1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/misc_cgroup.h> 18 #include <linux/processor.h> 19 #include <linux/trace_events.h> 20 #include <asm/fpu/internal.h> 21 22 #include <asm/pkru.h> 23 #include <asm/trapnr.h> 24 25 #include "x86.h" 26 #include "svm.h" 27 #include "svm_ops.h" 28 #include "cpuid.h" 29 #include "trace.h" 30 31 #ifndef CONFIG_KVM_AMD_SEV 32 /* 33 * When this config is not defined, SEV feature is not supported and APIs in 34 * this file are not used but this file still gets compiled into the KVM AMD 35 * module. 36 * 37 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 38 * misc_res_type {} defined in linux/misc_cgroup.h. 39 * 40 * Below macros allow compilation to succeed. 41 */ 42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 44 #endif 45 46 #ifdef CONFIG_KVM_AMD_SEV 47 /* enable/disable SEV support */ 48 static bool sev_enabled = true; 49 module_param_named(sev, sev_enabled, bool, 0444); 50 51 /* enable/disable SEV-ES support */ 52 static bool sev_es_enabled = true; 53 module_param_named(sev_es, sev_es_enabled, bool, 0444); 54 #else 55 #define sev_enabled false 56 #define sev_es_enabled false 57 #endif /* CONFIG_KVM_AMD_SEV */ 58 59 static u8 sev_enc_bit; 60 static DECLARE_RWSEM(sev_deactivate_lock); 61 static DEFINE_MUTEX(sev_bitmap_lock); 62 unsigned int max_sev_asid; 63 static unsigned int min_sev_asid; 64 static unsigned long sev_me_mask; 65 static unsigned int nr_asids; 66 static unsigned long *sev_asid_bitmap; 67 static unsigned long *sev_reclaim_asid_bitmap; 68 69 struct enc_region { 70 struct list_head list; 71 unsigned long npages; 72 struct page **pages; 73 unsigned long uaddr; 74 unsigned long size; 75 }; 76 77 /* Called with the sev_bitmap_lock held, or on shutdown */ 78 static int sev_flush_asids(int min_asid, int max_asid) 79 { 80 int ret, asid, error = 0; 81 82 /* Check if there are any ASIDs to reclaim before performing a flush */ 83 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 84 if (asid > max_asid) 85 return -EBUSY; 86 87 /* 88 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 89 * so it must be guarded. 90 */ 91 down_write(&sev_deactivate_lock); 92 93 wbinvd_on_all_cpus(); 94 ret = sev_guest_df_flush(&error); 95 96 up_write(&sev_deactivate_lock); 97 98 if (ret) 99 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 100 101 return ret; 102 } 103 104 static inline bool is_mirroring_enc_context(struct kvm *kvm) 105 { 106 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 107 } 108 109 /* Must be called with the sev_bitmap_lock held */ 110 static bool __sev_recycle_asids(int min_asid, int max_asid) 111 { 112 if (sev_flush_asids(min_asid, max_asid)) 113 return false; 114 115 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 116 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 117 nr_asids); 118 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 119 120 return true; 121 } 122 123 static int sev_asid_new(struct kvm_sev_info *sev) 124 { 125 int asid, min_asid, max_asid, ret; 126 bool retry = true; 127 enum misc_res_type type; 128 129 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 130 WARN_ON(sev->misc_cg); 131 sev->misc_cg = get_current_misc_cg(); 132 ret = misc_cg_try_charge(type, sev->misc_cg, 1); 133 if (ret) { 134 put_misc_cg(sev->misc_cg); 135 sev->misc_cg = NULL; 136 return ret; 137 } 138 139 mutex_lock(&sev_bitmap_lock); 140 141 /* 142 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 143 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 144 */ 145 min_asid = sev->es_active ? 1 : min_sev_asid; 146 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 147 again: 148 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 149 if (asid > max_asid) { 150 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 151 retry = false; 152 goto again; 153 } 154 mutex_unlock(&sev_bitmap_lock); 155 ret = -EBUSY; 156 goto e_uncharge; 157 } 158 159 __set_bit(asid, sev_asid_bitmap); 160 161 mutex_unlock(&sev_bitmap_lock); 162 163 return asid; 164 e_uncharge: 165 misc_cg_uncharge(type, sev->misc_cg, 1); 166 put_misc_cg(sev->misc_cg); 167 sev->misc_cg = NULL; 168 return ret; 169 } 170 171 static int sev_get_asid(struct kvm *kvm) 172 { 173 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 174 175 return sev->asid; 176 } 177 178 static void sev_asid_free(struct kvm_sev_info *sev) 179 { 180 struct svm_cpu_data *sd; 181 int cpu; 182 enum misc_res_type type; 183 184 mutex_lock(&sev_bitmap_lock); 185 186 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 187 188 for_each_possible_cpu(cpu) { 189 sd = per_cpu(svm_data, cpu); 190 sd->sev_vmcbs[sev->asid] = NULL; 191 } 192 193 mutex_unlock(&sev_bitmap_lock); 194 195 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 196 misc_cg_uncharge(type, sev->misc_cg, 1); 197 put_misc_cg(sev->misc_cg); 198 sev->misc_cg = NULL; 199 } 200 201 static void sev_decommission(unsigned int handle) 202 { 203 struct sev_data_decommission decommission; 204 205 if (!handle) 206 return; 207 208 decommission.handle = handle; 209 sev_guest_decommission(&decommission, NULL); 210 } 211 212 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 213 { 214 struct sev_data_deactivate deactivate; 215 216 if (!handle) 217 return; 218 219 deactivate.handle = handle; 220 221 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 222 down_read(&sev_deactivate_lock); 223 sev_guest_deactivate(&deactivate, NULL); 224 up_read(&sev_deactivate_lock); 225 226 sev_decommission(handle); 227 } 228 229 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 230 { 231 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 232 bool es_active = argp->id == KVM_SEV_ES_INIT; 233 int asid, ret; 234 235 if (kvm->created_vcpus) 236 return -EINVAL; 237 238 ret = -EBUSY; 239 if (unlikely(sev->active)) 240 return ret; 241 242 sev->es_active = es_active; 243 asid = sev_asid_new(sev); 244 if (asid < 0) 245 goto e_no_asid; 246 sev->asid = asid; 247 248 ret = sev_platform_init(&argp->error); 249 if (ret) 250 goto e_free; 251 252 sev->active = true; 253 sev->asid = asid; 254 INIT_LIST_HEAD(&sev->regions_list); 255 256 return 0; 257 258 e_free: 259 sev_asid_free(sev); 260 sev->asid = 0; 261 e_no_asid: 262 sev->es_active = false; 263 return ret; 264 } 265 266 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 267 { 268 struct sev_data_activate activate; 269 int asid = sev_get_asid(kvm); 270 int ret; 271 272 /* activate ASID on the given handle */ 273 activate.handle = handle; 274 activate.asid = asid; 275 ret = sev_guest_activate(&activate, error); 276 277 return ret; 278 } 279 280 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 281 { 282 struct fd f; 283 int ret; 284 285 f = fdget(fd); 286 if (!f.file) 287 return -EBADF; 288 289 ret = sev_issue_cmd_external_user(f.file, id, data, error); 290 291 fdput(f); 292 return ret; 293 } 294 295 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 296 { 297 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 298 299 return __sev_issue_cmd(sev->fd, id, data, error); 300 } 301 302 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 303 { 304 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 305 struct sev_data_launch_start start; 306 struct kvm_sev_launch_start params; 307 void *dh_blob, *session_blob; 308 int *error = &argp->error; 309 int ret; 310 311 if (!sev_guest(kvm)) 312 return -ENOTTY; 313 314 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 315 return -EFAULT; 316 317 memset(&start, 0, sizeof(start)); 318 319 dh_blob = NULL; 320 if (params.dh_uaddr) { 321 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 322 if (IS_ERR(dh_blob)) 323 return PTR_ERR(dh_blob); 324 325 start.dh_cert_address = __sme_set(__pa(dh_blob)); 326 start.dh_cert_len = params.dh_len; 327 } 328 329 session_blob = NULL; 330 if (params.session_uaddr) { 331 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 332 if (IS_ERR(session_blob)) { 333 ret = PTR_ERR(session_blob); 334 goto e_free_dh; 335 } 336 337 start.session_address = __sme_set(__pa(session_blob)); 338 start.session_len = params.session_len; 339 } 340 341 start.handle = params.handle; 342 start.policy = params.policy; 343 344 /* create memory encryption context */ 345 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 346 if (ret) 347 goto e_free_session; 348 349 /* Bind ASID to this guest */ 350 ret = sev_bind_asid(kvm, start.handle, error); 351 if (ret) { 352 sev_decommission(start.handle); 353 goto e_free_session; 354 } 355 356 /* return handle to userspace */ 357 params.handle = start.handle; 358 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 359 sev_unbind_asid(kvm, start.handle); 360 ret = -EFAULT; 361 goto e_free_session; 362 } 363 364 sev->handle = start.handle; 365 sev->fd = argp->sev_fd; 366 367 e_free_session: 368 kfree(session_blob); 369 e_free_dh: 370 kfree(dh_blob); 371 return ret; 372 } 373 374 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 375 unsigned long ulen, unsigned long *n, 376 int write) 377 { 378 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 379 unsigned long npages, size; 380 int npinned; 381 unsigned long locked, lock_limit; 382 struct page **pages; 383 unsigned long first, last; 384 int ret; 385 386 lockdep_assert_held(&kvm->lock); 387 388 if (ulen == 0 || uaddr + ulen < uaddr) 389 return ERR_PTR(-EINVAL); 390 391 /* Calculate number of pages. */ 392 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 393 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 394 npages = (last - first + 1); 395 396 locked = sev->pages_locked + npages; 397 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 398 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 399 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 400 return ERR_PTR(-ENOMEM); 401 } 402 403 if (WARN_ON_ONCE(npages > INT_MAX)) 404 return ERR_PTR(-EINVAL); 405 406 /* Avoid using vmalloc for smaller buffers. */ 407 size = npages * sizeof(struct page *); 408 if (size > PAGE_SIZE) 409 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 410 else 411 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 412 413 if (!pages) 414 return ERR_PTR(-ENOMEM); 415 416 /* Pin the user virtual address. */ 417 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 418 if (npinned != npages) { 419 pr_err("SEV: Failure locking %lu pages.