xref: /openbmc/linux/arch/x86/kvm/svm/sev.c (revision 9134211f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 
23 #include <asm/pkru.h>
24 #include <asm/trapnr.h>
25 #include <asm/fpu/xcr.h>
26 
27 #include "mmu.h"
28 #include "x86.h"
29 #include "svm.h"
30 #include "svm_ops.h"
31 #include "cpuid.h"
32 #include "trace.h"
33 
34 #ifndef CONFIG_KVM_AMD_SEV
35 /*
36  * When this config is not defined, SEV feature is not supported and APIs in
37  * this file are not used but this file still gets compiled into the KVM AMD
38  * module.
39  *
40  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
41  * misc_res_type {} defined in linux/misc_cgroup.h.
42  *
43  * Below macros allow compilation to succeed.
44  */
45 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
46 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
47 #endif
48 
49 #ifdef CONFIG_KVM_AMD_SEV
50 /* enable/disable SEV support */
51 static bool sev_enabled = true;
52 module_param_named(sev, sev_enabled, bool, 0444);
53 
54 /* enable/disable SEV-ES support */
55 static bool sev_es_enabled = true;
56 module_param_named(sev_es, sev_es_enabled, bool, 0444);
57 #else
58 #define sev_enabled false
59 #define sev_es_enabled false
60 #endif /* CONFIG_KVM_AMD_SEV */
61 
62 static u8 sev_enc_bit;
63 static DECLARE_RWSEM(sev_deactivate_lock);
64 static DEFINE_MUTEX(sev_bitmap_lock);
65 unsigned int max_sev_asid;
66 static unsigned int min_sev_asid;
67 static unsigned long sev_me_mask;
68 static unsigned int nr_asids;
69 static unsigned long *sev_asid_bitmap;
70 static unsigned long *sev_reclaim_asid_bitmap;
71 
72 struct enc_region {
73 	struct list_head list;
74 	unsigned long npages;
75 	struct page **pages;
76 	unsigned long uaddr;
77 	unsigned long size;
78 };
79 
80 /* Called with the sev_bitmap_lock held, or on shutdown  */
81 static int sev_flush_asids(int min_asid, int max_asid)
82 {
83 	int ret, asid, error = 0;
84 
85 	/* Check if there are any ASIDs to reclaim before performing a flush */
86 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
87 	if (asid > max_asid)
88 		return -EBUSY;
89 
90 	/*
91 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
92 	 * so it must be guarded.
93 	 */
94 	down_write(&sev_deactivate_lock);
95 
96 	wbinvd_on_all_cpus();
97 	ret = sev_guest_df_flush(&error);
98 
99 	up_write(&sev_deactivate_lock);
100 
101 	if (ret)
102 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
103 
104 	return ret;
105 }
106 
107 static inline bool is_mirroring_enc_context(struct kvm *kvm)
108 {
109 	return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
110 }
111 
112 /* Must be called with the sev_bitmap_lock held */
113 static bool __sev_recycle_asids(int min_asid, int max_asid)
114 {
115 	if (sev_flush_asids(min_asid, max_asid))
116 		return false;
117 
118 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
119 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
120 		   nr_asids);
121 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
122 
123 	return true;
124 }
125 
126 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
127 {
128 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
129 	return misc_cg_try_charge(type, sev->misc_cg, 1);
130 }
131 
132 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
133 {
134 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
135 	misc_cg_uncharge(type, sev->misc_cg, 1);
136 }
137 
138 static int sev_asid_new(struct kvm_sev_info *sev)
139 {
140 	int asid, min_asid, max_asid, ret;
141 	bool retry = true;
142 
143 	WARN_ON(sev->misc_cg);
144 	sev->misc_cg = get_current_misc_cg();
145 	ret = sev_misc_cg_try_charge(sev);
146 	if (ret) {
147 		put_misc_cg(sev->misc_cg);
148 		sev->misc_cg = NULL;
149 		return ret;
150 	}
151 
152 	mutex_lock(&sev_bitmap_lock);
153 
154 	/*
155 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
156 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
157 	 */
158 	min_asid = sev->es_active ? 1 : min_sev_asid;
159 	max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
160 again:
161 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
162 	if (asid > max_asid) {
163 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
164 			retry = false;
165 			goto again;
166 		}
167 		mutex_unlock(&sev_bitmap_lock);
168 		ret = -EBUSY;
169 		goto e_uncharge;
170 	}
171 
172 	__set_bit(asid, sev_asid_bitmap);
173 
174 	mutex_unlock(&sev_bitmap_lock);
175 
176 	return asid;
177 e_uncharge:
178 	sev_misc_cg_uncharge(sev);
179 	put_misc_cg(sev->misc_cg);
180 	sev->misc_cg = NULL;
181 	return ret;
182 }
183 
184 static int sev_get_asid(struct kvm *kvm)
185 {
186 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
187 
188 	return sev->asid;
189 }
190 
191 static void sev_asid_free(struct kvm_sev_info *sev)
192 {
193 	struct svm_cpu_data *sd;
194 	int cpu;
195 
196 	mutex_lock(&sev_bitmap_lock);
197 
198 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
199 
200 	for_each_possible_cpu(cpu) {
201 		sd = per_cpu_ptr(&svm_data, cpu);
202 		sd->sev_vmcbs[sev->asid] = NULL;
203 	}
204 
205 	mutex_unlock(&sev_bitmap_lock);
206 
207 	sev_misc_cg_uncharge(sev);
208 	put_misc_cg(sev->misc_cg);
209 	sev->misc_cg = NULL;
210 }
211 
212 static void sev_decommission(unsigned int handle)
213 {
214 	struct sev_data_decommission decommission;
215 
216 	if (!handle)
217 		return;
218 
219 	decommission.handle = handle;
220 	sev_guest_decommission(&decommission, NULL);
221 }
222 
223 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
224 {
225 	struct sev_data_deactivate deactivate;
226 
227 	if (!handle)
228 		return;
229 
230 	deactivate.handle = handle;
231 
232 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
233 	down_read(&sev_deactivate_lock);
234 	sev_guest_deactivate(&deactivate, NULL);
235 	up_read(&sev_deactivate_lock);
236 
237 	sev_decommission(handle);
238 }
239 
240 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
241 {
242 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
243 	int asid, ret;
244 
245 	if (kvm->created_vcpus)
246 		return -EINVAL;
247 
248 	ret = -EBUSY;
249 	if (unlikely(sev->active))
250 		return ret;
251 
252 	sev->active = true;
253 	sev->es_active = argp->id == KVM_SEV_ES_INIT;
254 	asid = sev_asid_new(sev);
255 	if (asid < 0)
256 		goto e_no_asid;
257 	sev->asid = asid;
258 
259 	ret = sev_platform_init(&argp->error);
260 	if (ret)
261 		goto e_free;
262 
263 	INIT_LIST_HEAD(&sev->regions_list);
264 	INIT_LIST_HEAD(&sev->mirror_vms);
265 
266 	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
267 
268 	return 0;
269 
270 e_free:
271 	sev_asid_free(sev);
272 	sev->asid = 0;
273 e_no_asid:
274 	sev->es_active = false;
275 	sev->active = false;
276 	return ret;
277 }
278 
279 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
280 {
281 	struct sev_data_activate activate;
282 	int asid = sev_get_asid(kvm);
283 	int ret;
284 
285 	/* activate ASID on the given handle */
286 	activate.handle = handle;
287 	activate.asid   = asid;
288 	ret = sev_guest_activate(&activate, error);
289 
290 	return ret;
291 }
292 
293 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
294 {
295 	struct fd f;
296 	int ret;
297 
298 	f = fdget(fd);
299 	if (!f.file)
300 		return -EBADF;
301 
302 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
303 
304 	fdput(f);
305 	return ret;
306 }
307 
308 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
309 {
310 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
311 
312 	return __sev_issue_cmd(sev->fd, id, data, error);
313 }
314 
315 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
316 {
317 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
318 	struct sev_data_launch_start start;
319 	struct kvm_sev_launch_start params;
320 	void *dh_blob, *session_blob;
321 	int *error = &argp->error;
322 	int ret;
323 
324 	if (!sev_guest(kvm))
325 		return -ENOTTY;
326 
327 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
328 		return -EFAULT;
329 
330 	memset(&start, 0, sizeof(start));
331 
332 	dh_blob = NULL;
333 	if (params.dh_uaddr) {
334 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
335 		if (IS_ERR(dh_blob))
336 			return PTR_ERR(dh_blob);
337 
338 		start.dh_cert_address = __sme_set(__pa(dh_blob));
339 		start.dh_cert_len = params.dh_len;
340 	}
341 
342 	session_blob = NULL;
343 	if (params.session_uaddr) {
344 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
345 		if (IS_ERR(session_blob)) {
346 			ret = PTR_ERR(session_blob);
347 			goto e_free_dh;
348 		}
349 
350 		start.session_address = __sme_set(__pa(session_blob));
351 		start.session_len = params.session_len;
352 	}
353 
354 	start.handle = params.handle;
355 	start.policy = params.policy;
356 
357 	/* create memory encryption context */
358 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
359 	if (ret)
360 		goto e_free_session;
361 
362 	/* Bind ASID to this guest */
363 	ret = sev_bind_asid(kvm, start.handle, error);
364 	if (ret) {
365 		sev_decommission(start.handle);
366 		goto e_free_session;
367 	}
368 
369 	/* return handle to userspace */
370 	params.handle = start.handle;
371 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
372 		sev_unbind_asid(kvm, start.handle);
373 		ret = -EFAULT;
374 		goto e_free_session;
375 	}
376 
377 	sev->handle = start.handle;
378 	sev->fd = argp->sev_fd;
379 
380 e_free_session:
381 	kfree(session_blob);
382 e_free_dh:
383 	kfree(dh_blob);
384 	return ret;
385 }
386 
387 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
388 				    unsigned long ulen, unsigned long *n,
389 				    int write)
390 {
391 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
392 	unsigned long npages, size;
393 	int npinned;
394 	unsigned long locked, lock_limit;
395 	struct page **pages;
396 	unsigned long first, last;
397 	int ret;
398 
399 	lockdep_assert_held(&kvm->lock);
400 
401 	if (ulen == 0 || uaddr + ulen < uaddr)
402 		return ERR_PTR(-EINVAL);
403 
404 	/* Calculate number of pages. */
405 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
406 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
407 	npages = (last - first + 1);
408 
409 	locked = sev->pages_locked + npages;
410 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
411 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
412 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
413 		return ERR_PTR(-ENOMEM);
414 	}
415 
416 	if (WARN_ON_ONCE(npages > INT_MAX))
417 		return ERR_PTR(-EINVAL);
418 
419 	/* Avoid using vmalloc for smaller buffers. */
420 	size = npages * sizeof(struct page *);
421 	if (size > PAGE_SIZE)
422 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
423 	else
424 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
425 
426 	if (!pages)
427 		return ERR_PTR(-ENOMEM);
428 
429 	/* Pin the user virtual address. */
430 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
431 	if (npinned != npages) {
432 		pr_err("SEV: Failure locking %lu pages.\n", npages);
433 		ret = -ENOMEM;
434 		goto err;
435 	}
436 
437 	*n = npages;
438 	sev->pages_locked = locked;
439 
440 	return pages;
441 
442 err:
443 	if (npinned > 0)
444 		unpin_user_pages(pages, npinned);
445 
446 	kvfree(pages);
447 	return ERR_PTR(ret);
448 }
449 
450 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
451 			     unsigned long npages)
452 {
453 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
454 
455 	unpin_user_pages(pages, npages);
456 	kvfree(pages);
457 	sev->pages_locked -= npages;
458 }
459 
460 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
461 {
462 	uint8_t *page_virtual;
463 	unsigned long i;
464 
465 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
466 	    pages == NULL)
467 		return;
468 
469 	for (i = 0; i < npages; i++) {
470 		page_virtual = kmap_local_page(pages[i]);
471 		clflush_cache_range(page_virtual, PAGE_SIZE);
472 		kunmap_local(page_virtual);
473 		cond_resched();
474 	}
475 }
476 
477 static unsigned long get_num_contig_pages(unsigned long idx,
478 				struct page **inpages, unsigned long npages)
479 {
480 	unsigned long paddr, next_paddr;
481 	unsigned long i = idx + 1, pages = 1;
482 
483 	/* find the number of contiguous pages starting from idx */
484 	paddr = __sme_page_pa(inpages[idx]);
485 	while (i < npages) {
486 		next_paddr = __sme_page_pa(inpages[i++]);
487 		if ((paddr + PAGE_SIZE) == next_paddr) {
488 			pages++;
489 			paddr = next_paddr;
490 			continue;
491 		}
492 		break;
493 	}
494 
495 	return pages;
496 }
497 
498 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
499 {
500 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
501 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
502 	struct kvm_sev_launch_update_data params;
503 	struct sev_data_launch_update_data data;
504 	struct page **inpages;
505 	int ret;
506 
507 	if (!sev_guest(kvm))
508 		return -ENOTTY;
509 
510 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
511 		return -EFAULT;
512 
513 	vaddr = params.uaddr;
514 	size = params.len;
515 	vaddr_end = vaddr + size;
516 
517 	/* Lock the user memory. */
518 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
519 	if (IS_ERR(inpages))
520 		return PTR_ERR(inpages);
521 
522 	/*
523 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
524 	 * place; the cache may contain the data that was written unencrypted.
