xref: /openbmc/linux/arch/x86/kvm/svm/svm.c (revision 09b4aa28)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/reboot.h>
43 #include <asm/fpu/api.h>
44 
45 #include <trace/events/ipi.h>
46 
47 #include "trace.h"
48 
49 #include "svm.h"
50 #include "svm_ops.h"
51 
52 #include "kvm_onhyperv.h"
53 #include "svm_onhyperv.h"
54 
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57 
58 #ifdef MODULE
59 static const struct x86_cpu_id svm_cpu_id[] = {
60 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
61 	{}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64 #endif
65 
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
68 
69 static bool erratum_383_found __read_mostly;
70 
71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
72 
73 /*
74  * Set osvw_len to higher value when updated Revision Guides
75  * are published and we know what the new status bits are
76  */
77 static uint64_t osvw_len = 4, osvw_status;
78 
79 static DEFINE_PER_CPU(u64, current_tsc_ratio);
80 
81 #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
82 
83 static const struct svm_direct_access_msrs {
84 	u32 index;   /* Index of the MSR */
85 	bool always; /* True if intercept is initially cleared */
86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
87 	{ .index = MSR_STAR,				.always = true  },
88 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
89 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
90 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
91 #ifdef CONFIG_X86_64
92 	{ .index = MSR_GS_BASE,				.always = true  },
93 	{ .index = MSR_FS_BASE,				.always = true  },
94 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
95 	{ .index = MSR_LSTAR,				.always = true  },
96 	{ .index = MSR_CSTAR,				.always = true  },
97 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
98 #endif
99 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
100 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
101 	{ .index = MSR_IA32_FLUSH_CMD,			.always = false },
102 	{ .index = MSR_IA32_DEBUGCTLMSR,		.always = false },
103 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
104 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
105 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
106 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
107 	{ .index = MSR_IA32_XSS,			.always = false },
108 	{ .index = MSR_EFER,				.always = false },
109 	{ .index = MSR_IA32_CR_PAT,			.always = false },
110 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
111 	{ .index = MSR_TSC_AUX,				.always = false },
112 	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
113 	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
114 	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
115 	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
116 	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
117 	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
118 	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
119 	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
120 	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
121 	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
122 	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
123 	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
124 	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
125 	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
126 	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
127 	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
128 
129 	/*
130 	 * Note:
131 	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
132 	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
133 	 * the AVIC hardware would generate GP fault. Therefore, always
134 	 * intercept the MSR 0x832, and do not setup direct_access_msr.
135 	 */
136 	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
137 	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
138 	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
139 	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
140 	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
141 	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
142 	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
143 	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
144 	{ .index = MSR_INVALID,				.always = false },
145 };
146 
147 /*
148  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
149  * pause_filter_count: On processors that support Pause filtering(indicated
150  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
151  *	count value. On VMRUN this value is loaded into an internal counter.
152  *	Each time a pause instruction is executed, this counter is decremented
153  *	until it reaches zero at which time a #VMEXIT is generated if pause
154  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
155  *	Intercept Filtering for more details.
156  *	This also indicate if ple logic enabled.
157  *
158  * pause_filter_thresh: In addition, some processor families support advanced
159  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
160  *	the amount of time a guest is allowed to execute in a pause loop.
161  *	In this mode, a 16-bit pause filter threshold field is added in the
162  *	VMCB. The threshold value is a cycle count that is used to reset the
163  *	pause counter. As with simple pause filtering, VMRUN loads the pause
164  *	count value from VMCB into an internal counter. Then, on each pause
165  *	instruction the hardware checks the elapsed number of cycles since
166  *	the most recent pause instruction against the pause filter threshold.
167  *	If the elapsed cycle count is greater than the pause filter threshold,
168  *	then the internal pause count is reloaded from the VMCB and execution
169  *	continues. If the elapsed cycle count is less than the pause filter
170  *	threshold, then the internal pause count is decremented. If the count
171  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
172  *	triggered. If advanced pause filtering is supported and pause filter
173  *	threshold field is set to zero, the filter will operate in the simpler,
174  *	count only mode.
175  */
176 
177 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
178 module_param(pause_filter_thresh, ushort, 0444);
179 
180 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
181 module_param(pause_filter_count, ushort, 0444);
182 
183 /* Default doubles per-vcpu window every exit. */
184 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
185 module_param(pause_filter_count_grow, ushort, 0444);
186 
187 /* Default resets per-vcpu window every exit to pause_filter_count. */
188 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
189 module_param(pause_filter_count_shrink, ushort, 0444);
190 
191 /* Default is to compute the maximum so we can never overflow. */
192 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
193 module_param(pause_filter_count_max, ushort, 0444);
194 
195 /*
196  * Use nested page tables by default.  Note, NPT may get forced off by
197  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
198  */
199 bool npt_enabled = true;
200 module_param_named(npt, npt_enabled, bool, 0444);
201 
202 /* allow nested virtualization in KVM/SVM */
203 static int nested = true;
204 module_param(nested, int, S_IRUGO);
205 
206 /* enable/disable Next RIP Save */
207 int nrips = true;
208 module_param(nrips, int, 0444);
209 
210 /* enable/disable Virtual VMLOAD VMSAVE */
211 static int vls = true;
212 module_param(vls, int, 0444);
213 
214 /* enable/disable Virtual GIF */
215 int vgif = true;
216 module_param(vgif, int, 0444);
217 
218 /* enable/disable LBR virtualization */
219 int lbrv = true;
220 module_param(lbrv, int, 0444);
221 
222 static int tsc_scaling = true;
223 module_param(tsc_scaling, int, 0444);
224 
225 /*
226  * enable / disable AVIC.  Because the defaults differ for APICv
227  * support between VMX and SVM we cannot use module_param_named.
228  */
229 static bool avic;
230 module_param(avic, bool, 0444);
231 
232 bool __read_mostly dump_invalid_vmcb;
233 module_param(dump_invalid_vmcb, bool, 0644);
234 
235 
236 bool intercept_smi = true;
237 module_param(intercept_smi, bool, 0444);
238 
239 bool vnmi = true;
240 module_param(vnmi, bool, 0444);
241 
242 static bool svm_gp_erratum_intercept = true;
243 
244 static u8 rsm_ins_bytes[] = "\x0f\xaa";
245 
246 static unsigned long iopm_base;
247 
248 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
249 
250 /*
251  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
252  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
253  *
254  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
255  * defer the restoration of TSC_AUX until the CPU returns to userspace.
256  */
257 static int tsc_aux_uret_slot __read_mostly = -1;
258 
259 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
260 
261 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
262 #define MSRS_RANGE_SIZE 2048
263 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
264 
265 u32 svm_msrpm_offset(u32 msr)
266 {
267 	u32 offset;
268 	int i;
269 
270 	for (i = 0; i < NUM_MSR_MAPS; i++) {
271 		if (msr < msrpm_ranges[i] ||
272 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
273 			continue;
274 
275 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
276 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
277 
278 		/* Now we have the u8 offset - but need the u32 offset */
279 		return offset / 4;
280 	}
281 
282 	/* MSR not in any range */
283 	return MSR_INVALID;
284 }
285 
286 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
287 
288 static int get_npt_level(void)
289 {
290 #ifdef CONFIG_X86_64
291 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
292 #else
293 	return PT32E_ROOT_LEVEL;
294 #endif
295 }
296 
297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
298 {
299 	struct vcpu_svm *svm = to_svm(vcpu);
300 	u64 old_efer = vcpu->arch.efer;
301 	vcpu->arch.efer = efer;
302 
303 	if (!npt_enabled) {
304 		/* Shadow paging assumes NX to be available.  */
305 		efer |= EFER_NX;
306 
307 		if (!(efer & EFER_LMA))
308 			efer &= ~EFER_LME;
309 	}
310 
311 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
312 		if (!(efer & EFER_SVME)) {
313 			svm_leave_nested(vcpu);
314 			svm_set_gif(svm, true);
315 			/* #GP intercept is still needed for vmware backdoor */
316 			if (!enable_vmware_backdoor)
317 				clr_exception_intercept(svm, GP_VECTOR);
318 
319 			/*
320 			 * Free the nested guest state, unless we are in SMM.
321 			 * In this case we will return to the nested guest
322 			 * as soon as we leave SMM.
323 			 */
324 			if (!is_smm(vcpu))
325 				svm_free_nested(svm);
326 
327 		} else {
328 			int ret = svm_allocate_nested(svm);
329 
330 			if (ret) {
331 				vcpu->arch.efer = old_efer;
332 				return ret;
333 			}
334 
335 			/*
336 			 * Never intercept #GP for SEV guests, KVM can't
337 			 * decrypt guest memory to workaround the erratum.
338 			 */
339 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
340 				set_exception_intercept(svm, GP_VECTOR);
341 		}
342 	}
343 
344 	svm->vmcb->save.efer = efer | EFER_SVME;
345 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
346 	return 0;
347 }
348 
349 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
350 {
351 	struct vcpu_svm *svm = to_svm(vcpu);
352 	u32 ret = 0;
353 
354 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
355 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
356 	return ret;
357 }
358 
359 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
360 {
361 	struct vcpu_svm *svm = to_svm(vcpu);
362 
363 	if (mask == 0)
364 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
365 	else
366 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
367 
368 }
369 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
370 					void *insn, int insn_len);
371 
372 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
373 					   bool commit_side_effects)
374 {
375 	struct vcpu_svm *svm = to_svm(vcpu);
376 	unsigned long old_rflags;
377 
378 	/*
379 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
380 	 * the type of exit and the #VC handler in the guest.
381 	 */
382 	if (sev_es_guest(vcpu->kvm))
383 		goto done;
384 
385 	if (nrips && svm->vmcb->control.next_rip != 0) {
386 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
387 		svm->next_rip = svm->vmcb->control.next_rip;
388 	}
389 
390 	if (!svm->next_rip) {
391 		/*
392 		 * FIXME: Drop this when kvm_emulate_instruction() does the
393 		 * right thing and treats "can't emulate" as outright failure
394 		 * for EMULTYPE_SKIP.
395 		 */
396 		if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0))
397 			return 0;
398 
399 		if (unlikely(!commit_side_effects))
400 			old_rflags = svm->vmcb->save.rflags;
401 
402 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
403 			return 0;
404 
405 		if (unlikely(!commit_side_effects))
406 			svm->vmcb->save.rflags = old_rflags;
407 	} else {
408 		kvm_rip_write(vcpu, svm->next_rip);
409 	}
410 
411 done:
412 	if (likely(commit_side_effects))
413 		svm_set_interrupt_shadow(vcpu, 0);
414 
415 	return 1;
416 }
417 
418 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
419 {
420 	return __svm_skip_emulated_instruction(vcpu, true);
421 }
422 
423 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
424 {
425 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
426 	struct vcpu_svm *svm = to_svm(vcpu);
427 
428 	/*
429 	 * Due to architectural shortcomings, the CPU doesn't always provide
430 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
431 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
432 	 * the instruction even if NextRIP is supported to acquire the next
433 	 * RIP so that it can be shoved into the NextRIP field, otherwise
434 	 * hardware will fail to advance guest RIP during event injection.
435 	 * Drop the exception/interrupt if emulation fails and effectively
436 	 * retry the instruction, it's the least awful option.  If NRIPS is
437 	 * in use, the skip must not commit any side effects such as clearing
438 	 * the interrupt shadow or RFLAGS.RF.
439 	 */
440 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
441 		return -EIO;
442 
443 	rip = kvm_rip_read(vcpu);
444 
445 	/*
446 	 * Save the injection information, even when using next_rip, as the
447 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
448 	 * doesn't complete due to a VM-Exit occurring while the CPU is
449 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
450 	 * work as there may be no backing instruction, e.g. if the event is
451 	 * being injected by L1 for L2, or if the guest is patching INT3 into
452 	 * a different instruction.
453 	 */
454 	svm->soft_int_injected = true;
455 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
456 	svm->soft_int_old_rip = old_rip;
457 	svm->soft_int_next_rip = rip;
458 
459 	if (nrips)
460 		kvm_rip_write(vcpu, old_rip);
461 
462 	if (static_cpu_has(X86_FEATURE_NRIPS))
463 		svm->vmcb->control.next_rip = rip;
464 
465 	return 0;
466 }
467 
468 static void svm_inject_exception(struct kvm_vcpu *vcpu)
469 {
470 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
471 	struct vcpu_svm *svm = to_svm(vcpu);
472 
473 	kvm_deliver_exception_payload(vcpu, ex);
474 
475 	if (kvm_exception_is_soft(ex->vector) &&
476 	    svm_update_soft_interrupt_rip(vcpu))
477 		return;
478 
479 	svm->vmcb->control.event_inj = ex->vector
480 		| SVM_EVTINJ_VALID
481 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
482 		| SVM_EVTINJ_TYPE_EXEPT;
483 	svm->vmcb->control.event_inj_err = ex->error_code;
484 }
485 
486 static void svm_init_erratum_383(void)
487 {
488 	u32 low, high;
489 	int err;
490 	u64 val;
491 
492 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
493 		return;
494 
495 	/* Use _safe variants to not break nested virtualization */
496 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
497 	if (err)
498 		return;
499 
500 	val |= (1ULL << 47);
501 
502 	low  = lower_32_bits(val);
503 	high = upper_32_bits(val);
504 
505 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
506 
507 	erratum_383_found = true;
508 }
509 
510 static void svm_init_osvw(struct kvm_vcpu *vcpu)
511 {
512 	/*
513 	 * Guests should see errata 400 and 415 as fixed (assuming that
514 	 * HLT and IO instructions are intercepted).
515 	 */
516 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
517 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
518 
519 	/*
520 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
521 	 * all osvw.status bits inside that length, including bit 0 (which is
522 	 * reserved for erratum 298), are valid. However, if host processor's
523 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
524 	 * be conservative here and therefore we tell the guest that erratum 298
525 	 * is present (because we really don't know).
526 	 */
527 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
528 		vcpu->arch.osvw.status |= 1;
529 }
530 
531 static bool __kvm_is_svm_supported(void)
532 {
533 	int cpu = smp_processor_id();
534 	struct cpuinfo_x86 *c = &cpu_data(cpu);
535 
536 	u64 vm_cr;
537 
538 	if (c->x86_vendor != X86_VENDOR_AMD &&
539 	    c->x86_vendor != X86_VENDOR_HYGON) {
540 		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
541 		return false;
542 	}
543 
544 	if (!cpu_has(c, X86_FEATURE_SVM)) {
545 		pr_err("SVM not supported by CPU %d\n", cpu);
546 		return false;
547 	}
548 
549 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
550 		pr_info("KVM is unsupported when running as an SEV guest\n");
551 		return false;
552 	}
553 
554 	rdmsrl(MSR_VM_CR, vm_cr);
555 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) {
556 		pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu);
557 		return false;
558 	}
559 
560 	return true;
561 }
562 
563 static bool kvm_is_svm_supported(void)
564 {
565 	bool supported;
566 
567 	migrate_disable();
568 	supported = __kvm_is_svm_supported();
569 	migrate_enable();
570 
571 	return supported;
572 }
573 
574 static int svm_check_processor_compat(void)
575 {
576 	if (!__kvm_is_svm_supported())
577 		return -EIO;
578 
579 	return 0;
580 }
581 
582 static void __svm_write_tsc_multiplier(u64 multiplier)
583 {
584 	if (multiplier == __this_cpu_read(current_tsc_ratio))
585 		return;
586 
587 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
588 	__this_cpu_write(current_tsc_ratio, multiplier);
589 }
590 
591 static inline void kvm_cpu_svm_disable(void)
592 {
593 	uint64_t efer;
594 
595 	wrmsrl(MSR_VM_HSAVE_PA, 0);
596 	rdmsrl(MSR_EFER, efer);
597 	if (efer & EFER_SVME) {
598 		/*
599 		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
600 		 * NMI aren't blocked.
601 		 */
602 		stgi();
603 		wrmsrl(MSR_EFER, efer & ~EFER_SVME);
604 	}
605 }
606 
607 static void svm_emergency_disable(void)
608 {
609 	kvm_rebooting = true;
610 
611 	kvm_cpu_svm_disable();
612 }
613 
614 static void svm_hardware_disable(void)
615 {
616 	/* Make sure we clean up behind us */
617 	if (tsc_scaling)
618 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
619 
620 	kvm_cpu_svm_disable();
621 
622 	amd_pmu_disable_virt();
623 }
624 
625 static int svm_hardware_enable(void)
626 {
627 
628 	struct svm_cpu_data *sd;
629 	uint64_t efer;
630 	int me = raw_smp_processor_id();
631 
632 	rdmsrl(MSR_EFER, efer);
633 	if (efer & EFER_SVME)
634 		return -EBUSY;
635 
636 	sd = per_cpu_ptr(&svm_data, me);
637 	sd->asid_generation = 1;
638 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
639 	sd->next_asid = sd->max_asid + 1;
640 	sd->min_asid = max_sev_asid + 1;
641 
642 	wrmsrl(MSR_EFER, efer | EFER_SVME);
643 
644 	wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
645 
646 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
647 		/*
648 		 * Set the default value, even if we don't use TSC scaling
649 		 * to avoid having stale value in the msr
650 		 */
651 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
652 	}
653 
654 
655 	/*
656 	 * Get OSVW bits.
657 	 *
658 	 * Note that it is possible to have a system with mixed processor
659 	 * revisions and therefore different OSVW bits. If bits are not the same
660 	 * on different processors then choose the worst case (i.e. if erratum
661 	 * is present on one processor and not on another then assume that the
662 	 * erratum is present everywhere).
