1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/misc_cgroup.h> 18 #include <linux/processor.h> 19 #include <linux/trace_events.h> 20 21 #include <asm/pkru.h> 22 #include <asm/trapnr.h> 23 #include <asm/fpu/xcr.h> 24 25 #include "x86.h" 26 #include "svm.h" 27 #include "svm_ops.h" 28 #include "cpuid.h" 29 #include "trace.h" 30 31 #ifndef CONFIG_KVM_AMD_SEV 32 /* 33 * When this config is not defined, SEV feature is not supported and APIs in 34 * this file are not used but this file still gets compiled into the KVM AMD 35 * module. 36 * 37 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 38 * misc_res_type {} defined in linux/misc_cgroup.h. 39 * 40 * Below macros allow compilation to succeed. 41 */ 42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 44 #endif 45 46 #ifdef CONFIG_KVM_AMD_SEV 47 /* enable/disable SEV support */ 48 static bool sev_enabled = true; 49 module_param_named(sev, sev_enabled, bool, 0444); 50 51 /* enable/disable SEV-ES support */ 52 static bool sev_es_enabled = true; 53 module_param_named(sev_es, sev_es_enabled, bool, 0444); 54 #else 55 #define sev_enabled false 56 #define sev_es_enabled false 57 #endif /* CONFIG_KVM_AMD_SEV */ 58 59 static u8 sev_enc_bit; 60 static DECLARE_RWSEM(sev_deactivate_lock); 61 static DEFINE_MUTEX(sev_bitmap_lock); 62 unsigned int max_sev_asid; 63 static unsigned int min_sev_asid; 64 static unsigned long sev_me_mask; 65 static unsigned int nr_asids; 66 static unsigned long *sev_asid_bitmap; 67 static unsigned long *sev_reclaim_asid_bitmap; 68 69 struct enc_region { 70 struct list_head list; 71 unsigned long npages; 72 struct page **pages; 73 unsigned long uaddr; 74 unsigned long size; 75 }; 76 77 /* Called with the sev_bitmap_lock held, or on shutdown */ 78 static int sev_flush_asids(int min_asid, int max_asid) 79 { 80 int ret, asid, error = 0; 81 82 /* Check if there are any ASIDs to reclaim before performing a flush */ 83 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 84 if (asid > max_asid) 85 return -EBUSY; 86 87 /* 88 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 89 * so it must be guarded. 90 */ 91 down_write(&sev_deactivate_lock); 92 93 wbinvd_on_all_cpus(); 94 ret = sev_guest_df_flush(&error); 95 96 up_write(&sev_deactivate_lock); 97 98 if (ret) 99 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 100 101 return ret; 102 } 103 104 static inline bool is_mirroring_enc_context(struct kvm *kvm) 105 { 106 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 107 } 108 109 /* Must be called with the sev_bitmap_lock held */ 110 static bool __sev_recycle_asids(int min_asid, int max_asid) 111 { 112 if (sev_flush_asids(min_asid, max_asid)) 113 return false; 114 115 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 116 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 117 nr_asids); 118 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 119 120 return true; 121 } 122 123 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 124 { 125 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 126 return misc_cg_try_charge(type, sev->misc_cg, 1); 127 } 128 129 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 130 { 131 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 132 misc_cg_uncharge(type, sev->misc_cg, 1); 133 } 134 135 static int sev_asid_new(struct kvm_sev_info *sev) 136 { 137 int asid, min_asid, max_asid, ret; 138 bool retry = true; 139 140 WARN_ON(sev->misc_cg); 141 sev->misc_cg = get_current_misc_cg(); 142 ret = sev_misc_cg_try_charge(sev); 143 if (ret) { 144 put_misc_cg(sev->misc_cg); 145 sev->misc_cg = NULL; 146 return ret; 147 } 148 149 mutex_lock(&sev_bitmap_lock); 150 151 /* 152 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 153 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 154 */ 155 min_asid = sev->es_active ? 1 : min_sev_asid; 156 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 157 again: 158 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 159 if (asid > max_asid) { 160 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 161 retry = false; 162 goto again; 163 } 164 mutex_unlock(&sev_bitmap_lock); 165 ret = -EBUSY; 166 goto e_uncharge; 167 } 168 169 __set_bit(asid, sev_asid_bitmap); 170 171 mutex_unlock(&sev_bitmap_lock); 172 173 return asid; 174 e_uncharge: 175 sev_misc_cg_uncharge(sev); 176 put_misc_cg(sev->misc_cg); 177 sev->misc_cg = NULL; 178 return ret; 179 } 180 181 static int sev_get_asid(struct kvm *kvm) 182 { 183 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 184 185 return sev->asid; 186 } 187 188 static void sev_asid_free(struct kvm_sev_info *sev) 189 { 190 struct svm_cpu_data *sd; 191 int cpu; 192 193 mutex_lock(&sev_bitmap_lock); 194 195 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 196 197 for_each_possible_cpu(cpu) { 198 sd = per_cpu(svm_data, cpu); 199 sd->sev_vmcbs[sev->asid] = NULL; 200 } 201 202 mutex_unlock(&sev_bitmap_lock); 203 204 sev_misc_cg_uncharge(sev); 205 put_misc_cg(sev->misc_cg); 206 sev->misc_cg = NULL; 207 } 208 209 static void sev_decommission(unsigned int handle) 210 { 211 struct sev_data_decommission decommission; 212 213 if (!handle) 214 return; 215 216 decommission.handle = handle; 217 sev_guest_decommission(&decommission, NULL); 218 } 219 220 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 221 { 222 struct sev_data_deactivate deactivate; 223 224 if (!handle) 225 return; 226 227 deactivate.handle = handle; 228 229 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 230 down_read(&sev_deactivate_lock); 231 sev_guest_deactivate(&deactivate, NULL); 232 up_read(&sev_deactivate_lock); 233 234 sev_decommission(handle); 235 } 236 237 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 238 { 239 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 240 bool es_active = argp->id == KVM_SEV_ES_INIT; 241 int asid, ret; 242 243 if (kvm->created_vcpus) 244 return -EINVAL; 245 246 ret = -EBUSY; 247 if (unlikely(sev->active)) 248 return ret; 249 250 sev->es_active = es_active; 251 asid = sev_asid_new(sev); 252 if (asid < 0) 253 goto e_no_asid; 254 sev->asid = asid; 255 256 ret = sev_platform_init(&argp->error); 257 if (ret) 258 goto e_free; 259 260 sev->active = true; 261 sev->asid = asid; 262 INIT_LIST_HEAD(&sev->regions_list); 263 264 return 0; 265 266 e_free: 267 sev_asid_free(sev); 268 sev->asid = 0; 269 e_no_asid: 270 sev->es_active = false; 271 return ret; 272 } 273 274 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 275 { 276 struct sev_data_activate activate; 277 int asid = sev_get_asid(kvm); 278 int ret; 279 280 /* activate ASID on the given handle */ 281 activate.handle = handle; 282 activate.asid = asid; 283 ret = sev_guest_activate(&activate, error); 284 285 return ret; 286 } 287 288 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 289 { 290 struct fd f; 291 int ret; 292 293 f = fdget(fd); 294 if (!f.file) 295 return -EBADF; 296 297 ret = sev_issue_cmd_external_user(f.file, id, data, error); 298 299 fdput(f); 300 return ret; 301 } 302 303 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 304 { 305 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 306 307 return __sev_issue_cmd(sev->fd, id, data, error); 308 } 309 310 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 311 { 312 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 313 struct sev_data_launch_start start; 314 struct kvm_sev_launch_start params; 315 void *dh_blob, *session_blob; 316 int *error = &argp->error; 317 int ret; 318 319 if (!sev_guest(kvm)) 320 return -ENOTTY; 321 322 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 323 return -EFAULT; 324 325 memset(&start, 0, sizeof(start)); 326 327 dh_blob = NULL; 328 if (params.dh_uaddr) { 329 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 330 if (IS_ERR(dh_blob)) 331 return PTR_ERR(dh_blob); 332 333 start.dh_cert_address = __sme_set(__pa(dh_blob)); 334 start.dh_cert_len = params.dh_len; 335 } 336 337 session_blob = NULL; 338 if (params.session_uaddr) { 339 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 340 if (IS_ERR(session_blob)) { 341 ret = PTR_ERR(session_blob); 342 goto e_free_dh; 343 } 344 345 start.session_address = __sme_set(__pa(session_blob)); 346 start.session_len = params.session_len; 347 } 348 349 start.handle = params.handle; 350 start.policy = params.policy; 351 352 /* create memory encryption context */ 353 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 354 if (ret) 355 goto e_free_session; 356 357 /* Bind ASID to this guest */ 358 ret = sev_bind_asid(kvm, start.handle, error); 359 if (ret) { 360 sev_decommission(start.handle); 361 goto e_free_session; 362 } 363 364 /* return handle to userspace */ 365 params.handle = start.handle; 366 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 367 sev_unbind_asid(kvm, start.handle); 368 ret = -EFAULT; 369 goto e_free_session; 370 } 371 372 sev->handle = start.handle; 373 sev->fd = argp->sev_fd; 374 375 e_free_session: 376 kfree(session_blob); 377 e_free_dh: 378 kfree(dh_blob); 379 return ret; 380 } 381 382 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 383 unsigned long ulen, unsigned long *n, 384 int write) 385 { 386 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 387 unsigned long npages, size; 388 int npinned; 389 unsigned long locked, lock_limit; 390 struct page **pages; 391 unsigned long first, last; 392 int ret; 393 394 lockdep_assert_held(&kvm->lock); 395 396 if (ulen == 0 || uaddr + ulen < uaddr) 397 return ERR_PTR(-EINVAL); 398 399 /* Calculate number of pages. */ 400 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 401 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 402 npages = (last - first + 1); 403 404 locked = sev->pages_locked + npages; 405 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 406 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 407 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 408 return ERR_PTR(-ENOMEM); 409 } 410 411 if (WARN_ON_ONCE(npages > INT_MAX)) 412 return ERR_PTR(-EINVAL); 413 414 /* Avoid using vmalloc for smaller buffers. */ 415 size = npages * sizeof(struct page *); 416 if (size > PAGE_SIZE) 417 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 418 else 419 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 420 421 if (!pages) 422 return ERR_PTR(-ENOMEM); 423 424 /* Pin the user virtual address. */ 425 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 426 if (npinned != npages) { 427 pr_err("SEV: Failure locking %lu pages.