xref: /openbmc/linux/arch/x86/kvm/svm/sev.c (revision 8aaaf2f3af2ae212428f4db1af34214225f5cec3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/misc_cgroup.h>
18 #include <linux/processor.h>
19 #include <linux/trace_events.h>
20 
21 #include <asm/pkru.h>
22 #include <asm/trapnr.h>
23 #include <asm/fpu/xcr.h>
24 
25 #include "x86.h"
26 #include "svm.h"
27 #include "svm_ops.h"
28 #include "cpuid.h"
29 #include "trace.h"
30 
31 #ifndef CONFIG_KVM_AMD_SEV
32 /*
33  * When this config is not defined, SEV feature is not supported and APIs in
34  * this file are not used but this file still gets compiled into the KVM AMD
35  * module.
36  *
37  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
38  * misc_res_type {} defined in linux/misc_cgroup.h.
39  *
40  * Below macros allow compilation to succeed.
41  */
42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
44 #endif
45 
46 #ifdef CONFIG_KVM_AMD_SEV
47 /* enable/disable SEV support */
48 static bool sev_enabled = true;
49 module_param_named(sev, sev_enabled, bool, 0444);
50 
51 /* enable/disable SEV-ES support */
52 static bool sev_es_enabled = true;
53 module_param_named(sev_es, sev_es_enabled, bool, 0444);
54 #else
55 #define sev_enabled false
56 #define sev_es_enabled false
57 #endif /* CONFIG_KVM_AMD_SEV */
58 
59 static u8 sev_enc_bit;
60 static DECLARE_RWSEM(sev_deactivate_lock);
61 static DEFINE_MUTEX(sev_bitmap_lock);
62 unsigned int max_sev_asid;
63 static unsigned int min_sev_asid;
64 static unsigned long sev_me_mask;
65 static unsigned int nr_asids;
66 static unsigned long *sev_asid_bitmap;
67 static unsigned long *sev_reclaim_asid_bitmap;
68 
69 struct enc_region {
70 	struct list_head list;
71 	unsigned long npages;
72 	struct page **pages;
73 	unsigned long uaddr;
74 	unsigned long size;
75 };
76 
77 /* Called with the sev_bitmap_lock held, or on shutdown  */
78 static int sev_flush_asids(int min_asid, int max_asid)
79 {
80 	int ret, asid, error = 0;
81 
82 	/* Check if there are any ASIDs to reclaim before performing a flush */
83 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
84 	if (asid > max_asid)
85 		return -EBUSY;
86 
87 	/*
88 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
89 	 * so it must be guarded.
90 	 */
91 	down_write(&sev_deactivate_lock);
92 
93 	wbinvd_on_all_cpus();
94 	ret = sev_guest_df_flush(&error);
95 
96 	up_write(&sev_deactivate_lock);
97 
98 	if (ret)
99 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
100 
101 	return ret;
102 }
103 
104 static inline bool is_mirroring_enc_context(struct kvm *kvm)
105 {
106 	return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
107 }
108 
109 /* Must be called with the sev_bitmap_lock held */
110 static bool __sev_recycle_asids(int min_asid, int max_asid)
111 {
112 	if (sev_flush_asids(min_asid, max_asid))
113 		return false;
114 
115 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
116 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
117 		   nr_asids);
118 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
119 
120 	return true;
121 }
122 
123 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
124 {
125 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
126 	return misc_cg_try_charge(type, sev->misc_cg, 1);
127 }
128 
129 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
130 {
131 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
132 	misc_cg_uncharge(type, sev->misc_cg, 1);
133 }
134 
135 static int sev_asid_new(struct kvm_sev_info *sev)
136 {
137 	int asid, min_asid, max_asid, ret;
138 	bool retry = true;
139 
140 	WARN_ON(sev->misc_cg);
141 	sev->misc_cg = get_current_misc_cg();
142 	ret = sev_misc_cg_try_charge(sev);
143 	if (ret) {
144 		put_misc_cg(sev->misc_cg);
145 		sev->misc_cg = NULL;
146 		return ret;
147 	}
148 
149 	mutex_lock(&sev_bitmap_lock);
150 
151 	/*
152 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