\n", npages); 420 ret = -ENOMEM; 421 goto err; 422 } 423 424 *n = npages; 425 sev->pages_locked = locked; 426 427 return pages; 428 429 err: 430 if (npinned > 0) 431 unpin_user_pages(pages, npinned); 432 433 kvfree(pages); 434 return ERR_PTR(ret); 435 } 436 437 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 438 unsigned long npages) 439 { 440 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 441 442 unpin_user_pages(pages, npages); 443 kvfree(pages); 444 sev->pages_locked -= npages; 445 } 446 447 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 448 { 449 uint8_t *page_virtual; 450 unsigned long i; 451 452 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 453 pages == NULL) 454 return; 455 456 for (i = 0; i < npages; i++) { 457 page_virtual = kmap_atomic(pages[i]); 458 clflush_cache_range(page_virtual, PAGE_SIZE); 459 kunmap_atomic(page_virtual); 460 } 461 } 462 463 static unsigned long get_num_contig_pages(unsigned long idx, 464 struct page **inpages, unsigned long npages) 465 { 466 unsigned long paddr, next_paddr; 467 unsigned long i = idx + 1, pages = 1; 468 469 /* find the number of contiguous pages starting from idx */ 470 paddr = __sme_page_pa(inpages[idx]); 471 while (i < npages) { 472 next_paddr = __sme_page_pa(inpages[i++]); 473 if ((paddr + PAGE_SIZE) == next_paddr) { 474 pages++; 475 paddr = next_paddr; 476 continue; 477 } 478 break; 479 } 480 481 return pages; 482 } 483 484 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 485 { 486 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 487 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 488 struct kvm_sev_launch_update_data params; 489 struct sev_data_launch_update_data data; 490 struct page **inpages; 491 int ret; 492 493 if (!sev_guest(kvm)) 494 return -ENOTTY; 495 496 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 497 return -EFAULT; 498 499 vaddr = params.uaddr; 500 size = params.len; 501 vaddr_end = vaddr + size; 502 503 /* Lock the user memory. */ 504 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 505 if (IS_ERR(inpages)) 506 return PTR_ERR(inpages); 507 508 /* 509 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 510 * place; the cache may contain the data that was written unencrypted. 511 */ 512 sev_clflush_pages(inpages, npages); 513 514 data.reserved = 0; 515 data.handle = sev->handle; 516 517 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 518 int offset, len; 519 520 /* 521 * If the user buffer is not page-aligned, calculate the offset 522 * within the page. 523 */ 524 offset = vaddr & (PAGE_SIZE - 1); 525 526 /* Calculate the number of pages that can be encrypted in one go. */ 527 pages = get_num_contig_pages(i, inpages, npages); 528 529 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 530 531 data.len = len; 532 data.address = __sme_page_pa(inpages[i]) + offset; 533 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 534 if (ret) 535 goto e_unpin; 536 537 size -= len; 538 next_vaddr = vaddr + len; 539 } 540 541 e_unpin: 542 /* content of memory is updated, mark pages dirty */ 543 for (i = 0; i < npages; i++) { 544 set_page_dirty_lock(inpages[i]); 545 mark_page_accessed(inpages[i]); 546 } 547 /* unlock the user pages */ 548 sev_unpin_memory(kvm, inpages, npages); 549 return ret; 550 } 551 552 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 553 { 554 struct vmcb_save_area *save = &svm->vmcb->save; 555 556 /* Check some debug related fields before encrypting the VMSA */ 557 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) 558 return -EINVAL; 559 560 /* Sync registgers */ 561 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 562 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 563 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 564 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 565 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 566 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 567 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 568 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 569 #ifdef CONFIG_X86_64 570 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 571 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 572 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 573 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 574 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 575 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 576 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 577 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 578 #endif 579 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 580 581 /* Sync some non-GPR registers before encrypting */ 582 save->xcr0 = svm->vcpu.arch.xcr0; 583 save->pkru = svm->vcpu.arch.pkru; 584 save->xss = svm->vcpu.arch.ia32_xss; 585 save->dr6 = svm->vcpu.arch.dr6; 586 587 /* 588 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 589 * the traditional VMSA that is part of the VMCB. Copy the 590 * traditional VMSA as it has been built so far (in prep 591 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 592 */ 593 memcpy(svm->vmsa, save, sizeof(*save)); 594 595 return 0; 596 } 597 598 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 599 int *error) 600 { 601 struct sev_data_launch_update_vmsa vmsa; 602 struct vcpu_svm *svm = to_svm(vcpu); 603 int ret; 604 605 /* Perform some pre-encryption checks against the VMSA */ 606 ret = sev_es_sync_vmsa(svm); 607 if (ret) 608 return ret; 609 610 /* 611 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 612 * the VMSA memory content (i.e it will write the same memory region 613 * with the guest's key), so invalidate it first. 614 */ 615 clflush_cache_range(svm->vmsa, PAGE_SIZE); 616 617 vmsa.reserved = 0; 618 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle; 619 vmsa.address = __sme_pa(svm->vmsa); 620 vmsa.len = PAGE_SIZE; 621 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 622 } 623 624 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 625 { 626 struct kvm_vcpu *vcpu; 627 int i, ret; 628 629 if (!sev_es_guest(kvm)) 630 return -ENOTTY; 631 632 kvm_for_each_vcpu(i, vcpu, kvm) { 633 ret = mutex_lock_killable(&vcpu->mutex); 634 if (ret) 635 return ret; 636 637 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 638 639 mutex_unlock(&vcpu->mutex); 640 if (ret) 641 return ret; 642 } 643 644 return 0; 645 } 646 647 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 648 { 649 void __user *measure = (void __user *)(uintptr_t)argp->data; 650 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 651 struct sev_data_launch_measure data; 652 struct kvm_sev_launch_measure params; 653 void __user *p = NULL; 654 void *blob = NULL; 655 int ret; 656 657 if (!sev_guest(kvm)) 658 return -ENOTTY; 659 660 if (copy_from_user(¶ms, measure, sizeof(params))) 661 return -EFAULT; 662 663 memset(&data, 0, sizeof(data)); 664 665 /* User wants to query the blob length */ 666 if (!params.len) 667 goto cmd; 668 669 p = (void __user *)(uintptr_t)params.uaddr; 670 if (p) { 671 if (params.len > SEV_FW_BLOB_MAX_SIZE) 672 return -EINVAL; 673 674 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 675 if (!blob) 676 return -ENOMEM; 677 678 data.address = __psp_pa(blob); 679 data.len = params.len; 680 } 681 682 cmd: 683 data.handle = sev->handle; 684 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 685 686 /* 687 * If we query the session length, FW responded with expected data. 688 */ 689 if (!params.len) 690 goto done; 691 692 if (ret) 693 goto e_free_blob; 694 695 if (blob) { 696 if (copy_to_user(p, blob, params.len)) 697 ret = -EFAULT; 698 } 699 700 done: 701 params.len = data.len; 702 if (copy_to_user(measure, ¶ms, sizeof(params))) 703 ret = -EFAULT; 704 e_free_blob: 705 kfree(blob); 706 return ret; 707 } 708 709 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 710 { 711 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 712 struct sev_data_launch_finish data; 713 714 if (!sev_guest(kvm)) 715 return -ENOTTY; 716 717 data.handle = sev->handle; 718 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 719 } 720 721 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 722 { 723 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 724 struct kvm_sev_guest_status params; 725 struct sev_data_guest_status data; 726 int ret; 727 728 if (!sev_guest(kvm)) 729 return -ENOTTY; 730 731 memset(&data, 0, sizeof(data)); 732 733 data.handle = sev->handle; 734 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 735 if (ret) 736 return ret; 737 738 params.policy = data.policy; 739 params.state = data.state; 740 params.handle = data.handle; 741 742 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 743 ret = -EFAULT; 744 745 return ret; 746 } 747 748 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 749 unsigned long dst, int size, 750 int *error, bool enc) 751 { 752 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 753 struct sev_data_dbg data; 754 755 data.reserved = 0; 756 data.handle = sev->handle; 757 data.dst_addr = dst; 758 data.src_addr = src; 759 data.len = size; 760 761 return sev_issue_cmd(kvm, 762 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 763 &data, error); 764 } 765 766 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 767 unsigned long dst_paddr, int sz, int *err) 768 { 769 int offset; 770 771 /* 772 * Its safe to read more than we are asked, caller should ensure that 773 * destination has enough space. 