\n", npages); 428 ret = -ENOMEM; 429 goto err; 430 } 431 432 *n = npages; 433 sev->pages_locked = locked; 434 435 return pages; 436 437 err: 438 if (npinned > 0) 439 unpin_user_pages(pages, npinned); 440 441 kvfree(pages); 442 return ERR_PTR(ret); 443 } 444 445 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 446 unsigned long npages) 447 { 448 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 449 450 unpin_user_pages(pages, npages); 451 kvfree(pages); 452 sev->pages_locked -= npages; 453 } 454 455 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 456 { 457 uint8_t *page_virtual; 458 unsigned long i; 459 460 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 461 pages == NULL) 462 return; 463 464 for (i = 0; i < npages; i++) { 465 page_virtual = kmap_atomic(pages[i]); 466 clflush_cache_range(page_virtual, PAGE_SIZE); 467 kunmap_atomic(page_virtual); 468 } 469 } 470 471 static unsigned long get_num_contig_pages(unsigned long idx, 472 struct page **inpages, unsigned long npages) 473 { 474 unsigned long paddr, next_paddr; 475 unsigned long i = idx + 1, pages = 1; 476 477 /* find the number of contiguous pages starting from idx */ 478 paddr = __sme_page_pa(inpages[idx]); 479 while (i < npages) { 480 next_paddr = __sme_page_pa(inpages[i++]); 481 if ((paddr + PAGE_SIZE) == next_paddr) { 482 pages++; 483 paddr = next_paddr; 484 continue; 485 } 486 break; 487 } 488 489 return pages; 490 } 491 492 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 493 { 494 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 495 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 496 struct kvm_sev_launch_update_data params; 497 struct sev_data_launch_update_data data; 498 struct page **inpages; 499 int ret; 500 501 if (!sev_guest(kvm)) 502 return -ENOTTY; 503 504 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 505 return -EFAULT; 506 507 vaddr = params.uaddr; 508 size = params.len; 509 vaddr_end = vaddr + size; 510 511 /* Lock the user memory. */ 512 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 513 if (IS_ERR(inpages)) 514 return PTR_ERR(inpages); 515 516 /* 517 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 518 * place; the cache may contain the data that was written unencrypted. 519 */ 520 sev_clflush_pages(inpages, npages); 521 522 data.reserved = 0; 523 data.handle = sev->handle; 524 525 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 526 int offset, len; 527 528 /* 529 * If the user buffer is not page-aligned, calculate the offset 530 * within the page. 531 */ 532 offset = vaddr & (PAGE_SIZE - 1); 533 534 /* Calculate the number of pages that can be encrypted in one go. */ 535 pages = get_num_contig_pages(i, inpages, npages); 536 537 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 538 539 data.len = len; 540 data.address = __sme_page_pa(inpages[i]) + offset; 541 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 542 if (ret) 543 goto e_unpin; 544 545 size -= len; 546 next_vaddr = vaddr + len; 547 } 548 549 e_unpin: 550 /* content of memory is updated, mark pages dirty */ 551 for (i = 0; i < npages; i++) { 552 set_page_dirty_lock(inpages[i]); 553 mark_page_accessed(inpages[i]); 554 } 555 /* unlock the user pages */ 556 sev_unpin_memory(kvm, inpages, npages); 557 return ret; 558 } 559 560 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 561 { 562 struct vmcb_save_area *save = &svm->vmcb->save; 563 564 /* Check some debug related fields before encrypting the VMSA */ 565 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) 566 return -EINVAL; 567 568 /* Sync registgers */ 569 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 570 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 571 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 572 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 573 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 574 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 575 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 576 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 577 #ifdef CONFIG_X86_64 578 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 579 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 580 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 581 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 582 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 583 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 584 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 585 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 586 #endif 587 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 588 589 /* Sync some non-GPR registers before encrypting */ 590 save->xcr0 = svm->vcpu.arch.xcr0; 591 save->pkru = svm->vcpu.arch.pkru; 592 save->xss = svm->vcpu.arch.ia32_xss; 593 save->dr6 = svm->vcpu.arch.dr6; 594 595 /* 596 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 597 * the traditional VMSA that is part of the VMCB. Copy the 598 * traditional VMSA as it has been built so far (in prep 599 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 600 */ 601 memcpy(svm->sev_es.vmsa, save, sizeof(*save)); 602 603 return 0; 604 } 605 606 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 607 int *error) 608 { 609 struct sev_data_launch_update_vmsa vmsa; 610 struct vcpu_svm *svm = to_svm(vcpu); 611 int ret; 612 613 /* Perform some pre-encryption checks against the VMSA */ 614 ret = sev_es_sync_vmsa(svm); 615 if (ret) 616 return ret; 617 618 /* 619 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 620 * the VMSA memory content (i.e it will write the same memory region 621 * with the guest's key), so invalidate it first. 622 */ 623 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 624 625 vmsa.reserved = 0; 626 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle; 627 vmsa.address = __sme_pa(svm->sev_es.vmsa); 628 vmsa.len = PAGE_SIZE; 629 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 630 if (ret) 631 return ret; 632 633 vcpu->arch.guest_state_protected = true; 634 return 0; 635 } 636 637 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 638 { 639 struct kvm_vcpu *vcpu; 640 int i, ret; 641 642 if (!sev_es_guest(kvm)) 643 return -ENOTTY; 644 645 kvm_for_each_vcpu(i, vcpu, kvm) { 646 ret = mutex_lock_killable(&vcpu->mutex); 647 if (ret) 648 return ret; 649 650 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 651 652 mutex_unlock(&vcpu->mutex); 653 if (ret) 654 return ret; 655 } 656 657 return 0; 658 } 659 660 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 661 { 662 void __user *measure = (void __user *)(uintptr_t)argp->data; 663 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 664 struct sev_data_launch_measure data; 665 struct kvm_sev_launch_measure params; 666 void __user *p = NULL; 667 void *blob = NULL; 668 int ret; 669 670 if (!sev_guest(kvm)) 671 return -ENOTTY; 672 673 if (copy_from_user(¶ms, measure, sizeof(params))) 674 return -EFAULT; 675 676 memset(&data, 0, sizeof(data)); 677 678 /* User wants to query the blob length */ 679 if (!params.len) 680 goto cmd; 681 682 p = (void __user *)(uintptr_t)params.uaddr; 683 if (p) { 684 if (params.len > SEV_FW_BLOB_MAX_SIZE) 685 return -EINVAL; 686 687 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 688 if (!blob) 689 return -ENOMEM; 690 691 data.address = __psp_pa(blob); 692 data.len = params.len; 693 } 694 695 cmd: 696 data.handle = sev->handle; 697 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 698 699 /* 700 * If we query the session length, FW responded with expected data. 701 */ 702 if (!params.len) 703 goto done; 704 705 if (ret) 706 goto e_free_blob; 707 708 if (blob) { 709 if (copy_to_user(p, blob, params.len)) 710 ret = -EFAULT; 711 } 712 713 done: 714 params.len = data.len; 715 if (copy_to_user(measure, ¶ms, sizeof(params))) 716 ret = -EFAULT; 717 e_free_blob: 718 kfree(blob); 719 return ret; 720 } 721 722 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 723 { 724 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 725 struct sev_data_launch_finish data; 726 727 if (!sev_guest(kvm)) 728 return -ENOTTY; 729 730 data.handle = sev->handle; 731 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 732 } 733 734 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 735 { 736 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 737 struct kvm_sev_guest_status params; 738 struct sev_data_guest_status data; 739 int ret; 740 741 if (!sev_guest(kvm)) 742 return -ENOTTY; 743 744 memset(&data, 0, sizeof(data)); 745 746 data.handle = sev->handle; 747 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 748 if (ret) 749 return ret; 750 751 params.policy = data.policy; 752 params.state = data.state; 753 params.handle = data.handle; 754 755 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 756 ret = -EFAULT; 757 758 return ret; 759 } 760 761 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 762 unsigned long dst, int size, 763 int *error, bool enc) 764 { 765 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 766 struct sev_data_dbg data; 767 768 data.reserved = 0; 769 data.handle = sev->handle; 770 data.dst_addr = dst; 771 data.src_addr = src; 772 data.len = size; 773 774 return sev_issue_cmd(kvm, 775 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 776 &data, error); 777 } 778 779 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 780 unsigned long dst_paddr, int sz, int *err) 781 { 782 int offset; 783 784 /* 785 * Its safe to read more than we are asked, caller should ensure that 786 * destination has enough space. 