1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/misc_cgroup.h> 18 #include <linux/processor.h> 19 #include <linux/trace_events.h> 20 21 #include <asm/pkru.h> 22 #include <asm/trapnr.h> 23 #include <asm/fpu/xcr.h> 24 25 #include "x86.h" 26 #include "svm.h" 27 #include "svm_ops.h" 28 #include "cpuid.h" 29 #include "trace.h" 30 31 #ifndef CONFIG_KVM_AMD_SEV 32 /* 33 * When this config is not defined, SEV feature is not supported and APIs in 34 * this file are not used but this file still gets compiled into the KVM AMD 35 * module. 36 * 37 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 38 * misc_res_type {} defined in linux/misc_cgroup.h. 39 * 40 * Below macros allow compilation to succeed. 41 */ 42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 44 #endif 45 46 #ifdef CONFIG_KVM_AMD_SEV 47 /* enable/disable SEV support */ 48 static bool sev_enabled = true; 49 module_param_named(sev, sev_enabled, bool, 0444); 50 51 /* enable/disable SEV-ES support */ 52 static bool sev_es_enabled = true; 53 module_param_named(sev_es, sev_es_enabled, bool, 0444); 54 #else 55 #define sev_enabled false 56 #define sev_es_enabled false 57 #endif /* CONFIG_KVM_AMD_SEV */ 58 59 static u8 sev_enc_bit; 60 static DECLARE_RWSEM(sev_deactivate_lock); 61 static DEFINE_MUTEX(sev_bitmap_lock); 62 unsigned int max_sev_asid; 63 static unsigned int min_sev_asid; 64 static unsigned long sev_me_mask; 65 static unsigned int nr_asids; 66 static unsigned long *sev_asid_bitmap; 67 static unsigned long *sev_reclaim_asid_bitmap; 68 69 struct enc_region { 70 struct list_head list; 71 unsigned long npages; 72 struct page **pages; 73 unsigned long uaddr; 74 unsigned long size; 75 }; 76 77 /* Called with the sev_bitmap_lock held, or on shutdown */ 78 static int sev_flush_asids(int min_asid, int max_asid) 79 { 80 int ret, asid, error = 0; 81 82 /* Check if there are any ASIDs to reclaim before performing a flush */ 83 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 84 if (asid > max_asid) 85 return -EBUSY; 86 87 /* 88 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 89 * so it must be guarded. 90 */ 91 down_write(&sev_deactivate_lock); 92 93 wbinvd_on_all_cpus(); 94 ret = sev_guest_df_flush(&error); 95 96 up_write(&sev_deactivate_lock); 97 98 if (ret) 99 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 100 101 return ret; 102 } 103 104 static inline bool is_mirroring_enc_context(struct kvm *kvm) 105 { 106 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 107 } 108 109 /* Must be called with the sev_bitmap_lock held */ 110 static bool __sev_recycle_asids(int min_asid, int max_asid) 111 { 112 if (sev_flush_asids(min_asid, max_asid)) 113 return false; 114 115 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 116 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 117 nr_asids); 118 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 119 120 return true; 121 } 122 123 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 124 { 125 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 126 return misc_cg_try_charge(type, sev->misc_cg, 1); 127 } 128 129 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 130 { 131 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 132 misc_cg_uncharge(type, sev->misc_cg, 1); 133 } 134 135 static int sev_asid_new(struct kvm_sev_info *sev) 136 { 137 int asid, min_asid, max_asid, ret; 138 bool retry = true; 139 140 WARN_ON(sev->misc_cg); 141 sev->misc_cg = get_current_misc_cg(); 142 ret = sev_misc_cg_try_charge(sev); 143 if (ret) { 144 put_misc_cg(sev->misc_cg); 145 sev->misc_cg = NULL; 146 return ret; 147 } 148 149 mutex_lock(&sev_bitmap_lock); 150 151 /* 152 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 153 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 154 */ 155 min_asid = sev->es_active ? 1 : min_sev_asid; 156 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 157 again: 158 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 159 if (asid > max_asid) { 160 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 161 retry = false; 162 goto again; 163 } 164 mutex_unlock(&sev_bitmap_lock); 165 ret = -EBUSY; 166 goto e_uncharge; 167 } 168 169 __set_bit(asid, sev_asid_bitmap); 170 171 mutex_unlock(&sev_bitmap_lock); 172 173 return asid; 174 e_uncharge: 175 sev_misc_cg_uncharge(sev); 176 put_misc_cg(sev->misc_cg); 177 sev->misc_cg = NULL; 178 return ret; 179 } 180 181 static int sev_get_asid(struct kvm *kvm) 182 { 183 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 184 185 return sev->asid; 186 } 187 188 static void sev_asid_free(struct kvm_sev_info *sev) 189 { 190 struct svm_cpu_data *sd; 191 int cpu; 192 193 mutex_lock(&sev_bitmap_lock); 194 195 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 196 197 for_each_possible_cpu(cpu) { 198 sd = per_cpu(svm_data, cpu); 199 sd->sev_vmcbs[sev->asid] = NULL; 200 } 201 202 mutex_unlock(&sev_bitmap_lock); 203 204 sev_misc_cg_uncharge(sev); 205 put_misc_cg(sev->misc_cg); 206 sev->misc_cg = NULL; 207 } 208 209 static void sev_decommission(unsigned int handle) 210 { 211 struct sev_data_decommission decommission; 212 213 if (!handle) 214 return; 215 216 decommission.handle = handle; 217 sev_guest_decommission(&decommission, NULL); 218 } 219 220 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 221 { 222 struct sev_data_deactivate deactivate; 223 224 if (!handle) 225 return; 226 227 deactivate.handle = handle; 228 229 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 230 down_read(&sev_deactivate_lock); 231 sev_guest_deactivate(&deactivate, NULL); 232 up_read(&sev_deactivate_lock); 233 234 sev_decommission(handle); 235 } 236 237 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 238 { 239 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 240 int asid, ret; 241 242 if (kvm->created_vcpus) 243 return -EINVAL; 244 245 ret = -EBUSY; 246 if (unlikely(sev->active)) 247 return ret; 248 249 sev->active = true; 250 sev->es_active = argp->id == KVM_SEV_ES_INIT; 251 asid = sev_asid_new(sev); 252 if (asid < 0) 253 goto e_no_asid; 254 sev->asid = asid; 255 256 ret = sev_platform_init(&argp->error); 257 if (ret) 258 goto e_free; 259 260 INIT_LIST_HEAD(&sev->regions_list); 261 INIT_LIST_HEAD(&sev->mirror_vms); 262 263 return 0; 264 265 e_free: 266 sev_asid_free(sev); 267 sev->asid = 0; 268 e_no_asid: 269 sev->es_active = false; 270 sev->active = false; 271 return ret; 272 } 273 274 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 275 { 276 struct sev_data_activate activate; 277 int asid = sev_get_asid(kvm); 278 int ret; 279 280 /* activate ASID on the given handle */ 281 activate.handle = handle; 282 activate.asid = asid; 283 ret = sev_guest_activate(&activate, error); 284 285 return ret; 286 } 287 288 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 289 { 290 struct fd f; 291 int ret; 292 293 f = fdget(fd); 294 if (!f.file) 295 return -EBADF; 296 297 ret = sev_issue_cmd_external_user(f.file, id, data, error); 298 299 fdput(f); 300 return ret; 301 } 302 303 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 304 { 305 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 306 307 return __sev_issue_cmd(sev->fd, id, data, error); 308 } 309 310 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 311 { 312 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 313 struct sev_data_launch_start start; 314 struct kvm_sev_launch_start params; 315 void *dh_blob, *session_blob; 316 int *error = &argp->error; 317 int ret; 318 319 if (!sev_guest(kvm)) 320 return -ENOTTY; 321 322 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 323 return -EFAULT; 324 325 memset(&start, 0, sizeof(start)); 326 327 dh_blob = NULL; 328 if (params.dh_uaddr) { 329 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 330 if (IS_ERR(dh_blob)) 331 return PTR_ERR(dh_blob); 332 333 start.dh_cert_address = __sme_set(__pa(dh_blob)); 334 start.dh_cert_len = params.dh_len; 335 } 336 337 session_blob = NULL; 338 if (params.session_uaddr) { 339 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 340 if (IS_ERR(session_blob)) { 341 ret = PTR_ERR(session_blob); 342 goto e_free_dh; 343 } 344 345 start.session_address = __sme_set(__pa(session_blob)); 346 start.session_len = params.session_len; 347 } 348 349 start.handle = params.handle; 350 start.policy = params.policy; 351 352 /* create memory encryption context */ 353 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 354 if (ret) 355 goto e_free_session; 356 357 /* Bind ASID to this guest */ 358 ret = sev_bind_asid(kvm, start.handle, error); 359 if (ret) { 360 sev_decommission(start.handle); 361 goto e_free_session; 362 } 363 364 /* return handle to userspace */ 365 params.handle = start.handle; 366 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 367 sev_unbind_asid(kvm, start.handle); 368 ret = -EFAULT; 369 goto e_free_session; 370 } 371 372 sev->handle = start.handle; 373 sev->fd = argp->sev_fd; 374 375 e_free_session: 376 kfree(session_blob); 377 e_free_dh: 378 kfree(dh_blob); 379 return ret; 380 } 381 382 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 383 unsigned long ulen, unsigned long *n, 384 int write) 385 { 386 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 387 unsigned long npages, size; 388 int npinned; 389 unsigned long locked, lock_limit; 390 struct page **pages; 391 unsigned long first, last; 392 int ret; 393 394 lockdep_assert_held(&kvm->lock); 395 396 if (ulen == 0 || uaddr + ulen < uaddr) 397 return ERR_PTR(-EINVAL); 398 399 /* Calculate number of pages. */ 400 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 401 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 402 npages = (last - first + 1); 403 404 locked = sev->pages_locked + npages; 405 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 406 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 407 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 408 return ERR_PTR(-ENOMEM); 409 } 410 411 if (WARN_ON_ONCE(npages > INT_MAX)) 412 return ERR_PTR(-EINVAL); 413 414 /* Avoid using vmalloc for smaller buffers. */ 415 size = npages * sizeof(struct page *); 416 if (size > PAGE_SIZE) 417 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 418 else 419 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 420 421 if (!pages) 422 return ERR_PTR(-ENOMEM); 423 424 /* Pin the user virtual address. */ 425 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 426 if (npinned != npages) { 427 pr_err("SEV: Failure locking %lu pages.