774 */ 775 offset = src_paddr & 15; 776 src_paddr = round_down(src_paddr, 16); 777 sz = round_up(sz + offset, 16); 778 779 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 780 } 781 782 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 783 void __user *dst_uaddr, 784 unsigned long dst_paddr, 785 int size, int *err) 786 { 787 struct page *tpage = NULL; 788 int ret, offset; 789 790 /* if inputs are not 16-byte then use intermediate buffer */ 791 if (!IS_ALIGNED(dst_paddr, 16) || 792 !IS_ALIGNED(paddr, 16) || 793 !IS_ALIGNED(size, 16)) { 794 tpage = (void *)alloc_page(GFP_KERNEL); 795 if (!tpage) 796 return -ENOMEM; 797 798 dst_paddr = __sme_page_pa(tpage); 799 } 800 801 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 802 if (ret) 803 goto e_free; 804 805 if (tpage) { 806 offset = paddr & 15; 807 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 808 ret = -EFAULT; 809 } 810 811 e_free: 812 if (tpage) 813 __free_page(tpage); 814 815 return ret; 816 } 817 818 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 819 void __user *vaddr, 820 unsigned long dst_paddr, 821 void __user *dst_vaddr, 822 int size, int *error) 823 { 824 struct page *src_tpage = NULL; 825 struct page *dst_tpage = NULL; 826 int ret, len = size; 827 828 /* If source buffer is not aligned then use an intermediate buffer */ 829 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 830 src_tpage = alloc_page(GFP_KERNEL); 831 if (!src_tpage) 832 return -ENOMEM; 833 834 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 835 __free_page(src_tpage); 836 return -EFAULT; 837 } 838 839 paddr = __sme_page_pa(src_tpage); 840 } 841 842 /* 843 * If destination buffer or length is not aligned then do read-modify-write: 844 * - decrypt destination in an intermediate buffer 845 * - copy the source buffer in an intermediate buffer 846 * - use the intermediate buffer as source buffer 847 */ 848 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 849 int dst_offset; 850 851 dst_tpage = alloc_page(GFP_KERNEL); 852 if (!dst_tpage) { 853 ret = -ENOMEM; 854 goto e_free; 855 } 856 857 ret = __sev_dbg_decrypt(kvm, dst_paddr, 858 __sme_page_pa(dst_tpage), size, error); 859 if (ret) 860 goto e_free; 861 862 /* 863 * If source is kernel buffer then use memcpy() otherwise 864 * copy_from_user(). 865 */ 866 dst_offset = dst_paddr & 15; 867 868 if (src_tpage) 869 memcpy(page_address(dst_tpage) + dst_offset, 870 page_address(src_tpage), size); 871 else { 872 if (copy_from_user(page_address(dst_tpage) + dst_offset, 873 vaddr, size)) { 874 ret = -EFAULT; 875 goto e_free; 876 } 877 } 878 879 paddr = __sme_page_pa(dst_tpage); 880 dst_paddr = round_down(dst_paddr, 16); 881 len = round_up(size, 16); 882 } 883 884 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 885 886 e_free: 887 if (src_tpage) 888 __free_page(src_tpage); 889 if (dst_tpage) 890 __free_page(dst_tpage); 891 return ret; 892 } 893 894 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 895 { 896 unsigned long vaddr, vaddr_end, next_vaddr; 897 unsigned long dst_vaddr; 898 struct page **src_p, **dst_p; 899 struct kvm_sev_dbg debug; 900 unsigned long n; 901 unsigned int size; 902 int ret; 903 904 if (!sev_guest(kvm)) 905 return -ENOTTY; 906 907 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 908 return -EFAULT; 909 910 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 911 return -EINVAL; 912 if (!debug.dst_uaddr) 913 return -EINVAL; 914 915 vaddr = debug.src_uaddr; 916 size = debug.len; 917 vaddr_end = vaddr + size; 918 dst_vaddr = debug.dst_uaddr; 919 920 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 921 int len, s_off, d_off; 922 923 /* lock userspace source and destination page */ 924 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 925 if (IS_ERR(src_p)) 926 return PTR_ERR(src_p); 927 928 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 929 if (IS_ERR(dst_p)) { 930 sev_unpin_memory(kvm, src_p, n); 931 return PTR_ERR(dst_p); 932 } 933 934 /* 935 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 936 * the pages; flush the destination too so that future accesses do not 937 * see stale data. 938 */ 939 sev_clflush_pages(src_p, 1); 940 sev_clflush_pages(dst_p, 1); 941 942 /* 943 * Since user buffer may not be page aligned, calculate the 944 * offset within the page. 945 */ 946 s_off = vaddr & ~PAGE_MASK; 947 d_off = dst_vaddr & ~PAGE_MASK; 948 len = min_t(size_t, (PAGE_SIZE - s_off), size); 949 950 if (dec) 951 ret = __sev_dbg_decrypt_user(kvm, 952 __sme_page_pa(src_p[0]) + s_off, 953 (void __user *)dst_vaddr, 954 __sme_page_pa(dst_p[0]) + d_off, 955 len, &argp->error); 956 else 957 ret = __sev_dbg_encrypt_user(kvm, 958 __sme_page_pa(src_p[0]) + s_off, 959 (void __user *)vaddr, 960 __sme_page_pa(dst_p[0]) + d_off, 961 (void __user *)dst_vaddr, 962 len, &argp->error); 963 964 sev_unpin_memory(kvm, src_p, n); 965 sev_unpin_memory(kvm, dst_p, n); 966 967 if (ret) 968 goto err; 969 970 next_vaddr = vaddr + len; 971 dst_vaddr = dst_vaddr + len; 972 size -= len; 973 } 974 err: 975 return ret; 976 } 977 978 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 979 { 980 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 981 struct sev_data_launch_secret data; 982 struct kvm_sev_launch_secret params; 983 struct page **pages; 984 void *blob, *hdr; 985 unsigned long n, i; 986 int ret, offset; 987 988 if (!sev_guest(kvm)) 989 return -ENOTTY; 990 991 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 992 return -EFAULT; 993 994 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 995 if (IS_ERR(pages)) 996 return PTR_ERR(pages); 997 998 /* 999 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1000 * place; the cache may contain the data that was written unencrypted. 1001 */ 1002 sev_clflush_pages(pages, n); 1003 1004 /* 1005 * The secret must be copied into contiguous memory region, lets verify 1006 * that userspace memory pages are contiguous before we issue command. 1007 */ 1008 if (get_num_contig_pages(0, pages, n) != n) { 1009 ret = -EINVAL; 1010 goto e_unpin_memory; 1011 } 1012 1013 memset(&data, 0, sizeof(data)); 1014 1015 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1016 data.guest_address = __sme_page_pa(pages[0]) + offset; 1017 data.guest_len = params.guest_len; 1018 1019 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1020 if (IS_ERR(blob)) { 1021 ret = PTR_ERR(blob); 1022 goto e_unpin_memory; 1023 } 1024 1025 data.trans_address = __psp_pa(blob); 1026 data.trans_len = params.trans_len; 1027 1028 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1029 if (IS_ERR(hdr)) { 1030 ret = PTR_ERR(hdr); 1031 goto e_free_blob; 1032 } 1033 data.hdr_address = __psp_pa(hdr); 1034 data.hdr_len = params.hdr_len; 1035 1036 data.handle = sev->handle; 1037 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1038 1039 kfree(hdr); 1040 1041 e_free_blob: 1042 kfree(blob); 1043 e_unpin_memory: 1044 /* content of memory is updated, mark pages dirty */ 1045 for (i = 0; i < n; i++) { 1046 set_page_dirty_lock(pages[i]); 1047 mark_page_accessed(pages[i]); 1048 } 1049 sev_unpin_memory(kvm, pages, n); 1050 return ret; 1051 } 1052 1053 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1054 { 1055 void __user *report = (void __user *)(uintptr_t)argp->data; 1056 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1057 struct sev_data_attestation_report data; 1058 struct kvm_sev_attestation_report params; 1059 void __user *p; 1060 void *blob = NULL; 1061 int ret; 1062 1063 if (!sev_guest(kvm)) 1064 return -ENOTTY; 1065 1066 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1067 return -EFAULT; 1068 1069 memset(&data, 0, sizeof(data)); 1070 1071 /* User wants to query the blob length */ 1072 if (!params.len) 1073 goto cmd; 1074 1075 p = (void __user *)(uintptr_t)params.uaddr; 1076 if (p) { 1077 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1078 return -EINVAL; 1079 1080 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 1081 