_IRET_MASK; 2444 if (!sev_es_guest(svm->vcpu.kvm)) { 2445 svm_clr_intercept(svm, INTERCEPT_IRET); 2446 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); 2447 } 2448 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2449 return 1; 2450 } 2451 2452 static int invd_interception(struct vcpu_svm *svm) 2453 { 2454 /* Treat an INVD instruction as a NOP and just skip it. */ 2455 return kvm_skip_emulated_instruction(&svm->vcpu); 2456 } 2457 2458 static int invlpg_interception(struct vcpu_svm *svm) 2459 { 2460 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2461 return kvm_emulate_instruction(&svm->vcpu, 0); 2462 2463 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); 2464 return kvm_skip_emulated_instruction(&svm->vcpu); 2465 } 2466 2467 static int emulate_on_interception(struct vcpu_svm *svm) 2468 { 2469 return kvm_emulate_instruction(&svm->vcpu, 0); 2470 } 2471 2472 static int rsm_interception(struct vcpu_svm *svm) 2473 { 2474 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2); 2475 } 2476 2477 static int rdpmc_interception(struct vcpu_svm *svm) 2478 { 2479 int err; 2480 2481 if (!nrips) 2482 return emulate_on_interception(svm); 2483 2484 err = kvm_rdpmc(&svm->vcpu); 2485 return kvm_complete_insn_gp(&svm->vcpu, err); 2486 } 2487 2488 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, 2489 unsigned long val) 2490 { 2491 unsigned long cr0 = svm->vcpu.arch.cr0; 2492 bool ret = false; 2493 2494 if (!is_guest_mode(&svm->vcpu) || 2495 (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2496 return false; 2497 2498 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2499 val &= ~SVM_CR0_SELECTIVE_MASK; 2500 2501 if (cr0 ^ val) { 2502 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2503 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2504 } 2505 2506 return ret; 2507 } 2508 2509 #define CR_VALID (1ULL << 63) 2510 2511 static int cr_interception(struct vcpu_svm *svm) 2512 { 2513 int reg, cr; 2514 unsigned long val; 2515 int err; 2516 2517 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2518 return emulate_on_interception(svm); 2519 2520 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2521 return emulate_on_interception(svm); 2522 2523 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2524 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2525 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2526 else 2527 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2528 2529 err = 0; 2530 if (cr >= 16) { /* mov to cr */ 2531 cr -= 16; 2532 val = kvm_register_read(&svm->vcpu, reg); 2533 trace_kvm_cr_write(cr, val); 2534 switch (cr) { 2535 case 0: 2536 if (!check_selective_cr0_intercepted(svm, val)) 2537 err = kvm_set_cr0(&svm->vcpu, val); 2538 else 2539 return 1; 2540 2541 break; 2542 case 3: 2543 err = kvm_set_cr3(&svm->vcpu, val); 2544 break; 2545 case 4: 2546 err = kvm_set_cr4(&svm->vcpu, val); 2547 break; 2548 case 8: 2549 err = kvm_set_cr8(&svm->vcpu, val); 2550 break; 2551 default: 2552 WARN(1, "unhandled write to CR%d", cr); 2553 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2554 return 1; 2555 } 2556 } else { /* mov from cr */ 2557 switch (cr) { 2558 case 0: 2559 val = kvm_read_cr0(&svm->vcpu); 2560 break; 2561 case 2: 2562 val = svm->vcpu.arch.cr2; 2563 break; 2564 case 3: 2565 val = kvm_read_cr3(&svm->vcpu); 2566 break; 2567 case 4: 2568 val = kvm_read_cr4(&svm->vcpu); 2569 break; 2570 case 8: 2571 val = kvm_get_cr8(&svm->vcpu); 2572 break; 2573 default: 2574 WARN(1, "unhandled read from CR%d", cr); 2575 kvm_queue_exception(&svm->vcpu, UD_VECTOR); 2576 return 1; 2577 } 2578 kvm_register_write(&svm->vcpu, reg, val); 2579 trace_kvm_cr_read(cr, val); 2580 } 2581 return kvm_complete_insn_gp(&svm->vcpu, err); 2582 } 2583 2584 static int cr_trap(struct vcpu_svm *svm) 2585 { 2586 struct kvm_vcpu *vcpu = &svm->vcpu; 2587 unsigned long old_value, new_value; 2588 unsigned int cr; 2589 int ret = 0; 2590 2591 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2592 2593 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2594 switch (cr) { 2595 case 0: 2596 old_value = kvm_read_cr0(vcpu); 2597 svm_set_cr0(vcpu, new_value); 2598 2599 kvm_post_set_cr0(vcpu, old_value, new_value); 2600 break; 2601 case 4: 2602 old_value = kvm_read_cr4(vcpu); 2603 svm_set_cr4(vcpu, new_value); 2604 2605 kvm_post_set_cr4(vcpu, old_value, new_value); 2606 break; 2607 case 8: 2608 ret = kvm_set_cr8(&svm->vcpu, new_value); 2609 break; 2610 default: 2611 WARN(1, "unhandled CR%d write trap", cr); 2612 kvm_queue_exception(vcpu, UD_VECTOR); 2613 return 1; 2614 } 2615 2616 return kvm_complete_insn_gp(vcpu, ret); 2617 } 2618 2619 static int dr_interception(struct vcpu_svm *svm) 2620 { 2621 int reg, dr; 2622 unsigned long val; 2623 int err = 0; 2624 2625 if (svm->vcpu.guest_debug == 0) { 2626 /* 2627 * No more DR vmexits; force a reload of the debug registers 2628 * and reenter on this instruction. The next vmexit will 2629 * retrieve the full state of the debug registers. 2630 */ 2631 clr_dr_intercepts(svm); 2632 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2633 return 1; 2634 } 2635 2636 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2637 return emulate_on_interception(svm); 2638 2639 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2640 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2641 if (dr >= 16) { /* mov to DRn */ 2642 dr -= 16; 2643 val = kvm_register_read(&svm->vcpu, reg); 2644 err = kvm_set_dr(&svm->vcpu, dr, val); 2645 } else { 2646 kvm_get_dr(&svm->vcpu, dr, &val); 2647 kvm_register_write(&svm->vcpu, reg, val); 2648 } 2649 2650 return kvm_complete_insn_gp(&svm->vcpu, err); 2651 } 2652 2653 static int cr8_write_interception(struct vcpu_svm *svm) 2654 { 2655 struct kvm_run *kvm_run = svm->vcpu.run; 2656 int r; 2657 2658 u8 cr8_prev = kvm_get_cr8(&svm->vcpu); 2659 /* instruction emulation calls kvm_set_cr8() */ 2660 r = cr_interception(svm); 2661 if (lapic_in_kernel(&svm->vcpu)) 2662 return r; 2663 if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) 2664 return r; 2665 kvm_run->exit_reason = KVM_EXIT_SET_TPR; 2666 return 0; 2667 } 2668 2669 static int efer_trap(struct vcpu_svm *svm) 2670 { 2671 struct msr_data msr_info; 2672 int ret; 2673 2674 /* 2675 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2676 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2677 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2678 * the guest doesn't have X86_FEATURE_SVM. 2679 */ 2680 msr_info.host_initiated = false; 2681 msr_info.index = MSR_EFER; 2682 msr_info.data = svm->vmcb->control.exit_info_1 & ~EFER_SVME; 2683 ret = kvm_set_msr_common(&svm->vcpu, &msr_info); 2684 2685 return kvm_complete_insn_gp(&svm->vcpu, ret); 2686 } 2687 2688 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2689 { 2690 msr->data = 0; 2691 2692 switch (msr->index) { 2693 case MSR_F10H_DECFG: 2694 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2695 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2696 break; 2697 case MSR_IA32_PERF_CAPABILITIES: 2698 return 0; 2699 default: 2700 return KVM_MSR_RET_INVALID; 2701 } 2702 2703 return 0; 2704 } 2705 2706 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2707 { 2708 struct vcpu_svm *svm = to_svm(vcpu); 2709 2710 switch (msr_info->index) { 2711 case MSR_STAR: 2712 msr_info->data = svm->vmcb->save.star; 2713 break; 2714 #ifdef CONFIG_X86_64 2715 case MSR_LSTAR: 2716 msr_info->data = svm->vmcb->save.lstar; 2717 break; 2718 case MSR_CSTAR: 2719 msr_info->data = svm->vmcb->save.cstar; 2720 break; 2721 case MSR_KERNEL_GS_BASE: 2722 msr_info->data = svm->vmcb->save.kernel_gs_base; 2723 break; 2724 case MSR_SYSCALL_MASK: 2725 msr_info->data = svm->vmcb->save.sfmask; 2726 break; 2727 #endif 2728 case MSR_IA32_SYSENTER_CS: 2729 msr_info->data = svm->vmcb->save.sysenter_cs; 2730 break; 2731 case MSR_IA32_SYSENTER_EIP: 2732 msr_info->data = svm->sysenter_eip; 2733 break; 2734 case MSR_IA32_SYSENTER_ESP: 2735 msr_info->data = svm->sysenter_esp; 2736 break; 2737 case MSR_TSC_AUX: 2738 if (!boot_cpu_has(X86_FEATURE_RDTSCP)) 2739 return 1; 2740 msr_info->data = svm->tsc_aux; 2741 break; 2742 /* 2743 * Nobody will change the following 5 values in the VMCB so we can 2744 * safely return them on rdmsr. They will always be 0 until LBRV is 2745 * implemented. 