663 	 */
664 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
665 		uint64_t len, status = 0;
666 		int err;
667 
668 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
669 		if (!err)
670 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
671 						      &err);
672 
673 		if (err)
674 			osvw_status = osvw_len = 0;
675 		else {
676 			if (len < osvw_len)
677 				osvw_len = len;
678 			osvw_status |= status;
679 			osvw_status &= (1ULL << osvw_len) - 1;
680 		}
681 	} else
682 		osvw_status = osvw_len = 0;
683 
684 	svm_init_erratum_383();
685 
686 	amd_pmu_enable_virt();
687 
688 	/*
689 	 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
690 	 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
691 	 * Since Linux does not change the value of TSC_AUX once set, prime the
692 	 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
693 	 */
694 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
695 		struct sev_es_save_area *hostsa;
696 		u32 __maybe_unused msr_hi;
697 
698 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
699 
700 		rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi);
701 	}
702 
703 	return 0;
704 }
705 
706 static void svm_cpu_uninit(int cpu)
707 {
708 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
709 
710 	if (!sd->save_area)
711 		return;
712 
713 	kfree(sd->sev_vmcbs);
714 	__free_page(sd->save_area);
715 	sd->save_area_pa = 0;
716 	sd->save_area = NULL;
717 }
718 
719 static int svm_cpu_init(int cpu)
720 {
721 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
722 	int ret = -ENOMEM;
723 
724 	memset(sd, 0, sizeof(struct svm_cpu_data));
725 	sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
726 	if (!sd->save_area)
727 		return ret;
728 
729 	ret = sev_cpu_init(sd);
730 	if (ret)
731 		goto free_save_area;
732 
733 	sd->save_area_pa = __sme_page_pa(sd->save_area);
734 	return 0;
735 
736 free_save_area:
737 	__free_page(sd->save_area);
738 	sd->save_area = NULL;
739 	return ret;
740 
741 }
742 
743 static void set_dr_intercepts(struct vcpu_svm *svm)
744 {
745 	struct vmcb *vmcb = svm->vmcb01.ptr;
746 
747 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
748 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
749 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
750 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
751 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
752 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
753 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
754 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
755 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
756 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
757 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
758 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
759 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
760 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
761 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
762 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
763 
764 	recalc_intercepts(svm);
765 }
766 
767 static void clr_dr_intercepts(struct vcpu_svm *svm)
768 {
769 	struct vmcb *vmcb = svm->vmcb01.ptr;
770 
771 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
772 
773 	recalc_intercepts(svm);
774 }
775 
776 static int direct_access_msr_slot(u32 msr)
777 {
778 	u32 i;
779 
780 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
781 		if (direct_access_msrs[i].index == msr)
782 			return i;
783 
784 	return -ENOENT;
785 }
786 
787 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
788 				     int write)
789 {
790 	struct vcpu_svm *svm = to_svm(vcpu);
791 	int slot = direct_access_msr_slot(msr);
792 
793 	if (slot == -ENOENT)
794 		return;
795 
796 	/* Set the shadow bitmaps to the desired intercept states */
797 	if (read)
798 		set_bit(slot, svm->shadow_msr_intercept.read);
799 	else
800 		clear_bit(slot, svm->shadow_msr_intercept.read);
801 
802 	if (write)
803 		set_bit(slot, svm->shadow_msr_intercept.write);
804 	else
805 		clear_bit(slot, svm->shadow_msr_intercept.write);
806 }
807 
808 static bool valid_msr_intercept(u32 index)
809 {
810 	return direct_access_msr_slot(index) != -ENOENT;
811 }
812 
813 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
814 {
815 	u8 bit_write;
816 	unsigned long tmp;
817 	u32 offset;
818 	u32 *msrpm;
819 
820 	/*
821 	 * For non-nested case:
822 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
823 	 * save it.
824 	 *
825 	 * For nested case:
826 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
827 	 * save it.
828 	 */
829 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
830 				      to_svm(vcpu)->msrpm;
831 
832 	offset    = svm_msrpm_offset(msr);
833 	bit_write = 2 * (msr & 0x0f) + 1;
834 	tmp       = msrpm[offset];
835 
836 	BUG_ON(offset == MSR_INVALID);
837 
838 	return test_bit(bit_write, &tmp);
839 }
840 
841 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
842 					u32 msr, int read, int write)
843 {
844 	struct vcpu_svm *svm = to_svm(vcpu);
845 	u8 bit_read, bit_write;
846 	unsigned long tmp;
847 	u32 offset;
848 
849 	/*
850 	 * If this warning triggers extend the direct_access_msrs list at the
851 	 * beginning of the file
852 	 */
853 	WARN_ON(!valid_msr_intercept(msr));
854 
855 	/* Enforce non allowed MSRs to trap */
856 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
857 		read = 0;
858 
859 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
860 		write = 0;
861 
862 	offset    = svm_msrpm_offset(msr);
863 	bit_read  = 2 * (msr & 0x0f);
864 	bit_write = 2 * (msr & 0x0f) + 1;
865 	tmp       = msrpm[offset];
866 
867 	BUG_ON(offset == MSR_INVALID);
868 
869 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
870 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
871 
872 	msrpm[offset] = tmp;
873 
874 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
875 	svm->nested.force_msr_bitmap_recalc = true;
876 }
877 
878 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
879 			  int read, int write)
880 {
881 	set_shadow_msr_intercept(vcpu, msr, read, write);
882 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
883 }
884 
885 u32 *svm_vcpu_alloc_msrpm(void)
886 {
887 	unsigned int order = get_order(MSRPM_SIZE);
888 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
889 	u32 *msrpm;
890 
891 	if (!pages)
892 		return NULL;
893 
894 	msrpm = page_address(pages);
895 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
896 
897 	return msrpm;
898 }
899 
900 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
901 {
902 	int i;
903 
904 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
905 		if (!direct_access_msrs[i].always)
906 			continue;
907 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
908 	}
909 }
910 
911 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
912 {
913 	int i;
914 
915 	if (intercept == svm->x2avic_msrs_intercepted)
916 		return;
917 
918 	if (!x2avic_enabled)
919 		return;
920 
921 	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
922 		int index = direct_access_msrs[i].index;
923 
924 		if ((index < APIC_BASE_MSR) ||
925 		    (index > APIC_BASE_MSR + 0xff))
926 			continue;
927 		set_msr_interception(&svm->vcpu, svm->msrpm, index,
928 				     !intercept, !intercept);
929 	}
930 
931 	svm->x2avic_msrs_intercepted = intercept;
932 }
933 
934 void svm_vcpu_free_msrpm(u32 *msrpm)
935 {
936 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
937 }
938 
939 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
940 {
941 	struct vcpu_svm *svm = to_svm(vcpu);
942 	u32 i;
943 
944 	/*
945 	 * Set intercept permissions for all direct access MSRs again. They
946 	 * will automatically get filtered through the MSR filter, so we are
947 	 * back in sync after this.
948 	 */
949 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
950 		u32 msr = direct_access_msrs[i].index;
951 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
952 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
953 
954 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
955 	}
956 }
957 
958 static void add_msr_offset(u32 offset)
959 {
960 	int i;
961 
962 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
963 
964 		/* Offset already in list? */
965 		if (msrpm_offsets[i] == offset)
966 			return;
967 
968 		/* Slot used by another offset? */
969 		if (msrpm_offsets[i] != MSR_INVALID)
970 			continue;
971 
972 		/* Add offset to list */
973 		msrpm_offsets[i] = offset;
974 
975 		return;
976 	}
977 
978 	/*
979 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
980 	 * increase MSRPM_OFFSETS in this case.
981 	 */
982 	BUG();
983 }
984 
985 static void init_msrpm_offsets(void)
986 {
987 	int i;
988 
989 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
990 
991 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
992 		u32 offset;
993 
994 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
995 		BUG_ON(offset == MSR_INVALID);
996 
997 		add_msr_offset(offset);
998 	}
999 }
1000 
1001 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
1002 {
1003 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
1004 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
1005 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
1006 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
1007 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
1008 
1009 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
1010 }
1011 
1012 void svm_enable_lbrv(struct kvm_vcpu *vcpu)
1013 {
1014 	struct vcpu_svm *svm = to_svm(vcpu);
1015 
1016 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1017 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1018 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1019 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1020 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1021 
1022 	if (sev_es_guest(vcpu->kvm))
1023 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1);
1024 
1025 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1026 	if (is_guest_mode(vcpu))
1027 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1028 }
1029 
1030 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1031 {
1032 	struct vcpu_svm *svm = to_svm(vcpu);
1033 
1034 	KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm);
1035 
1036 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1037 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1038 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1039 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1040 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1041 
1042 	/*
1043 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
1044 	 * on nested guest entries.
1045 	 */
1046 	if (is_guest_mode(vcpu))
1047 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1048 }
1049 
1050 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1051 {
1052 	/*
1053 	 * If LBR virtualization is disabled, the LBR MSRs are always kept in
1054 	 * vmcb01.  If LBR virtualization is enabled and L1 is running VMs of
1055 	 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1056 	 */
1057 	return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1058 								   svm->vmcb01.ptr;
1059 }
1060 
1061 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1062 {
1063 	struct vcpu_svm *svm = to_svm(vcpu);
1064 	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1065 	bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1066 			    (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
1067 			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1068 
1069 	if (enable_lbrv == current_enable_lbrv)
1070 		return;
1071 
1072 	if (enable_lbrv)
1073 		svm_enable_lbrv(vcpu);
1074 	else
1075 		svm_disable_lbrv(vcpu);
1076 }
1077 
1078 void disable_nmi_singlestep(struct vcpu_svm *svm)
1079 {
1080 	svm->nmi_singlestep = false;
1081 
1082 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1083 		/* Clear our flags if they were not set by the guest */
1084 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1085 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1086 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1087 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1088 	}
1089 }
1090 
1091 static void grow_ple_window(struct kvm_vcpu *vcpu)
1092 {
1093 	struct vcpu_svm *svm = to_svm(vcpu);
1094 	struct vmcb_control_area *control = &svm->vmcb->control;
1095 	int old = control->pause_filter_count;
1096 
1097 	if (kvm_pause_in_guest(vcpu->kvm))
1098 		return;
1099 
1100 	control->pause_filter_count = __grow_ple_window(old,
1101 							pause_filter_count,
1102 							pause_filter_count_grow,
1103 							pause_filter_count_max);
1104 
1105 	if (control->pause_filter_count != old) {
1106 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1107 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1108 					    control->pause_filter_count, old);
1109 	}
1110 }
1111 
1112 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1113 {
1114 	struct vcpu_svm *svm = to_svm(vcpu);
1115 	struct vmcb_control_area *control = &svm->vmcb->control;
1116 	int old = control->pause_filter_count;
1117 
1118 	if (kvm_pause_in_guest(vcpu->kvm))
1119 		return;
1120 
1121 	control->pause_filter_count =
1122 				__shrink_ple_window(old,
1123 						    pause_filter_count,
1124 						    pause_filter_count_shrink,
1125 						    pause_filter_count);
1126 	if (control->pause_filter_count != old) {
1127 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1128 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1129 					    control->pause_filter_count, old);
1130 	}
1131 }
1132 
1133 static void svm_hardware_unsetup(void)
1134 {
1135 	int cpu;
1136 
1137 	sev_hardware_unsetup();
1138 
1139 	for_each_possible_cpu(cpu)
1140 		svm_cpu_uninit(cpu);
1141 
1142 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1143 	get_order(IOPM_SIZE));
1144 	iopm_base = 0;
1145 }
1146 
1147 static void init_seg(struct vmcb_seg *seg)
1148 {
1149 	seg->selector = 0;
1150 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1151 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1152 	seg->limit = 0xffff;
1153 	seg->base = 0;
1154 }
1155 
1156 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1157 {
1158 	seg->selector = 0;
1159 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1160 	seg->limit = 0xffff;
1161 	seg->base = 0;
1162 }
1163 
1164 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1165 {
1166 	struct vcpu_svm *svm = to_svm(vcpu);
1167 
1168 	return svm->nested.ctl.tsc_offset;
1169 }
1170 
1171 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1172 {
1173 	struct vcpu_svm *svm = to_svm(vcpu);
1174 
1175 	return svm->tsc_ratio_msr;
1176 }
1177 
1178 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1179 {
1180 	struct vcpu_svm *svm = to_svm(vcpu);
1181 
1182 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1183 	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1184 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1185 }
1186 
1187 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1188 {
1189 	preempt_disable();
1190 	if (to_svm(vcpu)->guest_state_loaded)
1191 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1192 	preempt_enable();
1193 }
1194 
1195 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1196 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1197 					      struct vcpu_svm *svm)
1198 {
1199 	/*
1200 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1201 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1202 	 */
1203 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1204 		if (!npt_enabled ||
1205 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1206 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1207 		else
1208 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1209 	}
1210 
1211 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1212 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1213 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1214 		else
1215 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1216 	}
1217 }
1218 
1219 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1220 {
1221 	struct vcpu_svm *svm = to_svm(vcpu);
1222 
1223 	if (guest_cpuid_is_intel(vcpu)) {
1224 		/*
1225 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1226 		 * accesses because the processor only stores 32 bits.
1227 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1228 		 */
1229 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1230 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1231 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1232 
1233 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1234 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1235 	} else {
1236 		/*
1237 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1238 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1239 		 */
1240 		if (vls) {
1241 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1242 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1243 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1244 		}
1245 		/* No need to intercept these MSRs */
1246 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1247 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1248 	}
1249 }
1250 
1251 static void init_vmcb(struct kvm_vcpu *vcpu)
1252 {
1253 	struct vcpu_svm *svm = to_svm(vcpu);
1254 	struct vmcb *vmcb = svm->vmcb01.ptr;
1255 	struct vmcb_control_area *control = &vmcb->control;
1256 	struct vmcb_save_area *save = &vmcb->save;
1257 
1258 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1259 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1260 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1261 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1262 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1263 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1264 	if (!kvm_vcpu_apicv_active(vcpu))
1265 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1266 
1267 	set_dr_intercepts(svm);
1268 
1269 	set_exception_intercept(svm, PF_VECTOR);
1270 	set_exception_intercept(svm, UD_VECTOR);
1271 	set_exception_intercept(svm, MC_VECTOR);
1272 	set_exception_intercept(svm, AC_VECTOR);
1273 	set_exception_intercept(svm, DB_VECTOR);
1274 	/*
1275 	 * Guest access to VMware backdoor ports could legitimately
1276 	 * trigger #GP because of TSS I/O permission bitmap.
1277 	 * We intercept those #GP and allow access to them anyway
1278 	 * as VMware does.
1279 	 */
1280 	if (enable_vmware_backdoor)
1281 		set_exception_intercept(svm, GP_VECTOR);
1282 
1283 	svm_set_intercept(svm, INTERCEPT_INTR);
1284 	svm_set_intercept(svm, INTERCEPT_NMI);
1285 
1286 	if (intercept_smi)
1287 		svm_set_intercept(svm, INTERCEPT_SMI);
1288 
1289 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1290 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1291 	svm_set_intercept(svm, INTERCEPT_CPUID);
1292 	svm_set_intercept(svm, INTERCEPT_INVD);
1293 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1294 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1295 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1296 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1297 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1298 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1299 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1300 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1301 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1302 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1303 	svm_set_intercept(svm, INTERCEPT_STGI);
1304 	svm_set_intercept(svm, INTERCEPT_CLGI);
1305 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1306 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1307 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1308 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1309 	svm_set_intercept(svm, INTERCEPT_RSM);
1310 
1311 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1312 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1313 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1314 	}
1315 
1316 	if (!kvm_hlt_in_guest(vcpu->kvm))
1317 		svm_set_intercept(svm, INTERCEPT_HLT);
1318 
1319 	control->iopm_base_pa = __sme_set(iopm_base);
1320 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1321 	control->int_ctl = V_INTR_MASKING_MASK;
1322 
1323 	init_seg(&save->es);
1324 	init_seg(&save->ss);
1325 	init_seg(&save->ds);
1326 	init_seg(&save->fs);
1327 	init_seg(&save->gs);
1328 
1329 	save->cs.selector = 0xf000;
1330 	save->cs.base = 0xffff0000;
1331 	/* Executable/Readable Code Segment */
1332 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1333 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1334 	save->cs.limit = 0xffff;
1335 
1336 	save->gdtr.base = 0;
1337 	save->gdtr.limit = 0xffff;
1338 	save->idtr.base = 0;
1339 	save->idtr.limit = 0xffff;
1340 
1341 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1342 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1343 
1344 	if (npt_enabled) {
1345 		/* Setup VMCB for Nested Paging */
1346 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1347 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1348 		clr_exception_intercept(svm, PF_VECTOR);
1349 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1350 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1351 		save->g_pat = vcpu->arch.pat;
1352 		save->cr3 = 0;
1353 	}
1354 	svm->current_vmcb->asid_generation = 0;
1355 	svm->asid = 0;
1356 
1357 	svm->nested.vmcb12_gpa = INVALID_GPA;
1358 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1359 
1360 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1361 		control->pause_filter_count = pause_filter_count;
1362 		if (pause_filter_thresh)
1363 			control->pause_filter_thresh = pause_filter_thresh;
1364 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1365 	} else {
1366 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1367 	}
1368 
1369 	svm_recalc_instruction_intercepts(vcpu, svm);
1370 
1371 	/*
1372 	 * If the host supports V_SPEC_CTRL then disable the interception
1373 	 * of MSR_IA32_SPEC_CTRL.
1374 	 */
1375 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1376 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1377 
1378 	if (kvm_vcpu_apicv_active(vcpu))
1379 		avic_init_vmcb(svm, vmcb);
1380 
1381 	if (vnmi)
1382 		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1383 
1384 	if (vgif) {
1385 		svm_clr_intercept(svm, INTERCEPT_STGI);
1386 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1387 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1388 	}
1389 
1390 	if (sev_guest(vcpu->kvm))
1391 		sev_init_vmcb(svm);
1392 
1393 	svm_hv_init_vmcb(vmcb);
1394 	init_vmcb_after_set_cpuid(vcpu);
1395 
1396 	vmcb_mark_all_dirty(vmcb);
1397 
1398 	enable_gif(svm);
1399 }
1400 
1401 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1402 {
1403 	struct vcpu_svm *svm = to_svm(vcpu);
1404 
1405 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1406 
1407 	svm_init_osvw(vcpu);
1408 	vcpu->arch.microcode_version = 0x01000065;
1409 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1410 
1411 	svm->nmi_masked = false;
1412 	svm->awaiting_iret_completion = false;
1413 
1414 	if (sev_es_guest(vcpu->kvm))
1415 		sev_es_vcpu_reset(svm);
1416 }
1417 
1418 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1419 {
1420 	struct vcpu_svm *svm = to_svm(vcpu);
1421 
1422 	svm->spec_ctrl = 0;
1423 	svm->virt_spec_ctrl = 0;
1424 
1425 	init_vmcb(vcpu);
1426 
1427 	if (!init_event)
1428 		__svm_vcpu_reset(vcpu);
1429 }
1430 
1431 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1432 {
1433 	svm->current_vmcb = target_vmcb;
1434 	svm->vmcb = target_vmcb->ptr;
1435 }
1436 
1437 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1438 {
1439 	struct vcpu_svm *svm;
1440 	struct page *vmcb01_page;
1441 	struct page *vmsa_page = NULL;
1442 	int err;
1443 
1444 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1445 	svm = to_svm(vcpu);
1446 
1447 	err = -ENOMEM;
1448 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1449 	if (!vmcb01_page)
1450 		goto out;
1451 
1452 	if (sev_es_guest(vcpu->kvm)) {
1453 		/*
1454 		 * SEV-ES guests require a separate VMSA page used to contain
1455 		 * the encrypted register state of the guest.
1456 		 */
1457 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1458 		if (!vmsa_page)
1459 			goto error_free_vmcb_page;
1460 
1461 		/*
1462 		 * SEV-ES guests maintain an encrypted version of their FPU
1463 		 * state which is restored and saved on VMRUN and VMEXIT.
1464 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1465 		 * do xsave/xrstor on it.
1466 		 */
1467 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1468 	}
1469 
1470 	err = avic_init_vcpu(svm);
1471 	if (err)
1472 		goto error_free_vmsa_page;
1473 
1474 	svm->msrpm = svm_vcpu_alloc_msrpm();
1475 	if (!svm->msrpm) {
1476 		err = -ENOMEM;
1477 		goto error_free_vmsa_page;
1478 	}
1479 
1480 	svm->x2avic_msrs_intercepted = true;
1481 
1482 	svm->vmcb01.ptr = page_address(vmcb01_page);
1483 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1484 	svm_switch_vmcb(svm, &svm->vmcb01);
1485 
1486 	if (vmsa_page)
1487 		svm->sev_es.vmsa = page_address(vmsa_page);
1488 
1489 	svm->guest_state_loaded = false;
1490 
1491 	return 0;
1492 
1493 error_free_vmsa_page:
1494 	if (vmsa_page)
1495 		__free_page(vmsa_page);
1496 error_free_vmcb_page:
1497 	__free_page(vmcb01_page);
1498 out:
1499 	return err;
1500 }
1501 
1502 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1503 {
1504 	int i;
1505 
1506 	for_each_online_cpu(i)
1507 		cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1508 }
1509 
1510 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1511 {
1512 	struct vcpu_svm *svm = to_svm(vcpu);
1513 
1514 	/*
1515 	 * The vmcb page can be recycled, causing a false negative in
1516 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1517 	 * vmcb page recorded as its current vmcb.