\n", npages); 428 ret = -ENOMEM; 429 goto err; 430 } 431 432 *n = npages; 433 sev->pages_locked = locked; 434 435 return pages; 436 437 err: 438 if (npinned > 0) 439 unpin_user_pages(pages, npinned); 440 441 kvfree(pages); 442 return ERR_PTR(ret); 443 } 444 445 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 446 unsigned long npages) 447 { 448 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 449 450 unpin_user_pages(pages, npages); 451 kvfree(pages); 452 sev->pages_locked -= npages; 453 } 454 455 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 456 { 457 uint8_t *page_virtual; 458 unsigned long i; 459 460 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 461 pages == NULL) 462 return; 463 464 for (i = 0; i < npages; i++) { 465 page_virtual = kmap_atomic(pages[i]); 466 clflush_cache_range(page_virtual, PAGE_SIZE); 467 kunmap_atomic(page_virtual); 468 } 469 } 470 471 static unsigned long get_num_contig_pages(unsigned long idx, 472 struct page **inpages, unsigned long npages) 473 { 474 unsigned long paddr, next_paddr; 475 unsigned long i = idx + 1, pages = 1; 476 477 /* find the number of contiguous pages starting from idx */ 478 paddr = __sme_page_pa(inpages[idx]); 479 while (i < npages) { 480 next_paddr = __sme_page_pa(inpages[i++]); 481 if ((paddr + PAGE_SIZE) == next_paddr) { 482 pages++; 483 paddr = next_paddr; 484 continue; 485 } 486 break; 487 } 488 489 return pages; 490 } 491 492 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 493 { 494 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 495 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 496 struct kvm_sev_launch_update_data params; 497 struct sev_data_launch_update_data data; 498 struct page **inpages; 499 int ret; 500 501 if (!sev_guest(kvm)) 502 return -ENOTTY; 503 504 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 505 return -EFAULT; 506 507 vaddr = params.uaddr; 508 size = params.len; 509 vaddr_end = vaddr + size; 510 511 /* Lock the user memory. */ 512 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 513 if (IS_ERR(inpages)) 514 return PTR_ERR(inpages); 515 516 /* 517 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 518 * place; the cache may contain the data that was written unencrypted. 519 */ 520 sev_clflush_pages(inpages, npages); 521 522 data.reserved = 0; 523 data.handle = sev->handle; 524 525 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 526 int offset, len; 527 528 /* 529 * If the user buffer is not page-aligned, calculate the offset 530 * within the page. 531 */ 532 offset = vaddr & (PAGE_SIZE - 1); 533 534 /* Calculate the number of pages that can be encrypted in one go. */ 535 pages = get_num_contig_pages(i, inpages, npages); 536 537 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 538 539 data.len = len; 540 data.address = __sme_page_pa(inpages[i]) + offset; 541 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 542 if (ret) 543 goto e_unpin; 544 545 size -= len; 546 next_vaddr = vaddr + len; 547 } 548 549 e_unpin: 550 /* content of memory is updated, mark pages dirty */ 551 for (i = 0; i < npages; i++) { 552 set_page_dirty_lock(inpages[i]); 553 mark_page_accessed(inpages[i]); 554 } 555 /* unlock the user pages */ 556 sev_unpin_memory(kvm, inpages, npages); 557 return ret; 558 } 559 560 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 561 { 562 struct vmcb_save_area *save = &svm->vmcb->save; 563 564 /* Check some debug related fields before encrypting the VMSA */ 565 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) 566 return -EINVAL; 567 568 /* Sync registgers */ 569 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 570 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 571 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 572 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 573 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 574 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 575 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 576 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 577 #ifdef CONFIG_X86_64 578 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 579 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 580 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 581 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 582 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 583 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 584 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 585 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 586 #endif 587 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 588 589 /* Sync some non-GPR registers before encrypting */ 590 save->xcr0 = svm->vcpu.arch.xcr0; 591 save->pkru = svm->vcpu.arch.pkru; 592 save->xss = svm->vcpu.arch.ia32_xss; 593 save->dr6 = svm->vcpu.arch.dr6; 594 595 /* 596 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 597 * the traditional VMSA that is part of the VMCB. Copy the 598 * traditional VMSA as it has been built so far (in prep 599 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 600 */ 601 memcpy(svm->sev_es.vmsa, save, sizeof(*save)); 602 603 return 0; 604 } 605 606 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 607 int *error) 608 { 609 struct sev_data_launch_update_vmsa vmsa; 610 struct vcpu_svm *svm = to_svm(vcpu); 611 int ret; 612 613 /* Perform some pre-encryption checks against the VMSA */ 614 ret = sev_es_sync_vmsa(svm); 615 if (ret) 616 return ret; 617 618 /* 619 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 620 * the VMSA memory content (i.e it will write the same memory region 621 * with the guest's key), so invalidate it first. 622 */ 623 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 624 625 vmsa.reserved = 0; 626 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle; 627 vmsa.address = __sme_pa(svm->sev_es.vmsa); 628 vmsa.len = PAGE_SIZE; 629 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 630 if (ret) 631 return ret; 632 633 vcpu->arch.guest_state_protected = true; 634 return 0; 635 } 636 637 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 638 { 639 struct kvm_vcpu *vcpu; 640 unsigned long i; 641 int ret; 642 643 if (!sev_es_guest(kvm)) 644 return -ENOTTY; 645 646 kvm_for_each_vcpu(i, vcpu, kvm) { 647 ret = mutex_lock_killable(&vcpu->mutex); 648 if (ret) 649 return ret; 650 651 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 652 653 mutex_unlock(&vcpu->mutex); 654 if (ret) 655 return ret; 656 } 657 658 return 0; 659 } 660 661 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 662 { 663 void __user *measure = (void __user *)(uintptr_t)argp->data; 664 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 665 struct sev_data_launch_measure data; 666 struct kvm_sev_launch_measure params; 667 void __user *p = NULL; 668 void *blob = NULL; 669 int ret; 670 671 if (!sev_guest(kvm)) 672 return -ENOTTY; 673 674 if (copy_from_user(¶ms, measure, sizeof(params))) 675 return -EFAULT; 676 677 memset(&data, 0, sizeof(data)); 678 679 /* User wants to query the blob length */ 680 if (!params.len) 681 goto cmd; 682 683 p = (void __user *)(uintptr_t)params.uaddr; 684 if (p) { 685 if (params.len > SEV_FW_BLOB_MAX_SIZE) 686 return -EINVAL; 687 688 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 689 if (!blob) 690 return -ENOMEM; 691 692 data.address = __psp_pa(blob); 693 data.len = params.len; 694 } 695 696 cmd: 697 data.handle = sev->handle; 698 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 699 700 /* 701 * If we query the session length, FW responded with expected data. 702 */ 703 if (!params.len) 704 goto done; 705 706 if (ret) 707 goto e_free_blob; 708 709 if (blob) { 710 if (copy_to_user(p, blob, params.len)) 711 ret = -EFAULT; 712 } 713 714 done: 715 params.len = data.len; 716 if (copy_to_user(measure, ¶ms, sizeof(params))) 717 ret = -EFAULT; 718 e_free_blob: 719 kfree(blob); 720 return ret; 721 } 722 723 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 724 { 725 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 726 struct sev_data_launch_finish data; 727 728 if (!sev_guest(kvm)) 729 return -ENOTTY; 730 731 data.handle = sev->handle; 732 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 733 } 734 735 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 736 { 737 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 738 struct kvm_sev_guest_status params; 739 struct sev_data_guest_status data; 740 int ret; 741 742 if (!sev_guest(kvm)) 743 return -ENOTTY; 744 745 memset(&data, 0, sizeof(data)); 746 747 data.handle = sev->handle; 748 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 749 if (ret) 750 return ret; 751 752 params.policy = data.policy; 753 params.state = data.state; 754 params.handle = data.handle; 755 756 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 757 ret = -EFAULT; 758 759 return ret; 760 } 761 762 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 763 unsigned long dst, int size, 764 int *error, bool enc) 765 { 766 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 767 struct sev_data_dbg data; 768 769 data.reserved = 0; 770 data.handle = sev->handle; 771 data.dst_addr = dst; 772 data.src_addr = src; 773 data.len = size; 774 775 return sev_issue_cmd(kvm, 776 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 777 &data, error); 778 } 779 780 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 781 unsigned long dst_paddr, int sz, int *err) 782 { 783 int offset; 784 785 /* 786 * Its safe to read more than we are asked, caller should ensure that 787 * destination has enough space. 