2746 */ 2747 case MSR_IA32_DEBUGCTLMSR: 2748 msr_info->data = svm->vmcb->save.dbgctl; 2749 break; 2750 case MSR_IA32_LASTBRANCHFROMIP: 2751 msr_info->data = svm->vmcb->save.br_from; 2752 break; 2753 case MSR_IA32_LASTBRANCHTOIP: 2754 msr_info->data = svm->vmcb->save.br_to; 2755 break; 2756 case MSR_IA32_LASTINTFROMIP: 2757 msr_info->data = svm->vmcb->save.last_excp_from; 2758 break; 2759 case MSR_IA32_LASTINTTOIP: 2760 msr_info->data = svm->vmcb->save.last_excp_to; 2761 break; 2762 case MSR_VM_HSAVE_PA: 2763 msr_info->data = svm->nested.hsave_msr; 2764 break; 2765 case MSR_VM_CR: 2766 msr_info->data = svm->nested.vm_cr_msr; 2767 break; 2768 case MSR_IA32_SPEC_CTRL: 2769 if (!msr_info->host_initiated && 2770 !guest_has_spec_ctrl_msr(vcpu)) 2771 return 1; 2772 2773 msr_info->data = svm->spec_ctrl; 2774 break; 2775 case MSR_AMD64_VIRT_SPEC_CTRL: 2776 if (!msr_info->host_initiated && 2777 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2778 return 1; 2779 2780 msr_info->data = svm->virt_spec_ctrl; 2781 break; 2782 case MSR_F15H_IC_CFG: { 2783 2784 int family, model; 2785 2786 family = guest_cpuid_family(vcpu); 2787 model = guest_cpuid_model(vcpu); 2788 2789 if (family < 0 || model < 0) 2790 return kvm_get_msr_common(vcpu, msr_info); 2791 2792 msr_info->data = 0; 2793 2794 if (family == 0x15 && 2795 (model >= 0x2 && model < 0x20)) 2796 msr_info->data = 0x1E; 2797 } 2798 break; 2799 case MSR_F10H_DECFG: 2800 msr_info->data = svm->msr_decfg; 2801 break; 2802 default: 2803 return kvm_get_msr_common(vcpu, msr_info); 2804 } 2805 return 0; 2806 } 2807 2808 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2809 { 2810 struct vcpu_svm *svm = to_svm(vcpu); 2811 if (!sev_es_guest(svm->vcpu.kvm) || !err) 2812 return kvm_complete_insn_gp(&svm->vcpu, err); 2813 2814 ghcb_set_sw_exit_info_1(svm->ghcb, 1); 2815 ghcb_set_sw_exit_info_2(svm->ghcb, 2816 X86_TRAP_GP | 2817 SVM_EVTINJ_TYPE_EXEPT | 2818 SVM_EVTINJ_VALID); 2819 return 1; 2820 } 2821 2822 static int rdmsr_interception(struct vcpu_svm *svm) 2823 { 2824 return kvm_emulate_rdmsr(&svm->vcpu); 2825 } 2826 2827 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2828 { 2829 struct vcpu_svm *svm = to_svm(vcpu); 2830 int svm_dis, chg_mask; 2831 2832 if (data & ~SVM_VM_CR_VALID_MASK) 2833 return 1; 2834 2835 chg_mask = SVM_VM_CR_VALID_MASK; 2836 2837 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2838 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2839 2840 svm->nested.vm_cr_msr &= ~chg_mask; 2841 svm->nested.vm_cr_msr |= (data & chg_mask); 2842 2843 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2844 2845 /* check for svm_disable while efer.svme is set */ 2846 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2847 return 1; 2848 2849 return 0; 2850 } 2851 2852 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2853 { 2854 struct vcpu_svm *svm = to_svm(vcpu); 2855 2856 u32 ecx = msr->index; 2857 u64 data = msr->data; 2858 switch (ecx) { 2859 case MSR_IA32_CR_PAT: 2860 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2861 return 1; 2862 vcpu->arch.pat = data; 2863 svm->vmcb->save.g_pat = data; 2864 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2865 break; 2866 case MSR_IA32_SPEC_CTRL: 2867 if (!msr->host_initiated && 2868 !guest_has_spec_ctrl_msr(vcpu)) 2869 return 1; 2870 2871 if (kvm_spec_ctrl_test_value(data)) 2872 return 1; 2873 2874 svm->spec_ctrl = data; 2875 if (!data) 2876 break; 2877 2878 /* 2879 * For non-nested: 2880 * When it's written (to non-zero) for the first time, pass 2881 * it through. 2882 * 2883 * For nested: 2884 * The handling of the MSR bitmap for L2 guests is done in 2885 * nested_svm_vmrun_msrpm. 2886 * We update the L1 MSR bit as well since it will end up 2887 * touching the MSR anyway now. 2888 */ 2889 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2890 break; 2891 case MSR_IA32_PRED_CMD: 2892 if (!msr->host_initiated && 2893 !guest_has_pred_cmd_msr(vcpu)) 2894 return 1; 2895 2896 if (data & ~PRED_CMD_IBPB) 2897 return 1; 2898 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2899 return 1; 2900 if (!data) 2901 break; 2902 2903 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2904 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2905 break; 2906 case MSR_AMD64_VIRT_SPEC_CTRL: 2907 if (!msr->host_initiated && 2908 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2909 return 1; 2910 2911 if (data & ~SPEC_CTRL_SSBD) 2912 return 1; 2913 2914 svm->virt_spec_ctrl = data; 2915 break; 2916 case MSR_STAR: 2917 svm->vmcb->save.star = data; 2918 break; 2919 #ifdef CONFIG_X86_64 2920 case MSR_LSTAR: 2921 svm->vmcb->save.lstar = data; 2922 break; 2923 case MSR_CSTAR: 2924 svm->vmcb->save.cstar = data; 2925 break; 2926 case MSR_KERNEL_GS_BASE: 2927 svm->vmcb->save.kernel_gs_base = data; 2928 break; 2929 case MSR_SYSCALL_MASK: 2930 svm->vmcb->save.sfmask = data; 2931 break; 2932 #endif 2933 case MSR_IA32_SYSENTER_CS: 2934 svm->vmcb->save.sysenter_cs = data; 2935 break; 2936 case MSR_IA32_SYSENTER_EIP: 2937 svm->sysenter_eip = data; 2938 svm->vmcb->save.sysenter_eip = data; 2939 break; 2940 case MSR_IA32_SYSENTER_ESP: 2941 svm->sysenter_esp = data; 2942 svm->vmcb->save.sysenter_esp = data; 2943 break; 2944 case MSR_TSC_AUX: 2945 if (!boot_cpu_has(X86_FEATURE_RDTSCP)) 2946 return 1; 2947 2948 /* 2949 * This is rare, so we update the MSR here instead of using 2950 * direct_access_msrs. Doing that would require a rdmsr in 2951 * svm_vcpu_put. 2952 */ 2953 svm->tsc_aux = data; 2954 wrmsrl(MSR_TSC_AUX, svm->tsc_aux); 2955 break; 2956 case MSR_IA32_DEBUGCTLMSR: 2957 if (!boot_cpu_has(X86_FEATURE_LBRV)) { 2958 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2959 __func__, data); 2960 break; 2961 } 2962 if (data & DEBUGCTL_RESERVED_BITS) 2963 return 1; 2964 2965 svm->vmcb->save.dbgctl = data; 2966 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 2967 if (data & (1ULL<<0)) 2968 svm_enable_lbrv(vcpu); 2969 else 2970 svm_disable_lbrv(vcpu); 2971 break; 2972 case MSR_VM_HSAVE_PA: 2973 svm->nested.hsave_msr = data; 2974 break; 2975 case MSR_VM_CR: 2976 return svm_set_vm_cr(vcpu, data); 2977 case MSR_VM_IGNNE: 2978 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2979 break; 2980 case MSR_F10H_DECFG: { 2981 struct kvm_msr_entry msr_entry; 2982 2983 msr_entry.index = msr->index; 2984 if (svm_get_msr_feature(&msr_entry)) 2985 return 1; 2986 2987 /* Check the supported bits */ 2988 if (data & ~msr_entry.data) 2989 return 1; 2990 2991 /* Don't allow the guest to change a bit, #GP */ 2992 if (!msr->host_initiated && (data ^ msr_entry.data)) 2993 return 1; 2994 2995 svm->msr_decfg = data; 2996 break; 2997 } 2998 case MSR_IA32_APICBASE: 2999 if (kvm_vcpu_apicv_active(vcpu)) 3000 avic_update_vapic_bar(to_svm(vcpu), data); 3001 fallthrough; 3002 default: 3003 return kvm_set_msr_common(vcpu, msr); 3004 } 3005 return 0; 3006 } 3007 3008 static int wrmsr_interception(struct vcpu_svm *svm) 3009 { 3010 return kvm_emulate_wrmsr(&svm->vcpu); 3011 } 3012 3013 static int msr_interception(struct vcpu_svm *svm) 3014 { 3015 if (svm->vmcb->control.exit_info_1) 3016 return wrmsr_interception(svm); 3017 else 3018 return rdmsr_interception(svm); 3019 } 3020 3021 static int interrupt_window_interception(struct vcpu_svm *svm) 3022 { 3023 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3024 svm_clear_vintr(svm); 3025 3026 /* 3027 * For AVIC, the only reason to end up here is ExtINTs. 3028 * In this case AVIC was temporarily disabled for 3029 * requesting the IRQ window and we have to re-enable it. 3030 */ 3031 svm_toggle_avic_for_irq_window(&svm->vcpu, true); 3032 3033 ++svm->vcpu.stat.irq_window_exits; 3034 return 1; 3035 } 3036 3037 static int pause_interception(struct vcpu_svm *svm) 3038 { 3039 struct kvm_vcpu *vcpu = &svm->vcpu; 3040 bool in_kernel; 3041 3042 /* 3043 * CPL is not made available for an SEV-ES guest, therefore 3044 * vcpu->arch.preempted_in_kernel can never be true. Just 3045 * set in_kernel to false as well. 3046 */ 3047 in_kernel = !sev_es_guest(svm->vcpu.kvm) && svm_get_cpl(vcpu) == 0; 3048 3049 if (!kvm_pause_in_guest(vcpu->kvm)) 3050 grow_ple_window(vcpu); 3051 3052 kvm_vcpu_on_spin(vcpu, in_kernel); 3053 return 1; 3054 } 3055 3056 static int nop_interception(struct vcpu_svm *svm) 3057 { 3058 return kvm_skip_emulated_instruction(&(svm->vcpu)); 3059 } 3060 3061 static int monitor_interception(struct vcpu_svm *svm) 3062 { 3063 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); 3064 return nop_interception(svm); 3065 } 3066 3067 static int mwait_interception(struct vcpu_svm *svm) 3068 { 3069 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); 3070 return nop_interception(svm); 3071 } 3072 3073 static int invpcid_interception(struct vcpu_svm *svm) 3074 { 3075 struct kvm_vcpu *vcpu = &svm->vcpu; 3076 unsigned long type; 3077 gva_t gva; 3078 3079 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3080 kvm_queue_exception(vcpu, UD_VECTOR); 3081 return 1; 3082 } 3083 3084 /* 3085 * For an INVPCID intercept: 3086 * EXITINFO1 provides the linear address of the memory operand. 