1518 	 */
1519 	svm_clear_current_vmcb(svm->vmcb);
1520 
1521 	svm_leave_nested(vcpu);
1522 	svm_free_nested(svm);
1523 
1524 	sev_free_vcpu(vcpu);
1525 
1526 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1527 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1528 }
1529 
1530 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1531 {
1532 	struct vcpu_svm *svm = to_svm(vcpu);
1533 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1534 
1535 	if (sev_es_guest(vcpu->kvm))
1536 		sev_es_unmap_ghcb(svm);
1537 
1538 	if (svm->guest_state_loaded)
1539 		return;
1540 
1541 	/*
1542 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1543 	 * or subsequent vmload of host save area.
1544 	 */
1545 	vmsave(sd->save_area_pa);
1546 	if (sev_es_guest(vcpu->kvm)) {
1547 		struct sev_es_save_area *hostsa;
1548 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1549 
1550 		sev_es_prepare_switch_to_guest(hostsa);
1551 	}
1552 
1553 	if (tsc_scaling)
1554 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1555 
1556 	/*
1557 	 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1558 	 * available. The user return MSR support is not required in this case
1559 	 * because TSC_AUX is restored on #VMEXIT from the host save area
1560 	 * (which has been initialized in svm_hardware_enable()).
1561 	 */
1562 	if (likely(tsc_aux_uret_slot >= 0) &&
1563 	    (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1564 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1565 
1566 	svm->guest_state_loaded = true;
1567 }
1568 
1569 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1570 {
1571 	to_svm(vcpu)->guest_state_loaded = false;
1572 }
1573 
1574 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1575 {
1576 	struct vcpu_svm *svm = to_svm(vcpu);
1577 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1578 
1579 	if (sd->current_vmcb != svm->vmcb) {
1580 		sd->current_vmcb = svm->vmcb;
1581 
1582 		if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1583 			indirect_branch_prediction_barrier();
1584 	}
1585 	if (kvm_vcpu_apicv_active(vcpu))
1586 		avic_vcpu_load(vcpu, cpu);
1587 }
1588 
1589 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1590 {
1591 	if (kvm_vcpu_apicv_active(vcpu))
1592 		avic_vcpu_put(vcpu);
1593 
1594 	svm_prepare_host_switch(vcpu);
1595 
1596 	++vcpu->stat.host_state_reload;
1597 }
1598 
1599 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1600 {
1601 	struct vcpu_svm *svm = to_svm(vcpu);
1602 	unsigned long rflags = svm->vmcb->save.rflags;
1603 
1604 	if (svm->nmi_singlestep) {
1605 		/* Hide our flags if they were not set by the guest */
1606 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1607 			rflags &= ~X86_EFLAGS_TF;
1608 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1609 			rflags &= ~X86_EFLAGS_RF;
1610 	}
1611 	return rflags;
1612 }
1613 
1614 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1615 {
1616 	if (to_svm(vcpu)->nmi_singlestep)
1617 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1618 
1619        /*
1620         * Any change of EFLAGS.VM is accompanied by a reload of SS
1621         * (caused by either a task switch or an inter-privilege IRET),
1622         * so we do not need to update the CPL here.
1623         */
1624 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1625 }
1626 
1627 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1628 {
1629 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1630 
1631 	return sev_es_guest(vcpu->kvm)
1632 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1633 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1634 }
1635 
1636 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1637 {
1638 	kvm_register_mark_available(vcpu, reg);
1639 
1640 	switch (reg) {
1641 	case VCPU_EXREG_PDPTR:
1642 		/*
1643 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1644 		 * it is always updated per SDM when moving to CRs.
1645 		 */
1646 		if (npt_enabled)
1647 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1648 		break;
1649 	default:
1650 		KVM_BUG_ON(1, vcpu->kvm);
1651 	}
1652 }
1653 
1654 static void svm_set_vintr(struct vcpu_svm *svm)
1655 {
1656 	struct vmcb_control_area *control;
1657 
1658 	/*
1659 	 * The following fields are ignored when AVIC is enabled
1660 	 */
1661 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1662 
1663 	svm_set_intercept(svm, INTERCEPT_VINTR);
1664 
1665 	/*
1666 	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1667 	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1668 	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1669 	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1670 	 * interrupts will never be unblocked while L2 is running.
1671 	 */
1672 	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1673 		return;
1674 
1675 	/*
1676 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1677 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1678 	 */
1679 	control = &svm->vmcb->control;
1680 	control->int_vector = 0x0;
1681 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1682 	control->int_ctl |= V_IRQ_MASK |
1683 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1684 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1685 }
1686 
1687 static void svm_clear_vintr(struct vcpu_svm *svm)
1688 {
1689 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1690 
1691 	/* Drop int_ctl fields related to VINTR injection.  */
1692 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1693 	if (is_guest_mode(&svm->vcpu)) {
1694 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1695 
1696 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1697 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1698 
1699 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1700 			V_IRQ_INJECTION_BITS_MASK;
1701 
1702 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1703 	}
1704 
1705 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1706 }
1707 
1708 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1709 {
1710 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1711 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1712 
1713 	switch (seg) {
1714 	case VCPU_SREG_CS: return &save->cs;
1715 	case VCPU_SREG_DS: return &save->ds;
1716 	case VCPU_SREG_ES: return &save->es;
1717 	case VCPU_SREG_FS: return &save01->fs;
1718 	case VCPU_SREG_GS: return &save01->gs;
1719 	case VCPU_SREG_SS: return &save->ss;
1720 	case VCPU_SREG_TR: return &save01->tr;
1721 	case VCPU_SREG_LDTR: return &save01->ldtr;
1722 	}
1723 	BUG();
1724 	return NULL;
1725 }
1726 
1727 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1728 {
1729 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1730 
1731 	return s->base;
1732 }
1733 
1734 static void svm_get_segment(struct kvm_vcpu *vcpu,
1735 			    struct kvm_segment *var, int seg)
1736 {
1737 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1738 
1739 	var->base = s->base;
1740 	var->limit = s->limit;
1741 	var->selector = s->selector;
1742 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1743 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1744 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1745 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1746 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1747 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1748 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1749 
1750 	/*
1751 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1752 	 * However, the SVM spec states that the G bit is not observed by the
1753 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1754 	 * So let's synthesize a legal G bit for all segments, this helps
1755 	 * running KVM nested. It also helps cross-vendor migration, because
1756 	 * Intel's vmentry has a check on the 'G' bit.
1757 	 */
1758 	var->g = s->limit > 0xfffff;
1759 
1760 	/*
1761 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1762 	 * for cross vendor migration purposes by "not present"
1763 	 */
1764 	var->unusable = !var->present;
1765 
1766 	switch (seg) {
1767 	case VCPU_SREG_TR:
1768 		/*
1769 		 * Work around a bug where the busy flag in the tr selector
1770 		 * isn't exposed
1771 		 */
1772 		var->type |= 0x2;
1773 		break;
1774 	case VCPU_SREG_DS:
1775 	case VCPU_SREG_ES:
1776 	case VCPU_SREG_FS:
1777 	case VCPU_SREG_GS:
1778 		/*
1779 		 * The accessed bit must always be set in the segment
1780 		 * descriptor cache, although it can be cleared in the
1781 		 * descriptor, the cached bit always remains at 1. Since
1782 		 * Intel has a check on this, set it here to support
1783 		 * cross-vendor migration.
1784 		 */
1785 		if (!var->unusable)
1786 			var->type |= 0x1;
1787 		break;
1788 	case VCPU_SREG_SS:
1789 		/*
1790 		 * On AMD CPUs sometimes the DB bit in the segment
1791 		 * descriptor is left as 1, although the whole segment has
1792 		 * been made unusable. Clear it here to pass an Intel VMX
1793 		 * entry check when cross vendor migrating.
1794 		 */
1795 		if (var->unusable)
1796 			var->db = 0;
1797 		/* This is symmetric with svm_set_segment() */
1798 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1799 		break;
1800 	}
1801 }
1802 
1803 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1804 {
1805 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1806 
1807 	return save->cpl;
1808 }
1809 
1810 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1811 {
1812 	struct kvm_segment cs;
1813 
1814 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1815 	*db = cs.db;
1816 	*l = cs.l;
1817 }
1818 
1819 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1820 {
1821 	struct vcpu_svm *svm = to_svm(vcpu);
1822 
1823 	dt->size = svm->vmcb->save.idtr.limit;
1824 	dt->address = svm->vmcb->save.idtr.base;
1825 }
1826 
1827 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1828 {
1829 	struct vcpu_svm *svm = to_svm(vcpu);
1830 
1831 	svm->vmcb->save.idtr.limit = dt->size;
1832 	svm->vmcb->save.idtr.base = dt->address ;
1833 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1834 }
1835 
1836 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1837 {
1838 	struct vcpu_svm *svm = to_svm(vcpu);
1839 
1840 	dt->size = svm->vmcb->save.gdtr.limit;
1841 	dt->address = svm->vmcb->save.gdtr.base;
1842 }
1843 
1844 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1845 {
1846 	struct vcpu_svm *svm = to_svm(vcpu);
1847 
1848 	svm->vmcb->save.gdtr.limit = dt->size;
1849 	svm->vmcb->save.gdtr.base = dt->address ;
1850 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1851 }
1852 
1853 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1854 {
1855 	struct vcpu_svm *svm = to_svm(vcpu);
1856 
1857 	/*
1858 	 * For guests that don't set guest_state_protected, the cr3 update is
1859 	 * handled via kvm_mmu_load() while entering the guest. For guests
1860 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1861 	 * VMCB save area now, since the save area will become the initial
1862 	 * contents of the VMSA, and future VMCB save area updates won't be
1863 	 * seen.
1864 	 */
1865 	if (sev_es_guest(vcpu->kvm)) {
1866 		svm->vmcb->save.cr3 = cr3;
1867 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1868 	}
1869 }
1870 
1871 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1872 {
1873 	return true;
1874 }
1875 
1876 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1877 {
1878 	struct vcpu_svm *svm = to_svm(vcpu);
1879 	u64 hcr0 = cr0;
1880 	bool old_paging = is_paging(vcpu);
1881 
1882 #ifdef CONFIG_X86_64
1883 	if (vcpu->arch.efer & EFER_LME) {
1884 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1885 			vcpu->arch.efer |= EFER_LMA;
1886 			if (!vcpu->arch.guest_state_protected)
1887 				svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1888 		}
1889 
1890 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1891 			vcpu->arch.efer &= ~EFER_LMA;
1892 			if (!vcpu->arch.guest_state_protected)
1893 				svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1894 		}
1895 	}
1896 #endif
1897 	vcpu->arch.cr0 = cr0;
1898 
1899 	if (!npt_enabled) {
1900 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1901 		if (old_paging != is_paging(vcpu))
1902 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1903 	}
1904 
1905 	/*
1906 	 * re-enable caching here because the QEMU bios
1907 	 * does not do it - this results in some delay at
1908 	 * reboot
1909 	 */
1910 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1911 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1912 
1913 	svm->vmcb->save.cr0 = hcr0;
1914 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1915 
1916 	/*
1917 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1918 	 * tracking is done using the CR write traps.
1919 	 */
1920 	if (sev_es_guest(vcpu->kvm))
1921 		return;
1922 
1923 	if (hcr0 == cr0) {
1924 		/* Selective CR0 write remains on.  */
1925 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1926 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1927 	} else {
1928 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1929 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1930 	}
1931 }
1932 
1933 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1934 {
1935 	return true;
1936 }
1937 
1938 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1939 {
1940 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1941 	unsigned long old_cr4 = vcpu->arch.cr4;
1942 
1943 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1944 		svm_flush_tlb_current(vcpu);
1945 
1946 	vcpu->arch.cr4 = cr4;
1947 	if (!npt_enabled) {
1948 		cr4 |= X86_CR4_PAE;
1949 
1950 		if (!is_paging(vcpu))
1951 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1952 	}
1953 	cr4 |= host_cr4_mce;
1954 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1955 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1956 
1957 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1958 		kvm_update_cpuid_runtime(vcpu);
1959 }
1960 
1961 static void svm_set_segment(struct kvm_vcpu *vcpu,
1962 			    struct kvm_segment *var, int seg)
1963 {
1964 	struct vcpu_svm *svm = to_svm(vcpu);
1965 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1966 
1967 	s->base = var->base;
1968 	s->limit = var->limit;
1969 	s->selector = var->selector;
1970 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1971 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1972 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1973 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1974 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1975 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1976 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1977 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1978 
1979 	/*
1980 	 * This is always accurate, except if SYSRET returned to a segment
1981 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1982 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1983 	 * would entail passing the CPL to userspace and back.
1984 	 */
1985 	if (seg == VCPU_SREG_SS)
1986 		/* This is symmetric with svm_get_segment() */
1987 		svm->vmcb->save.cpl = (var->dpl & 3);
1988 
1989 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1990 }
1991 
1992 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1993 {
1994 	struct vcpu_svm *svm = to_svm(vcpu);
1995 
1996 	clr_exception_intercept(svm, BP_VECTOR);
1997 
1998 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1999 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2000 			set_exception_intercept(svm, BP_VECTOR);
2001 	}
2002 }
2003 
2004 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2005 {
2006 	if (sd->next_asid > sd->max_asid) {
2007 		++sd->asid_generation;
2008 		sd->next_asid = sd->min_asid;
2009 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2010 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2011 	}
2012 
2013 	svm->current_vmcb->asid_generation = sd->asid_generation;
2014 	svm->asid = sd->next_asid++;
2015 }
2016 
2017 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
2018 {
2019 	struct vmcb *vmcb = svm->vmcb;
2020 
2021 	if (svm->vcpu.arch.guest_state_protected)
2022 		return;
2023 
2024 	if (unlikely(value != vmcb->save.dr6)) {
2025 		vmcb->save.dr6 = value;
2026 		vmcb_mark_dirty(vmcb, VMCB_DR);
2027 	}
2028 }
2029 
2030 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2031 {
2032 	struct vcpu_svm *svm = to_svm(vcpu);
2033 
2034 	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2035 		return;
2036 
2037 	get_debugreg(vcpu->arch.db[0], 0);
2038 	get_debugreg(vcpu->arch.db[1], 1);
2039 	get_debugreg(vcpu->arch.db[2], 2);
2040 	get_debugreg(vcpu->arch.db[3], 3);
2041 	/*
2042 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2043 	 * because db_interception might need it.  We can do it before vmentry.
2044 	 */
2045 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
2046 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2047 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2048 	set_dr_intercepts(svm);
2049 }
2050 
2051 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2052 {
2053 	struct vcpu_svm *svm = to_svm(vcpu);
2054 
2055 	if (vcpu->arch.guest_state_protected)
2056 		return;
2057 
2058 	svm->vmcb->save.dr7 = value;
2059 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2060 }
2061 
2062 static int pf_interception(struct kvm_vcpu *vcpu)
2063 {
2064 	struct vcpu_svm *svm = to_svm(vcpu);
2065 
2066 	u64 fault_address = svm->vmcb->control.exit_info_2;
2067 	u64 error_code = svm->vmcb->control.exit_info_1;
2068 
2069 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
2070 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2071 			svm->vmcb->control.insn_bytes : NULL,
2072 			svm->vmcb->control.insn_len);
2073 }
2074 
2075 static int npf_interception(struct kvm_vcpu *vcpu)
2076 {
2077 	struct vcpu_svm *svm = to_svm(vcpu);
2078 
2079 	u64 fault_address = svm->vmcb->control.exit_info_2;
2080 	u64 error_code = svm->vmcb->control.exit_info_1;
2081 
2082 	trace_kvm_page_fault(vcpu, fault_address, error_code);
2083 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
2084 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2085 			svm->vmcb->control.insn_bytes : NULL,
2086 			svm->vmcb->control.insn_len);
2087 }
2088 
2089 static int db_interception(struct kvm_vcpu *vcpu)
2090 {
2091 	struct kvm_run *kvm_run = vcpu->run;
2092 	struct vcpu_svm *svm = to_svm(vcpu);
2093 
2094 	if (!(vcpu->guest_debug &
2095 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2096 		!svm->nmi_singlestep) {
2097 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2098 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2099 		return 1;
2100 	}
2101 
2102 	if (svm->nmi_singlestep) {
2103 		disable_nmi_singlestep(svm);
2104 		/* Make sure we check for pending NMIs upon entry */
2105 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2106 	}
2107 
2108 	if (vcpu->guest_debug &
2109 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2110 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2111 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2112 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2113 		kvm_run->debug.arch.pc =
2114 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2115 		kvm_run->debug.arch.exception = DB_VECTOR;
2116 		return 0;
2117 	}
2118 
2119 	return 1;
2120 }
2121 
2122 static int bp_interception(struct kvm_vcpu *vcpu)
2123 {
2124 	struct vcpu_svm *svm = to_svm(vcpu);
2125 	struct kvm_run *kvm_run = vcpu->run;
2126 
2127 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2128 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2129 	kvm_run->debug.arch.exception = BP_VECTOR;
2130 	return 0;
2131 }
2132 
2133 static int ud_interception(struct kvm_vcpu *vcpu)
2134 {
2135 	return handle_ud(vcpu);
2136 }
2137 
2138 static int ac_interception(struct kvm_vcpu *vcpu)
2139 {
2140 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2141 	return 1;
2142 }
2143 
2144 static bool is_erratum_383(void)
2145 {
2146 	int err, i;
2147 	u64 value;
2148 
2149 	if (!erratum_383_found)
2150 		return false;
2151 
2152 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2153 	if (err)
2154 		return false;
2155 
2156 	/* Bit 62 may or may not be set for this mce */
2157 	value &= ~(1ULL << 62);
2158 
2159 	if (value != 0xb600000000010015ULL)
2160 		return false;
2161 
2162 	/* Clear MCi_STATUS registers */
2163 	for (i = 0; i < 6; ++i)
2164 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2165 
2166 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2167 	if (!err) {
2168 		u32 low, high;
2169 
2170 		value &= ~(1ULL << 2);
2171 		low    = lower_32_bits(value);
2172 		high   = upper_32_bits(value);
2173 
2174 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2175 	}
2176 
2177 	/* Flush tlb to evict multi-match entries */
2178 	__flush_tlb_all();
2179 
2180 	return true;
2181 }
2182 
2183 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2184 {
2185 	if (is_erratum_383()) {
2186 		/*
2187 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2188 		 * guest.
2189 		 */
2190 		pr_err("Guest triggered AMD Erratum 383\n");
2191 
2192 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2193 
2194 		return;
2195 	}
2196 
2197 	/*
2198 	 * On an #MC intercept the MCE handler is not called automatically in
2199 	 * the host. So do it by hand here.