if (!blob) 1082 return -ENOMEM; 1083 1084 data.address = __psp_pa(blob); 1085 data.len = params.len; 1086 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1087 } 1088 cmd: 1089 data.handle = sev->handle; 1090 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1091 /* 1092 * If we query the session length, FW responded with expected data. 1093 */ 1094 if (!params.len) 1095 goto done; 1096 1097 if (ret) 1098 goto e_free_blob; 1099 1100 if (blob) { 1101 if (copy_to_user(p, blob, params.len)) 1102 ret = -EFAULT; 1103 } 1104 1105 done: 1106 params.len = data.len; 1107 if (copy_to_user(report, ¶ms, sizeof(params))) 1108 ret = -EFAULT; 1109 e_free_blob: 1110 kfree(blob); 1111 return ret; 1112 } 1113 1114 /* Userspace wants to query session length. */ 1115 static int 1116 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1117 struct kvm_sev_send_start *params) 1118 { 1119 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1120 struct sev_data_send_start data; 1121 int ret; 1122 1123 memset(&data, 0, sizeof(data)); 1124 data.handle = sev->handle; 1125 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1126 1127 params->session_len = data.session_len; 1128 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1129 sizeof(struct kvm_sev_send_start))) 1130 ret = -EFAULT; 1131 1132 return ret; 1133 } 1134 1135 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1136 { 1137 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1138 struct sev_data_send_start data; 1139 struct kvm_sev_send_start params; 1140 void *amd_certs, *session_data; 1141 void *pdh_cert, *plat_certs; 1142 int ret; 1143 1144 if (!sev_guest(kvm)) 1145 return -ENOTTY; 1146 1147 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1148 sizeof(struct kvm_sev_send_start))) 1149 return -EFAULT; 1150 1151 /* if session_len is zero, userspace wants to query the session length */ 1152 if (!params.session_len) 1153 return __sev_send_start_query_session_length(kvm, argp, 1154 ¶ms); 1155 1156 /* some sanity checks */ 1157 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1158 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1159 return -EINVAL; 1160 1161 /* allocate the memory to hold the session data blob */ 1162 session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1163 if (!session_data) 1164 return -ENOMEM; 1165 1166 /* copy the certificate blobs from userspace */ 1167 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1168 params.pdh_cert_len); 1169 if (IS_ERR(pdh_cert)) { 1170 ret = PTR_ERR(pdh_cert); 1171 goto e_free_session; 1172 } 1173 1174 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1175 params.plat_certs_len); 1176 if (IS_ERR(plat_certs)) { 1177 ret = PTR_ERR(plat_certs); 1178 goto e_free_pdh; 1179 } 1180 1181 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1182 params.amd_certs_len); 1183 if (IS_ERR(amd_certs)) { 1184 ret = PTR_ERR(amd_certs); 1185 goto e_free_plat_cert; 1186 } 1187 1188 /* populate the FW SEND_START field with system physical address */ 1189 memset(&data, 0, sizeof(data)); 1190 data.pdh_cert_address = __psp_pa(pdh_cert); 1191 data.pdh_cert_len = params.pdh_cert_len; 1192 data.plat_certs_address = __psp_pa(plat_certs); 1193 data.plat_certs_len = params.plat_certs_len; 1194 data.amd_certs_address = __psp_pa(amd_certs); 1195 data.amd_certs_len = params.amd_certs_len; 1196 data.session_address = __psp_pa(session_data); 1197 data.session_len = params.session_len; 1198 data.handle = sev->handle; 1199 1200 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1201 1202 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1203 session_data, params.session_len)) { 1204 ret = -EFAULT; 1205 goto e_free_amd_cert; 1206 } 1207 1208 params.policy = data.policy; 1209 params.session_len = data.session_len; 1210 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1211 sizeof(struct kvm_sev_send_start))) 1212 ret = -EFAULT; 1213 1214 e_free_amd_cert: 1215 kfree(amd_certs); 1216 e_free_plat_cert: 1217 kfree(plat_certs); 1218 e_free_pdh: 1219 kfree(pdh_cert); 1220 e_free_session: 1221 kfree(session_data); 1222 return ret; 1223 } 1224 1225 /* Userspace wants to query either header or trans length. */ 1226 static int 1227 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1228 struct kvm_sev_send_update_data *params) 1229 { 1230 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1231 struct sev_data_send_update_data data; 1232 int ret; 1233 1234 memset(&data, 0, sizeof(data)); 1235 data.handle = sev->handle; 1236 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1237 1238 params->hdr_len = data.hdr_len; 1239 params->trans_len = data.trans_len; 1240 1241 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1242 sizeof(struct kvm_sev_send_update_data))) 1243 ret = -EFAULT; 1244 1245 return ret; 1246 } 1247 1248 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1249 { 1250 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1251 struct sev_data_send_update_data data; 1252 struct kvm_sev_send_update_data params; 1253 void *hdr, *trans_data; 1254 struct page **guest_page; 1255 unsigned long n; 1256 int ret, offset; 1257 1258 if (!sev_guest(kvm)) 1259 return -ENOTTY; 1260 1261 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1262 sizeof(struct kvm_sev_send_update_data))) 1263 return -EFAULT; 1264 1265 /* userspace wants to query either header or trans length */ 1266 if (!params.trans_len || !params.hdr_len) 1267 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1268 1269 if (!params.trans_uaddr || !params.guest_uaddr || 1270 !params.guest_len || !params.hdr_uaddr) 1271 return -EINVAL; 1272 1273 /* Check if we are crossing the page boundary */ 1274 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1275 if ((params.guest_len + offset > PAGE_SIZE)) 1276 return -EINVAL; 1277 1278 /* Pin guest memory */ 1279 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1280 PAGE_SIZE, &n, 0); 1281 if (IS_ERR(guest_page)) 1282 return PTR_ERR(guest_page); 1283 1284 /* allocate memory for header and transport buffer */ 1285 ret = -ENOMEM; 1286 hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1287 if (!hdr) 1288 goto e_unpin; 1289 1290 trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1291 if (!trans_data) 1292 goto e_free_hdr; 1293 1294 memset(&data, 0, sizeof(data)); 1295 data.hdr_address = __psp_pa(hdr); 1296 data.hdr_len = params.hdr_len; 1297 data.trans_address = __psp_pa(trans_data); 1298 data.trans_len = params.trans_len; 1299 1300 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1301 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1302 data.guest_address |= sev_me_mask; 1303 data.guest_len = params.guest_len; 1304 data.handle = sev->handle; 1305 1306 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1307 1308 if (ret) 1309 goto e_free_trans_data; 1310 1311 /* copy transport buffer to user space */ 1312 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1313 trans_data, params.trans_len)) { 1314 ret = -EFAULT; 1315 goto e_free_trans_data; 1316 } 1317 1318 /* Copy packet header to userspace. */ 1319 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1320 params.hdr_len)) 1321 ret = -EFAULT; 1322 1323 e_free_trans_data: 1324 kfree(trans_data); 1325 e_free_hdr: 1326 kfree(hdr); 1327 e_unpin: 1328 sev_unpin_memory(kvm, guest_page, n); 1329 1330 return ret; 1331 } 1332 1333 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1334 { 1335 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1336 struct sev_data_send_finish data; 1337 1338 if (!sev_guest(kvm)) 1339 return -ENOTTY; 1340 1341 data.handle = sev->handle; 1342 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1343 } 1344 1345 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1346 { 1347 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1348 struct sev_data_send_cancel data; 1349 1350 if (!sev_guest(kvm)) 1351 return -ENOTTY; 1352 1353 data.handle = sev->handle; 1354 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1355 } 1356 1357 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1358 { 1359 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1360 struct sev_data_receive_start start; 1361 struct kvm_sev_receive_start params; 1362 int *error = &argp->error; 1363 void *session_data; 1364 void *pdh_data; 1365 int ret; 1366 1367 if (!sev_guest(kvm)) 1368 return -ENOTTY; 1369 1370 /* Get parameter from the userspace */ 1371 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1372 sizeof(struct kvm_sev_receive_start))) 1373 return -EFAULT; 1374 1375 /* some sanity checks */ 1376 if (!params.pdh_uaddr || !params.pdh_len || 1377 !params.session_uaddr || !params.session_len) 1378 return -EINVAL; 1379 1380 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1381 if (IS_ERR(pdh_data)) 1382 return PTR_ERR(pdh_data); 1383 1384 session_data = psp_copy_user_blob(params.session_uaddr, 1385 params.session_len); 1386 if (IS_ERR(session_data)) { 1387 ret = PTR_ERR(session_data); 1388 goto e_free_pdh; 1389 } 1390 1391 memset(&start, 0, sizeof(start)); 1392 start.handle = params.handle; 1393 start.policy = params.policy; 1394 start.pdh_cert_address = __psp_pa(pdh_data); 1395 start.pdh_cert_len = params.pdh_len; 1396 start.session_address = __psp_pa(session_data); 