3087 * EXITINFO2 provides the contents of the register operand. 3088 */ 3089 type = svm->vmcb->control.exit_info_2; 3090 gva = svm->vmcb->control.exit_info_1; 3091 3092 if (type > 3) { 3093 kvm_inject_gp(vcpu, 0); 3094 return 1; 3095 } 3096 3097 return kvm_handle_invpcid(vcpu, type, gva); 3098 } 3099 3100 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { 3101 [SVM_EXIT_READ_CR0] = cr_interception, 3102 [SVM_EXIT_READ_CR3] = cr_interception, 3103 [SVM_EXIT_READ_CR4] = cr_interception, 3104 [SVM_EXIT_READ_CR8] = cr_interception, 3105 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3106 [SVM_EXIT_WRITE_CR0] = cr_interception, 3107 [SVM_EXIT_WRITE_CR3] = cr_interception, 3108 [SVM_EXIT_WRITE_CR4] = cr_interception, 3109 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3110 [SVM_EXIT_READ_DR0] = dr_interception, 3111 [SVM_EXIT_READ_DR1] = dr_interception, 3112 [SVM_EXIT_READ_DR2] = dr_interception, 3113 [SVM_EXIT_READ_DR3] = dr_interception, 3114 [SVM_EXIT_READ_DR4] = dr_interception, 3115 [SVM_EXIT_READ_DR5] = dr_interception, 3116 [SVM_EXIT_READ_DR6] = dr_interception, 3117 [SVM_EXIT_READ_DR7] = dr_interception, 3118 [SVM_EXIT_WRITE_DR0] = dr_interception, 3119 [SVM_EXIT_WRITE_DR1] = dr_interception, 3120 [SVM_EXIT_WRITE_DR2] = dr_interception, 3121 [SVM_EXIT_WRITE_DR3] = dr_interception, 3122 [SVM_EXIT_WRITE_DR4] = dr_interception, 3123 [SVM_EXIT_WRITE_DR5] = dr_interception, 3124 [SVM_EXIT_WRITE_DR6] = dr_interception, 3125 [SVM_EXIT_WRITE_DR7] = dr_interception, 3126 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3127 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3128 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3129 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3130 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3131 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3132 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3133 [SVM_EXIT_INTR] = intr_interception, 3134 [SVM_EXIT_NMI] = nmi_interception, 3135 [SVM_EXIT_SMI] = nop_on_interception, 3136 [SVM_EXIT_INIT] = nop_on_interception, 3137 [SVM_EXIT_VINTR] = interrupt_window_interception, 3138 [SVM_EXIT_RDPMC] = rdpmc_interception, 3139 [SVM_EXIT_CPUID] = cpuid_interception, 3140 [SVM_EXIT_IRET] = iret_interception, 3141 [SVM_EXIT_INVD] = invd_interception, 3142 [SVM_EXIT_PAUSE] = pause_interception, 3143 [SVM_EXIT_HLT] = halt_interception, 3144 [SVM_EXIT_INVLPG] = invlpg_interception, 3145 [SVM_EXIT_INVLPGA] = invlpga_interception, 3146 [SVM_EXIT_IOIO] = io_interception, 3147 [SVM_EXIT_MSR] = msr_interception, 3148 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3149 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3150 [SVM_EXIT_VMRUN] = vmrun_interception, 3151 [SVM_EXIT_VMMCALL] = vmmcall_interception, 3152 [SVM_EXIT_VMLOAD] = vmload_interception, 3153 [SVM_EXIT_VMSAVE] = vmsave_interception, 3154 [SVM_EXIT_STGI] = stgi_interception, 3155 [SVM_EXIT_CLGI] = clgi_interception, 3156 [SVM_EXIT_SKINIT] = skinit_interception, 3157 [SVM_EXIT_WBINVD] = wbinvd_interception, 3158 [SVM_EXIT_MONITOR] = monitor_interception, 3159 [SVM_EXIT_MWAIT] = mwait_interception, 3160 [SVM_EXIT_XSETBV] = xsetbv_interception, 3161 [SVM_EXIT_RDPRU] = rdpru_interception, 3162 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3163 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3164 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3165 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3166 [SVM_EXIT_INVPCID] = invpcid_interception, 3167 [SVM_EXIT_NPF] = npf_interception, 3168 [SVM_EXIT_RSM] = rsm_interception, 3169 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3170 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3171 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3172 }; 3173 3174 static void dump_vmcb(struct kvm_vcpu *vcpu) 3175 { 3176 struct vcpu_svm *svm = to_svm(vcpu); 3177 struct vmcb_control_area *control = &svm->vmcb->control; 3178 struct vmcb_save_area *save = &svm->vmcb->save; 3179 3180 if (!dump_invalid_vmcb) { 3181 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3182 return; 3183 } 3184 3185 pr_err("VMCB Control Area:\n"); 3186 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3187 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3188 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3189 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3190 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3191 pr_err("%-20s%08x %08x\n", "intercepts:", 3192 control->intercepts[INTERCEPT_WORD3], 3193 control->intercepts[INTERCEPT_WORD4]); 3194 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3195 pr_err("%-20s%d\n", "pause filter threshold:", 3196 control->pause_filter_thresh); 3197 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3198 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3199 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3200 pr_err("%-20s%d\n", "asid:", control->asid); 3201 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3202 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3203 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3204 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3205 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3206 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3207 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3208 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3209 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3210 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3211 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3212 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3213 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3214 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3215 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3216 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3217 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3218 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3219 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3220 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3221 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3222 pr_err("VMCB State Save Area:\n"); 3223 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3224 "es:", 3225 save->es.selector, save->es.attrib, 3226 save->es.limit, save->es.base); 3227 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3228 "cs:", 3229 save->cs.selector, save->cs.attrib, 3230 save->cs.limit, save->cs.base); 3231 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3232 "ss:", 3233 save->ss.selector, save->ss.attrib, 3234 save->ss.limit, save->ss.base); 3235 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3236 "ds:", 3237 save->ds.selector, save->ds.attrib, 3238 save->ds.limit, save->ds.base); 3239 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3240 "fs:", 3241 save->fs.selector, save->fs.attrib, 3242 save->fs.limit, save->fs.base); 3243 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3244 "gs:", 3245 save->gs.selector, save->gs.attrib, 3246 save->gs.limit, save->gs.base); 3247 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3248 "gdtr:", 3249 save->gdtr.selector, save->gdtr.attrib, 3250 save->gdtr.limit, save->gdtr.base); 3251 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3252 "ldtr:", 3253 save->ldtr.selector, save->ldtr.attrib, 3254 save->ldtr.limit, save->ldtr.base); 3255 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3256 "idtr:", 3257 save->idtr.selector, save->idtr.attrib, 3258 save->idtr.limit, save->idtr.base); 3259 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3260 "tr:", 3261 save->tr.selector, save->tr.attrib, 3262 save->tr.limit, save->tr.base); 3263 pr_err("cpl: %d efer: %016llx\n", 3264 save->cpl, save->efer); 3265 pr_err("%-15s %016llx %-13s %016llx\n", 3266 "cr0:", save->cr0, "cr2:", save->cr2); 3267 pr_err("%-15s %016llx %-13s %016llx\n", 3268 "cr3:", save->cr3, "cr4:", save->cr4); 3269 pr_err("%-15s %016llx %-13s %016llx\n", 3270 "dr6:", save->dr6, "dr7:", save->dr7); 3271 pr_err("%-15s %016llx %-13s %016llx\n", 3272 "rip:", save->rip, "rflags:", save->rflags); 3273 pr_err("%-15s %016llx %-13s %016llx\n", 3274 "rsp:", save->rsp, "rax:", save->rax); 3275 pr_err("%-15s %016llx %-13s %016llx\n", 3276 "star:", save->star, "lstar:", save->lstar); 3277 pr_err("%-15s %016llx %-13s %016llx\n", 3278 "cstar:", save->cstar, "sfmask:", save->sfmask); 3279 pr_err("%-15s %016llx %-13s %016llx\n", 3280 "kernel_gs_base:", save->kernel_gs_base, 3281 "sysenter_cs:", save->sysenter_cs); 3282 pr_err("%-15s %016llx %-13s %016llx\n", 3283 "sysenter_esp:", save->sysenter_esp, 3284 "sysenter_eip:", save->sysenter_eip); 3285 pr_err("%-15s %016llx %-13s %016llx\n", 3286 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3287 pr_err("%-15s %016llx %-13s %016llx\n", 3288 "br_from:", save->br_from, "br_to:", save->br_to); 3289 pr_err("%-15s %016llx %-13s %016llx\n", 3290 "excp_from:", save->last_excp_from, 3291 "excp_to:", save->last_excp_to); 3292 } 3293 3294 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3295 { 3296 if (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3297 svm_exit_handlers[exit_code]) 3298 return 0; 3299 3300 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3301 dump_vmcb(vcpu); 3302 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3303 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3304 vcpu->run->internal.ndata = 2; 3305 vcpu->run->internal.data[0] = exit_code; 3306 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3307 3308 return -EINVAL; 3309 } 3310 3311 int svm_invoke_exit_handler(struct vcpu_svm *svm, u64 exit_code) 3312 { 3313 if (svm_handle_invalid_exit(&svm->vcpu, exit_code)) 3314 return 0; 3315 3316 #ifdef CONFIG_RETPOLINE 3317 if (exit_code == SVM_EXIT_MSR) 3318 return msr_interception(svm); 3319 else if (exit_code == SVM_EXIT_VINTR) 3320 return interrupt_window_interception(svm); 3321 else if (exit_code == SVM_EXIT_INTR) 3322 return intr_interception(svm); 3323 else if (exit_code == SVM_EXIT_HLT) 3324 return halt_interception(svm); 3325 else if (exit_code == SVM_EXIT_NPF) 3326 return npf_interception(svm); 3327 #endif 3328 return svm_exit_handlers[exit_code](svm); 3329 } 3330 3331 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 3332 u32 *intr_info, u32 *error_code) 3333 { 3334 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3335 3336 *info1 = control->exit_info_1; 3337 *info2 = control->exit_info_2; 3338 *intr_info = control->exit_int_info; 3339 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3340 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3341 *error_code = control->exit_int_info_err; 3342 else 3343 *error_code = 0; 3344 } 3345 3346 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3347 { 3348 struct vcpu_svm *svm = to_svm(vcpu); 3349 struct kvm_run *kvm_run = vcpu->run; 3350 u32 exit_code = svm->vmcb->control.exit_code; 3351 3352 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); 3353 3354 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3355 if (!sev_es_guest(vcpu->kvm)) { 3356 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3357 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3358 if (npt_enabled) 3359 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3360 } 3361 3362 if (is_guest_mode(vcpu)) { 3363 int vmexit; 3364 3365 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM); 3366 3367 vmexit = nested_svm_exit_special(svm); 3368 3369 if (vmexit == NESTED_EXIT_CONTINUE) 3370 vmexit = nested_svm_exit_handled(svm); 3371 3372 if (vmexit == NESTED_EXIT_DONE) 3373 return 1; 3374 } 3375 3376 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3377 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3378 kvm_run->fail_entry.hardware_entry_failure_reason 3379 = svm->vmcb->control.exit_code; 3380 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3381 dump_vmcb(vcpu); 3382 return 0; 3383 } 3384 3385 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3386 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3387 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3388 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3389 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3390 "exit_code 0x%x\n", 3391 __func__, svm->vmcb->control.exit_int_info, 3392 exit_code); 3393 3394 if (exit_fastpath != EXIT_FASTPATH_NONE) 3395 return 1; 3396 3397 return svm_invoke_exit_handler(svm, exit_code); 3398 } 3399 3400 static void reload_tss(struct kvm_vcpu *vcpu) 3401 { 3402 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3403 3404 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3405 load_TR_desc(); 3406 } 3407 3408 static void pre_svm_run(struct vcpu_svm *svm) 3409 { 3410 struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu); 3411 3412 if (sev_guest(svm->vcpu.kvm)) 3413 return pre_sev_run(svm, svm->vcpu.cpu); 3414 3415 /* FIXME: handle wraparound of asid_generation */ 3416 if (svm->asid_generation != sd->asid_generation) 3417 new_asid(svm, sd); 3418 } 3419 3420 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3421 { 3422 struct vcpu_svm *svm = to_svm(vcpu); 3423 3424 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3425 vcpu->arch.hflags |= HF_NMI_MASK; 3426 if (!sev_es_guest(svm->vcpu.kvm)) 3427 svm_set_intercept(svm, INTERCEPT_IRET); 3428 ++vcpu->stat.nmi_injections; 3429 } 3430 3431 static void svm_set_irq(struct kvm_vcpu *vcpu) 3432 { 3433 struct vcpu_svm *svm = to_svm(vcpu); 3434 3435 BUG_ON(!(gif_set(svm))); 3436 3437 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3438 ++vcpu->stat.irq_injections; 3439 3440 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3441 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3442 } 3443 3444 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3445 { 3446 struct vcpu_svm *svm = to_svm(vcpu); 3447 3448 /* 3449 * SEV-ES guests must always keep the CR intercepts cleared. CR 3450 * tracking is done using the CR write traps. 3451 */ 3452 if (sev_es_guest(vcpu->kvm)) 3453 return; 3454 3455 if (nested_svm_virtualize_tpr(vcpu)) 3456 return; 3457 3458 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3459 3460 if (irr == -1) 3461 return; 3462 3463 if (tpr >= irr) 3464 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3465 } 3466 3467 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3468 { 3469 struct vcpu_svm *svm = to_svm(vcpu); 3470 struct vmcb *vmcb = svm->vmcb; 3471 bool ret; 3472 3473 if (!gif_set(svm)) 3474 return true; 3475 3476 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3477 return false; 3478 3479 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3480 (svm->vcpu.arch.hflags & HF_NMI_MASK); 3481 3482 return ret; 3483 } 3484 3485 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3486 { 3487 struct vcpu_svm *svm = to_svm(vcpu); 3488 if (svm->nested.nested_run_pending) 3489 return -EBUSY; 3490 3491 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3492 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3493 return -EBUSY; 3494 3495 return !svm_nmi_blocked(vcpu); 3496 } 3497 3498 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3499 { 3500 struct vcpu_svm *svm = to_svm(vcpu); 3501 3502 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); 3503 } 3504 3505 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3506 { 3507 struct vcpu_svm *svm = to_svm(vcpu); 3508 3509 if (masked) { 3510 svm->vcpu.arch.hflags |= HF_NMI_MASK; 3511 if (!sev_es_guest(svm->vcpu.kvm)) 3512 svm_set_intercept(svm, INTERCEPT_IRET); 3513 } else { 3514 svm->vcpu.arch.hflags &= ~HF_NMI_MASK; 3515 if (!sev_es_guest(svm->vcpu.kvm)) 3516 svm_clr_intercept(svm, INTERCEPT_IRET); 3517 } 3518 } 3519 3520 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3521 { 3522 struct vcpu_svm *svm = to_svm(vcpu); 3523 struct vmcb *vmcb = svm->vmcb; 3524 3525 if (!gif_set(svm)) 3526 return true; 3527 3528 if (sev_es_guest(svm->vcpu.kvm)) { 3529 /* 3530 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask 3531 * bit to determine the state of the IF flag. 3532 */ 3533 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK)) 3534 return true; 3535 } else if (is_guest_mode(vcpu)) { 3536 /* As long as interrupts are being delivered... */ 3537 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3538 ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF) 3539 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3540 return true; 3541 3542 /* ... vmexits aren't blocked by the interrupt shadow */ 3543 if (nested_exit_on_intr(svm)) 3544 return false; 3545 } else { 3546 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3547 return true; 3548 } 3549 3550 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3551 } 3552 3553 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3554 { 3555 struct vcpu_svm *svm = to_svm(vcpu); 3556 if (svm->nested.nested_run_pending) 3557 return -EBUSY; 3558 3559 /* 3560 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3561 * e.g. if the IRQ arrived asynchronously after checking nested events. 