525 	 */
526 	sev_clflush_pages(inpages, npages);
527 
528 	data.reserved = 0;
529 	data.handle = sev->handle;
530 
531 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
532 		int offset, len;
533 
534 		/*
535 		 * If the user buffer is not page-aligned, calculate the offset
536 		 * within the page.
537 		 */
538 		offset = vaddr & (PAGE_SIZE - 1);
539 
540 		/* Calculate the number of pages that can be encrypted in one go. */
541 		pages = get_num_contig_pages(i, inpages, npages);
542 
543 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
544 
545 		data.len = len;
546 		data.address = __sme_page_pa(inpages[i]) + offset;
547 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
548 		if (ret)
549 			goto e_unpin;
550 
551 		size -= len;
552 		next_vaddr = vaddr + len;
553 	}
554 
555 e_unpin:
556 	/* content of memory is updated, mark pages dirty */
557 	for (i = 0; i < npages; i++) {
558 		set_page_dirty_lock(inpages[i]);
559 		mark_page_accessed(inpages[i]);
560 	}
561 	/* unlock the user pages */
562 	sev_unpin_memory(kvm, inpages, npages);
563 	return ret;
564 }
565 
566 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
567 {
568 	struct sev_es_save_area *save = svm->sev_es.vmsa;
569 
570 	/* Check some debug related fields before encrypting the VMSA */
571 	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
572 		return -EINVAL;
573 
574 	/*
575 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
576 	 * the traditional VMSA that is part of the VMCB. Copy the
577 	 * traditional VMSA as it has been built so far (in prep
578 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
579 	 */
580 	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
581 
582 	/* Sync registgers */
583 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
584 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
585 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
586 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
587 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
588 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
589 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
590 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
591 #ifdef CONFIG_X86_64
592 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
593 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
594 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
595 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
596 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
597 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
598 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
599 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
600 #endif
601 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
602 
603 	/* Sync some non-GPR registers before encrypting */
604 	save->xcr0 = svm->vcpu.arch.xcr0;
605 	save->pkru = svm->vcpu.arch.pkru;
606 	save->xss  = svm->vcpu.arch.ia32_xss;
607 	save->dr6  = svm->vcpu.arch.dr6;
608 
609 	pr_debug("Virtual Machine Save Area (VMSA):\n");
610 	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
611 
612 	return 0;
613 }
614 
615 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
616 				    int *error)
617 {
618 	struct sev_data_launch_update_vmsa vmsa;
619 	struct vcpu_svm *svm = to_svm(vcpu);
620 	int ret;
621 
622 	/* Perform some pre-encryption checks against the VMSA */
623 	ret = sev_es_sync_vmsa(svm);
624 	if (ret)
625 		return ret;
626 
627 	/*
628 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
629 	 * the VMSA memory content (i.e it will write the same memory region
630 	 * with the guest's key), so invalidate it first.
631 	 */
632 	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
633 
634 	vmsa.reserved = 0;
635 	vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
636 	vmsa.address = __sme_pa(svm->sev_es.vmsa);
637 	vmsa.len = PAGE_SIZE;
638 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
639 	if (ret)
640 	  return ret;
641 
642 	vcpu->arch.guest_state_protected = true;
643 	return 0;
644 }
645 
646 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
647 {
648 	struct kvm_vcpu *vcpu;
649 	unsigned long i;
650 	int ret;
651 
652 	if (!sev_es_guest(kvm))
653 		return -ENOTTY;
654 
655 	kvm_for_each_vcpu(i, vcpu, kvm) {
656 		ret = mutex_lock_killable(&vcpu->mutex);
657 		if (ret)
658 			return ret;
659 
660 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
661 
662 		mutex_unlock(&vcpu->mutex);
663 		if (ret)
664 			return ret;
665 	}
666 
667 	return 0;
668 }
669 
670 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
671 {
672 	void __user *measure = (void __user *)(uintptr_t)argp->data;
673 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
674 	struct sev_data_launch_measure data;
675 	struct kvm_sev_launch_measure params;
676 	void __user *p = NULL;
677 	void *blob = NULL;
678 	int ret;
679 
680 	if (!sev_guest(kvm))
681 		return -ENOTTY;
682 
683 	if (copy_from_user(&params, measure, sizeof(params)))
684 		return -EFAULT;
685 
686 	memset(&data, 0, sizeof(data));
687 
688 	/* User wants to query the blob length */
689 	if (!params.len)
690 		goto cmd;
691 
692 	p = (void __user *)(uintptr_t)params.uaddr;
693 	if (p) {
694 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
695 			return -EINVAL;
696 
697 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
698 		if (!blob)
699 			return -ENOMEM;
700 
701 		data.address = __psp_pa(blob);
702 		data.len = params.len;
703 	}
704 
705 cmd:
706 	data.handle = sev->handle;
707 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
708 
709 	/*
710 	 * If we query the session length, FW responded with expected data.
711 	 */
712 	if (!params.len)
713 		goto done;
714 
715 	if (ret)
716 		goto e_free_blob;
717 
718 	if (blob) {
719 		if (copy_to_user(p, blob, params.len))
720 			ret = -EFAULT;
721 	}
722 
723 done:
724 	params.len = data.len;
725 	if (copy_to_user(measure, &params, sizeof(params)))
726 		ret = -EFAULT;
727 e_free_blob:
728 	kfree(blob);
729 	return ret;
730 }
731 
732 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
733 {
734 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
735 	struct sev_data_launch_finish data;
736 
737 	if (!sev_guest(kvm))
738 		return -ENOTTY;
739 
740 	data.handle = sev->handle;
741 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
742 }
743 
744 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
745 {
746 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
747 	struct kvm_sev_guest_status params;
748 	struct sev_data_guest_status data;
749 	int ret;
750 
751 	if (!sev_guest(kvm))
752 		return -ENOTTY;
753 
754 	memset(&data, 0, sizeof(data));
755 
756 	data.handle = sev->handle;
757 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
758 	if (ret)
759 		return ret;
760 
761 	params.policy = data.policy;
762 	params.state = data.state;
763 	params.handle = data.handle;
764 
765 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
766 		ret = -EFAULT;
767 
768 	return ret;
769 }
770 
771 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
772 			       unsigned long dst, int size,
773 			       int *error, bool enc)
774 {
775 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
776 	struct sev_data_dbg data;
777 
778 	data.reserved = 0;
779 	data.handle = sev->handle;
780 	data.dst_addr = dst;
781 	data.src_addr = src;
782 	data.len = size;
783 
784 	return sev_issue_cmd(kvm,
785 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
786 			     &data, error);
787 }
788 
789 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
790 			     unsigned long dst_paddr, int sz, int *err)
791 {
792 	int offset;
793 
794 	/*
795 	 * Its safe to read more than we are asked, caller should ensure that
796 	 * destination has enough space.
797 	 */
798 	offset = src_paddr & 15;
799 	src_paddr = round_down(src_paddr, 16);
800 	sz = round_up(sz + offset, 16);
801 
802 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
803 }
804 
805 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
806 				  void __user *dst_uaddr,
807 				  unsigned long dst_paddr,
808 				  int size, int *err)
809 {
810 	struct page *tpage = NULL;
811 	int ret, offset;
812 
813 	/* if inputs are not 16-byte then use intermediate buffer */
814 	if (!IS_ALIGNED(dst_paddr, 16) ||
815 	    !IS_ALIGNED(paddr,     16) ||
816 	    !IS_ALIGNED(size,      16)) {
817 		tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
818 		if (!tpage)
819 			return -ENOMEM;
820 
821 		dst_paddr = __sme_page_pa(tpage);
822 	}
823 
824 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
825 	if (ret)
826 		goto e_free;
827 
828 	if (tpage) {
829 		offset = paddr & 15;
830 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
831 			ret = -EFAULT;
832 	}
833 
834 e_free:
835 	if (tpage)
836 		__free_page(tpage);
837 
838 	return ret;
839 }
840 
841 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
842 				  void __user *vaddr,
843 				  unsigned long dst_paddr,
844 				  void __user *dst_vaddr,
845 				  int size, int *error)
846 {
847 	struct page *src_tpage = NULL;
848 	struct page *dst_tpage = NULL;
849 	int ret, len = size;
850 
851 	/* If source buffer is not aligned then use an intermediate buffer */
852 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
853 		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
854 		if (!src_tpage)
855 			return -ENOMEM;
856 
857 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
858 			__free_page(src_tpage);
859 			return -EFAULT;
860 		}
861 
862 		paddr = __sme_page_pa(src_tpage);
863 	}
864 
865 	/*
866 	 *  If destination buffer or length is not aligned then do read-modify-write:
867 	 *   - decrypt destination in an intermediate buffer
868 	 *   - copy the source buffer in an intermediate buffer
869 	 *   - use the intermediate buffer as source buffer
870 	 */
871 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
872 		int dst_offset;
873 
874 		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
875 		if (!dst_tpage) {
876 			ret = -ENOMEM;
877 			goto e_free;
878 		}
879 
880 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
881 					__sme_page_pa(dst_tpage), size, error);
882 		if (ret)
883 			goto e_free;
884 
885 		/*
886 		 *  If source is kernel buffer then use memcpy() otherwise
887 		 *  copy_from_user().