787 */ 788 offset = src_paddr & 15; 789 src_paddr = round_down(src_paddr, 16); 790 sz = round_up(sz + offset, 16); 791 792 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 793 } 794 795 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 796 void __user *dst_uaddr, 797 unsigned long dst_paddr, 798 int size, int *err) 799 { 800 struct page *tpage = NULL; 801 int ret, offset; 802 803 /* if inputs are not 16-byte then use intermediate buffer */ 804 if (!IS_ALIGNED(dst_paddr, 16) || 805 !IS_ALIGNED(paddr, 16) || 806 !IS_ALIGNED(size, 16)) { 807 tpage = (void *)alloc_page(GFP_KERNEL); 808 if (!tpage) 809 return -ENOMEM; 810 811 dst_paddr = __sme_page_pa(tpage); 812 } 813 814 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 815 if (ret) 816 goto e_free; 817 818 if (tpage) { 819 offset = paddr & 15; 820 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 821 ret = -EFAULT; 822 } 823 824 e_free: 825 if (tpage) 826 __free_page(tpage); 827 828 return ret; 829 } 830 831 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 832 void __user *vaddr, 833 unsigned long dst_paddr, 834 void __user *dst_vaddr, 835 int size, int *error) 836 { 837 struct page *src_tpage = NULL; 838 struct page *dst_tpage = NULL; 839 int ret, len = size; 840 841 /* If source buffer is not aligned then use an intermediate buffer */ 842 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 843 src_tpage = alloc_page(GFP_KERNEL); 844 if (!src_tpage) 845 return -ENOMEM; 846 847 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 848 __free_page(src_tpage); 849 return -EFAULT; 850 } 851 852 paddr = __sme_page_pa(src_tpage); 853 } 854 855 /* 856 * If destination buffer or length is not aligned then do read-modify-write: 857 * - decrypt destination in an intermediate buffer 858 * - copy the source buffer in an intermediate buffer 859 * - use the intermediate buffer as source buffer 860 */ 861 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 862 int dst_offset; 863 864 dst_tpage = alloc_page(GFP_KERNEL); 865 if (!dst_tpage) { 866 ret = -ENOMEM; 867 goto e_free; 868 } 869 870 ret = __sev_dbg_decrypt(kvm, dst_paddr, 871 __sme_page_pa(dst_tpage), size, error); 872 if (ret) 873 goto e_free; 874 875 /* 876 * If source is kernel buffer then use memcpy() otherwise 877 * copy_from_user(). 878 */ 879 dst_offset = dst_paddr & 15; 880 881 if (src_tpage) 882 memcpy(page_address(dst_tpage) + dst_offset, 883 page_address(src_tpage), size); 884 else { 885 if (copy_from_user(page_address(dst_tpage) + dst_offset, 886 vaddr, size)) { 887 ret = -EFAULT; 888 goto e_free; 889 } 890 } 891 892 paddr = __sme_page_pa(dst_tpage); 893 dst_paddr = round_down(dst_paddr, 16); 894 len = round_up(size, 16); 895 } 896 897 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 898 899 e_free: 900 if (src_tpage) 901 __free_page(src_tpage); 902 if (dst_tpage) 903 __free_page(dst_tpage); 904 return ret; 905 } 906 907 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 908 { 909 unsigned long vaddr, vaddr_end, next_vaddr; 910 unsigned long dst_vaddr; 911 struct page **src_p, **dst_p; 912 struct kvm_sev_dbg debug; 913 unsigned long n; 914 unsigned int size; 915 int ret; 916 917 if (!sev_guest(kvm)) 918 return -ENOTTY; 919 920 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 921 return -EFAULT; 922 923 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 924 return -EINVAL; 925 if (!debug.dst_uaddr) 926 return -EINVAL; 927 928 vaddr = debug.src_uaddr; 929 size = debug.len; 930 vaddr_end = vaddr + size; 931 dst_vaddr = debug.dst_uaddr; 932 933 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 934 int len, s_off, d_off; 935 936 /* lock userspace source and destination page */ 937 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 938 if (IS_ERR(src_p)) 939 return PTR_ERR(src_p); 940 941 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 942 if (IS_ERR(dst_p)) { 943 sev_unpin_memory(kvm, src_p, n); 944 return PTR_ERR(dst_p); 945 } 946 947 /* 948 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 949 * the pages; flush the destination too so that future accesses do not 950 * see stale data. 951 */ 952 sev_clflush_pages(src_p, 1); 953 sev_clflush_pages(dst_p, 1); 954 955 /* 956 * Since user buffer may not be page aligned, calculate the 957 * offset within the page. 958 */ 959 s_off = vaddr & ~PAGE_MASK; 960 d_off = dst_vaddr & ~PAGE_MASK; 961 len = min_t(size_t, (PAGE_SIZE - s_off), size); 962 963 if (dec) 964 ret = __sev_dbg_decrypt_user(kvm, 965 __sme_page_pa(src_p[0]) + s_off, 966 (void __user *)dst_vaddr, 967 __sme_page_pa(dst_p[0]) + d_off, 968 len, &argp->error); 969 else 970 ret = __sev_dbg_encrypt_user(kvm, 971 __sme_page_pa(src_p[0]) + s_off, 972 (void __user *)vaddr, 973 __sme_page_pa(dst_p[0]) + d_off, 974 (void __user *)dst_vaddr, 975 len, &argp->error); 976 977 sev_unpin_memory(kvm, src_p, n); 978 sev_unpin_memory(kvm, dst_p, n); 979 980 if (ret) 981 goto err; 982 983 next_vaddr = vaddr + len; 984 dst_vaddr = dst_vaddr + len; 985 size -= len; 986 } 987 err: 988 return ret; 989 } 990 991 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 992 { 993 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 994 struct sev_data_launch_secret data; 995 struct kvm_sev_launch_secret params; 996 struct page **pages; 997 void *blob, *hdr; 998 unsigned long n, i; 999 int ret, offset; 1000 1001 if (!sev_guest(kvm)) 1002 return -ENOTTY; 1003 1004 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1005 return -EFAULT; 1006 1007 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1008 if (IS_ERR(pages)) 1009 return PTR_ERR(pages); 1010 1011 /* 1012 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1013 * place; the cache may contain the data that was written unencrypted. 1014 */ 1015 sev_clflush_pages(pages, n); 1016 1017 /* 1018 * The secret must be copied into contiguous memory region, lets verify 1019 * that userspace memory pages are contiguous before we issue command. 1020 */ 1021 if (get_num_contig_pages(0, pages, n) != n) { 1022 ret = -EINVAL; 1023 goto e_unpin_memory; 1024 } 1025 1026 memset(&data, 0, sizeof(data)); 1027 1028 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1029 data.guest_address = __sme_page_pa(pages[0]) + offset; 1030 data.guest_len = params.guest_len; 1031 1032 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1033 if (IS_ERR(blob)) { 1034 ret = PTR_ERR(blob); 1035 goto e_unpin_memory; 1036 } 1037 1038 data.trans_address = __psp_pa(blob); 1039 data.trans_len = params.trans_len; 1040 1041 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1042 if (IS_ERR(hdr)) { 1043 ret = PTR_ERR(hdr); 1044 goto e_free_blob; 1045 } 1046 data.hdr_address = __psp_pa(hdr); 1047 data.hdr_len = params.hdr_len; 1048 1049 data.handle = sev->handle; 1050 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1051 1052 kfree(hdr); 1053 1054 e_free_blob: 1055 kfree(blob); 1056 e_unpin_memory: 1057 /* content of memory is updated, mark pages dirty */ 1058 for (i = 0; i < n; i++) { 1059 set_page_dirty_lock(pages[i]); 1060 mark_page_accessed(pages[i]); 1061 } 1062 sev_unpin_memory(kvm, pages, n); 1063 return ret; 1064 } 1065 1066 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1067 { 1068 void __user *report = (void __user *)(uintptr_t)argp->data; 1069 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1070 struct sev_data_attestation_report data; 1071 struct kvm_sev_attestation_report params; 1072 void __user *p; 1073 void *blob = NULL; 1074 int ret; 1075 1076 if (!sev_guest(kvm)) 1077 return -ENOTTY; 1078 1079 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1080 return -EFAULT; 1081 1082 memset(&data, 0, sizeof(data)); 1083 1084 /* User wants to query the blob length */ 1085 if (!params.len) 1086 goto cmd; 1087 1088 p = (void __user *)(uintptr_t)params.uaddr; 1089 if (p) { 1090 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1091 return -EINVAL; 1092 1093 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 1094 if (!blob) 1095 return -ENOMEM; 1096 1097 data.address = __psp_pa(blob); 1098 data.len = params.len; 1099 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1100 } 1101 cmd: 1102 data.handle = sev->handle; 1103 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1104 /* 1105 * If we query the session length, FW responded with expected data. 1106 */ 1107 if (!params.len) 1108 goto done; 1109 1110 if (ret) 1111 goto e_free_blob; 1112 1113 if (blob) { 1114 if (copy_to_user(p, blob, params.len)) 1115 ret = -EFAULT; 1116 } 1117 1118 done: 1119 params.len = data.len; 1120 if (copy_to_user(report, ¶ms, sizeof(params))) 1121 ret = -EFAULT; 1122 e_free_blob: 1123 kfree(blob); 1124 return ret; 1125 } 1126 1127 /* Userspace wants to query session length. */ 1128 static int 1129 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1130 struct kvm_sev_send_start *params) 1131 { 1132 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1133 struct sev_data_send_start data; 1134 int ret; 1135 1136 memset(&data, 0, sizeof(data)); 1137 data.handle = sev->handle; 1138 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1139 1140 params->session_len = data.session_len; 1141 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1142 sizeof(struct kvm_sev_send_start))) 1143 ret = -EFAULT; 1144 1145 return ret; 1146 } 1147 1148 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1149 { 1150 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1151 struct sev_data_send_start data; 1152 struct kvm_sev_send_start params; 1153 void *amd_certs, *session_data; 1154 void *pdh_cert, *plat_certs; 1155 int ret; 1156 1157 if (!sev_guest(kvm)) 1158 return -ENOTTY; 1159 1160 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1161 sizeof(struct kvm_sev_send_start))) 1162 return -EFAULT; 1163 1164 /* if session_len is zero, userspace wants to query the session length */ 1165 if (!params.session_len) 1166 return __sev_send_start_query_session_length(kvm, argp, 1167 ¶ms); 1168 1169 /* some sanity checks */ 1170 