1397 start.session_len = params.session_len; 1398 1399 /* create memory encryption context */ 1400 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1401 error); 1402 if (ret) 1403 goto e_free_session; 1404 1405 /* Bind ASID to this guest */ 1406 ret = sev_bind_asid(kvm, start.handle, error); 1407 if (ret) { 1408 sev_decommission(start.handle); 1409 goto e_free_session; 1410 } 1411 1412 params.handle = start.handle; 1413 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1414 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1415 ret = -EFAULT; 1416 sev_unbind_asid(kvm, start.handle); 1417 goto e_free_session; 1418 } 1419 1420 sev->handle = start.handle; 1421 sev->fd = argp->sev_fd; 1422 1423 e_free_session: 1424 kfree(session_data); 1425 e_free_pdh: 1426 kfree(pdh_data); 1427 1428 return ret; 1429 } 1430 1431 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1432 { 1433 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1434 struct kvm_sev_receive_update_data params; 1435 struct sev_data_receive_update_data data; 1436 void *hdr = NULL, *trans = NULL; 1437 struct page **guest_page; 1438 unsigned long n; 1439 int ret, offset; 1440 1441 if (!sev_guest(kvm)) 1442 return -EINVAL; 1443 1444 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1445 sizeof(struct kvm_sev_receive_update_data))) 1446 return -EFAULT; 1447 1448 if (!params.hdr_uaddr || !params.hdr_len || 1449 !params.guest_uaddr || !params.guest_len || 1450 !params.trans_uaddr || !params.trans_len) 1451 return -EINVAL; 1452 1453 /* Check if we are crossing the page boundary */ 1454 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1455 if ((params.guest_len + offset > PAGE_SIZE)) 1456 return -EINVAL; 1457 1458 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1459 if (IS_ERR(hdr)) 1460 return PTR_ERR(hdr); 1461 1462 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1463 if (IS_ERR(trans)) { 1464 ret = PTR_ERR(trans); 1465 goto e_free_hdr; 1466 } 1467 1468 memset(&data, 0, sizeof(data)); 1469 data.hdr_address = __psp_pa(hdr); 1470 data.hdr_len = params.hdr_len; 1471 data.trans_address = __psp_pa(trans); 1472 data.trans_len = params.trans_len; 1473 1474 /* Pin guest memory */ 1475 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1476 PAGE_SIZE, &n, 1); 1477 if (IS_ERR(guest_page)) { 1478 ret = PTR_ERR(guest_page); 1479 goto e_free_trans; 1480 } 1481 1482 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1483 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1484 data.guest_address |= sev_me_mask; 1485 data.guest_len = params.guest_len; 1486 data.handle = sev->handle; 1487 1488 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1489 &argp->error); 1490 1491 sev_unpin_memory(kvm, guest_page, n); 1492 1493 e_free_trans: 1494 kfree(trans); 1495 e_free_hdr: 1496 kfree(hdr); 1497 1498 return ret; 1499 } 1500 1501 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1502 { 1503 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1504 struct sev_data_receive_finish data; 1505 1506 if (!sev_guest(kvm)) 1507 return -ENOTTY; 1508 1509 data.handle = sev->handle; 1510 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1511 } 1512 1513 static bool cmd_allowed_from_miror(u32 cmd_id) 1514 { 1515 /* 1516 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1517 * active mirror VMs. Also allow the debugging and status commands. 1518 */ 1519 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1520 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1521 cmd_id == KVM_SEV_DBG_ENCRYPT) 1522 return true; 1523 1524 return false; 1525 } 1526 1527 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 1528 { 1529 struct kvm_sev_cmd sev_cmd; 1530 int r; 1531 1532 if (!sev_enabled) 1533 return -ENOTTY; 1534 1535 if (!argp) 1536 return 0; 1537 1538 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1539 return -EFAULT; 1540 1541 mutex_lock(&kvm->lock); 1542 1543 /* Only the enc_context_owner handles some memory enc operations. */ 1544 if (is_mirroring_enc_context(kvm) && 1545 !cmd_allowed_from_miror(sev_cmd.id)) { 1546 r = -EINVAL; 1547 goto out; 1548 } 1549 1550 switch (sev_cmd.id) { 1551 case KVM_SEV_ES_INIT: 1552 if (!sev_es_enabled) { 1553 r = -ENOTTY; 1554 goto out; 1555 } 1556 fallthrough; 1557 case KVM_SEV_INIT: 1558 r = sev_guest_init(kvm, &sev_cmd); 1559 break; 1560 case KVM_SEV_LAUNCH_START: 1561 r = sev_launch_start(kvm, &sev_cmd); 1562 break; 1563 case KVM_SEV_LAUNCH_UPDATE_DATA: 1564 r = sev_launch_update_data(kvm, &sev_cmd); 1565 break; 1566 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1567 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1568 break; 1569 case KVM_SEV_LAUNCH_MEASURE: 1570 r = sev_launch_measure(kvm, &sev_cmd); 1571 break; 1572 case KVM_SEV_LAUNCH_FINISH: 1573 r = sev_launch_finish(kvm, &sev_cmd); 1574 break; 1575 case KVM_SEV_GUEST_STATUS: 1576 r = sev_guest_status(kvm, &sev_cmd); 1577 break; 1578 case KVM_SEV_DBG_DECRYPT: 1579 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1580 break; 1581 case KVM_SEV_DBG_ENCRYPT: 1582 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1583 break; 1584 case KVM_SEV_LAUNCH_SECRET: 1585 r = sev_launch_secret(kvm, &sev_cmd); 1586 break; 1587 case KVM_SEV_GET_ATTESTATION_REPORT: 1588 r = sev_get_attestation_report(kvm, &sev_cmd); 1589 break; 1590 case KVM_SEV_SEND_START: 1591 r = sev_send_start(kvm, &sev_cmd); 1592 break; 1593 case KVM_SEV_SEND_UPDATE_DATA: 1594 r = sev_send_update_data(kvm, &sev_cmd); 1595 break; 1596 case KVM_SEV_SEND_FINISH: 1597 r = sev_send_finish(kvm, &sev_cmd); 1598 break; 1599 case KVM_SEV_SEND_CANCEL: 1600 r = sev_send_cancel(kvm, &sev_cmd); 1601 break; 1602 case KVM_SEV_RECEIVE_START: 1603 r = sev_receive_start(kvm, &sev_cmd); 1604 break; 1605 case KVM_SEV_RECEIVE_UPDATE_DATA: 1606 r = sev_receive_update_data(kvm, &sev_cmd); 1607 break; 1608 case KVM_SEV_RECEIVE_FINISH: 1609 r = sev_receive_finish(kvm, &sev_cmd); 1610 break; 1611 default: 1612 r = -EINVAL; 1613 goto out; 1614 } 1615 1616 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1617 r = -EFAULT; 1618 1619 out: 1620 mutex_unlock(&kvm->lock); 1621 return r; 1622 } 1623 1624 int svm_register_enc_region(struct kvm *kvm, 1625 struct kvm_enc_region *range) 1626 { 1627 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1628 struct enc_region *region; 1629 int ret = 0; 1630 1631 if (!sev_guest(kvm)) 1632 return -ENOTTY; 1633 1634 /* If kvm is mirroring encryption context it isn't responsible for it */ 1635 if (is_mirroring_enc_context(kvm)) 1636 return -EINVAL; 1637 1638 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1639 return -EINVAL; 1640 1641 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1642 if (!region) 1643 return -ENOMEM; 1644 1645 mutex_lock(&kvm->lock); 1646 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1647 if (IS_ERR(region->pages)) { 1648 ret = PTR_ERR(region->pages); 1649 mutex_unlock(&kvm->lock); 1650 goto e_free; 1651 } 1652 1653 region->uaddr = range->addr; 1654 region->size = range->size; 1655 1656 list_add_tail(®ion->list, &sev->regions_list); 1657 mutex_unlock(&kvm->lock); 1658 1659 /* 1660 * The guest may change the memory encryption attribute from C=0 -> C=1 1661 * or vice versa for this memory range. Lets make sure caches are 1662 * flushed to ensure that guest data gets written into memory with 1663 * correct C-bit. 1664 */ 1665 sev_clflush_pages(region->pages, region->npages); 1666 1667 return ret; 1668 1669 e_free: 1670 kfree(region); 1671 return ret; 1672 } 1673 1674 static struct enc_region * 1675 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1676 { 1677 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1678 struct list_head *head = &sev->regions_list; 1679 struct enc_region *i; 1680 1681 list_for_each_entry(i, head, list) { 1682 if (i->uaddr == range->addr && 1683 i->size == range->size) 1684 return i; 1685 } 1686 1687 return NULL; 1688 } 1689 1690 static void __unregister_enc_region_locked(struct kvm *kvm, 1691 struct enc_region *region) 1692 { 1693 sev_unpin_memory(kvm, region->pages, region->npages); 1694 list_del(®ion->list); 1695 kfree(region); 1696 } 1697 1698 int svm_unregister_enc_region(struct kvm *kvm, 1699 struct kvm_enc_region *range) 1700 { 1701 struct enc_region *region; 1702 int ret; 1703 1704 /* If kvm is mirroring encryption context it isn't responsible for it */ 1705 if (is_mirroring_enc_context(kvm)) 1706 return -EINVAL; 1707 1708 mutex_lock(&kvm->lock); 1709 1710 if (!sev_guest(kvm)) { 1711 ret = -ENOTTY; 1712 goto failed; 1713 } 1714 1715 region = find_enc_region(kvm, range); 1716 if (!region) { 1717 ret = -EINVAL; 1718 goto failed; 1719 } 1720 1721 /* 1722 * Ensure that all guest tagged cache entries are flushed before 1723 * releasing the pages back to the system for use. CLFLUSH will 1724 * not do this, so issue a WBINVD. 