888 		 */
889 		dst_offset = dst_paddr & 15;
890 
891 		if (src_tpage)
892 			memcpy(page_address(dst_tpage) + dst_offset,
893 			       page_address(src_tpage), size);
894 		else {
895 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
896 					   vaddr, size)) {
897 				ret = -EFAULT;
898 				goto e_free;
899 			}
900 		}
901 
902 		paddr = __sme_page_pa(dst_tpage);
903 		dst_paddr = round_down(dst_paddr, 16);
904 		len = round_up(size, 16);
905 	}
906 
907 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
908 
909 e_free:
910 	if (src_tpage)
911 		__free_page(src_tpage);
912 	if (dst_tpage)
913 		__free_page(dst_tpage);
914 	return ret;
915 }
916 
917 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
918 {
919 	unsigned long vaddr, vaddr_end, next_vaddr;
920 	unsigned long dst_vaddr;
921 	struct page **src_p, **dst_p;
922 	struct kvm_sev_dbg debug;
923 	unsigned long n;
924 	unsigned int size;
925 	int ret;
926 
927 	if (!sev_guest(kvm))
928 		return -ENOTTY;
929 
930 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
931 		return -EFAULT;
932 
933 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
934 		return -EINVAL;
935 	if (!debug.dst_uaddr)
936 		return -EINVAL;
937 
938 	vaddr = debug.src_uaddr;
939 	size = debug.len;
940 	vaddr_end = vaddr + size;
941 	dst_vaddr = debug.dst_uaddr;
942 
943 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
944 		int len, s_off, d_off;
945 
946 		/* lock userspace source and destination page */
947 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
948 		if (IS_ERR(src_p))
949 			return PTR_ERR(src_p);
950 
951 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
952 		if (IS_ERR(dst_p)) {
953 			sev_unpin_memory(kvm, src_p, n);
954 			return PTR_ERR(dst_p);
955 		}
956 
957 		/*
958 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
959 		 * the pages; flush the destination too so that future accesses do not
960 		 * see stale data.
961 		 */
962 		sev_clflush_pages(src_p, 1);
963 		sev_clflush_pages(dst_p, 1);
964 
965 		/*
966 		 * Since user buffer may not be page aligned, calculate the
967 		 * offset within the page.
968 		 */
969 		s_off = vaddr & ~PAGE_MASK;
970 		d_off = dst_vaddr & ~PAGE_MASK;
971 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
972 
973 		if (dec)
974 			ret = __sev_dbg_decrypt_user(kvm,
975 						     __sme_page_pa(src_p[0]) + s_off,
976 						     (void __user *)dst_vaddr,
977 						     __sme_page_pa(dst_p[0]) + d_off,
978 						     len, &argp->error);
979 		else
980 			ret = __sev_dbg_encrypt_user(kvm,
981 						     __sme_page_pa(src_p[0]) + s_off,
982 						     (void __user *)vaddr,
983 						     __sme_page_pa(dst_p[0]) + d_off,
984 						     (void __user *)dst_vaddr,
985 						     len, &argp->error);
986 
987 		sev_unpin_memory(kvm, src_p, n);
988 		sev_unpin_memory(kvm, dst_p, n);
989 
990 		if (ret)
991 			goto err;
992 
993 		next_vaddr = vaddr + len;
994 		dst_vaddr = dst_vaddr + len;
995 		size -= len;
996 	}
997 err:
998 	return ret;
999 }
1000 
1001 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1002 {
1003 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1004 	struct sev_data_launch_secret data;
1005 	struct kvm_sev_launch_secret params;
1006 	struct page **pages;
1007 	void *blob, *hdr;
1008 	unsigned long n, i;
1009 	int ret, offset;
1010 
1011 	if (!sev_guest(kvm))
1012 		return -ENOTTY;
1013 
1014 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1015 		return -EFAULT;
1016 
1017 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1018 	if (IS_ERR(pages))
1019 		return PTR_ERR(pages);
1020 
1021 	/*
1022 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1023 	 * place; the cache may contain the data that was written unencrypted.
1024 	 */
1025 	sev_clflush_pages(pages, n);
1026 
1027 	/*
1028 	 * The secret must be copied into contiguous memory region, lets verify
1029 	 * that userspace memory pages are contiguous before we issue command.
1030 	 */
1031 	if (get_num_contig_pages(0, pages, n) != n) {
1032 		ret = -EINVAL;
1033 		goto e_unpin_memory;
1034 	}
1035 
1036 	memset(&data, 0, sizeof(data));
1037 
1038 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1039 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1040 	data.guest_len = params.guest_len;
1041 
1042 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1043 	if (IS_ERR(blob)) {
1044 		ret = PTR_ERR(blob);
1045 		goto e_unpin_memory;
1046 	}
1047 
1048 	data.trans_address = __psp_pa(blob);
1049 	data.trans_len = params.trans_len;
1050 
1051 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1052 	if (IS_ERR(hdr)) {
1053 		ret = PTR_ERR(hdr);
1054 		goto e_free_blob;
1055 	}
1056 	data.hdr_address = __psp_pa(hdr);
1057 	data.hdr_len = params.hdr_len;
1058 
1059 	data.handle = sev->handle;
1060 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1061 
1062 	kfree(hdr);
1063 
1064 e_free_blob:
1065 	kfree(blob);
1066 e_unpin_memory:
1067 	/* content of memory is updated, mark pages dirty */
1068 	for (i = 0; i < n; i++) {
1069 		set_page_dirty_lock(pages[i]);
1070 		mark_page_accessed(pages[i]);
1071 	}
1072 	sev_unpin_memory(kvm, pages, n);
1073 	return ret;
1074 }
1075 
1076 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1077 {
1078 	void __user *report = (void __user *)(uintptr_t)argp->data;
1079 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1080 	struct sev_data_attestation_report data;
1081 	struct kvm_sev_attestation_report params;
1082 	void __user *p;
1083 	void *blob = NULL;
1084 	int ret;
1085 
1086 	if (!sev_guest(kvm))
1087 		return -ENOTTY;
1088 
1089 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1090 		return -EFAULT;
1091 
1092 	memset(&data, 0, sizeof(data));
1093 
1094 	/* User wants to query the blob length */
1095 	if (!params.len)
1096 		goto cmd;
1097 
1098 	p = (void __user *)(uintptr_t)params.uaddr;
1099 	if (p) {
1100 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1101 			return -EINVAL;
1102 
1103 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1104 		if (!blob)
1105 			return -ENOMEM;
1106 
1107 		data.address = __psp_pa(blob);
1108 		data.len = params.len;
1109 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1110 	}
1111 cmd:
1112 	data.handle = sev->handle;
1113 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1114 	/*
1115 	 * If we query the session length, FW responded with expected data.
1116 	 */
1117 	if (!params.len)
1118 		goto done;
1119 
1120 	if (ret)
1121 		goto e_free_blob;
1122 
1123 	if (blob) {
1124 		if (copy_to_user(p, blob, params.len))
1125 			ret = -EFAULT;
1126 	}
1127 
1128 done:
1129 	params.len = data.len;
1130 	if (copy_to_user(report, &params, sizeof(params)))
1131 		ret = -EFAULT;
1132 e_free_blob:
1133 	kfree(blob);
1134 	return ret;
1135 }
1136 
1137 /* Userspace wants to query session length. */
1138 static int
1139 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1140 				      struct kvm_sev_send_start *params)
1141 {
1142 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1143 	struct sev_data_send_start data;
1144 	int ret;
1145 
1146 	memset(&data, 0, sizeof(data));
1147 	data.handle = sev->handle;
1148 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1149 
1150 	params->session_len = data.session_len;
1151 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1152 				sizeof(struct kvm_sev_send_start)))
1153 		ret = -EFAULT;
1154 
1155 	return ret;
1156 }
1157 
1158 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1159 {
1160 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1161 	struct sev_data_send_start data;
1162 	struct kvm_sev_send_start params;
1163 	void *amd_certs, *session_data;
1164 	void *pdh_cert, *plat_certs;
1165 	int ret;
1166 
1167 	if (!sev_guest(kvm))
1168 		return -ENOTTY;
1169 
1170 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1171 				sizeof(struct kvm_sev_send_start)))
1172 		return -EFAULT;
1173 
1174 	/* if session_len is zero, userspace wants to query the session length */
1175 	if (!params.session_len)
1176 		return __sev_send_start_query_session_length(kvm, argp,
1177 				&params);
1178 
1179 	/* some sanity checks */
1180 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1181 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1182 		return -EINVAL;
1183 
1184 	/* allocate the memory to hold the session data blob */
1185 	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1186 	if (!session_data)
1187 		return -ENOMEM;
1188 
1189 	/* copy the certificate blobs from userspace */
1190 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1191 				params.pdh_cert_len);
1192 	if (IS_ERR(pdh_cert)) {
1193 		ret = PTR_ERR(pdh_cert);
1194 		goto e_free_session;
1195 	}
1196 
1197 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1198 				params.plat_certs_len);
1199 	if (IS_ERR(plat_certs)) {
1200 		ret = PTR_ERR(plat_certs);
1201 		goto e_free_pdh;
1202 	}
1203 
1204 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1205 				params.amd_certs_len);
1206 	if (IS_ERR(amd_certs)) {
1207 		ret = PTR_ERR(amd_certs);
1208 		goto e_free_plat_cert;
1209 	}
1210 
1211 	/* populate the FW SEND_START field with system physical address */
1212 	memset(&data, 0, sizeof(data));
1213 	data.pdh_cert_address = __psp_pa(pdh_cert);
1214 	data.pdh_cert_len = params.pdh_cert_len;
1215 	data.plat_certs_address = __psp_pa(plat_certs);
1216 	data.plat_certs_len = params.plat_certs_len;
1217 	data.amd_certs_address = __psp_pa(amd_certs);
1218 	data.amd_certs_len = params.amd_certs_len;
1219 	data.session_address = __psp_pa(session_data);
1220 	data.session_len = params.session_len;
1221 	data.handle = sev->handle;
1222 
1223 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1224 
1225 	if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1226 			session_data, params.session_len)) {
1227 		ret = -EFAULT;
1228 		goto e_free_amd_cert;
1229 	}
1230 
1231 	params.policy = data.policy;
1232 	params.session_len = data.session_len;
1233 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1234 				sizeof(struct kvm_sev_send_start)))
1235 		ret = -EFAULT;
1236 
1237 e_free_amd_cert:
1238 	kfree(amd_certs);
1239 e_free_plat_cert:
1240 	kfree(plat_certs);
1241 e_free_pdh:
1242 	kfree(pdh_cert);
1243 e_free_session:
1244 	kfree(session_data);
1245 	return ret;
1246 }
1247 
1248 /* Userspace wants to query either header or trans length. */
1249 static int
1250 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1251 				     struct kvm_sev_send_update_data *params)
1252 {
1253 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1254 	struct sev_data_send_update_data data;
1255 	int ret;
1256 
1257 	memset(&data, 0, sizeof(data));
1258 	data.handle = sev->handle;
1259 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1260 
1261 	params->hdr_len = data.hdr_len;
1262 	params->trans_len = data.trans_len;