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1171 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1172 return -EINVAL; 1173 1174 /* allocate the memory to hold the session data blob */ 1175 session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1176 if (!session_data) 1177 return -ENOMEM; 1178 1179 /* copy the certificate blobs from userspace */ 1180 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1181 params.pdh_cert_len); 1182 if (IS_ERR(pdh_cert)) { 1183 ret = PTR_ERR(pdh_cert); 1184 goto e_free_session; 1185 } 1186 1187 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1188 params.plat_certs_len); 1189 if (IS_ERR(plat_certs)) { 1190 ret = PTR_ERR(plat_certs); 1191 goto e_free_pdh; 1192 } 1193 1194 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1195 params.amd_certs_len); 1196 if (IS_ERR(amd_certs)) { 1197 ret = PTR_ERR(amd_certs); 1198 goto e_free_plat_cert; 1199 } 1200 1201 /* populate the FW SEND_START field with system physical address */ 1202 memset(&data, 0, sizeof(data)); 1203 data.pdh_cert_address = __psp_pa(pdh_cert); 1204 data.pdh_cert_len = params.pdh_cert_len; 1205 data.plat_certs_address = __psp_pa(plat_certs); 1206 data.plat_certs_len = params.plat_certs_len; 1207 data.amd_certs_address = __psp_pa(amd_certs); 1208 data.amd_certs_len = params.amd_certs_len; 1209 data.session_address = __psp_pa(session_data); 1210 data.session_len = params.session_len; 1211 data.handle = sev->handle; 1212 1213 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1214 1215 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1216 session_data, params.session_len)) { 1217 ret = -EFAULT; 1218 goto e_free_amd_cert; 1219 } 1220 1221 params.policy = data.policy; 1222 params.session_len = data.session_len; 1223 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1224 sizeof(struct kvm_sev_send_start))) 1225 ret = -EFAULT; 1226 1227 e_free_amd_cert: 1228 kfree(amd_certs); 1229 e_free_plat_cert: 1230 kfree(plat_certs); 1231 e_free_pdh: 1232 kfree(pdh_cert); 1233 e_free_session: 1234 kfree(session_data); 1235 return ret; 1236 } 1237 1238 /* Userspace wants to query either header or trans length. */ 1239 static int 1240 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1241 struct kvm_sev_send_update_data *params) 1242 { 1243 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1244 struct sev_data_send_update_data data; 1245 int ret; 1246 1247 memset(&data, 0, sizeof(data)); 1248 data.handle = sev->handle; 1249 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1250 1251 params->hdr_len = data.hdr_len; 1252 params->trans_len = data.trans_len; 1253 1254 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1255 sizeof(struct kvm_sev_send_update_data))) 1256 ret = -EFAULT; 1257 1258 return ret; 1259 } 1260 1261 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1262 { 1263 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1264 struct sev_data_send_update_data data; 1265 struct kvm_sev_send_update_data params; 1266 void *hdr, *trans_data; 1267 struct page **guest_page; 1268 unsigned long n; 1269 int ret, offset; 1270 1271 if (!sev_guest(kvm)) 1272 return -ENOTTY; 1273 1274 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1275 sizeof(struct kvm_sev_send_update_data))) 1276 return -EFAULT; 1277 1278 /* userspace wants to query either header or trans length */ 1279 if (!params.trans_len || !params.hdr_len) 1280 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1281 1282 if (!params.trans_uaddr || !params.guest_uaddr || 1283 !params.guest_len || !params.hdr_uaddr) 1284 return -EINVAL; 1285 1286 /* Check if we are crossing the page boundary */ 1287 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1288 if ((params.guest_len + offset > PAGE_SIZE)) 1289 return -EINVAL; 1290 1291 /* Pin guest memory */ 1292 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1293 PAGE_SIZE, &n, 0); 1294 if (IS_ERR(guest_page)) 1295 return PTR_ERR(guest_page); 1296 1297 /* allocate memory for header and transport buffer */ 1298 ret = -ENOMEM; 1299 hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1300 if (!hdr) 1301 goto e_unpin; 1302 1303 trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1304 if (!trans_data) 1305 goto e_free_hdr; 1306 1307 memset(&data, 0, sizeof(data)); 1308 data.hdr_address = __psp_pa(hdr); 1309 data.hdr_len = params.hdr_len; 1310 data.trans_address = __psp_pa(trans_data); 1311 data.trans_len = params.trans_len; 1312 1313 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1314 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1315 data.guest_address |= sev_me_mask; 1316 data.guest_len = params.guest_len; 1317 data.handle = sev->handle; 1318 1319 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1320 1321 if (ret) 1322 goto e_free_trans_data; 1323 1324 /* copy transport buffer to user space */ 1325 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1326 trans_data, params.trans_len)) { 1327 ret = -EFAULT; 1328 goto e_free_trans_data; 1329 } 1330 1331 /* Copy packet header to userspace. */ 1332 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1333 params.hdr_len)) 1334 ret = -EFAULT; 1335 1336 e_free_trans_data: 1337 kfree(trans_data); 1338 e_free_hdr: 1339 kfree(hdr); 1340 e_unpin: 1341 sev_unpin_memory(kvm, guest_page, n); 1342 1343 return ret; 1344 } 1345 1346 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1347 { 1348 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1349 struct sev_data_send_finish data; 1350 1351 if (!sev_guest(kvm)) 1352 return -ENOTTY; 1353 1354 data.handle = sev->handle; 1355 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1356 } 1357 1358 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1359 { 1360 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1361 struct sev_data_send_cancel data; 1362 1363 if (!sev_guest(kvm)) 1364 return -ENOTTY; 1365 1366 data.handle = sev->handle; 1367 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1368 } 1369 1370 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1371 { 1372 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1373 struct sev_data_receive_start start; 1374 struct kvm_sev_receive_start params; 1375 int *error = &argp->error; 1376 void *session_data; 1377 void *pdh_data; 1378 int ret; 1379 1380 if (!sev_guest(kvm)) 1381 return -ENOTTY; 1382 1383 /* Get parameter from the userspace */ 1384 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1385 sizeof(struct kvm_sev_receive_start))) 1386 return -EFAULT; 1387 1388 /* some sanity checks */ 1389 if (!params.pdh_uaddr || !params.pdh_len || 1390 !params.session_uaddr || !params.session_len) 1391 return -EINVAL; 1392 1393 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1394 if (IS_ERR(pdh_data)) 1395 return PTR_ERR(pdh_data); 1396 1397 session_data = psp_copy_user_blob(params.session_uaddr, 1398 params.session_len); 1399 if (IS_ERR(session_data)) { 1400 ret = PTR_ERR(session_data); 1401 goto e_free_pdh; 1402 } 1403 1404 memset(&start, 0, sizeof(start)); 1405 start.handle = params.handle; 1406 start.policy = params.policy; 1407 start.pdh_cert_address = __psp_pa(pdh_data); 1408 start.pdh_cert_len = params.pdh_len; 1409 start.session_address = __psp_pa(session_data); 1410 start.session_len = params.session_len; 1411 1412 /* create memory encryption context */ 1413 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1414 error); 1415 if (ret) 1416 goto e_free_session; 1417 1418 /* Bind ASID to this guest */ 1419 ret = sev_bind_asid(kvm, start.handle, error); 1420 if (ret) { 1421 sev_decommission(start.handle); 1422 goto e_free_session; 1423 } 1424 1425 params.handle = start.handle; 1426 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1427 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1428 ret = -EFAULT; 1429 sev_unbind_asid(kvm, start.handle); 1430 goto e_free_session; 1431 } 1432 1433 sev->handle = start.handle; 1434 sev->fd = argp->sev_fd; 1435 1436 e_free_session: 1437 kfree(session_data); 1438 e_free_pdh: 1439 kfree(pdh_data); 1440 1441 return ret; 1442 } 1443 1444 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1445 { 1446 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1447 struct kvm_sev_receive_update_data params; 1448 struct sev_data_receive_update_data data; 1449 void *hdr = NULL, *trans = NULL; 1450 struct page **guest_page; 1451 unsigned long n; 1452 int ret, offset; 1453 1454 if (!sev_guest(kvm)) 1455 return -EINVAL; 1456 1457 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1458 sizeof(struct kvm_sev_receive_update_data))) 1459 return -EFAULT; 1460 1461 if (!params.hdr_uaddr || !params.hdr_len || 1462 !params.guest_uaddr || !params.guest_len || 1463 !params.trans_uaddr || !params.trans_len) 1464 return -EINVAL; 1465 1466 /* Check if we are crossing the page boundary */ 1467 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1468 if ((params.guest_len + offset > PAGE_SIZE)) 1469 return -EINVAL; 1470 1471 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1472 if (IS_ERR(hdr)) 1473 return PTR_ERR(hdr); 1474 1475 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1476 if (IS_ERR(trans)) { 1477 ret = PTR_ERR(trans); 1478 goto e_free_hdr; 1479 } 1480 1481 memset(&data, 0, sizeof(data)); 1482 data.hdr_address = __psp_pa(hdr); 1483 data.hdr_len = params.hdr_len; 1484 data.trans_address = __psp_pa(trans); 1485 data.trans_len = params.trans_len; 1486 1487 /* Pin guest memory */ 1488 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1489 PAGE_SIZE, &n, 1); 1490 if (IS_ERR(guest_page)) { 1491 ret = PTR_ERR(guest_page); 1492 goto e_free_trans; 1493 } 1494 1495 /* 1496 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1497 * encrypts the written data with the guest's key, and the cache may 1498 * contain dirty, unencrypted data. 1499 */ 1500 sev_clflush_pages(guest_page, n); 1501 1502 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1503 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1504 data.guest_address |= sev_me_mask; 1505 data.guest_len = params.guest_len; 1506 data.handle = sev->handle; 1507 1508 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1509 &argp->error); 1510 1511 sev_unpin_memory(kvm, guest_page, n); 1512 1513 e_free_trans: 1514 kfree(trans); 1515 e_free_hdr: 1516 kfree(hdr); 1517 1518 return ret; 1519 } 1520 1521 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1522 { 1523 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1524 struct sev_data_receive_finish data; 1525 1526 if (!sev_guest(kvm)) 1527 return -ENOTTY; 1528 1529 data.handle = sev->handle; 1530 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1531 } 1532 1533 static bool cmd_allowed_from_miror(u32 cmd_id) 1534 { 1535 /* 1536 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1537 * active mirror VMs. Also allow the debugging and status commands. 