788 */ 789 offset = src_paddr & 15; 790 src_paddr = round_down(src_paddr, 16); 791 sz = round_up(sz + offset, 16); 792 793 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 794 } 795 796 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 797 void __user *dst_uaddr, 798 unsigned long dst_paddr, 799 int size, int *err) 800 { 801 struct page *tpage = NULL; 802 int ret, offset; 803 804 /* if inputs are not 16-byte then use intermediate buffer */ 805 if (!IS_ALIGNED(dst_paddr, 16) || 806 !IS_ALIGNED(paddr, 16) || 807 !IS_ALIGNED(size, 16)) { 808 tpage = (void *)alloc_page(GFP_KERNEL); 809 if (!tpage) 810 return -ENOMEM; 811 812 dst_paddr = __sme_page_pa(tpage); 813 } 814 815 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 816 if (ret) 817 goto e_free; 818 819 if (tpage) { 820 offset = paddr & 15; 821 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 822 ret = -EFAULT; 823 } 824 825 e_free: 826 if (tpage) 827 __free_page(tpage); 828 829 return ret; 830 } 831 832 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 833 void __user *vaddr, 834 unsigned long dst_paddr, 835 void __user *dst_vaddr, 836 int size, int *error) 837 { 838 struct page *src_tpage = NULL; 839 struct page *dst_tpage = NULL; 840 int ret, len = size; 841 842 /* If source buffer is not aligned then use an intermediate buffer */ 843 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 844 src_tpage = alloc_page(GFP_KERNEL); 845 if (!src_tpage) 846 return -ENOMEM; 847 848 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 849 __free_page(src_tpage); 850 return -EFAULT; 851 } 852 853 paddr = __sme_page_pa(src_tpage); 854 } 855 856 /* 857 * If destination buffer or length is not aligned then do read-modify-write: 858 * - decrypt destination in an intermediate buffer 859 * - copy the source buffer in an intermediate buffer 860 * - use the intermediate buffer as source buffer 861 */ 862 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 863 int dst_offset; 864 865 dst_tpage = alloc_page(GFP_KERNEL); 866 if (!dst_tpage) { 867 ret = -ENOMEM; 868 goto e_free; 869 } 870 871 ret = __sev_dbg_decrypt(kvm, dst_paddr, 872 __sme_page_pa(dst_tpage), size, error); 873 if (ret) 874 goto e_free; 875 876 /* 877 * If source is kernel buffer then use memcpy() otherwise 878 * copy_from_user(). 879 */ 880 dst_offset = dst_paddr & 15; 881 882 if (src_tpage) 883 memcpy(page_address(dst_tpage) + dst_offset, 884 page_address(src_tpage), size); 885 else { 886 if (copy_from_user(page_address(dst_tpage) + dst_offset, 887 vaddr, size)) { 888 ret = -EFAULT; 889 goto e_free; 890 } 891 } 892 893 paddr = __sme_page_pa(dst_tpage); 894 dst_paddr = round_down(dst_paddr, 16); 895 len = round_up(size, 16); 896 } 897 898 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 899 900 e_free: 901 if (src_tpage) 902 __free_page(src_tpage); 903 if (dst_tpage) 904 __free_page(dst_tpage); 905 return ret; 906 } 907 908 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 909 { 910 unsigned long vaddr, vaddr_end, next_vaddr; 911 unsigned long dst_vaddr; 912 struct page **src_p, **dst_p; 913 struct kvm_sev_dbg debug; 914 unsigned long n; 915 unsigned int size; 916 int ret; 917 918 if (!sev_guest(kvm)) 919 return -ENOTTY; 920 921 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 922 return -EFAULT; 923 924 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 925 return -EINVAL; 926 if (!debug.dst_uaddr) 927 return -EINVAL; 928 929 vaddr = debug.src_uaddr; 930 size = debug.len; 931 vaddr_end = vaddr + size; 932 dst_vaddr = debug.dst_uaddr; 933 934 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 935 int len, s_off, d_off; 936 937 /* lock userspace source and destination page */ 938 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 939 if (IS_ERR(src_p)) 940 return PTR_ERR(src_p); 941 942 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 943 if (IS_ERR(dst_p)) { 944 sev_unpin_memory(kvm, src_p, n); 945 return PTR_ERR(dst_p); 946 } 947 948 /* 949 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 950 * the pages; flush the destination too so that future accesses do not 951 * see stale data. 952 */ 953 sev_clflush_pages(src_p, 1); 954 sev_clflush_pages(dst_p, 1); 955 956 /* 957 * Since user buffer may not be page aligned, calculate the 958 * offset within the page. 959 */ 960 s_off = vaddr & ~PAGE_MASK; 961 d_off = dst_vaddr & ~PAGE_MASK; 962 len = min_t(size_t, (PAGE_SIZE - s_off), size); 963 964 if (dec) 965 ret = __sev_dbg_decrypt_user(kvm, 966 __sme_page_pa(src_p[0]) + s_off, 967 (void __user *)dst_vaddr, 968 __sme_page_pa(dst_p[0]) + d_off, 969 len, &argp->error); 970 else 971 ret = __sev_dbg_encrypt_user(kvm, 972 __sme_page_pa(src_p[0]) + s_off, 973 (void __user *)vaddr, 974 __sme_page_pa(dst_p[0]) + d_off, 975 (void __user *)dst_vaddr, 976 len, &argp->error); 977 978 sev_unpin_memory(kvm, src_p, n); 979 sev_unpin_memory(kvm, dst_p, n); 980 981 if (ret) 982 goto err; 983 984 next_vaddr = vaddr + len; 985 dst_vaddr = dst_vaddr + len; 986 size -= len; 987 } 988 err: 989 return ret; 990 } 991 992 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 993 { 994 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 995 struct sev_data_launch_secret data; 996 struct kvm_sev_launch_secret params; 997 struct page **pages; 998 void *blob, *hdr; 999 unsigned long n, i; 1000 int ret, offset; 1001 1002 if (!sev_guest(kvm)) 1003 return -ENOTTY; 1004 1005 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1006 return -EFAULT; 1007 1008 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1009 if (IS_ERR(pages)) 1010 return PTR_ERR(pages); 1011 1012 /* 1013 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1014 * place; the cache may contain the data that was written unencrypted. 1015 */ 1016 sev_clflush_pages(pages, n); 1017 1018 /* 1019 * The secret must be copied into contiguous memory region, lets verify 1020 * that userspace memory pages are contiguous before we issue command. 1021 */ 1022 if (get_num_contig_pages(0, pages, n) != n) { 1023 ret = -EINVAL; 1024 goto e_unpin_memory; 1025 } 1026 1027 memset(&data, 0, sizeof(data)); 1028 1029 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1030 data.guest_address = __sme_page_pa(pages[0]) + offset; 1031 data.guest_len = params.guest_len; 1032 1033 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1034 if (IS_ERR(blob)) { 1035 ret = PTR_ERR(blob); 1036 goto e_unpin_memory; 1037 } 1038 1039 data.trans_address = __psp_pa(blob); 1040 data.trans_len = params.trans_len; 1041 1042 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1043 if (IS_ERR(hdr)) { 1044 ret = PTR_ERR(hdr); 1045 goto e_free_blob; 1046 } 1047 data.hdr_address = __psp_pa(hdr); 1048 data.hdr_len = params.hdr_len; 1049 1050 data.handle = sev->handle; 1051 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1052 1053 kfree(hdr); 1054 1055 e_free_blob: 1056 kfree(blob); 1057 e_unpin_memory: 1058 /* content of memory is updated, mark pages dirty */ 1059 for (i = 0; i < n; i++) { 1060 set_page_dirty_lock(pages[i]); 1061 mark_page_accessed(pages[i]); 1062 } 1063 sev_unpin_memory(kvm, pages, n); 1064 return ret; 1065 } 1066 1067 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1068 { 1069 void __user *report = (void __user *)(uintptr_t)argp->data; 1070 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1071 struct sev_data_attestation_report data; 1072 struct kvm_sev_attestation_report params; 1073 void __user *p; 1074 void *blob = NULL; 1075 int ret; 1076 1077 if (!sev_guest(kvm)) 1078 return -ENOTTY; 1079 1080 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1081 return -EFAULT; 1082 1083 memset(&data, 0, sizeof(data)); 1084 1085 /* User wants to query the blob length */ 1086 if (!params.len) 1087 goto cmd; 1088 1089 p = (void __user *)(uintptr_t)params.uaddr; 1090 if (p) { 1091 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1092 return -EINVAL; 1093 1094 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 1095 if (!blob) 1096 return -ENOMEM; 1097 1098 data.address = __psp_pa(blob); 1099 data.len = params.len; 1100 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1101 } 1102 cmd: 1103 data.handle = sev->handle; 1104 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1105 /* 1106 * If we query the session length, FW responded with expected data. 1107 */ 1108 if (!params.len) 1109 goto done; 1110 1111 if (ret) 1112 goto e_free_blob; 1113 1114 if (blob) { 1115 if (copy_to_user(p, blob, params.len)) 1116 ret = -EFAULT; 1117 } 1118 1119 done: 1120 params.len = data.len; 1121 if (copy_to_user(report, ¶ms, sizeof(params))) 1122 ret = -EFAULT; 1123 e_free_blob: 1124 kfree(blob); 1125 return ret; 1126 } 1127 1128 /* Userspace wants to query session length. */ 1129 static int 1130 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1131 struct kvm_sev_send_start *params) 1132 { 1133 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1134 struct sev_data_send_start data; 1135 int ret; 1136 1137 memset(&data, 0, sizeof(data)); 1138 data.handle = sev->handle; 1139 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1140 1141 params->session_len = data.session_len; 1142 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1143 sizeof(struct kvm_sev_send_start))) 1144 ret = -EFAULT; 1145 1146 return ret; 1147 } 1148 1149 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1150 { 1151 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1152 struct sev_data_send_start data; 1153 struct kvm_sev_send_start params; 1154 void *amd_certs, *session_data; 1155 void *pdh_cert, *plat_certs; 1156 int ret; 1157 1158 if (!sev_guest(kvm)) 1159 return -ENOTTY; 1160 1161 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1162 sizeof(struct kvm_sev_send_start))) 1163 return -EFAULT; 1164 1165 /* if session_len is zero, userspace wants to query the session length */ 1166 if (!params.session_len) 1167 return __sev_send_start_query_session_length(kvm, argp, 1168 ¶ms); 1169 1170 /* some sanity checks */ 1171 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1172 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1173 return -EINVAL; 1174 1175 /* allocate the memory to hold the session data blob */ 1176 session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1177 if (!session_data) 1178 return -ENOMEM; 1179 1180 /* copy the certificate blobs from userspace */ 1181 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1182 params.pdh_cert_len); 1183 if (IS_ERR(pdh_cert)) { 1184 ret = PTR_ERR(pdh_cert); 1185 goto e_free_session; 1186 } 1187 1188 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1189 params.plat_certs_len); 1190 if (IS_ERR(plat_certs)) { 1191 ret = PTR_ERR(plat_certs); 1192 goto e_free_pdh; 1193 } 1194 1195 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1196 params.amd_certs_len); 1197 if (IS_ERR(amd_certs)) { 1198 ret = PTR_ERR(amd_certs); 1199 goto e_free_plat_cert; 1200 } 1201 