1263 
1264 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1265 			 sizeof(struct kvm_sev_send_update_data)))
1266 		ret = -EFAULT;
1267 
1268 	return ret;
1269 }
1270 
1271 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1272 {
1273 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1274 	struct sev_data_send_update_data data;
1275 	struct kvm_sev_send_update_data params;
1276 	void *hdr, *trans_data;
1277 	struct page **guest_page;
1278 	unsigned long n;
1279 	int ret, offset;
1280 
1281 	if (!sev_guest(kvm))
1282 		return -ENOTTY;
1283 
1284 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1285 			sizeof(struct kvm_sev_send_update_data)))
1286 		return -EFAULT;
1287 
1288 	/* userspace wants to query either header or trans length */
1289 	if (!params.trans_len || !params.hdr_len)
1290 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1291 
1292 	if (!params.trans_uaddr || !params.guest_uaddr ||
1293 	    !params.guest_len || !params.hdr_uaddr)
1294 		return -EINVAL;
1295 
1296 	/* Check if we are crossing the page boundary */
1297 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1298 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1299 		return -EINVAL;
1300 
1301 	/* Pin guest memory */
1302 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1303 				    PAGE_SIZE, &n, 0);
1304 	if (IS_ERR(guest_page))
1305 		return PTR_ERR(guest_page);
1306 
1307 	/* allocate memory for header and transport buffer */
1308 	ret = -ENOMEM;
1309 	hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1310 	if (!hdr)
1311 		goto e_unpin;
1312 
1313 	trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1314 	if (!trans_data)
1315 		goto e_free_hdr;
1316 
1317 	memset(&data, 0, sizeof(data));
1318 	data.hdr_address = __psp_pa(hdr);
1319 	data.hdr_len = params.hdr_len;
1320 	data.trans_address = __psp_pa(trans_data);
1321 	data.trans_len = params.trans_len;
1322 
1323 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1324 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1325 	data.guest_address |= sev_me_mask;
1326 	data.guest_len = params.guest_len;
1327 	data.handle = sev->handle;
1328 
1329 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1330 
1331 	if (ret)
1332 		goto e_free_trans_data;
1333 
1334 	/* copy transport buffer to user space */
1335 	if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1336 			 trans_data, params.trans_len)) {
1337 		ret = -EFAULT;
1338 		goto e_free_trans_data;
1339 	}
1340 
1341 	/* Copy packet header to userspace. */
1342 	if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1343 			 params.hdr_len))
1344 		ret = -EFAULT;
1345 
1346 e_free_trans_data:
1347 	kfree(trans_data);
1348 e_free_hdr:
1349 	kfree(hdr);
1350 e_unpin:
1351 	sev_unpin_memory(kvm, guest_page, n);
1352 
1353 	return ret;
1354 }
1355 
1356 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1357 {
1358 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1359 	struct sev_data_send_finish data;
1360 
1361 	if (!sev_guest(kvm))
1362 		return -ENOTTY;
1363 
1364 	data.handle = sev->handle;
1365 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1366 }
1367 
1368 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1369 {
1370 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1371 	struct sev_data_send_cancel data;
1372 
1373 	if (!sev_guest(kvm))
1374 		return -ENOTTY;
1375 
1376 	data.handle = sev->handle;
1377 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1378 }
1379 
1380 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1381 {
1382 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1383 	struct sev_data_receive_start start;
1384 	struct kvm_sev_receive_start params;
1385 	int *error = &argp->error;
1386 	void *session_data;
1387 	void *pdh_data;
1388 	int ret;
1389 
1390 	if (!sev_guest(kvm))
1391 		return -ENOTTY;
1392 
1393 	/* Get parameter from the userspace */
1394 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1395 			sizeof(struct kvm_sev_receive_start)))
1396 		return -EFAULT;
1397 
1398 	/* some sanity checks */
1399 	if (!params.pdh_uaddr || !params.pdh_len ||
1400 	    !params.session_uaddr || !params.session_len)
1401 		return -EINVAL;
1402 
1403 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1404 	if (IS_ERR(pdh_data))
1405 		return PTR_ERR(pdh_data);
1406 
1407 	session_data = psp_copy_user_blob(params.session_uaddr,
1408 			params.session_len);
1409 	if (IS_ERR(session_data)) {
1410 		ret = PTR_ERR(session_data);
1411 		goto e_free_pdh;
1412 	}
1413 
1414 	memset(&start, 0, sizeof(start));
1415 	start.handle = params.handle;
1416 	start.policy = params.policy;
1417 	start.pdh_cert_address = __psp_pa(pdh_data);
1418 	start.pdh_cert_len = params.pdh_len;
1419 	start.session_address = __psp_pa(session_data);
1420 	start.session_len = params.session_len;
1421 
1422 	/* create memory encryption context */
1423 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1424 				error);
1425 	if (ret)
1426 		goto e_free_session;
1427 
1428 	/* Bind ASID to this guest */
1429 	ret = sev_bind_asid(kvm, start.handle, error);
1430 	if (ret) {
1431 		sev_decommission(start.handle);
1432 		goto e_free_session;
1433 	}
1434 
1435 	params.handle = start.handle;
1436 	if (copy_to_user((void __user *)(uintptr_t)argp->data,
1437 			 &params, sizeof(struct kvm_sev_receive_start))) {
1438 		ret = -EFAULT;
1439 		sev_unbind_asid(kvm, start.handle);
1440 		goto e_free_session;
1441 	}
1442 
1443     	sev->handle = start.handle;
1444 	sev->fd = argp->sev_fd;
1445 
1446 e_free_session:
1447 	kfree(session_data);
1448 e_free_pdh:
1449 	kfree(pdh_data);
1450 
1451 	return ret;
1452 }
1453 
1454 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1455 {
1456 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1457 	struct kvm_sev_receive_update_data params;
1458 	struct sev_data_receive_update_data data;
1459 	void *hdr = NULL, *trans = NULL;
1460 	struct page **guest_page;
1461 	unsigned long n;
1462 	int ret, offset;
1463 
1464 	if (!sev_guest(kvm))
1465 		return -EINVAL;
1466 
1467 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1468 			sizeof(struct kvm_sev_receive_update_data)))
1469 		return -EFAULT;
1470 
1471 	if (!params.hdr_uaddr || !params.hdr_len ||
1472 	    !params.guest_uaddr || !params.guest_len ||
1473 	    !params.trans_uaddr || !params.trans_len)
1474 		return -EINVAL;
1475 
1476 	/* Check if we are crossing the page boundary */
1477 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1478 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1479 		return -EINVAL;
1480 
1481 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1482 	if (IS_ERR(hdr))
1483 		return PTR_ERR(hdr);
1484 
1485 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1486 	if (IS_ERR(trans)) {
1487 		ret = PTR_ERR(trans);
1488 		goto e_free_hdr;
1489 	}
1490 
1491 	memset(&data, 0, sizeof(data));
1492 	data.hdr_address = __psp_pa(hdr);
1493 	data.hdr_len = params.hdr_len;
1494 	data.trans_address = __psp_pa(trans);
1495 	data.trans_len = params.trans_len;
1496 
1497 	/* Pin guest memory */
1498 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1499 				    PAGE_SIZE, &n, 1);
1500 	if (IS_ERR(guest_page)) {
1501 		ret = PTR_ERR(guest_page);
1502 		goto e_free_trans;
1503 	}
1504 
1505 	/*
1506 	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1507 	 * encrypts the written data with the guest's key, and the cache may
1508 	 * contain dirty, unencrypted data.
1509 	 */
1510 	sev_clflush_pages(guest_page, n);
1511 
1512 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1513 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1514 	data.guest_address |= sev_me_mask;
1515 	data.guest_len = params.guest_len;
1516 	data.handle = sev->handle;
1517 
1518 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1519 				&argp->error);
1520 
1521 	sev_unpin_memory(kvm, guest_page, n);
1522 
1523 e_free_trans:
1524 	kfree(trans);
1525 e_free_hdr:
1526 	kfree(hdr);
1527 
1528 	return ret;
1529 }
1530 
1531 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1532 {
1533 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1534 	struct sev_data_receive_finish data;
1535 
1536 	if (!sev_guest(kvm))
1537 		return -ENOTTY;
1538 
1539 	data.handle = sev->handle;
1540 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1541 }
1542 
1543 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1544 {
1545 	/*
1546 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1547 	 * active mirror VMs. Also allow the debugging and status commands.
1548 	 */
1549 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1550 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1551 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1552 		return true;
1553 
1554 	return false;
1555 }
1556 
1557 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1558 {
1559 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1560 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1561 	int r = -EBUSY;
1562 
1563 	if (dst_kvm == src_kvm)
1564 		return -EINVAL;
1565 
1566 	/*
1567 	 * Bail if these VMs are already involved in a migration to avoid
1568 	 * deadlock between two VMs trying to migrate to/from each other.
1569 	 */
1570 	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1571 		return -EBUSY;
1572 
1573 	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1574 		goto release_dst;
1575 
1576 	r = -EINTR;
1577 	if (mutex_lock_killable(&dst_kvm->lock))
1578 		goto release_src;
1579 	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1580 		goto unlock_dst;
1581 	return 0;
1582 
1583 unlock_dst:
1584 	mutex_unlock(&dst_kvm->lock);
1585 release_src:
1586 	atomic_set_release(&src_sev->migration_in_progress, 0);
1587 release_dst:
1588 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1589 	return r;
1590 }
1591 
1592 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1593 {
1594 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1595 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1596 
1597 	mutex_unlock(&dst_kvm->lock);
1598 	mutex_unlock(&src_kvm->lock);
1599 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1600 	atomic_set_release(&src_sev->migration_in_progress, 0);
1601 }
1602 
1603 /* vCPU mutex subclasses.  */
1604 enum sev_migration_role {
1605 	SEV_MIGRATION_SOURCE = 0,
1606 	SEV_MIGRATION_TARGET,
1607 	SEV_NR_MIGRATION_ROLES,
1608 };
1609 
1610 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1611 					enum sev_migration_role role)
1612 {
1613 	struct kvm_vcpu *vcpu;
1614 	unsigned long i, j;
1615 
1616 	kvm_for_each_vcpu(i, vcpu, kvm) {
1617 		if (mutex_lock_killable_nested(&vcpu->mutex, role))
1618 			goto out_unlock;
1619 
1620 #ifdef CONFIG_PROVE_LOCKING
1621 		if (!i)
1622 			/*
1623 			 * Reset the role to one that avoids colliding with
1624 			 * the role used for the first vcpu mutex.
