1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kvm_types.h> 12 #include <linux/kvm_host.h> 13 #include <linux/kernel.h> 14 #include <linux/highmem.h> 15 #include <linux/psp.h> 16 #include <linux/psp-sev.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/misc_cgroup.h> 20 #include <linux/processor.h> 21 #include <linux/trace_events.h> 22 23 #include <asm/pkru.h> 24 #include <asm/trapnr.h> 25 #include <asm/fpu/xcr.h> 26 #include <asm/debugreg.h> 27 28 #include "mmu.h" 29 #include "x86.h" 30 #include "svm.h" 31 #include "svm_ops.h" 32 #include "cpuid.h" 33 #include "trace.h" 34 35 #ifndef CONFIG_KVM_AMD_SEV 36 /* 37 * When this config is not defined, SEV feature is not supported and APIs in 38 * this file are not used but this file still gets compiled into the KVM AMD 39 * module. 40 * 41 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 42 * misc_res_type {} defined in linux/misc_cgroup.h. 43 * 44 * Below macros allow compilation to succeed. 45 */ 46 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 47 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 48 #endif 49 50 #ifdef CONFIG_KVM_AMD_SEV 51 /* enable/disable SEV support */ 52 static bool sev_enabled = true; 53 module_param_named(sev, sev_enabled, bool, 0444); 54 55 /* enable/disable SEV-ES support */ 56 static bool sev_es_enabled = true; 57 module_param_named(sev_es, sev_es_enabled, bool, 0444); 58 59 /* enable/disable SEV-ES DebugSwap support */ 60 static bool sev_es_debug_swap_enabled = false; 61 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); 62 #else 63 #define sev_enabled false 64 #define sev_es_enabled false 65 #define sev_es_debug_swap_enabled false 66 #endif /* CONFIG_KVM_AMD_SEV */ 67 68 static u8 sev_enc_bit; 69 static DECLARE_RWSEM(sev_deactivate_lock); 70 static DEFINE_MUTEX(sev_bitmap_lock); 71 unsigned int max_sev_asid; 72 static unsigned int min_sev_asid; 73 static unsigned long sev_me_mask; 74 static unsigned int nr_asids; 75 static unsigned long *sev_asid_bitmap; 76 static unsigned long *sev_reclaim_asid_bitmap; 77 78 struct enc_region { 79 struct list_head list; 80 unsigned long npages; 81 struct page **pages; 82 unsigned long uaddr; 83 unsigned long size; 84 }; 85 86 /* Called with the sev_bitmap_lock held, or on shutdown */ 87 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) 88 { 89 int ret, error = 0; 90 unsigned int asid; 91 92 /* Check if there are any ASIDs to reclaim before performing a flush */ 93 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 94 if (asid > max_asid) 95 return -EBUSY; 96 97 /* 98 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 99 * so it must be guarded. 100 */ 101 down_write(&sev_deactivate_lock); 102 103 wbinvd_on_all_cpus(); 104 ret = sev_guest_df_flush(&error); 105 106 up_write(&sev_deactivate_lock); 107 108 if (ret) 109 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 110 111 return ret; 112 } 113 114 static inline bool is_mirroring_enc_context(struct kvm *kvm) 115 { 116 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 117 } 118 119 /* Must be called with the sev_bitmap_lock held */ 120 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) 121 { 122 if (sev_flush_asids(min_asid, max_asid)) 123 return false; 124 125 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 126 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 127 nr_asids); 128 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 129 130 return true; 131 } 132 133 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 134 { 135 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 136 return misc_cg_try_charge(type, sev->misc_cg, 1); 137 } 138 139 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 140 { 141 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 142 misc_cg_uncharge(type, sev->misc_cg, 1); 143 } 144 145 static int sev_asid_new(struct kvm_sev_info *sev) 146 { 147 /* 148 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 149 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 150 * Note: min ASID can end up larger than the max if basic SEV support is 151 * effectively disabled by disallowing use of ASIDs for SEV guests. 152 */ 153 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid; 154 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 155 unsigned int asid; 156 bool retry = true; 157 int ret; 158 159 if (min_asid > max_asid) 160 return -ENOTTY; 161 162 WARN_ON(sev->misc_cg); 163 sev->misc_cg = get_current_misc_cg(); 164 ret = sev_misc_cg_try_charge(sev); 165 if (ret) { 166 put_misc_cg(sev->misc_cg); 167 sev->misc_cg = NULL; 168 return ret; 169 } 170 171 mutex_lock(&sev_bitmap_lock); 172 173 again: 174 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 175 if (asid > max_asid) { 176 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 177 retry = false; 178 goto again; 179 } 180 mutex_unlock(&sev_bitmap_lock); 181 ret = -EBUSY; 182 goto e_uncharge; 183 } 184 185 __set_bit(asid, sev_asid_bitmap); 186 187 mutex_unlock(&sev_bitmap_lock); 188 189 return asid; 190 e_uncharge: 191 sev_misc_cg_uncharge(sev); 192 put_misc_cg(sev->misc_cg); 193 sev->misc_cg = NULL; 194 return ret; 195 } 196 197 static unsigned int sev_get_asid(struct kvm *kvm) 198 { 199 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 200 201 return sev->asid; 202 } 203 204 static void sev_asid_free(struct kvm_sev_info *sev) 205 { 206 struct svm_cpu_data *sd; 207 int cpu; 208 209 mutex_lock(&sev_bitmap_lock); 210 211 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 212 213 for_each_possible_cpu(cpu) { 214 sd = per_cpu_ptr(&svm_data, cpu); 215 sd->sev_vmcbs[sev->asid] = NULL; 216 } 217 218 mutex_unlock(&sev_bitmap_lock); 219 220 sev_misc_cg_uncharge(sev); 221 put_misc_cg(sev->misc_cg); 222 sev->misc_cg = NULL; 223 } 224 225 static void sev_decommission(unsigned int handle) 226 { 227 struct sev_data_decommission decommission; 228 229 if (!handle) 230 return; 231 232 decommission.handle = handle; 233 sev_guest_decommission(&decommission, NULL); 234 } 235 236 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 237 { 238 struct sev_data_deactivate deactivate; 239 240 if (!handle) 241 return; 242 243 deactivate.handle = handle; 244 245 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 246 down_read(&sev_deactivate_lock); 247 sev_guest_deactivate(&deactivate, NULL); 248 up_read(&sev_deactivate_lock); 249 250 sev_decommission(handle); 251 } 252 253 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 254 { 255 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 256 int asid, ret; 257 258 if (kvm->created_vcpus) 259 return -EINVAL; 260 261 ret = -EBUSY; 262 if (unlikely(sev->active)) 263 return ret; 264 265 sev->active = true; 266 sev->es_active = argp->id == KVM_SEV_ES_INIT; 267 asid = sev_asid_new(sev); 268 if (asid < 0) 269 goto e_no_asid; 270 sev->asid = asid; 271 272 ret = sev_platform_init(&argp->error); 273 if (ret) 274 goto e_free; 275 276 INIT_LIST_HEAD(&sev->regions_list); 277 INIT_LIST_HEAD(&sev->mirror_vms); 278 279 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 280 281 return 0; 282 283 e_free: 284 sev_asid_free(sev); 285 sev->asid = 0; 286 e_no_asid: 287 sev->es_active = false; 288 sev->active = false; 289 return ret; 290 } 291 292 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 293 { 294 unsigned int asid = sev_get_asid(kvm); 295 struct sev_data_activate activate; 296 int ret; 297 298 /* activate ASID on the given handle */ 299 activate.handle = handle; 300 activate.asid = asid; 301 ret = sev_guest_activate(&activate, error); 302 303 return ret; 304 } 305 306 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 307 { 308 struct fd f; 309 int ret; 310 311 f = fdget(fd); 312 if (!f.file) 313 return -EBADF; 314 315 ret = sev_issue_cmd_external_user(f.file, id, data, error); 316 317 fdput(f); 318 return ret; 319 } 320 321 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 322 { 323 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 324 325 return __sev_issue_cmd(sev->fd, id, data, error); 326 } 327 328 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 329 { 330 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 331 struct sev_data_launch_start start; 332 struct kvm_sev_launch_start params; 333 void *dh_blob, *session_blob; 334 int *error = &argp->error; 335 int ret; 336 337 if (!sev_guest(kvm)) 338 return -ENOTTY; 339 340 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 341 return -EFAULT; 342 343 memset(&start, 0, sizeof(start)); 344 345 dh_blob = NULL; 346 if (params.dh_uaddr) { 347 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 348 if (IS_ERR(dh_blob)) 349 return PTR_ERR(dh_blob); 350 351 start.dh_cert_address = __sme_set(__pa(dh_blob)); 352 start.dh_cert_len = params.dh_len; 353 } 354 355 session_blob = NULL; 356 if (params.session_uaddr) { 357 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 358 if (IS_ERR(session_blob)) { 359 ret = PTR_ERR(session_blob); 360 goto e_free_dh; 361 } 362 363 start.session_address = __sme_set(__pa(session_blob)); 364 start.session_len = params.session_len; 365 } 366 367 start.handle = params.handle; 368 start.policy = params.policy; 369 370 /* create memory encryption context */ 371 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 372 if (ret) 373 goto e_free_session; 374 375 /* Bind ASID to this guest */ 376 ret = sev_bind_asid(kvm, start.handle, error); 377 if (ret) { 378 sev_decommission(start.handle); 379 goto e_free_session; 380 } 381 382 /* return handle to userspace */ 383 params.handle = start.handle; 384 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 385 sev_unbind_asid(kvm, start.handle); 386 ret = -EFAULT; 387 goto e_free_session; 388 } 389 390 sev->handle = start.handle; 391 sev->fd = argp->sev_fd; 392 393 e_free_session: 394 kfree(session_blob); 395 e_free_dh: 396 kfree(dh_blob); 397 return ret; 398 } 399 400 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 401 unsigned long ulen, unsigned long *n, 402 int write) 403 { 404 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 405 unsigned long npages, size; 406 int npinned; 407 unsigned long locked, lock_limit; 408 struct page **pages; 409 unsigned long first, last; 410 int ret; 411 412 lockdep_assert_held(&kvm->lock); 413 414 if (ulen == 0 || uaddr + ulen < uaddr) 415 return ERR_PTR(-EINVAL); 416 417 /* Calculate number of pages. */ 418 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 419 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 420 npages = (last - first + 1); 421 422 locked = sev->pages_locked + npages; 423 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 424 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 425 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 426 return ERR_PTR(-ENOMEM); 427 } 428 429 if (WARN_ON_ONCE(npages > INT_MAX)) 430 return ERR_PTR(-EINVAL); 431 432 /* Avoid using vmalloc for smaller buffers. */ 433 size = npages * sizeof(struct page *); 434 if (size > PAGE_SIZE) 435 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 436 else 437 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 438 439 if (!pages) 440 return ERR_PTR(-ENOMEM); 441 442 /* Pin the user virtual address. */ 443 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 444 if (npinned != npages) { 445 pr_err("SEV: Failure locking %lu pages.