xref: /openbmc/linux/arch/x86/kvm/svm/sev.c (revision c1cf3d89)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/processor.h>
18 #include <linux/trace_events.h>
19 #include <asm/fpu/internal.h>
20 
21 #include <asm/trapnr.h>
22 
23 #include "x86.h"
24 #include "svm.h"
25 #include "cpuid.h"
26 #include "trace.h"
27 
28 #define __ex(x) __kvm_handle_fault_on_reboot(x)
29 
30 static u8 sev_enc_bit;
31 static int sev_flush_asids(void);
32 static DECLARE_RWSEM(sev_deactivate_lock);
33 static DEFINE_MUTEX(sev_bitmap_lock);
34 unsigned int max_sev_asid;
35 static unsigned int min_sev_asid;
36 static unsigned long *sev_asid_bitmap;
37 static unsigned long *sev_reclaim_asid_bitmap;
38 
39 struct enc_region {
40 	struct list_head list;
41 	unsigned long npages;
42 	struct page **pages;
43 	unsigned long uaddr;
44 	unsigned long size;
45 };
46 
47 static int sev_flush_asids(void)
48 {
49 	int ret, error = 0;
50 
51 	/*
52 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
53 	 * so it must be guarded.
54 	 */
55 	down_write(&sev_deactivate_lock);
56 
57 	wbinvd_on_all_cpus();
58 	ret = sev_guest_df_flush(&error);
59 
60 	up_write(&sev_deactivate_lock);
61 
62 	if (ret)
63 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
64 
65 	return ret;
66 }
67 
68 /* Must be called with the sev_bitmap_lock held */
69 static bool __sev_recycle_asids(int min_asid, int max_asid)
70 {
71 	int pos;
72 
73 	/* Check if there are any ASIDs to reclaim before performing a flush */
74 	pos = find_next_bit(sev_reclaim_asid_bitmap, max_sev_asid, min_asid);
75 	if (pos >= max_asid)
76 		return false;
77 
78 	if (sev_flush_asids())
79 		return false;
80 
81 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
82 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
83 		   max_sev_asid);
84 	bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
85 
86 	return true;
87 }
88 
89 static int sev_asid_new(struct kvm_sev_info *sev)
90 {
91 	int pos, min_asid, max_asid;
92 	bool retry = true;
93 
94 	mutex_lock(&sev_bitmap_lock);
95 
96 	/*
97 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
98 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
99 	 */
100 	min_asid = sev->es_active ? 0 : min_sev_asid - 1;
101 	max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
102 again:
103 	pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid);
104 	if (pos >= max_asid) {
105 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
106 			retry = false;
107 			goto again;
108 		}
109 		mutex_unlock(&sev_bitmap_lock);
110 		return -EBUSY;
111 	}
112 
113 	__set_bit(pos, sev_asid_bitmap);
114 
115 	mutex_unlock(&sev_bitmap_lock);
116 
117 	return pos + 1;
118 }
119 
120 static int sev_get_asid(struct kvm *kvm)
121 {
122 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
123 
124 	return sev->asid;
125 }
126 
127 static void sev_asid_free(int asid)
128 {
129 	struct svm_cpu_data *sd;
130 	int cpu, pos;
131 
132 	mutex_lock(&sev_bitmap_lock);
133 
134 	pos = asid - 1;
135 	__set_bit(pos, sev_reclaim_asid_bitmap);
136 
137 	for_each_possible_cpu(cpu) {
138 		sd = per_cpu(svm_data, cpu);
139 		sd->sev_vmcbs[pos] = NULL;
140 	}
141 
142 	mutex_unlock(&sev_bitmap_lock);
143 }
144 
145 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
146 {
147 	struct sev_data_decommission *decommission;
148 	struct sev_data_deactivate *data;
149 
150 	if (!handle)
151 		return;
152 
153 	data = kzalloc(sizeof(*data), GFP_KERNEL);
154 	if (!data)
155 		return;
156 
157 	/* deactivate handle */
158 	data->handle = handle;
159 
160 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
161 	down_read(&sev_deactivate_lock);
162 	sev_guest_deactivate(data, NULL);
163 	up_read(&sev_deactivate_lock);
164 
165 	kfree(data);
166 
167 	decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
168 	if (!decommission)
169 		return;
170 
171 	/* decommission handle */
172 	decommission->handle = handle;
173 	sev_guest_decommission(decommission, NULL);
174 
175 	kfree(decommission);
176 }
177 
178 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
179 {
180 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
181 	int asid, ret;
182 
183 	ret = -EBUSY;
184 	if (unlikely(sev->active))
185 		return ret;
186 
187 	asid = sev_asid_new(sev);
188 	if (asid < 0)
189 		return ret;
190 
191 	ret = sev_platform_init(&argp->error);
192 	if (ret)
193 		goto e_free;
194 
195 	sev->active = true;
196 	sev->asid = asid;
197 	INIT_LIST_HEAD(&sev->regions_list);
198 
199 	return 0;
200 
201 e_free:
202 	sev_asid_free(asid);
203 	return ret;
204 }
205 
206 static int sev_es_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
207 {
208 	if (!sev_es)
209 		return -ENOTTY;
210 
211 	to_kvm_svm(kvm)->sev_info.es_active = true;
212 
213 	return sev_guest_init(kvm, argp);
214 }
215 
216 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
217 {
218 	struct sev_data_activate *data;
219 	int asid = sev_get_asid(kvm);
220 	int ret;
221 
222 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
223 	if (!data)
224 		return -ENOMEM;
225 
226 	/* activate ASID on the given handle */
227 	data->handle = handle;
228 	data->asid   = asid;
229 	ret = sev_guest_activate(data, error);
230 	kfree(data);
231 
232 	return ret;
233 }
234 
235 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
236 {
237 	struct fd f;
238 	int ret;
239 
240 	f = fdget(fd);
241 	if (!f.file)
242 		return -EBADF;
243 
244 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
245 
246 	fdput(f);
247 	return ret;
248 }
249 
250 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
251 {
252 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
253 
254 	return __sev_issue_cmd(sev->fd, id, data, error);
255 }
256 
257 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
258 {
259 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
260 	struct sev_data_launch_start *start;
261 	struct kvm_sev_launch_start params;
262 	void *dh_blob, *session_blob;
263 	int *error = &argp->error;
264 	int ret;
265 
266 	if (!sev_guest(kvm))
267 		return -ENOTTY;
268 
269 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
270 		return -EFAULT;
271 
272 	start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
273 	if (!start)
274 		return -ENOMEM;
275 
276 	dh_blob = NULL;
277 	if (params.dh_uaddr) {
278 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
279 		if (IS_ERR(dh_blob)) {
280 			ret = PTR_ERR(dh_blob);
281 			goto e_free;
282 		}
283 
284 		start->dh_cert_address = __sme_set(__pa(dh_blob));
285 		start->dh_cert_len = params.dh_len;
286 	}
287 
288 	session_blob = NULL;
289 	if (params.session_uaddr) {
290 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
291 		if (IS_ERR(session_blob)) {
292 			ret = PTR_ERR(session_blob);
293 			goto e_free_dh;
294 		}
295 
296 		start->session_address = __sme_set(__pa(session_blob));
297 		start->session_len = params.session_len;
298 	}
299 
300 	start->handle = params.handle;
301 	start->policy = params.policy;
302 
303 	/* create memory encryption context */
304 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
305 	if (ret)
306 		goto e_free_session;
307 
308 	/* Bind ASID to this guest */
309 	ret = sev_bind_asid(kvm, start->handle, error);
310 	if (ret)
311 		goto e_free_session;
312 
313 	/* return handle to userspace */
314 	params.handle = start->handle;
315 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
316 		sev_unbind_asid(kvm, start->handle);
317 		ret = -EFAULT;
318 		goto e_free_session;
319 	}
320 
321 	sev->handle = start->handle;
322 	sev->fd = argp->sev_fd;
323 
324 e_free_session:
325 	kfree(session_blob);
326 e_free_dh:
327 	kfree(dh_blob);
328 e_free:
329 	kfree(start);
330 	return ret;
331 }