1625 			 */
1626 			role = SEV_NR_MIGRATION_ROLES;
1627 		else
1628 			mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1629 #endif
1630 	}
1631 
1632 	return 0;
1633 
1634 out_unlock:
1635 
1636 	kvm_for_each_vcpu(j, vcpu, kvm) {
1637 		if (i == j)
1638 			break;
1639 
1640 #ifdef CONFIG_PROVE_LOCKING
1641 		if (j)
1642 			mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1643 #endif
1644 
1645 		mutex_unlock(&vcpu->mutex);
1646 	}
1647 	return -EINTR;
1648 }
1649 
1650 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1651 {
1652 	struct kvm_vcpu *vcpu;
1653 	unsigned long i;
1654 	bool first = true;
1655 
1656 	kvm_for_each_vcpu(i, vcpu, kvm) {
1657 		if (first)
1658 			first = false;
1659 		else
1660 			mutex_acquire(&vcpu->mutex.dep_map,
1661 				      SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1662 
1663 		mutex_unlock(&vcpu->mutex);
1664 	}
1665 }
1666 
1667 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1668 {
1669 	struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1670 	struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1671 	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1672 	struct vcpu_svm *dst_svm, *src_svm;
1673 	struct kvm_sev_info *mirror;
1674 	unsigned long i;
1675 
1676 	dst->active = true;
1677 	dst->asid = src->asid;
1678 	dst->handle = src->handle;
1679 	dst->pages_locked = src->pages_locked;
1680 	dst->enc_context_owner = src->enc_context_owner;
1681 	dst->es_active = src->es_active;
1682 
1683 	src->asid = 0;
1684 	src->active = false;
1685 	src->handle = 0;
1686 	src->pages_locked = 0;
1687 	src->enc_context_owner = NULL;
1688 	src->es_active = false;
1689 
1690 	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1691 
1692 	/*
1693 	 * If this VM has mirrors, "transfer" each mirror's refcount of the
1694 	 * source to the destination (this KVM).  The caller holds a reference
1695 	 * to the source, so there's no danger of use-after-free.
1696 	 */
1697 	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1698 	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1699 		kvm_get_kvm(dst_kvm);
1700 		kvm_put_kvm(src_kvm);
1701 		mirror->enc_context_owner = dst_kvm;
1702 	}
1703 
1704 	/*
1705 	 * If this VM is a mirror, remove the old mirror from the owners list
1706 	 * and add the new mirror to the list.
1707 	 */
1708 	if (is_mirroring_enc_context(dst_kvm)) {
1709 		struct kvm_sev_info *owner_sev_info =
1710 			&to_kvm_svm(dst->enc_context_owner)->sev_info;
1711 
1712 		list_del(&src->mirror_entry);
1713 		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1714 	}
1715 
1716 	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1717 		dst_svm = to_svm(dst_vcpu);
1718 
1719 		sev_init_vmcb(dst_svm);
1720 
1721 		if (!dst->es_active)
1722 			continue;
1723 
1724 		/*
1725 		 * Note, the source is not required to have the same number of
1726 		 * vCPUs as the destination when migrating a vanilla SEV VM.
1727 		 */
1728 		src_vcpu = kvm_get_vcpu(dst_kvm, i);
1729 		src_svm = to_svm(src_vcpu);
1730 
1731 		/*
1732 		 * Transfer VMSA and GHCB state to the destination.  Nullify and
1733 		 * clear source fields as appropriate, the state now belongs to
1734 		 * the destination.
1735 		 */
1736 		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1737 		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1738 		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1739 		dst_vcpu->arch.guest_state_protected = true;
1740 
1741 		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1742 		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1743 		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1744 		src_vcpu->arch.guest_state_protected = false;
1745 	}
1746 }
1747 
1748 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1749 {
1750 	struct kvm_vcpu *src_vcpu;
1751 	unsigned long i;
1752 
1753 	if (!sev_es_guest(src))
1754 		return 0;
1755 
1756 	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1757 		return -EINVAL;
1758 
1759 	kvm_for_each_vcpu(i, src_vcpu, src) {
1760 		if (!src_vcpu->arch.guest_state_protected)
1761 			return -EINVAL;
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1768 {
1769 	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1770 	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1771 	struct fd f = fdget(source_fd);
1772 	struct kvm *source_kvm;
1773 	bool charged = false;
1774 	int ret;
1775 
1776 	if (!f.file)
1777 		return -EBADF;
1778 
1779 	if (!file_is_kvm(f.file)) {
1780 		ret = -EBADF;
1781 		goto out_fput;
1782 	}
1783 
1784 	source_kvm = f.file->private_data;
1785 	ret = sev_lock_two_vms(kvm, source_kvm);
1786 	if (ret)
1787 		goto out_fput;
1788 
1789 	if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1790 		ret = -EINVAL;
1791 		goto out_unlock;
1792 	}
1793 
1794 	src_sev = &to_kvm_svm(source_kvm)->sev_info;
1795 
1796 	dst_sev->misc_cg = get_current_misc_cg();
1797 	cg_cleanup_sev = dst_sev;
1798 	if (dst_sev->misc_cg != src_sev->misc_cg) {
1799 		ret = sev_misc_cg_try_charge(dst_sev);
1800 		if (ret)
1801 			goto out_dst_cgroup;
1802 		charged = true;
1803 	}
1804 
1805 	ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1806 	if (ret)
1807 		goto out_dst_cgroup;
1808 	ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1809 	if (ret)
1810 		goto out_dst_vcpu;
1811 
1812 	ret = sev_check_source_vcpus(kvm, source_kvm);
1813 	if (ret)
1814 		goto out_source_vcpu;
1815 
1816 	sev_migrate_from(kvm, source_kvm);
1817 	kvm_vm_dead(source_kvm);
1818 	cg_cleanup_sev = src_sev;
1819 	ret = 0;
1820 
1821 out_source_vcpu:
1822 	sev_unlock_vcpus_for_migration(source_kvm);
1823 out_dst_vcpu:
1824 	sev_unlock_vcpus_for_migration(kvm);
1825 out_dst_cgroup:
1826 	/* Operates on the source on success, on the destination on failure.  */
1827 	if (charged)
1828 		sev_misc_cg_uncharge(cg_cleanup_sev);
1829 	put_misc_cg(cg_cleanup_sev->misc_cg);
1830 	cg_cleanup_sev->misc_cg = NULL;
1831 out_unlock:
1832 	sev_unlock_two_vms(kvm, source_kvm);
1833 out_fput:
1834 	fdput(f);
1835 	return ret;
1836 }
1837 
1838 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1839 {
1840 	struct kvm_sev_cmd sev_cmd;
1841 	int r;
1842 
1843 	if (!sev_enabled)
1844 		return -ENOTTY;
1845 
1846 	if (!argp)
1847 		return 0;
1848 
1849 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1850 		return -EFAULT;
1851 
1852 	mutex_lock(&kvm->lock);
1853 
1854 	/* Only the enc_context_owner handles some memory enc operations. */
1855 	if (is_mirroring_enc_context(kvm) &&
1856 	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1857 		r = -EINVAL;
1858 		goto out;
1859 	}
1860 
1861 	switch (sev_cmd.id) {
1862 	case KVM_SEV_ES_INIT:
1863 		if (!sev_es_enabled) {
1864 			r = -ENOTTY;
1865 			goto out;
1866 		}
1867 		fallthrough;
1868 	case KVM_SEV_INIT:
1869 		r = sev_guest_init(kvm, &sev_cmd);
1870 		break;
1871 	case KVM_SEV_LAUNCH_START:
1872 		r = sev_launch_start(kvm, &sev_cmd);
1873 		break;
1874 	case KVM_SEV_LAUNCH_UPDATE_DATA:
1875 		r = sev_launch_update_data(kvm, &sev_cmd);
1876 		break;
1877 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
1878 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
1879 		break;
1880 	case KVM_SEV_LAUNCH_MEASURE:
1881 		r = sev_launch_measure(kvm, &sev_cmd);
1882 		break;
1883 	case KVM_SEV_LAUNCH_FINISH:
1884 		r = sev_launch_finish(kvm, &sev_cmd);
1885 		break;
1886 	case KVM_SEV_GUEST_STATUS:
1887 		r = sev_guest_status(kvm, &sev_cmd);
1888 		break;
1889 	case KVM_SEV_DBG_DECRYPT:
1890 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
1891 		break;
1892 	case KVM_SEV_DBG_ENCRYPT:
1893 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
1894 		break;
1895 	case KVM_SEV_LAUNCH_SECRET:
1896 		r = sev_launch_secret(kvm, &sev_cmd);
1897 		break;
1898 	case KVM_SEV_GET_ATTESTATION_REPORT:
1899 		r = sev_get_attestation_report(kvm, &sev_cmd);
1900 		break;
1901 	case KVM_SEV_SEND_START:
1902 		r = sev_send_start(kvm, &sev_cmd);
1903 		break;
1904 	case KVM_SEV_SEND_UPDATE_DATA:
1905 		r = sev_send_update_data(kvm, &sev_cmd);
1906 		break;
1907 	case KVM_SEV_SEND_FINISH:
1908 		r = sev_send_finish(kvm, &sev_cmd);
1909 		break;
1910 	case KVM_SEV_SEND_CANCEL:
1911 		r = sev_send_cancel(kvm, &sev_cmd);
1912 		break;
1913 	case KVM_SEV_RECEIVE_START:
1914 		r = sev_receive_start(kvm, &sev_cmd);
1915 		break;
1916 	case KVM_SEV_RECEIVE_UPDATE_DATA:
1917 		r = sev_receive_update_data(kvm, &sev_cmd);
1918 		break;
1919 	case KVM_SEV_RECEIVE_FINISH:
1920 		r = sev_receive_finish(kvm, &sev_cmd);
1921 		break;
1922 	default:
1923 		r = -EINVAL;
1924 		goto out;
1925 	}
1926 
1927 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1928 		r = -EFAULT;
1929 
1930 out:
1931 	mutex_unlock(&kvm->lock);
1932 	return r;
1933 }
1934 
1935 int sev_mem_enc_register_region(struct kvm *kvm,
1936 				struct kvm_enc_region *range)
1937 {
1938 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1939 	struct enc_region *region;
1940 	int ret = 0;
1941 
1942 	if (!sev_guest(kvm))
1943 		return -ENOTTY;
1944 
1945 	/* If kvm is mirroring encryption context it isn't responsible for it */
1946 	if (is_mirroring_enc_context(kvm))
1947 		return -EINVAL;
1948 
1949 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1950 		return -EINVAL;
1951 
1952 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1953 	if (!region)
1954 		return -ENOMEM;
1955 
1956 	mutex_lock(&kvm->lock);
1957 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1958 	if (IS_ERR(region->pages)) {
1959 		ret = PTR_ERR(region->pages);
1960 		mutex_unlock(&kvm->lock);
1961 		goto e_free;
1962 	}
1963 
1964 	region->uaddr = range->addr;
1965 	region->size = range->size;
1966 
1967 	list_add_tail(&region->list, &sev->regions_list);
1968 	mutex_unlock(&kvm->lock);
1969 
1970 	/*
1971 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1972 	 * or vice versa for this memory range. Lets make sure caches are
1973 	 * flushed to ensure that guest data gets written into memory with
1974 	 * correct C-bit.