\n", npages); 446 ret = -ENOMEM; 447 goto err; 448 } 449 450 *n = npages; 451 sev->pages_locked = locked; 452 453 return pages; 454 455 err: 456 if (npinned > 0) 457 unpin_user_pages(pages, npinned); 458 459 kvfree(pages); 460 return ERR_PTR(ret); 461 } 462 463 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 464 unsigned long npages) 465 { 466 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 467 468 unpin_user_pages(pages, npages); 469 kvfree(pages); 470 sev->pages_locked -= npages; 471 } 472 473 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 474 { 475 uint8_t *page_virtual; 476 unsigned long i; 477 478 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 479 pages == NULL) 480 return; 481 482 for (i = 0; i < npages; i++) { 483 page_virtual = kmap_local_page(pages[i]); 484 clflush_cache_range(page_virtual, PAGE_SIZE); 485 kunmap_local(page_virtual); 486 cond_resched(); 487 } 488 } 489 490 static unsigned long get_num_contig_pages(unsigned long idx, 491 struct page **inpages, unsigned long npages) 492 { 493 unsigned long paddr, next_paddr; 494 unsigned long i = idx + 1, pages = 1; 495 496 /* find the number of contiguous pages starting from idx */ 497 paddr = __sme_page_pa(inpages[idx]); 498 while (i < npages) { 499 next_paddr = __sme_page_pa(inpages[i++]); 500 if ((paddr + PAGE_SIZE) == next_paddr) { 501 pages++; 502 paddr = next_paddr; 503 continue; 504 } 505 break; 506 } 507 508 return pages; 509 } 510 511 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 512 { 513 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 514 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 515 struct kvm_sev_launch_update_data params; 516 struct sev_data_launch_update_data data; 517 struct page **inpages; 518 int ret; 519 520 if (!sev_guest(kvm)) 521 return -ENOTTY; 522 523 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 524 return -EFAULT; 525 526 vaddr = params.uaddr; 527 size = params.len; 528 vaddr_end = vaddr + size; 529 530 /* Lock the user memory. */ 531 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 532 if (IS_ERR(inpages)) 533 return PTR_ERR(inpages); 534 535 /* 536 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 537 * place; the cache may contain the data that was written unencrypted. 538 */ 539 sev_clflush_pages(inpages, npages); 540 541 data.reserved = 0; 542 data.handle = sev->handle; 543 544 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 545 int offset, len; 546 547 /* 548 * If the user buffer is not page-aligned, calculate the offset 549 * within the page. 550 */ 551 offset = vaddr & (PAGE_SIZE - 1); 552 553 /* Calculate the number of pages that can be encrypted in one go. */ 554 pages = get_num_contig_pages(i, inpages, npages); 555 556 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 557 558 data.len = len; 559 data.address = __sme_page_pa(inpages[i]) + offset; 560 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 561 if (ret) 562 goto e_unpin; 563 564 size -= len; 565 next_vaddr = vaddr + len; 566 } 567 568 e_unpin: 569 /* content of memory is updated, mark pages dirty */ 570 for (i = 0; i < npages; i++) { 571 set_page_dirty_lock(inpages[i]); 572 mark_page_accessed(inpages[i]); 573 } 574 /* unlock the user pages */ 575 sev_unpin_memory(kvm, inpages, npages); 576 return ret; 577 } 578 579 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 580 { 581 struct sev_es_save_area *save = svm->sev_es.vmsa; 582 583 /* Check some debug related fields before encrypting the VMSA */ 584 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 585 return -EINVAL; 586 587 /* 588 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 589 * the traditional VMSA that is part of the VMCB. Copy the 590 * traditional VMSA as it has been built so far (in prep 591 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 592 */ 593 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 594 595 /* Sync registgers */ 596 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 597 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 598 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 599 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 600 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 601 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 602 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 603 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 604 #ifdef CONFIG_X86_64 605 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 606 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 607 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 608 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 609 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 610 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 611 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 612 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 613 #endif 614 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 615 616 /* Sync some non-GPR registers before encrypting */ 617 save->xcr0 = svm->vcpu.arch.xcr0; 618 save->pkru = svm->vcpu.arch.pkru; 619 save->xss = svm->vcpu.arch.ia32_xss; 620 save->dr6 = svm->vcpu.arch.dr6; 621 622 if (sev_es_debug_swap_enabled) { 623 save->sev_features |= SVM_SEV_FEAT_DEBUG_SWAP; 624 pr_warn_once("Enabling DebugSwap with KVM_SEV_ES_INIT. " 625 "This will not work starting with Linux 6.10\n"); 626 } 627 628 pr_debug("Virtual Machine Save Area (VMSA):\n"); 629 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); 630 631 return 0; 632 } 633 634 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 635 int *error) 636 { 637 struct sev_data_launch_update_vmsa vmsa; 638 struct vcpu_svm *svm = to_svm(vcpu); 639 int ret; 640 641 if (vcpu->guest_debug) { 642 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); 643 return -EINVAL; 644 } 645 646 /* Perform some pre-encryption checks against the VMSA */ 647 ret = sev_es_sync_vmsa(svm); 648 if (ret) 649 return ret; 650 651 /* 652 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 653 * the VMSA memory content (i.e it will write the same memory region 654 * with the guest's key), so invalidate it first. 655 */ 656 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 657 658 vmsa.reserved = 0; 659 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle; 660 vmsa.address = __sme_pa(svm->sev_es.vmsa); 661 vmsa.len = PAGE_SIZE; 662 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 663 if (ret) 664 return ret; 665 666 vcpu->arch.guest_state_protected = true; 667 return 0; 668 } 669 670 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 671 { 672 struct kvm_vcpu *vcpu; 673 unsigned long i; 674 int ret; 675 676 if (!sev_es_guest(kvm)) 677 return -ENOTTY; 678 679 kvm_for_each_vcpu(i, vcpu, kvm) { 680 ret = mutex_lock_killable(&vcpu->mutex); 681 if (ret) 682 return ret; 683 684 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 685 686 mutex_unlock(&vcpu->mutex); 687 if (ret) 688 return ret; 689 } 690 691 return 0; 692 } 693 694 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 695 { 696 void __user *measure = (void __user *)(uintptr_t)argp->data; 697 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 698 struct sev_data_launch_measure data; 699 struct kvm_sev_launch_measure params; 700 void __user *p = NULL; 701 void *blob = NULL; 702 int ret; 703 704 if (!sev_guest(kvm)) 705 return -ENOTTY; 706 707 if (copy_from_user(¶ms, measure, sizeof(params))) 708 return -EFAULT; 709 710 memset(&data, 0, sizeof(data)); 711 712 /* User wants to query the blob length */ 713 if (!params.len) 714 goto cmd; 715 716 p = (void __user *)(uintptr_t)params.uaddr; 717 if (p) { 718 if (params.len > SEV_FW_BLOB_MAX_SIZE) 719 return -EINVAL; 720 721 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 722 if (!blob) 723 return -ENOMEM; 724 725 data.address = __psp_pa(blob); 726 data.len = params.len; 727 } 728 729 cmd: 730 data.handle = sev->handle; 731 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 732 733 /* 734 * If we query the session length, FW responded with expected data. 735 */ 736 if (!params.len) 737 goto done; 738 739 if (ret) 740 goto e_free_blob; 741 742 if (blob) { 743 if (copy_to_user(p, blob, params.len)) 744 ret = -EFAULT; 745 } 746 747 done: 748 params.len = data.len; 749 if (copy_to_user(measure, ¶ms, sizeof(params))) 750 ret = -EFAULT; 751 e_free_blob: 752 kfree(blob); 753 return ret; 754 } 755 756 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 757 { 758 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 759 struct sev_data_launch_finish data; 760 761 if (!sev_guest(kvm)) 762 return -ENOTTY; 763 764 data.handle = sev->handle; 765 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 766 } 767 768 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 769 { 770 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 771 struct kvm_sev_guest_status params; 772 struct sev_data_guest_status data; 773 int ret; 774 775 if (!sev_guest(kvm)) 776 return -ENOTTY; 777 778 memset(&data, 0, sizeof(data)); 779 780 data.handle = sev->handle; 781 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 782 if (ret) 783 return ret; 784 785 params.policy = data.policy; 786 params.state = data.state; 787 params.handle = data.handle; 788 789 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 790 ret = -EFAULT; 791 792 return ret; 793 } 794 795 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 796 unsigned long dst, int size, 797 int *error, bool enc) 798 { 799 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 800 struct sev_data_dbg data; 801 802 data.reserved = 0; 803 data.handle = sev->handle; 804 data.dst_addr = dst; 805 data.src_addr = src; 806 data.len = size; 807 808 return sev_issue_cmd(kvm, 809 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 810 &data, error); 811 } 812 813 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 814 unsigned long dst_paddr, int sz, int *err) 815 { 816 int offset; 817 818 /* 819 * Its safe to read more than we are asked, caller should ensure that 820 * destination has enough space. 