332 
333 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
334 				    unsigned long ulen, unsigned long *n,
335 				    int write)
336 {
337 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
338 	unsigned long npages, size;
339 	int npinned;
340 	unsigned long locked, lock_limit;
341 	struct page **pages;
342 	unsigned long first, last;
343 	int ret;
344 
345 	if (ulen == 0 || uaddr + ulen < uaddr)
346 		return ERR_PTR(-EINVAL);
347 
348 	/* Calculate number of pages. */
349 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
350 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
351 	npages = (last - first + 1);
352 
353 	locked = sev->pages_locked + npages;
354 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
355 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
356 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
357 		return ERR_PTR(-ENOMEM);
358 	}
359 
360 	if (WARN_ON_ONCE(npages > INT_MAX))
361 		return ERR_PTR(-EINVAL);
362 
363 	/* Avoid using vmalloc for smaller buffers. */
364 	size = npages * sizeof(struct page *);
365 	if (size > PAGE_SIZE)
366 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
367 	else
368 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
369 
370 	if (!pages)
371 		return ERR_PTR(-ENOMEM);
372 
373 	/* Pin the user virtual address. */
374 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
375 	if (npinned != npages) {
376 		pr_err("SEV: Failure locking %lu pages.\n", npages);
377 		ret = -ENOMEM;
378 		goto err;
379 	}
380 
381 	*n = npages;
382 	sev->pages_locked = locked;
383 
384 	return pages;
385 
386 err:
387 	if (npinned > 0)
388 		unpin_user_pages(pages, npinned);
389 
390 	kvfree(pages);
391 	return ERR_PTR(ret);
392 }
393 
394 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
395 			     unsigned long npages)
396 {
397 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
398 
399 	unpin_user_pages(pages, npages);
400 	kvfree(pages);
401 	sev->pages_locked -= npages;
402 }
403 
404 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
405 {
406 	uint8_t *page_virtual;
407 	unsigned long i;
408 
409 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
410 	    pages == NULL)
411 		return;
412 
413 	for (i = 0; i < npages; i++) {
414 		page_virtual = kmap_atomic(pages[i]);
415 		clflush_cache_range(page_virtual, PAGE_SIZE);
416 		kunmap_atomic(page_virtual);
417 	}
418 }
419 
420 static unsigned long get_num_contig_pages(unsigned long idx,
421 				struct page **inpages, unsigned long npages)
422 {
423 	unsigned long paddr, next_paddr;
424 	unsigned long i = idx + 1, pages = 1;
425 
426 	/* find the number of contiguous pages starting from idx */
427 	paddr = __sme_page_pa(inpages[idx]);
428 	while (i < npages) {
429 		next_paddr = __sme_page_pa(inpages[i++]);
430 		if ((paddr + PAGE_SIZE) == next_paddr) {
431 			pages++;
432 			paddr = next_paddr;
433 			continue;
434 		}
435 		break;
436 	}
437 
438 	return pages;
439 }
440 
441 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
442 {
443 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
444 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
445 	struct kvm_sev_launch_update_data params;
446 	struct sev_data_launch_update_data *data;
447 	struct page **inpages;
448 	int ret;
449 
450 	if (!sev_guest(kvm))
451 		return -ENOTTY;
452 
453 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
454 		return -EFAULT;
455 
456 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
457 	if (!data)
458 		return -ENOMEM;
459 
460 	vaddr = params.uaddr;
461 	size = params.len;
462 	vaddr_end = vaddr + size;
463 
464 	/* Lock the user memory. */
465 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
466 	if (IS_ERR(inpages)) {
467 		ret = PTR_ERR(inpages);
468 		goto e_free;
469 	}
470 
471 	/*
472 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
473 	 * place; the cache may contain the data that was written unencrypted.
474 	 */
475 	sev_clflush_pages(inpages, npages);
476 
477 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
478 		int offset, len;
479 
480 		/*
481 		 * If the user buffer is not page-aligned, calculate the offset
482 		 * within the page.
483 		 */
484 		offset = vaddr & (PAGE_SIZE - 1);
485 
486 		/* Calculate the number of pages that can be encrypted in one go. */
487 		pages = get_num_contig_pages(i, inpages, npages);
488 
489 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
490 
491 		data->handle = sev->handle;
492 		data->len = len;
493 		data->address = __sme_page_pa(inpages[i]) + offset;
494 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
495 		if (ret)
496 			goto e_unpin;
497 
498 		size -= len;
499 		next_vaddr = vaddr + len;
500 	}
501 
502 e_unpin:
503 	/* content of memory is updated, mark pages dirty */
504 	for (i = 0; i < npages; i++) {
505 		set_page_dirty_lock(inpages[i]);
506 		mark_page_accessed(inpages[i]);
507 	}
508 	/* unlock the user pages */
509 	sev_unpin_memory(kvm, inpages, npages);
510 e_free:
511 	kfree(data);
512 	return ret;
513 }
514 
515 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
516 {
517 	struct vmcb_save_area *save = &svm->vmcb->save;
518 
519 	/* Check some debug related fields before encrypting the VMSA */
520 	if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
521 		return -EINVAL;
522 
523 	/* Sync registgers */
524 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
525 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
526 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
527 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
528 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
529 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
530 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
531 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
532 #ifdef CONFIG_X86_64
533 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
534 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
535 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
536 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
537 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
538 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
539 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
540 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
541 #endif
542 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
543 
544 	/* Sync some non-GPR registers before encrypting */
545 	save->xcr0 = svm->vcpu.arch.xcr0;
546 	save->pkru = svm->vcpu.arch.pkru;
547 	save->xss  = svm->vcpu.arch.ia32_xss;
548 
549 	/*
550 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
551 	 * the traditional VMSA that is part of the VMCB. Copy the
552 	 * traditional VMSA as it has been built so far (in prep
553 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
554 	 */
555 	memcpy(svm->vmsa, save, sizeof(*save));
556 
557 	return 0;
558 }
559 
560 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
561 {
562 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
563 	struct sev_data_launch_update_vmsa *vmsa;
564 	int i, ret;
565 
566 	if (!sev_es_guest(kvm))
567 		return -ENOTTY;
568 
569 	vmsa = kzalloc(sizeof(*vmsa), GFP_KERNEL);
570 	if (!vmsa)
571 		return -ENOMEM;
572 
573 	for (i = 0; i < kvm->created_vcpus; i++) {
574 		struct vcpu_svm *svm = to_svm(kvm->vcpus[i]);
575 
576 		/* Perform some pre-encryption checks against the VMSA */
577 		ret = sev_es_sync_vmsa(svm);
578 		if (ret)
579 			goto e_free;
580 
581 		/*
582 		 * The LAUNCH_UPDATE_VMSA command will perform in-place
583 		 * encryption of the VMSA memory content (i.e it will write
584 		 * the same memory region with the guest's key), so invalidate
585 		 * it first.