1975 	 */
1976 	sev_clflush_pages(region->pages, region->npages);
1977 
1978 	return ret;
1979 
1980 e_free:
1981 	kfree(region);
1982 	return ret;
1983 }
1984 
1985 static struct enc_region *
1986 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1987 {
1988 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1989 	struct list_head *head = &sev->regions_list;
1990 	struct enc_region *i;
1991 
1992 	list_for_each_entry(i, head, list) {
1993 		if (i->uaddr == range->addr &&
1994 		    i->size == range->size)
1995 			return i;
1996 	}
1997 
1998 	return NULL;
1999 }
2000 
2001 static void __unregister_enc_region_locked(struct kvm *kvm,
2002 					   struct enc_region *region)
2003 {
2004 	sev_unpin_memory(kvm, region->pages, region->npages);
2005 	list_del(&region->list);
2006 	kfree(region);
2007 }
2008 
2009 int sev_mem_enc_unregister_region(struct kvm *kvm,
2010 				  struct kvm_enc_region *range)
2011 {
2012 	struct enc_region *region;
2013 	int ret;
2014 
2015 	/* If kvm is mirroring encryption context it isn't responsible for it */
2016 	if (is_mirroring_enc_context(kvm))
2017 		return -EINVAL;
2018 
2019 	mutex_lock(&kvm->lock);
2020 
2021 	if (!sev_guest(kvm)) {
2022 		ret = -ENOTTY;
2023 		goto failed;
2024 	}
2025 
2026 	region = find_enc_region(kvm, range);
2027 	if (!region) {
2028 		ret = -EINVAL;
2029 		goto failed;
2030 	}
2031 
2032 	/*
2033 	 * Ensure that all guest tagged cache entries are flushed before
2034 	 * releasing the pages back to the system for use. CLFLUSH will
2035 	 * not do this, so issue a WBINVD.
2036 	 */
2037 	wbinvd_on_all_cpus();
2038 
2039 	__unregister_enc_region_locked(kvm, region);
2040 
2041 	mutex_unlock(&kvm->lock);
2042 	return 0;
2043 
2044 failed:
2045 	mutex_unlock(&kvm->lock);
2046 	return ret;
2047 }
2048 
2049 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2050 {
2051 	struct fd f = fdget(source_fd);
2052 	struct kvm *source_kvm;
2053 	struct kvm_sev_info *source_sev, *mirror_sev;
2054 	int ret;
2055 
2056 	if (!f.file)
2057 		return -EBADF;
2058 
2059 	if (!file_is_kvm(f.file)) {
2060 		ret = -EBADF;
2061 		goto e_source_fput;
2062 	}
2063 
2064 	source_kvm = f.file->private_data;
2065 	ret = sev_lock_two_vms(kvm, source_kvm);
2066 	if (ret)
2067 		goto e_source_fput;
2068 
2069 	/*
2070 	 * Mirrors of mirrors should work, but let's not get silly.  Also
2071 	 * disallow out-of-band SEV/SEV-ES init if the target is already an
2072 	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2073 	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2074 	 */
2075 	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2076 	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2077 		ret = -EINVAL;
2078 		goto e_unlock;
2079 	}
2080 
2081 	/*
2082 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2083 	 * disappear until we're done with it
2084 	 */
2085 	source_sev = &to_kvm_svm(source_kvm)->sev_info;
2086 	kvm_get_kvm(source_kvm);
2087 	mirror_sev = &to_kvm_svm(kvm)->sev_info;
2088 	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2089 
2090 	/* Set enc_context_owner and copy its encryption context over */
2091 	mirror_sev->enc_context_owner = source_kvm;
2092 	mirror_sev->active = true;
2093 	mirror_sev->asid = source_sev->asid;
2094 	mirror_sev->fd = source_sev->fd;
2095 	mirror_sev->es_active = source_sev->es_active;
2096 	mirror_sev->handle = source_sev->handle;
2097 	INIT_LIST_HEAD(&mirror_sev->regions_list);
2098 	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2099 	ret = 0;
2100 
2101 	/*
2102 	 * Do not copy ap_jump_table. Since the mirror does not share the same
2103 	 * KVM contexts as the original, and they may have different
2104 	 * memory-views.
2105 	 */
2106 
2107 e_unlock:
2108 	sev_unlock_two_vms(kvm, source_kvm);
2109 e_source_fput:
2110 	fdput(f);
2111 	return ret;
2112 }
2113 
2114 void sev_vm_destroy(struct kvm *kvm)
2115 {
2116 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2117 	struct list_head *head = &sev->regions_list;
2118 	struct list_head *pos, *q;
2119 
2120 	if (!sev_guest(kvm))
2121 		return;
2122 
2123 	WARN_ON(!list_empty(&sev->mirror_vms));
2124 
2125 	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2126 	if (is_mirroring_enc_context(kvm)) {
2127 		struct kvm *owner_kvm = sev->enc_context_owner;
2128 
2129 		mutex_lock(&owner_kvm->lock);
2130 		list_del(&sev->mirror_entry);
2131 		mutex_unlock(&owner_kvm->lock);
2132 		kvm_put_kvm(owner_kvm);
2133 		return;
2134 	}
2135 
2136 	/*
2137 	 * Ensure that all guest tagged cache entries are flushed before
2138 	 * releasing the pages back to the system for use. CLFLUSH will
2139 	 * not do this, so issue a WBINVD.
2140 	 */
2141 	wbinvd_on_all_cpus();
2142 
2143 	/*
2144 	 * if userspace was terminated before unregistering the memory regions
2145 	 * then lets unpin all the registered memory.
2146 	 */
2147 	if (!list_empty(head)) {
2148 		list_for_each_safe(pos, q, head) {
2149 			__unregister_enc_region_locked(kvm,
2150 				list_entry(pos, struct enc_region, list));
2151 			cond_resched();
2152 		}
2153 	}
2154 
2155 	sev_unbind_asid(kvm, sev->handle);
2156 	sev_asid_free(sev);
2157 }
2158 
2159 void __init sev_set_cpu_caps(void)
2160 {
2161 	if (!sev_enabled)
2162 		kvm_cpu_cap_clear(X86_FEATURE_SEV);
2163 	if (!sev_es_enabled)
2164 		kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2165 }
2166 
2167 void __init sev_hardware_setup(void)
2168 {
2169 #ifdef CONFIG_KVM_AMD_SEV
2170 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2171 	bool sev_es_supported = false;
2172 	bool sev_supported = false;
2173 
2174 	if (!sev_enabled || !npt_enabled)
2175 		goto out;
2176 
2177 	/*
2178 	 * SEV must obviously be supported in hardware.  Sanity check that the
2179 	 * CPU supports decode assists, which is mandatory for SEV guests to
2180 	 * support instruction emulation.
2181 	 */
2182 	if (!boot_cpu_has(X86_FEATURE_SEV) ||
2183 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
2184 		goto out;
2185 
2186 	/* Retrieve SEV CPUID information */
2187 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2188 
2189 	/* Set encryption bit location for SEV-ES guests */
2190 	sev_enc_bit = ebx & 0x3f;
2191 
2192 	/* Maximum number of encrypted guests supported simultaneously */
2193 	max_sev_asid = ecx;
2194 	if (!max_sev_asid)
2195 		goto out;
2196 
2197 	/* Minimum ASID value that should be used for SEV guest */
2198 	min_sev_asid = edx;
2199 	sev_me_mask = 1UL << (ebx & 0x3f);
2200 
2201 	/*
2202 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2203 	 * even though it's never used, so that the bitmap is indexed by the
2204 	 * actual ASID.
2205 	 */
2206 	nr_asids = max_sev_asid + 1;
2207 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2208 	if (!sev_asid_bitmap)
2209 		goto out;
2210 
2211 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2212 	if (!sev_reclaim_asid_bitmap) {
2213 		bitmap_free(sev_asid_bitmap);
2214 		sev_asid_bitmap = NULL;
2215 		goto out;
2216 	}
2217 
2218 	sev_asid_count = max_sev_asid - min_sev_asid + 1;
2219 	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
2220 	sev_supported = true;
2221 
2222 	/* SEV-ES support requested? */
2223 	if (!sev_es_enabled)
2224 		goto out;
2225 
2226 	/*
2227 	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2228 	 * instruction stream, i.e. can't emulate in response to a #NPF and
2229 	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2230 	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2231 	 */
2232 	if (!enable_mmio_caching)
2233 		goto out;
2234 
2235 	/* Does the CPU support SEV-ES? */
2236 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2237 		goto out;
2238 
2239 	/* Has the system been allocated ASIDs for SEV-ES? */
2240 	if (min_sev_asid == 1)
2241 		goto out;
2242 
2243 	sev_es_asid_count = min_sev_asid - 1;
2244 	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
2245 	sev_es_supported = true;
2246 
2247 out:
2248 	if (boot_cpu_has(X86_FEATURE_SEV))
2249 		pr_info("SEV %s (ASIDs %u - %u)\n",
2250 			sev_supported ? "enabled" : "disabled",
2251 			min_sev_asid, max_sev_asid);
2252 	if (boot_cpu_has(X86_FEATURE_SEV_ES))
2253 		pr_info("SEV-ES %s (ASIDs %u - %u)\n",
2254 			sev_es_supported ? "enabled" : "disabled",
2255 			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
2256 
2257 	sev_enabled = sev_supported;
2258 	sev_es_enabled = sev_es_supported;
2259 #endif
2260 }
2261 
2262 void sev_hardware_unsetup(void)
2263 {
2264 	if (!sev_enabled)
2265 		return;
2266 
2267 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2268 	sev_flush_asids(1, max_sev_asid);
2269 
2270 	bitmap_free(sev_asid_bitmap);
2271 	bitmap_free(sev_reclaim_asid_bitmap);
2272 
2273 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2274 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2275 }
2276 
2277 int sev_cpu_init(struct svm_cpu_data *sd)
2278 {
2279 	if (!sev_enabled)
2280 		return 0;
2281 
2282 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2283 	if (!sd->sev_vmcbs)
2284 		return -ENOMEM;
2285 
2286 	return 0;
2287 }
2288 
2289 /*
2290  * Pages used by hardware to hold guest encrypted state must be flushed before
2291  * returning them to the system.
2292  */
2293 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2294 {
2295 	int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
2296 
2297 	/*
2298 	 * Note!  The address must be a kernel address, as regular page walk
2299 	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2300 	 * address is non-deterministic and unsafe.  This function deliberately
2301 	 * takes a pointer to deter passing in a user address.
2302 	 */
2303 	unsigned long addr = (unsigned long)va;
2304 
2305 	/*
2306 	 * If CPU enforced cache coherency for encrypted mappings of the
2307 	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2308 	 * flush is still needed in order to work properly with DMA devices.
2309 	 */
2310 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2311 		clflush_cache_range(va, PAGE_SIZE);
2312 		return;
2313 	}
2314 
2315 	/*
2316 	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
2317 	 * back to WBINVD if this faults so as not to make any problems worse
2318 	 * by leaving stale encrypted data in the cache.