3562 */ 3563 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3564 return -EBUSY; 3565 3566 return !svm_interrupt_blocked(vcpu); 3567 } 3568 3569 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3570 { 3571 struct vcpu_svm *svm = to_svm(vcpu); 3572 3573 /* 3574 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3575 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3576 * get that intercept, this function will be called again though and 3577 * we'll get the vintr intercept. However, if the vGIF feature is 3578 * enabled, the STGI interception will not occur. Enable the irq 3579 * window under the assumption that the hardware will set the GIF. 3580 */ 3581 if (vgif_enabled(svm) || gif_set(svm)) { 3582 /* 3583 * IRQ window is not needed when AVIC is enabled, 3584 * unless we have pending ExtINT since it cannot be injected 3585 * via AVIC. In such case, we need to temporarily disable AVIC, 3586 * and fallback to injecting IRQ via V_IRQ. 3587 */ 3588 svm_toggle_avic_for_irq_window(vcpu, false); 3589 svm_set_vintr(svm); 3590 } 3591 } 3592 3593 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3594 { 3595 struct vcpu_svm *svm = to_svm(vcpu); 3596 3597 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) 3598 == HF_NMI_MASK) 3599 return; /* IRET will cause a vm exit */ 3600 3601 if (!gif_set(svm)) { 3602 if (vgif_enabled(svm)) 3603 svm_set_intercept(svm, INTERCEPT_STGI); 3604 return; /* STGI will cause a vm exit */ 3605 } 3606 3607 /* 3608 * Something prevents NMI from been injected. Single step over possible 3609 * problem (IRET or exception injection or interrupt shadow) 3610 */ 3611 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3612 svm->nmi_singlestep = true; 3613 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3614 } 3615 3616 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) 3617 { 3618 return 0; 3619 } 3620 3621 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 3622 { 3623 return 0; 3624 } 3625 3626 void svm_flush_tlb(struct kvm_vcpu *vcpu) 3627 { 3628 struct vcpu_svm *svm = to_svm(vcpu); 3629 3630 /* 3631 * Flush only the current ASID even if the TLB flush was invoked via 3632 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3633 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3634 * unconditionally does a TLB flush on both nested VM-Enter and nested 3635 * VM-Exit (via kvm_mmu_reset_context()). 3636 */ 3637 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3638 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3639 else 3640 svm->asid_generation--; 3641 } 3642 3643 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3644 { 3645 struct vcpu_svm *svm = to_svm(vcpu); 3646 3647 invlpga(gva, svm->vmcb->control.asid); 3648 } 3649 3650 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3651 { 3652 struct vcpu_svm *svm = to_svm(vcpu); 3653 3654 if (nested_svm_virtualize_tpr(vcpu)) 3655 return; 3656 3657 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3658 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3659 kvm_set_cr8(vcpu, cr8); 3660 } 3661 } 3662 3663 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3664 { 3665 struct vcpu_svm *svm = to_svm(vcpu); 3666 u64 cr8; 3667 3668 if (nested_svm_virtualize_tpr(vcpu) || 3669 kvm_vcpu_apicv_active(vcpu)) 3670 return; 3671 3672 cr8 = kvm_get_cr8(vcpu); 3673 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3674 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3675 } 3676 3677 static void svm_complete_interrupts(struct vcpu_svm *svm) 3678 { 3679 u8 vector; 3680 int type; 3681 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3682 unsigned int3_injected = svm->int3_injected; 3683 3684 svm->int3_injected = 0; 3685 3686 /* 3687 * If we've made progress since setting HF_IRET_MASK, we've 3688 * executed an IRET and can allow NMI injection. 3689 */ 3690 if ((svm->vcpu.arch.hflags & HF_IRET_MASK) && 3691 (sev_es_guest(svm->vcpu.kvm) || 3692 kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip)) { 3693 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3694 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3695 } 3696 3697 svm->vcpu.arch.nmi_injected = false; 3698 kvm_clear_exception_queue(&svm->vcpu); 3699 kvm_clear_interrupt_queue(&svm->vcpu); 3700 3701 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3702 return; 3703 3704 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 3705 3706 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3707 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3708 3709 switch (type) { 3710 case SVM_EXITINTINFO_TYPE_NMI: 3711 svm->vcpu.arch.nmi_injected = true; 3712 break; 3713 case SVM_EXITINTINFO_TYPE_EXEPT: 3714 /* 3715 * Never re-inject a #VC exception. 3716 */ 3717 if (vector == X86_TRAP_VC) 3718 break; 3719 3720 /* 3721 * In case of software exceptions, do not reinject the vector, 3722 * but re-execute the instruction instead. Rewind RIP first 3723 * if we emulated INT3 before. 3724 */ 3725 if (kvm_exception_is_soft(vector)) { 3726 if (vector == BP_VECTOR && int3_injected && 3727 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) 3728 kvm_rip_write(&svm->vcpu, 3729 kvm_rip_read(&svm->vcpu) - 3730 int3_injected); 3731 break; 3732 } 3733 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3734 u32 err = svm->vmcb->control.exit_int_info_err; 3735 kvm_requeue_exception_e(&svm->vcpu, vector, err); 3736 3737 } else 3738 kvm_requeue_exception(&svm->vcpu, vector); 3739 break; 3740 case SVM_EXITINTINFO_TYPE_INTR: 3741 kvm_queue_interrupt(&svm->vcpu, vector, false); 3742 break; 3743 default: 3744 break; 3745 } 3746 } 3747 3748 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3749 { 3750 struct vcpu_svm *svm = to_svm(vcpu); 3751 struct vmcb_control_area *control = &svm->vmcb->control; 3752 3753 control->exit_int_info = control->event_inj; 3754 control->exit_int_info_err = control->event_inj_err; 3755 control->event_inj = 0; 3756 svm_complete_interrupts(svm); 3757 } 3758 3759 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3760 { 3761 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3762 to_svm(vcpu)->vmcb->control.exit_info_1) 3763 return handle_fastpath_set_msr_irqoff(vcpu); 3764 3765 return EXIT_FASTPATH_NONE; 3766 } 3767 3768 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, 3769 struct vcpu_svm *svm) 3770 { 3771 /* 3772 * VMENTER enables interrupts (host state), but the kernel state is 3773 * interrupts disabled when this is invoked. Also tell RCU about 3774 * it. This is the same logic as for exit_to_user_mode(). 3775 * 3776 * This ensures that e.g. latency analysis on the host observes 3777 * guest mode as interrupt enabled. 3778 * 3779 * guest_enter_irqoff() informs context tracking about the 3780 * transition to guest mode and if enabled adjusts RCU state 3781 * accordingly. 3782 */ 3783 instrumentation_begin(); 3784 trace_hardirqs_on_prepare(); 3785 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 3786 instrumentation_end(); 3787 3788 guest_enter_irqoff(); 3789 lockdep_hardirqs_on(CALLER_ADDR0); 3790 3791 if (sev_es_guest(svm->vcpu.kvm)) { 3792 __svm_sev_es_vcpu_run(svm->vmcb_pa); 3793 } else { 3794 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3795 3796 __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs); 3797 3798 vmload(__sme_page_pa(sd->save_area)); 3799 } 3800 3801 /* 3802 * VMEXIT disables interrupts (host state), but tracing and lockdep 3803 * have them in state 'on' as recorded before entering guest mode. 3804 * Same as enter_from_user_mode(). 3805 * 3806 * guest_exit_irqoff() restores host context and reinstates RCU if 3807 * enabled and required. 3808 * 3809 * This needs to be done before the below as native_read_msr() 3810 * contains a tracepoint and x86_spec_ctrl_restore_host() calls 3811 * into world and some more. 3812 */ 3813 lockdep_hardirqs_off(CALLER_ADDR0); 3814 guest_exit_irqoff(); 3815 3816 instrumentation_begin(); 3817 trace_hardirqs_off_finish(); 3818 instrumentation_end(); 3819 } 3820 3821 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3822 { 3823 struct vcpu_svm *svm = to_svm(vcpu); 3824 3825 trace_kvm_entry(vcpu); 3826 3827 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3828 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3829 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3830 3831 /* 3832 * Disable singlestep if we're injecting an interrupt/exception. 3833 * We don't want our modified rflags to be pushed on the stack where 3834 * we might not be able to easily reset them if we disabled NMI 3835 * singlestep later. 