586 		 */
587 		clflush_cache_range(svm->vmsa, PAGE_SIZE);
588 
589 		vmsa->handle = sev->handle;
590 		vmsa->address = __sme_pa(svm->vmsa);
591 		vmsa->len = PAGE_SIZE;
592 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, vmsa,
593 				    &argp->error);
594 		if (ret)
595 			goto e_free;
596 
597 		svm->vcpu.arch.guest_state_protected = true;
598 	}
599 
600 e_free:
601 	kfree(vmsa);
602 	return ret;
603 }
604 
605 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
606 {
607 	void __user *measure = (void __user *)(uintptr_t)argp->data;
608 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
609 	struct sev_data_launch_measure *data;
610 	struct kvm_sev_launch_measure params;
611 	void __user *p = NULL;
612 	void *blob = NULL;
613 	int ret;
614 
615 	if (!sev_guest(kvm))
616 		return -ENOTTY;
617 
618 	if (copy_from_user(&params, measure, sizeof(params)))
619 		return -EFAULT;
620 
621 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
622 	if (!data)
623 		return -ENOMEM;
624 
625 	/* User wants to query the blob length */
626 	if (!params.len)
627 		goto cmd;
628 
629 	p = (void __user *)(uintptr_t)params.uaddr;
630 	if (p) {
631 		if (params.len > SEV_FW_BLOB_MAX_SIZE) {
632 			ret = -EINVAL;
633 			goto e_free;
634 		}
635 
636 		ret = -ENOMEM;
637 		blob = kmalloc(params.len, GFP_KERNEL);
638 		if (!blob)
639 			goto e_free;
640 
641 		data->address = __psp_pa(blob);
642 		data->len = params.len;
643 	}
644 
645 cmd:
646 	data->handle = sev->handle;
647 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
648 
649 	/*
650 	 * If we query the session length, FW responded with expected data.
651 	 */
652 	if (!params.len)
653 		goto done;
654 
655 	if (ret)
656 		goto e_free_blob;
657 
658 	if (blob) {
659 		if (copy_to_user(p, blob, params.len))
660 			ret = -EFAULT;
661 	}
662 
663 done:
664 	params.len = data->len;
665 	if (copy_to_user(measure, &params, sizeof(params)))
666 		ret = -EFAULT;
667 e_free_blob:
668 	kfree(blob);
669 e_free:
670 	kfree(data);
671 	return ret;
672 }
673 
674 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
675 {
676 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
677 	struct sev_data_launch_finish *data;
678 	int ret;
679 
680 	if (!sev_guest(kvm))
681 		return -ENOTTY;
682 
683 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
684 	if (!data)
685 		return -ENOMEM;
686 
687 	data->handle = sev->handle;
688 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
689 
690 	kfree(data);
691 	return ret;
692 }
693 
694 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
695 {
696 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
697 	struct kvm_sev_guest_status params;
698 	struct sev_data_guest_status *data;
699 	int ret;
700 
701 	if (!sev_guest(kvm))
702 		return -ENOTTY;
703 
704 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
705 	if (!data)
706 		return -ENOMEM;
707 
708 	data->handle = sev->handle;
709 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
710 	if (ret)
711 		goto e_free;
712 
713 	params.policy = data->policy;
714 	params.state = data->state;
715 	params.handle = data->handle;
716 
717 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
718 		ret = -EFAULT;
719 e_free:
720 	kfree(data);
721 	return ret;
722 }
723 
724 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
725 			       unsigned long dst, int size,
726 			       int *error, bool enc)
727 {
728 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
729 	struct sev_data_dbg *data;
730 	int ret;
731 
732 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
733 	if (!data)
734 		return -ENOMEM;
735 
736 	data->handle = sev->handle;
737 	data->dst_addr = dst;
738 	data->src_addr = src;
739 	data->len = size;
740 
741 	ret = sev_issue_cmd(kvm,
742 			    enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
743 			    data, error);
744 	kfree(data);
745 	return ret;
746 }
747 
748 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
749 			     unsigned long dst_paddr, int sz, int *err)
750 {
751 	int offset;
752 
753 	/*
754 	 * Its safe to read more than we are asked, caller should ensure that
755 	 * destination has enough space.
756 	 */
757 	offset = src_paddr & 15;
758 	src_paddr = round_down(src_paddr, 16);
759 	sz = round_up(sz + offset, 16);
760 
761 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
762 }
763 
764 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
765 				  unsigned long __user dst_uaddr,
766 				  unsigned long dst_paddr,
767 				  int size, int *err)
768 {
769 	struct page *tpage = NULL;
770 	int ret, offset;
771 
772 	/* if inputs are not 16-byte then use intermediate buffer */
773 	if (!IS_ALIGNED(dst_paddr, 16) ||
774 	    !IS_ALIGNED(paddr,     16) ||
775 	    !IS_ALIGNED(size,      16)) {
776 		tpage = (void *)alloc_page(GFP_KERNEL);
777 		if (!tpage)
778 			return -ENOMEM;
779 
780 		dst_paddr = __sme_page_pa(tpage);
781 	}
782 
783 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
784 	if (ret)
785 		goto e_free;
786 
787 	if (tpage) {
788 		offset = paddr & 15;
789 		if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
790 				 page_address(tpage) + offset, size))
791 			ret = -EFAULT;
792 	}
793 
794 e_free:
795 	if (tpage)
796 		__free_page(tpage);
797 
798 	return ret;
799 }
800 
801 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
802 				  unsigned long __user vaddr,
803 				  unsigned long dst_paddr,
804 				  unsigned long __user dst_vaddr,
805 				  int size, int *error)
806 {
807 	struct page *src_tpage = NULL;
808 	struct page *dst_tpage = NULL;
809 	int ret, len = size;
810 
811 	/* If source buffer is not aligned then use an intermediate buffer */
812 	if (!IS_ALIGNED(vaddr, 16)) {
813 		src_tpage = alloc_page(GFP_KERNEL);
814 		if (!src_tpage)
815 			return -ENOMEM;
816 
817 		if (copy_from_user(page_address(src_tpage),
818 				(void __user *)(uintptr_t)vaddr, size)) {
819 			__free_page(src_tpage);
820 			return -EFAULT;
821 		}
822 
823 		paddr = __sme_page_pa(src_tpage);
824 	}
825 
826 	/*
827 	 *  If destination buffer or length is not aligned then do read-modify-write:
828 	 *   - decrypt destination in an intermediate buffer
829 	 *   - copy the source buffer in an intermediate buffer
830 	 *   - use the intermediate buffer as source buffer
831 	 */
832 	if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
833 		int dst_offset;
834 
835 		dst_tpage = alloc_page(GFP_KERNEL);
836 		if (!dst_tpage) {
837 			ret = -ENOMEM;
838 			goto e_free;
839 		}
840 
841 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
842 					__sme_page_pa(dst_tpage), size, error);
843 		if (ret)
844 			goto e_free;
845 
846 		/*
847 		 *  If source is kernel buffer then use memcpy() otherwise
848 		 *  copy_from_user().
849 		 */
850 		dst_offset = dst_paddr & 15;
851 
852 		if (src_tpage)
853 			memcpy(page_address(dst_tpage) + dst_offset,
854 			       page_address(src_tpage), size);
855 		else {
856 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
857 					   (void __user *)(uintptr_t)vaddr, size)) {
858 				ret = -EFAULT;
859 				goto e_free;
860 			}
861 		}
862 
863 		paddr = __sme_page_pa(dst_tpage);
864 		dst_paddr = round_down(dst_paddr, 16);
865 		len = round_up(size, 16);
866 	}
867 
868 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
869 
870 e_free:
871 	if (src_tpage)
872 		__free_page(src_tpage);
873 	if (dst_tpage)
874 		__free_page(dst_tpage);
875 	return ret;
876 }
877 
878 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
879 {
880 	unsigned long vaddr, vaddr_end, next_vaddr;
881 	unsigned long dst_vaddr;
882 	struct page **src_p, **dst_p;
883 	struct kvm_sev_dbg debug;
884 	unsigned long n;
885 	unsigned int size;
886 	int ret;
887 
888 	if (!sev_guest(kvm))
889 		return -ENOTTY;
890 
891 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
892 		return -EFAULT;
893 
894 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
895 		return -EINVAL;
896 	if (!debug.dst_uaddr)
897 		return -EINVAL;
898 
899 	vaddr = debug.src_uaddr;
900 	size = debug.len;
901 	vaddr_end = vaddr + size;
902 	dst_vaddr = debug.dst_uaddr;
903 
904 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
905 		int len, s_off, d_off;
906 
907 		/* lock userspace source and destination page */
908 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
909 		if (IS_ERR(src_p))
910 			return PTR_ERR(src_p);
911 
912 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
913 		if (IS_ERR(dst_p)) {
914 			sev_unpin_memory(kvm, src_p, n);
915 			return PTR_ERR(dst_p);
916 		}
917 
918 		/*
919 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
920 		 * the pages; flush the destination too so that future accesses do not
921 		 * see stale data.