2319 	 */
2320 	if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2321 		goto do_wbinvd;
2322 
2323 	return;
2324 
2325 do_wbinvd:
2326 	wbinvd_on_all_cpus();
2327 }
2328 
2329 void sev_guest_memory_reclaimed(struct kvm *kvm)
2330 {
2331 	if (!sev_guest(kvm))
2332 		return;
2333 
2334 	wbinvd_on_all_cpus();
2335 }
2336 
2337 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2338 {
2339 	struct vcpu_svm *svm;
2340 
2341 	if (!sev_es_guest(vcpu->kvm))
2342 		return;
2343 
2344 	svm = to_svm(vcpu);
2345 
2346 	if (vcpu->arch.guest_state_protected)
2347 		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2348 
2349 	__free_page(virt_to_page(svm->sev_es.vmsa));
2350 
2351 	if (svm->sev_es.ghcb_sa_free)
2352 		kvfree(svm->sev_es.ghcb_sa);
2353 }
2354 
2355 static void dump_ghcb(struct vcpu_svm *svm)
2356 {
2357 	struct ghcb *ghcb = svm->sev_es.ghcb;
2358 	unsigned int nbits;
2359 
2360 	/* Re-use the dump_invalid_vmcb module parameter */
2361 	if (!dump_invalid_vmcb) {
2362 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2363 		return;
2364 	}
2365 
2366 	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2367 
2368 	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2369 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2370 	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2371 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2372 	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2373 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2374 	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2375 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2376 	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2377 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2378 }
2379 
2380 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2381 {
2382 	struct kvm_vcpu *vcpu = &svm->vcpu;
2383 	struct ghcb *ghcb = svm->sev_es.ghcb;
2384 
2385 	/*
2386 	 * The GHCB protocol so far allows for the following data
2387 	 * to be returned:
2388 	 *   GPRs RAX, RBX, RCX, RDX
2389 	 *
2390 	 * Copy their values, even if they may not have been written during the
2391 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
2392 	 */
2393 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2394 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2395 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2396 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2397 }
2398 
2399 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2400 {
2401 	struct vmcb_control_area *control = &svm->vmcb->control;
2402 	struct kvm_vcpu *vcpu = &svm->vcpu;
2403 	struct ghcb *ghcb = svm->sev_es.ghcb;
2404 	u64 exit_code;
2405 
2406 	/*
2407 	 * The GHCB protocol so far allows for the following data
2408 	 * to be supplied:
2409 	 *   GPRs RAX, RBX, RCX, RDX
2410 	 *   XCR0
2411 	 *   CPL
2412 	 *
2413 	 * VMMCALL allows the guest to provide extra registers. KVM also
2414 	 * expects RSI for hypercalls, so include that, too.
2415 	 *
2416 	 * Copy their values to the appropriate location if supplied.
2417 	 */
2418 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2419 
2420 	vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2421 	vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2422 	vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2423 	vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2424 	vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2425 
2426 	svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2427 
2428 	if (ghcb_xcr0_is_valid(ghcb)) {
2429 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2430 		kvm_update_cpuid_runtime(vcpu);
2431 	}
2432 
2433 	/* Copy the GHCB exit information into the VMCB fields */
2434 	exit_code = ghcb_get_sw_exit_code(ghcb);
2435 	control->exit_code = lower_32_bits(exit_code);
2436 	control->exit_code_hi = upper_32_bits(exit_code);
2437 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2438 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2439 
2440 	/* Clear the valid entries fields */
2441 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2442 }
2443 
2444 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2445 {
2446 	struct kvm_vcpu *vcpu;
2447 	struct ghcb *ghcb;
2448 	u64 exit_code;
2449 	u64 reason;
2450 
2451 	ghcb = svm->sev_es.ghcb;
2452 
2453 	/*
2454 	 * Retrieve the exit code now even though it may not be marked valid
2455 	 * as it could help with debugging.
2456 	 */
2457 	exit_code = ghcb_get_sw_exit_code(ghcb);
2458 
2459 	/* Only GHCB Usage code 0 is supported */
2460 	if (ghcb->ghcb_usage) {
2461 		reason = GHCB_ERR_INVALID_USAGE;
2462 		goto vmgexit_err;
2463 	}
2464 
2465 	reason = GHCB_ERR_MISSING_INPUT;
2466 
2467 	if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2468 	    !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2469 	    !ghcb_sw_exit_info_2_is_valid(ghcb))
2470 		goto vmgexit_err;
2471 
2472 	switch (ghcb_get_sw_exit_code(ghcb)) {
2473 	case SVM_EXIT_READ_DR7:
2474 		break;
2475 	case SVM_EXIT_WRITE_DR7:
2476 		if (!ghcb_rax_is_valid(ghcb))
2477 			goto vmgexit_err;
2478 		break;
2479 	case SVM_EXIT_RDTSC:
2480 		break;
2481 	case SVM_EXIT_RDPMC:
2482 		if (!ghcb_rcx_is_valid(ghcb))
2483 			goto vmgexit_err;
2484 		break;
2485 	case SVM_EXIT_CPUID:
2486 		if (!ghcb_rax_is_valid(ghcb) ||
2487 		    !ghcb_rcx_is_valid(ghcb))
2488 			goto vmgexit_err;
2489 		if (ghcb_get_rax(ghcb) == 0xd)
2490 			if (!ghcb_xcr0_is_valid(ghcb))
2491 				goto vmgexit_err;
2492 		break;
2493 	case SVM_EXIT_INVD:
2494 		break;
2495 	case SVM_EXIT_IOIO:
2496 		if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2497 			if (!ghcb_sw_scratch_is_valid(ghcb))
2498 				goto vmgexit_err;
2499 		} else {
2500 			if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2501 				if (!ghcb_rax_is_valid(ghcb))
2502 					goto vmgexit_err;
2503 		}
2504 		break;
2505 	case SVM_EXIT_MSR:
2506 		if (!ghcb_rcx_is_valid(ghcb))
2507 			goto vmgexit_err;
2508 		if (ghcb_get_sw_exit_info_1(ghcb)) {
2509 			if (!ghcb_rax_is_valid(ghcb) ||
2510 			    !ghcb_rdx_is_valid(ghcb))
2511 				goto vmgexit_err;
2512 		}
2513 		break;
2514 	case SVM_EXIT_VMMCALL:
2515 		if (!ghcb_rax_is_valid(ghcb) ||
2516 		    !ghcb_cpl_is_valid(ghcb))
2517 			goto vmgexit_err;
2518 		break;
2519 	case SVM_EXIT_RDTSCP:
2520 		break;
2521 	case SVM_EXIT_WBINVD:
2522 		break;
2523 	case SVM_EXIT_MONITOR:
2524 		if (!ghcb_rax_is_valid(ghcb) ||
2525 		    !ghcb_rcx_is_valid(ghcb) ||
2526 		    !ghcb_rdx_is_valid(ghcb))
2527 			goto vmgexit_err;
2528 		break;
2529 	case SVM_EXIT_MWAIT:
2530 		if (!ghcb_rax_is_valid(ghcb) ||
2531 		    !ghcb_rcx_is_valid(ghcb))
2532 			goto vmgexit_err;
2533 		break;
2534 	case SVM_VMGEXIT_MMIO_READ:
2535 	case SVM_VMGEXIT_MMIO_WRITE:
2536 		if (!ghcb_sw_scratch_is_valid(ghcb))
2537 			goto vmgexit_err;
2538 		break;
2539 	case SVM_VMGEXIT_NMI_COMPLETE:
2540 	case SVM_VMGEXIT_AP_HLT_LOOP:
2541 	case SVM_VMGEXIT_AP_JUMP_TABLE:
2542 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2543 		break;
2544 	default:
2545 		reason = GHCB_ERR_INVALID_EVENT;
2546 		goto vmgexit_err;
2547 	}
2548 
2549 	return 0;
2550 
2551 vmgexit_err:
2552 	vcpu = &svm->vcpu;
2553 
2554 	if (reason == GHCB_ERR_INVALID_USAGE) {
2555 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2556 			    ghcb->ghcb_usage);
2557 	} else if (reason == GHCB_ERR_INVALID_EVENT) {
2558 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2559 			    exit_code);
2560 	} else {
2561 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2562 			    exit_code);
2563 		dump_ghcb(svm);
2564 	}
2565 
2566 	/* Clear the valid entries fields */
2567 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2568 
2569 	ghcb_set_sw_exit_info_1(ghcb, 2);
2570 	ghcb_set_sw_exit_info_2(ghcb, reason);
2571 
2572 	/* Resume the guest to "return" the error code. */
2573 	return 1;
2574 }
2575 
2576 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2577 {
2578 	if (!svm->sev_es.ghcb)
2579 		return;
2580 
2581 	if (svm->sev_es.ghcb_sa_free) {
2582 		/*
2583 		 * The scratch area lives outside the GHCB, so there is a
2584 		 * buffer that, depending on the operation performed, may
2585 		 * need to be synced, then freed.
2586 		 */
2587 		if (svm->sev_es.ghcb_sa_sync) {
2588 			kvm_write_guest(svm->vcpu.kvm,
2589 					ghcb_get_sw_scratch(svm->sev_es.ghcb),
2590 					svm->sev_es.ghcb_sa,
2591 					svm->sev_es.ghcb_sa_len);
2592 			svm->sev_es.ghcb_sa_sync = false;
2593 		}
2594 
2595 		kvfree(svm->sev_es.ghcb_sa);
2596 		svm->sev_es.ghcb_sa = NULL;
2597 		svm->sev_es.ghcb_sa_free = false;
2598 	}
2599 
2600 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2601 
2602 	sev_es_sync_to_ghcb(svm);
2603 
2604 	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2605 	svm->sev_es.ghcb = NULL;
2606 }
2607 
2608 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2609 {
2610 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2611 	int asid = sev_get_asid(svm->vcpu.kvm);
2612 
2613 	/* Assign the asid allocated with this SEV guest */
2614 	svm->asid = asid;
2615 
2616 	/*
2617 	 * Flush guest TLB:
2618 	 *
2619 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2620 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2621 	 */
2622 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
2623 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
2624 		return;
2625 
2626 	sd->sev_vmcbs[asid] = svm->vmcb;
2627 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2628 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2629 }
2630 
2631 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
2632 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2633 {
2634 	struct vmcb_control_area *control = &svm->vmcb->control;
2635 	struct ghcb *ghcb = svm->sev_es.ghcb;
2636 	u64 ghcb_scratch_beg, ghcb_scratch_end;
2637 	u64 scratch_gpa_beg, scratch_gpa_end;
2638 	void *scratch_va;
2639 
2640 	scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2641 	if (!scratch_gpa_beg) {
2642 		pr_err("vmgexit: scratch gpa not provided\n");
2643 		goto e_scratch;
2644 	}
2645 
2646 	scratch_gpa_end = scratch_gpa_beg + len;
2647 	if (scratch_gpa_end < scratch_gpa_beg) {
2648 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2649 		       len, scratch_gpa_beg);
2650 		goto e_scratch;
2651 	}
2652 
2653 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2654 		/* Scratch area begins within GHCB */
2655 		ghcb_scratch_beg = control->ghcb_gpa +
2656 				   offsetof(struct ghcb, shared_buffer);
2657 		ghcb_scratch_end = control->ghcb_gpa +
2658 				   offsetof(struct ghcb, reserved_0xff0);
2659 
2660 		/*
2661 		 * If the scratch area begins within the GHCB, it must be
2662 		 * completely contained in the GHCB shared buffer area.
2663 		 */
2664 		if (scratch_gpa_beg < ghcb_scratch_beg ||
2665 		    scratch_gpa_end > ghcb_scratch_end) {
2666 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2667 			       scratch_gpa_beg, scratch_gpa_end);
2668 			goto e_scratch;
2669 		}
2670 
2671 		scratch_va = (void *)svm->sev_es.ghcb;
2672 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2673 	} else {
2674 		/*
2675 		 * The guest memory must be read into a kernel buffer, so
2676 		 * limit the size
2677 		 */
2678 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
2679 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2680 			       len, GHCB_SCRATCH_AREA_LIMIT);
2681 			goto e_scratch;
2682 		}
2683 		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2684 		if (!scratch_va)
2685 			return -ENOMEM;
2686 
2687 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2688 			/* Unable to copy scratch area from guest */
2689 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2690 
2691 			kvfree(scratch_va);
2692 			return -EFAULT;
2693 		}
2694 
2695 		/*
2696 		 * The scratch area is outside the GHCB. The operation will
2697 		 * dictate whether the buffer needs to be synced before running
2698 		 * the vCPU next time (i.e. a read was requested so the data
2699 		 * must be written back to the guest memory).