1725 */ 1726 wbinvd_on_all_cpus(); 1727 1728 __unregister_enc_region_locked(kvm, region); 1729 1730 mutex_unlock(&kvm->lock); 1731 return 0; 1732 1733 failed: 1734 mutex_unlock(&kvm->lock); 1735 return ret; 1736 } 1737 1738 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd) 1739 { 1740 struct file *source_kvm_file; 1741 struct kvm *source_kvm; 1742 struct kvm_sev_info source_sev, *mirror_sev; 1743 int ret; 1744 1745 source_kvm_file = fget(source_fd); 1746 if (!file_is_kvm(source_kvm_file)) { 1747 ret = -EBADF; 1748 goto e_source_put; 1749 } 1750 1751 source_kvm = source_kvm_file->private_data; 1752 mutex_lock(&source_kvm->lock); 1753 1754 if (!sev_guest(source_kvm)) { 1755 ret = -EINVAL; 1756 goto e_source_unlock; 1757 } 1758 1759 /* Mirrors of mirrors should work, but let's not get silly */ 1760 if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) { 1761 ret = -EINVAL; 1762 goto e_source_unlock; 1763 } 1764 1765 memcpy(&source_sev, &to_kvm_svm(source_kvm)->sev_info, 1766 sizeof(source_sev)); 1767 1768 /* 1769 * The mirror kvm holds an enc_context_owner ref so its asid can't 1770 * disappear until we're done with it 1771 */ 1772 kvm_get_kvm(source_kvm); 1773 1774 fput(source_kvm_file); 1775 mutex_unlock(&source_kvm->lock); 1776 mutex_lock(&kvm->lock); 1777 1778 if (sev_guest(kvm)) { 1779 ret = -EINVAL; 1780 goto e_mirror_unlock; 1781 } 1782 1783 /* Set enc_context_owner and copy its encryption context over */ 1784 mirror_sev = &to_kvm_svm(kvm)->sev_info; 1785 mirror_sev->enc_context_owner = source_kvm; 1786 mirror_sev->active = true; 1787 mirror_sev->asid = source_sev.asid; 1788 mirror_sev->fd = source_sev.fd; 1789 mirror_sev->es_active = source_sev.es_active; 1790 mirror_sev->handle = source_sev.handle; 1791 /* 1792 * Do not copy ap_jump_table. Since the mirror does not share the same 1793 * KVM contexts as the original, and they may have different 1794 * memory-views. 1795 */ 1796 1797 mutex_unlock(&kvm->lock); 1798 return 0; 1799 1800 e_mirror_unlock: 1801 mutex_unlock(&kvm->lock); 1802 kvm_put_kvm(source_kvm); 1803 return ret; 1804 e_source_unlock: 1805 mutex_unlock(&source_kvm->lock); 1806 e_source_put: 1807 if (source_kvm_file) 1808 fput(source_kvm_file); 1809 return ret; 1810 } 1811 1812 void sev_vm_destroy(struct kvm *kvm) 1813 { 1814 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1815 struct list_head *head = &sev->regions_list; 1816 struct list_head *pos, *q; 1817 1818 if (!sev_guest(kvm)) 1819 return; 1820 1821 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 1822 if (is_mirroring_enc_context(kvm)) { 1823 kvm_put_kvm(sev->enc_context_owner); 1824 return; 1825 } 1826 1827 mutex_lock(&kvm->lock); 1828 1829 /* 1830 * Ensure that all guest tagged cache entries are flushed before 1831 * releasing the pages back to the system for use. CLFLUSH will 1832 * not do this, so issue a WBINVD. 1833 */ 1834 wbinvd_on_all_cpus(); 1835 1836 /* 1837 * if userspace was terminated before unregistering the memory regions 1838 * then lets unpin all the registered memory. 1839 */ 1840 if (!list_empty(head)) { 1841 list_for_each_safe(pos, q, head) { 1842 __unregister_enc_region_locked(kvm, 1843 list_entry(pos, struct enc_region, list)); 1844 cond_resched(); 1845 } 1846 } 1847 1848 mutex_unlock(&kvm->lock); 1849 1850 sev_unbind_asid(kvm, sev->handle); 1851 sev_asid_free(sev); 1852 } 1853 1854 void __init sev_set_cpu_caps(void) 1855 { 1856 if (!sev_enabled) 1857 kvm_cpu_cap_clear(X86_FEATURE_SEV); 1858 if (!sev_es_enabled) 1859 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 1860 } 1861 1862 void __init sev_hardware_setup(void) 1863 { 1864 #ifdef CONFIG_KVM_AMD_SEV 1865 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 1866 bool sev_es_supported = false; 1867 bool sev_supported = false; 1868 1869 if (!sev_enabled || !npt_enabled) 1870 goto out; 1871 1872 /* Does the CPU support SEV? */ 1873 if (!boot_cpu_has(X86_FEATURE_SEV)) 1874 goto out; 1875 1876 /* Retrieve SEV CPUID information */ 1877 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 1878 1879 /* Set encryption bit location for SEV-ES guests */ 1880 sev_enc_bit = ebx & 0x3f; 1881 1882 /* Maximum number of encrypted guests supported simultaneously */ 1883 max_sev_asid = ecx; 1884 if (!max_sev_asid) 1885 goto out; 1886 1887 /* Minimum ASID value that should be used for SEV guest */ 1888 min_sev_asid = edx; 1889 sev_me_mask = 1UL << (ebx & 0x3f); 1890 1891 /* 1892 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 1893 * even though it's never used, so that the bitmap is indexed by the 1894 * actual ASID. 1895 */ 1896 nr_asids = max_sev_asid + 1; 1897 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 1898 if (!sev_asid_bitmap) 1899 goto out; 1900 1901 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 1902 if (!sev_reclaim_asid_bitmap) { 1903 bitmap_free(sev_asid_bitmap); 1904 sev_asid_bitmap = NULL; 1905 goto out; 1906 } 1907 1908 sev_asid_count = max_sev_asid - min_sev_asid + 1; 1909 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) 1910 goto out; 1911 1912 pr_info("SEV supported: %u ASIDs\n", sev_asid_count); 1913 sev_supported = true; 1914 1915 /* SEV-ES support requested? */ 1916 if (!sev_es_enabled) 1917 goto out; 1918 1919 /* Does the CPU support SEV-ES? */ 1920 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 1921 goto out; 1922 1923 /* Has the system been allocated ASIDs for SEV-ES? */ 1924 if (min_sev_asid == 1) 1925 goto out; 1926 1927 sev_es_asid_count = min_sev_asid - 1; 1928 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) 1929 goto out; 1930 1931 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); 1932 sev_es_supported = true; 1933 1934 out: 1935 sev_enabled = sev_supported; 1936 sev_es_enabled = sev_es_supported; 1937 #endif 1938 } 1939 1940 void sev_hardware_teardown(void) 1941 { 1942 if (!sev_enabled) 1943 return; 1944 1945 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 1946 sev_flush_asids(1, max_sev_asid); 1947 1948 bitmap_free(sev_asid_bitmap); 1949 bitmap_free(sev_reclaim_asid_bitmap); 1950 1951 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 1952 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 1953 } 1954 1955 int sev_cpu_init(struct svm_cpu_data *sd) 1956 { 1957 if (!sev_enabled) 1958 return 0; 1959 1960 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 1961 if (!sd->sev_vmcbs) 1962 return -ENOMEM; 1963 1964 return 0; 1965 } 1966 1967 /* 1968 * Pages used by hardware to hold guest encrypted state must be flushed before 1969 * returning them to the system. 1970 */ 1971 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, 1972 unsigned long len) 1973 { 1974 /* 1975 * If hardware enforced cache coherency for encrypted mappings of the 1976 * same physical page is supported, nothing to do. 1977 */ 1978 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) 1979 return; 1980 1981 /* 1982 * If the VM Page Flush MSR is supported, use it to flush the page 1983 * (using the page virtual address and the guest ASID). 1984 */ 1985 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { 1986 struct kvm_sev_info *sev; 1987 unsigned long va_start; 1988 u64 start, stop; 1989 1990 /* Align start and stop to page boundaries. */ 1991 va_start = (unsigned long)va; 1992 start = (u64)va_start & PAGE_MASK; 1993 stop = PAGE_ALIGN((u64)va_start + len); 1994 1995 if (start < stop) { 1996 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 1997 1998 while (start < stop) { 1999 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, 2000 start | sev->asid); 2001 2002 start += PAGE_SIZE; 2003 } 2004 2005 return; 2006 } 2007 2008 WARN(1, "Address overflow, using WBINVD\n"); 2009 } 2010 2011 /* 2012 * Hardware should always have one of the above features, 2013 * but if not, use WBINVD and issue a warning. 2014 */ 2015 WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); 2016 wbinvd_on_all_cpus(); 2017 } 2018 2019 void sev_free_vcpu(struct kvm_vcpu *vcpu) 2020 { 2021 struct vcpu_svm *svm; 2022 2023 if (!sev_es_guest(vcpu->kvm)) 2024 return; 2025 2026 svm = to_svm(vcpu); 2027 2028 if (vcpu->arch.guest_state_protected) 2029 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE); 2030 __free_page(virt_to_page(svm->vmsa)); 2031 2032 if (svm->ghcb_sa_free) 2033 kfree(svm->ghcb_sa); 2034 } 2035 2036 static void dump_ghcb(struct vcpu_svm *svm) 2037 { 2038 struct ghcb *ghcb = svm->ghcb; 2039 unsigned int nbits; 2040 2041 /* Re-use the dump_invalid_vmcb module parameter */ 2042 if (!dump_invalid_vmcb) { 2043 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2044 return; 2045 } 2046 2047 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2048 2049 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2050 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2051 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2052 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2053 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2054 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2055 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2056 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2057 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2058 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2059 } 2060 2061 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2062 { 2063 struct kvm_vcpu *vcpu = &svm->vcpu; 2064 struct ghcb *ghcb = svm->ghcb; 2065 2066 /* 2067 * The GHCB protocol so far allows for the following data 2068 * to be returned: 2069 * GPRs RAX, RBX, RCX, RDX 2070 * 2071 * Copy their values, even if they may not have been written during the 2072 * VM-Exit. It's the guest's responsibility to not consume random data. 2073 */ 2074 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2075 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2076 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2077 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2078 } 2079 2080 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2081 { 2082 struct vmcb_control_area *control = &svm->vmcb->control; 2083 struct kvm_vcpu *vcpu = &svm->vcpu; 2084 struct ghcb *ghcb = svm->ghcb; 2085 u64 exit_code; 2086 2087 /* 2088 * The GHCB protocol so far allows for the following data 2089 * to be supplied: 2090 * GPRs RAX, RBX, RCX, RDX 2091 * XCR0 2092 * CPL 2093 * 2094 * VMMCALL allows the guest to provide extra registers. KVM also 2095 * expects RSI for hypercalls, so include that, too. 2096 * 2097 * Copy their values to the appropriate location if supplied. 