1202 /* populate the FW SEND_START field with system physical address */ 1203 memset(&data, 0, sizeof(data)); 1204 data.pdh_cert_address = __psp_pa(pdh_cert); 1205 data.pdh_cert_len = params.pdh_cert_len; 1206 data.plat_certs_address = __psp_pa(plat_certs); 1207 data.plat_certs_len = params.plat_certs_len; 1208 data.amd_certs_address = __psp_pa(amd_certs); 1209 data.amd_certs_len = params.amd_certs_len; 1210 data.session_address = __psp_pa(session_data); 1211 data.session_len = params.session_len; 1212 data.handle = sev->handle; 1213 1214 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1215 1216 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1217 session_data, params.session_len)) { 1218 ret = -EFAULT; 1219 goto e_free_amd_cert; 1220 } 1221 1222 params.policy = data.policy; 1223 params.session_len = data.session_len; 1224 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1225 sizeof(struct kvm_sev_send_start))) 1226 ret = -EFAULT; 1227 1228 e_free_amd_cert: 1229 kfree(amd_certs); 1230 e_free_plat_cert: 1231 kfree(plat_certs); 1232 e_free_pdh: 1233 kfree(pdh_cert); 1234 e_free_session: 1235 kfree(session_data); 1236 return ret; 1237 } 1238 1239 /* Userspace wants to query either header or trans length. */ 1240 static int 1241 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1242 struct kvm_sev_send_update_data *params) 1243 { 1244 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1245 struct sev_data_send_update_data data; 1246 int ret; 1247 1248 memset(&data, 0, sizeof(data)); 1249 data.handle = sev->handle; 1250 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1251 1252 params->hdr_len = data.hdr_len; 1253 params->trans_len = data.trans_len; 1254 1255 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1256 sizeof(struct kvm_sev_send_update_data))) 1257 ret = -EFAULT; 1258 1259 return ret; 1260 } 1261 1262 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1263 { 1264 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1265 struct sev_data_send_update_data data; 1266 struct kvm_sev_send_update_data params; 1267 void *hdr, *trans_data; 1268 struct page **guest_page; 1269 unsigned long n; 1270 int ret, offset; 1271 1272 if (!sev_guest(kvm)) 1273 return -ENOTTY; 1274 1275 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1276 sizeof(struct kvm_sev_send_update_data))) 1277 return -EFAULT; 1278 1279 /* userspace wants to query either header or trans length */ 1280 if (!params.trans_len || !params.hdr_len) 1281 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1282 1283 if (!params.trans_uaddr || !params.guest_uaddr || 1284 !params.guest_len || !params.hdr_uaddr) 1285 return -EINVAL; 1286 1287 /* Check if we are crossing the page boundary */ 1288 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1289 if ((params.guest_len + offset > PAGE_SIZE)) 1290 return -EINVAL; 1291 1292 /* Pin guest memory */ 1293 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1294 PAGE_SIZE, &n, 0); 1295 if (IS_ERR(guest_page)) 1296 return PTR_ERR(guest_page); 1297 1298 /* allocate memory for header and transport buffer */ 1299 ret = -ENOMEM; 1300 hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1301 if (!hdr) 1302 goto e_unpin; 1303 1304 trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1305 if (!trans_data) 1306 goto e_free_hdr; 1307 1308 memset(&data, 0, sizeof(data)); 1309 data.hdr_address = __psp_pa(hdr); 1310 data.hdr_len = params.hdr_len; 1311 data.trans_address = __psp_pa(trans_data); 1312 data.trans_len = params.trans_len; 1313 1314 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1315 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1316 data.guest_address |= sev_me_mask; 1317 data.guest_len = params.guest_len; 1318 data.handle = sev->handle; 1319 1320 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1321 1322 if (ret) 1323 goto e_free_trans_data; 1324 1325 /* copy transport buffer to user space */ 1326 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1327 trans_data, params.trans_len)) { 1328 ret = -EFAULT; 1329 goto e_free_trans_data; 1330 } 1331 1332 /* Copy packet header to userspace. */ 1333 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1334 params.hdr_len)) 1335 ret = -EFAULT; 1336 1337 e_free_trans_data: 1338 kfree(trans_data); 1339 e_free_hdr: 1340 kfree(hdr); 1341 e_unpin: 1342 sev_unpin_memory(kvm, guest_page, n); 1343 1344 return ret; 1345 } 1346 1347 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1348 { 1349 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1350 struct sev_data_send_finish data; 1351 1352 if (!sev_guest(kvm)) 1353 return -ENOTTY; 1354 1355 data.handle = sev->handle; 1356 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1357 } 1358 1359 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1360 { 1361 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1362 struct sev_data_send_cancel data; 1363 1364 if (!sev_guest(kvm)) 1365 return -ENOTTY; 1366 1367 data.handle = sev->handle; 1368 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1369 } 1370 1371 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1372 { 1373 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1374 struct sev_data_receive_start start; 1375 struct kvm_sev_receive_start params; 1376 int *error = &argp->error; 1377 void *session_data; 1378 void *pdh_data; 1379 int ret; 1380 1381 if (!sev_guest(kvm)) 1382 return -ENOTTY; 1383 1384 /* Get parameter from the userspace */ 1385 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1386 sizeof(struct kvm_sev_receive_start))) 1387 return -EFAULT; 1388 1389 /* some sanity checks */ 1390 if (!params.pdh_uaddr || !params.pdh_len || 1391 !params.session_uaddr || !params.session_len) 1392 return -EINVAL; 1393 1394 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1395 if (IS_ERR(pdh_data)) 1396 return PTR_ERR(pdh_data); 1397 1398 session_data = psp_copy_user_blob(params.session_uaddr, 1399 params.session_len); 1400 if (IS_ERR(session_data)) { 1401 ret = PTR_ERR(session_data); 1402 goto e_free_pdh; 1403 } 1404 1405 memset(&start, 0, sizeof(start)); 1406 start.handle = params.handle; 1407 start.policy = params.policy; 1408 start.pdh_cert_address = __psp_pa(pdh_data); 1409 start.pdh_cert_len = params.pdh_len; 1410 start.session_address = __psp_pa(session_data); 1411 start.session_len = params.session_len; 1412 1413 /* create memory encryption context */ 1414 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1415 error); 1416 if (ret) 1417 goto e_free_session; 1418 1419 /* Bind ASID to this guest */ 1420 ret = sev_bind_asid(kvm, start.handle, error); 1421 if (ret) { 1422 sev_decommission(start.handle); 1423 goto e_free_session; 1424 } 1425 1426 params.handle = start.handle; 1427 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1428 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1429 ret = -EFAULT; 1430 sev_unbind_asid(kvm, start.handle); 1431 goto e_free_session; 1432 } 1433 1434 sev->handle = start.handle; 1435 sev->fd = argp->sev_fd; 1436 1437 e_free_session: 1438 kfree(session_data); 1439 e_free_pdh: 1440 kfree(pdh_data); 1441 1442 return ret; 1443 } 1444 1445 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1446 { 1447 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1448 struct kvm_sev_receive_update_data params; 1449 struct sev_data_receive_update_data data; 1450 void *hdr = NULL, *trans = NULL; 1451 struct page **guest_page; 1452 unsigned long n; 1453 int ret, offset; 1454 1455 if (!sev_guest(kvm)) 1456 return -EINVAL; 1457 1458 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1459 sizeof(struct kvm_sev_receive_update_data))) 1460 return -EFAULT; 1461 1462 if (!params.hdr_uaddr || !params.hdr_len || 1463 !params.guest_uaddr || !params.guest_len || 1464 !params.trans_uaddr || !params.trans_len) 1465 return -EINVAL; 1466 1467 /* Check if we are crossing the page boundary */ 1468 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1469 if ((params.guest_len + offset > PAGE_SIZE)) 1470 return -EINVAL; 1471 1472 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1473 if (IS_ERR(hdr)) 1474 return PTR_ERR(hdr); 1475 1476 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1477 if (IS_ERR(trans)) { 1478 ret = PTR_ERR(trans); 1479 goto e_free_hdr; 1480 } 1481 1482 memset(&data, 0, sizeof(data)); 1483 data.hdr_address = __psp_pa(hdr); 1484 data.hdr_len = params.hdr_len; 1485 data.trans_address = __psp_pa(trans); 1486 data.trans_len = params.trans_len; 1487 1488 /* Pin guest memory */ 1489 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1490 PAGE_SIZE, &n, 1); 1491 if (IS_ERR(guest_page)) { 1492 ret = PTR_ERR(guest_page); 1493 goto e_free_trans; 1494 } 1495 1496 /* 1497 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1498 * encrypts the written data with the guest's key, and the cache may 1499 * contain dirty, unencrypted data. 1500 */ 1501 sev_clflush_pages(guest_page, n); 1502 1503 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1504 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1505 data.guest_address |= sev_me_mask; 1506 data.guest_len = params.guest_len; 1507 data.handle = sev->handle; 1508 1509 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1510 &argp->error); 1511 1512 sev_unpin_memory(kvm, guest_page, n); 1513 1514 e_free_trans: 1515 kfree(trans); 1516 e_free_hdr: 1517 kfree(hdr); 1518 1519 return ret; 1520 } 1521 1522 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1523 { 1524 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1525 struct sev_data_receive_finish data; 1526 1527 if (!sev_guest(kvm)) 1528 return -ENOTTY; 1529 1530 data.handle = sev->handle; 1531 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1532 } 1533 1534 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1535 { 1536 /* 1537 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1538 * active mirror VMs. Also allow the debugging and status commands. 1539 */ 1540 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1541 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1542 cmd_id == KVM_SEV_DBG_ENCRYPT) 1543 return true; 1544 1545 return false; 1546 } 1547 1548 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1549 { 1550 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1551 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1552 int r = -EBUSY; 1553 1554 if (dst_kvm == src_kvm) 1555 return -EINVAL; 1556 1557 /* 1558 * Bail if these VMs are already involved in a migration to avoid 1559 * deadlock between two VMs trying to migrate to/from each other. 