1538 */ 1539 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1540 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1541 cmd_id == KVM_SEV_DBG_ENCRYPT) 1542 return true; 1543 1544 return false; 1545 } 1546 1547 static int sev_lock_for_migration(struct kvm *kvm) 1548 { 1549 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1550 1551 /* 1552 * Bail if this VM is already involved in a migration to avoid deadlock 1553 * between two VMs trying to migrate to/from each other. 1554 */ 1555 if (atomic_cmpxchg_acquire(&sev->migration_in_progress, 0, 1)) 1556 return -EBUSY; 1557 1558 mutex_lock(&kvm->lock); 1559 1560 return 0; 1561 } 1562 1563 static void sev_unlock_after_migration(struct kvm *kvm) 1564 { 1565 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1566 1567 mutex_unlock(&kvm->lock); 1568 atomic_set_release(&sev->migration_in_progress, 0); 1569 } 1570 1571 1572 static int sev_lock_vcpus_for_migration(struct kvm *kvm) 1573 { 1574 struct kvm_vcpu *vcpu; 1575 int i, j; 1576 1577 kvm_for_each_vcpu(i, vcpu, kvm) { 1578 if (mutex_lock_killable(&vcpu->mutex)) 1579 goto out_unlock; 1580 } 1581 1582 return 0; 1583 1584 out_unlock: 1585 kvm_for_each_vcpu(j, vcpu, kvm) { 1586 if (i == j) 1587 break; 1588 1589 mutex_unlock(&vcpu->mutex); 1590 } 1591 return -EINTR; 1592 } 1593 1594 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1595 { 1596 struct kvm_vcpu *vcpu; 1597 int i; 1598 1599 kvm_for_each_vcpu(i, vcpu, kvm) { 1600 mutex_unlock(&vcpu->mutex); 1601 } 1602 } 1603 1604 static void sev_migrate_from(struct kvm_sev_info *dst, 1605 struct kvm_sev_info *src) 1606 { 1607 dst->active = true; 1608 dst->asid = src->asid; 1609 dst->handle = src->handle; 1610 dst->pages_locked = src->pages_locked; 1611 1612 src->asid = 0; 1613 src->active = false; 1614 src->handle = 0; 1615 src->pages_locked = 0; 1616 1617 INIT_LIST_HEAD(&dst->regions_list); 1618 list_replace_init(&src->regions_list, &dst->regions_list); 1619 } 1620 1621 static int sev_es_migrate_from(struct kvm *dst, struct kvm *src) 1622 { 1623 int i; 1624 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1625 struct vcpu_svm *dst_svm, *src_svm; 1626 1627 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 1628 return -EINVAL; 1629 1630 kvm_for_each_vcpu(i, src_vcpu, src) { 1631 if (!src_vcpu->arch.guest_state_protected) 1632 return -EINVAL; 1633 } 1634 1635 kvm_for_each_vcpu(i, src_vcpu, src) { 1636 src_svm = to_svm(src_vcpu); 1637 dst_vcpu = kvm_get_vcpu(dst, i); 1638 dst_svm = to_svm(dst_vcpu); 1639 1640 /* 1641 * Transfer VMSA and GHCB state to the destination. Nullify and 1642 * clear source fields as appropriate, the state now belongs to 1643 * the destination. 1644 */ 1645 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 1646 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 1647 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 1648 dst_vcpu->arch.guest_state_protected = true; 1649 1650 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 1651 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 1652 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 1653 src_vcpu->arch.guest_state_protected = false; 1654 } 1655 to_kvm_svm(src)->sev_info.es_active = false; 1656 to_kvm_svm(dst)->sev_info.es_active = true; 1657 1658 return 0; 1659 } 1660 1661 int svm_vm_migrate_from(struct kvm *kvm, unsigned int source_fd) 1662 { 1663 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; 1664 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 1665 struct file *source_kvm_file; 1666 struct kvm *source_kvm; 1667 bool charged = false; 1668 int ret; 1669 1670 ret = sev_lock_for_migration(kvm); 1671 if (ret) 1672 return ret; 1673 1674 if (sev_guest(kvm)) { 1675 ret = -EINVAL; 1676 goto out_unlock; 1677 } 1678 1679 source_kvm_file = fget(source_fd); 1680 if (!file_is_kvm(source_kvm_file)) { 1681 ret = -EBADF; 1682 goto out_fput; 1683 } 1684 1685 source_kvm = source_kvm_file->private_data; 1686 ret = sev_lock_for_migration(source_kvm); 1687 if (ret) 1688 goto out_fput; 1689 1690 if (!sev_guest(source_kvm)) { 1691 ret = -EINVAL; 1692 goto out_source; 1693 } 1694 1695 src_sev = &to_kvm_svm(source_kvm)->sev_info; 1696 dst_sev->misc_cg = get_current_misc_cg(); 1697 cg_cleanup_sev = dst_sev; 1698 if (dst_sev->misc_cg != src_sev->misc_cg) { 1699 ret = sev_misc_cg_try_charge(dst_sev); 1700 if (ret) 1701 goto out_dst_cgroup; 1702 charged = true; 1703 } 1704 1705 ret = sev_lock_vcpus_for_migration(kvm); 1706 if (ret) 1707 goto out_dst_cgroup; 1708 ret = sev_lock_vcpus_for_migration(source_kvm); 1709 if (ret) 1710 goto out_dst_vcpu; 1711 1712 if (sev_es_guest(source_kvm)) { 1713 ret = sev_es_migrate_from(kvm, source_kvm); 1714 if (ret) 1715 goto out_source_vcpu; 1716 } 1717 sev_migrate_from(dst_sev, src_sev); 1718 kvm_vm_dead(source_kvm); 1719 cg_cleanup_sev = src_sev; 1720 ret = 0; 1721 1722 out_source_vcpu: 1723 sev_unlock_vcpus_for_migration(source_kvm); 1724 out_dst_vcpu: 1725 sev_unlock_vcpus_for_migration(kvm); 1726 out_dst_cgroup: 1727 /* Operates on the source on success, on the destination on failure. */ 1728 if (charged) 1729 sev_misc_cg_uncharge(cg_cleanup_sev); 1730 put_misc_cg(cg_cleanup_sev->misc_cg); 1731 cg_cleanup_sev->misc_cg = NULL; 1732 out_source: 1733 sev_unlock_after_migration(source_kvm); 1734 out_fput: 1735 if (source_kvm_file) 1736 fput(source_kvm_file); 1737 out_unlock: 1738 sev_unlock_after_migration(kvm); 1739 return ret; 1740 } 1741 1742 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 1743 { 1744 struct kvm_sev_cmd sev_cmd; 1745 int r; 1746 1747 if (!sev_enabled) 1748 return -ENOTTY; 1749 1750 if (!argp) 1751 return 0; 1752 1753 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1754 return -EFAULT; 1755 1756 mutex_lock(&kvm->lock); 1757 1758 /* Only the enc_context_owner handles some memory enc operations. */ 1759 if (is_mirroring_enc_context(kvm) && 1760 !cmd_allowed_from_miror(sev_cmd.id)) { 1761 r = -EINVAL; 1762 goto out; 1763 } 1764 1765 switch (sev_cmd.id) { 1766 case KVM_SEV_ES_INIT: 1767 if (!sev_es_enabled) { 1768 r = -ENOTTY; 1769 goto out; 1770 } 1771 fallthrough; 1772 case KVM_SEV_INIT: 1773 r = sev_guest_init(kvm, &sev_cmd); 1774 break; 1775 case KVM_SEV_LAUNCH_START: 1776 r = sev_launch_start(kvm, &sev_cmd); 1777 break; 1778 case KVM_SEV_LAUNCH_UPDATE_DATA: 1779 r = sev_launch_update_data(kvm, &sev_cmd); 1780 break; 1781 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1782 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1783 break; 1784 case KVM_SEV_LAUNCH_MEASURE: 1785 r = sev_launch_measure(kvm, &sev_cmd); 1786 break; 1787 case KVM_SEV_LAUNCH_FINISH: 1788 r = sev_launch_finish(kvm, &sev_cmd); 1789 break; 1790 case KVM_SEV_GUEST_STATUS: 1791 r = sev_guest_status(kvm, &sev_cmd); 1792 break; 1793 case KVM_SEV_DBG_DECRYPT: 1794 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1795 break; 1796 case KVM_SEV_DBG_ENCRYPT: 1797 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1798 break; 1799 case KVM_SEV_LAUNCH_SECRET: 1800 r = sev_launch_secret(kvm, &sev_cmd); 1801 break; 1802 case KVM_SEV_GET_ATTESTATION_REPORT: 1803 r = sev_get_attestation_report(kvm, &sev_cmd); 1804 break; 1805 case KVM_SEV_SEND_START: 1806 r = sev_send_start(kvm, &sev_cmd); 1807 break; 1808 case KVM_SEV_SEND_UPDATE_DATA: 1809 r = sev_send_update_data(kvm, &sev_cmd); 1810 break; 1811 case KVM_SEV_SEND_FINISH: 1812 r = sev_send_finish(kvm, &sev_cmd); 1813 break; 1814 case KVM_SEV_SEND_CANCEL: 1815 r = sev_send_cancel(kvm, &sev_cmd); 1816 break; 1817 case KVM_SEV_RECEIVE_START: 1818 r = sev_receive_start(kvm, &sev_cmd); 1819 break; 1820 case KVM_SEV_RECEIVE_UPDATE_DATA: 1821 r = sev_receive_update_data(kvm, &sev_cmd); 1822 break; 1823 case KVM_SEV_RECEIVE_FINISH: 1824 r = sev_receive_finish(kvm, &sev_cmd); 1825 break; 1826 default: 1827 r = -EINVAL; 1828 goto out; 1829 } 1830 1831 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1832 r = -EFAULT; 1833 1834 out: 1835 mutex_unlock(&kvm->lock); 1836 return r; 1837 } 1838 1839 int svm_register_enc_region(struct kvm *kvm, 1840 struct kvm_enc_region *range) 1841 { 1842 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1843 struct enc_region *region; 1844 int ret = 0; 1845 1846 if (!sev_guest(kvm)) 1847 return -ENOTTY; 1848 1849 /* If kvm is mirroring encryption context it isn't responsible for it */ 1850 if (is_mirroring_enc_context(kvm)) 1851 return -EINVAL; 1852 1853 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1854 return -EINVAL; 1855 1856 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1857 if (!region) 1858 return -ENOMEM; 1859 1860 mutex_lock(&kvm->lock); 1861 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1862 if (IS_ERR(region->pages)) { 1863 ret = PTR_ERR(region->pages); 1864 mutex_unlock(&kvm->lock); 1865 goto e_free; 1866 } 1867 1868 region->uaddr = range->addr; 1869 region->size = range->size; 1870 1871 list_add_tail(®ion->list, &sev->regions_list); 1872 mutex_unlock(&kvm->lock); 1873 1874 /* 1875 * The guest may change the memory encryption attribute from C=0 -> C=1 1876 * or vice versa for this memory range. Lets make sure caches are 1877 * flushed to ensure that guest data gets written into memory with 1878 * correct C-bit. 1879 */ 1880 sev_clflush_pages(region->pages, region->npages); 1881 1882 return ret; 1883 1884 e_free: 1885 kfree(region); 1886 return ret; 1887 } 1888 1889 static struct enc_region * 1890 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1891 { 1892 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1893 struct list_head *head = &sev->regions_list; 1894 struct enc_region *i; 1895 1896 list_for_each_entry(i, head, list) { 1897 if (i->uaddr == range->addr && 1898 i->size == range->size) 1899 return i; 1900 } 1901 1902 return NULL; 1903 } 1904 1905 static void __unregister_enc_region_locked(struct kvm *kvm, 1906 struct enc_region *region) 1907 { 1908 sev_unpin_memory(kvm, region->pages, region->npages); 1909 list_del(®ion->list); 1910 kfree(region); 1911 } 1912 1913 int svm_unregister_enc_region(struct kvm *kvm, 1914 struct kvm_enc_region *range) 1915 { 1916 struct enc_region *region; 1917 int ret; 1918 1919 /* If kvm is mirroring encryption context it isn't responsible for it */ 1920 if (is_mirroring_enc_context(kvm)) 1921 return -EINVAL; 1922 1923 mutex_lock(&kvm->lock); 1924 1925 if (!sev_guest(kvm)) { 1926 ret = -ENOTTY; 1927 goto failed; 1928 } 1929 1930 region = find_enc_region(kvm, range); 1931 if (!region) { 1932 ret = -EINVAL; 1933 goto failed; 1934 } 1935 1936 /* 1937 * Ensure that all guest tagged cache entries are flushed before 1938 * releasing the pages back to the system for use. CLFLUSH will 1939 * not do this, so issue a WBINVD. 