2200 	 */
2201 	kvm_machine_check();
2202 }
2203 
2204 static int mc_interception(struct kvm_vcpu *vcpu)
2205 {
2206 	return 1;
2207 }
2208 
2209 static int shutdown_interception(struct kvm_vcpu *vcpu)
2210 {
2211 	struct kvm_run *kvm_run = vcpu->run;
2212 	struct vcpu_svm *svm = to_svm(vcpu);
2213 
2214 	/*
2215 	 * The VM save area has already been encrypted so it
2216 	 * cannot be reinitialized - just terminate.
2217 	 */
2218 	if (sev_es_guest(vcpu->kvm))
2219 		return -EINVAL;
2220 
2221 	/*
2222 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2223 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2224 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2225 	 * userspace.  At a platform view, INIT is acceptable behavior as
2226 	 * there exist bare metal platforms that automatically INIT the CPU
2227 	 * in response to shutdown.
2228 	 */
2229 	clear_page(svm->vmcb);
2230 	kvm_vcpu_reset(vcpu, true);
2231 
2232 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2233 	return 0;
2234 }
2235 
2236 static int io_interception(struct kvm_vcpu *vcpu)
2237 {
2238 	struct vcpu_svm *svm = to_svm(vcpu);
2239 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2240 	int size, in, string;
2241 	unsigned port;
2242 
2243 	++vcpu->stat.io_exits;
2244 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2245 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2246 	port = io_info >> 16;
2247 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2248 
2249 	if (string) {
2250 		if (sev_es_guest(vcpu->kvm))
2251 			return sev_es_string_io(svm, size, port, in);
2252 		else
2253 			return kvm_emulate_instruction(vcpu, 0);
2254 	}
2255 
2256 	svm->next_rip = svm->vmcb->control.exit_info_2;
2257 
2258 	return kvm_fast_pio(vcpu, size, port, in);
2259 }
2260 
2261 static int nmi_interception(struct kvm_vcpu *vcpu)
2262 {
2263 	return 1;
2264 }
2265 
2266 static int smi_interception(struct kvm_vcpu *vcpu)
2267 {
2268 	return 1;
2269 }
2270 
2271 static int intr_interception(struct kvm_vcpu *vcpu)
2272 {
2273 	++vcpu->stat.irq_exits;
2274 	return 1;
2275 }
2276 
2277 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2278 {
2279 	struct vcpu_svm *svm = to_svm(vcpu);
2280 	struct vmcb *vmcb12;
2281 	struct kvm_host_map map;
2282 	int ret;
2283 
2284 	if (nested_svm_check_permissions(vcpu))
2285 		return 1;
2286 
2287 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2288 	if (ret) {
2289 		if (ret == -EINVAL)
2290 			kvm_inject_gp(vcpu, 0);
2291 		return 1;
2292 	}
2293 
2294 	vmcb12 = map.hva;
2295 
2296 	ret = kvm_skip_emulated_instruction(vcpu);
2297 
2298 	if (vmload) {
2299 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2300 		svm->sysenter_eip_hi = 0;
2301 		svm->sysenter_esp_hi = 0;
2302 	} else {
2303 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2304 	}
2305 
2306 	kvm_vcpu_unmap(vcpu, &map, true);
2307 
2308 	return ret;
2309 }
2310 
2311 static int vmload_interception(struct kvm_vcpu *vcpu)
2312 {
2313 	return vmload_vmsave_interception(vcpu, true);
2314 }
2315 
2316 static int vmsave_interception(struct kvm_vcpu *vcpu)
2317 {
2318 	return vmload_vmsave_interception(vcpu, false);
2319 }
2320 
2321 static int vmrun_interception(struct kvm_vcpu *vcpu)
2322 {
2323 	if (nested_svm_check_permissions(vcpu))
2324 		return 1;
2325 
2326 	return nested_svm_vmrun(vcpu);
2327 }
2328 
2329 enum {
2330 	NONE_SVM_INSTR,
2331 	SVM_INSTR_VMRUN,
2332 	SVM_INSTR_VMLOAD,
2333 	SVM_INSTR_VMSAVE,
2334 };
2335 
2336 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2337 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2338 {
2339 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2340 
2341 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2342 		return NONE_SVM_INSTR;
2343 
2344 	switch (ctxt->modrm) {
2345 	case 0xd8: /* VMRUN */
2346 		return SVM_INSTR_VMRUN;
2347 	case 0xda: /* VMLOAD */
2348 		return SVM_INSTR_VMLOAD;
2349 	case 0xdb: /* VMSAVE */
2350 		return SVM_INSTR_VMSAVE;
2351 	default:
2352 		break;
2353 	}
2354 
2355 	return NONE_SVM_INSTR;
2356 }
2357 
2358 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2359 {
2360 	const int guest_mode_exit_codes[] = {
2361 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2362 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2363 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2364 	};
2365 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2366 		[SVM_INSTR_VMRUN] = vmrun_interception,
2367 		[SVM_INSTR_VMLOAD] = vmload_interception,
2368 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2369 	};
2370 	struct vcpu_svm *svm = to_svm(vcpu);
2371 	int ret;
2372 
2373 	if (is_guest_mode(vcpu)) {
2374 		/* Returns '1' or -errno on failure, '0' on success. */
2375 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2376 		if (ret)
2377 			return ret;
2378 		return 1;
2379 	}
2380 	return svm_instr_handlers[opcode](vcpu);
2381 }
2382 
2383 /*
2384  * #GP handling code. Note that #GP can be triggered under the following two
2385  * cases:
2386  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2387  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2388  *      regions (e.g. SMM memory on host).
2389  *   2) VMware backdoor
2390  */
2391 static int gp_interception(struct kvm_vcpu *vcpu)
2392 {
2393 	struct vcpu_svm *svm = to_svm(vcpu);
2394 	u32 error_code = svm->vmcb->control.exit_info_1;
2395 	int opcode;
2396 
2397 	/* Both #GP cases have zero error_code */
2398 	if (error_code)
2399 		goto reinject;
2400 
2401 	/* Decode the instruction for usage later */
2402 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2403 		goto reinject;
2404 
2405 	opcode = svm_instr_opcode(vcpu);
2406 
2407 	if (opcode == NONE_SVM_INSTR) {
2408 		if (!enable_vmware_backdoor)
2409 			goto reinject;
2410 
2411 		/*
2412 		 * VMware backdoor emulation on #GP interception only handles
2413 		 * IN{S}, OUT{S}, and RDPMC.
2414 		 */
2415 		if (!is_guest_mode(vcpu))
2416 			return kvm_emulate_instruction(vcpu,
2417 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2418 	} else {
2419 		/* All SVM instructions expect page aligned RAX */
2420 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2421 			goto reinject;
2422 
2423 		return emulate_svm_instr(vcpu, opcode);
2424 	}
2425 
2426 reinject:
2427 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2428 	return 1;
2429 }
2430 
2431 void svm_set_gif(struct vcpu_svm *svm, bool value)
2432 {
2433 	if (value) {
2434 		/*
2435 		 * If VGIF is enabled, the STGI intercept is only added to
2436 		 * detect the opening of the SMI/NMI window; remove it now.
2437 		 * Likewise, clear the VINTR intercept, we will set it
2438 		 * again while processing KVM_REQ_EVENT if needed.
2439 		 */
2440 		if (vgif)
2441 			svm_clr_intercept(svm, INTERCEPT_STGI);
2442 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2443 			svm_clear_vintr(svm);
2444 
2445 		enable_gif(svm);
2446 		if (svm->vcpu.arch.smi_pending ||
2447 		    svm->vcpu.arch.nmi_pending ||
2448 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2449 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2450 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2451 	} else {
2452 		disable_gif(svm);
2453 
2454 		/*
2455 		 * After a CLGI no interrupts should come.  But if vGIF is
2456 		 * in use, we still rely on the VINTR intercept (rather than
2457 		 * STGI) to detect an open interrupt window.
2458 		*/
2459 		if (!vgif)
2460 			svm_clear_vintr(svm);
2461 	}
2462 }
2463 
2464 static int stgi_interception(struct kvm_vcpu *vcpu)
2465 {
2466 	int ret;
2467 
2468 	if (nested_svm_check_permissions(vcpu))
2469 		return 1;
2470 
2471 	ret = kvm_skip_emulated_instruction(vcpu);
2472 	svm_set_gif(to_svm(vcpu), true);
2473 	return ret;
2474 }
2475 
2476 static int clgi_interception(struct kvm_vcpu *vcpu)
2477 {
2478 	int ret;
2479 
2480 	if (nested_svm_check_permissions(vcpu))
2481 		return 1;
2482 
2483 	ret = kvm_skip_emulated_instruction(vcpu);
2484 	svm_set_gif(to_svm(vcpu), false);
2485 	return ret;
2486 }
2487 
2488 static int invlpga_interception(struct kvm_vcpu *vcpu)
2489 {
2490 	gva_t gva = kvm_rax_read(vcpu);
2491 	u32 asid = kvm_rcx_read(vcpu);
2492 
2493 	/* FIXME: Handle an address size prefix. */
2494 	if (!is_long_mode(vcpu))
2495 		gva = (u32)gva;
2496 
2497 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2498 
2499 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2500 	kvm_mmu_invlpg(vcpu, gva);
2501 
2502 	return kvm_skip_emulated_instruction(vcpu);
2503 }
2504 
2505 static int skinit_interception(struct kvm_vcpu *vcpu)
2506 {
2507 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2508 
2509 	kvm_queue_exception(vcpu, UD_VECTOR);
2510 	return 1;
2511 }
2512 
2513 static int task_switch_interception(struct kvm_vcpu *vcpu)
2514 {
2515 	struct vcpu_svm *svm = to_svm(vcpu);
2516 	u16 tss_selector;
2517 	int reason;
2518 	int int_type = svm->vmcb->control.exit_int_info &
2519 		SVM_EXITINTINFO_TYPE_MASK;
2520 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2521 	uint32_t type =
2522 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2523 	uint32_t idt_v =
2524 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2525 	bool has_error_code = false;
2526 	u32 error_code = 0;
2527 
2528 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2529 
2530 	if (svm->vmcb->control.exit_info_2 &
2531 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2532 		reason = TASK_SWITCH_IRET;
2533 	else if (svm->vmcb->control.exit_info_2 &
2534 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2535 		reason = TASK_SWITCH_JMP;
2536 	else if (idt_v)
2537 		reason = TASK_SWITCH_GATE;
2538 	else
2539 		reason = TASK_SWITCH_CALL;
2540 
2541 	if (reason == TASK_SWITCH_GATE) {
2542 		switch (type) {
2543 		case SVM_EXITINTINFO_TYPE_NMI:
2544 			vcpu->arch.nmi_injected = false;
2545 			break;
2546 		case SVM_EXITINTINFO_TYPE_EXEPT:
2547 			if (svm->vmcb->control.exit_info_2 &
2548 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2549 				has_error_code = true;
2550 				error_code =
2551 					(u32)svm->vmcb->control.exit_info_2;
2552 			}
2553 			kvm_clear_exception_queue(vcpu);
2554 			break;
2555 		case SVM_EXITINTINFO_TYPE_INTR:
2556 		case SVM_EXITINTINFO_TYPE_SOFT:
2557 			kvm_clear_interrupt_queue(vcpu);
2558 			break;
2559 		default:
2560 			break;
2561 		}
2562 	}
2563 
2564 	if (reason != TASK_SWITCH_GATE ||
2565 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2566 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2567 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2568 		if (!svm_skip_emulated_instruction(vcpu))
2569 			return 0;
2570 	}
2571 
2572 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2573 		int_vec = -1;
2574 
2575 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2576 			       has_error_code, error_code);
2577 }
2578 
2579 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2580 {
2581 	if (!sev_es_guest(svm->vcpu.kvm))
2582 		svm_clr_intercept(svm, INTERCEPT_IRET);
2583 }
2584 
2585 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2586 {
2587 	if (!sev_es_guest(svm->vcpu.kvm))
2588 		svm_set_intercept(svm, INTERCEPT_IRET);
2589 }
2590 
2591 static int iret_interception(struct kvm_vcpu *vcpu)
2592 {
2593 	struct vcpu_svm *svm = to_svm(vcpu);
2594 
2595 	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2596 
2597 	++vcpu->stat.nmi_window_exits;
2598 	svm->awaiting_iret_completion = true;
2599 
2600 	svm_clr_iret_intercept(svm);
2601 	svm->nmi_iret_rip = kvm_rip_read(vcpu);
2602 
2603 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2604 	return 1;
2605 }
2606 
2607 static int invlpg_interception(struct kvm_vcpu *vcpu)
2608 {
2609 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2610 		return kvm_emulate_instruction(vcpu, 0);
2611 
2612 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2613 	return kvm_skip_emulated_instruction(vcpu);
2614 }
2615 
2616 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2617 {
2618 	return kvm_emulate_instruction(vcpu, 0);
2619 }
2620 
2621 static int rsm_interception(struct kvm_vcpu *vcpu)
2622 {
2623 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2624 }
2625 
2626 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2627 					    unsigned long val)
2628 {
2629 	struct vcpu_svm *svm = to_svm(vcpu);
2630 	unsigned long cr0 = vcpu->arch.cr0;
2631 	bool ret = false;
2632 
2633 	if (!is_guest_mode(vcpu) ||
2634 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2635 		return false;
2636 
2637 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2638 	val &= ~SVM_CR0_SELECTIVE_MASK;
2639 
2640 	if (cr0 ^ val) {
2641 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2642 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2643 	}
2644 
2645 	return ret;
2646 }
2647 
2648 #define CR_VALID (1ULL << 63)
2649 
2650 static int cr_interception(struct kvm_vcpu *vcpu)
2651 {
2652 	struct vcpu_svm *svm = to_svm(vcpu);
2653 	int reg, cr;
2654 	unsigned long val;
2655 	int err;
2656 
2657 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2658 		return emulate_on_interception(vcpu);
2659 
2660 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2661 		return emulate_on_interception(vcpu);
2662 
2663 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2664 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2665 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2666 	else
2667 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2668 
2669 	err = 0;
2670 	if (cr >= 16) { /* mov to cr */
2671 		cr -= 16;
2672 		val = kvm_register_read(vcpu, reg);
2673 		trace_kvm_cr_write(cr, val);
2674 		switch (cr) {
2675 		case 0:
2676 			if (!check_selective_cr0_intercepted(vcpu, val))
2677 				err = kvm_set_cr0(vcpu, val);
2678 			else
2679 				return 1;
2680 
2681 			break;
2682 		case 3:
2683 			err = kvm_set_cr3(vcpu, val);
2684 			break;
2685 		case 4:
2686 			err = kvm_set_cr4(vcpu, val);
2687 			break;
2688 		case 8:
2689 			err = kvm_set_cr8(vcpu, val);
2690 			break;
2691 		default:
2692 			WARN(1, "unhandled write to CR%d", cr);
2693 			kvm_queue_exception(vcpu, UD_VECTOR);
2694 			return 1;
2695 		}
2696 	} else { /* mov from cr */
2697 		switch (cr) {
2698 		case 0:
2699 			val = kvm_read_cr0(vcpu);
2700 			break;
2701 		case 2:
2702 			val = vcpu->arch.cr2;
2703 			break;
2704 		case 3:
2705 			val = kvm_read_cr3(vcpu);
2706 			break;
2707 		case 4:
2708 			val = kvm_read_cr4(vcpu);
2709 			break;
2710 		case 8:
2711 			val = kvm_get_cr8(vcpu);
2712 			break;
2713 		default:
2714 			WARN(1, "unhandled read from CR%d", cr);
2715 			kvm_queue_exception(vcpu, UD_VECTOR);
2716 			return 1;
2717 		}
2718 		kvm_register_write(vcpu, reg, val);
2719 		trace_kvm_cr_read(cr, val);
2720 	}
2721 	return kvm_complete_insn_gp(vcpu, err);
2722 }
2723 
2724 static int cr_trap(struct kvm_vcpu *vcpu)
2725 {
2726 	struct vcpu_svm *svm = to_svm(vcpu);
2727 	unsigned long old_value, new_value;
2728 	unsigned int cr;
2729 	int ret = 0;
2730 
2731 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2732 
2733 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2734 	switch (cr) {
2735 	case 0:
2736 		old_value = kvm_read_cr0(vcpu);
2737 		svm_set_cr0(vcpu, new_value);
2738 
2739 		kvm_post_set_cr0(vcpu, old_value, new_value);
2740 		break;
2741 	case 4:
2742 		old_value = kvm_read_cr4(vcpu);
2743 		svm_set_cr4(vcpu, new_value);
2744 
2745 		kvm_post_set_cr4(vcpu, old_value, new_value);
2746 		break;
2747 	case 8:
2748 		ret = kvm_set_cr8(vcpu, new_value);
2749 		break;
2750 	default:
2751 		WARN(1, "unhandled CR%d write trap", cr);
2752 		kvm_queue_exception(vcpu, UD_VECTOR);
2753 		return 1;
2754 	}
2755 
2756 	return kvm_complete_insn_gp(vcpu, ret);
2757 }
2758 
2759 static int dr_interception(struct kvm_vcpu *vcpu)
2760 {
2761 	struct vcpu_svm *svm = to_svm(vcpu);
2762 	int reg, dr;
2763 	unsigned long val;
2764 	int err = 0;
2765 
2766 	/*
2767 	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2768 	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2769 	 */
2770 	if (sev_es_guest(vcpu->kvm))
2771 		return 1;
2772 
2773 	if (vcpu->guest_debug == 0) {
2774 		/*
2775 		 * No more DR vmexits; force a reload of the debug registers
2776 		 * and reenter on this instruction.  The next vmexit will
2777 		 * retrieve the full state of the debug registers.
2778 		 */
2779 		clr_dr_intercepts(svm);
2780 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2781 		return 1;
2782 	}
2783 
2784 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2785 		return emulate_on_interception(vcpu);
2786 
2787 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2788 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2789 	if (dr >= 16) { /* mov to DRn  */
2790 		dr -= 16;
2791 		val = kvm_register_read(vcpu, reg);
2792 		err = kvm_set_dr(vcpu, dr, val);
2793 	} else {
2794 		kvm_get_dr(vcpu, dr, &val);
2795 		kvm_register_write(vcpu, reg, val);
2796 	}
2797 
2798 	return kvm_complete_insn_gp(vcpu, err);
2799 }
2800 
2801 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2802 {
2803 	int r;
2804 
2805 	u8 cr8_prev = kvm_get_cr8(vcpu);
2806 	/* instruction emulation calls kvm_set_cr8() */
2807 	r = cr_interception(vcpu);
2808 	if (lapic_in_kernel(vcpu))
2809 		return r;
2810 	if (cr8_prev <= kvm_get_cr8(vcpu))
2811 		return r;
2812 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2813 	return 0;
2814 }
2815 
2816 static int efer_trap(struct kvm_vcpu *vcpu)
2817 {
2818 	struct msr_data msr_info;
2819 	int ret;
2820 
2821 	/*
2822 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2823 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2824 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2825 	 * the guest doesn't have X86_FEATURE_SVM.