922 		 */
923 		sev_clflush_pages(src_p, 1);
924 		sev_clflush_pages(dst_p, 1);
925 
926 		/*
927 		 * Since user buffer may not be page aligned, calculate the
928 		 * offset within the page.
929 		 */
930 		s_off = vaddr & ~PAGE_MASK;
931 		d_off = dst_vaddr & ~PAGE_MASK;
932 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
933 
934 		if (dec)
935 			ret = __sev_dbg_decrypt_user(kvm,
936 						     __sme_page_pa(src_p[0]) + s_off,
937 						     dst_vaddr,
938 						     __sme_page_pa(dst_p[0]) + d_off,
939 						     len, &argp->error);
940 		else
941 			ret = __sev_dbg_encrypt_user(kvm,
942 						     __sme_page_pa(src_p[0]) + s_off,
943 						     vaddr,
944 						     __sme_page_pa(dst_p[0]) + d_off,
945 						     dst_vaddr,
946 						     len, &argp->error);
947 
948 		sev_unpin_memory(kvm, src_p, n);
949 		sev_unpin_memory(kvm, dst_p, n);
950 
951 		if (ret)
952 			goto err;
953 
954 		next_vaddr = vaddr + len;
955 		dst_vaddr = dst_vaddr + len;
956 		size -= len;
957 	}
958 err:
959 	return ret;
960 }
961 
962 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
963 {
964 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
965 	struct sev_data_launch_secret *data;
966 	struct kvm_sev_launch_secret params;
967 	struct page **pages;
968 	void *blob, *hdr;
969 	unsigned long n, i;
970 	int ret, offset;
971 
972 	if (!sev_guest(kvm))
973 		return -ENOTTY;
974 
975 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
976 		return -EFAULT;
977 
978 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
979 	if (IS_ERR(pages))
980 		return PTR_ERR(pages);
981 
982 	/*
983 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
984 	 * place; the cache may contain the data that was written unencrypted.
985 	 */
986 	sev_clflush_pages(pages, n);
987 
988 	/*
989 	 * The secret must be copied into contiguous memory region, lets verify
990 	 * that userspace memory pages are contiguous before we issue command.
991 	 */
992 	if (get_num_contig_pages(0, pages, n) != n) {
993 		ret = -EINVAL;
994 		goto e_unpin_memory;
995 	}
996 
997 	ret = -ENOMEM;
998 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
999 	if (!data)
1000 		goto e_unpin_memory;
1001 
1002 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1003 	data->guest_address = __sme_page_pa(pages[0]) + offset;
1004 	data->guest_len = params.guest_len;
1005 
1006 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1007 	if (IS_ERR(blob)) {
1008 		ret = PTR_ERR(blob);
1009 		goto e_free;
1010 	}
1011 
1012 	data->trans_address = __psp_pa(blob);
1013 	data->trans_len = params.trans_len;
1014 
1015 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1016 	if (IS_ERR(hdr)) {
1017 		ret = PTR_ERR(hdr);
1018 		goto e_free_blob;
1019 	}
1020 	data->hdr_address = __psp_pa(hdr);
1021 	data->hdr_len = params.hdr_len;
1022 
1023 	data->handle = sev->handle;
1024 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
1025 
1026 	kfree(hdr);
1027 
1028 e_free_blob:
1029 	kfree(blob);
1030 e_free:
1031 	kfree(data);
1032 e_unpin_memory:
1033 	/* content of memory is updated, mark pages dirty */
1034 	for (i = 0; i < n; i++) {
1035 		set_page_dirty_lock(pages[i]);
1036 		mark_page_accessed(pages[i]);
1037 	}
1038 	sev_unpin_memory(kvm, pages, n);
1039 	return ret;
1040 }
1041 
1042 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1043 {
1044 	struct kvm_sev_cmd sev_cmd;
1045 	int r;
1046 
1047 	if (!svm_sev_enabled() || !sev)
1048 		return -ENOTTY;
1049 
1050 	if (!argp)
1051 		return 0;
1052 
1053 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1054 		return -EFAULT;
1055 
1056 	mutex_lock(&kvm->lock);
1057 
1058 	switch (sev_cmd.id) {
1059 	case KVM_SEV_INIT:
1060 		r = sev_guest_init(kvm, &sev_cmd);
1061 		break;
1062 	case KVM_SEV_ES_INIT:
1063 		r = sev_es_guest_init(kvm, &sev_cmd);
1064 		break;
1065 	case KVM_SEV_LAUNCH_START:
1066 		r = sev_launch_start(kvm, &sev_cmd);
1067 		break;
1068 	case KVM_SEV_LAUNCH_UPDATE_DATA:
1069 		r = sev_launch_update_data(kvm, &sev_cmd);
1070 		break;
1071 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
1072 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
1073 		break;
1074 	case KVM_SEV_LAUNCH_MEASURE:
1075 		r = sev_launch_measure(kvm, &sev_cmd);
1076 		break;
1077 	case KVM_SEV_LAUNCH_FINISH:
1078 		r = sev_launch_finish(kvm, &sev_cmd);
1079 		break;
1080 	case KVM_SEV_GUEST_STATUS:
1081 		r = sev_guest_status(kvm, &sev_cmd);
1082 		break;
1083 	case KVM_SEV_DBG_DECRYPT:
1084 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
1085 		break;
1086 	case KVM_SEV_DBG_ENCRYPT:
1087 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
1088 		break;
1089 	case KVM_SEV_LAUNCH_SECRET:
1090 		r = sev_launch_secret(kvm, &sev_cmd);
1091 		break;
1092 	default:
1093 		r = -EINVAL;
1094 		goto out;
1095 	}
1096 
1097 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1098 		r = -EFAULT;
1099 
1100 out:
1101 	mutex_unlock(&kvm->lock);
1102 	return r;
1103 }
1104 
1105 int svm_register_enc_region(struct kvm *kvm,
1106 			    struct kvm_enc_region *range)
1107 {
1108 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1109 	struct enc_region *region;
1110 	int ret = 0;
1111 
1112 	if (!sev_guest(kvm))
1113 		return -ENOTTY;
1114 
1115 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1116 		return -EINVAL;
1117 
1118 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1119 	if (!region)
1120 		return -ENOMEM;
1121 
1122 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1123 	if (IS_ERR(region->pages)) {
1124 		ret = PTR_ERR(region->pages);
1125 		goto e_free;
1126 	}
1127 
1128 	/*
1129 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1130 	 * or vice versa for this memory range. Lets make sure caches are
1131 	 * flushed to ensure that guest data gets written into memory with
1132 	 * correct C-bit.