1940 */ 1941 wbinvd_on_all_cpus(); 1942 1943 __unregister_enc_region_locked(kvm, region); 1944 1945 mutex_unlock(&kvm->lock); 1946 return 0; 1947 1948 failed: 1949 mutex_unlock(&kvm->lock); 1950 return ret; 1951 } 1952 1953 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd) 1954 { 1955 struct file *source_kvm_file; 1956 struct kvm *source_kvm; 1957 struct kvm_sev_info source_sev, *mirror_sev; 1958 int ret; 1959 1960 source_kvm_file = fget(source_fd); 1961 if (!file_is_kvm(source_kvm_file)) { 1962 ret = -EBADF; 1963 goto e_source_put; 1964 } 1965 1966 source_kvm = source_kvm_file->private_data; 1967 mutex_lock(&source_kvm->lock); 1968 1969 if (!sev_guest(source_kvm)) { 1970 ret = -EINVAL; 1971 goto e_source_unlock; 1972 } 1973 1974 /* Mirrors of mirrors should work, but let's not get silly */ 1975 if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) { 1976 ret = -EINVAL; 1977 goto e_source_unlock; 1978 } 1979 1980 memcpy(&source_sev, &to_kvm_svm(source_kvm)->sev_info, 1981 sizeof(source_sev)); 1982 1983 /* 1984 * The mirror kvm holds an enc_context_owner ref so its asid can't 1985 * disappear until we're done with it 1986 */ 1987 kvm_get_kvm(source_kvm); 1988 1989 fput(source_kvm_file); 1990 mutex_unlock(&source_kvm->lock); 1991 mutex_lock(&kvm->lock); 1992 1993 if (sev_guest(kvm)) { 1994 ret = -EINVAL; 1995 goto e_mirror_unlock; 1996 } 1997 1998 /* Set enc_context_owner and copy its encryption context over */ 1999 mirror_sev = &to_kvm_svm(kvm)->sev_info; 2000 mirror_sev->enc_context_owner = source_kvm; 2001 mirror_sev->active = true; 2002 mirror_sev->asid = source_sev.asid; 2003 mirror_sev->fd = source_sev.fd; 2004 mirror_sev->es_active = source_sev.es_active; 2005 mirror_sev->handle = source_sev.handle; 2006 /* 2007 * Do not copy ap_jump_table. Since the mirror does not share the same 2008 * KVM contexts as the original, and they may have different 2009 * memory-views. 2010 */ 2011 2012 mutex_unlock(&kvm->lock); 2013 return 0; 2014 2015 e_mirror_unlock: 2016 mutex_unlock(&kvm->lock); 2017 kvm_put_kvm(source_kvm); 2018 return ret; 2019 e_source_unlock: 2020 mutex_unlock(&source_kvm->lock); 2021 e_source_put: 2022 if (source_kvm_file) 2023 fput(source_kvm_file); 2024 return ret; 2025 } 2026 2027 void sev_vm_destroy(struct kvm *kvm) 2028 { 2029 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2030 struct list_head *head = &sev->regions_list; 2031 struct list_head *pos, *q; 2032 2033 if (!sev_guest(kvm)) 2034 return; 2035 2036 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2037 if (is_mirroring_enc_context(kvm)) { 2038 kvm_put_kvm(sev->enc_context_owner); 2039 return; 2040 } 2041 2042 mutex_lock(&kvm->lock); 2043 2044 /* 2045 * Ensure that all guest tagged cache entries are flushed before 2046 * releasing the pages back to the system for use. CLFLUSH will 2047 * not do this, so issue a WBINVD. 2048 */ 2049 wbinvd_on_all_cpus(); 2050 2051 /* 2052 * if userspace was terminated before unregistering the memory regions 2053 * then lets unpin all the registered memory. 2054 */ 2055 if (!list_empty(head)) { 2056 list_for_each_safe(pos, q, head) { 2057 __unregister_enc_region_locked(kvm, 2058 list_entry(pos, struct enc_region, list)); 2059 cond_resched(); 2060 } 2061 } 2062 2063 mutex_unlock(&kvm->lock); 2064 2065 sev_unbind_asid(kvm, sev->handle); 2066 sev_asid_free(sev); 2067 } 2068 2069 void __init sev_set_cpu_caps(void) 2070 { 2071 if (!sev_enabled) 2072 kvm_cpu_cap_clear(X86_FEATURE_SEV); 2073 if (!sev_es_enabled) 2074 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 2075 } 2076 2077 void __init sev_hardware_setup(void) 2078 { 2079 #ifdef CONFIG_KVM_AMD_SEV 2080 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2081 bool sev_es_supported = false; 2082 bool sev_supported = false; 2083 2084 if (!sev_enabled || !npt_enabled) 2085 goto out; 2086 2087 /* Does the CPU support SEV? */ 2088 if (!boot_cpu_has(X86_FEATURE_SEV)) 2089 goto out; 2090 2091 /* Retrieve SEV CPUID information */ 2092 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2093 2094 /* Set encryption bit location for SEV-ES guests */ 2095 sev_enc_bit = ebx & 0x3f; 2096 2097 /* Maximum number of encrypted guests supported simultaneously */ 2098 max_sev_asid = ecx; 2099 if (!max_sev_asid) 2100 goto out; 2101 2102 /* Minimum ASID value that should be used for SEV guest */ 2103 min_sev_asid = edx; 2104 sev_me_mask = 1UL << (ebx & 0x3f); 2105 2106 /* 2107 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 2108 * even though it's never used, so that the bitmap is indexed by the 2109 * actual ASID. 2110 */ 2111 nr_asids = max_sev_asid + 1; 2112 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2113 if (!sev_asid_bitmap) 2114 goto out; 2115 2116 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2117 if (!sev_reclaim_asid_bitmap) { 2118 bitmap_free(sev_asid_bitmap); 2119 sev_asid_bitmap = NULL; 2120 goto out; 2121 } 2122 2123 sev_asid_count = max_sev_asid - min_sev_asid + 1; 2124 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) 2125 goto out; 2126 2127 pr_info("SEV supported: %u ASIDs\n", sev_asid_count); 2128 sev_supported = true; 2129 2130 /* SEV-ES support requested? */ 2131 if (!sev_es_enabled) 2132 goto out; 2133 2134 /* Does the CPU support SEV-ES? */ 2135 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 2136 goto out; 2137 2138 /* Has the system been allocated ASIDs for SEV-ES? */ 2139 if (min_sev_asid == 1) 2140 goto out; 2141 2142 sev_es_asid_count = min_sev_asid - 1; 2143 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) 2144 goto out; 2145 2146 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); 2147 sev_es_supported = true; 2148 2149 out: 2150 sev_enabled = sev_supported; 2151 sev_es_enabled = sev_es_supported; 2152 #endif 2153 } 2154 2155 void sev_hardware_teardown(void) 2156 { 2157 if (!sev_enabled) 2158 return; 2159 2160 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 2161 sev_flush_asids(1, max_sev_asid); 2162 2163 bitmap_free(sev_asid_bitmap); 2164 bitmap_free(sev_reclaim_asid_bitmap); 2165 2166 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 2167 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 2168 } 2169 2170 int sev_cpu_init(struct svm_cpu_data *sd) 2171 { 2172 if (!sev_enabled) 2173 return 0; 2174 2175 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 2176 if (!sd->sev_vmcbs) 2177 return -ENOMEM; 2178 2179 return 0; 2180 } 2181 2182 /* 2183 * Pages used by hardware to hold guest encrypted state must be flushed before 2184 * returning them to the system. 2185 */ 2186 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, 2187 unsigned long len) 2188 { 2189 /* 2190 * If hardware enforced cache coherency for encrypted mappings of the 2191 * same physical page is supported, nothing to do. 2192 */ 2193 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) 2194 return; 2195 2196 /* 2197 * If the VM Page Flush MSR is supported, use it to flush the page 2198 * (using the page virtual address and the guest ASID). 2199 */ 2200 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { 2201 struct kvm_sev_info *sev; 2202 unsigned long va_start; 2203 u64 start, stop; 2204 2205 /* Align start and stop to page boundaries. */ 2206 va_start = (unsigned long)va; 2207 start = (u64)va_start & PAGE_MASK; 2208 stop = PAGE_ALIGN((u64)va_start + len); 2209 2210 if (start < stop) { 2211 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 2212 2213 while (start < stop) { 2214 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, 2215 start | sev->asid); 2216 2217 start += PAGE_SIZE; 2218 } 2219 2220 return; 2221 } 2222 2223 WARN(1, "Address overflow, using WBINVD\n"); 2224 } 2225 2226 /* 2227 * Hardware should always have one of the above features, 2228 * but if not, use WBINVD and issue a warning. 