821 */ 822 offset = src_paddr & 15; 823 src_paddr = round_down(src_paddr, 16); 824 sz = round_up(sz + offset, 16); 825 826 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 827 } 828 829 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 830 void __user *dst_uaddr, 831 unsigned long dst_paddr, 832 int size, int *err) 833 { 834 struct page *tpage = NULL; 835 int ret, offset; 836 837 /* if inputs are not 16-byte then use intermediate buffer */ 838 if (!IS_ALIGNED(dst_paddr, 16) || 839 !IS_ALIGNED(paddr, 16) || 840 !IS_ALIGNED(size, 16)) { 841 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 842 if (!tpage) 843 return -ENOMEM; 844 845 dst_paddr = __sme_page_pa(tpage); 846 } 847 848 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 849 if (ret) 850 goto e_free; 851 852 if (tpage) { 853 offset = paddr & 15; 854 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 855 ret = -EFAULT; 856 } 857 858 e_free: 859 if (tpage) 860 __free_page(tpage); 861 862 return ret; 863 } 864 865 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 866 void __user *vaddr, 867 unsigned long dst_paddr, 868 void __user *dst_vaddr, 869 int size, int *error) 870 { 871 struct page *src_tpage = NULL; 872 struct page *dst_tpage = NULL; 873 int ret, len = size; 874 875 /* If source buffer is not aligned then use an intermediate buffer */ 876 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 877 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 878 if (!src_tpage) 879 return -ENOMEM; 880 881 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 882 __free_page(src_tpage); 883 return -EFAULT; 884 } 885 886 paddr = __sme_page_pa(src_tpage); 887 } 888 889 /* 890 * If destination buffer or length is not aligned then do read-modify-write: 891 * - decrypt destination in an intermediate buffer 892 * - copy the source buffer in an intermediate buffer 893 * - use the intermediate buffer as source buffer 894 */ 895 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 896 int dst_offset; 897 898 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 899 if (!dst_tpage) { 900 ret = -ENOMEM; 901 goto e_free; 902 } 903 904 ret = __sev_dbg_decrypt(kvm, dst_paddr, 905 __sme_page_pa(dst_tpage), size, error); 906 if (ret) 907 goto e_free; 908 909 /* 910 * If source is kernel buffer then use memcpy() otherwise 911 * copy_from_user(). 912 */ 913 dst_offset = dst_paddr & 15; 914 915 if (src_tpage) 916 memcpy(page_address(dst_tpage) + dst_offset, 917 page_address(src_tpage), size); 918 else { 919 if (copy_from_user(page_address(dst_tpage) + dst_offset, 920 vaddr, size)) { 921 ret = -EFAULT; 922 goto e_free; 923 } 924 } 925 926 paddr = __sme_page_pa(dst_tpage); 927 dst_paddr = round_down(dst_paddr, 16); 928 len = round_up(size, 16); 929 } 930 931 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 932 933 e_free: 934 if (src_tpage) 935 __free_page(src_tpage); 936 if (dst_tpage) 937 __free_page(dst_tpage); 938 return ret; 939 } 940 941 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 942 { 943 unsigned long vaddr, vaddr_end, next_vaddr; 944 unsigned long dst_vaddr; 945 struct page **src_p, **dst_p; 946 struct kvm_sev_dbg debug; 947 unsigned long n; 948 unsigned int size; 949 int ret; 950 951 if (!sev_guest(kvm)) 952 return -ENOTTY; 953 954 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 955 return -EFAULT; 956 957 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 958 return -EINVAL; 959 if (!debug.dst_uaddr) 960 return -EINVAL; 961 962 vaddr = debug.src_uaddr; 963 size = debug.len; 964 vaddr_end = vaddr + size; 965 dst_vaddr = debug.dst_uaddr; 966 967 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 968 int len, s_off, d_off; 969 970 /* lock userspace source and destination page */ 971 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 972 if (IS_ERR(src_p)) 973 return PTR_ERR(src_p); 974 975 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 976 if (IS_ERR(dst_p)) { 977 sev_unpin_memory(kvm, src_p, n); 978 return PTR_ERR(dst_p); 979 } 980 981 /* 982 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 983 * the pages; flush the destination too so that future accesses do not 984 * see stale data. 985 */ 986 sev_clflush_pages(src_p, 1); 987 sev_clflush_pages(dst_p, 1); 988 989 /* 990 * Since user buffer may not be page aligned, calculate the 991 * offset within the page. 992 */ 993 s_off = vaddr & ~PAGE_MASK; 994 d_off = dst_vaddr & ~PAGE_MASK; 995 len = min_t(size_t, (PAGE_SIZE - s_off), size); 996 997 if (dec) 998 ret = __sev_dbg_decrypt_user(kvm, 999 __sme_page_pa(src_p[0]) + s_off, 1000 (void __user *)dst_vaddr, 1001 __sme_page_pa(dst_p[0]) + d_off, 1002 len, &argp->error); 1003 else 1004 ret = __sev_dbg_encrypt_user(kvm, 1005 __sme_page_pa(src_p[0]) + s_off, 1006 (void __user *)vaddr, 1007 __sme_page_pa(dst_p[0]) + d_off, 1008 (void __user *)dst_vaddr, 1009 len, &argp->error); 1010 1011 sev_unpin_memory(kvm, src_p, n); 1012 sev_unpin_memory(kvm, dst_p, n); 1013 1014 if (ret) 1015 goto err; 1016 1017 next_vaddr = vaddr + len; 1018 dst_vaddr = dst_vaddr + len; 1019 size -= len; 1020 } 1021 err: 1022 return ret; 1023 } 1024 1025 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1026 { 1027 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1028 struct sev_data_launch_secret data; 1029 struct kvm_sev_launch_secret params; 1030 struct page **pages; 1031 void *blob, *hdr; 1032 unsigned long n, i; 1033 int ret, offset; 1034 1035 if (!sev_guest(kvm)) 1036 return -ENOTTY; 1037 1038 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1039 return -EFAULT; 1040 1041 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1042 if (IS_ERR(pages)) 1043 return PTR_ERR(pages); 1044 1045 /* 1046 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1047 * place; the cache may contain the data that was written unencrypted. 1048 */ 1049 sev_clflush_pages(pages, n); 1050 1051 /* 1052 * The secret must be copied into contiguous memory region, lets verify 1053 * that userspace memory pages are contiguous before we issue command. 1054 */ 1055 if (get_num_contig_pages(0, pages, n) != n) { 1056 ret = -EINVAL; 1057 goto e_unpin_memory; 1058 } 1059 1060 memset(&data, 0, sizeof(data)); 1061 1062 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1063 data.guest_address = __sme_page_pa(pages[0]) + offset; 1064 data.guest_len = params.guest_len; 1065 1066 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1067 if (IS_ERR(blob)) { 1068 ret = PTR_ERR(blob); 1069 goto e_unpin_memory; 1070 } 1071 1072 data.trans_address = __psp_pa(blob); 1073 data.trans_len = params.trans_len; 1074 1075 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1076 if (IS_ERR(hdr)) { 1077 ret = PTR_ERR(hdr); 1078 goto e_free_blob; 1079 } 1080 data.hdr_address = __psp_pa(hdr); 1081 data.hdr_len = params.hdr_len; 1082 1083 data.handle = sev->handle; 1084 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1085 1086 kfree(hdr); 1087 1088 e_free_blob: 1089 kfree(blob); 1090 e_unpin_memory: 1091 /* content of memory is updated, mark pages dirty */ 1092 for (i = 0; i < n; i++) { 1093 set_page_dirty_lock(pages[i]); 1094 mark_page_accessed(pages[i]); 1095 } 1096 sev_unpin_memory(kvm, pages, n); 1097 return ret; 1098 } 1099 1100 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1101 { 1102 void __user *report = (void __user *)(uintptr_t)argp->data; 1103 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1104 struct sev_data_attestation_report data; 1105 struct kvm_sev_attestation_report params; 1106 void __user *p; 1107 void *blob = NULL; 1108 int ret; 1109 1110 if (!sev_guest(kvm)) 1111 return -ENOTTY; 1112 1113 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1114 return -EFAULT; 1115 1116 memset(&data, 0, sizeof(data)); 1117 1118 /* User wants to query the blob length */ 1119 if (!params.len) 1120 goto cmd; 1121 1122 p = (void __user *)(uintptr_t)params.uaddr; 1123 if (p) { 1124 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1125 return -EINVAL; 1126 1127 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1128 if (!blob) 1129 return -ENOMEM; 1130 1131 data.address = __psp_pa(blob); 1132 data.len = params.len; 1133 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1134 } 1135 cmd: 1136 data.handle = sev->handle; 1137 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1138 /* 1139 * If we query the session length, FW responded with expected data. 1140 */ 1141 if (!params.len) 1142 goto done; 1143 1144 if (ret) 1145 goto e_free_blob; 1146 1147 if (blob) { 1148 if (copy_to_user(p, blob, params.len)) 1149 ret = -EFAULT; 1150 } 1151 1152 done: 1153 params.len = data.len; 1154 if (copy_to_user(report, ¶ms, sizeof(params))) 1155 ret = -EFAULT; 1156 e_free_blob: 1157 kfree(blob); 1158 return ret; 1159 } 1160 1161 /* Userspace wants to query session length. */ 1162 static int 1163 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1164 struct kvm_sev_send_start *params) 1165 { 1166 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1167 struct sev_data_send_start data; 1168 int ret; 1169 1170 memset(&data, 0, sizeof(data)); 1171 data.handle = sev->handle; 1172 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1173 1174 params->session_len = data.session_len; 1175 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1176 sizeof(struct kvm_sev_send_start))) 1177 ret = -EFAULT; 1178 1179 return ret; 1180 } 1181 1182 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1183 { 1184 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1185 struct sev_data_send_start data; 1186 struct kvm_sev_send_start params; 1187 void *amd_certs, *session_data; 1188 void *pdh_cert, *plat_certs; 1189 int ret; 1190 1191 if (!sev_guest(kvm)) 1192 return -ENOTTY; 1193 1194 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1195 sizeof(struct kvm_sev_send_start))) 1196 return -EFAULT; 1197 1198 /* if session_len is zero, userspace wants to query the session length */ 1199 if (!params.session_len) 1200 return __sev_send_start_query_session_length(kvm, argp, 1201 ¶ms); 1202 1203 /* some sanity checks */ 1204 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1205 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1206 return -EINVAL; 1207 1208 /* allocate the memory to hold the session data blob */ 1209 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1210 if (!session_data) 1211 return -ENOMEM; 1212 1213 /* copy the certificate blobs from userspace */ 1214 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1215 params.pdh_cert_len); 1216 if (IS_ERR(pdh_cert)) { 1217 ret = PTR_ERR(pdh_cert); 1218 goto e_free_session; 1219 } 1220 1221 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1222 params.plat_certs_len); 1223 if (IS_ERR(plat_certs)) { 1224 ret = PTR_ERR(plat_certs); 1225 goto e_free_pdh; 1226 } 1227 1228 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1229 params.amd_certs_len); 1230 if (IS_ERR(amd_certs)) { 1231 ret = PTR_ERR(amd_certs); 1232 goto e_free_plat_cert; 1233 } 1234 1235 /* populate the FW SEND_START field with system physical address */ 1236 memset(&data, 0, sizeof(data)); 1237 data.pdh_cert_address = __psp_pa(pdh_cert); 1238 data.pdh_cert_len = params.pdh_cert_len; 1239 data.plat_certs_address = __psp_pa(plat_certs); 1240 data.plat_certs_len = params.plat_certs_len; 1241 data.amd_certs_address = __psp_pa(amd_certs); 1242 data.amd_certs_len = params.amd_certs_len; 1243 data.session_address = __psp_pa(session_data); 1244 data.session_len = params.session_len; 1245 data.handle = sev->handle; 1246 1247 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1248 1249 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1250 session_data, params.session_len)) { 1251 ret = -EFAULT; 1252 goto e_free_amd_cert; 1253 } 1254 1255 params.policy = data.policy; 1256 params.session_len = data.session_len; 1257 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1258 sizeof(struct kvm_sev_send_start))) 1259 ret = -EFAULT; 1260 1261 e_free_amd_cert: 1262 kfree(amd_certs); 1263 e_free_plat_cert: 1264 kfree(plat_certs); 1265 e_free_pdh: 1266 kfree(pdh_cert); 1267 e_free_session: 1268 kfree(session_data); 1269 return ret; 1270 } 1271 1272 /* Userspace wants to query either header or trans length. */ 