1560 */ 1561 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1562 return -EBUSY; 1563 1564 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1565 goto release_dst; 1566 1567 r = -EINTR; 1568 if (mutex_lock_killable(&dst_kvm->lock)) 1569 goto release_src; 1570 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1571 goto unlock_dst; 1572 return 0; 1573 1574 unlock_dst: 1575 mutex_unlock(&dst_kvm->lock); 1576 release_src: 1577 atomic_set_release(&src_sev->migration_in_progress, 0); 1578 release_dst: 1579 atomic_set_release(&dst_sev->migration_in_progress, 0); 1580 return r; 1581 } 1582 1583 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1584 { 1585 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1586 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1587 1588 mutex_unlock(&dst_kvm->lock); 1589 mutex_unlock(&src_kvm->lock); 1590 atomic_set_release(&dst_sev->migration_in_progress, 0); 1591 atomic_set_release(&src_sev->migration_in_progress, 0); 1592 } 1593 1594 1595 static int sev_lock_vcpus_for_migration(struct kvm *kvm) 1596 { 1597 struct kvm_vcpu *vcpu; 1598 unsigned long i, j; 1599 1600 kvm_for_each_vcpu(i, vcpu, kvm) { 1601 if (mutex_lock_killable(&vcpu->mutex)) 1602 goto out_unlock; 1603 } 1604 1605 return 0; 1606 1607 out_unlock: 1608 kvm_for_each_vcpu(j, vcpu, kvm) { 1609 if (i == j) 1610 break; 1611 1612 mutex_unlock(&vcpu->mutex); 1613 } 1614 return -EINTR; 1615 } 1616 1617 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1618 { 1619 struct kvm_vcpu *vcpu; 1620 unsigned long i; 1621 1622 kvm_for_each_vcpu(i, vcpu, kvm) { 1623 mutex_unlock(&vcpu->mutex); 1624 } 1625 } 1626 1627 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1628 { 1629 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info; 1630 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info; 1631 struct kvm_sev_info *mirror; 1632 1633 dst->active = true; 1634 dst->asid = src->asid; 1635 dst->handle = src->handle; 1636 dst->pages_locked = src->pages_locked; 1637 dst->enc_context_owner = src->enc_context_owner; 1638 1639 src->asid = 0; 1640 src->active = false; 1641 src->handle = 0; 1642 src->pages_locked = 0; 1643 src->enc_context_owner = NULL; 1644 1645 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1646 1647 /* 1648 * If this VM has mirrors, "transfer" each mirror's refcount of the 1649 * source to the destination (this KVM). The caller holds a reference 1650 * to the source, so there's no danger of use-after-free. 1651 */ 1652 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 1653 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 1654 kvm_get_kvm(dst_kvm); 1655 kvm_put_kvm(src_kvm); 1656 mirror->enc_context_owner = dst_kvm; 1657 } 1658 1659 /* 1660 * If this VM is a mirror, remove the old mirror from the owners list 1661 * and add the new mirror to the list. 1662 */ 1663 if (is_mirroring_enc_context(dst_kvm)) { 1664 struct kvm_sev_info *owner_sev_info = 1665 &to_kvm_svm(dst->enc_context_owner)->sev_info; 1666 1667 list_del(&src->mirror_entry); 1668 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 1669 } 1670 } 1671 1672 static int sev_es_migrate_from(struct kvm *dst, struct kvm *src) 1673 { 1674 unsigned long i; 1675 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1676 struct vcpu_svm *dst_svm, *src_svm; 1677 1678 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 1679 return -EINVAL; 1680 1681 kvm_for_each_vcpu(i, src_vcpu, src) { 1682 if (!src_vcpu->arch.guest_state_protected) 1683 return -EINVAL; 1684 } 1685 1686 kvm_for_each_vcpu(i, src_vcpu, src) { 1687 src_svm = to_svm(src_vcpu); 1688 dst_vcpu = kvm_get_vcpu(dst, i); 1689 dst_svm = to_svm(dst_vcpu); 1690 1691 /* 1692 * Transfer VMSA and GHCB state to the destination. Nullify and 1693 * clear source fields as appropriate, the state now belongs to 1694 * the destination. 1695 */ 1696 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 1697 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 1698 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 1699 dst_vcpu->arch.guest_state_protected = true; 1700 1701 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 1702 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 1703 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 1704 src_vcpu->arch.guest_state_protected = false; 1705 } 1706 to_kvm_svm(src)->sev_info.es_active = false; 1707 to_kvm_svm(dst)->sev_info.es_active = true; 1708 1709 return 0; 1710 } 1711 1712 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 1713 { 1714 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; 1715 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 1716 struct file *source_kvm_file; 1717 struct kvm *source_kvm; 1718 bool charged = false; 1719 int ret; 1720 1721 source_kvm_file = fget(source_fd); 1722 if (!file_is_kvm(source_kvm_file)) { 1723 ret = -EBADF; 1724 goto out_fput; 1725 } 1726 1727 source_kvm = source_kvm_file->private_data; 1728 ret = sev_lock_two_vms(kvm, source_kvm); 1729 if (ret) 1730 goto out_fput; 1731 1732 if (sev_guest(kvm) || !sev_guest(source_kvm)) { 1733 ret = -EINVAL; 1734 goto out_unlock; 1735 } 1736 1737 src_sev = &to_kvm_svm(source_kvm)->sev_info; 1738 1739 dst_sev->misc_cg = get_current_misc_cg(); 1740 cg_cleanup_sev = dst_sev; 1741 if (dst_sev->misc_cg != src_sev->misc_cg) { 1742 ret = sev_misc_cg_try_charge(dst_sev); 1743 if (ret) 1744 goto out_dst_cgroup; 1745 charged = true; 1746 } 1747 1748 ret = sev_lock_vcpus_for_migration(kvm); 1749 if (ret) 1750 goto out_dst_cgroup; 1751 ret = sev_lock_vcpus_for_migration(source_kvm); 1752 if (ret) 1753 goto out_dst_vcpu; 1754 1755 if (sev_es_guest(source_kvm)) { 1756 ret = sev_es_migrate_from(kvm, source_kvm); 1757 if (ret) 1758 goto out_source_vcpu; 1759 } 1760 1761 sev_migrate_from(kvm, source_kvm); 1762 kvm_vm_dead(source_kvm); 1763 cg_cleanup_sev = src_sev; 1764 ret = 0; 1765 1766 out_source_vcpu: 1767 sev_unlock_vcpus_for_migration(source_kvm); 1768 out_dst_vcpu: 1769 sev_unlock_vcpus_for_migration(kvm); 1770 out_dst_cgroup: 1771 /* Operates on the source on success, on the destination on failure. */ 1772 if (charged) 1773 sev_misc_cg_uncharge(cg_cleanup_sev); 1774 put_misc_cg(cg_cleanup_sev->misc_cg); 1775 cg_cleanup_sev->misc_cg = NULL; 1776 out_unlock: 1777 sev_unlock_two_vms(kvm, source_kvm); 1778 out_fput: 1779 if (source_kvm_file) 1780 fput(source_kvm_file); 1781 return ret; 1782 } 1783 1784 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 1785 { 1786 struct kvm_sev_cmd sev_cmd; 1787 int r; 1788 1789 if (!sev_enabled) 1790 return -ENOTTY; 1791 1792 if (!argp) 1793 return 0; 1794 1795 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1796 return -EFAULT; 1797 1798 mutex_lock(&kvm->lock); 1799 1800 /* Only the enc_context_owner handles some memory enc operations. */ 1801 if (is_mirroring_enc_context(kvm) && 1802 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 1803 r = -EINVAL; 1804 goto out; 1805 } 1806 1807 switch (sev_cmd.id) { 1808 case KVM_SEV_ES_INIT: 1809 if (!sev_es_enabled) { 1810 r = -ENOTTY; 1811 goto out; 1812 } 1813 fallthrough; 1814 case KVM_SEV_INIT: 1815 r = sev_guest_init(kvm, &sev_cmd); 1816 break; 1817 case KVM_SEV_LAUNCH_START: 1818 r = sev_launch_start(kvm, &sev_cmd); 1819 break; 1820 case KVM_SEV_LAUNCH_UPDATE_DATA: 1821 r = sev_launch_update_data(kvm, &sev_cmd); 1822 break; 1823 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1824 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1825 break; 1826 case KVM_SEV_LAUNCH_MEASURE: 1827 r = sev_launch_measure(kvm, &sev_cmd); 1828 break; 1829 case KVM_SEV_LAUNCH_FINISH: 1830 r = sev_launch_finish(kvm, &sev_cmd); 1831 break; 1832 case KVM_SEV_GUEST_STATUS: 1833 r = sev_guest_status(kvm, &sev_cmd); 1834 break; 1835 case KVM_SEV_DBG_DECRYPT: 1836 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1837 break; 1838 case KVM_SEV_DBG_ENCRYPT: 1839 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1840 break; 1841 case KVM_SEV_LAUNCH_SECRET: 1842 r = sev_launch_secret(kvm, &sev_cmd); 1843 break; 1844 case KVM_SEV_GET_ATTESTATION_REPORT: 1845 r = sev_get_attestation_report(kvm, &sev_cmd); 1846 break; 1847 case KVM_SEV_SEND_START: 1848 r = sev_send_start(kvm, &sev_cmd); 1849 break; 1850 case KVM_SEV_SEND_UPDATE_DATA: 1851 r = sev_send_update_data(kvm, &sev_cmd); 1852 break; 1853 case KVM_SEV_SEND_FINISH: 1854 r = sev_send_finish(kvm, &sev_cmd); 1855 break; 1856 case KVM_SEV_SEND_CANCEL: 1857 r = sev_send_cancel(kvm, &sev_cmd); 1858 break; 1859 case KVM_SEV_RECEIVE_START: 1860 r = sev_receive_start(kvm, &sev_cmd); 1861 break; 1862 case KVM_SEV_RECEIVE_UPDATE_DATA: 1863 r = sev_receive_update_data(kvm, &sev_cmd); 1864 break; 1865 case KVM_SEV_RECEIVE_FINISH: 1866 r = sev_receive_finish(kvm, &sev_cmd); 1867 break; 1868 default: 1869 r = -EINVAL; 1870 goto out; 1871 } 1872 1873 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1874 r = -EFAULT; 1875 1876 out: 1877 mutex_unlock(&kvm->lock); 1878 return r; 1879 } 1880 1881 int sev_mem_enc_register_region(struct kvm *kvm, 1882 struct kvm_enc_region *range) 1883 { 1884 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1885 struct enc_region *region; 1886 int ret = 0; 1887 1888 if (!sev_guest(kvm)) 1889 return -ENOTTY; 1890 1891 /* If kvm is mirroring encryption context it isn't responsible for it */ 1892 if (is_mirroring_enc_context(kvm)) 1893 return -EINVAL; 1894 1895 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1896 return -EINVAL; 1897 1898 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1899 if (!region) 1900 return -ENOMEM; 1901 1902 mutex_lock(&kvm->lock); 1903 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1904 if (IS_ERR(region->pages)) { 1905 ret = PTR_ERR(region->pages); 1906 mutex_unlock(&kvm->lock); 1907 goto e_free; 1908 } 1909 1910 region->uaddr = range->addr; 1911 region->size = range->size; 1912 1913 list_add_tail(®ion->list, &sev->regions_list); 1914 mutex_unlock(&kvm->lock); 1915 1916 /* 1917 * The guest may change the memory encryption attribute from C=0 -> C=1 1918 * or vice versa for this memory range. Lets make sure caches are 1919 * flushed to ensure that guest data gets written into memory with 1920 * correct C-bit. 1921 */ 1922 sev_clflush_pages(region->pages, region->npages); 1923 1924 return ret; 1925 1926 e_free: 1927 kfree(region); 1928 return ret; 1929 } 1930 1931 static struct enc_region * 1932 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1933 { 1934 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1935 struct list_head *head = &sev->regions_list; 1936 struct enc_region *i; 1937 1938 list_for_each_entry(i, head, list) { 1939 if (i->uaddr == range->addr && 1940 i->size == range->size) 1941 return i; 1942 } 1943 1944 return NULL; 1945 } 1946 1947 static void __unregister_enc_region_locked(struct kvm *kvm, 1948 struct enc_region *region) 1949 { 1950 sev_unpin_memory(kvm, region->pages, region->npages); 1951 list_del(®ion->list); 1952 kfree(region); 1953 } 1954 1955 int sev_mem_enc_unregister_region(struct kvm *kvm, 1956 struct kvm_enc_region *range) 1957 { 1958 struct enc_region *region; 1959 int ret; 1960 1961 /* If kvm is mirroring encryption context it isn't responsible for it */ 1962 if (is_mirroring_enc_context(kvm)) 1963 return -EINVAL; 1964 1965 mutex_lock(&kvm->lock); 1966 1967 if (!sev_guest(kvm)) { 1968 ret = -ENOTTY; 1969 goto failed; 1970 } 1971 1972 region = find_enc_region(kvm, range); 1973 if (!region) { 1974 ret = -EINVAL; 1975 goto failed; 1976 } 1977 1978 /* 1979 * Ensure that all guest tagged cache entries are flushed before 1980 * releasing the pages back to the system for use. CLFLUSH will 1981 * not do this, so issue a WBINVD. 