2826 	 */
2827 	msr_info.host_initiated = false;
2828 	msr_info.index = MSR_EFER;
2829 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2830 	ret = kvm_set_msr_common(vcpu, &msr_info);
2831 
2832 	return kvm_complete_insn_gp(vcpu, ret);
2833 }
2834 
2835 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2836 {
2837 	msr->data = 0;
2838 
2839 	switch (msr->index) {
2840 	case MSR_AMD64_DE_CFG:
2841 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2842 			msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2843 		break;
2844 	default:
2845 		return KVM_MSR_RET_INVALID;
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2852 {
2853 	struct vcpu_svm *svm = to_svm(vcpu);
2854 
2855 	switch (msr_info->index) {
2856 	case MSR_AMD64_TSC_RATIO:
2857 		if (!msr_info->host_initiated &&
2858 		    !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
2859 			return 1;
2860 		msr_info->data = svm->tsc_ratio_msr;
2861 		break;
2862 	case MSR_STAR:
2863 		msr_info->data = svm->vmcb01.ptr->save.star;
2864 		break;
2865 #ifdef CONFIG_X86_64
2866 	case MSR_LSTAR:
2867 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2868 		break;
2869 	case MSR_CSTAR:
2870 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2871 		break;
2872 	case MSR_KERNEL_GS_BASE:
2873 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2874 		break;
2875 	case MSR_SYSCALL_MASK:
2876 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2877 		break;
2878 #endif
2879 	case MSR_IA32_SYSENTER_CS:
2880 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2881 		break;
2882 	case MSR_IA32_SYSENTER_EIP:
2883 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2884 		if (guest_cpuid_is_intel(vcpu))
2885 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2886 		break;
2887 	case MSR_IA32_SYSENTER_ESP:
2888 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2889 		if (guest_cpuid_is_intel(vcpu))
2890 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2891 		break;
2892 	case MSR_TSC_AUX:
2893 		msr_info->data = svm->tsc_aux;
2894 		break;
2895 	case MSR_IA32_DEBUGCTLMSR:
2896 		msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2897 		break;
2898 	case MSR_IA32_LASTBRANCHFROMIP:
2899 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2900 		break;
2901 	case MSR_IA32_LASTBRANCHTOIP:
2902 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2903 		break;
2904 	case MSR_IA32_LASTINTFROMIP:
2905 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2906 		break;
2907 	case MSR_IA32_LASTINTTOIP:
2908 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2909 		break;
2910 	case MSR_VM_HSAVE_PA:
2911 		msr_info->data = svm->nested.hsave_msr;
2912 		break;
2913 	case MSR_VM_CR:
2914 		msr_info->data = svm->nested.vm_cr_msr;
2915 		break;
2916 	case MSR_IA32_SPEC_CTRL:
2917 		if (!msr_info->host_initiated &&
2918 		    !guest_has_spec_ctrl_msr(vcpu))
2919 			return 1;
2920 
2921 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2922 			msr_info->data = svm->vmcb->save.spec_ctrl;
2923 		else
2924 			msr_info->data = svm->spec_ctrl;
2925 		break;
2926 	case MSR_AMD64_VIRT_SPEC_CTRL:
2927 		if (!msr_info->host_initiated &&
2928 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2929 			return 1;
2930 
2931 		msr_info->data = svm->virt_spec_ctrl;
2932 		break;
2933 	case MSR_F15H_IC_CFG: {
2934 
2935 		int family, model;
2936 
2937 		family = guest_cpuid_family(vcpu);
2938 		model  = guest_cpuid_model(vcpu);
2939 
2940 		if (family < 0 || model < 0)
2941 			return kvm_get_msr_common(vcpu, msr_info);
2942 
2943 		msr_info->data = 0;
2944 
2945 		if (family == 0x15 &&
2946 		    (model >= 0x2 && model < 0x20))
2947 			msr_info->data = 0x1E;
2948 		}
2949 		break;
2950 	case MSR_AMD64_DE_CFG:
2951 		msr_info->data = svm->msr_decfg;
2952 		break;
2953 	default:
2954 		return kvm_get_msr_common(vcpu, msr_info);
2955 	}
2956 	return 0;
2957 }
2958 
2959 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2960 {
2961 	struct vcpu_svm *svm = to_svm(vcpu);
2962 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2963 		return kvm_complete_insn_gp(vcpu, err);
2964 
2965 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2966 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2967 				X86_TRAP_GP |
2968 				SVM_EVTINJ_TYPE_EXEPT |
2969 				SVM_EVTINJ_VALID);
2970 	return 1;
2971 }
2972 
2973 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2974 {
2975 	struct vcpu_svm *svm = to_svm(vcpu);
2976 	int svm_dis, chg_mask;
2977 
2978 	if (data & ~SVM_VM_CR_VALID_MASK)
2979 		return 1;
2980 
2981 	chg_mask = SVM_VM_CR_VALID_MASK;
2982 
2983 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2984 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2985 
2986 	svm->nested.vm_cr_msr &= ~chg_mask;
2987 	svm->nested.vm_cr_msr |= (data & chg_mask);
2988 
2989 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2990 
2991 	/* check for svm_disable while efer.svme is set */
2992 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2993 		return 1;
2994 
2995 	return 0;
2996 }
2997 
2998 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2999 {
3000 	struct vcpu_svm *svm = to_svm(vcpu);
3001 	int ret = 0;
3002 
3003 	u32 ecx = msr->index;
3004 	u64 data = msr->data;
3005 	switch (ecx) {
3006 	case MSR_AMD64_TSC_RATIO:
3007 
3008 		if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
3009 
3010 			if (!msr->host_initiated)
3011 				return 1;
3012 			/*
3013 			 * In case TSC scaling is not enabled, always
3014 			 * leave this MSR at the default value.
3015 			 *
3016 			 * Due to bug in qemu 6.2.0, it would try to set
3017 			 * this msr to 0 if tsc scaling is not enabled.
3018 			 * Ignore this value as well.
3019 			 */
3020 			if (data != 0 && data != svm->tsc_ratio_msr)
3021 				return 1;
3022 			break;
3023 		}
3024 
3025 		if (data & SVM_TSC_RATIO_RSVD)
3026 			return 1;
3027 
3028 		svm->tsc_ratio_msr = data;
3029 
3030 		if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
3031 		    is_guest_mode(vcpu))
3032 			nested_svm_update_tsc_ratio_msr(vcpu);
3033 
3034 		break;
3035 	case MSR_IA32_CR_PAT:
3036 		ret = kvm_set_msr_common(vcpu, msr);
3037 		if (ret)
3038 			break;
3039 
3040 		svm->vmcb01.ptr->save.g_pat = data;
3041 		if (is_guest_mode(vcpu))
3042 			nested_vmcb02_compute_g_pat(svm);
3043 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3044 		break;
3045 	case MSR_IA32_SPEC_CTRL:
3046 		if (!msr->host_initiated &&
3047 		    !guest_has_spec_ctrl_msr(vcpu))
3048 			return 1;
3049 
3050 		if (kvm_spec_ctrl_test_value(data))
3051 			return 1;
3052 
3053 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3054 			svm->vmcb->save.spec_ctrl = data;
3055 		else
3056 			svm->spec_ctrl = data;
3057 		if (!data)
3058 			break;
3059 
3060 		/*
3061 		 * For non-nested:
3062 		 * When it's written (to non-zero) for the first time, pass
3063 		 * it through.
3064 		 *
3065 		 * For nested:
3066 		 * The handling of the MSR bitmap for L2 guests is done in
3067 		 * nested_svm_vmrun_msrpm.
3068 		 * We update the L1 MSR bit as well since it will end up
3069 		 * touching the MSR anyway now.
3070 		 */
3071 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3072 		break;
3073 	case MSR_AMD64_VIRT_SPEC_CTRL:
3074 		if (!msr->host_initiated &&
3075 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3076 			return 1;
3077 
3078 		if (data & ~SPEC_CTRL_SSBD)
3079 			return 1;
3080 
3081 		svm->virt_spec_ctrl = data;
3082 		break;
3083 	case MSR_STAR:
3084 		svm->vmcb01.ptr->save.star = data;
3085 		break;
3086 #ifdef CONFIG_X86_64
3087 	case MSR_LSTAR:
3088 		svm->vmcb01.ptr->save.lstar = data;
3089 		break;
3090 	case MSR_CSTAR:
3091 		svm->vmcb01.ptr->save.cstar = data;
3092 		break;
3093 	case MSR_KERNEL_GS_BASE:
3094 		svm->vmcb01.ptr->save.kernel_gs_base = data;
3095 		break;
3096 	case MSR_SYSCALL_MASK:
3097 		svm->vmcb01.ptr->save.sfmask = data;
3098 		break;
3099 #endif
3100 	case MSR_IA32_SYSENTER_CS:
3101 		svm->vmcb01.ptr->save.sysenter_cs = data;
3102 		break;
3103 	case MSR_IA32_SYSENTER_EIP:
3104 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3105 		/*
3106 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3107 		 * when we spoof an Intel vendor ID (for cross vendor migration).
3108 		 * In this case we use this intercept to track the high
3109 		 * 32 bit part of these msrs to support Intel's
3110 		 * implementation of SYSENTER/SYSEXIT.
3111 		 */
3112 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3113 		break;
3114 	case MSR_IA32_SYSENTER_ESP:
3115 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3116 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3117 		break;
3118 	case MSR_TSC_AUX:
3119 		/*
3120 		 * TSC_AUX is always virtualized for SEV-ES guests when the
3121 		 * feature is available. The user return MSR support is not
3122 		 * required in this case because TSC_AUX is restored on #VMEXIT
3123 		 * from the host save area (which has been initialized in
3124 		 * svm_hardware_enable()).
3125 		 */
3126 		if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3127 			break;
3128 
3129 		/*
3130 		 * TSC_AUX is usually changed only during boot and never read
3131 		 * directly.  Intercept TSC_AUX instead of exposing it to the
3132 		 * guest via direct_access_msrs, and switch it via user return.
3133 		 */
3134 		preempt_disable();
3135 		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3136 		preempt_enable();
3137 		if (ret)
3138 			break;
3139 
3140 		svm->tsc_aux = data;
3141 		break;
3142 	case MSR_IA32_DEBUGCTLMSR:
3143 		if (!lbrv) {
3144 			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3145 			break;
3146 		}
3147 		if (data & DEBUGCTL_RESERVED_BITS)
3148 			return 1;
3149 
3150 		svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3151 		svm_update_lbrv(vcpu);
3152 		break;
3153 	case MSR_VM_HSAVE_PA:
3154 		/*
3155 		 * Old kernels did not validate the value written to
3156 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3157 		 * value to allow live migrating buggy or malicious guests
3158 		 * originating from those kernels.
3159 		 */
3160 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3161 			return 1;
3162 
3163 		svm->nested.hsave_msr = data & PAGE_MASK;
3164 		break;
3165 	case MSR_VM_CR:
3166 		return svm_set_vm_cr(vcpu, data);
3167 	case MSR_VM_IGNNE:
3168 		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3169 		break;
3170 	case MSR_AMD64_DE_CFG: {
3171 		struct kvm_msr_entry msr_entry;
3172 
3173 		msr_entry.index = msr->index;
3174 		if (svm_get_msr_feature(&msr_entry))
3175 			return 1;
3176 
3177 		/* Check the supported bits */
3178 		if (data & ~msr_entry.data)
3179 			return 1;
3180 
3181 		/* Don't allow the guest to change a bit, #GP */
3182 		if (!msr->host_initiated && (data ^ msr_entry.data))
3183 			return 1;
3184 
3185 		svm->msr_decfg = data;
3186 		break;
3187 	}
3188 	default:
3189 		return kvm_set_msr_common(vcpu, msr);
3190 	}
3191 	return ret;
3192 }
3193 
3194 static int msr_interception(struct kvm_vcpu *vcpu)
3195 {
3196 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3197 		return kvm_emulate_wrmsr(vcpu);
3198 	else
3199 		return kvm_emulate_rdmsr(vcpu);
3200 }
3201 
3202 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3203 {
3204 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3205 	svm_clear_vintr(to_svm(vcpu));
3206 
3207 	/*
3208 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3209 	 * In this case AVIC was temporarily disabled for
3210 	 * requesting the IRQ window and we have to re-enable it.
3211 	 *
3212 	 * If running nested, still remove the VM wide AVIC inhibit to
3213 	 * support case in which the interrupt window was requested when the
3214 	 * vCPU was not running nested.
3215 
3216 	 * All vCPUs which run still run nested, will remain to have their
3217 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3218 	 */
3219 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3220 
3221 	++vcpu->stat.irq_window_exits;
3222 	return 1;
3223 }
3224 
3225 static int pause_interception(struct kvm_vcpu *vcpu)
3226 {
3227 	bool in_kernel;
3228 	/*
3229 	 * CPL is not made available for an SEV-ES guest, therefore
3230 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3231 	 * set in_kernel to false as well.
3232 	 */
3233 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3234 
3235 	grow_ple_window(vcpu);
3236 
3237 	kvm_vcpu_on_spin(vcpu, in_kernel);
3238 	return kvm_skip_emulated_instruction(vcpu);
3239 }
3240 
3241 static int invpcid_interception(struct kvm_vcpu *vcpu)
3242 {
3243 	struct vcpu_svm *svm = to_svm(vcpu);
3244 	unsigned long type;
3245 	gva_t gva;
3246 
3247 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3248 		kvm_queue_exception(vcpu, UD_VECTOR);
3249 		return 1;
3250 	}
3251 
3252 	/*
3253 	 * For an INVPCID intercept:
3254 	 * EXITINFO1 provides the linear address of the memory operand.
3255 	 * EXITINFO2 provides the contents of the register operand.