1133 	 */
1134 	sev_clflush_pages(region->pages, region->npages);
1135 
1136 	region->uaddr = range->addr;
1137 	region->size = range->size;
1138 
1139 	mutex_lock(&kvm->lock);
1140 	list_add_tail(&region->list, &sev->regions_list);
1141 	mutex_unlock(&kvm->lock);
1142 
1143 	return ret;
1144 
1145 e_free:
1146 	kfree(region);
1147 	return ret;
1148 }
1149 
1150 static struct enc_region *
1151 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1152 {
1153 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1154 	struct list_head *head = &sev->regions_list;
1155 	struct enc_region *i;
1156 
1157 	list_for_each_entry(i, head, list) {
1158 		if (i->uaddr == range->addr &&
1159 		    i->size == range->size)
1160 			return i;
1161 	}
1162 
1163 	return NULL;
1164 }
1165 
1166 static void __unregister_enc_region_locked(struct kvm *kvm,
1167 					   struct enc_region *region)
1168 {
1169 	sev_unpin_memory(kvm, region->pages, region->npages);
1170 	list_del(&region->list);
1171 	kfree(region);
1172 }
1173 
1174 int svm_unregister_enc_region(struct kvm *kvm,
1175 			      struct kvm_enc_region *range)
1176 {
1177 	struct enc_region *region;
1178 	int ret;
1179 
1180 	mutex_lock(&kvm->lock);
1181 
1182 	if (!sev_guest(kvm)) {
1183 		ret = -ENOTTY;
1184 		goto failed;
1185 	}
1186 
1187 	region = find_enc_region(kvm, range);
1188 	if (!region) {
1189 		ret = -EINVAL;
1190 		goto failed;
1191 	}
1192 
1193 	/*
1194 	 * Ensure that all guest tagged cache entries are flushed before
1195 	 * releasing the pages back to the system for use. CLFLUSH will
1196 	 * not do this, so issue a WBINVD.
1197 	 */
1198 	wbinvd_on_all_cpus();
1199 
1200 	__unregister_enc_region_locked(kvm, region);
1201 
1202 	mutex_unlock(&kvm->lock);
1203 	return 0;
1204 
1205 failed:
1206 	mutex_unlock(&kvm->lock);
1207 	return ret;
1208 }
1209 
1210 void sev_vm_destroy(struct kvm *kvm)
1211 {
1212 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1213 	struct list_head *head = &sev->regions_list;
1214 	struct list_head *pos, *q;
1215 
1216 	if (!sev_guest(kvm))
1217 		return;
1218 
1219 	mutex_lock(&kvm->lock);
1220 
1221 	/*
1222 	 * Ensure that all guest tagged cache entries are flushed before
1223 	 * releasing the pages back to the system for use. CLFLUSH will
1224 	 * not do this, so issue a WBINVD.
1225 	 */
1226 	wbinvd_on_all_cpus();
1227 
1228 	/*
1229 	 * if userspace was terminated before unregistering the memory regions
1230 	 * then lets unpin all the registered memory.
1231 	 */
1232 	if (!list_empty(head)) {
1233 		list_for_each_safe(pos, q, head) {
1234 			__unregister_enc_region_locked(kvm,
1235 				list_entry(pos, struct enc_region, list));
1236 			cond_resched();
1237 		}
1238 	}
1239 
1240 	mutex_unlock(&kvm->lock);
1241 
1242 	sev_unbind_asid(kvm, sev->handle);
1243 	sev_asid_free(sev->asid);
1244 }
1245 
1246 void __init sev_hardware_setup(void)
1247 {
1248 	unsigned int eax, ebx, ecx, edx;
1249 	bool sev_es_supported = false;
1250 	bool sev_supported = false;
1251 
1252 	/* Does the CPU support SEV? */
1253 	if (!boot_cpu_has(X86_FEATURE_SEV))
1254 		goto out;
1255 
1256 	/* Retrieve SEV CPUID information */
1257 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
1258 
1259 	/* Set encryption bit location for SEV-ES guests */
1260 	sev_enc_bit = ebx & 0x3f;
1261 
1262 	/* Maximum number of encrypted guests supported simultaneously */
1263 	max_sev_asid = ecx;
1264 
1265 	if (!svm_sev_enabled())
1266 		goto out;
1267 
1268 	/* Minimum ASID value that should be used for SEV guest */
1269 	min_sev_asid = edx;
1270 
1271 	/* Initialize SEV ASID bitmaps */
1272 	sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1273 	if (!sev_asid_bitmap)
1274 		goto out;
1275 
1276 	sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1277 	if (!sev_reclaim_asid_bitmap)
1278 		goto out;
1279 
1280 	pr_info("SEV supported: %u ASIDs\n", max_sev_asid - min_sev_asid + 1);
1281 	sev_supported = true;
1282 
1283 	/* SEV-ES support requested? */
1284 	if (!sev_es)
1285 		goto out;
1286 
1287 	/* Does the CPU support SEV-ES? */
1288 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
1289 		goto out;
1290 
1291 	/* Has the system been allocated ASIDs for SEV-ES? */
1292 	if (min_sev_asid == 1)
1293 		goto out;
1294 
1295 	pr_info("SEV-ES supported: %u ASIDs\n", min_sev_asid - 1);
1296 	sev_es_supported = true;
1297 
1298 out:
1299 	sev = sev_supported;
1300 	sev_es = sev_es_supported;
1301 }
1302 
1303 void sev_hardware_teardown(void)
1304 {
1305 	if (!svm_sev_enabled())
1306 		return;
1307 
1308 	bitmap_free(sev_asid_bitmap);
1309 	bitmap_free(sev_reclaim_asid_bitmap);
1310 
1311 	sev_flush_asids();
1312 }
1313 
1314 /*
1315  * Pages used by hardware to hold guest encrypted state must be flushed before
1316  * returning them to the system.
1317  */
1318 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
1319 				   unsigned long len)
1320 {
1321 	/*
1322 	 * If hardware enforced cache coherency for encrypted mappings of the
1323 	 * same physical page is supported, nothing to do.
1324 	 */
1325 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
1326 		return;
1327 
1328 	/*
1329 	 * If the VM Page Flush MSR is supported, use it to flush the page
1330 	 * (using the page virtual address and the guest ASID).
1331 	 */
1332 	if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
1333 		struct kvm_sev_info *sev;
1334 		unsigned long va_start;
1335 		u64 start, stop;
1336 
1337 		/* Align start and stop to page boundaries. */
1338 		va_start = (unsigned long)va;
1339 		start = (u64)va_start & PAGE_MASK;
1340 		stop = PAGE_ALIGN((u64)va_start + len);
1341 
1342 		if (start < stop) {
1343 			sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
1344 
1345 			while (start < stop) {
1346 				wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
1347 				       start | sev->asid);
1348 
1349 				start += PAGE_SIZE;
1350 			}
1351 
1352 			return;
1353 		}
1354 
1355 		WARN(1, "Address overflow, using WBINVD\n");
1356 	}
1357 
1358 	/*
1359 	 * Hardware should always have one of the above features,
1360 	 * but if not, use WBINVD and issue a warning.