1982 */ 1983 wbinvd_on_all_cpus(); 1984 1985 __unregister_enc_region_locked(kvm, region); 1986 1987 mutex_unlock(&kvm->lock); 1988 return 0; 1989 1990 failed: 1991 mutex_unlock(&kvm->lock); 1992 return ret; 1993 } 1994 1995 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 1996 { 1997 struct file *source_kvm_file; 1998 struct kvm *source_kvm; 1999 struct kvm_sev_info *source_sev, *mirror_sev; 2000 int ret; 2001 2002 source_kvm_file = fget(source_fd); 2003 if (!file_is_kvm(source_kvm_file)) { 2004 ret = -EBADF; 2005 goto e_source_fput; 2006 } 2007 2008 source_kvm = source_kvm_file->private_data; 2009 ret = sev_lock_two_vms(kvm, source_kvm); 2010 if (ret) 2011 goto e_source_fput; 2012 2013 /* 2014 * Mirrors of mirrors should work, but let's not get silly. Also 2015 * disallow out-of-band SEV/SEV-ES init if the target is already an 2016 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2017 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2018 */ 2019 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2020 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2021 ret = -EINVAL; 2022 goto e_unlock; 2023 } 2024 2025 /* 2026 * The mirror kvm holds an enc_context_owner ref so its asid can't 2027 * disappear until we're done with it 2028 */ 2029 source_sev = &to_kvm_svm(source_kvm)->sev_info; 2030 kvm_get_kvm(source_kvm); 2031 mirror_sev = &to_kvm_svm(kvm)->sev_info; 2032 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2033 2034 /* Set enc_context_owner and copy its encryption context over */ 2035 mirror_sev->enc_context_owner = source_kvm; 2036 mirror_sev->active = true; 2037 mirror_sev->asid = source_sev->asid; 2038 mirror_sev->fd = source_sev->fd; 2039 mirror_sev->es_active = source_sev->es_active; 2040 mirror_sev->handle = source_sev->handle; 2041 INIT_LIST_HEAD(&mirror_sev->regions_list); 2042 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2043 ret = 0; 2044 2045 /* 2046 * Do not copy ap_jump_table. Since the mirror does not share the same 2047 * KVM contexts as the original, and they may have different 2048 * memory-views. 2049 */ 2050 2051 e_unlock: 2052 sev_unlock_two_vms(kvm, source_kvm); 2053 e_source_fput: 2054 if (source_kvm_file) 2055 fput(source_kvm_file); 2056 return ret; 2057 } 2058 2059 void sev_vm_destroy(struct kvm *kvm) 2060 { 2061 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2062 struct list_head *head = &sev->regions_list; 2063 struct list_head *pos, *q; 2064 2065 if (!sev_guest(kvm)) 2066 return; 2067 2068 WARN_ON(!list_empty(&sev->mirror_vms)); 2069 2070 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2071 if (is_mirroring_enc_context(kvm)) { 2072 struct kvm *owner_kvm = sev->enc_context_owner; 2073 2074 mutex_lock(&owner_kvm->lock); 2075 list_del(&sev->mirror_entry); 2076 mutex_unlock(&owner_kvm->lock); 2077 kvm_put_kvm(owner_kvm); 2078 return; 2079 } 2080 2081 /* 2082 * Ensure that all guest tagged cache entries are flushed before 2083 * releasing the pages back to the system for use. CLFLUSH will 2084 * not do this, so issue a WBINVD. 2085 */ 2086 wbinvd_on_all_cpus(); 2087 2088 /* 2089 * if userspace was terminated before unregistering the memory regions 2090 * then lets unpin all the registered memory. 2091 */ 2092 if (!list_empty(head)) { 2093 list_for_each_safe(pos, q, head) { 2094 __unregister_enc_region_locked(kvm, 2095 list_entry(pos, struct enc_region, list)); 2096 cond_resched(); 2097 } 2098 } 2099 2100 sev_unbind_asid(kvm, sev->handle); 2101 sev_asid_free(sev); 2102 } 2103 2104 void __init sev_set_cpu_caps(void) 2105 { 2106 if (!sev_enabled) 2107 kvm_cpu_cap_clear(X86_FEATURE_SEV); 2108 if (!sev_es_enabled) 2109 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 2110 } 2111 2112 void __init sev_hardware_setup(void) 2113 { 2114 #ifdef CONFIG_KVM_AMD_SEV 2115 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2116 bool sev_es_supported = false; 2117 bool sev_supported = false; 2118 2119 if (!sev_enabled || !npt_enabled) 2120 goto out; 2121 2122 /* 2123 * SEV must obviously be supported in hardware. Sanity check that the 2124 * CPU supports decode assists, which is mandatory for SEV guests to 2125 * support instruction emulation. 2126 */ 2127 if (!boot_cpu_has(X86_FEATURE_SEV) || 2128 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS))) 2129 goto out; 2130 2131 /* Retrieve SEV CPUID information */ 2132 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2133 2134 /* Set encryption bit location for SEV-ES guests */ 2135 sev_enc_bit = ebx & 0x3f; 2136 2137 /* Maximum number of encrypted guests supported simultaneously */ 2138 max_sev_asid = ecx; 2139 if (!max_sev_asid) 2140 goto out; 2141 2142 /* Minimum ASID value that should be used for SEV guest */ 2143 min_sev_asid = edx; 2144 sev_me_mask = 1UL << (ebx & 0x3f); 2145 2146 /* 2147 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 2148 * even though it's never used, so that the bitmap is indexed by the 2149 * actual ASID. 2150 */ 2151 nr_asids = max_sev_asid + 1; 2152 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2153 if (!sev_asid_bitmap) 2154 goto out; 2155 2156 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2157 if (!sev_reclaim_asid_bitmap) { 2158 bitmap_free(sev_asid_bitmap); 2159 sev_asid_bitmap = NULL; 2160 goto out; 2161 } 2162 2163 sev_asid_count = max_sev_asid - min_sev_asid + 1; 2164 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) 2165 goto out; 2166 2167 pr_info("SEV supported: %u ASIDs\n", sev_asid_count); 2168 sev_supported = true; 2169 2170 /* SEV-ES support requested? */ 2171 if (!sev_es_enabled) 2172 goto out; 2173 2174 /* Does the CPU support SEV-ES? */ 2175 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 2176 goto out; 2177 2178 /* Has the system been allocated ASIDs for SEV-ES? */ 2179 if (min_sev_asid == 1) 2180 goto out; 2181 2182 sev_es_asid_count = min_sev_asid - 1; 2183 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) 2184 goto out; 2185 2186 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); 2187 sev_es_supported = true; 2188 2189 out: 2190 sev_enabled = sev_supported; 2191 sev_es_enabled = sev_es_supported; 2192 #endif 2193 } 2194 2195 void sev_hardware_unsetup(void) 2196 { 2197 if (!sev_enabled) 2198 return; 2199 2200 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 2201 sev_flush_asids(1, max_sev_asid); 2202 2203 bitmap_free(sev_asid_bitmap); 2204 bitmap_free(sev_reclaim_asid_bitmap); 2205 2206 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 2207 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 2208 } 2209 2210 int sev_cpu_init(struct svm_cpu_data *sd) 2211 { 2212 if (!sev_enabled) 2213 return 0; 2214 2215 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 2216 if (!sd->sev_vmcbs) 2217 return -ENOMEM; 2218 2219 return 0; 2220 } 2221 2222 /* 2223 * Pages used by hardware to hold guest encrypted state must be flushed before 2224 * returning them to the system. 2225 */ 2226 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, 2227 unsigned long len) 2228 { 2229 /* 2230 * If hardware enforced cache coherency for encrypted mappings of the 2231 * same physical page is supported, nothing to do. 2232 */ 2233 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) 2234 return; 2235 2236 /* 2237 * If the VM Page Flush MSR is supported, use it to flush the page 2238 * (using the page virtual address and the guest ASID). 2239 */ 2240 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { 2241 struct kvm_sev_info *sev; 2242 unsigned long va_start; 2243 u64 start, stop; 2244 2245 /* Align start and stop to page boundaries. */ 2246 va_start = (unsigned long)va; 2247 start = (u64)va_start & PAGE_MASK; 2248 stop = PAGE_ALIGN((u64)va_start + len); 2249 2250 if (start < stop) { 2251 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 2252 2253 while (start < stop) { 2254 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, 2255 start | sev->asid); 2256 2257 start += PAGE_SIZE; 2258 } 2259 2260 return; 2261 } 2262 2263 WARN(1, "Address overflow, using WBINVD\n"); 2264 } 2265 2266 /* 2267 * Hardware should always have one of the above features, 2268 * but if not, use WBINVD and issue a warning. 