3256 	 */
3257 	type = svm->vmcb->control.exit_info_2;
3258 	gva = svm->vmcb->control.exit_info_1;
3259 
3260 	return kvm_handle_invpcid(vcpu, type, gva);
3261 }
3262 
3263 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3264 	[SVM_EXIT_READ_CR0]			= cr_interception,
3265 	[SVM_EXIT_READ_CR3]			= cr_interception,
3266 	[SVM_EXIT_READ_CR4]			= cr_interception,
3267 	[SVM_EXIT_READ_CR8]			= cr_interception,
3268 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3269 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3270 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3271 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3272 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3273 	[SVM_EXIT_READ_DR0]			= dr_interception,
3274 	[SVM_EXIT_READ_DR1]			= dr_interception,
3275 	[SVM_EXIT_READ_DR2]			= dr_interception,
3276 	[SVM_EXIT_READ_DR3]			= dr_interception,
3277 	[SVM_EXIT_READ_DR4]			= dr_interception,
3278 	[SVM_EXIT_READ_DR5]			= dr_interception,
3279 	[SVM_EXIT_READ_DR6]			= dr_interception,
3280 	[SVM_EXIT_READ_DR7]			= dr_interception,
3281 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3282 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3283 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3284 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3285 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3286 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3287 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3288 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3289 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3290 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3291 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3292 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3293 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3294 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3295 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3296 	[SVM_EXIT_INTR]				= intr_interception,
3297 	[SVM_EXIT_NMI]				= nmi_interception,
3298 	[SVM_EXIT_SMI]				= smi_interception,
3299 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3300 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3301 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3302 	[SVM_EXIT_IRET]                         = iret_interception,
3303 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3304 	[SVM_EXIT_PAUSE]			= pause_interception,
3305 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3306 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3307 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3308 	[SVM_EXIT_IOIO]				= io_interception,
3309 	[SVM_EXIT_MSR]				= msr_interception,
3310 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3311 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3312 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3313 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3314 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3315 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3316 	[SVM_EXIT_STGI]				= stgi_interception,
3317 	[SVM_EXIT_CLGI]				= clgi_interception,
3318 	[SVM_EXIT_SKINIT]			= skinit_interception,
3319 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3320 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3321 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3322 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3323 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3324 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3325 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3326 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3327 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3328 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3329 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3330 	[SVM_EXIT_NPF]				= npf_interception,
3331 	[SVM_EXIT_RSM]                          = rsm_interception,
3332 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3333 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3334 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3335 };
3336 
3337 static void dump_vmcb(struct kvm_vcpu *vcpu)
3338 {
3339 	struct vcpu_svm *svm = to_svm(vcpu);
3340 	struct vmcb_control_area *control = &svm->vmcb->control;
3341 	struct vmcb_save_area *save = &svm->vmcb->save;
3342 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3343 
3344 	if (!dump_invalid_vmcb) {
3345 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3346 		return;
3347 	}
3348 
3349 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3350 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3351 	pr_err("VMCB Control Area:\n");
3352 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3353 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3354 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3355 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3356 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3357 	pr_err("%-20s%08x %08x\n", "intercepts:",
3358               control->intercepts[INTERCEPT_WORD3],
3359 	       control->intercepts[INTERCEPT_WORD4]);
3360 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3361 	pr_err("%-20s%d\n", "pause filter threshold:",
3362 	       control->pause_filter_thresh);
3363 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3364 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3365 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3366 	pr_err("%-20s%d\n", "asid:", control->asid);
3367 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3368 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3369 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3370 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3371 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3372 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3373 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3374 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3375 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3376 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3377 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3378 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3379 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3380 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3381 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3382 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3383 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3384 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3385 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3386 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3387 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3388 	pr_err("VMCB State Save Area:\n");
3389 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3390 	       "es:",
3391 	       save->es.selector, save->es.attrib,
3392 	       save->es.limit, save->es.base);
3393 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3394 	       "cs:",
3395 	       save->cs.selector, save->cs.attrib,
3396 	       save->cs.limit, save->cs.base);
3397 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3398 	       "ss:",
3399 	       save->ss.selector, save->ss.attrib,
3400 	       save->ss.limit, save->ss.base);
3401 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3402 	       "ds:",
3403 	       save->ds.selector, save->ds.attrib,
3404 	       save->ds.limit, save->ds.base);
3405 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3406 	       "fs:",
3407 	       save01->fs.selector, save01->fs.attrib,
3408 	       save01->fs.limit, save01->fs.base);
3409 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3410 	       "gs:",
3411 	       save01->gs.selector, save01->gs.attrib,
3412 	       save01->gs.limit, save01->gs.base);
3413 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3414 	       "gdtr:",
3415 	       save->gdtr.selector, save->gdtr.attrib,
3416 	       save->gdtr.limit, save->gdtr.base);
3417 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3418 	       "ldtr:",
3419 	       save01->ldtr.selector, save01->ldtr.attrib,
3420 	       save01->ldtr.limit, save01->ldtr.base);
3421 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3422 	       "idtr:",
3423 	       save->idtr.selector, save->idtr.attrib,
3424 	       save->idtr.limit, save->idtr.base);
3425 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3426 	       "tr:",
3427 	       save01->tr.selector, save01->tr.attrib,
3428 	       save01->tr.limit, save01->tr.base);
3429 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3430 	       save->vmpl, save->cpl, save->efer);
3431 	pr_err("%-15s %016llx %-13s %016llx\n",
3432 	       "cr0:", save->cr0, "cr2:", save->cr2);
3433 	pr_err("%-15s %016llx %-13s %016llx\n",
3434 	       "cr3:", save->cr3, "cr4:", save->cr4);
3435 	pr_err("%-15s %016llx %-13s %016llx\n",
3436 	       "dr6:", save->dr6, "dr7:", save->dr7);
3437 	pr_err("%-15s %016llx %-13s %016llx\n",
3438 	       "rip:", save->rip, "rflags:", save->rflags);
3439 	pr_err("%-15s %016llx %-13s %016llx\n",
3440 	       "rsp:", save->rsp, "rax:", save->rax);
3441 	pr_err("%-15s %016llx %-13s %016llx\n",
3442 	       "star:", save01->star, "lstar:", save01->lstar);
3443 	pr_err("%-15s %016llx %-13s %016llx\n",
3444 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3445 	pr_err("%-15s %016llx %-13s %016llx\n",
3446 	       "kernel_gs_base:", save01->kernel_gs_base,
3447 	       "sysenter_cs:", save01->sysenter_cs);
3448 	pr_err("%-15s %016llx %-13s %016llx\n",
3449 	       "sysenter_esp:", save01->sysenter_esp,
3450 	       "sysenter_eip:", save01->sysenter_eip);
3451 	pr_err("%-15s %016llx %-13s %016llx\n",
3452 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3453 	pr_err("%-15s %016llx %-13s %016llx\n",
3454 	       "br_from:", save->br_from, "br_to:", save->br_to);
3455 	pr_err("%-15s %016llx %-13s %016llx\n",
3456 	       "excp_from:", save->last_excp_from,
3457 	       "excp_to:", save->last_excp_to);
3458 }
3459 
3460 static bool svm_check_exit_valid(u64 exit_code)
3461 {
3462 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3463 		svm_exit_handlers[exit_code]);
3464 }
3465 
3466 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3467 {
3468 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3469 	dump_vmcb(vcpu);
3470 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3471 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3472 	vcpu->run->internal.ndata = 2;
3473 	vcpu->run->internal.data[0] = exit_code;
3474 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3475 	return 0;
3476 }
3477 
3478 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3479 {
3480 	if (!svm_check_exit_valid(exit_code))
3481 		return svm_handle_invalid_exit(vcpu, exit_code);
3482 
3483 #ifdef CONFIG_RETPOLINE
3484 	if (exit_code == SVM_EXIT_MSR)
3485 		return msr_interception(vcpu);
3486 	else if (exit_code == SVM_EXIT_VINTR)
3487 		return interrupt_window_interception(vcpu);
3488 	else if (exit_code == SVM_EXIT_INTR)
3489 		return intr_interception(vcpu);
3490 	else if (exit_code == SVM_EXIT_HLT)
3491 		return kvm_emulate_halt(vcpu);
3492 	else if (exit_code == SVM_EXIT_NPF)
3493 		return npf_interception(vcpu);
3494 #endif
3495 	return svm_exit_handlers[exit_code](vcpu);
3496 }
3497 
3498 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3499 			      u64 *info1, u64 *info2,
3500 			      u32 *intr_info, u32 *error_code)
3501 {
3502 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3503 
3504 	*reason = control->exit_code;
3505 	*info1 = control->exit_info_1;
3506 	*info2 = control->exit_info_2;
3507 	*intr_info = control->exit_int_info;
3508 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3509 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3510 		*error_code = control->exit_int_info_err;
3511 	else
3512 		*error_code = 0;
3513 }
3514 
3515 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3516 {
3517 	struct vcpu_svm *svm = to_svm(vcpu);
3518 	struct kvm_run *kvm_run = vcpu->run;
3519 	u32 exit_code = svm->vmcb->control.exit_code;
3520 
3521 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3522 	if (!sev_es_guest(vcpu->kvm)) {
3523 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3524 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3525 		if (npt_enabled)
3526 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3527 	}
3528 
3529 	if (is_guest_mode(vcpu)) {
3530 		int vmexit;
3531 
3532 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3533 
3534 		vmexit = nested_svm_exit_special(svm);
3535 
3536 		if (vmexit == NESTED_EXIT_CONTINUE)
3537 			vmexit = nested_svm_exit_handled(svm);
3538 
3539 		if (vmexit == NESTED_EXIT_DONE)
3540 			return 1;
3541 	}
3542 
3543 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3544 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3545 		kvm_run->fail_entry.hardware_entry_failure_reason
3546 			= svm->vmcb->control.exit_code;
3547 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3548 		dump_vmcb(vcpu);
3549 		return 0;
3550 	}
3551 
3552 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3553 		return 1;
3554 
3555 	return svm_invoke_exit_handler(vcpu, exit_code);
3556 }
3557 
3558 static void pre_svm_run(struct kvm_vcpu *vcpu)
3559 {
3560 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3561 	struct vcpu_svm *svm = to_svm(vcpu);
3562 
3563 	/*
3564 	 * If the previous vmrun of the vmcb occurred on a different physical
3565 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3566 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3567 	 */
3568 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3569 		svm->current_vmcb->asid_generation = 0;
3570 		vmcb_mark_all_dirty(svm->vmcb);
3571 		svm->current_vmcb->cpu = vcpu->cpu;
3572         }
3573 
3574 	if (sev_guest(vcpu->kvm))
3575 		return pre_sev_run(svm, vcpu->cpu);
3576 
3577 	/* FIXME: handle wraparound of asid_generation */
3578 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3579 		new_asid(svm, sd);
3580 }
3581 
3582 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3583 {
3584 	struct vcpu_svm *svm = to_svm(vcpu);
3585 
3586 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3587 
3588 	if (svm->nmi_l1_to_l2)
3589 		return;
3590 
3591 	svm->nmi_masked = true;
3592 	svm_set_iret_intercept(svm);
3593 	++vcpu->stat.nmi_injections;
3594 }
3595 
3596 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3597 {
3598 	struct vcpu_svm *svm = to_svm(vcpu);
3599 
3600 	if (!is_vnmi_enabled(svm))
3601 		return false;
3602 
3603 	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3604 }
3605 
3606 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3607 {
3608 	struct vcpu_svm *svm = to_svm(vcpu);
3609 
3610 	if (!is_vnmi_enabled(svm))
3611 		return false;
3612 
3613 	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3614 		return false;
3615 
3616 	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3617 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3618 
3619 	/*
3620 	 * Because the pending NMI is serviced by hardware, KVM can't know when
3621 	 * the NMI is "injected", but for all intents and purposes, passing the
3622 	 * NMI off to hardware counts as injection.
3623 	 */
3624 	++vcpu->stat.nmi_injections;
3625 
3626 	return true;
3627 }
3628 
3629 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3630 {
3631 	struct vcpu_svm *svm = to_svm(vcpu);
3632 	u32 type;
3633 
3634 	if (vcpu->arch.interrupt.soft) {
3635 		if (svm_update_soft_interrupt_rip(vcpu))
3636 			return;
3637 
3638 		type = SVM_EVTINJ_TYPE_SOFT;
3639 	} else {
3640 		type = SVM_EVTINJ_TYPE_INTR;
3641 	}
3642 
3643 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3644 			   vcpu->arch.interrupt.soft, reinjected);
3645 	++vcpu->stat.irq_injections;
3646 
3647 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3648 				       SVM_EVTINJ_VALID | type;
3649 }
3650 
3651 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3652 				     int trig_mode, int vector)
3653 {
3654 	/*
3655 	 * apic->apicv_active must be read after vcpu->mode.
3656 	 * Pairs with smp_store_release in vcpu_enter_guest.
3657 	 */
3658 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3659 
3660 	/* Note, this is called iff the local APIC is in-kernel. */
3661 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3662 		/* Process the interrupt via kvm_check_and_inject_events(). */
3663 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3664 		kvm_vcpu_kick(vcpu);
3665 		return;
3666 	}
3667 
3668 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3669 	if (in_guest_mode) {
3670 		/*
3671 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3672 		 * the vCPU exits the guest before the doorbell chimes, hardware
3673 		 * will automatically process AVIC interrupts at the next VMRUN.
3674 		 */
3675 		avic_ring_doorbell(vcpu);
3676 	} else {
3677 		/*
3678 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3679 		 * pending IRQ when checking if the vCPU has a wake event.
3680 		 */
3681 		kvm_vcpu_wake_up(vcpu);
3682 	}
3683 }
3684 
3685 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3686 				  int trig_mode, int vector)
3687 {
3688 	kvm_lapic_set_irr(vector, apic);
3689 
3690 	/*
3691 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3692 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3693 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3694 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3695 	 * will signal the doorbell if the CPU has already entered the guest.
3696 	 */
3697 	smp_mb__after_atomic();
3698 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3699 }
3700 
3701 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3702 {
3703 	struct vcpu_svm *svm = to_svm(vcpu);
3704 
3705 	/*
3706 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3707 	 * tracking is done using the CR write traps.
3708 	 */
3709 	if (sev_es_guest(vcpu->kvm))
3710 		return;
3711 
3712 	if (nested_svm_virtualize_tpr(vcpu))
3713 		return;
3714 
3715 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3716 
3717 	if (irr == -1)
3718 		return;
3719 
3720 	if (tpr >= irr)
3721 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3722 }
3723 
3724 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3725 {
3726 	struct vcpu_svm *svm = to_svm(vcpu);
3727 
3728 	if (is_vnmi_enabled(svm))
3729 		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3730 	else
3731 		return svm->nmi_masked;
3732 }
3733 
3734 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3735 {
3736 	struct vcpu_svm *svm = to_svm(vcpu);
3737 
3738 	if (is_vnmi_enabled(svm)) {
3739 		if (masked)
3740 			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3741 		else
3742 			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3743 
3744 	} else {
3745 		svm->nmi_masked = masked;
3746 		if (masked)
3747 			svm_set_iret_intercept(svm);
3748 		else
3749 			svm_clr_iret_intercept(svm);
3750 	}
3751 }
3752 
3753 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3754 {
3755 	struct vcpu_svm *svm = to_svm(vcpu);
3756 	struct vmcb *vmcb = svm->vmcb;
3757 
3758 	if (!gif_set(svm))
3759 		return true;
3760 
3761 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3762 		return false;
3763 
3764 	if (svm_get_nmi_mask(vcpu))
3765 		return true;
3766 
3767 	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3768 }
3769 
3770 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3771 {
3772 	struct vcpu_svm *svm = to_svm(vcpu);
3773 	if (svm->nested.nested_run_pending)
3774 		return -EBUSY;
3775 
3776 	if (svm_nmi_blocked(vcpu))
3777 		return 0;
3778 
3779 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3780 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3781 		return -EBUSY;
3782 	return 1;
3783 }
3784 
3785 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3786 {
3787 	struct vcpu_svm *svm = to_svm(vcpu);
3788 	struct vmcb *vmcb = svm->vmcb;
3789 
3790 	if (!gif_set(svm))
3791 		return true;
3792 
3793 	if (is_guest_mode(vcpu)) {
3794 		/* As long as interrupts are being delivered...  */
3795 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3796 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3797 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3798 			return true;
3799 
3800 		/* ... vmexits aren't blocked by the interrupt shadow  */
3801 		if (nested_exit_on_intr(svm))
3802 			return false;
3803 	} else {
3804 		if (!svm_get_if_flag(vcpu))
3805 			return true;
3806 	}
3807 
3808 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3809 }
3810 
3811 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3812 {
3813 	struct vcpu_svm *svm = to_svm(vcpu);
3814 
3815 	if (svm->nested.nested_run_pending)
3816 		return -EBUSY;
3817 
3818 	if (svm_interrupt_blocked(vcpu))
3819 		return 0;
3820 
3821 	/*
3822 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3823 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3824 	 */
3825 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3826 		return -EBUSY;
3827 
3828 	return 1;
3829 }
3830 
3831 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3832 {
3833 	struct vcpu_svm *svm = to_svm(vcpu);
3834 
3835 	/*
3836 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3837 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3838 	 * get that intercept, this function will be called again though and
3839 	 * we'll get the vintr intercept. However, if the vGIF feature is
3840 	 * enabled, the STGI interception will not occur. Enable the irq
3841 	 * window under the assumption that the hardware will set the GIF.
3842 	 */
3843 	if (vgif || gif_set(svm)) {
3844 		/*
3845 		 * IRQ window is not needed when AVIC is enabled,
3846 		 * unless we have pending ExtINT since it cannot be injected
3847 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3848 		 * and fallback to injecting IRQ via V_IRQ.
3849 		 *
3850 		 * If running nested, AVIC is already locally inhibited
3851 		 * on this vCPU, therefore there is no need to request
3852 		 * the VM wide AVIC inhibition.
3853 		 */
3854 		if (!is_guest_mode(vcpu))
3855 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3856 
3857 		svm_set_vintr(svm);
3858 	}
3859 }
3860 
3861 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3862 {
3863 	struct vcpu_svm *svm = to_svm(vcpu);
3864 
3865 	/*
3866 	 * If NMIs are outright masked, i.e. the vCPU is already handling an
3867 	 * NMI, and KVM has not yet intercepted an IRET, then there is nothing
3868 	 * more to do at this time as KVM has already enabled IRET intercepts.
3869 	 * If KVM has already intercepted IRET, then single-step over the IRET,
3870 	 * as NMIs aren't architecturally unmasked until the IRET completes.
3871 	 *
3872 	 * If vNMI is enabled, KVM should never request an NMI window if NMIs
3873 	 * are masked, as KVM allows at most one to-be-injected NMI and one
3874 	 * pending NMI.  If two NMIs arrive simultaneously, KVM will inject one
3875 	 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are
3876 	 * unmasked.  KVM _will_ request an NMI window in some situations, e.g.
3877 	 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately
3878 	 * inject the NMI.  In those situations, KVM needs to single-step over
3879 	 * the STI shadow or intercept STGI.
3880 	 */
3881 	if (svm_get_nmi_mask(vcpu)) {
3882 		WARN_ON_ONCE(is_vnmi_enabled(svm));
3883 
3884 		if (!svm->awaiting_iret_completion)
3885 			return; /* IRET will cause a vm exit */
3886 	}
3887 
3888 	/*
3889 	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3890 	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3891 	 * KVM can't intercept and single-step IRET to detect when NMIs are
3892 	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3893 	 *
3894 	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3895 	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3896 	 * supported NAEs in the GHCB protocol.
3897 	 */
3898 	if (sev_es_guest(vcpu->kvm))
3899 		return;
3900 
3901 	if (!gif_set(svm)) {
3902 		if (vgif)
3903 			svm_set_intercept(svm, INTERCEPT_STGI);
3904 		return; /* STGI will cause a vm exit */
3905 	}
3906 
3907 	/*
3908 	 * Something prevents NMI from been injected. Single step over possible
3909 	 * problem (IRET or exception injection or interrupt shadow)
3910 	 */
3911 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3912 	svm->nmi_singlestep = true;
3913 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3914 }
3915 
3916 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3917 {
3918 	struct vcpu_svm *svm = to_svm(vcpu);
3919 
3920 	/*
3921 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3922 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3923 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3924 	 */
3925 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3926 
3927 	/*
3928 	 * Flush only the current ASID even if the TLB flush was invoked via
3929 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3930 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3931 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3932 	 * VM-Exit (via kvm_mmu_reset_context()).
3933 	 */
3934 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3935 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3936 	else
3937 		svm->current_vmcb->asid_generation--;
3938 }
3939 
3940 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3941 {
3942 	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3943 
3944 	/*
3945 	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3946 	 * flush the NPT mappings via hypercall as flushing the ASID only
3947 	 * affects virtual to physical mappings, it does not invalidate guest
3948 	 * physical to host physical mappings.
3949 	 */
3950 	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3951 		hyperv_flush_guest_mapping(root_tdp);
3952 
3953 	svm_flush_tlb_asid(vcpu);
3954 }
3955 
3956 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3957 {
3958 	/*
3959 	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3960 	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3961 	 * a "regular" remote flush.  Reaching this point means either there's
3962 	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3963 	 * which might be fatal to the guest.  Yell, but try to recover.
3964 	 */
3965 	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3966 		hv_flush_remote_tlbs(vcpu->kvm);
3967 
3968 	svm_flush_tlb_asid(vcpu);
3969 }
3970 
3971 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3972 {
3973 	struct vcpu_svm *svm = to_svm(vcpu);
3974 
3975 	invlpga(gva, svm->vmcb->control.asid);
3976 }
3977 
3978 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3979 {
3980 	struct vcpu_svm *svm = to_svm(vcpu);
3981 
3982 	if (nested_svm_virtualize_tpr(vcpu))
3983 		return;
3984 
3985 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3986 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3987 		kvm_set_cr8(vcpu, cr8);
3988 	}
3989 }
3990 
3991 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3992 {
3993 	struct vcpu_svm *svm = to_svm(vcpu);
3994 	u64 cr8;
3995 
3996 	if (nested_svm_virtualize_tpr(vcpu) ||
3997 	    kvm_vcpu_apicv_active(vcpu))
3998 		return;
3999 
4000 	cr8 = kvm_get_cr8(vcpu);
4001 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4002 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4003 }
4004 
4005 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
4006 					int type)
4007 {
4008 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
4009 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
4010 	struct vcpu_svm *svm = to_svm(vcpu);
4011 
4012 	/*
4013 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
4014 	 * associated with the original soft exception/interrupt.  next_rip is
4015 	 * cleared on all exits that can occur while vectoring an event, so KVM
4016 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
4017 	 * case below, this needs to be done if and only if KVM is re-injecting
4018 	 * the same event, i.e. if the event is a soft exception/interrupt,
4019 	 * otherwise next_rip is unused on VMRUN.
4020 	 */
4021 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4022 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4023 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4024 	/*
4025 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4026 	 * injecting the soft exception/interrupt.  That advancement needs to
4027 	 * be unwound if vectoring didn't complete.  Note, the new event may
4028 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4029 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4030 	 * be the reported vectored event, but RIP still needs to be unwound.
4031 	 */
4032 	else if (!nrips && (is_soft || is_exception) &&
4033 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4034 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
4035 }
4036 
4037 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4038 {
4039 	struct vcpu_svm *svm = to_svm(vcpu);
4040 	u8 vector;
4041 	int type;
4042 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4043 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4044 	bool soft_int_injected = svm->soft_int_injected;
4045 
4046 	svm->nmi_l1_to_l2 = false;
4047 	svm->soft_int_injected = false;
4048 
4049 	/*
4050 	 * If we've made progress since setting awaiting_iret_completion, we've
4051 	 * executed an IRET and can allow NMI injection.
4052 	 */
4053 	if (svm->awaiting_iret_completion &&
4054 	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4055 		svm->awaiting_iret_completion = false;
4056 		svm->nmi_masked = false;
4057 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4058 	}
4059 
4060 	vcpu->arch.nmi_injected = false;
4061 	kvm_clear_exception_queue(vcpu);
4062 	kvm_clear_interrupt_queue(vcpu);
4063 
4064 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4065 		return;
4066 
4067 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4068 
4069 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4070 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4071 
4072 	if (soft_int_injected)
4073 		svm_complete_soft_interrupt(vcpu, vector, type);
4074 
4075 	switch (type) {
4076 	case SVM_EXITINTINFO_TYPE_NMI:
4077 		vcpu->arch.nmi_injected = true;
4078 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4079 		break;
4080 	case SVM_EXITINTINFO_TYPE_EXEPT:
4081 		/*
4082 		 * Never re-inject a #VC exception.