2229 */ 2230 WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); 2231 wbinvd_on_all_cpus(); 2232 } 2233 2234 void sev_free_vcpu(struct kvm_vcpu *vcpu) 2235 { 2236 struct vcpu_svm *svm; 2237 2238 if (!sev_es_guest(vcpu->kvm)) 2239 return; 2240 2241 svm = to_svm(vcpu); 2242 2243 if (vcpu->arch.guest_state_protected) 2244 sev_flush_guest_memory(svm, svm->sev_es.vmsa, PAGE_SIZE); 2245 __free_page(virt_to_page(svm->sev_es.vmsa)); 2246 2247 if (svm->sev_es.ghcb_sa_free) 2248 kfree(svm->sev_es.ghcb_sa); 2249 } 2250 2251 static void dump_ghcb(struct vcpu_svm *svm) 2252 { 2253 struct ghcb *ghcb = svm->sev_es.ghcb; 2254 unsigned int nbits; 2255 2256 /* Re-use the dump_invalid_vmcb module parameter */ 2257 if (!dump_invalid_vmcb) { 2258 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2259 return; 2260 } 2261 2262 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2263 2264 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2265 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2266 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2267 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2268 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2269 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2270 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2271 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2272 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2273 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2274 } 2275 2276 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2277 { 2278 struct kvm_vcpu *vcpu = &svm->vcpu; 2279 struct ghcb *ghcb = svm->sev_es.ghcb; 2280 2281 /* 2282 * The GHCB protocol so far allows for the following data 2283 * to be returned: 2284 * GPRs RAX, RBX, RCX, RDX 2285 * 2286 * Copy their values, even if they may not have been written during the 2287 * VM-Exit. It's the guest's responsibility to not consume random data. 2288 */ 2289 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2290 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2291 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2292 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2293 } 2294 2295 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2296 { 2297 struct vmcb_control_area *control = &svm->vmcb->control; 2298 struct kvm_vcpu *vcpu = &svm->vcpu; 2299 struct ghcb *ghcb = svm->sev_es.ghcb; 2300 u64 exit_code; 2301 2302 /* 2303 * The GHCB protocol so far allows for the following data 2304 * to be supplied: 2305 * GPRs RAX, RBX, RCX, RDX 2306 * XCR0 2307 * CPL 2308 * 2309 * VMMCALL allows the guest to provide extra registers. KVM also 2310 * expects RSI for hypercalls, so include that, too. 2311 * 2312 * Copy their values to the appropriate location if supplied. 2313 */ 2314 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2315 2316 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 2317 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 2318 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 2319 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 2320 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 2321 2322 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 2323 2324 if (ghcb_xcr0_is_valid(ghcb)) { 2325 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2326 kvm_update_cpuid_runtime(vcpu); 2327 } 2328 2329 /* Copy the GHCB exit information into the VMCB fields */ 2330 exit_code = ghcb_get_sw_exit_code(ghcb); 2331 control->exit_code = lower_32_bits(exit_code); 2332 control->exit_code_hi = upper_32_bits(exit_code); 2333 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2334 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2335 2336 /* Clear the valid entries fields */ 2337 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2338 } 2339 2340 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2341 { 2342 struct kvm_vcpu *vcpu; 2343 struct ghcb *ghcb; 2344 u64 exit_code = 0; 2345 2346 ghcb = svm->sev_es.ghcb; 2347 2348 /* Only GHCB Usage code 0 is supported */ 2349 if (ghcb->ghcb_usage) 2350 goto vmgexit_err; 2351 2352 /* 2353 * Retrieve the exit code now even though is may not be marked valid 2354 * as it could help with debugging. 2355 */ 2356 exit_code = ghcb_get_sw_exit_code(ghcb); 2357 2358 if (!ghcb_sw_exit_code_is_valid(ghcb) || 2359 !ghcb_sw_exit_info_1_is_valid(ghcb) || 2360 !ghcb_sw_exit_info_2_is_valid(ghcb)) 2361 goto vmgexit_err; 2362 2363 switch (ghcb_get_sw_exit_code(ghcb)) { 2364 case SVM_EXIT_READ_DR7: 2365 break; 2366 case SVM_EXIT_WRITE_DR7: 2367 if (!ghcb_rax_is_valid(ghcb)) 2368 goto vmgexit_err; 2369 break; 2370 case SVM_EXIT_RDTSC: 2371 break; 2372 case SVM_EXIT_RDPMC: 2373 if (!ghcb_rcx_is_valid(ghcb)) 2374 goto vmgexit_err; 2375 break; 2376 case SVM_EXIT_CPUID: 2377 if (!ghcb_rax_is_valid(ghcb) || 2378 !ghcb_rcx_is_valid(ghcb)) 2379 goto vmgexit_err; 2380 if (ghcb_get_rax(ghcb) == 0xd) 2381 if (!ghcb_xcr0_is_valid(ghcb)) 2382 goto vmgexit_err; 2383 break; 2384 case SVM_EXIT_INVD: 2385 break; 2386 case SVM_EXIT_IOIO: 2387 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 2388 if (!ghcb_sw_scratch_is_valid(ghcb)) 2389 goto vmgexit_err; 2390 } else { 2391 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 2392 if (!ghcb_rax_is_valid(ghcb)) 2393 goto vmgexit_err; 2394 } 2395 break; 2396 case SVM_EXIT_MSR: 2397 if (!ghcb_rcx_is_valid(ghcb)) 2398 goto vmgexit_err; 2399 if (ghcb_get_sw_exit_info_1(ghcb)) { 2400 if (!ghcb_rax_is_valid(ghcb) || 2401 !ghcb_rdx_is_valid(ghcb)) 2402 goto vmgexit_err; 2403 } 2404 break; 2405 case SVM_EXIT_VMMCALL: 2406 if (!ghcb_rax_is_valid(ghcb) || 2407 !ghcb_cpl_is_valid(ghcb)) 2408 goto vmgexit_err; 2409 break; 2410 case SVM_EXIT_RDTSCP: 2411 break; 2412 case SVM_EXIT_WBINVD: 2413 break; 2414 case SVM_EXIT_MONITOR: 2415 if (!ghcb_rax_is_valid(ghcb) || 2416 !ghcb_rcx_is_valid(ghcb) || 2417 !ghcb_rdx_is_valid(ghcb)) 2418 goto vmgexit_err; 2419 break; 2420 case SVM_EXIT_MWAIT: 2421 if (!ghcb_rax_is_valid(ghcb) || 2422 !ghcb_rcx_is_valid(ghcb)) 2423 goto vmgexit_err; 2424 break; 2425 case SVM_VMGEXIT_MMIO_READ: 2426 case SVM_VMGEXIT_MMIO_WRITE: 2427 if (!ghcb_sw_scratch_is_valid(ghcb)) 2428 goto vmgexit_err; 2429 break; 2430 case SVM_VMGEXIT_NMI_COMPLETE: 2431 case SVM_VMGEXIT_AP_HLT_LOOP: 2432 case SVM_VMGEXIT_AP_JUMP_TABLE: 2433 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2434 break; 2435 default: 2436 goto vmgexit_err; 2437 } 2438 2439 return 0; 2440 2441 vmgexit_err: 2442 vcpu = &svm->vcpu; 2443 2444 if (ghcb->ghcb_usage) { 2445 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2446 ghcb->ghcb_usage); 2447 } else { 2448 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n", 2449 exit_code); 2450 dump_ghcb(svm); 2451 } 2452 2453 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2454 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 2455 vcpu->run->internal.ndata = 2; 2456 vcpu->run->internal.data[0] = exit_code; 2457 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 2458 2459 return -EINVAL; 2460 } 2461 2462 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2463 { 2464 if (!svm->sev_es.ghcb) 2465 return; 2466 2467 if (svm->sev_es.ghcb_sa_free) { 2468 /* 2469 * The scratch area lives outside the GHCB, so there is a 2470 * buffer that, depending on the operation performed, may 2471 * need to be synced, then freed. 2472 */ 2473 if (svm->sev_es.ghcb_sa_sync) { 2474 kvm_write_guest(svm->vcpu.kvm, 2475 ghcb_get_sw_scratch(svm->sev_es.ghcb), 2476 svm->sev_es.ghcb_sa, 2477 svm->sev_es.ghcb_sa_len); 2478 svm->sev_es.ghcb_sa_sync = false; 2479 } 2480 2481 kfree(svm->sev_es.ghcb_sa); 2482 svm->sev_es.ghcb_sa = NULL; 2483 svm->sev_es.ghcb_sa_free = false; 2484 } 2485 2486 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 2487 2488 sev_es_sync_to_ghcb(svm); 2489 2490 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); 2491 svm->sev_es.ghcb = NULL; 2492 } 2493 2494 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2495 { 2496 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2497 int asid = sev_get_asid(svm->vcpu.kvm); 2498 2499 /* Assign the asid allocated with this SEV guest */ 2500 svm->asid = asid; 2501 2502 /* 2503 * Flush guest TLB: 2504 * 2505 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2506 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2507 */ 2508 if (sd->sev_vmcbs[asid] == svm->vmcb && 2509 svm->vcpu.arch.last_vmentry_cpu == cpu) 2510 return; 2511 2512 sd->sev_vmcbs[asid] = svm->vmcb; 2513 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2514 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2515 } 2516 2517 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2518 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2519 { 2520 struct vmcb_control_area *control = &svm->vmcb->control; 2521 struct ghcb *ghcb = svm->sev_es.ghcb; 2522 u64 ghcb_scratch_beg, ghcb_scratch_end; 2523 u64 scratch_gpa_beg, scratch_gpa_end; 2524 void *scratch_va; 2525 2526 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 2527 if (!scratch_gpa_beg) { 2528 pr_err("vmgexit: scratch gpa not provided\n"); 2529 return false; 2530 } 2531 2532 scratch_gpa_end = scratch_gpa_beg + len; 2533 if (scratch_gpa_end < scratch_gpa_beg) { 2534 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2535 len, scratch_gpa_beg); 2536 return false; 2537 } 2538 2539 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2540 /* Scratch area begins within GHCB */ 2541 ghcb_scratch_beg = control->ghcb_gpa + 2542 offsetof(struct ghcb, shared_buffer); 2543 ghcb_scratch_end = control->ghcb_gpa + 2544 offsetof(struct ghcb, reserved_1); 2545 2546 /* 2547 * If the scratch area begins within the GHCB, it must be 2548 * completely contained in the GHCB shared buffer area. 2549 */ 2550 if (scratch_gpa_beg < ghcb_scratch_beg || 2551 scratch_gpa_end > ghcb_scratch_end) { 2552 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2553 scratch_gpa_beg, scratch_gpa_end); 2554 return false; 2555 } 2556 2557 scratch_va = (void *)svm->sev_es.ghcb; 2558 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2559 } else { 2560 /* 2561 * The guest memory must be read into a kernel buffer, so 2562 * limit the size 2563 */ 2564 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2565 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2566 len, GHCB_SCRATCH_AREA_LIMIT); 2567 return false; 2568 } 2569 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT); 2570 if (!scratch_va) 2571 return false; 2572 2573 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2574 /* Unable to copy scratch area from guest */ 2575 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2576 2577 kfree(scratch_va); 2578 return false; 2579 } 2580 2581 /* 2582 * The scratch area is outside the GHCB. The operation will 2583 * dictate whether the buffer needs to be synced before running 2584 * the vCPU next time (i.e. a read was requested so the data 2585 * must be written back to the guest memory). 