2269 */ 2270 WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); 2271 wbinvd_on_all_cpus(); 2272 } 2273 2274 void sev_free_vcpu(struct kvm_vcpu *vcpu) 2275 { 2276 struct vcpu_svm *svm; 2277 2278 if (!sev_es_guest(vcpu->kvm)) 2279 return; 2280 2281 svm = to_svm(vcpu); 2282 2283 if (vcpu->arch.guest_state_protected) 2284 sev_flush_guest_memory(svm, svm->sev_es.vmsa, PAGE_SIZE); 2285 __free_page(virt_to_page(svm->sev_es.vmsa)); 2286 2287 if (svm->sev_es.ghcb_sa_free) 2288 kvfree(svm->sev_es.ghcb_sa); 2289 } 2290 2291 static void dump_ghcb(struct vcpu_svm *svm) 2292 { 2293 struct ghcb *ghcb = svm->sev_es.ghcb; 2294 unsigned int nbits; 2295 2296 /* Re-use the dump_invalid_vmcb module parameter */ 2297 if (!dump_invalid_vmcb) { 2298 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2299 return; 2300 } 2301 2302 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2303 2304 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2305 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2306 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2307 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2308 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2309 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2310 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2311 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2312 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2313 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2314 } 2315 2316 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2317 { 2318 struct kvm_vcpu *vcpu = &svm->vcpu; 2319 struct ghcb *ghcb = svm->sev_es.ghcb; 2320 2321 /* 2322 * The GHCB protocol so far allows for the following data 2323 * to be returned: 2324 * GPRs RAX, RBX, RCX, RDX 2325 * 2326 * Copy their values, even if they may not have been written during the 2327 * VM-Exit. It's the guest's responsibility to not consume random data. 2328 */ 2329 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2330 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2331 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2332 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2333 } 2334 2335 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2336 { 2337 struct vmcb_control_area *control = &svm->vmcb->control; 2338 struct kvm_vcpu *vcpu = &svm->vcpu; 2339 struct ghcb *ghcb = svm->sev_es.ghcb; 2340 u64 exit_code; 2341 2342 /* 2343 * The GHCB protocol so far allows for the following data 2344 * to be supplied: 2345 * GPRs RAX, RBX, RCX, RDX 2346 * XCR0 2347 * CPL 2348 * 2349 * VMMCALL allows the guest to provide extra registers. KVM also 2350 * expects RSI for hypercalls, so include that, too. 2351 * 2352 * Copy their values to the appropriate location if supplied. 2353 */ 2354 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2355 2356 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 2357 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 2358 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 2359 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 2360 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 2361 2362 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 2363 2364 if (ghcb_xcr0_is_valid(ghcb)) { 2365 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2366 kvm_update_cpuid_runtime(vcpu); 2367 } 2368 2369 /* Copy the GHCB exit information into the VMCB fields */ 2370 exit_code = ghcb_get_sw_exit_code(ghcb); 2371 control->exit_code = lower_32_bits(exit_code); 2372 control->exit_code_hi = upper_32_bits(exit_code); 2373 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2374 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2375 2376 /* Clear the valid entries fields */ 2377 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2378 } 2379 2380 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2381 { 2382 struct kvm_vcpu *vcpu; 2383 struct ghcb *ghcb; 2384 u64 exit_code; 2385 u64 reason; 2386 2387 ghcb = svm->sev_es.ghcb; 2388 2389 /* 2390 * Retrieve the exit code now even though it may not be marked valid 2391 * as it could help with debugging. 2392 */ 2393 exit_code = ghcb_get_sw_exit_code(ghcb); 2394 2395 /* Only GHCB Usage code 0 is supported */ 2396 if (ghcb->ghcb_usage) { 2397 reason = GHCB_ERR_INVALID_USAGE; 2398 goto vmgexit_err; 2399 } 2400 2401 reason = GHCB_ERR_MISSING_INPUT; 2402 2403 if (!ghcb_sw_exit_code_is_valid(ghcb) || 2404 !ghcb_sw_exit_info_1_is_valid(ghcb) || 2405 !ghcb_sw_exit_info_2_is_valid(ghcb)) 2406 goto vmgexit_err; 2407 2408 switch (ghcb_get_sw_exit_code(ghcb)) { 2409 case SVM_EXIT_READ_DR7: 2410 break; 2411 case SVM_EXIT_WRITE_DR7: 2412 if (!ghcb_rax_is_valid(ghcb)) 2413 goto vmgexit_err; 2414 break; 2415 case SVM_EXIT_RDTSC: 2416 break; 2417 case SVM_EXIT_RDPMC: 2418 if (!ghcb_rcx_is_valid(ghcb)) 2419 goto vmgexit_err; 2420 break; 2421 case SVM_EXIT_CPUID: 2422 if (!ghcb_rax_is_valid(ghcb) || 2423 !ghcb_rcx_is_valid(ghcb)) 2424 goto vmgexit_err; 2425 if (ghcb_get_rax(ghcb) == 0xd) 2426 if (!ghcb_xcr0_is_valid(ghcb)) 2427 goto vmgexit_err; 2428 break; 2429 case SVM_EXIT_INVD: 2430 break; 2431 case SVM_EXIT_IOIO: 2432 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 2433 if (!ghcb_sw_scratch_is_valid(ghcb)) 2434 goto vmgexit_err; 2435 } else { 2436 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 2437 if (!ghcb_rax_is_valid(ghcb)) 2438 goto vmgexit_err; 2439 } 2440 break; 2441 case SVM_EXIT_MSR: 2442 if (!ghcb_rcx_is_valid(ghcb)) 2443 goto vmgexit_err; 2444 if (ghcb_get_sw_exit_info_1(ghcb)) { 2445 if (!ghcb_rax_is_valid(ghcb) || 2446 !ghcb_rdx_is_valid(ghcb)) 2447 goto vmgexit_err; 2448 } 2449 break; 2450 case SVM_EXIT_VMMCALL: 2451 if (!ghcb_rax_is_valid(ghcb) || 2452 !ghcb_cpl_is_valid(ghcb)) 2453 goto vmgexit_err; 2454 break; 2455 case SVM_EXIT_RDTSCP: 2456 break; 2457 case SVM_EXIT_WBINVD: 2458 break; 2459 case SVM_EXIT_MONITOR: 2460 if (!ghcb_rax_is_valid(ghcb) || 2461 !ghcb_rcx_is_valid(ghcb) || 2462 !ghcb_rdx_is_valid(ghcb)) 2463 goto vmgexit_err; 2464 break; 2465 case SVM_EXIT_MWAIT: 2466 if (!ghcb_rax_is_valid(ghcb) || 2467 !ghcb_rcx_is_valid(ghcb)) 2468 goto vmgexit_err; 2469 break; 2470 case SVM_VMGEXIT_MMIO_READ: 2471 case SVM_VMGEXIT_MMIO_WRITE: 2472 if (!ghcb_sw_scratch_is_valid(ghcb)) 2473 goto vmgexit_err; 2474 break; 2475 case SVM_VMGEXIT_NMI_COMPLETE: 2476 case SVM_VMGEXIT_AP_HLT_LOOP: 2477 case SVM_VMGEXIT_AP_JUMP_TABLE: 2478 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2479 break; 2480 default: 2481 reason = GHCB_ERR_INVALID_EVENT; 2482 goto vmgexit_err; 2483 } 2484 2485 return 0; 2486 2487 vmgexit_err: 2488 vcpu = &svm->vcpu; 2489 2490 if (reason == GHCB_ERR_INVALID_USAGE) { 2491 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2492 ghcb->ghcb_usage); 2493 } else if (reason == GHCB_ERR_INVALID_EVENT) { 2494 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 2495 exit_code); 2496 } else { 2497 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 2498 exit_code); 2499 dump_ghcb(svm); 2500 } 2501 2502 /* Clear the valid entries fields */ 2503 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2504 2505 ghcb_set_sw_exit_info_1(ghcb, 2); 2506 ghcb_set_sw_exit_info_2(ghcb, reason); 2507 2508 /* Resume the guest to "return" the error code. */ 2509 return 1; 2510 } 2511 2512 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2513 { 2514 if (!svm->sev_es.ghcb) 2515 return; 2516 2517 if (svm->sev_es.ghcb_sa_free) { 2518 /* 2519 * The scratch area lives outside the GHCB, so there is a 2520 * buffer that, depending on the operation performed, may 2521 * need to be synced, then freed. 2522 */ 2523 if (svm->sev_es.ghcb_sa_sync) { 2524 kvm_write_guest(svm->vcpu.kvm, 2525 ghcb_get_sw_scratch(svm->sev_es.ghcb), 2526 svm->sev_es.ghcb_sa, 2527 svm->sev_es.ghcb_sa_len); 2528 svm->sev_es.ghcb_sa_sync = false; 2529 } 2530 2531 kvfree(svm->sev_es.ghcb_sa); 2532 svm->sev_es.ghcb_sa = NULL; 2533 svm->sev_es.ghcb_sa_free = false; 2534 } 2535 2536 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 2537 2538 sev_es_sync_to_ghcb(svm); 2539 2540 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); 2541 svm->sev_es.ghcb = NULL; 2542 } 2543 2544 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2545 { 2546 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2547 int asid = sev_get_asid(svm->vcpu.kvm); 2548 2549 /* Assign the asid allocated with this SEV guest */ 2550 svm->asid = asid; 2551 2552 /* 2553 * Flush guest TLB: 2554 * 2555 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2556 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2557 */ 2558 if (sd->sev_vmcbs[asid] == svm->vmcb && 2559 svm->vcpu.arch.last_vmentry_cpu == cpu) 2560 return; 2561 2562 sd->sev_vmcbs[asid] = svm->vmcb; 2563 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2564 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2565 } 2566 2567 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2568 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2569 { 2570 struct vmcb_control_area *control = &svm->vmcb->control; 2571 struct ghcb *ghcb = svm->sev_es.ghcb; 2572 u64 ghcb_scratch_beg, ghcb_scratch_end; 2573 u64 scratch_gpa_beg, scratch_gpa_end; 2574 void *scratch_va; 2575 2576 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 2577 if (!scratch_gpa_beg) { 2578 pr_err("vmgexit: scratch gpa not provided\n"); 2579 goto e_scratch; 2580 } 2581 2582 scratch_gpa_end = scratch_gpa_beg + len; 2583 if (scratch_gpa_end < scratch_gpa_beg) { 2584 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2585 len, scratch_gpa_beg); 2586 goto e_scratch; 2587 } 2588 2589 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2590 /* Scratch area begins within GHCB */ 2591 ghcb_scratch_beg = control->ghcb_gpa + 2592 offsetof(struct ghcb, shared_buffer); 2593 ghcb_scratch_end = control->ghcb_gpa + 2594 offsetof(struct ghcb, reserved_1); 2595 2596 /* 2597 * If the scratch area begins within the GHCB, it must be 2598 * completely contained in the GHCB shared buffer area. 2599 */ 2600 if (scratch_gpa_beg < ghcb_scratch_beg || 2601 scratch_gpa_end > ghcb_scratch_end) { 2602 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2603 scratch_gpa_beg, scratch_gpa_end); 2604 goto e_scratch; 2605 } 2606 2607 scratch_va = (void *)svm->sev_es.ghcb; 2608 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2609 } else { 2610 /* 2611 * The guest memory must be read into a kernel buffer, so 2612 * limit the size 2613 */ 2614 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2615 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2616 len, GHCB_SCRATCH_AREA_LIMIT); 2617 goto e_scratch; 2618 } 2619 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 2620 if (!scratch_va) 2621 return -ENOMEM; 2622 2623 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2624 /* Unable to copy scratch area from guest */ 2625 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2626 2627 kvfree(scratch_va); 2628 return -EFAULT; 2629 } 2630 2631 /* 2632 * The scratch area is outside the GHCB. The operation will 2633 * dictate whether the buffer needs to be synced before running 2634 * the vCPU next time (i.e. a read was requested so the data 2635 * must be written back to the guest memory). 