1273 static int 1274 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1275 struct kvm_sev_send_update_data *params) 1276 { 1277 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1278 struct sev_data_send_update_data data; 1279 int ret; 1280 1281 memset(&data, 0, sizeof(data)); 1282 data.handle = sev->handle; 1283 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1284 1285 params->hdr_len = data.hdr_len; 1286 params->trans_len = data.trans_len; 1287 1288 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1289 sizeof(struct kvm_sev_send_update_data))) 1290 ret = -EFAULT; 1291 1292 return ret; 1293 } 1294 1295 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1296 { 1297 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1298 struct sev_data_send_update_data data; 1299 struct kvm_sev_send_update_data params; 1300 void *hdr, *trans_data; 1301 struct page **guest_page; 1302 unsigned long n; 1303 int ret, offset; 1304 1305 if (!sev_guest(kvm)) 1306 return -ENOTTY; 1307 1308 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1309 sizeof(struct kvm_sev_send_update_data))) 1310 return -EFAULT; 1311 1312 /* userspace wants to query either header or trans length */ 1313 if (!params.trans_len || !params.hdr_len) 1314 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1315 1316 if (!params.trans_uaddr || !params.guest_uaddr || 1317 !params.guest_len || !params.hdr_uaddr) 1318 return -EINVAL; 1319 1320 /* Check if we are crossing the page boundary */ 1321 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1322 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1323 return -EINVAL; 1324 1325 /* Pin guest memory */ 1326 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1327 PAGE_SIZE, &n, 0); 1328 if (IS_ERR(guest_page)) 1329 return PTR_ERR(guest_page); 1330 1331 /* allocate memory for header and transport buffer */ 1332 ret = -ENOMEM; 1333 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1334 if (!hdr) 1335 goto e_unpin; 1336 1337 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1338 if (!trans_data) 1339 goto e_free_hdr; 1340 1341 memset(&data, 0, sizeof(data)); 1342 data.hdr_address = __psp_pa(hdr); 1343 data.hdr_len = params.hdr_len; 1344 data.trans_address = __psp_pa(trans_data); 1345 data.trans_len = params.trans_len; 1346 1347 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1348 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1349 data.guest_address |= sev_me_mask; 1350 data.guest_len = params.guest_len; 1351 data.handle = sev->handle; 1352 1353 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1354 1355 if (ret) 1356 goto e_free_trans_data; 1357 1358 /* copy transport buffer to user space */ 1359 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1360 trans_data, params.trans_len)) { 1361 ret = -EFAULT; 1362 goto e_free_trans_data; 1363 } 1364 1365 /* Copy packet header to userspace. */ 1366 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1367 params.hdr_len)) 1368 ret = -EFAULT; 1369 1370 e_free_trans_data: 1371 kfree(trans_data); 1372 e_free_hdr: 1373 kfree(hdr); 1374 e_unpin: 1375 sev_unpin_memory(kvm, guest_page, n); 1376 1377 return ret; 1378 } 1379 1380 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1381 { 1382 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1383 struct sev_data_send_finish data; 1384 1385 if (!sev_guest(kvm)) 1386 return -ENOTTY; 1387 1388 data.handle = sev->handle; 1389 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1390 } 1391 1392 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1393 { 1394 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1395 struct sev_data_send_cancel data; 1396 1397 if (!sev_guest(kvm)) 1398 return -ENOTTY; 1399 1400 data.handle = sev->handle; 1401 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1402 } 1403 1404 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1405 { 1406 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1407 struct sev_data_receive_start start; 1408 struct kvm_sev_receive_start params; 1409 int *error = &argp->error; 1410 void *session_data; 1411 void *pdh_data; 1412 int ret; 1413 1414 if (!sev_guest(kvm)) 1415 return -ENOTTY; 1416 1417 /* Get parameter from the userspace */ 1418 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1419 sizeof(struct kvm_sev_receive_start))) 1420 return -EFAULT; 1421 1422 /* some sanity checks */ 1423 if (!params.pdh_uaddr || !params.pdh_len || 1424 !params.session_uaddr || !params.session_len) 1425 return -EINVAL; 1426 1427 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1428 if (IS_ERR(pdh_data)) 1429 return PTR_ERR(pdh_data); 1430 1431 session_data = psp_copy_user_blob(params.session_uaddr, 1432 params.session_len); 1433 if (IS_ERR(session_data)) { 1434 ret = PTR_ERR(session_data); 1435 goto e_free_pdh; 1436 } 1437 1438 memset(&start, 0, sizeof(start)); 1439 start.handle = params.handle; 1440 start.policy = params.policy; 1441 start.pdh_cert_address = __psp_pa(pdh_data); 1442 start.pdh_cert_len = params.pdh_len; 1443 start.session_address = __psp_pa(session_data); 1444 start.session_len = params.session_len; 1445 1446 /* create memory encryption context */ 1447 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1448 error); 1449 if (ret) 1450 goto e_free_session; 1451 1452 /* Bind ASID to this guest */ 1453 ret = sev_bind_asid(kvm, start.handle, error); 1454 if (ret) { 1455 sev_decommission(start.handle); 1456 goto e_free_session; 1457 } 1458 1459 params.handle = start.handle; 1460 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1461 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1462 ret = -EFAULT; 1463 sev_unbind_asid(kvm, start.handle); 1464 goto e_free_session; 1465 } 1466 1467 sev->handle = start.handle; 1468 sev->fd = argp->sev_fd; 1469 1470 e_free_session: 1471 kfree(session_data); 1472 e_free_pdh: 1473 kfree(pdh_data); 1474 1475 return ret; 1476 } 1477 1478 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1479 { 1480 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1481 struct kvm_sev_receive_update_data params; 1482 struct sev_data_receive_update_data data; 1483 void *hdr = NULL, *trans = NULL; 1484 struct page **guest_page; 1485 unsigned long n; 1486 int ret, offset; 1487 1488 if (!sev_guest(kvm)) 1489 return -EINVAL; 1490 1491 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1492 sizeof(struct kvm_sev_receive_update_data))) 1493 return -EFAULT; 1494 1495 if (!params.hdr_uaddr || !params.hdr_len || 1496 !params.guest_uaddr || !params.guest_len || 1497 !params.trans_uaddr || !params.trans_len) 1498 return -EINVAL; 1499 1500 /* Check if we are crossing the page boundary */ 1501 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1502 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1503 return -EINVAL; 1504 1505 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1506 if (IS_ERR(hdr)) 1507 return PTR_ERR(hdr); 1508 1509 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1510 if (IS_ERR(trans)) { 1511 ret = PTR_ERR(trans); 1512 goto e_free_hdr; 1513 } 1514 1515 memset(&data, 0, sizeof(data)); 1516 data.hdr_address = __psp_pa(hdr); 1517 data.hdr_len = params.hdr_len; 1518 data.trans_address = __psp_pa(trans); 1519 data.trans_len = params.trans_len; 1520 1521 /* Pin guest memory */ 1522 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1523 PAGE_SIZE, &n, 1); 1524 if (IS_ERR(guest_page)) { 1525 ret = PTR_ERR(guest_page); 1526 goto e_free_trans; 1527 } 1528 1529 /* 1530 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1531 * encrypts the written data with the guest's key, and the cache may 1532 * contain dirty, unencrypted data. 1533 */ 1534 sev_clflush_pages(guest_page, n); 1535 1536 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1537 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1538 data.guest_address |= sev_me_mask; 1539 data.guest_len = params.guest_len; 1540 data.handle = sev->handle; 1541 1542 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1543 &argp->error); 1544 1545 sev_unpin_memory(kvm, guest_page, n); 1546 1547 e_free_trans: 1548 kfree(trans); 1549 e_free_hdr: 1550 kfree(hdr); 1551 1552 return ret; 1553 } 1554 1555 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1556 { 1557 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1558 struct sev_data_receive_finish data; 1559 1560 if (!sev_guest(kvm)) 1561 return -ENOTTY; 1562 1563 data.handle = sev->handle; 1564 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1565 } 1566 1567 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1568 { 1569 /* 1570 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1571 * active mirror VMs. Also allow the debugging and status commands. 1572 */ 1573 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1574 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1575 cmd_id == KVM_SEV_DBG_ENCRYPT) 1576 return true; 1577 1578 return false; 1579 } 1580 1581 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1582 { 1583 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1584 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1585 int r = -EBUSY; 1586 1587 if (dst_kvm == src_kvm) 1588 return -EINVAL; 1589 1590 /* 1591 * Bail if these VMs are already involved in a migration to avoid 1592 * deadlock between two VMs trying to migrate to/from each other. 1593 */ 1594 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1595 return -EBUSY; 1596 1597 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1598 goto release_dst; 1599 1600 r = -EINTR; 1601 if (mutex_lock_killable(&dst_kvm->lock)) 1602 goto release_src; 1603 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1604 goto unlock_dst; 1605 return 0; 1606 1607 unlock_dst: 1608 mutex_unlock(&dst_kvm->lock); 1609 release_src: 1610 atomic_set_release(&src_sev->migration_in_progress, 0); 1611 release_dst: 1612 atomic_set_release(&dst_sev->migration_in_progress, 0); 1613 return r; 1614 } 1615 1616 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1617 { 1618 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1619 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1620 1621 mutex_unlock(&dst_kvm->lock); 1622 mutex_unlock(&src_kvm->lock); 1623 atomic_set_release(&dst_sev->migration_in_progress, 0); 1624 atomic_set_release(&src_sev->migration_in_progress, 0); 1625 } 1626 1627 /* vCPU mutex subclasses. */ 1628 enum sev_migration_role { 1629 SEV_MIGRATION_SOURCE = 0, 1630 SEV_MIGRATION_TARGET, 1631 SEV_NR_MIGRATION_ROLES, 1632 }; 1633 1634 static int sev_lock_vcpus_for_migration(struct kvm *kvm, 1635 enum sev_migration_role role) 1636 { 1637 struct kvm_vcpu *vcpu; 1638 unsigned long i, j; 1639 1640 kvm_for_each_vcpu(i, vcpu, kvm) { 1641 if (mutex_lock_killable_nested(&vcpu->mutex, role)) 1642 goto out_unlock; 1643 1644 #ifdef CONFIG_PROVE_LOCKING 1645 if (!i) 1646 /* 1647 * Reset the role to one that avoids colliding with 1648 * the role used for the first vcpu mutex. 