2586 */ 2587 svm->sev_es.ghcb_sa_sync = sync; 2588 svm->sev_es.ghcb_sa_free = true; 2589 } 2590 2591 svm->sev_es.ghcb_sa = scratch_va; 2592 svm->sev_es.ghcb_sa_len = len; 2593 2594 return true; 2595 } 2596 2597 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2598 unsigned int pos) 2599 { 2600 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2601 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2602 } 2603 2604 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2605 { 2606 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2607 } 2608 2609 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2610 { 2611 svm->vmcb->control.ghcb_gpa = value; 2612 } 2613 2614 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2615 { 2616 struct vmcb_control_area *control = &svm->vmcb->control; 2617 struct kvm_vcpu *vcpu = &svm->vcpu; 2618 u64 ghcb_info; 2619 int ret = 1; 2620 2621 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2622 2623 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2624 control->ghcb_gpa); 2625 2626 switch (ghcb_info) { 2627 case GHCB_MSR_SEV_INFO_REQ: 2628 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2629 GHCB_VERSION_MIN, 2630 sev_enc_bit)); 2631 break; 2632 case GHCB_MSR_CPUID_REQ: { 2633 u64 cpuid_fn, cpuid_reg, cpuid_value; 2634 2635 cpuid_fn = get_ghcb_msr_bits(svm, 2636 GHCB_MSR_CPUID_FUNC_MASK, 2637 GHCB_MSR_CPUID_FUNC_POS); 2638 2639 /* Initialize the registers needed by the CPUID intercept */ 2640 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2641 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2642 2643 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2644 if (!ret) { 2645 ret = -EINVAL; 2646 break; 2647 } 2648 2649 cpuid_reg = get_ghcb_msr_bits(svm, 2650 GHCB_MSR_CPUID_REG_MASK, 2651 GHCB_MSR_CPUID_REG_POS); 2652 if (cpuid_reg == 0) 2653 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2654 else if (cpuid_reg == 1) 2655 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2656 else if (cpuid_reg == 2) 2657 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2658 else 2659 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2660 2661 set_ghcb_msr_bits(svm, cpuid_value, 2662 GHCB_MSR_CPUID_VALUE_MASK, 2663 GHCB_MSR_CPUID_VALUE_POS); 2664 2665 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2666 GHCB_MSR_INFO_MASK, 2667 GHCB_MSR_INFO_POS); 2668 break; 2669 } 2670 case GHCB_MSR_TERM_REQ: { 2671 u64 reason_set, reason_code; 2672 2673 reason_set = get_ghcb_msr_bits(svm, 2674 GHCB_MSR_TERM_REASON_SET_MASK, 2675 GHCB_MSR_TERM_REASON_SET_POS); 2676 reason_code = get_ghcb_msr_bits(svm, 2677 GHCB_MSR_TERM_REASON_MASK, 2678 GHCB_MSR_TERM_REASON_POS); 2679 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2680 reason_set, reason_code); 2681 fallthrough; 2682 } 2683 default: 2684 ret = -EINVAL; 2685 } 2686 2687 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2688 control->ghcb_gpa, ret); 2689 2690 return ret; 2691 } 2692 2693 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2694 { 2695 struct vcpu_svm *svm = to_svm(vcpu); 2696 struct vmcb_control_area *control = &svm->vmcb->control; 2697 u64 ghcb_gpa, exit_code; 2698 struct ghcb *ghcb; 2699 int ret; 2700 2701 /* Validate the GHCB */ 2702 ghcb_gpa = control->ghcb_gpa; 2703 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2704 return sev_handle_vmgexit_msr_protocol(svm); 2705 2706 if (!ghcb_gpa) { 2707 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2708 return -EINVAL; 2709 } 2710 2711 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 2712 /* Unable to map GHCB from guest */ 2713 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2714 ghcb_gpa); 2715 return -EINVAL; 2716 } 2717 2718 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 2719 ghcb = svm->sev_es.ghcb_map.hva; 2720 2721 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); 2722 2723 exit_code = ghcb_get_sw_exit_code(ghcb); 2724 2725 ret = sev_es_validate_vmgexit(svm); 2726 if (ret) 2727 return ret; 2728 2729 sev_es_sync_from_ghcb(svm); 2730 ghcb_set_sw_exit_info_1(ghcb, 0); 2731 ghcb_set_sw_exit_info_2(ghcb, 0); 2732 2733 ret = -EINVAL; 2734 switch (exit_code) { 2735 case SVM_VMGEXIT_MMIO_READ: 2736 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) 2737 break; 2738 2739 ret = kvm_sev_es_mmio_read(vcpu, 2740 control->exit_info_1, 2741 control->exit_info_2, 2742 svm->sev_es.ghcb_sa); 2743 break; 2744 case SVM_VMGEXIT_MMIO_WRITE: 2745 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) 2746 break; 2747 2748 ret = kvm_sev_es_mmio_write(vcpu, 2749 control->exit_info_1, 2750 control->exit_info_2, 2751 svm->sev_es.ghcb_sa); 2752 break; 2753 case SVM_VMGEXIT_NMI_COMPLETE: 2754 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); 2755 break; 2756 case SVM_VMGEXIT_AP_HLT_LOOP: 2757 ret = kvm_emulate_ap_reset_hold(vcpu); 2758 break; 2759 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2760 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2761 2762 switch (control->exit_info_1) { 2763 case 0: 2764 /* Set AP jump table address */ 2765 sev->ap_jump_table = control->exit_info_2; 2766 break; 2767 case 1: 2768 /* Get AP jump table address */ 2769 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 2770 break; 2771 default: 2772 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2773 control->exit_info_1); 2774 ghcb_set_sw_exit_info_1(ghcb, 1); 2775 ghcb_set_sw_exit_info_2(ghcb, 2776 X86_TRAP_UD | 2777 SVM_EVTINJ_TYPE_EXEPT | 2778 SVM_EVTINJ_VALID); 2779 } 2780 2781 ret = 1; 2782 break; 2783 } 2784 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2785 vcpu_unimpl(vcpu, 2786 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2787 control->exit_info_1, control->exit_info_2); 2788 break; 2789 default: 2790 ret = svm_invoke_exit_handler(vcpu, exit_code); 2791 } 2792 2793 return ret; 2794 } 2795 2796 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2797 { 2798 int count; 2799 int bytes; 2800 2801 if (svm->vmcb->control.exit_info_2 > INT_MAX) 2802 return -EINVAL; 2803 2804 count = svm->vmcb->control.exit_info_2; 2805 if (unlikely(check_mul_overflow(count, size, &bytes))) 2806 return -EINVAL; 2807 2808 if (!setup_vmgexit_scratch(svm, in, bytes)) 2809 return -EINVAL; 2810 2811 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 2812 count, in); 2813 } 2814 2815 void sev_es_init_vmcb(struct vcpu_svm *svm) 2816 { 2817 struct kvm_vcpu *vcpu = &svm->vcpu; 2818 2819 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2820 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2821 2822 /* 2823 * An SEV-ES guest requires a VMSA area that is a separate from the 2824 * VMCB page. Do not include the encryption mask on the VMSA physical 2825 * address since hardware will access it using the guest key. 2826 */ 2827 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 2828 2829 /* Can't intercept CR register access, HV can't modify CR registers */ 2830 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2831 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2832 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2833 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2834 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2835 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2836 2837 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2838 2839 /* Track EFER/CR register changes */ 2840 svm_set_intercept(svm, TRAP_EFER_WRITE); 2841 svm_set_intercept(svm, TRAP_CR0_WRITE); 2842 svm_set_intercept(svm, TRAP_CR4_WRITE); 2843 svm_set_intercept(svm, TRAP_CR8_WRITE); 2844 2845 /* No support for enable_vmware_backdoor */ 2846 clr_exception_intercept(svm, GP_VECTOR); 2847 2848 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2849 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2850 2851 /* Clear intercepts on selected MSRs */ 2852 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2853 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2854 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2855 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2856 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2857 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2858 } 2859 2860 void sev_es_vcpu_reset(struct vcpu_svm *svm) 2861 { 2862 /* 2863 * Set the GHCB MSR value as per the GHCB specification when emulating 2864 * vCPU RESET for an SEV-ES guest. 2865 */ 2866 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2867 GHCB_VERSION_MIN, 2868 sev_enc_bit)); 2869 } 2870 2871 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) 2872 { 2873 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2874 struct vmcb_save_area *hostsa; 2875 2876 /* 2877 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 2878 * of which one step is to perform a VMLOAD. Since hardware does not 2879 * perform a VMSAVE on VMRUN, the host savearea must be updated. 2880 */ 2881 vmsave(__sme_page_pa(sd->save_area)); 2882 2883 /* XCR0 is restored on VMEXIT, save the current host value */ 2884 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); 2885 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 2886 2887 /* PKRU is restored on VMEXIT, save the current host value */ 2888 hostsa->pkru = read_pkru(); 2889 2890 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 2891 hostsa->xss = host_xss; 2892 } 2893 2894 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 2895 { 2896 struct vcpu_svm *svm = to_svm(vcpu); 2897 2898 /* First SIPI: Use the values as initially set by the VMM */ 2899 if (!svm->sev_es.received_first_sipi) { 2900 svm->sev_es.received_first_sipi = true; 2901 return; 2902 } 2903 2904 /* 2905 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 2906 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 2907 * non-zero value. 2908 */ 2909 if (!svm->sev_es.ghcb) 2910 return; 2911 2912 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); 2913 } 2914