2700 		 */
2701 		svm->sev_es.ghcb_sa_sync = sync;
2702 		svm->sev_es.ghcb_sa_free = true;
2703 	}
2704 
2705 	svm->sev_es.ghcb_sa = scratch_va;
2706 	svm->sev_es.ghcb_sa_len = len;
2707 
2708 	return 0;
2709 
2710 e_scratch:
2711 	ghcb_set_sw_exit_info_1(ghcb, 2);
2712 	ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2713 
2714 	return 1;
2715 }
2716 
2717 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2718 			      unsigned int pos)
2719 {
2720 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2721 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2722 }
2723 
2724 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2725 {
2726 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2727 }
2728 
2729 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2730 {
2731 	svm->vmcb->control.ghcb_gpa = value;
2732 }
2733 
2734 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2735 {
2736 	struct vmcb_control_area *control = &svm->vmcb->control;
2737 	struct kvm_vcpu *vcpu = &svm->vcpu;
2738 	u64 ghcb_info;
2739 	int ret = 1;
2740 
2741 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2742 
2743 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2744 					     control->ghcb_gpa);
2745 
2746 	switch (ghcb_info) {
2747 	case GHCB_MSR_SEV_INFO_REQ:
2748 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2749 						    GHCB_VERSION_MIN,
2750 						    sev_enc_bit));
2751 		break;
2752 	case GHCB_MSR_CPUID_REQ: {
2753 		u64 cpuid_fn, cpuid_reg, cpuid_value;
2754 
2755 		cpuid_fn = get_ghcb_msr_bits(svm,
2756 					     GHCB_MSR_CPUID_FUNC_MASK,
2757 					     GHCB_MSR_CPUID_FUNC_POS);
2758 
2759 		/* Initialize the registers needed by the CPUID intercept */
2760 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2761 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2762 
2763 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2764 		if (!ret) {
2765 			/* Error, keep GHCB MSR value as-is */
2766 			break;
2767 		}
2768 
2769 		cpuid_reg = get_ghcb_msr_bits(svm,
2770 					      GHCB_MSR_CPUID_REG_MASK,
2771 					      GHCB_MSR_CPUID_REG_POS);
2772 		if (cpuid_reg == 0)
2773 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2774 		else if (cpuid_reg == 1)
2775 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2776 		else if (cpuid_reg == 2)
2777 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2778 		else
2779 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2780 
2781 		set_ghcb_msr_bits(svm, cpuid_value,
2782 				  GHCB_MSR_CPUID_VALUE_MASK,
2783 				  GHCB_MSR_CPUID_VALUE_POS);
2784 
2785 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2786 				  GHCB_MSR_INFO_MASK,
2787 				  GHCB_MSR_INFO_POS);
2788 		break;
2789 	}
2790 	case GHCB_MSR_TERM_REQ: {
2791 		u64 reason_set, reason_code;
2792 
2793 		reason_set = get_ghcb_msr_bits(svm,
2794 					       GHCB_MSR_TERM_REASON_SET_MASK,
2795 					       GHCB_MSR_TERM_REASON_SET_POS);
2796 		reason_code = get_ghcb_msr_bits(svm,
2797 						GHCB_MSR_TERM_REASON_MASK,
2798 						GHCB_MSR_TERM_REASON_POS);
2799 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2800 			reason_set, reason_code);
2801 
2802 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2803 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2804 		vcpu->run->system_event.ndata = 1;
2805 		vcpu->run->system_event.data[0] = control->ghcb_gpa;
2806 
2807 		return 0;
2808 	}
2809 	default:
2810 		/* Error, keep GHCB MSR value as-is */
2811 		break;
2812 	}
2813 
2814 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2815 					    control->ghcb_gpa, ret);
2816 
2817 	return ret;
2818 }
2819 
2820 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2821 {
2822 	struct vcpu_svm *svm = to_svm(vcpu);
2823 	struct vmcb_control_area *control = &svm->vmcb->control;
2824 	u64 ghcb_gpa, exit_code;
2825 	struct ghcb *ghcb;
2826 	int ret;
2827 
2828 	/* Validate the GHCB */
2829 	ghcb_gpa = control->ghcb_gpa;
2830 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2831 		return sev_handle_vmgexit_msr_protocol(svm);
2832 
2833 	if (!ghcb_gpa) {
2834 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2835 
2836 		/* Without a GHCB, just return right back to the guest */
2837 		return 1;
2838 	}
2839 
2840 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2841 		/* Unable to map GHCB from guest */
2842 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2843 			    ghcb_gpa);
2844 
2845 		/* Without a GHCB, just return right back to the guest */
2846 		return 1;
2847 	}
2848 
2849 	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2850 	ghcb = svm->sev_es.ghcb_map.hva;
2851 
2852 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2853 
2854 	exit_code = ghcb_get_sw_exit_code(ghcb);
2855 
2856 	ret = sev_es_validate_vmgexit(svm);
2857 	if (ret)
2858 		return ret;
2859 
2860 	sev_es_sync_from_ghcb(svm);
2861 	ghcb_set_sw_exit_info_1(ghcb, 0);
2862 	ghcb_set_sw_exit_info_2(ghcb, 0);
2863 
2864 	switch (exit_code) {
2865 	case SVM_VMGEXIT_MMIO_READ:
2866 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2867 		if (ret)
2868 			break;
2869 
2870 		ret = kvm_sev_es_mmio_read(vcpu,
2871 					   control->exit_info_1,
2872 					   control->exit_info_2,
2873 					   svm->sev_es.ghcb_sa);
2874 		break;
2875 	case SVM_VMGEXIT_MMIO_WRITE:
2876 		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2877 		if (ret)
2878 			break;
2879 
2880 		ret = kvm_sev_es_mmio_write(vcpu,
2881 					    control->exit_info_1,
2882 					    control->exit_info_2,
2883 					    svm->sev_es.ghcb_sa);
2884 		break;
2885 	case SVM_VMGEXIT_NMI_COMPLETE:
2886 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2887 		break;
2888 	case SVM_VMGEXIT_AP_HLT_LOOP:
2889 		ret = kvm_emulate_ap_reset_hold(vcpu);
2890 		break;
2891 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
2892 		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2893 
2894 		switch (control->exit_info_1) {
2895 		case 0:
2896 			/* Set AP jump table address */
2897 			sev->ap_jump_table = control->exit_info_2;
2898 			break;
2899 		case 1:
2900 			/* Get AP jump table address */
2901 			ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2902 			break;
2903 		default:
2904 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2905 			       control->exit_info_1);
2906 			ghcb_set_sw_exit_info_1(ghcb, 2);
2907 			ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT);
2908 		}
2909 
2910 		ret = 1;
2911 		break;
2912 	}
2913 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2914 		vcpu_unimpl(vcpu,
2915 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2916 			    control->exit_info_1, control->exit_info_2);
2917 		ret = -EINVAL;
2918 		break;
2919 	default:
2920 		ret = svm_invoke_exit_handler(vcpu, exit_code);
2921 	}
2922 
2923 	return ret;
2924 }
2925 
2926 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2927 {
2928 	int count;
2929 	int bytes;
2930 	int r;
2931 
2932 	if (svm->vmcb->control.exit_info_2 > INT_MAX)
2933 		return -EINVAL;
2934 
2935 	count = svm->vmcb->control.exit_info_2;
2936 	if (unlikely(check_mul_overflow(count, size, &bytes)))
2937 		return -EINVAL;
2938 
2939 	r = setup_vmgexit_scratch(svm, in, bytes);
2940 	if (r)
2941 		return r;
2942 
2943 	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2944 				    count, in);
2945 }
2946 
2947 static void sev_es_init_vmcb(struct vcpu_svm *svm)
2948 {
2949 	struct kvm_vcpu *vcpu = &svm->vcpu;
2950 
2951 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2952 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2953 
2954 	/*
2955 	 * An SEV-ES guest requires a VMSA area that is a separate from the
2956 	 * VMCB page. Do not include the encryption mask on the VMSA physical
2957 	 * address since hardware will access it using the guest key.
2958 	 */
2959 	svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
2960 
2961 	/* Can't intercept CR register access, HV can't modify CR registers */
2962 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2963 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2964 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2965 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2966 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2967 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2968 
2969 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2970 
2971 	/* Track EFER/CR register changes */
2972 	svm_set_intercept(svm, TRAP_EFER_WRITE);
2973 	svm_set_intercept(svm, TRAP_CR0_WRITE);
2974 	svm_set_intercept(svm, TRAP_CR4_WRITE);
2975 	svm_set_intercept(svm, TRAP_CR8_WRITE);
2976 
2977 	/* No support for enable_vmware_backdoor */
2978 	clr_exception_intercept(svm, GP_VECTOR);
2979 
2980 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
2981 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
2982 
2983 	/* Clear intercepts on selected MSRs */
2984 	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2985 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2986 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2987 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2988 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2989 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2990 
2991 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) &&
2992 	    (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP) ||
2993 	     guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDPID))) {
2994 		set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, 1, 1);
2995 		if (guest_cpuid_has(&svm->vcpu, X86_FEATURE_RDTSCP))
2996 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
2997 	}
2998 }
2999 
3000 void sev_init_vmcb(struct vcpu_svm *svm)
3001 {
3002 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
3003 	clr_exception_intercept(svm, UD_VECTOR);
3004 
3005 	if (sev_es_guest(svm->vcpu.kvm))
3006 		sev_es_init_vmcb(svm);
3007 }
3008 
3009 void sev_es_vcpu_reset(struct vcpu_svm *svm)
3010 {
3011 	/*
3012 	 * Set the GHCB MSR value as per the GHCB specification when emulating
3013 	 * vCPU RESET for an SEV-ES guest.
3014 	 */
3015 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3016 					    GHCB_VERSION_MIN,
3017 					    sev_enc_bit));
3018 }
3019 
3020 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3021 {
3022 	/*
3023 	 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
3024 	 * of which one step is to perform a VMLOAD.  KVM performs the
3025 	 * corresponding VMSAVE in svm_prepare_guest_switch for both
3026 	 * traditional and SEV-ES guests.
3027 	 */
3028 
3029 	/* XCR0 is restored on VMEXIT, save the current host value */
3030 	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3031 
3032 	/* PKRU is restored on VMEXIT, save the current host value */
3033 	hostsa->pkru = read_pkru();
3034 
3035 	/* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
3036 	hostsa->xss = host_xss;
3037 }
3038 
3039 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3040 {
3041 	struct vcpu_svm *svm = to_svm(vcpu);
3042 
3043 	/* First SIPI: Use the values as initially set by the VMM */
3044 	if (!svm->sev_es.received_first_sipi) {
3045 		svm->sev_es.received_first_sipi = true;
3046 		return;
3047 	}
3048 
3049 	/*
3050 	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3051 	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3052 	 * non-zero value.
3053 	 */
3054 	if (!svm->sev_es.ghcb)
3055 		return;
3056 
3057 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3058 }
3059