2098 */ 2099 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2100 2101 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 2102 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 2103 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 2104 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 2105 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 2106 2107 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 2108 2109 if (ghcb_xcr0_is_valid(ghcb)) { 2110 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2111 kvm_update_cpuid_runtime(vcpu); 2112 } 2113 2114 /* Copy the GHCB exit information into the VMCB fields */ 2115 exit_code = ghcb_get_sw_exit_code(ghcb); 2116 control->exit_code = lower_32_bits(exit_code); 2117 control->exit_code_hi = upper_32_bits(exit_code); 2118 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2119 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2120 2121 /* Clear the valid entries fields */ 2122 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2123 } 2124 2125 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2126 { 2127 struct kvm_vcpu *vcpu; 2128 struct ghcb *ghcb; 2129 u64 exit_code = 0; 2130 2131 ghcb = svm->ghcb; 2132 2133 /* Only GHCB Usage code 0 is supported */ 2134 if (ghcb->ghcb_usage) 2135 goto vmgexit_err; 2136 2137 /* 2138 * Retrieve the exit code now even though is may not be marked valid 2139 * as it could help with debugging. 2140 */ 2141 exit_code = ghcb_get_sw_exit_code(ghcb); 2142 2143 if (!ghcb_sw_exit_code_is_valid(ghcb) || 2144 !ghcb_sw_exit_info_1_is_valid(ghcb) || 2145 !ghcb_sw_exit_info_2_is_valid(ghcb)) 2146 goto vmgexit_err; 2147 2148 switch (ghcb_get_sw_exit_code(ghcb)) { 2149 case SVM_EXIT_READ_DR7: 2150 break; 2151 case SVM_EXIT_WRITE_DR7: 2152 if (!ghcb_rax_is_valid(ghcb)) 2153 goto vmgexit_err; 2154 break; 2155 case SVM_EXIT_RDTSC: 2156 break; 2157 case SVM_EXIT_RDPMC: 2158 if (!ghcb_rcx_is_valid(ghcb)) 2159 goto vmgexit_err; 2160 break; 2161 case SVM_EXIT_CPUID: 2162 if (!ghcb_rax_is_valid(ghcb) || 2163 !ghcb_rcx_is_valid(ghcb)) 2164 goto vmgexit_err; 2165 if (ghcb_get_rax(ghcb) == 0xd) 2166 if (!ghcb_xcr0_is_valid(ghcb)) 2167 goto vmgexit_err; 2168 break; 2169 case SVM_EXIT_INVD: 2170 break; 2171 case SVM_EXIT_IOIO: 2172 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 2173 if (!ghcb_sw_scratch_is_valid(ghcb)) 2174 goto vmgexit_err; 2175 } else { 2176 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 2177 if (!ghcb_rax_is_valid(ghcb)) 2178 goto vmgexit_err; 2179 } 2180 break; 2181 case SVM_EXIT_MSR: 2182 if (!ghcb_rcx_is_valid(ghcb)) 2183 goto vmgexit_err; 2184 if (ghcb_get_sw_exit_info_1(ghcb)) { 2185 if (!ghcb_rax_is_valid(ghcb) || 2186 !ghcb_rdx_is_valid(ghcb)) 2187 goto vmgexit_err; 2188 } 2189 break; 2190 case SVM_EXIT_VMMCALL: 2191 if (!ghcb_rax_is_valid(ghcb) || 2192 !ghcb_cpl_is_valid(ghcb)) 2193 goto vmgexit_err; 2194 break; 2195 case SVM_EXIT_RDTSCP: 2196 break; 2197 case SVM_EXIT_WBINVD: 2198 break; 2199 case SVM_EXIT_MONITOR: 2200 if (!ghcb_rax_is_valid(ghcb) || 2201 !ghcb_rcx_is_valid(ghcb) || 2202 !ghcb_rdx_is_valid(ghcb)) 2203 goto vmgexit_err; 2204 break; 2205 case SVM_EXIT_MWAIT: 2206 if (!ghcb_rax_is_valid(ghcb) || 2207 !ghcb_rcx_is_valid(ghcb)) 2208 goto vmgexit_err; 2209 break; 2210 case SVM_VMGEXIT_MMIO_READ: 2211 case SVM_VMGEXIT_MMIO_WRITE: 2212 if (!ghcb_sw_scratch_is_valid(ghcb)) 2213 goto vmgexit_err; 2214 break; 2215 case SVM_VMGEXIT_NMI_COMPLETE: 2216 case SVM_VMGEXIT_AP_HLT_LOOP: 2217 case SVM_VMGEXIT_AP_JUMP_TABLE: 2218 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2219 break; 2220 default: 2221 goto vmgexit_err; 2222 } 2223 2224 return 0; 2225 2226 vmgexit_err: 2227 vcpu = &svm->vcpu; 2228 2229 if (ghcb->ghcb_usage) { 2230 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2231 ghcb->ghcb_usage); 2232 } else { 2233 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n", 2234 exit_code); 2235 dump_ghcb(svm); 2236 } 2237 2238 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2239 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 2240 vcpu->run->internal.ndata = 2; 2241 vcpu->run->internal.data[0] = exit_code; 2242 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 2243 2244 return -EINVAL; 2245 } 2246 2247 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2248 { 2249 if (!svm->ghcb) 2250 return; 2251 2252 if (svm->ghcb_sa_free) { 2253 /* 2254 * The scratch area lives outside the GHCB, so there is a 2255 * buffer that, depending on the operation performed, may 2256 * need to be synced, then freed. 2257 */ 2258 if (svm->ghcb_sa_sync) { 2259 kvm_write_guest(svm->vcpu.kvm, 2260 ghcb_get_sw_scratch(svm->ghcb), 2261 svm->ghcb_sa, svm->ghcb_sa_len); 2262 svm->ghcb_sa_sync = false; 2263 } 2264 2265 kfree(svm->ghcb_sa); 2266 svm->ghcb_sa = NULL; 2267 svm->ghcb_sa_free = false; 2268 } 2269 2270 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb); 2271 2272 sev_es_sync_to_ghcb(svm); 2273 2274 kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true); 2275 svm->ghcb = NULL; 2276 } 2277 2278 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2279 { 2280 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2281 int asid = sev_get_asid(svm->vcpu.kvm); 2282 2283 /* Assign the asid allocated with this SEV guest */ 2284 svm->asid = asid; 2285 2286 /* 2287 * Flush guest TLB: 2288 * 2289 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2290 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2291 */ 2292 if (sd->sev_vmcbs[asid] == svm->vmcb && 2293 svm->vcpu.arch.last_vmentry_cpu == cpu) 2294 return; 2295 2296 sd->sev_vmcbs[asid] = svm->vmcb; 2297 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2298 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2299 } 2300 2301 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2302 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2303 { 2304 struct vmcb_control_area *control = &svm->vmcb->control; 2305 struct ghcb *ghcb = svm->ghcb; 2306 u64 ghcb_scratch_beg, ghcb_scratch_end; 2307 u64 scratch_gpa_beg, scratch_gpa_end; 2308 void *scratch_va; 2309 2310 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 2311 if (!scratch_gpa_beg) { 2312 pr_err("vmgexit: scratch gpa not provided\n"); 2313 return false; 2314 } 2315 2316 scratch_gpa_end = scratch_gpa_beg + len; 2317 if (scratch_gpa_end < scratch_gpa_beg) { 2318 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2319 len, scratch_gpa_beg); 2320 return false; 2321 } 2322 2323 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2324 /* Scratch area begins within GHCB */ 2325 ghcb_scratch_beg = control->ghcb_gpa + 2326 offsetof(struct ghcb, shared_buffer); 2327 ghcb_scratch_end = control->ghcb_gpa + 2328 offsetof(struct ghcb, reserved_1); 2329 2330 /* 2331 * If the scratch area begins within the GHCB, it must be 2332 * completely contained in the GHCB shared buffer area. 2333 */ 2334 if (scratch_gpa_beg < ghcb_scratch_beg || 2335 scratch_gpa_end > ghcb_scratch_end) { 2336 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2337 scratch_gpa_beg, scratch_gpa_end); 2338 return false; 2339 } 2340 2341 scratch_va = (void *)svm->ghcb; 2342 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2343 } else { 2344 /* 2345 * The guest memory must be read into a kernel buffer, so 2346 * limit the size 2347 */ 2348 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2349 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2350 len, GHCB_SCRATCH_AREA_LIMIT); 2351 return false; 2352 } 2353 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT); 2354 if (!scratch_va) 2355 return false; 2356 2357 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2358 /* Unable to copy scratch area from guest */ 2359 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2360 2361 kfree(scratch_va); 2362 return false; 2363 } 2364 2365 /* 2366 * The scratch area is outside the GHCB. The operation will 2367 * dictate whether the buffer needs to be synced before running 2368 * the vCPU next time (i.e. a read was requested so the data 2369 * must be written back to the guest memory). 