1361 	 */
1362 	WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
1363 	wbinvd_on_all_cpus();
1364 }
1365 
1366 void sev_free_vcpu(struct kvm_vcpu *vcpu)
1367 {
1368 	struct vcpu_svm *svm;
1369 
1370 	if (!sev_es_guest(vcpu->kvm))
1371 		return;
1372 
1373 	svm = to_svm(vcpu);
1374 
1375 	if (vcpu->arch.guest_state_protected)
1376 		sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
1377 	__free_page(virt_to_page(svm->vmsa));
1378 
1379 	if (svm->ghcb_sa_free)
1380 		kfree(svm->ghcb_sa);
1381 }
1382 
1383 static void dump_ghcb(struct vcpu_svm *svm)
1384 {
1385 	struct ghcb *ghcb = svm->ghcb;
1386 	unsigned int nbits;
1387 
1388 	/* Re-use the dump_invalid_vmcb module parameter */
1389 	if (!dump_invalid_vmcb) {
1390 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
1391 		return;
1392 	}
1393 
1394 	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
1395 
1396 	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
1397 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
1398 	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
1399 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
1400 	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
1401 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
1402 	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
1403 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
1404 	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
1405 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
1406 }
1407 
1408 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
1409 {
1410 	struct kvm_vcpu *vcpu = &svm->vcpu;
1411 	struct ghcb *ghcb = svm->ghcb;
1412 
1413 	/*
1414 	 * The GHCB protocol so far allows for the following data
1415 	 * to be returned:
1416 	 *   GPRs RAX, RBX, RCX, RDX
1417 	 *
1418 	 * Copy their values, even if they may not have been written during the
1419 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
1420 	 */
1421 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
1422 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
1423 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
1424 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
1425 }
1426 
1427 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
1428 {
1429 	struct vmcb_control_area *control = &svm->vmcb->control;
1430 	struct kvm_vcpu *vcpu = &svm->vcpu;
1431 	struct ghcb *ghcb = svm->ghcb;
1432 	u64 exit_code;
1433 
1434 	/*
1435 	 * The GHCB protocol so far allows for the following data
1436 	 * to be supplied:
1437 	 *   GPRs RAX, RBX, RCX, RDX
1438 	 *   XCR0
1439 	 *   CPL
1440 	 *
1441 	 * VMMCALL allows the guest to provide extra registers. KVM also
1442 	 * expects RSI for hypercalls, so include that, too.
1443 	 *
1444 	 * Copy their values to the appropriate location if supplied.
1445 	 */
1446 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
1447 
1448 	vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
1449 	vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
1450 	vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
1451 	vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
1452 	vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
1453 
1454 	svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
1455 
1456 	if (ghcb_xcr0_is_valid(ghcb)) {
1457 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
1458 		kvm_update_cpuid_runtime(vcpu);
1459 	}
1460 
1461 	/* Copy the GHCB exit information into the VMCB fields */
1462 	exit_code = ghcb_get_sw_exit_code(ghcb);
1463 	control->exit_code = lower_32_bits(exit_code);
1464 	control->exit_code_hi = upper_32_bits(exit_code);
1465 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
1466 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
1467 
1468 	/* Clear the valid entries fields */
1469 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
1470 }
1471 
1472 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
1473 {
1474 	struct kvm_vcpu *vcpu;
1475 	struct ghcb *ghcb;
1476 	u64 exit_code = 0;
1477 
1478 	ghcb = svm->ghcb;
1479 
1480 	/* Only GHCB Usage code 0 is supported */
1481 	if (ghcb->ghcb_usage)
1482 		goto vmgexit_err;
1483 
1484 	/*
1485 	 * Retrieve the exit code now even though is may not be marked valid
1486 	 * as it could help with debugging.
1487 	 */
1488 	exit_code = ghcb_get_sw_exit_code(ghcb);
1489 
1490 	if (!ghcb_sw_exit_code_is_valid(ghcb) ||
1491 	    !ghcb_sw_exit_info_1_is_valid(ghcb) ||
1492 	    !ghcb_sw_exit_info_2_is_valid(ghcb))
1493 		goto vmgexit_err;
1494 
1495 	switch (ghcb_get_sw_exit_code(ghcb)) {
1496 	case SVM_EXIT_READ_DR7:
1497 		break;
1498 	case SVM_EXIT_WRITE_DR7:
1499 		if (!ghcb_rax_is_valid(ghcb))
1500 			goto vmgexit_err;
1501 		break;
1502 	case SVM_EXIT_RDTSC:
1503 		break;
1504 	case SVM_EXIT_RDPMC:
1505 		if (!ghcb_rcx_is_valid(ghcb))
1506 			goto vmgexit_err;
1507 		break;
1508 	case SVM_EXIT_CPUID:
1509 		if (!ghcb_rax_is_valid(ghcb) ||
1510 		    !ghcb_rcx_is_valid(ghcb))
1511 			goto vmgexit_err;
1512 		if (ghcb_get_rax(ghcb) == 0xd)
1513 			if (!ghcb_xcr0_is_valid(ghcb))
1514 				goto vmgexit_err;
1515 		break;
1516 	case SVM_EXIT_INVD:
1517 		break;
1518 	case SVM_EXIT_IOIO:
1519 		if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
1520 			if (!ghcb_sw_scratch_is_valid(ghcb))
1521 				goto vmgexit_err;
1522 		} else {
1523 			if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
1524 				if (!ghcb_rax_is_valid(ghcb))
1525 					goto vmgexit_err;
1526 		}
1527 		break;
1528 	case SVM_EXIT_MSR:
1529 		if (!ghcb_rcx_is_valid(ghcb))
1530 			goto vmgexit_err;
1531 		if (ghcb_get_sw_exit_info_1(ghcb)) {
1532 			if (!ghcb_rax_is_valid(ghcb) ||
1533 			    !ghcb_rdx_is_valid(ghcb))
1534 				goto vmgexit_err;
1535 		}
1536 		break;
1537 	case SVM_EXIT_VMMCALL:
1538 		if (!ghcb_rax_is_valid(ghcb) ||
1539 		    !ghcb_cpl_is_valid(ghcb))
1540 			goto vmgexit_err;
1541 		break;
1542 	case SVM_EXIT_RDTSCP:
1543 		break;
1544 	case SVM_EXIT_WBINVD:
1545 		break;
1546 	case SVM_EXIT_MONITOR:
1547 		if (!ghcb_rax_is_valid(ghcb) ||
1548 		    !ghcb_rcx_is_valid(ghcb) ||
1549 		    !ghcb_rdx_is_valid(ghcb))
1550 			goto vmgexit_err;
1551 		break;
1552 	case SVM_EXIT_MWAIT:
1553 		if (!ghcb_rax_is_valid(ghcb) ||
1554 		    !ghcb_rcx_is_valid(ghcb))
1555 			goto vmgexit_err;
1556 		break;
1557 	case SVM_VMGEXIT_MMIO_READ:
1558 	case SVM_VMGEXIT_MMIO_WRITE:
1559 		if (!ghcb_sw_scratch_is_valid(ghcb))
1560 			goto vmgexit_err;
1561 		break;
1562 	case SVM_VMGEXIT_NMI_COMPLETE:
1563 	case SVM_VMGEXIT_AP_HLT_LOOP:
1564 	case SVM_VMGEXIT_AP_JUMP_TABLE:
1565 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
1566 		break;
1567 	default:
1568 		goto vmgexit_err;
1569 	}
1570 
1571 	return 0;
1572 
1573 vmgexit_err:
1574 	vcpu = &svm->vcpu;
1575 
1576 	if (ghcb->ghcb_usage) {
1577 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
1578 			    ghcb->ghcb_usage);
1579 	} else {
1580 		vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
1581 			    exit_code);
1582 		dump_ghcb(svm);
1583 	}
1584 
1585 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1586 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
1587 	vcpu->run->internal.ndata = 2;
1588 	vcpu->run->internal.data[0] = exit_code;
1589 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
1590 
1591 	return -EINVAL;
1592 }
1593 
1594 static void pre_sev_es_run(struct vcpu_svm *svm)
1595 {
1596 	if (!svm->ghcb)
1597 		return;
1598 
1599 	if (svm->ghcb_sa_free) {
1600 		/*
1601 		 * The scratch area lives outside the GHCB, so there is a
1602 		 * buffer that, depending on the operation performed, may
1603 		 * need to be synced, then freed.