1649 */ 1650 role = SEV_NR_MIGRATION_ROLES; 1651 else 1652 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_); 1653 #endif 1654 } 1655 1656 return 0; 1657 1658 out_unlock: 1659 1660 kvm_for_each_vcpu(j, vcpu, kvm) { 1661 if (i == j) 1662 break; 1663 1664 #ifdef CONFIG_PROVE_LOCKING 1665 if (j) 1666 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_); 1667 #endif 1668 1669 mutex_unlock(&vcpu->mutex); 1670 } 1671 return -EINTR; 1672 } 1673 1674 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1675 { 1676 struct kvm_vcpu *vcpu; 1677 unsigned long i; 1678 bool first = true; 1679 1680 kvm_for_each_vcpu(i, vcpu, kvm) { 1681 if (first) 1682 first = false; 1683 else 1684 mutex_acquire(&vcpu->mutex.dep_map, 1685 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_); 1686 1687 mutex_unlock(&vcpu->mutex); 1688 } 1689 } 1690 1691 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1692 { 1693 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info; 1694 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info; 1695 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1696 struct vcpu_svm *dst_svm, *src_svm; 1697 struct kvm_sev_info *mirror; 1698 unsigned long i; 1699 1700 dst->active = true; 1701 dst->asid = src->asid; 1702 dst->handle = src->handle; 1703 dst->pages_locked = src->pages_locked; 1704 dst->enc_context_owner = src->enc_context_owner; 1705 dst->es_active = src->es_active; 1706 1707 src->asid = 0; 1708 src->active = false; 1709 src->handle = 0; 1710 src->pages_locked = 0; 1711 src->enc_context_owner = NULL; 1712 src->es_active = false; 1713 1714 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1715 1716 /* 1717 * If this VM has mirrors, "transfer" each mirror's refcount of the 1718 * source to the destination (this KVM). The caller holds a reference 1719 * to the source, so there's no danger of use-after-free. 1720 */ 1721 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 1722 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 1723 kvm_get_kvm(dst_kvm); 1724 kvm_put_kvm(src_kvm); 1725 mirror->enc_context_owner = dst_kvm; 1726 } 1727 1728 /* 1729 * If this VM is a mirror, remove the old mirror from the owners list 1730 * and add the new mirror to the list. 1731 */ 1732 if (is_mirroring_enc_context(dst_kvm)) { 1733 struct kvm_sev_info *owner_sev_info = 1734 &to_kvm_svm(dst->enc_context_owner)->sev_info; 1735 1736 list_del(&src->mirror_entry); 1737 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 1738 } 1739 1740 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 1741 dst_svm = to_svm(dst_vcpu); 1742 1743 sev_init_vmcb(dst_svm); 1744 1745 if (!dst->es_active) 1746 continue; 1747 1748 /* 1749 * Note, the source is not required to have the same number of 1750 * vCPUs as the destination when migrating a vanilla SEV VM. 1751 */ 1752 src_vcpu = kvm_get_vcpu(src_kvm, i); 1753 src_svm = to_svm(src_vcpu); 1754 1755 /* 1756 * Transfer VMSA and GHCB state to the destination. Nullify and 1757 * clear source fields as appropriate, the state now belongs to 1758 * the destination. 1759 */ 1760 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 1761 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 1762 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 1763 dst_vcpu->arch.guest_state_protected = true; 1764 1765 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 1766 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 1767 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 1768 src_vcpu->arch.guest_state_protected = false; 1769 } 1770 } 1771 1772 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 1773 { 1774 struct kvm_vcpu *src_vcpu; 1775 unsigned long i; 1776 1777 if (!sev_es_guest(src)) 1778 return 0; 1779 1780 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 1781 return -EINVAL; 1782 1783 kvm_for_each_vcpu(i, src_vcpu, src) { 1784 if (!src_vcpu->arch.guest_state_protected) 1785 return -EINVAL; 1786 } 1787 1788 return 0; 1789 } 1790 1791 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 1792 { 1793 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; 1794 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 1795 struct fd f = fdget(source_fd); 1796 struct kvm *source_kvm; 1797 bool charged = false; 1798 int ret; 1799 1800 if (!f.file) 1801 return -EBADF; 1802 1803 if (!file_is_kvm(f.file)) { 1804 ret = -EBADF; 1805 goto out_fput; 1806 } 1807 1808 source_kvm = f.file->private_data; 1809 ret = sev_lock_two_vms(kvm, source_kvm); 1810 if (ret) 1811 goto out_fput; 1812 1813 if (sev_guest(kvm) || !sev_guest(source_kvm)) { 1814 ret = -EINVAL; 1815 goto out_unlock; 1816 } 1817 1818 src_sev = &to_kvm_svm(source_kvm)->sev_info; 1819 1820 dst_sev->misc_cg = get_current_misc_cg(); 1821 cg_cleanup_sev = dst_sev; 1822 if (dst_sev->misc_cg != src_sev->misc_cg) { 1823 ret = sev_misc_cg_try_charge(dst_sev); 1824 if (ret) 1825 goto out_dst_cgroup; 1826 charged = true; 1827 } 1828 1829 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE); 1830 if (ret) 1831 goto out_dst_cgroup; 1832 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET); 1833 if (ret) 1834 goto out_dst_vcpu; 1835 1836 ret = sev_check_source_vcpus(kvm, source_kvm); 1837 if (ret) 1838 goto out_source_vcpu; 1839 1840 sev_migrate_from(kvm, source_kvm); 1841 kvm_vm_dead(source_kvm); 1842 cg_cleanup_sev = src_sev; 1843 ret = 0; 1844 1845 out_source_vcpu: 1846 sev_unlock_vcpus_for_migration(source_kvm); 1847 out_dst_vcpu: 1848 sev_unlock_vcpus_for_migration(kvm); 1849 out_dst_cgroup: 1850 /* Operates on the source on success, on the destination on failure. */ 1851 if (charged) 1852 sev_misc_cg_uncharge(cg_cleanup_sev); 1853 put_misc_cg(cg_cleanup_sev->misc_cg); 1854 cg_cleanup_sev->misc_cg = NULL; 1855 out_unlock: 1856 sev_unlock_two_vms(kvm, source_kvm); 1857 out_fput: 1858 fdput(f); 1859 return ret; 1860 } 1861 1862 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 1863 { 1864 struct kvm_sev_cmd sev_cmd; 1865 int r; 1866 1867 if (!sev_enabled) 1868 return -ENOTTY; 1869 1870 if (!argp) 1871 return 0; 1872 1873 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1874 return -EFAULT; 1875 1876 mutex_lock(&kvm->lock); 1877 1878 /* Only the enc_context_owner handles some memory enc operations. */ 1879 if (is_mirroring_enc_context(kvm) && 1880 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 1881 r = -EINVAL; 1882 goto out; 1883 } 1884 1885 switch (sev_cmd.id) { 1886 case KVM_SEV_ES_INIT: 1887 if (!sev_es_enabled) { 1888 r = -ENOTTY; 1889 goto out; 1890 } 1891 fallthrough; 1892 case KVM_SEV_INIT: 1893 r = sev_guest_init(kvm, &sev_cmd); 1894 break; 1895 case KVM_SEV_LAUNCH_START: 1896 r = sev_launch_start(kvm, &sev_cmd); 1897 break; 1898 case KVM_SEV_LAUNCH_UPDATE_DATA: 1899 r = sev_launch_update_data(kvm, &sev_cmd); 1900 break; 1901 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1902 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1903 break; 1904 case KVM_SEV_LAUNCH_MEASURE: 1905 r = sev_launch_measure(kvm, &sev_cmd); 1906 break; 1907 case KVM_SEV_LAUNCH_FINISH: 1908 r = sev_launch_finish(kvm, &sev_cmd); 1909 break; 1910 case KVM_SEV_GUEST_STATUS: 1911 r = sev_guest_status(kvm, &sev_cmd); 1912 break; 1913 case KVM_SEV_DBG_DECRYPT: 1914 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1915 break; 1916 case KVM_SEV_DBG_ENCRYPT: 1917 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1918 break; 1919 case KVM_SEV_LAUNCH_SECRET: 1920 r = sev_launch_secret(kvm, &sev_cmd); 1921 break; 1922 case KVM_SEV_GET_ATTESTATION_REPORT: 1923 r = sev_get_attestation_report(kvm, &sev_cmd); 1924 break; 1925 case KVM_SEV_SEND_START: 1926 r = sev_send_start(kvm, &sev_cmd); 1927 break; 1928 case KVM_SEV_SEND_UPDATE_DATA: 1929 r = sev_send_update_data(kvm, &sev_cmd); 1930 break; 1931 case KVM_SEV_SEND_FINISH: 1932 r = sev_send_finish(kvm, &sev_cmd); 1933 break; 1934 case KVM_SEV_SEND_CANCEL: 1935 r = sev_send_cancel(kvm, &sev_cmd); 1936 break; 1937 case KVM_SEV_RECEIVE_START: 1938 r = sev_receive_start(kvm, &sev_cmd); 1939 break; 1940 case KVM_SEV_RECEIVE_UPDATE_DATA: 1941 r = sev_receive_update_data(kvm, &sev_cmd); 1942 break; 1943 case KVM_SEV_RECEIVE_FINISH: 1944 r = sev_receive_finish(kvm, &sev_cmd); 1945 break; 1946 default: 1947 r = -EINVAL; 1948 goto out; 1949 } 1950 1951 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1952 r = -EFAULT; 1953 1954 out: 1955 mutex_unlock(&kvm->lock); 1956 return r; 1957 } 1958 1959 int sev_mem_enc_register_region(struct kvm *kvm, 1960 struct kvm_enc_region *range) 1961 { 1962 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1963 struct enc_region *region; 1964 int ret = 0; 1965 1966 if (!sev_guest(kvm)) 1967 return -ENOTTY; 1968 1969 /* If kvm is mirroring encryption context it isn't responsible for it */ 1970 if (is_mirroring_enc_context(kvm)) 1971 return -EINVAL; 1972 1973 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1974 return -EINVAL; 1975 1976 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1977 if (!region) 1978 return -ENOMEM; 1979 1980 mutex_lock(&kvm->lock); 1981 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1982 if (IS_ERR(region->pages)) { 1983 ret = PTR_ERR(region->pages); 1984 mutex_unlock(&kvm->lock); 1985 goto e_free; 1986 } 1987 1988 /* 1989 * The guest may change the memory encryption attribute from C=0 -> C=1 1990 * or vice versa for this memory range. Lets make sure caches are 1991 * flushed to ensure that guest data gets written into memory with 1992 * correct C-bit. Note, this must be done before dropping kvm->lock, 1993 * as region and its array of pages can be freed by a different task 1994 * once kvm->lock is released. 1995 */ 1996 sev_clflush_pages(region->pages, region->npages); 1997 1998 region->uaddr = range->addr; 1999 region->size = range->size; 2000 2001 list_add_tail(®ion->list, &sev->regions_list); 2002 mutex_unlock(&kvm->lock); 2003 2004 return ret; 2005 2006 e_free: 2007 kfree(region); 2008 return ret; 2009 } 2010 2011 static struct enc_region * 2012 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 2013 { 2014 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2015 struct list_head *head = &sev->regions_list; 2016 struct enc_region *i; 2017 2018 list_for_each_entry(i, head, list) { 2019 if (i->uaddr == range->addr && 2020 i->size == range->size) 2021 return i; 2022 } 2023 2024 return NULL; 2025 } 2026 2027 static void __unregister_enc_region_locked(struct kvm *kvm, 2028 struct enc_region *region) 2029 { 2030 sev_unpin_memory(kvm, region->pages, region->npages); 2031 list_del(®ion->list); 2032 kfree(region); 2033 } 2034 2035 int sev_mem_enc_unregister_region(struct kvm *kvm, 2036 struct kvm_enc_region *range) 2037 { 2038 struct enc_region *region; 2039 int ret; 2040 2041 /* If kvm is mirroring encryption context it isn't responsible for it */ 2042 if (is_mirroring_enc_context(kvm)) 2043 return -EINVAL; 2044 2045 mutex_lock(&kvm->lock); 2046 2047 if (!sev_guest(kvm)) { 2048 ret = -ENOTTY; 2049 goto failed; 2050 } 2051 2052 region = find_enc_region(kvm, range); 2053 if (!region) { 2054 ret = -EINVAL; 2055 goto failed; 2056 } 2057 2058 /* 2059 * Ensure that all guest tagged cache entries are flushed before 2060 * releasing the pages back to the system for use. CLFLUSH will 2061 * not do this, so issue a WBINVD. 