4083 		 */
4084 		if (vector == X86_TRAP_VC)
4085 			break;
4086 
4087 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4088 			u32 err = svm->vmcb->control.exit_int_info_err;
4089 			kvm_requeue_exception_e(vcpu, vector, err);
4090 
4091 		} else
4092 			kvm_requeue_exception(vcpu, vector);
4093 		break;
4094 	case SVM_EXITINTINFO_TYPE_INTR:
4095 		kvm_queue_interrupt(vcpu, vector, false);
4096 		break;
4097 	case SVM_EXITINTINFO_TYPE_SOFT:
4098 		kvm_queue_interrupt(vcpu, vector, true);
4099 		break;
4100 	default:
4101 		break;
4102 	}
4103 
4104 }
4105 
4106 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4107 {
4108 	struct vcpu_svm *svm = to_svm(vcpu);
4109 	struct vmcb_control_area *control = &svm->vmcb->control;
4110 
4111 	control->exit_int_info = control->event_inj;
4112 	control->exit_int_info_err = control->event_inj_err;
4113 	control->event_inj = 0;
4114 	svm_complete_interrupts(vcpu);
4115 }
4116 
4117 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4118 {
4119 	return 1;
4120 }
4121 
4122 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4123 {
4124 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
4125 	    to_svm(vcpu)->vmcb->control.exit_info_1)
4126 		return handle_fastpath_set_msr_irqoff(vcpu);
4127 
4128 	return EXIT_FASTPATH_NONE;
4129 }
4130 
4131 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4132 {
4133 	struct vcpu_svm *svm = to_svm(vcpu);
4134 
4135 	guest_state_enter_irqoff();
4136 
4137 	amd_clear_divider();
4138 
4139 	if (sev_es_guest(vcpu->kvm))
4140 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
4141 	else
4142 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4143 
4144 	guest_state_exit_irqoff();
4145 }
4146 
4147 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
4148 {
4149 	struct vcpu_svm *svm = to_svm(vcpu);
4150 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4151 
4152 	trace_kvm_entry(vcpu);
4153 
4154 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4155 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4156 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4157 
4158 	/*
4159 	 * Disable singlestep if we're injecting an interrupt/exception.
4160 	 * We don't want our modified rflags to be pushed on the stack where
4161 	 * we might not be able to easily reset them if we disabled NMI
4162 	 * singlestep later.
4163 	 */
4164 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4165 		/*
4166 		 * Event injection happens before external interrupts cause a
4167 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4168 		 * is enough to force an immediate vmexit.
4169 		 */
4170 		disable_nmi_singlestep(svm);
4171 		smp_send_reschedule(vcpu->cpu);
4172 	}
4173 
4174 	pre_svm_run(vcpu);
4175 
4176 	sync_lapic_to_cr8(vcpu);
4177 
4178 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4179 		svm->vmcb->control.asid = svm->asid;
4180 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4181 	}
4182 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4183 
4184 	svm_hv_update_vp_id(svm->vmcb, vcpu);
4185 
4186 	/*
4187 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4188 	 * of a #DB.
4189 	 */
4190 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4191 		svm_set_dr6(svm, vcpu->arch.dr6);
4192 	else
4193 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
4194 
4195 	clgi();
4196 	kvm_load_guest_xsave_state(vcpu);
4197 
4198 	kvm_wait_lapic_expire(vcpu);
4199 
4200 	/*
4201 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4202 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4203 	 * is no need to worry about the conditional branch over the wrmsr
4204 	 * being speculatively taken.
4205 	 */
4206 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4207 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4208 
4209 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4210 
4211 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4212 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4213 
4214 	if (!sev_es_guest(vcpu->kvm)) {
4215 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4216 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4217 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4218 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4219 	}
4220 	vcpu->arch.regs_dirty = 0;
4221 
4222 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4223 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4224 
4225 	kvm_load_host_xsave_state(vcpu);
4226 	stgi();
4227 
4228 	/* Any pending NMI will happen here */
4229 
4230 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4231 		kvm_after_interrupt(vcpu);
4232 
4233 	sync_cr8_to_lapic(vcpu);
4234 
4235 	svm->next_rip = 0;
4236 	if (is_guest_mode(vcpu)) {
4237 		nested_sync_control_from_vmcb02(svm);
4238 
4239 		/* Track VMRUNs that have made past consistency checking */
4240 		if (svm->nested.nested_run_pending &&
4241 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4242                         ++vcpu->stat.nested_run;
4243 
4244 		svm->nested.nested_run_pending = 0;
4245 	}
4246 
4247 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4248 	vmcb_mark_all_clean(svm->vmcb);
4249 
4250 	/* if exit due to PF check for async PF */
4251 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4252 		vcpu->arch.apf.host_apf_flags =
4253 			kvm_read_and_reset_apf_flags();
4254 
4255 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4256 
4257 	/*
4258 	 * We need to handle MC intercepts here before the vcpu has a chance to
4259 	 * change the physical cpu
4260 	 */
4261 	if (unlikely(svm->vmcb->control.exit_code ==
4262 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4263 		svm_handle_mce(vcpu);
4264 
4265 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4266 
4267 	svm_complete_interrupts(vcpu);
4268 
4269 	if (is_guest_mode(vcpu))
4270 		return EXIT_FASTPATH_NONE;
4271 
4272 	return svm_exit_handlers_fastpath(vcpu);
4273 }
4274 
4275 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4276 			     int root_level)
4277 {
4278 	struct vcpu_svm *svm = to_svm(vcpu);
4279 	unsigned long cr3;
4280 
4281 	if (npt_enabled) {
4282 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4283 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4284 
4285 		hv_track_root_tdp(vcpu, root_hpa);
4286 
4287 		cr3 = vcpu->arch.cr3;
4288 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4289 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4290 	} else {
4291 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4292 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4293 		cr3 = root_hpa;
4294 	}
4295 
4296 	svm->vmcb->save.cr3 = cr3;
4297 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4298 }
4299 
4300 static void
4301 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4302 {
4303 	/*
4304 	 * Patch in the VMMCALL instruction:
4305 	 */
4306 	hypercall[0] = 0x0f;
4307 	hypercall[1] = 0x01;
4308 	hypercall[2] = 0xd9;
4309 }
4310 
4311 /*
4312  * The kvm parameter can be NULL (module initialization, or invocation before
4313  * VM creation). Be sure to check the kvm parameter before using it.
4314  */
4315 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4316 {
4317 	switch (index) {
4318 	case MSR_IA32_MCG_EXT_CTL:
4319 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4320 		return false;
4321 	case MSR_IA32_SMBASE:
4322 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4323 			return false;
4324 		/* SEV-ES guests do not support SMM, so report false */
4325 		if (kvm && sev_es_guest(kvm))
4326 			return false;
4327 		break;
4328 	default:
4329 		break;
4330 	}
4331 
4332 	return true;
4333 }
4334 
4335 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4336 {
4337 	struct vcpu_svm *svm = to_svm(vcpu);
4338 
4339 	/*
4340 	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4341 	 * can only disable all variants of by disallowing CR4.OSXSAVE from
4342 	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
4343 	 * guest has XSAVE enabled, the guest can execute XSAVES without
4344 	 * faulting.  Treat XSAVES as enabled in this case regardless of
4345 	 * whether it's advertised to the guest so that KVM context switches
4346 	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4347 	 * the guest read/write access to the host's XSS.
4348 	 */
4349 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
4350 	    boot_cpu_has(X86_FEATURE_XSAVES) &&
4351 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
4352 		kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
4353 
4354 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
4355 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
4356 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
4357 
4358 	/*
4359 	 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that
4360 	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4361 	 * SVM on Intel is bonkers and extremely unlikely to work).
4362 	 */
4363 	if (!guest_cpuid_is_intel(vcpu))
4364 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4365 
4366 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
4367 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
4368 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
4369 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
4370 
4371 	svm_recalc_instruction_intercepts(vcpu, svm);
4372 
4373 	if (boot_cpu_has(X86_FEATURE_IBPB))
4374 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4375 				     !!guest_has_pred_cmd_msr(vcpu));
4376 
4377 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4378 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4379 				     !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4380 
4381 	if (sev_guest(vcpu->kvm))
4382 		sev_vcpu_after_set_cpuid(svm);
4383 
4384 	init_vmcb_after_set_cpuid(vcpu);
4385 }
4386 
4387 static bool svm_has_wbinvd_exit(void)
4388 {
4389 	return true;
4390 }
4391 
4392 #define PRE_EX(exit)  { .exit_code = (exit), \
4393 			.stage = X86_ICPT_PRE_EXCEPT, }
4394 #define POST_EX(exit) { .exit_code = (exit), \
4395 			.stage = X86_ICPT_POST_EXCEPT, }
4396 #define POST_MEM(exit) { .exit_code = (exit), \
4397 			.stage = X86_ICPT_POST_MEMACCESS, }
4398 
4399 static const struct __x86_intercept {
4400 	u32 exit_code;
4401 	enum x86_intercept_stage stage;
4402 } x86_intercept_map[] = {
4403 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4404 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4405 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4406 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4407 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4408 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4409 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4410 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4411 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4412 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4413 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4414 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4415 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4416 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4417 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4418 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4419 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4420 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4421 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4422 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4423 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4424 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4425 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4426 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4427 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4428 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4429 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4430 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4431 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4432 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4433 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4434 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4435 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4436 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4437 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4438 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4439 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4440 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4441 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4442 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4443 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4444 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4445 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4446 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4447 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4448 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4449 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4450 };
4451 
4452 #undef PRE_EX
4453 #undef POST_EX
4454 #undef POST_MEM
4455 
4456 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4457 			       struct x86_instruction_info *info,
4458 			       enum x86_intercept_stage stage,
4459 			       struct x86_exception *exception)
4460 {
4461 	struct vcpu_svm *svm = to_svm(vcpu);
4462 	int vmexit, ret = X86EMUL_CONTINUE;
4463 	struct __x86_intercept icpt_info;
4464 	struct vmcb *vmcb = svm->vmcb;
4465 
4466 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4467 		goto out;
4468 
4469 	icpt_info = x86_intercept_map[info->intercept];
4470 
4471 	if (stage != icpt_info.stage)
4472 		goto out;
4473 
4474 	switch (icpt_info.exit_code) {
4475 	case SVM_EXIT_READ_CR0:
4476 		if (info->intercept == x86_intercept_cr_read)
4477 			icpt_info.exit_code += info->modrm_reg;
4478 		break;
4479 	case SVM_EXIT_WRITE_CR0: {
4480 		unsigned long cr0, val;
4481 
4482 		if (info->intercept == x86_intercept_cr_write)
4483 			icpt_info.exit_code += info->modrm_reg;
4484 
4485 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4486 		    info->intercept == x86_intercept_clts)
4487 			break;
4488 
4489 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4490 					INTERCEPT_SELECTIVE_CR0)))
4491 			break;
4492 
4493 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4494 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4495 
4496 		if (info->intercept == x86_intercept_lmsw) {
4497 			cr0 &= 0xfUL;
4498 			val &= 0xfUL;
4499 			/* lmsw can't clear PE - catch this here */
4500 			if (cr0 & X86_CR0_PE)
4501 				val |= X86_CR0_PE;
4502 		}
4503 
4504 		if (cr0 ^ val)
4505 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4506 
4507 		break;
4508 	}
4509 	case SVM_EXIT_READ_DR0:
4510 	case SVM_EXIT_WRITE_DR0:
4511 		icpt_info.exit_code += info->modrm_reg;
4512 		break;
4513 	case SVM_EXIT_MSR:
4514 		if (info->intercept == x86_intercept_wrmsr)
4515 			vmcb->control.exit_info_1 = 1;
4516 		else
4517 			vmcb->control.exit_info_1 = 0;
4518 		break;
4519 	case SVM_EXIT_PAUSE:
4520 		/*
4521 		 * We get this for NOP only, but pause
4522 		 * is rep not, check this here
4523 		 */
4524 		if (info->rep_prefix != REPE_PREFIX)
4525 			goto out;
4526 		break;
4527 	case SVM_EXIT_IOIO: {
4528 		u64 exit_info;
4529 		u32 bytes;
4530 
4531 		if (info->intercept == x86_intercept_in ||
4532 		    info->intercept == x86_intercept_ins) {
4533 			exit_info = ((info->src_val & 0xffff) << 16) |
4534 				SVM_IOIO_TYPE_MASK;
4535 			bytes = info->dst_bytes;
4536 		} else {
4537 			exit_info = (info->dst_val & 0xffff) << 16;
4538 			bytes = info->src_bytes;
4539 		}
4540 
4541 		if (info->intercept == x86_intercept_outs ||
4542 		    info->intercept == x86_intercept_ins)
4543 			exit_info |= SVM_IOIO_STR_MASK;
4544 
4545 		if (info->rep_prefix)
4546 			exit_info |= SVM_IOIO_REP_MASK;
4547 
4548 		bytes = min(bytes, 4u);
4549 
4550 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4551 
4552 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4553 
4554 		vmcb->control.exit_info_1 = exit_info;
4555 		vmcb->control.exit_info_2 = info->next_rip;
4556 
4557 		break;
4558 	}
4559 	default:
4560 		break;
4561 	}
4562 
4563 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4564 	if (static_cpu_has(X86_FEATURE_NRIPS))
4565 		vmcb->control.next_rip  = info->next_rip;
4566 	vmcb->control.exit_code = icpt_info.exit_code;
4567 	vmexit = nested_svm_exit_handled(svm);
4568 
4569 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4570 					   : X86EMUL_CONTINUE;
4571 
4572 out:
4573 	return ret;
4574 }
4575 
4576 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4577 {
4578 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4579 		vcpu->arch.at_instruction_boundary = true;
4580 }
4581 
4582 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4583 {
4584 	if (!kvm_pause_in_guest(vcpu->kvm))
4585 		shrink_ple_window(vcpu);
4586 }
4587 
4588 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4589 {
4590 	/* [63:9] are reserved. */
4591 	vcpu->arch.mcg_cap &= 0x1ff;
4592 }
4593 
4594 #ifdef CONFIG_KVM_SMM
4595 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4596 {
4597 	struct vcpu_svm *svm = to_svm(vcpu);
4598 
4599 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4600 	if (!gif_set(svm))
4601 		return true;
4602 
4603 	return is_smm(vcpu);
4604 }
4605 
4606 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4607 {
4608 	struct vcpu_svm *svm = to_svm(vcpu);
4609 	if (svm->nested.nested_run_pending)
4610 		return -EBUSY;
4611 
4612 	if (svm_smi_blocked(vcpu))
4613 		return 0;
4614 
4615 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4616 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4617 		return -EBUSY;
4618 
4619 	return 1;
4620 }
4621 
4622 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4623 {
4624 	struct vcpu_svm *svm = to_svm(vcpu);
4625 	struct kvm_host_map map_save;
4626 	int ret;
4627 
4628 	if (!is_guest_mode(vcpu))
4629 		return 0;
4630 
4631 	/*
4632 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4633 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4634 	 */
4635 
4636 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4637 		return 1;
4638 
4639 	smram->smram64.svm_guest_flag = 1;
4640 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4641 
4642 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4643 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4644 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4645 
4646 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4647 	if (ret)
4648 		return ret;
4649 
4650 	/*
4651 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4652 	 * VMCB01 is going to be used during SMM and thus the state will
4653 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4654 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4655 	 * format of the area is identical to guest save area offsetted
4656 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4657 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4658 	 * L1 hypervisor to save additional host context (e.g. KVM does
4659 	 * that, see svm_prepare_switch_to_guest()) which must be
4660 	 * preserved.
4661 	 */
4662 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4663 		return 1;
4664 
4665 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4666 
4667 	svm_copy_vmrun_state(map_save.hva + 0x400,
4668 			     &svm->vmcb01.ptr->save);
4669 
4670 	kvm_vcpu_unmap(vcpu, &map_save, true);
4671 	return 0;
4672 }
4673 
4674 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4675 {
4676 	struct vcpu_svm *svm = to_svm(vcpu);
4677 	struct kvm_host_map map, map_save;
4678 	struct vmcb *vmcb12;
4679 	int ret;
4680 
4681 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4682 
4683 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4684 		return 0;
4685 
4686 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4687 	if (!smram64->svm_guest_flag)
4688 		return 0;
4689 
4690 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4691 		return 1;
4692 
4693 	if (!(smram64->efer & EFER_SVME))
4694 		return 1;
4695 
4696 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4697 		return 1;
4698 
4699 	ret = 1;
4700 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4701 		goto unmap_map;
4702 
4703 	if (svm_allocate_nested(svm))
4704 		goto unmap_save;
4705 
4706 	/*
4707 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4708 	 * used during SMM (see svm_enter_smm())
4709 	 */
4710 
4711 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4712 
4713 	/*
4714 	 * Enter the nested guest now
4715 	 */
4716 
4717 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4718 
4719 	vmcb12 = map.hva;
4720 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4721 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4722 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4723 
4724 	if (ret)
4725 		goto unmap_save;
4726 
4727 	svm->nested.nested_run_pending = 1;
4728 
4729 unmap_save:
4730 	kvm_vcpu_unmap(vcpu, &map_save, true);
4731 unmap_map:
4732 	kvm_vcpu_unmap(vcpu, &map, true);
4733 	return ret;
4734 }
4735 
4736 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4737 {
4738 	struct vcpu_svm *svm = to_svm(vcpu);
4739 
4740 	if (!gif_set(svm)) {
4741 		if (vgif)
4742 			svm_set_intercept(svm, INTERCEPT_STGI);
4743 		/* STGI will cause a vm exit */
4744 	} else {
4745 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4746 	}
4747 }
4748 #endif
4749 
4750 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4751 					void *insn, int insn_len)
4752 {
4753 	bool smep, smap, is_user;
4754 	u64 error_code;
4755 
4756 	/* Emulation is always possible when KVM has access to all guest state. */
4757 	if (!sev_guest(vcpu->kvm))
4758 		return true;
4759 
4760 	/* #UD and #GP should never be intercepted for SEV guests. */
4761 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4762 				  EMULTYPE_TRAP_UD_FORCED |
4763 				  EMULTYPE_VMWARE_GP));
4764 
4765 	/*
4766 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4767 	 * to guest register state.
4768 	 */
4769 	if (sev_es_guest(vcpu->kvm))
4770 		return false;
4771 
4772 	/*
4773 	 * Emulation is possible if the instruction is already decoded, e.g.
4774 	 * when completing I/O after returning from userspace.
4775 	 */
4776 	if (emul_type & EMULTYPE_NO_DECODE)
4777 		return true;
4778 
4779 	/*
4780 	 * Emulation is possible for SEV guests if and only if a prefilled
4781 	 * buffer containing the bytes of the intercepted instruction is
4782 	 * available. SEV guest memory is encrypted with a guest specific key
4783 	 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4784 	 * decode garbage.
4785 	 *
4786 	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4787 	 * KVM reached this point without an instruction buffer.  In practice,
4788 	 * this path should never be hit by a well-behaved guest, e.g. KVM
4789 	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4790 	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4791 	 * access, and needs to be handled by KVM to avoid putting the guest
4792 	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4793 	 * its the least awful option given lack of insight into the guest.
4794 	 *
4795 	 * If KVM is trying to skip an instruction, simply resume the guest.