3836 */ 3837 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3838 /* 3839 * Event injection happens before external interrupts cause a 3840 * vmexit and interrupts are disabled here, so smp_send_reschedule 3841 * is enough to force an immediate vmexit. 3842 */ 3843 disable_nmi_singlestep(svm); 3844 smp_send_reschedule(vcpu->cpu); 3845 } 3846 3847 pre_svm_run(svm); 3848 3849 sync_lapic_to_cr8(vcpu); 3850 3851 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3852 svm->vmcb->control.asid = svm->asid; 3853 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3854 } 3855 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3856 3857 /* 3858 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3859 * of a #DB. 3860 */ 3861 if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3862 svm_set_dr6(svm, vcpu->arch.dr6); 3863 else 3864 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3865 3866 clgi(); 3867 kvm_load_guest_xsave_state(vcpu); 3868 3869 kvm_wait_lapic_expire(vcpu); 3870 3871 /* 3872 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3873 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3874 * is no need to worry about the conditional branch over the wrmsr 3875 * being speculatively taken. 3876 */ 3877 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3878 3879 svm_vcpu_enter_exit(vcpu, svm); 3880 3881 /* 3882 * We do not use IBRS in the kernel. If this vCPU has used the 3883 * SPEC_CTRL MSR it may have left it on; save the value and 3884 * turn it off. This is much more efficient than blindly adding 3885 * it to the atomic save/restore list. Especially as the former 3886 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3887 * 3888 * For non-nested case: 3889 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3890 * save it. 3891 * 3892 * For nested case: 3893 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3894 * save it. 3895 */ 3896 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3897 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3898 3899 if (!sev_es_guest(svm->vcpu.kvm)) 3900 reload_tss(vcpu); 3901 3902 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3903 3904 if (!sev_es_guest(svm->vcpu.kvm)) { 3905 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3906 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3907 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3908 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3909 } 3910 3911 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3912 kvm_before_interrupt(&svm->vcpu); 3913 3914 kvm_load_host_xsave_state(vcpu); 3915 stgi(); 3916 3917 /* Any pending NMI will happen here */ 3918 3919 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3920 kvm_after_interrupt(&svm->vcpu); 3921 3922 sync_cr8_to_lapic(vcpu); 3923 3924 svm->next_rip = 0; 3925 if (is_guest_mode(&svm->vcpu)) { 3926 sync_nested_vmcb_control(svm); 3927 svm->nested.nested_run_pending = 0; 3928 } 3929 3930 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3931 vmcb_mark_all_clean(svm->vmcb); 3932 3933 /* if exit due to PF check for async PF */ 3934 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3935 svm->vcpu.arch.apf.host_apf_flags = 3936 kvm_read_and_reset_apf_flags(); 3937 3938 if (npt_enabled) { 3939 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); 3940 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); 3941 } 3942 3943 /* 3944 * We need to handle MC intercepts here before the vcpu has a chance to 3945 * change the physical cpu 3946 */ 3947 if (unlikely(svm->vmcb->control.exit_code == 3948 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3949 svm_handle_mce(svm); 3950 3951 svm_complete_interrupts(svm); 3952 3953 if (is_guest_mode(vcpu)) 3954 return EXIT_FASTPATH_NONE; 3955 3956 return svm_exit_handlers_fastpath(vcpu); 3957 } 3958 3959 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root, 3960 int root_level) 3961 { 3962 struct vcpu_svm *svm = to_svm(vcpu); 3963 unsigned long cr3; 3964 3965 cr3 = __sme_set(root); 3966 if (npt_enabled) { 3967 svm->vmcb->control.nested_cr3 = cr3; 3968 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3969 3970 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ 3971 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3972 return; 3973 cr3 = vcpu->arch.cr3; 3974 } 3975 3976 svm->vmcb->save.cr3 = cr3; 3977 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 3978 } 3979 3980 static int is_disabled(void) 3981 { 3982 u64 vm_cr; 3983 3984 rdmsrl(MSR_VM_CR, vm_cr); 3985 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3986 return 1; 3987 3988 return 0; 3989 } 3990 3991 static void 3992 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3993 { 3994 /* 3995 * Patch in the VMMCALL instruction: 3996 */ 3997 hypercall[0] = 0x0f; 3998 hypercall[1] = 0x01; 3999 hypercall[2] = 0xd9; 4000 } 4001 4002 static int __init svm_check_processor_compat(void) 4003 { 4004 return 0; 4005 } 4006 4007 static bool svm_cpu_has_accelerated_tpr(void) 4008 { 4009 return false; 4010 } 4011 4012 /* 4013 * The kvm parameter can be NULL (module initialization, or invocation before 4014 * VM creation). Be sure to check the kvm parameter before using it. 4015 */ 4016 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4017 { 4018 switch (index) { 4019 case MSR_IA32_MCG_EXT_CTL: 4020 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 4021 return false; 4022 case MSR_IA32_SMBASE: 4023 /* SEV-ES guests do not support SMM, so report false */ 4024 if (kvm && sev_es_guest(kvm)) 4025 return false; 4026 break; 4027 default: 4028 break; 4029 } 4030 4031 return true; 4032 } 4033 4034 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 4035 { 4036 return 0; 4037 } 4038 4039 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4040 { 4041 struct vcpu_svm *svm = to_svm(vcpu); 4042 struct kvm_cpuid_entry2 *best; 4043 4044 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4045 boot_cpu_has(X86_FEATURE_XSAVE) && 4046 boot_cpu_has(X86_FEATURE_XSAVES); 4047 4048 /* Update nrips enabled cache */ 4049 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 4050 guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS); 4051 4052 /* Check again if INVPCID interception if required */ 4053 svm_check_invpcid(svm); 4054 4055 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4056 if (sev_guest(vcpu->kvm)) { 4057 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); 4058 if (best) 4059 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4060 } 4061 4062 if (!kvm_vcpu_apicv_active(vcpu)) 4063 return; 4064 4065 /* 4066 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 4067 * is exposed to the guest, disable AVIC. 4068 */ 4069 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 4070 kvm_request_apicv_update(vcpu->kvm, false, 4071 APICV_INHIBIT_REASON_X2APIC); 4072 4073 /* 4074 * Currently, AVIC does not work with nested virtualization. 4075 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 4076 */ 4077 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4078 kvm_request_apicv_update(vcpu->kvm, false, 4079 APICV_INHIBIT_REASON_NESTED); 4080 } 4081 4082 static bool svm_has_wbinvd_exit(void) 4083 { 4084 return true; 4085 } 4086 4087 #define PRE_EX(exit) { .exit_code = (exit), \ 4088 .stage = X86_ICPT_PRE_EXCEPT, } 4089 #define POST_EX(exit) { .exit_code = (exit), \ 4090 .stage = X86_ICPT_POST_EXCEPT, } 4091 #define POST_MEM(exit) { .exit_code = (exit), \ 4092 .stage = X86_ICPT_POST_MEMACCESS, } 4093 4094 static const struct __x86_intercept { 4095 u32 exit_code; 4096 enum x86_intercept_stage stage; 4097 } x86_intercept_map[] = { 4098 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4099 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4100 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4101 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4102 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4103 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4104 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4105 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4106 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4107 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4108 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4109 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4110 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4111 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4112 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4113 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4114 