2636 */ 2637 svm->sev_es.ghcb_sa_sync = sync; 2638 svm->sev_es.ghcb_sa_free = true; 2639 } 2640 2641 svm->sev_es.ghcb_sa = scratch_va; 2642 svm->sev_es.ghcb_sa_len = len; 2643 2644 return 0; 2645 2646 e_scratch: 2647 ghcb_set_sw_exit_info_1(ghcb, 2); 2648 ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA); 2649 2650 return 1; 2651 } 2652 2653 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2654 unsigned int pos) 2655 { 2656 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2657 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2658 } 2659 2660 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2661 { 2662 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2663 } 2664 2665 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2666 { 2667 svm->vmcb->control.ghcb_gpa = value; 2668 } 2669 2670 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2671 { 2672 struct vmcb_control_area *control = &svm->vmcb->control; 2673 struct kvm_vcpu *vcpu = &svm->vcpu; 2674 u64 ghcb_info; 2675 int ret = 1; 2676 2677 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2678 2679 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2680 control->ghcb_gpa); 2681 2682 switch (ghcb_info) { 2683 case GHCB_MSR_SEV_INFO_REQ: 2684 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2685 GHCB_VERSION_MIN, 2686 sev_enc_bit)); 2687 break; 2688 case GHCB_MSR_CPUID_REQ: { 2689 u64 cpuid_fn, cpuid_reg, cpuid_value; 2690 2691 cpuid_fn = get_ghcb_msr_bits(svm, 2692 GHCB_MSR_CPUID_FUNC_MASK, 2693 GHCB_MSR_CPUID_FUNC_POS); 2694 2695 /* Initialize the registers needed by the CPUID intercept */ 2696 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2697 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2698 2699 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2700 if (!ret) { 2701 /* Error, keep GHCB MSR value as-is */ 2702 break; 2703 } 2704 2705 cpuid_reg = get_ghcb_msr_bits(svm, 2706 GHCB_MSR_CPUID_REG_MASK, 2707 GHCB_MSR_CPUID_REG_POS); 2708 if (cpuid_reg == 0) 2709 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2710 else if (cpuid_reg == 1) 2711 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2712 else if (cpuid_reg == 2) 2713 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2714 else 2715 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2716 2717 set_ghcb_msr_bits(svm, cpuid_value, 2718 GHCB_MSR_CPUID_VALUE_MASK, 2719 GHCB_MSR_CPUID_VALUE_POS); 2720 2721 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2722 GHCB_MSR_INFO_MASK, 2723 GHCB_MSR_INFO_POS); 2724 break; 2725 } 2726 case GHCB_MSR_TERM_REQ: { 2727 u64 reason_set, reason_code; 2728 2729 reason_set = get_ghcb_msr_bits(svm, 2730 GHCB_MSR_TERM_REASON_SET_MASK, 2731 GHCB_MSR_TERM_REASON_SET_POS); 2732 reason_code = get_ghcb_msr_bits(svm, 2733 GHCB_MSR_TERM_REASON_MASK, 2734 GHCB_MSR_TERM_REASON_POS); 2735 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2736 reason_set, reason_code); 2737 2738 ret = -EINVAL; 2739 break; 2740 } 2741 default: 2742 /* Error, keep GHCB MSR value as-is */ 2743 break; 2744 } 2745 2746 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2747 control->ghcb_gpa, ret); 2748 2749 return ret; 2750 } 2751 2752 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2753 { 2754 struct vcpu_svm *svm = to_svm(vcpu); 2755 struct vmcb_control_area *control = &svm->vmcb->control; 2756 u64 ghcb_gpa, exit_code; 2757 struct ghcb *ghcb; 2758 int ret; 2759 2760 /* Validate the GHCB */ 2761 ghcb_gpa = control->ghcb_gpa; 2762 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2763 return sev_handle_vmgexit_msr_protocol(svm); 2764 2765 if (!ghcb_gpa) { 2766 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2767 2768 /* Without a GHCB, just return right back to the guest */ 2769 return 1; 2770 } 2771 2772 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 2773 /* Unable to map GHCB from guest */ 2774 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2775 ghcb_gpa); 2776 2777 /* Without a GHCB, just return right back to the guest */ 2778 return 1; 2779 } 2780 2781 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 2782 ghcb = svm->sev_es.ghcb_map.hva; 2783 2784 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); 2785 2786 exit_code = ghcb_get_sw_exit_code(ghcb); 2787 2788 ret = sev_es_validate_vmgexit(svm); 2789 if (ret) 2790 return ret; 2791 2792 sev_es_sync_from_ghcb(svm); 2793 ghcb_set_sw_exit_info_1(ghcb, 0); 2794 ghcb_set_sw_exit_info_2(ghcb, 0); 2795 2796 switch (exit_code) { 2797 case SVM_VMGEXIT_MMIO_READ: 2798 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 2799 if (ret) 2800 break; 2801 2802 ret = kvm_sev_es_mmio_read(vcpu, 2803 control->exit_info_1, 2804 control->exit_info_2, 2805 svm->sev_es.ghcb_sa); 2806 break; 2807 case SVM_VMGEXIT_MMIO_WRITE: 2808 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 2809 if (ret) 2810 break; 2811 2812 ret = kvm_sev_es_mmio_write(vcpu, 2813 control->exit_info_1, 2814 control->exit_info_2, 2815 svm->sev_es.ghcb_sa); 2816 break; 2817 case SVM_VMGEXIT_NMI_COMPLETE: 2818 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); 2819 break; 2820 case SVM_VMGEXIT_AP_HLT_LOOP: 2821 ret = kvm_emulate_ap_reset_hold(vcpu); 2822 break; 2823 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2824 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2825 2826 switch (control->exit_info_1) { 2827 case 0: 2828 /* Set AP jump table address */ 2829 sev->ap_jump_table = control->exit_info_2; 2830 break; 2831 case 1: 2832 /* Get AP jump table address */ 2833 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 2834 break; 2835 default: 2836 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2837 control->exit_info_1); 2838 ghcb_set_sw_exit_info_1(ghcb, 2); 2839 ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT); 2840 } 2841 2842 ret = 1; 2843 break; 2844 } 2845 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2846 vcpu_unimpl(vcpu, 2847 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2848 control->exit_info_1, control->exit_info_2); 2849 ret = -EINVAL; 2850 break; 2851 default: 2852 ret = svm_invoke_exit_handler(vcpu, exit_code); 2853 } 2854 2855 return ret; 2856 } 2857 2858 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2859 { 2860 int count; 2861 int bytes; 2862 int r; 2863 2864 if (svm->vmcb->control.exit_info_2 > INT_MAX) 2865 return -EINVAL; 2866 2867 count = svm->vmcb->control.exit_info_2; 2868 if (unlikely(check_mul_overflow(count, size, &bytes))) 2869 return -EINVAL; 2870 2871 r = setup_vmgexit_scratch(svm, in, bytes); 2872 if (r) 2873 return r; 2874 2875 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 2876 count, in); 2877 } 2878 2879 void sev_es_init_vmcb(struct vcpu_svm *svm) 2880 { 2881 struct kvm_vcpu *vcpu = &svm->vcpu; 2882 2883 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2884 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2885 2886 /* 2887 * An SEV-ES guest requires a VMSA area that is a separate from the 2888 * VMCB page. Do not include the encryption mask on the VMSA physical 2889 * address since hardware will access it using the guest key. 2890 */ 2891 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 2892 2893 /* Can't intercept CR register access, HV can't modify CR registers */ 2894 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2895 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2896 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2897 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2898 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2899 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2900 2901 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2902 2903 /* Track EFER/CR register changes */ 2904 svm_set_intercept(svm, TRAP_EFER_WRITE); 2905 svm_set_intercept(svm, TRAP_CR0_WRITE); 2906 svm_set_intercept(svm, TRAP_CR4_WRITE); 2907 svm_set_intercept(svm, TRAP_CR8_WRITE); 2908 2909 /* No support for enable_vmware_backdoor */ 2910 clr_exception_intercept(svm, GP_VECTOR); 2911 2912 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2913 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2914 2915 /* Clear intercepts on selected MSRs */ 2916 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2917 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2918 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2919 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2920 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2921 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2922 } 2923 2924 void sev_es_vcpu_reset(struct vcpu_svm *svm) 2925 { 2926 /* 2927 * Set the GHCB MSR value as per the GHCB specification when emulating 2928 * vCPU RESET for an SEV-ES guest. 2929 */ 2930 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2931 GHCB_VERSION_MIN, 2932 sev_enc_bit)); 2933 } 2934 2935 void sev_es_prepare_switch_to_guest(struct vmcb_save_area *hostsa) 2936 { 2937 /* 2938 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 2939 * of which one step is to perform a VMLOAD. KVM performs the 2940 * corresponding VMSAVE in svm_prepare_guest_switch for both 2941 * traditional and SEV-ES guests. 2942 */ 2943 2944 /* XCR0 is restored on VMEXIT, save the current host value */ 2945 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 2946 2947 /* PKRU is restored on VMEXIT, save the current host value */ 2948 hostsa->pkru = read_pkru(); 2949 2950 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 2951 hostsa->xss = host_xss; 2952 } 2953 2954 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 2955 { 2956 struct vcpu_svm *svm = to_svm(vcpu); 2957 2958 /* First SIPI: Use the values as initially set by the VMM */ 2959 if (!svm->sev_es.received_first_sipi) { 2960 svm->sev_es.received_first_sipi = true; 2961 return; 2962 } 2963 2964 /* 2965 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 2966 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 2967 * non-zero value. 2968 */ 2969 if (!svm->sev_es.ghcb) 2970 return; 2971 2972 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); 2973 } 2974