1604 		 */
1605 		if (svm->ghcb_sa_sync) {
1606 			kvm_write_guest(svm->vcpu.kvm,
1607 					ghcb_get_sw_scratch(svm->ghcb),
1608 					svm->ghcb_sa, svm->ghcb_sa_len);
1609 			svm->ghcb_sa_sync = false;
1610 		}
1611 
1612 		kfree(svm->ghcb_sa);
1613 		svm->ghcb_sa = NULL;
1614 		svm->ghcb_sa_free = false;
1615 	}
1616 
1617 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);
1618 
1619 	sev_es_sync_to_ghcb(svm);
1620 
1621 	kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
1622 	svm->ghcb = NULL;
1623 }
1624 
1625 void pre_sev_run(struct vcpu_svm *svm, int cpu)
1626 {
1627 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1628 	int asid = sev_get_asid(svm->vcpu.kvm);
1629 
1630 	/* Perform any SEV-ES pre-run actions */
1631 	pre_sev_es_run(svm);
1632 
1633 	/* Assign the asid allocated with this SEV guest */
1634 	svm->asid = asid;
1635 
1636 	/*
1637 	 * Flush guest TLB:
1638 	 *
1639 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
1640 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
1641 	 */
1642 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
1643 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
1644 		return;
1645 
1646 	sd->sev_vmcbs[asid] = svm->vmcb;
1647 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
1648 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1649 }
1650 
1651 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
1652 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
1653 {
1654 	struct vmcb_control_area *control = &svm->vmcb->control;
1655 	struct ghcb *ghcb = svm->ghcb;
1656 	u64 ghcb_scratch_beg, ghcb_scratch_end;
1657 	u64 scratch_gpa_beg, scratch_gpa_end;
1658 	void *scratch_va;
1659 
1660 	scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
1661 	if (!scratch_gpa_beg) {
1662 		pr_err("vmgexit: scratch gpa not provided\n");
1663 		return false;
1664 	}
1665 
1666 	scratch_gpa_end = scratch_gpa_beg + len;
1667 	if (scratch_gpa_end < scratch_gpa_beg) {
1668 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
1669 		       len, scratch_gpa_beg);
1670 		return false;
1671 	}
1672 
1673 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
1674 		/* Scratch area begins within GHCB */
1675 		ghcb_scratch_beg = control->ghcb_gpa +
1676 				   offsetof(struct ghcb, shared_buffer);
1677 		ghcb_scratch_end = control->ghcb_gpa +
1678 				   offsetof(struct ghcb, reserved_1);
1679 
1680 		/*
1681 		 * If the scratch area begins within the GHCB, it must be
1682 		 * completely contained in the GHCB shared buffer area.
1683 		 */
1684 		if (scratch_gpa_beg < ghcb_scratch_beg ||
1685 		    scratch_gpa_end > ghcb_scratch_end) {
1686 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
1687 			       scratch_gpa_beg, scratch_gpa_end);
1688 			return false;
1689 		}
1690 
1691 		scratch_va = (void *)svm->ghcb;
1692 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
1693 	} else {
1694 		/*
1695 		 * The guest memory must be read into a kernel buffer, so
1696 		 * limit the size
1697 		 */
1698 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
1699 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
1700 			       len, GHCB_SCRATCH_AREA_LIMIT);
1701 			return false;
1702 		}
1703 		scratch_va = kzalloc(len, GFP_KERNEL);
1704 		if (!scratch_va)
1705 			return false;
1706 
1707 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
1708 			/* Unable to copy scratch area from guest */
1709 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
1710 
1711 			kfree(scratch_va);
1712 			return false;
1713 		}
1714 
1715 		/*
1716 		 * The scratch area is outside the GHCB. The operation will
1717 		 * dictate whether the buffer needs to be synced before running
1718 		 * the vCPU next time (i.e. a read was requested so the data
1719 		 * must be written back to the guest memory).
1720 		 */
1721 		svm->ghcb_sa_sync = sync;
1722 		svm->ghcb_sa_free = true;
1723 	}
1724 
1725 	svm->ghcb_sa = scratch_va;
1726 	svm->ghcb_sa_len = len;
1727 
1728 	return true;
1729 }
1730 
1731 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
1732 			      unsigned int pos)
1733 {
1734 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
1735 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
1736 }
1737 
1738 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
1739 {
1740 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
1741 }
1742 
1743 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
1744 {
1745 	svm->vmcb->control.ghcb_gpa = value;
1746 }
1747 
1748 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
1749 {
1750 	struct vmcb_control_area *control = &svm->vmcb->control;
1751 	struct kvm_vcpu *vcpu = &svm->vcpu;
1752 	u64 ghcb_info;
1753 	int ret = 1;
1754 
1755 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
1756 
1757 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
1758 					     control->ghcb_gpa);
1759 
1760 	switch (ghcb_info) {
1761 	case GHCB_MSR_SEV_INFO_REQ:
1762 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
1763 						    GHCB_VERSION_MIN,
1764 						    sev_enc_bit));
1765 		break;
1766 	case GHCB_MSR_CPUID_REQ: {
1767 		u64 cpuid_fn, cpuid_reg, cpuid_value;
1768 
1769 		cpuid_fn = get_ghcb_msr_bits(svm,
1770 					     GHCB_MSR_CPUID_FUNC_MASK,
1771 					     GHCB_MSR_CPUID_FUNC_POS);
1772 
1773 		/* Initialize the registers needed by the CPUID intercept */
1774 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
1775 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
1776 
1777 		ret = svm_invoke_exit_handler(svm, SVM_EXIT_CPUID);
1778 		if (!ret) {
1779 			ret = -EINVAL;
1780 			break;
1781 		}
1782 
1783 		cpuid_reg = get_ghcb_msr_bits(svm,
1784 					      GHCB_MSR_CPUID_REG_MASK,
1785 					      GHCB_MSR_CPUID_REG_POS);
1786 		if (cpuid_reg == 0)
1787 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
1788 		else if (cpuid_reg == 1)
1789 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
1790 		else if (cpuid_reg == 2)
1791 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
1792 		else
1793 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
1794 
1795 		set_ghcb_msr_bits(svm, cpuid_value,
1796 				  GHCB_MSR_CPUID_VALUE_MASK,
1797 				  GHCB_MSR_CPUID_VALUE_POS);
1798 
1799 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
1800 				  GHCB_MSR_INFO_MASK,
1801 				  GHCB_MSR_INFO_POS);
1802 		break;
1803 	}
1804 	case GHCB_MSR_TERM_REQ: {
1805 		u64 reason_set, reason_code;
1806 
1807 		reason_set = get_ghcb_msr_bits(svm,
1808 					       GHCB_MSR_TERM_REASON_SET_MASK,
1809 					       GHCB_MSR_TERM_REASON_SET_POS);
1810 		reason_code = get_ghcb_msr_bits(svm,
1811 						GHCB_MSR_TERM_REASON_MASK,
1812 						GHCB_MSR_TERM_REASON_POS);
1813 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
1814 			reason_set, reason_code);
1815 		fallthrough;
1816 	}
1817 	default:
1818 		ret = -EINVAL;
1819 	}
1820 
1821 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
1822 					    control->ghcb_gpa, ret);
1823 
1824 	return ret;
1825 }
1826 
1827 int sev_handle_vmgexit(struct vcpu_svm *svm)
1828 {
1829 	struct vmcb_control_area *control = &svm->vmcb->control;
1830 	u64 ghcb_gpa, exit_code;
1831 	struct ghcb *ghcb;
1832 	int ret;
1833 
1834 	/* Validate the GHCB */
1835 	ghcb_gpa = control->ghcb_gpa;
1836 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
1837 		return sev_handle_vmgexit_msr_protocol(svm);
1838 
1839 	if (!ghcb_gpa) {