2062 */ 2063 wbinvd_on_all_cpus(); 2064 2065 __unregister_enc_region_locked(kvm, region); 2066 2067 mutex_unlock(&kvm->lock); 2068 return 0; 2069 2070 failed: 2071 mutex_unlock(&kvm->lock); 2072 return ret; 2073 } 2074 2075 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2076 { 2077 struct fd f = fdget(source_fd); 2078 struct kvm *source_kvm; 2079 struct kvm_sev_info *source_sev, *mirror_sev; 2080 int ret; 2081 2082 if (!f.file) 2083 return -EBADF; 2084 2085 if (!file_is_kvm(f.file)) { 2086 ret = -EBADF; 2087 goto e_source_fput; 2088 } 2089 2090 source_kvm = f.file->private_data; 2091 ret = sev_lock_two_vms(kvm, source_kvm); 2092 if (ret) 2093 goto e_source_fput; 2094 2095 /* 2096 * Mirrors of mirrors should work, but let's not get silly. Also 2097 * disallow out-of-band SEV/SEV-ES init if the target is already an 2098 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2099 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2100 */ 2101 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2102 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2103 ret = -EINVAL; 2104 goto e_unlock; 2105 } 2106 2107 /* 2108 * The mirror kvm holds an enc_context_owner ref so its asid can't 2109 * disappear until we're done with it 2110 */ 2111 source_sev = &to_kvm_svm(source_kvm)->sev_info; 2112 kvm_get_kvm(source_kvm); 2113 mirror_sev = &to_kvm_svm(kvm)->sev_info; 2114 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2115 2116 /* Set enc_context_owner and copy its encryption context over */ 2117 mirror_sev->enc_context_owner = source_kvm; 2118 mirror_sev->active = true; 2119 mirror_sev->asid = source_sev->asid; 2120 mirror_sev->fd = source_sev->fd; 2121 mirror_sev->es_active = source_sev->es_active; 2122 mirror_sev->handle = source_sev->handle; 2123 INIT_LIST_HEAD(&mirror_sev->regions_list); 2124 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2125 ret = 0; 2126 2127 /* 2128 * Do not copy ap_jump_table. Since the mirror does not share the same 2129 * KVM contexts as the original, and they may have different 2130 * memory-views. 2131 */ 2132 2133 e_unlock: 2134 sev_unlock_two_vms(kvm, source_kvm); 2135 e_source_fput: 2136 fdput(f); 2137 return ret; 2138 } 2139 2140 void sev_vm_destroy(struct kvm *kvm) 2141 { 2142 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2143 struct list_head *head = &sev->regions_list; 2144 struct list_head *pos, *q; 2145 2146 if (!sev_guest(kvm)) 2147 return; 2148 2149 WARN_ON(!list_empty(&sev->mirror_vms)); 2150 2151 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2152 if (is_mirroring_enc_context(kvm)) { 2153 struct kvm *owner_kvm = sev->enc_context_owner; 2154 2155 mutex_lock(&owner_kvm->lock); 2156 list_del(&sev->mirror_entry); 2157 mutex_unlock(&owner_kvm->lock); 2158 kvm_put_kvm(owner_kvm); 2159 return; 2160 } 2161 2162 /* 2163 * Ensure that all guest tagged cache entries are flushed before 2164 * releasing the pages back to the system for use. CLFLUSH will 2165 * not do this, so issue a WBINVD. 2166 */ 2167 wbinvd_on_all_cpus(); 2168 2169 /* 2170 * if userspace was terminated before unregistering the memory regions 2171 * then lets unpin all the registered memory. 2172 */ 2173 if (!list_empty(head)) { 2174 list_for_each_safe(pos, q, head) { 2175 __unregister_enc_region_locked(kvm, 2176 list_entry(pos, struct enc_region, list)); 2177 cond_resched(); 2178 } 2179 } 2180 2181 sev_unbind_asid(kvm, sev->handle); 2182 sev_asid_free(sev); 2183 } 2184 2185 void __init sev_set_cpu_caps(void) 2186 { 2187 if (!sev_enabled) 2188 kvm_cpu_cap_clear(X86_FEATURE_SEV); 2189 if (!sev_es_enabled) 2190 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 2191 } 2192 2193 void __init sev_hardware_setup(void) 2194 { 2195 #ifdef CONFIG_KVM_AMD_SEV 2196 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2197 bool sev_es_supported = false; 2198 bool sev_supported = false; 2199 2200 if (!sev_enabled || !npt_enabled || !nrips) 2201 goto out; 2202 2203 /* 2204 * SEV must obviously be supported in hardware. Sanity check that the 2205 * CPU supports decode assists, which is mandatory for SEV guests to 2206 * support instruction emulation. 2207 */ 2208 if (!boot_cpu_has(X86_FEATURE_SEV) || 2209 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS))) 2210 goto out; 2211 2212 /* Retrieve SEV CPUID information */ 2213 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2214 2215 /* Set encryption bit location for SEV-ES guests */ 2216 sev_enc_bit = ebx & 0x3f; 2217 2218 /* Maximum number of encrypted guests supported simultaneously */ 2219 max_sev_asid = ecx; 2220 if (!max_sev_asid) 2221 goto out; 2222 2223 /* Minimum ASID value that should be used for SEV guest */ 2224 min_sev_asid = edx; 2225 sev_me_mask = 1UL << (ebx & 0x3f); 2226 2227 /* 2228 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 2229 * even though it's never used, so that the bitmap is indexed by the 2230 * actual ASID. 2231 */ 2232 nr_asids = max_sev_asid + 1; 2233 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2234 if (!sev_asid_bitmap) 2235 goto out; 2236 2237 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2238 if (!sev_reclaim_asid_bitmap) { 2239 bitmap_free(sev_asid_bitmap); 2240 sev_asid_bitmap = NULL; 2241 goto out; 2242 } 2243 2244 if (min_sev_asid <= max_sev_asid) { 2245 sev_asid_count = max_sev_asid - min_sev_asid + 1; 2246 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); 2247 } 2248 sev_supported = true; 2249 2250 /* SEV-ES support requested? */ 2251 if (!sev_es_enabled) 2252 goto out; 2253 2254 /* 2255 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest 2256 * instruction stream, i.e. can't emulate in response to a #NPF and 2257 * instead relies on #NPF(RSVD) being reflected into the guest as #VC 2258 * (the guest can then do a #VMGEXIT to request MMIO emulation). 2259 */ 2260 if (!enable_mmio_caching) 2261 goto out; 2262 2263 /* Does the CPU support SEV-ES? */ 2264 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 2265 goto out; 2266 2267 /* Has the system been allocated ASIDs for SEV-ES? */ 2268 if (min_sev_asid == 1) 2269 goto out; 2270 2271 sev_es_asid_count = min_sev_asid - 1; 2272 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); 2273 sev_es_supported = true; 2274 2275 out: 2276 if (boot_cpu_has(X86_FEATURE_SEV)) 2277 pr_info("SEV %s (ASIDs %u - %u)\n", 2278 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : 2279 "unusable" : 2280 "disabled", 2281 min_sev_asid, max_sev_asid); 2282 if (boot_cpu_has(X86_FEATURE_SEV_ES)) 2283 pr_info("SEV-ES %s (ASIDs %u - %u)\n", 2284 sev_es_supported ? "enabled" : "disabled", 2285 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 2286 2287 sev_enabled = sev_supported; 2288 sev_es_enabled = sev_es_supported; 2289 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || 2290 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) 2291 sev_es_debug_swap_enabled = false; 2292 #endif 2293 } 2294 2295 void sev_hardware_unsetup(void) 2296 { 2297 if (!sev_enabled) 2298 return; 2299 2300 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 2301 sev_flush_asids(1, max_sev_asid); 2302 2303 bitmap_free(sev_asid_bitmap); 2304 bitmap_free(sev_reclaim_asid_bitmap); 2305 2306 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 2307 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 2308 } 2309 2310 int sev_cpu_init(struct svm_cpu_data *sd) 2311 { 2312 if (!sev_enabled) 2313 return 0; 2314 2315 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 2316 if (!sd->sev_vmcbs) 2317 return -ENOMEM; 2318 2319 return 0; 2320 } 2321 2322 /* 2323 * Pages used by hardware to hold guest encrypted state must be flushed before 2324 * returning them to the system. 2325 */ 2326 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 2327 { 2328 unsigned int asid = sev_get_asid(vcpu->kvm); 2329 2330 /* 2331 * Note! The address must be a kernel address, as regular page walk 2332 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 2333 * address is non-deterministic and unsafe. This function deliberately 2334 * takes a pointer to deter passing in a user address. 2335 */ 2336 unsigned long addr = (unsigned long)va; 2337 2338 /* 2339 * If CPU enforced cache coherency for encrypted mappings of the 2340 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 2341 * flush is still needed in order to work properly with DMA devices. 2342 */ 2343 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 2344 clflush_cache_range(va, PAGE_SIZE); 2345 return; 2346 } 2347 2348 /* 2349 * VM Page Flush takes a host virtual address and a guest ASID. Fall 2350 * back to WBINVD if this faults so as not to make any problems worse 2351 * by leaving stale encrypted data in the cache. 2352 */ 2353 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 2354 goto do_wbinvd; 2355 2356 return; 2357 2358 do_wbinvd: 2359 wbinvd_on_all_cpus(); 2360 } 2361 2362 void sev_guest_memory_reclaimed(struct kvm *kvm) 2363 { 2364 if (!sev_guest(kvm)) 2365 return; 2366 2367 wbinvd_on_all_cpus(); 2368 } 2369 2370 void sev_free_vcpu(struct kvm_vcpu *vcpu) 2371 { 2372 struct vcpu_svm *svm; 2373 2374 if (!sev_es_guest(vcpu->kvm)) 2375 return; 2376 2377 svm = to_svm(vcpu); 2378 2379 if (vcpu->arch.guest_state_protected) 2380 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 2381 2382 __free_page(virt_to_page(svm->sev_es.vmsa)); 2383 2384 if (svm->sev_es.ghcb_sa_free) 2385 kvfree(svm->sev_es.ghcb_sa); 2386 } 2387 2388 static void dump_ghcb(struct vcpu_svm *svm) 2389 { 2390 struct ghcb *ghcb = svm->sev_es.ghcb; 2391 unsigned int nbits; 2392 2393 /* Re-use the dump_invalid_vmcb module parameter */ 2394 if (!dump_invalid_vmcb) { 2395 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2396 return; 2397 } 2398 2399 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2400 2401 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2402 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2403 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2404 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2405 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2406 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2407 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2408 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2409 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2410 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2411 } 2412 2413 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2414 { 2415 struct kvm_vcpu *vcpu = &svm->vcpu; 2416 struct ghcb *ghcb = svm->sev_es.ghcb; 2417 2418 /* 2419 * The GHCB protocol so far allows for the following data 2420 * to be returned: 2421 * GPRs RAX, RBX, RCX, RDX 2422 * 2423 * Copy their values, even if they may not have been written during the 2424 * VM-Exit. It's the guest's responsibility to not consume random data. 2425 */ 2426 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2427 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2428 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2429 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2430 } 2431 2432 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2433 { 2434 struct vmcb_control_area *control = &svm->vmcb->control; 2435 struct kvm_vcpu *vcpu = &svm->vcpu; 2436 struct ghcb *ghcb = svm->sev_es.ghcb; 2437 u64 exit_code; 2438 2439 /* 2440 * The GHCB protocol so far allows for the following data 2441 * to be supplied: 2442 * GPRs RAX, RBX, RCX, RDX 2443 * XCR0 2444 * CPL 2445 * 2446 * VMMCALL allows the guest to provide extra registers. KVM also 2447 * expects RSI for hypercalls, so include that, too. 2448 * 2449 * Copy their values to the appropriate location if supplied. 