2370 */ 2371 svm->ghcb_sa_sync = sync; 2372 svm->ghcb_sa_free = true; 2373 } 2374 2375 svm->ghcb_sa = scratch_va; 2376 svm->ghcb_sa_len = len; 2377 2378 return true; 2379 } 2380 2381 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2382 unsigned int pos) 2383 { 2384 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2385 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2386 } 2387 2388 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2389 { 2390 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2391 } 2392 2393 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2394 { 2395 svm->vmcb->control.ghcb_gpa = value; 2396 } 2397 2398 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2399 { 2400 struct vmcb_control_area *control = &svm->vmcb->control; 2401 struct kvm_vcpu *vcpu = &svm->vcpu; 2402 u64 ghcb_info; 2403 int ret = 1; 2404 2405 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2406 2407 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2408 control->ghcb_gpa); 2409 2410 switch (ghcb_info) { 2411 case GHCB_MSR_SEV_INFO_REQ: 2412 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2413 GHCB_VERSION_MIN, 2414 sev_enc_bit)); 2415 break; 2416 case GHCB_MSR_CPUID_REQ: { 2417 u64 cpuid_fn, cpuid_reg, cpuid_value; 2418 2419 cpuid_fn = get_ghcb_msr_bits(svm, 2420 GHCB_MSR_CPUID_FUNC_MASK, 2421 GHCB_MSR_CPUID_FUNC_POS); 2422 2423 /* Initialize the registers needed by the CPUID intercept */ 2424 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2425 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2426 2427 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2428 if (!ret) { 2429 ret = -EINVAL; 2430 break; 2431 } 2432 2433 cpuid_reg = get_ghcb_msr_bits(svm, 2434 GHCB_MSR_CPUID_REG_MASK, 2435 GHCB_MSR_CPUID_REG_POS); 2436 if (cpuid_reg == 0) 2437 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2438 else if (cpuid_reg == 1) 2439 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2440 else if (cpuid_reg == 2) 2441 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2442 else 2443 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2444 2445 set_ghcb_msr_bits(svm, cpuid_value, 2446 GHCB_MSR_CPUID_VALUE_MASK, 2447 GHCB_MSR_CPUID_VALUE_POS); 2448 2449 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2450 GHCB_MSR_INFO_MASK, 2451 GHCB_MSR_INFO_POS); 2452 break; 2453 } 2454 case GHCB_MSR_TERM_REQ: { 2455 u64 reason_set, reason_code; 2456 2457 reason_set = get_ghcb_msr_bits(svm, 2458 GHCB_MSR_TERM_REASON_SET_MASK, 2459 GHCB_MSR_TERM_REASON_SET_POS); 2460 reason_code = get_ghcb_msr_bits(svm, 2461 GHCB_MSR_TERM_REASON_MASK, 2462 GHCB_MSR_TERM_REASON_POS); 2463 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2464 reason_set, reason_code); 2465 fallthrough; 2466 } 2467 default: 2468 ret = -EINVAL; 2469 } 2470 2471 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2472 control->ghcb_gpa, ret); 2473 2474 return ret; 2475 } 2476 2477 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2478 { 2479 struct vcpu_svm *svm = to_svm(vcpu); 2480 struct vmcb_control_area *control = &svm->vmcb->control; 2481 u64 ghcb_gpa, exit_code; 2482 struct ghcb *ghcb; 2483 int ret; 2484 2485 /* Validate the GHCB */ 2486 ghcb_gpa = control->ghcb_gpa; 2487 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2488 return sev_handle_vmgexit_msr_protocol(svm); 2489 2490 if (!ghcb_gpa) { 2491 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2492 return -EINVAL; 2493 } 2494 2495 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) { 2496 /* Unable to map GHCB from guest */ 2497 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2498 ghcb_gpa); 2499 return -EINVAL; 2500 } 2501 2502 svm->ghcb = svm->ghcb_map.hva; 2503 ghcb = svm->ghcb_map.hva; 2504 2505 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); 2506 2507 exit_code = ghcb_get_sw_exit_code(ghcb); 2508 2509 ret = sev_es_validate_vmgexit(svm); 2510 if (ret) 2511 return ret; 2512 2513 sev_es_sync_from_ghcb(svm); 2514 ghcb_set_sw_exit_info_1(ghcb, 0); 2515 ghcb_set_sw_exit_info_2(ghcb, 0); 2516 2517 ret = -EINVAL; 2518 switch (exit_code) { 2519 case SVM_VMGEXIT_MMIO_READ: 2520 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) 2521 break; 2522 2523 ret = kvm_sev_es_mmio_read(vcpu, 2524 control->exit_info_1, 2525 control->exit_info_2, 2526 svm->ghcb_sa); 2527 break; 2528 case SVM_VMGEXIT_MMIO_WRITE: 2529 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) 2530 break; 2531 2532 ret = kvm_sev_es_mmio_write(vcpu, 2533 control->exit_info_1, 2534 control->exit_info_2, 2535 svm->ghcb_sa); 2536 break; 2537 case SVM_VMGEXIT_NMI_COMPLETE: 2538 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); 2539 break; 2540 case SVM_VMGEXIT_AP_HLT_LOOP: 2541 ret = kvm_emulate_ap_reset_hold(vcpu); 2542 break; 2543 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2544 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2545 2546 switch (control->exit_info_1) { 2547 case 0: 2548 /* Set AP jump table address */ 2549 sev->ap_jump_table = control->exit_info_2; 2550 break; 2551 case 1: 2552 /* Get AP jump table address */ 2553 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 2554 break; 2555 default: 2556 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2557 control->exit_info_1); 2558 ghcb_set_sw_exit_info_1(ghcb, 1); 2559 ghcb_set_sw_exit_info_2(ghcb, 2560 X86_TRAP_UD | 2561 SVM_EVTINJ_TYPE_EXEPT | 2562 SVM_EVTINJ_VALID); 2563 } 2564 2565 ret = 1; 2566 break; 2567 } 2568 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2569 vcpu_unimpl(vcpu, 2570 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2571 control->exit_info_1, control->exit_info_2); 2572 break; 2573 default: 2574 ret = svm_invoke_exit_handler(vcpu, exit_code); 2575 } 2576 2577 return ret; 2578 } 2579 2580 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2581 { 2582 if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2)) 2583 return -EINVAL; 2584 2585 return kvm_sev_es_string_io(&svm->vcpu, size, port, 2586 svm->ghcb_sa, svm->ghcb_sa_len, in); 2587 } 2588 2589 void sev_es_init_vmcb(struct vcpu_svm *svm) 2590 { 2591 struct kvm_vcpu *vcpu = &svm->vcpu; 2592 2593 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2594 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2595 2596 /* 2597 * An SEV-ES guest requires a VMSA area that is a separate from the 2598 * VMCB page. Do not include the encryption mask on the VMSA physical 2599 * address since hardware will access it using the guest key. 2600 */ 2601 svm->vmcb->control.vmsa_pa = __pa(svm->vmsa); 2602 2603 /* Can't intercept CR register access, HV can't modify CR registers */ 2604 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2605 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2606 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2607 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2608 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2609 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2610 2611 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2612 2613 /* Track EFER/CR register changes */ 2614 svm_set_intercept(svm, TRAP_EFER_WRITE); 2615 svm_set_intercept(svm, TRAP_CR0_WRITE); 2616 svm_set_intercept(svm, TRAP_CR4_WRITE); 2617 svm_set_intercept(svm, TRAP_CR8_WRITE); 2618 2619 /* No support for enable_vmware_backdoor */ 2620 clr_exception_intercept(svm, GP_VECTOR); 2621 2622 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2623 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2624 2625 /* Clear intercepts on selected MSRs */ 2626 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2627 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2628 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2629 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2630 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2631 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2632 } 2633 2634 void sev_es_create_vcpu(struct vcpu_svm *svm) 2635 { 2636 /* 2637 * Set the GHCB MSR value as per the GHCB specification when creating 2638 * a vCPU for an SEV-ES guest. 2639 */ 2640 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2641 GHCB_VERSION_MIN, 2642 sev_enc_bit)); 2643 } 2644 2645 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) 2646 { 2647 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2648 struct vmcb_save_area *hostsa; 2649 2650 /* 2651 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 2652 * of which one step is to perform a VMLOAD. Since hardware does not 2653 * perform a VMSAVE on VMRUN, the host savearea must be updated. 2654 */ 2655 vmsave(__sme_page_pa(sd->save_area)); 2656 2657 /* XCR0 is restored on VMEXIT, save the current host value */ 2658 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); 2659 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 2660 2661 /* PKRU is restored on VMEXIT, save the current host value */ 2662 hostsa->pkru = read_pkru(); 2663 2664 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 2665 hostsa->xss = host_xss; 2666 } 2667 2668 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 2669 { 2670 struct vcpu_svm *svm = to_svm(vcpu); 2671 2672 /* First SIPI: Use the values as initially set by the VMM */ 2673 if (!svm->received_first_sipi) { 2674 svm->received_first_sipi = true; 2675 return; 2676 } 2677 2678 /* 2679 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 2680 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 2681 * non-zero value. 2682 */ 2683 if (!svm->ghcb) 2684 return; 2685 2686 ghcb_set_sw_exit_info_2(svm->ghcb, 1); 2687 } 2688