1840 		vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB gpa is not set\n");
1841 		return -EINVAL;
1842 	}
1843 
1844 	if (kvm_vcpu_map(&svm->vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
1845 		/* Unable to map GHCB from guest */
1846 		vcpu_unimpl(&svm->vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
1847 			    ghcb_gpa);
1848 		return -EINVAL;
1849 	}
1850 
1851 	svm->ghcb = svm->ghcb_map.hva;
1852 	ghcb = svm->ghcb_map.hva;
1853 
1854 	trace_kvm_vmgexit_enter(svm->vcpu.vcpu_id, ghcb);
1855 
1856 	exit_code = ghcb_get_sw_exit_code(ghcb);
1857 
1858 	ret = sev_es_validate_vmgexit(svm);
1859 	if (ret)
1860 		return ret;
1861 
1862 	sev_es_sync_from_ghcb(svm);
1863 	ghcb_set_sw_exit_info_1(ghcb, 0);
1864 	ghcb_set_sw_exit_info_2(ghcb, 0);
1865 
1866 	ret = -EINVAL;
1867 	switch (exit_code) {
1868 	case SVM_VMGEXIT_MMIO_READ:
1869 		if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
1870 			break;
1871 
1872 		ret = kvm_sev_es_mmio_read(&svm->vcpu,
1873 					   control->exit_info_1,
1874 					   control->exit_info_2,
1875 					   svm->ghcb_sa);
1876 		break;
1877 	case SVM_VMGEXIT_MMIO_WRITE:
1878 		if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
1879 			break;
1880 
1881 		ret = kvm_sev_es_mmio_write(&svm->vcpu,
1882 					    control->exit_info_1,
1883 					    control->exit_info_2,
1884 					    svm->ghcb_sa);
1885 		break;
1886 	case SVM_VMGEXIT_NMI_COMPLETE:
1887 		ret = svm_invoke_exit_handler(svm, SVM_EXIT_IRET);
1888 		break;
1889 	case SVM_VMGEXIT_AP_HLT_LOOP:
1890 		ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
1891 		break;
1892 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
1893 		struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
1894 
1895 		switch (control->exit_info_1) {
1896 		case 0:
1897 			/* Set AP jump table address */
1898 			sev->ap_jump_table = control->exit_info_2;
1899 			break;
1900 		case 1:
1901 			/* Get AP jump table address */
1902 			ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
1903 			break;
1904 		default:
1905 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
1906 			       control->exit_info_1);
1907 			ghcb_set_sw_exit_info_1(ghcb, 1);
1908 			ghcb_set_sw_exit_info_2(ghcb,
1909 						X86_TRAP_UD |
1910 						SVM_EVTINJ_TYPE_EXEPT |
1911 						SVM_EVTINJ_VALID);
1912 		}
1913 
1914 		ret = 1;
1915 		break;
1916 	}
1917 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
1918 		vcpu_unimpl(&svm->vcpu,
1919 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
1920 			    control->exit_info_1, control->exit_info_2);
1921 		break;
1922 	default:
1923 		ret = svm_invoke_exit_handler(svm, exit_code);
1924 	}
1925 
1926 	return ret;
1927 }
1928 
1929 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
1930 {
1931 	if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2))
1932 		return -EINVAL;
1933 
1934 	return kvm_sev_es_string_io(&svm->vcpu, size, port,
1935 				    svm->ghcb_sa, svm->ghcb_sa_len, in);
1936 }
1937 
1938 void sev_es_init_vmcb(struct vcpu_svm *svm)
1939 {
1940 	struct kvm_vcpu *vcpu = &svm->vcpu;
1941 
1942 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
1943 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1944 
1945 	/*
1946 	 * An SEV-ES guest requires a VMSA area that is a separate from the
1947 	 * VMCB page. Do not include the encryption mask on the VMSA physical
1948 	 * address since hardware will access it using the guest key.
1949 	 */
1950 	svm->vmcb->control.vmsa_pa = __pa(svm->vmsa);
1951 
1952 	/* Can't intercept CR register access, HV can't modify CR registers */
1953 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1954 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
1955 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
1956 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1957 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
1958 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
1959 
1960 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1961 
1962 	/* Track EFER/CR register changes */
1963 	svm_set_intercept(svm, TRAP_EFER_WRITE);
1964 	svm_set_intercept(svm, TRAP_CR0_WRITE);
1965 	svm_set_intercept(svm, TRAP_CR4_WRITE);
1966 	svm_set_intercept(svm, TRAP_CR8_WRITE);
1967 
1968 	/* No support for enable_vmware_backdoor */
1969 	clr_exception_intercept(svm, GP_VECTOR);
1970 
1971 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
1972 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
1973 
1974 	/* Clear intercepts on selected MSRs */
1975 	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
1976 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
1977 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1978 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1979 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1980 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1981 }
1982 
1983 void sev_es_create_vcpu(struct vcpu_svm *svm)
1984 {
1985 	/*
1986 	 * Set the GHCB MSR value as per the GHCB specification when creating
1987 	 * a vCPU for an SEV-ES guest.
1988 	 */
1989 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
1990 					    GHCB_VERSION_MIN,
1991 					    sev_enc_bit));
1992 }
1993 
1994 void sev_es_vcpu_load(struct vcpu_svm *svm, int cpu)
1995 {
1996 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1997 	struct vmcb_save_area *hostsa;
1998 	unsigned int i;
1999 
2000 	/*
2001 	 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2002 	 * of which one step is to perform a VMLOAD. Since hardware does not
2003 	 * perform a VMSAVE on VMRUN, the host savearea must be updated.
2004 	 */
2005 	asm volatile(__ex("vmsave %0") : : "a" (__sme_page_pa(sd->save_area)) : "memory");
2006 
2007 	/*
2008 	 * Certain MSRs are restored on VMEXIT, only save ones that aren't
2009 	 * restored.
2010 	 */
2011 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) {
2012 		if (host_save_user_msrs[i].sev_es_restored)
2013 			continue;
2014 
2015 		rdmsrl(host_save_user_msrs[i].index, svm->host_user_msrs[i]);
2016 	}
2017 
2018 	/* XCR0 is restored on VMEXIT, save the current host value */
2019 	hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2020 	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2021 
2022 	/* PKRU is restored on VMEXIT, save the curent host value */
2023 	hostsa->pkru = read_pkru();
2024 
2025 	/* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2026 	hostsa->xss = host_xss;
2027 }
2028 
2029 void sev_es_vcpu_put(struct vcpu_svm *svm)
2030 {
2031 	unsigned int i;
2032 
2033 	/*
2034 	 * Certain MSRs are restored on VMEXIT and were saved with vmsave in
2035 	 * sev_es_vcpu_load() above. Only restore ones that weren't.
2036 	 */
2037 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) {
2038 		if (host_save_user_msrs[i].sev_es_restored)
2039 			continue;
2040 
2041 		wrmsrl(host_save_user_msrs[i].index, svm->host_user_msrs[i]);
2042 	}
2043 }
2044 
2045 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2046 {
2047 	struct vcpu_svm *svm = to_svm(vcpu);
2048 
2049 	/* First SIPI: Use the values as initially set by the VMM */
2050 	if (!svm->received_first_sipi) {
2051 		svm->received_first_sipi = true;
2052 		return;
2053 	}
2054 
2055 	/*
2056 	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2057 	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2058 	 * non-zero value.
2059 	 */
2060 	ghcb_set_sw_exit_info_2(svm->ghcb, 1);
2061 }
2062