4796 	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4797 	 * will attempt to re-inject the INT3/INTO and skip the instruction.
4798 	 * In that scenario, retrying the INT3/INTO and hoping the guest will
4799 	 * make forward progress is the only option that has a chance of
4800 	 * success (and in practice it will work the vast majority of the time).
4801 	 */
4802 	if (unlikely(!insn)) {
4803 		if (!(emul_type & EMULTYPE_SKIP))
4804 			kvm_queue_exception(vcpu, UD_VECTOR);
4805 		return false;
4806 	}
4807 
4808 	/*
4809 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4810 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4811 	 * the faulting instruction because the code fetch itself faulted, e.g.
4812 	 * the guest attempted to fetch from emulated MMIO or a guest page
4813 	 * table used to translate CS:RIP resides in emulated MMIO.
4814 	 */
4815 	if (likely(insn_len))
4816 		return true;
4817 
4818 	/*
4819 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4820 	 *
4821 	 * Errata:
4822 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4823 	 * possible that CPU microcode implementing DecodeAssist will fail to
4824 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4825 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4826 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4827 	 * gives up and does not fill the instruction bytes buffer.
4828 	 *
4829 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4830 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4831 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4832 	 * GuestIntrBytes field of the VMCB.
4833 	 *
4834 	 * This does _not_ mean that the erratum has been encountered, as the
4835 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4836 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4837 	 * encountered a reserved/not-present #PF.
4838 	 *
4839 	 * To hit the erratum, the following conditions must be true:
4840 	 *    1. CR4.SMAP=1 (obviously).
4841 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4842 	 *       have been hit as the guest would have encountered a SMEP
4843 	 *       violation #PF, not a #NPF.
4844 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4845 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4846 	 *
4847 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4848 	 * while translating guest page tables (see below).
4849 	 */
4850 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4851 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4852 		goto resume_guest;
4853 
4854 	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4855 	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4856 	is_user = svm_get_cpl(vcpu) == 3;
4857 	if (smap && (!smep || is_user)) {
4858 		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4859 
4860 		/*
4861 		 * If the fault occurred in userspace, arbitrarily inject #GP
4862 		 * to avoid killing the guest and to hopefully avoid confusing
4863 		 * the guest kernel too much, e.g. injecting #PF would not be
4864 		 * coherent with respect to the guest's page tables.  Request
4865 		 * triple fault if the fault occurred in the kernel as there's
4866 		 * no fault that KVM can inject without confusing the guest.
4867 		 * In practice, the triple fault is moot as no sane SEV kernel
4868 		 * will execute from user memory while also running with SMAP=1.
4869 		 */
4870 		if (is_user)
4871 			kvm_inject_gp(vcpu, 0);
4872 		else
4873 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4874 	}
4875 
4876 resume_guest:
4877 	/*
4878 	 * If the erratum was not hit, simply resume the guest and let it fault
4879 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4880 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4881 	 * userspace will kill the guest, and letting the emulator read garbage
4882 	 * will yield random behavior and potentially corrupt the guest.
4883 	 *
4884 	 * Simply resuming the guest is technically not a violation of the SEV
4885 	 * architecture.  AMD's APM states that all code fetches and page table
4886 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4887 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4888 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4889 	 * the guest spin is technically "ignoring" the access.
4890 	 */
4891 	return false;
4892 }
4893 
4894 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4895 {
4896 	struct vcpu_svm *svm = to_svm(vcpu);
4897 
4898 	return !gif_set(svm);
4899 }
4900 
4901 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4902 {
4903 	if (!sev_es_guest(vcpu->kvm))
4904 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4905 
4906 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4907 }
4908 
4909 static void svm_vm_destroy(struct kvm *kvm)
4910 {
4911 	avic_vm_destroy(kvm);
4912 	sev_vm_destroy(kvm);
4913 }
4914 
4915 static int svm_vm_init(struct kvm *kvm)
4916 {
4917 	if (!pause_filter_count || !pause_filter_thresh)
4918 		kvm->arch.pause_in_guest = true;
4919 
4920 	if (enable_apicv) {
4921 		int ret = avic_vm_init(kvm);
4922 		if (ret)
4923 			return ret;
4924 	}
4925 
4926 	return 0;
4927 }
4928 
4929 static struct kvm_x86_ops svm_x86_ops __initdata = {
4930 	.name = KBUILD_MODNAME,
4931 
4932 	.check_processor_compatibility = svm_check_processor_compat,
4933 
4934 	.hardware_unsetup = svm_hardware_unsetup,
4935 	.hardware_enable = svm_hardware_enable,
4936 	.hardware_disable = svm_hardware_disable,
4937 	.has_emulated_msr = svm_has_emulated_msr,
4938 
4939 	.vcpu_create = svm_vcpu_create,
4940 	.vcpu_free = svm_vcpu_free,
4941 	.vcpu_reset = svm_vcpu_reset,
4942 
4943 	.vm_size = sizeof(struct kvm_svm),
4944 	.vm_init = svm_vm_init,
4945 	.vm_destroy = svm_vm_destroy,
4946 
4947 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4948 	.vcpu_load = svm_vcpu_load,
4949 	.vcpu_put = svm_vcpu_put,
4950 	.vcpu_blocking = avic_vcpu_blocking,
4951 	.vcpu_unblocking = avic_vcpu_unblocking,
4952 
4953 	.update_exception_bitmap = svm_update_exception_bitmap,
4954 	.get_msr_feature = svm_get_msr_feature,
4955 	.get_msr = svm_get_msr,
4956 	.set_msr = svm_set_msr,
4957 	.get_segment_base = svm_get_segment_base,
4958 	.get_segment = svm_get_segment,
4959 	.set_segment = svm_set_segment,
4960 	.get_cpl = svm_get_cpl,
4961 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4962 	.is_valid_cr0 = svm_is_valid_cr0,
4963 	.set_cr0 = svm_set_cr0,
4964 	.post_set_cr3 = sev_post_set_cr3,
4965 	.is_valid_cr4 = svm_is_valid_cr4,
4966 	.set_cr4 = svm_set_cr4,
4967 	.set_efer = svm_set_efer,
4968 	.get_idt = svm_get_idt,
4969 	.set_idt = svm_set_idt,
4970 	.get_gdt = svm_get_gdt,
4971 	.set_gdt = svm_set_gdt,
4972 	.set_dr7 = svm_set_dr7,
4973 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4974 	.cache_reg = svm_cache_reg,
4975 	.get_rflags = svm_get_rflags,
4976 	.set_rflags = svm_set_rflags,
4977 	.get_if_flag = svm_get_if_flag,
4978 
4979 	.flush_tlb_all = svm_flush_tlb_all,
4980 	.flush_tlb_current = svm_flush_tlb_current,
4981 	.flush_tlb_gva = svm_flush_tlb_gva,
4982 	.flush_tlb_guest = svm_flush_tlb_asid,
4983 
4984 	.vcpu_pre_run = svm_vcpu_pre_run,
4985 	.vcpu_run = svm_vcpu_run,
4986 	.handle_exit = svm_handle_exit,
4987 	.skip_emulated_instruction = svm_skip_emulated_instruction,
4988 	.update_emulated_instruction = NULL,
4989 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4990 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4991 	.patch_hypercall = svm_patch_hypercall,
4992 	.inject_irq = svm_inject_irq,
4993 	.inject_nmi = svm_inject_nmi,
4994 	.is_vnmi_pending = svm_is_vnmi_pending,
4995 	.set_vnmi_pending = svm_set_vnmi_pending,
4996 	.inject_exception = svm_inject_exception,
4997 	.cancel_injection = svm_cancel_injection,
4998 	.interrupt_allowed = svm_interrupt_allowed,
4999 	.nmi_allowed = svm_nmi_allowed,
5000 	.get_nmi_mask = svm_get_nmi_mask,
5001 	.set_nmi_mask = svm_set_nmi_mask,
5002 	.enable_nmi_window = svm_enable_nmi_window,
5003 	.enable_irq_window = svm_enable_irq_window,
5004 	.update_cr8_intercept = svm_update_cr8_intercept,
5005 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
5006 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
5007 	.apicv_post_state_restore = avic_apicv_post_state_restore,
5008 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
5009 
5010 	.get_exit_info = svm_get_exit_info,
5011 
5012 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5013 
5014 	.has_wbinvd_exit = svm_has_wbinvd_exit,
5015 
5016 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
5017 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5018 	.write_tsc_offset = svm_write_tsc_offset,
5019 	.write_tsc_multiplier = svm_write_tsc_multiplier,
5020 
5021 	.load_mmu_pgd = svm_load_mmu_pgd,
5022 
5023 	.check_intercept = svm_check_intercept,
5024 	.handle_exit_irqoff = svm_handle_exit_irqoff,
5025 
5026 	.request_immediate_exit = __kvm_request_immediate_exit,
5027 
5028 	.sched_in = svm_sched_in,
5029 
5030 	.nested_ops = &svm_nested_ops,
5031 
5032 	.deliver_interrupt = svm_deliver_interrupt,
5033 	.pi_update_irte = avic_pi_update_irte,
5034 	.setup_mce = svm_setup_mce,
5035 
5036 #ifdef CONFIG_KVM_SMM
5037 	.smi_allowed = svm_smi_allowed,
5038 	.enter_smm = svm_enter_smm,
5039 	.leave_smm = svm_leave_smm,
5040 	.enable_smi_window = svm_enable_smi_window,
5041 #endif
5042 
5043 	.mem_enc_ioctl = sev_mem_enc_ioctl,
5044 	.mem_enc_register_region = sev_mem_enc_register_region,
5045 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5046 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5047 
5048 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5049 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5050 
5051 	.can_emulate_instruction = svm_can_emulate_instruction,
5052 
5053 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5054 
5055 	.msr_filter_changed = svm_msr_filter_changed,
5056 	.complete_emulated_msr = svm_complete_emulated_msr,
5057 
5058 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5059 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5060 };
5061 
5062 /*
5063  * The default MMIO mask is a single bit (excluding the present bit),
5064  * which could conflict with the memory encryption bit. Check for
5065  * memory encryption support and override the default MMIO mask if
5066  * memory encryption is enabled.
5067  */
5068 static __init void svm_adjust_mmio_mask(void)
5069 {
5070 	unsigned int enc_bit, mask_bit;
5071 	u64 msr, mask;
5072 
5073 	/* If there is no memory encryption support, use existing mask */
5074 	if (cpuid_eax(0x80000000) < 0x8000001f)
5075 		return;
5076 
5077 	/* If memory encryption is not enabled, use existing mask */
5078 	rdmsrl(MSR_AMD64_SYSCFG, msr);
5079 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5080 		return;
5081 
5082 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5083 	mask_bit = boot_cpu_data.x86_phys_bits;
5084 
5085 	/* Increment the mask bit if it is the same as the encryption bit */
5086 	if (enc_bit == mask_bit)
5087 		mask_bit++;
5088 
5089 	/*
5090 	 * If the mask bit location is below 52, then some bits above the
5091 	 * physical addressing limit will always be reserved, so use the
5092 	 * rsvd_bits() function to generate the mask. This mask, along with
5093 	 * the present bit, will be used to generate a page fault with
5094 	 * PFER.RSV = 1.
5095 	 *
5096 	 * If the mask bit location is 52 (or above), then clear the mask.
5097 	 */
5098 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5099 
5100 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5101 }
5102 
5103 static __init void svm_set_cpu_caps(void)
5104 {
5105 	kvm_set_cpu_caps();
5106 
5107 	kvm_caps.supported_perf_cap = 0;
5108 	kvm_caps.supported_xss = 0;
5109 
5110 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5111 	if (nested) {
5112 		kvm_cpu_cap_set(X86_FEATURE_SVM);
5113 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5114 
5115 		if (nrips)
5116 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5117 
5118 		if (npt_enabled)
5119 			kvm_cpu_cap_set(X86_FEATURE_NPT);
5120 
5121 		if (tsc_scaling)
5122 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5123 
5124 		if (vls)
5125 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5126 		if (lbrv)
5127 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
5128 
5129 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5130 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5131 
5132 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5133 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5134 
5135 		if (vgif)
5136 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
5137 
5138 		if (vnmi)
5139 			kvm_cpu_cap_set(X86_FEATURE_VNMI);
5140 
5141 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
5142 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5143 	}
5144 
5145 	/* CPUID 0x80000008 */
5146 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5147 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5148 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5149 
5150 	if (enable_pmu) {
5151 		/*
5152 		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5153 		 * access to enough counters to virtualize "core" support,
5154 		 * otherwise limit vPMU support to the legacy number of counters.
5155 		 */
5156 		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5157 			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5158 							  kvm_pmu_cap.num_counters_gp);
5159 		else
5160 			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5161 
5162 		if (kvm_pmu_cap.version != 2 ||
5163 		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5164 			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5165 	}
5166 
5167 	/* CPUID 0x8000001F (SME/SEV features) */
5168 	sev_set_cpu_caps();
5169 }
5170 
5171 static __init int svm_hardware_setup(void)
5172 {
5173 	int cpu;
5174 	struct page *iopm_pages;
5175 	void *iopm_va;
5176 	int r;
5177 	unsigned int order = get_order(IOPM_SIZE);
5178 
5179 	/*
5180 	 * NX is required for shadow paging and for NPT if the NX huge pages
5181 	 * mitigation is enabled.
5182 	 */
5183 	if (!boot_cpu_has(X86_FEATURE_NX)) {
5184 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5185 		return -EOPNOTSUPP;
5186 	}
5187 	kvm_enable_efer_bits(EFER_NX);
5188 
5189 	iopm_pages = alloc_pages(GFP_KERNEL, order);
5190 
5191 	if (!iopm_pages)
5192 		return -ENOMEM;
5193 
5194 	iopm_va = page_address(iopm_pages);
5195 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5196 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5197 
5198 	init_msrpm_offsets();
5199 
5200 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5201 				     XFEATURE_MASK_BNDCSR);
5202 
5203 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5204 		kvm_enable_efer_bits(EFER_FFXSR);
5205 
5206 	if (tsc_scaling) {
5207 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5208 			tsc_scaling = false;
5209 		} else {
5210 			pr_info("TSC scaling supported\n");
5211 			kvm_caps.has_tsc_control = true;
5212 		}
5213 	}
5214 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5215 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5216 
5217 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5218 
5219 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5220 		kvm_enable_efer_bits(EFER_AUTOIBRS);
5221 
5222 	/* Check for pause filtering support */
5223 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5224 		pause_filter_count = 0;
5225 		pause_filter_thresh = 0;
5226 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5227 		pause_filter_thresh = 0;
5228 	}
5229 
5230 	if (nested) {
5231 		pr_info("Nested Virtualization enabled\n");
5232 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5233 	}
5234 
5235 	/*
5236 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5237 	 * NPT isn't supported if the host is using 2-level paging since host
5238 	 * CR4 is unchanged on VMRUN.
5239 	 */
5240 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5241 		npt_enabled = false;
5242 
5243 	if (!boot_cpu_has(X86_FEATURE_NPT))
5244 		npt_enabled = false;
5245 
5246 	/* Force VM NPT level equal to the host's paging level */
5247 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5248 			  get_npt_level(), PG_LEVEL_1G);
5249 	pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5250 
5251 	/* Setup shadow_me_value and shadow_me_mask */
5252 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5253 
5254 	svm_adjust_mmio_mask();
5255 
5256 	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5257 
5258 	if (lbrv) {
5259 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5260 			lbrv = false;
5261 		else
5262 			pr_info("LBR virtualization supported\n");
5263 	}
5264 	/*
5265 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5266 	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5267 	 */
5268 	sev_hardware_setup();
5269 
5270 	svm_hv_hardware_setup();
5271 
5272 	for_each_possible_cpu(cpu) {
5273 		r = svm_cpu_init(cpu);
5274 		if (r)
5275 			goto err;
5276 	}
5277 
5278 	enable_apicv = avic = avic && avic_hardware_setup();
5279 
5280 	if (!enable_apicv) {
5281 		svm_x86_ops.vcpu_blocking = NULL;
5282 		svm_x86_ops.vcpu_unblocking = NULL;
5283 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5284 	} else if (!x2avic_enabled) {
5285 		svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5286 	}
5287 
5288 	if (vls) {
5289 		if (!npt_enabled ||
5290 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5291 		    !IS_ENABLED(CONFIG_X86_64)) {
5292 			vls = false;
5293 		} else {
5294 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5295 		}
5296 	}
5297 
5298 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5299 		svm_gp_erratum_intercept = false;
5300 
5301 	if (vgif) {
5302 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5303 			vgif = false;
5304 		else
5305 			pr_info("Virtual GIF supported\n");
5306 	}
5307 
5308 	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5309 	if (vnmi)
5310 		pr_info("Virtual NMI enabled\n");
5311 
5312 	if (!vnmi) {
5313 		svm_x86_ops.is_vnmi_pending = NULL;
5314 		svm_x86_ops.set_vnmi_pending = NULL;
5315 	}
5316 
5317 	if (!enable_pmu)
5318 		pr_info("PMU virtualization is disabled\n");
5319 
5320 	svm_set_cpu_caps();
5321 
5322 	/*
5323 	 * It seems that on AMD processors PTE's accessed bit is
5324 	 * being set by the CPU hardware before the NPF vmexit.
5325 	 * This is not expected behaviour and our tests fail because
5326 	 * of it.
5327 	 * A workaround here is to disable support for
5328 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5329 	 * In this case userspace can know if there is support using
5330 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5331 	 * it
5332 	 * If future AMD CPU models change the behaviour described above,
5333 	 * this variable can be changed accordingly
5334 	 */
5335 	allow_smaller_maxphyaddr = !npt_enabled;
5336 
5337 	return 0;
5338 
5339 err:
5340 	svm_hardware_unsetup();
5341 	return r;
5342 }
5343 
5344 
5345 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5346 	.hardware_setup = svm_hardware_setup,
5347 
5348 	.runtime_ops = &svm_x86_ops,
5349 	.pmu_ops = &amd_pmu_ops,
5350 };
5351 
5352 static void __svm_exit(void)
5353 {
5354 	kvm_x86_vendor_exit();
5355 
5356 	cpu_emergency_unregister_virt_callback(svm_emergency_disable);
5357 }
5358 
5359 static int __init svm_init(void)
5360 {
5361 	int r;
5362 
5363 	__unused_size_checks();
5364 
5365 	if (!kvm_is_svm_supported())
5366 		return -EOPNOTSUPP;
5367 
5368 	r = kvm_x86_vendor_init(&svm_init_ops);
5369 	if (r)
5370 		return r;
5371 
5372 	cpu_emergency_register_virt_callback(svm_emergency_disable);
5373 
5374 	/*
5375 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5376 	 * exposed to userspace!
5377 	 */
5378 	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5379 		     THIS_MODULE);
5380 	if (r)
5381 		goto err_kvm_init;
5382 
5383 	return 0;
5384 
5385 err_kvm_init:
5386 	__svm_exit();
5387 	return r;
5388 }
5389 
5390 static void __exit svm_exit(void)
5391 {
5392 	kvm_exit();
5393 	__svm_exit();
5394 }
5395 
5396 module_init(svm_init)
5397 module_exit(svm_exit)
5398