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4115 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4116 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4117 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4118 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4119 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4120 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4121 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4122 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4123 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4124 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4125 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4126 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4127 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4128 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4129 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4130 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4131 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4132 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4133 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4134 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4135 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4136 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4137 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4138 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4139 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4140 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4141 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4142 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4143 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4144 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4145 }; 4146 4147 #undef PRE_EX 4148 #undef POST_EX 4149 #undef POST_MEM 4150 4151 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4152 struct x86_instruction_info *info, 4153 enum x86_intercept_stage stage, 4154 struct x86_exception *exception) 4155 { 4156 struct vcpu_svm *svm = to_svm(vcpu); 4157 int vmexit, ret = X86EMUL_CONTINUE; 4158 struct __x86_intercept icpt_info; 4159 struct vmcb *vmcb = svm->vmcb; 4160 4161 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4162 goto out; 4163 4164 icpt_info = x86_intercept_map[info->intercept]; 4165 4166 if (stage != icpt_info.stage) 4167 goto out; 4168 4169 switch (icpt_info.exit_code) { 4170 case SVM_EXIT_READ_CR0: 4171 if (info->intercept == x86_intercept_cr_read) 4172 icpt_info.exit_code += info->modrm_reg; 4173 break; 4174 case SVM_EXIT_WRITE_CR0: { 4175 unsigned long cr0, val; 4176 4177 if (info->intercept == x86_intercept_cr_write) 4178 icpt_info.exit_code += info->modrm_reg; 4179 4180 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4181 info->intercept == x86_intercept_clts) 4182 break; 4183 4184 if (!(vmcb_is_intercept(&svm->nested.ctl, 4185 INTERCEPT_SELECTIVE_CR0))) 4186 break; 4187 4188 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4189 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4190 4191 if (info->intercept == x86_intercept_lmsw) { 4192 cr0 &= 0xfUL; 4193 val &= 0xfUL; 4194 /* lmsw can't clear PE - catch this here */ 4195 if (cr0 & X86_CR0_PE) 4196 val |= X86_CR0_PE; 4197 } 4198 4199 if (cr0 ^ val) 4200 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4201 4202 break; 4203 } 4204 case SVM_EXIT_READ_DR0: 4205 case SVM_EXIT_WRITE_DR0: 4206 icpt_info.exit_code += info->modrm_reg; 4207 break; 4208 case SVM_EXIT_MSR: 4209 if (info->intercept == x86_intercept_wrmsr) 4210 vmcb->control.exit_info_1 = 1; 4211 else 4212 vmcb->control.exit_info_1 = 0; 4213 break; 4214 case SVM_EXIT_PAUSE: 4215 /* 4216 * We get this for NOP only, but pause 4217 * is rep not, check this here 4218 */ 4219 if (info->rep_prefix != REPE_PREFIX) 4220 goto out; 4221 break; 4222 case SVM_EXIT_IOIO: { 4223 u64 exit_info; 4224 u32 bytes; 4225 4226 if (info->intercept == x86_intercept_in || 4227 info->intercept == x86_intercept_ins) { 4228 exit_info = ((info->src_val & 0xffff) << 16) | 4229 SVM_IOIO_TYPE_MASK; 4230 bytes = info->dst_bytes; 4231 } else { 4232 exit_info = (info->dst_val & 0xffff) << 16; 4233 bytes = info->src_bytes; 4234 } 4235 4236 if (info->intercept == x86_intercept_outs || 4237 info->intercept == x86_intercept_ins) 4238 exit_info |= SVM_IOIO_STR_MASK; 4239 4240 if (info->rep_prefix) 4241 exit_info |= SVM_IOIO_REP_MASK; 4242 4243 bytes = min(bytes, 4u); 4244 4245 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4246 4247 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4248 4249 vmcb->control.exit_info_1 = exit_info; 4250 vmcb->control.exit_info_2 = info->next_rip; 4251 4252 break; 4253 } 4254 default: 4255 break; 4256 } 4257 4258 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4259 if (static_cpu_has(X86_FEATURE_NRIPS)) 4260 vmcb->control.next_rip = info->next_rip; 4261 vmcb->control.exit_code = icpt_info.exit_code; 4262 vmexit = nested_svm_exit_handled(svm); 4263 4264 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4265 : X86EMUL_CONTINUE; 4266 4267 out: 4268 return ret; 4269 } 4270 4271 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4272 { 4273 } 4274 4275 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4276 { 4277 if (!kvm_pause_in_guest(vcpu->kvm)) 4278 shrink_ple_window(vcpu); 4279 } 4280 4281 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4282 { 4283 /* [63:9] are reserved. */ 4284 vcpu->arch.mcg_cap &= 0x1ff; 4285 } 4286 4287 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4288 { 4289 struct vcpu_svm *svm = to_svm(vcpu); 4290 4291 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4292 if (!gif_set(svm)) 4293 return true; 4294 4295 return is_smm(vcpu); 4296 } 4297 4298 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4299 { 4300 struct vcpu_svm *svm = to_svm(vcpu); 4301 if (svm->nested.nested_run_pending) 4302 return -EBUSY; 4303 4304 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4305 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4306 return -EBUSY; 4307 4308 return !svm_smi_blocked(vcpu); 4309 } 4310 4311 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4312 { 4313 struct vcpu_svm *svm = to_svm(vcpu); 4314 int ret; 4315 4316 if (is_guest_mode(vcpu)) { 4317 /* FED8h - SVM Guest */ 4318 put_smstate(u64, smstate, 0x7ed8, 1); 4319 /* FEE0h - SVM Guest VMCB Physical Address */ 4320 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4321 4322 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4323 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4324 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4325 4326 ret = nested_svm_vmexit(svm); 4327 if (ret) 4328 return ret; 4329 } 4330 return 0; 4331 } 4332 4333 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4334 { 4335 struct vcpu_svm *svm = to_svm(vcpu); 4336 struct kvm_host_map map; 4337 int ret = 0; 4338 4339 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) { 4340 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4341 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8); 4342 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4343 4344 if (guest) { 4345 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4346 return 1; 4347 4348 if (!(saved_efer & EFER_SVME)) 4349 return 1; 4350 4351 if (kvm_vcpu_map(&svm->vcpu, 4352 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4353 return 1; 4354 4355 if (svm_allocate_nested(svm)) 4356 return 1; 4357 4358 ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva); 4359 kvm_vcpu_unmap(&svm->vcpu, &map, true); 4360 } 4361 } 4362 4363 return ret; 4364 } 4365 4366 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4367 { 4368 struct vcpu_svm *svm = to_svm(vcpu); 4369 4370 if (!gif_set(svm)) { 4371 if (vgif_enabled(svm)) 4372 svm_set_intercept(svm, INTERCEPT_STGI); 4373 /* STGI will cause a vm exit */ 4374 } else { 4375 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4376 } 4377 } 4378 4379 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 4380 { 4381 bool smep, smap, is_user; 4382 unsigned long cr4; 4383 4384 /* 4385 * When the guest is an SEV-ES guest, emulation is not possible. 4386 */ 4387 if (sev_es_guest(vcpu->kvm)) 4388 return false; 4389 4390 /* 4391 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4392 * 4393 * Errata: 4394 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is 4395 * possible that CPU microcode implementing DecodeAssist will fail 4396 * to read bytes of instruction which caused #NPF. In this case, 4397 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly 4398 * return 0 instead of the correct guest instruction bytes. 