2450 */ 2451 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2452 2453 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); 2454 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); 2455 2456 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); 2457 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); 2458 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); 2459 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); 2460 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); 2461 2462 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); 2463 2464 if (kvm_ghcb_xcr0_is_valid(svm)) { 2465 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2466 kvm_update_cpuid_runtime(vcpu); 2467 } 2468 2469 /* Copy the GHCB exit information into the VMCB fields */ 2470 exit_code = ghcb_get_sw_exit_code(ghcb); 2471 control->exit_code = lower_32_bits(exit_code); 2472 control->exit_code_hi = upper_32_bits(exit_code); 2473 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2474 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2475 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); 2476 2477 /* Clear the valid entries fields */ 2478 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2479 } 2480 2481 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) 2482 { 2483 return (((u64)control->exit_code_hi) << 32) | control->exit_code; 2484 } 2485 2486 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2487 { 2488 struct vmcb_control_area *control = &svm->vmcb->control; 2489 struct kvm_vcpu *vcpu = &svm->vcpu; 2490 u64 exit_code; 2491 u64 reason; 2492 2493 /* 2494 * Retrieve the exit code now even though it may not be marked valid 2495 * as it could help with debugging. 2496 */ 2497 exit_code = kvm_ghcb_get_sw_exit_code(control); 2498 2499 /* Only GHCB Usage code 0 is supported */ 2500 if (svm->sev_es.ghcb->ghcb_usage) { 2501 reason = GHCB_ERR_INVALID_USAGE; 2502 goto vmgexit_err; 2503 } 2504 2505 reason = GHCB_ERR_MISSING_INPUT; 2506 2507 if (!kvm_ghcb_sw_exit_code_is_valid(svm) || 2508 !kvm_ghcb_sw_exit_info_1_is_valid(svm) || 2509 !kvm_ghcb_sw_exit_info_2_is_valid(svm)) 2510 goto vmgexit_err; 2511 2512 switch (exit_code) { 2513 case SVM_EXIT_READ_DR7: 2514 break; 2515 case SVM_EXIT_WRITE_DR7: 2516 if (!kvm_ghcb_rax_is_valid(svm)) 2517 goto vmgexit_err; 2518 break; 2519 case SVM_EXIT_RDTSC: 2520 break; 2521 case SVM_EXIT_RDPMC: 2522 if (!kvm_ghcb_rcx_is_valid(svm)) 2523 goto vmgexit_err; 2524 break; 2525 case SVM_EXIT_CPUID: 2526 if (!kvm_ghcb_rax_is_valid(svm) || 2527 !kvm_ghcb_rcx_is_valid(svm)) 2528 goto vmgexit_err; 2529 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) 2530 if (!kvm_ghcb_xcr0_is_valid(svm)) 2531 goto vmgexit_err; 2532 break; 2533 case SVM_EXIT_INVD: 2534 break; 2535 case SVM_EXIT_IOIO: 2536 if (control->exit_info_1 & SVM_IOIO_STR_MASK) { 2537 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 2538 goto vmgexit_err; 2539 } else { 2540 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) 2541 if (!kvm_ghcb_rax_is_valid(svm)) 2542 goto vmgexit_err; 2543 } 2544 break; 2545 case SVM_EXIT_MSR: 2546 if (!kvm_ghcb_rcx_is_valid(svm)) 2547 goto vmgexit_err; 2548 if (control->exit_info_1) { 2549 if (!kvm_ghcb_rax_is_valid(svm) || 2550 !kvm_ghcb_rdx_is_valid(svm)) 2551 goto vmgexit_err; 2552 } 2553 break; 2554 case SVM_EXIT_VMMCALL: 2555 if (!kvm_ghcb_rax_is_valid(svm) || 2556 !kvm_ghcb_cpl_is_valid(svm)) 2557 goto vmgexit_err; 2558 break; 2559 case SVM_EXIT_RDTSCP: 2560 break; 2561 case SVM_EXIT_WBINVD: 2562 break; 2563 case SVM_EXIT_MONITOR: 2564 if (!kvm_ghcb_rax_is_valid(svm) || 2565 !kvm_ghcb_rcx_is_valid(svm) || 2566 !kvm_ghcb_rdx_is_valid(svm)) 2567 goto vmgexit_err; 2568 break; 2569 case SVM_EXIT_MWAIT: 2570 if (!kvm_ghcb_rax_is_valid(svm) || 2571 !kvm_ghcb_rcx_is_valid(svm)) 2572 goto vmgexit_err; 2573 break; 2574 case SVM_VMGEXIT_MMIO_READ: 2575 case SVM_VMGEXIT_MMIO_WRITE: 2576 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 2577 goto vmgexit_err; 2578 break; 2579 case SVM_VMGEXIT_NMI_COMPLETE: 2580 case SVM_VMGEXIT_AP_HLT_LOOP: 2581 case SVM_VMGEXIT_AP_JUMP_TABLE: 2582 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2583 break; 2584 default: 2585 reason = GHCB_ERR_INVALID_EVENT; 2586 goto vmgexit_err; 2587 } 2588 2589 return 0; 2590 2591 vmgexit_err: 2592 if (reason == GHCB_ERR_INVALID_USAGE) { 2593 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2594 svm->sev_es.ghcb->ghcb_usage); 2595 } else if (reason == GHCB_ERR_INVALID_EVENT) { 2596 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 2597 exit_code); 2598 } else { 2599 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 2600 exit_code); 2601 dump_ghcb(svm); 2602 } 2603 2604 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 2605 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason); 2606 2607 /* Resume the guest to "return" the error code. */ 2608 return 1; 2609 } 2610 2611 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2612 { 2613 if (!svm->sev_es.ghcb) 2614 return; 2615 2616 if (svm->sev_es.ghcb_sa_free) { 2617 /* 2618 * The scratch area lives outside the GHCB, so there is a 2619 * buffer that, depending on the operation performed, may 2620 * need to be synced, then freed. 2621 */ 2622 if (svm->sev_es.ghcb_sa_sync) { 2623 kvm_write_guest(svm->vcpu.kvm, 2624 svm->sev_es.sw_scratch, 2625 svm->sev_es.ghcb_sa, 2626 svm->sev_es.ghcb_sa_len); 2627 svm->sev_es.ghcb_sa_sync = false; 2628 } 2629 2630 kvfree(svm->sev_es.ghcb_sa); 2631 svm->sev_es.ghcb_sa = NULL; 2632 svm->sev_es.ghcb_sa_free = false; 2633 } 2634 2635 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 2636 2637 sev_es_sync_to_ghcb(svm); 2638 2639 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); 2640 svm->sev_es.ghcb = NULL; 2641 } 2642 2643 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2644 { 2645 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 2646 unsigned int asid = sev_get_asid(svm->vcpu.kvm); 2647 2648 /* Assign the asid allocated with this SEV guest */ 2649 svm->asid = asid; 2650 2651 /* 2652 * Flush guest TLB: 2653 * 2654 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2655 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2656 */ 2657 if (sd->sev_vmcbs[asid] == svm->vmcb && 2658 svm->vcpu.arch.last_vmentry_cpu == cpu) 2659 return; 2660 2661 sd->sev_vmcbs[asid] = svm->vmcb; 2662 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2663 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2664 } 2665 2666 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2667 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2668 { 2669 struct vmcb_control_area *control = &svm->vmcb->control; 2670 u64 ghcb_scratch_beg, ghcb_scratch_end; 2671 u64 scratch_gpa_beg, scratch_gpa_end; 2672 void *scratch_va; 2673 2674 scratch_gpa_beg = svm->sev_es.sw_scratch; 2675 if (!scratch_gpa_beg) { 2676 pr_err("vmgexit: scratch gpa not provided\n"); 2677 goto e_scratch; 2678 } 2679 2680 scratch_gpa_end = scratch_gpa_beg + len; 2681 if (scratch_gpa_end < scratch_gpa_beg) { 2682 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2683 len, scratch_gpa_beg); 2684 goto e_scratch; 2685 } 2686 2687 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2688 /* Scratch area begins within GHCB */ 2689 ghcb_scratch_beg = control->ghcb_gpa + 2690 offsetof(struct ghcb, shared_buffer); 2691 ghcb_scratch_end = control->ghcb_gpa + 2692 offsetof(struct ghcb, reserved_0xff0); 2693 2694 /* 2695 * If the scratch area begins within the GHCB, it must be 2696 * completely contained in the GHCB shared buffer area. 2697 */ 2698 if (scratch_gpa_beg < ghcb_scratch_beg || 2699 scratch_gpa_end > ghcb_scratch_end) { 2700 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2701 scratch_gpa_beg, scratch_gpa_end); 2702 goto e_scratch; 2703 } 2704 2705 scratch_va = (void *)svm->sev_es.ghcb; 2706 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2707 } else { 2708 /* 2709 * The guest memory must be read into a kernel buffer, so 2710 * limit the size 2711 */ 2712 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2713 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2714 len, GHCB_SCRATCH_AREA_LIMIT); 2715 goto e_scratch; 2716 } 2717 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 2718 if (!scratch_va) 2719 return -ENOMEM; 2720 2721 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2722 /* Unable to copy scratch area from guest */ 2723 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2724 2725 kvfree(scratch_va); 2726 return -EFAULT; 2727 } 2728 2729 /* 2730 * The scratch area is outside the GHCB. The operation will 2731 * dictate whether the buffer needs to be synced before running 2732 * the vCPU next time (i.e. a read was requested so the data 2733 * must be written back to the guest memory). 2734 */ 2735 svm->sev_es.ghcb_sa_sync = sync; 2736 svm->sev_es.ghcb_sa_free = true; 2737 } 2738 2739 svm->sev_es.ghcb_sa = scratch_va; 2740 svm->sev_es.ghcb_sa_len = len; 2741 2742 return 0; 2743 2744 e_scratch: 2745 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 2746 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA); 2747 2748 return 1; 2749 } 2750 2751 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2752 unsigned int pos) 2753 { 2754 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2755 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2756 } 2757 2758 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2759 { 2760 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2761 } 2762 2763 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2764 { 2765 svm->vmcb->control.ghcb_gpa = value; 2766 } 2767 2768 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2769 { 2770 struct vmcb_control_area *control = &svm->vmcb->control; 2771 struct kvm_vcpu *vcpu = &svm->vcpu; 2772 u64 ghcb_info; 2773 int ret = 1; 2774 2775 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2776 2777 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2778 control->ghcb_gpa); 2779 2780 switch (ghcb_info) { 2781 case GHCB_MSR_SEV_INFO_REQ: 2782 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2783 GHCB_VERSION_MIN, 2784 sev_enc_bit)); 2785 break; 2786 case GHCB_MSR_CPUID_REQ: { 2787 u64 cpuid_fn, cpuid_reg, cpuid_value; 2788 2789 cpuid_fn = get_ghcb_msr_bits(svm, 2790 GHCB_MSR_CPUID_FUNC_MASK, 2791 GHCB_MSR_CPUID_FUNC_POS); 2792 2793 /* Initialize the registers needed by the CPUID intercept */ 2794 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2795 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2796 2797 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2798 if (!ret) { 2799 /* Error, keep GHCB MSR value as-is */ 2800 break; 2801 } 2802 2803 cpuid_reg = get_ghcb_msr_bits(svm, 2804 GHCB_MSR_CPUID_REG_MASK, 2805 GHCB_MSR_CPUID_REG_POS); 2806 if (cpuid_reg == 0) 2807 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2808 else if (cpuid_reg == 1) 2809 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2810 else if (cpuid_reg == 2) 2811 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2812 else 2813 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2814 2815 set_ghcb_msr_bits(svm, cpuid_value, 2816 GHCB_MSR_CPUID_VALUE_MASK, 2817 GHCB_MSR_CPUID_VALUE_POS); 2818 2819 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2820 GHCB_MSR_INFO_MASK, 2821 GHCB_MSR_INFO_POS); 2822 break; 2823 } 2824 case GHCB_MSR_TERM_REQ: { 2825 u64 reason_set, reason_code; 2826 2827 reason_set = get_ghcb_msr_bits(svm, 2828 GHCB_MSR_TERM_REASON_SET_MASK, 2829 GHCB_MSR_TERM_REASON_SET_POS); 2830 reason_code = get_ghcb_msr_bits(svm, 2831 GHCB_MSR_TERM_REASON_MASK, 2832 GHCB_MSR_TERM_REASON_POS); 2833 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2834 reason_set, reason_code); 2835 2836 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 2837 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 2838 vcpu->run->system_event.ndata = 1; 2839 vcpu->run->system_event.data[0] = control->ghcb_gpa; 2840 2841 return 0; 2842 } 2843 default: 2844 /* Error, keep GHCB MSR value as-is */ 2845 break; 2846 } 2847 2848 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2849 control->ghcb_gpa, ret); 2850 2851 return ret; 2852 } 2853 2854 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2855 { 2856 struct vcpu_svm *svm = to_svm(vcpu); 2857 struct vmcb_control_area *control = &svm->vmcb->control; 2858 u64 ghcb_gpa, exit_code; 2859 int ret; 2860 2861 /* Validate the GHCB */ 2862 ghcb_gpa = control->ghcb_gpa; 2863 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2864 return sev_handle_vmgexit_msr_protocol(svm); 2865 2866 if (!ghcb_gpa) { 2867 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2868 2869 /* Without a GHCB, just return right back to the guest */ 2870 return 1; 2871 } 2872 2873 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 2874 /* Unable to map GHCB from guest */ 2875 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2876 ghcb_gpa); 2877 2878 /* Without a GHCB, just return right back to the guest */ 2879 return 1; 2880 } 2881 2882 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 2883 2884 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); 2885 2886 sev_es_sync_from_ghcb(svm); 2887 ret = sev_es_validate_vmgexit(svm); 2888 if (ret) 2889 return ret; 2890 2891 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0); 2892 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0); 2893 2894 exit_code = kvm_ghcb_get_sw_exit_code(control); 2895 switch (exit_code) { 2896 case SVM_VMGEXIT_MMIO_READ: 2897 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 2898 if (ret) 2899 break; 2900 2901 ret = kvm_sev_es_mmio_read(vcpu, 2902 control->exit_info_1, 2903 control->exit_info_2, 2904 svm->sev_es.ghcb_sa); 2905 break; 2906 case SVM_VMGEXIT_MMIO_WRITE: 2907 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 2908 if (ret) 2909 break; 2910 2911 ret = kvm_sev_es_mmio_write(vcpu, 2912 control->exit_info_1, 2913 control->exit_info_2, 2914 svm->sev_es.ghcb_sa); 2915 break; 2916 case SVM_VMGEXIT_NMI_COMPLETE: 2917 ++vcpu->stat.nmi_window_exits; 2918 svm->nmi_masked = false; 2919 kvm_make_request(KVM_REQ_EVENT, vcpu); 2920 ret = 1; 2921 break; 2922 case SVM_VMGEXIT_AP_HLT_LOOP: 2923 ret = kvm_emulate_ap_reset_hold(vcpu); 2924 break; 2925 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2926 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2927 2928 switch (control->exit_info_1) { 2929 case 0: 2930 /* Set AP jump table address */ 2931 sev->ap_jump_table = control->exit_info_2; 2932 break; 2933 case 1: 2934 /* Get AP jump table address */ 2935 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table); 2936 break; 2937 default: 2938 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2939 control->exit_info_1); 2940 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 2941 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 2942 } 2943 2944 ret = 1; 2945 break; 2946 } 2947 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2948 vcpu_unimpl(vcpu, 2949 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2950 control->exit_info_1, control->exit_info_2); 2951 ret = -EINVAL; 2952 break; 2953 default: 2954 ret = svm_invoke_exit_handler(vcpu, exit_code); 2955 } 2956 2957 return ret; 2958 } 2959 2960 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2961 { 2962 int count; 2963 int bytes; 2964 int r; 2965 2966 if (svm->vmcb->control.exit_info_2 > INT_MAX) 2967 return -EINVAL; 2968 2969 count = svm->vmcb->control.exit_info_2; 2970 if (unlikely(check_mul_overflow(count, size, &bytes))) 2971 return -EINVAL; 2972 2973 r = setup_vmgexit_scratch(svm, in, bytes); 2974 if (r) 2975 return r; 2976 2977 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 2978 count, in); 2979 } 2980 2981 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) 2982 { 2983 struct kvm_vcpu *vcpu = &svm->vcpu; 2984 2985 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 2986 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 2987 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 2988 2989 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); 2990 } 2991 } 2992 2993 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) 2994 { 2995 struct kvm_vcpu *vcpu = &svm->vcpu; 2996 struct kvm_cpuid_entry2 *best; 2997 2998 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 2999 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 3000 if (best) 3001 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 3002 3003 if (sev_es_guest(svm->vcpu.kvm)) 3004 sev_es_vcpu_after_set_cpuid(svm); 3005 } 3006 3007 static void sev_es_init_vmcb(struct vcpu_svm *svm) 3008 { 3009 struct vmcb *vmcb = svm->vmcb01.ptr; 3010 struct kvm_vcpu *vcpu = &svm->vcpu; 3011 3012 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 3013 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 3014 3015 /* 3016 * An SEV-ES guest requires a VMSA area that is a separate from the 3017 * VMCB page. Do not include the encryption mask on the VMSA physical 3018 * address since hardware will access it using the guest key. Note, 3019 * the VMSA will be NULL if this vCPU is the destination for intrahost 3020 * migration, and will be copied later. 3021 */ 3022 if (svm->sev_es.vmsa) 3023 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 3024 3025 /* Can't intercept CR register access, HV can't modify CR registers */ 3026 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 3027 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 3028 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 3029 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 3030 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 3031 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3032 3033 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 3034 3035 /* Track EFER/CR register changes */ 3036 svm_set_intercept(svm, TRAP_EFER_WRITE); 3037 svm_set_intercept(svm, TRAP_CR0_WRITE); 3038 svm_set_intercept(svm, TRAP_CR4_WRITE); 3039 svm_set_intercept(svm, TRAP_CR8_WRITE); 3040 3041 vmcb->control.intercepts[INTERCEPT_DR] = 0; 3042 if (!sev_es_debug_swap_enabled) { 3043 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 3044 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 3045 recalc_intercepts(svm); 3046 } else { 3047 /* 3048 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't 3049 * allow debugging SEV-ES guests, and enables DebugSwap iff 3050 * NO_NESTED_DATA_BP is supported, so there's no reason to 3051 * intercept #DB when DebugSwap is enabled. For simplicity 3052 * with respect to guest debug, intercept #DB for other VMs 3053 * even if NO_NESTED_DATA_BP is supported, i.e. even if the 3054 * guest can't DoS the CPU with infinite #DB vectoring. 3055 */ 3056 clr_exception_intercept(svm, DB_VECTOR); 3057 } 3058 3059 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 3060 svm_clr_intercept(svm, INTERCEPT_XSETBV); 3061 3062 /* Clear intercepts on selected MSRs */ 3063 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 3064 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 3065 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 3066 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 3067 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 3068 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 3069 } 3070 3071 void sev_init_vmcb(struct vcpu_svm *svm) 3072 { 3073 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 3074 clr_exception_intercept(svm, UD_VECTOR); 3075 3076 /* 3077 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as 3078 * KVM can't decrypt guest memory to decode the faulting instruction. 3079 */ 3080 clr_exception_intercept(svm, GP_VECTOR); 3081 3082 if (sev_es_guest(svm->vcpu.kvm)) 3083 sev_es_init_vmcb(svm); 3084 } 3085 3086 void sev_es_vcpu_reset(struct vcpu_svm *svm) 3087 { 3088 /* 3089 * Set the GHCB MSR value as per the GHCB specification when emulating 3090 * vCPU RESET for an SEV-ES guest. 3091 */ 3092 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 3093 GHCB_VERSION_MIN, 3094 sev_enc_bit)); 3095 } 3096 3097 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa) 3098 { 3099 /* 3100 * All host state for SEV-ES guests is categorized into three swap types 3101 * based on how it is handled by hardware during a world switch: 3102 * 3103 * A: VMRUN: Host state saved in host save area 3104 * VMEXIT: Host state loaded from host save area 3105 * 3106 * B: VMRUN: Host state _NOT_ saved in host save area 3107 * VMEXIT: Host state loaded from host save area 3108 * 3109 * C: VMRUN: Host state _NOT_ saved in host save area 3110 * VMEXIT: Host state initialized to default(reset) values 3111 * 3112 * Manually save type-B state, i.e. state that is loaded by VMEXIT but 3113 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed 3114 * by common SVM code). 3115 */ 3116 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 3117 hostsa->pkru = read_pkru(); 3118 hostsa->xss = host_xss; 3119 3120 /* 3121 * If DebugSwap is enabled, debug registers are loaded but NOT saved by 3122 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both 3123 * saves and loads debug registers (Type-A). 3124 */ 3125 if (sev_es_debug_swap_enabled) { 3126 hostsa->dr0 = native_get_debugreg(0); 3127 hostsa->dr1 = native_get_debugreg(1); 3128 hostsa->dr2 = native_get_debugreg(2); 3129 hostsa->dr3 = native_get_debugreg(3); 3130 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); 3131 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); 3132 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); 3133 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); 3134 } 3135 } 3136 3137 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 3138 { 3139 struct vcpu_svm *svm = to_svm(vcpu); 3140 3141 /* First SIPI: Use the values as initially set by the VMM */ 3142 if (!svm->sev_es.received_first_sipi) { 3143 svm->sev_es.received_first_sipi = true; 3144 return; 3145 } 3146 3147 /* 3148 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 3149 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 3150 * non-zero value. 3151 */ 3152 if (!svm->sev_es.ghcb) 3153 return; 3154 3155 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); 3156 } 3157