4399 * 4400 * This happens because CPU microcode reading instruction bytes 4401 * uses a special opcode which attempts to read data using CPL=0 4402 * priviledges. The microcode reads CS:RIP and if it hits a SMAP 4403 * fault, it gives up and returns no instruction bytes. 4404 * 4405 * Detection: 4406 * We reach here in case CPU supports DecodeAssist, raised #NPF and 4407 * returned 0 in GuestIntrBytes field of the VMCB. 4408 * First, errata can only be triggered in case vCPU CR4.SMAP=1. 4409 * Second, if vCPU CR4.SMEP=1, errata could only be triggered 4410 * in case vCPU CPL==3 (Because otherwise guest would have triggered 4411 * a SMEP fault instead of #NPF). 4412 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. 4413 * As most guests enable SMAP if they have also enabled SMEP, use above 4414 * logic in order to attempt minimize false-positive of detecting errata 4415 * while still preserving all cases semantic correctness. 4416 * 4417 * Workaround: 4418 * To determine what instruction the guest was executing, the hypervisor 4419 * will have to decode the instruction at the instruction pointer. 4420 * 4421 * In non SEV guest, hypervisor will be able to read the guest 4422 * memory to decode the instruction pointer when insn_len is zero 4423 * so we return true to indicate that decoding is possible. 4424 * 4425 * But in the SEV guest, the guest memory is encrypted with the 4426 * guest specific key and hypervisor will not be able to decode the 4427 * instruction pointer so we will not able to workaround it. Lets 4428 * print the error and request to kill the guest. 4429 */ 4430 if (likely(!insn || insn_len)) 4431 return true; 4432 4433 /* 4434 * If RIP is invalid, go ahead with emulation which will cause an 4435 * internal error exit. 4436 */ 4437 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT)) 4438 return true; 4439 4440 cr4 = kvm_read_cr4(vcpu); 4441 smep = cr4 & X86_CR4_SMEP; 4442 smap = cr4 & X86_CR4_SMAP; 4443 is_user = svm_get_cpl(vcpu) == 3; 4444 if (smap && (!smep || is_user)) { 4445 if (!sev_guest(vcpu->kvm)) 4446 return true; 4447 4448 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4449 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4450 } 4451 4452 return false; 4453 } 4454 4455 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4456 { 4457 struct vcpu_svm *svm = to_svm(vcpu); 4458 4459 /* 4460 * TODO: Last condition latch INIT signals on vCPU when 4461 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4462 * To properly emulate the INIT intercept, 4463 * svm_check_nested_events() should call nested_svm_vmexit() 4464 * if an INIT signal is pending. 4465 */ 4466 return !gif_set(svm) || 4467 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); 4468 } 4469 4470 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4471 { 4472 if (!sev_es_guest(vcpu->kvm)) 4473 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4474 4475 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4476 } 4477 4478 static void svm_vm_destroy(struct kvm *kvm) 4479 { 4480 avic_vm_destroy(kvm); 4481 sev_vm_destroy(kvm); 4482 } 4483 4484 static int svm_vm_init(struct kvm *kvm) 4485 { 4486 if (!pause_filter_count || !pause_filter_thresh) 4487 kvm->arch.pause_in_guest = true; 4488 4489 if (avic) { 4490 int ret = avic_vm_init(kvm); 4491 if (ret) 4492 return ret; 4493 } 4494 4495 kvm_apicv_init(kvm, avic); 4496 return 0; 4497 } 4498 4499 static struct kvm_x86_ops svm_x86_ops __initdata = { 4500 .hardware_unsetup = svm_hardware_teardown, 4501 .hardware_enable = svm_hardware_enable, 4502 .hardware_disable = svm_hardware_disable, 4503 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, 4504 .has_emulated_msr = svm_has_emulated_msr, 4505 4506 .vcpu_create = svm_create_vcpu, 4507 .vcpu_free = svm_free_vcpu, 4508 .vcpu_reset = svm_vcpu_reset, 4509 4510 .vm_size = sizeof(struct kvm_svm), 4511 .vm_init = svm_vm_init, 4512 .vm_destroy = svm_vm_destroy, 4513 4514 .prepare_guest_switch = svm_prepare_guest_switch, 4515 .vcpu_load = svm_vcpu_load, 4516 .vcpu_put = svm_vcpu_put, 4517 .vcpu_blocking = svm_vcpu_blocking, 4518 .vcpu_unblocking = svm_vcpu_unblocking, 4519 4520 .update_exception_bitmap = svm_update_exception_bitmap, 4521 .get_msr_feature = svm_get_msr_feature, 4522 .get_msr = svm_get_msr, 4523 .set_msr = svm_set_msr, 4524 .get_segment_base = svm_get_segment_base, 4525 .get_segment = svm_get_segment, 4526 .set_segment = svm_set_segment, 4527 .get_cpl = svm_get_cpl, 4528 .get_cs_db_l_bits = kvm_get_cs_db_l_bits, 4529 .set_cr0 = svm_set_cr0, 4530 .is_valid_cr4 = svm_is_valid_cr4, 4531 .set_cr4 = svm_set_cr4, 4532 .set_efer = svm_set_efer, 4533 .get_idt = svm_get_idt, 4534 .set_idt = svm_set_idt, 4535 .get_gdt = svm_get_gdt, 4536 .set_gdt = svm_set_gdt, 4537 .set_dr7 = svm_set_dr7, 4538 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4539 .cache_reg = svm_cache_reg, 4540 .get_rflags = svm_get_rflags, 4541 .set_rflags = svm_set_rflags, 4542 4543 .tlb_flush_all = svm_flush_tlb, 4544 .tlb_flush_current = svm_flush_tlb, 4545 .tlb_flush_gva = svm_flush_tlb_gva, 4546 .tlb_flush_guest = svm_flush_tlb, 4547 4548 .run = svm_vcpu_run, 4549 .handle_exit = handle_exit, 4550 .skip_emulated_instruction = skip_emulated_instruction, 4551 .update_emulated_instruction = NULL, 4552 .set_interrupt_shadow = svm_set_interrupt_shadow, 4553 .get_interrupt_shadow = svm_get_interrupt_shadow, 4554 .patch_hypercall = svm_patch_hypercall, 4555 .set_irq = svm_set_irq, 4556 .set_nmi = svm_inject_nmi, 4557 .queue_exception = svm_queue_exception, 4558 .cancel_injection = svm_cancel_injection, 4559 .interrupt_allowed = svm_interrupt_allowed, 4560 .nmi_allowed = svm_nmi_allowed, 4561 .get_nmi_mask = svm_get_nmi_mask, 4562 .set_nmi_mask = svm_set_nmi_mask, 4563 .enable_nmi_window = svm_enable_nmi_window, 4564 .enable_irq_window = svm_enable_irq_window, 4565 .update_cr8_intercept = svm_update_cr8_intercept, 4566 .set_virtual_apic_mode = svm_set_virtual_apic_mode, 4567 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, 4568 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, 4569 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl, 4570 .load_eoi_exitmap = svm_load_eoi_exitmap, 4571 .hwapic_irr_update = svm_hwapic_irr_update, 4572 .hwapic_isr_update = svm_hwapic_isr_update, 4573 .sync_pir_to_irr = kvm_lapic_find_highest_irr, 4574 .apicv_post_state_restore = avic_post_state_restore, 4575 4576 .set_tss_addr = svm_set_tss_addr, 4577 .set_identity_map_addr = svm_set_identity_map_addr, 4578 .get_mt_mask = svm_get_mt_mask, 4579 4580 .get_exit_info = svm_get_exit_info, 4581 4582 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4583 4584 .has_wbinvd_exit = svm_has_wbinvd_exit, 4585 4586 .write_l1_tsc_offset = svm_write_l1_tsc_offset, 4587 4588 .load_mmu_pgd = svm_load_mmu_pgd, 4589 4590 .check_intercept = svm_check_intercept, 4591 .handle_exit_irqoff = svm_handle_exit_irqoff, 4592 4593 .request_immediate_exit = __kvm_request_immediate_exit, 4594 4595 .sched_in = svm_sched_in, 4596 4597 .pmu_ops = &amd_pmu_ops, 4598 .nested_ops = &svm_nested_ops, 4599 4600 .deliver_posted_interrupt = svm_deliver_avic_intr, 4601 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, 4602 .update_pi_irte = svm_update_pi_irte, 4603 .setup_mce = svm_setup_mce, 4604 4605 .smi_allowed = svm_smi_allowed, 4606 .pre_enter_smm = svm_pre_enter_smm, 4607 .pre_leave_smm = svm_pre_leave_smm, 4608 .enable_smi_window = svm_enable_smi_window, 4609 4610 .mem_enc_op = svm_mem_enc_op, 4611 .mem_enc_reg_region = svm_register_enc_region, 4612 .mem_enc_unreg_region = svm_unregister_enc_region, 4613 4614 .can_emulate_instruction = svm_can_emulate_instruction, 4615 4616 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4617 4618 .msr_filter_changed = svm_msr_filter_changed, 4619 .complete_emulated_msr = svm_complete_emulated_msr, 4620 4621 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4622 }; 4623 4624 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4625 .cpu_has_kvm_support = has_svm, 4626 .disabled_by_bios = is_disabled, 4627 .hardware_setup = svm_hardware_setup, 4628 .check_processor_compatibility = svm_check_processor_compat, 4629 4630 .runtime_ops = &svm_x86_ops, 4631 }; 4632 4633 static int __init svm_init(void) 4634 { 4635 __unused_size_checks(); 4636 4637 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4638 __alignof__(struct vcpu_svm), THIS_MODULE); 4639 } 4640 4641 static void __exit svm_exit(void) 4642 { 4643 kvm_exit(); 4644 } 4645 4646 module_init(svm_init) 4647 module_exit(svm_exit) 4648