153 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
154 	 */
155 	min_asid = sev->es_active ? 1 : min_sev_asid;
156 	max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
157 again:
158 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
159 	if (asid > max_asid) {
160 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
161 			retry = false;
162 			goto again;
163 		}
164 		mutex_unlock(&sev_bitmap_lock);
165 		ret = -EBUSY;
166 		goto e_uncharge;
167 	}
168 
169 	__set_bit(asid, sev_asid_bitmap);
170 
171 	mutex_unlock(&sev_bitmap_lock);
172 
173 	return asid;
174 e_uncharge:
175 	sev_misc_cg_uncharge(sev);
176 	put_misc_cg(sev->misc_cg);
177 	sev->misc_cg = NULL;
178 	return ret;
179 }
180 
181 static int sev_get_asid(struct kvm *kvm)
182 {
183 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
184 
185 	return sev->asid;
186 }
187 
188 static void sev_asid_free(struct kvm_sev_info *sev)
189 {
190 	struct svm_cpu_data *sd;
191 	int cpu;
192 
193 	mutex_lock(&sev_bitmap_lock);
194 
195 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
196 
197 	for_each_possible_cpu(cpu) {
198 		sd = per_cpu(svm_data, cpu);
199 		sd->sev_vmcbs[sev->asid] = NULL;
200 	}
201 
202 	mutex_unlock(&sev_bitmap_lock);
203 
204 	sev_misc_cg_uncharge(sev);
205 	put_misc_cg(sev->misc_cg);
206 	sev->misc_cg = NULL;
207 }
208 
209 static void sev_decommission(unsigned int handle)
210 {
211 	struct sev_data_decommission decommission;
212 
213 	if (!handle)
214 		return;
215 
216 	decommission.handle = handle;
217 	sev_guest_decommission(&decommission, NULL);
218 }
219 
220 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
221 {
222 	struct sev_data_deactivate deactivate;
223 
224 	if (!handle)
225 		return;
226 
227 	deactivate.handle = handle;
228 
229 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
230 	down_read(&sev_deactivate_lock);
231 	sev_guest_deactivate(&deactivate, NULL);
232 	up_read(&sev_deactivate_lock);
233 
234 	sev_decommission(handle);
235 }
236 
237 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
238 {
239 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
240 	int asid, ret;
241 
242 	if (kvm->created_vcpus)
243 		return -EINVAL;
244 
245 	ret = -EBUSY;
246 	if (unlikely(sev->active))
247 		return ret;
248 
249 	sev->active = true;
250 	sev->es_active = argp->id == KVM_SEV_ES_INIT;
251 	asid = sev_asid_new(sev);
252 	if (asid < 0)
253 		goto e_no_asid;
254 	sev->asid = asid;
255 
256 	ret = sev_platform_init(&argp->error);
257 	if (ret)
258 		goto e_free;
259 
260 	INIT_LIST_HEAD(&sev->regions_list);
261 
262 	return 0;
263 
264 e_free:
265 	sev_asid_free(sev);
266 	sev->asid = 0;
267 e_no_asid:
268 	sev->es_active = false;
269 	sev->active = false;
270 	return ret;
271 }
272 
273 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
274 {
275 	struct sev_data_activate activate;
276 	int asid = sev_get_asid(kvm);
277 	int ret;
278 
279 	/* activate ASID on the given handle */
280 	activate.handle = handle;
281 	activate.asid   = asid;
282 	ret = sev_guest_activate(&activate, error);
283 
284 	return ret;
285 }
286 
287 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
288 {
289 	struct fd f;
290 	int ret;
291 
292 	f = fdget(fd);
293 	if (!f.file)
294 		return -EBADF;
295 
296 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
297 
298 	fdput(f);
299 	return ret;
300 }
301 
302 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
303 {
304 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
305 
306 	return __sev_issue_cmd(sev->fd, id, data, error);
307 }
308 
309 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
310 {
311 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
312 	struct sev_data_launch_start start;
313 	struct kvm_sev_launch_start params;
314 	void *dh_blob, *session_blob;
315 	int *error = &argp->error;
316 	int ret;
317 
318 	if (!sev_guest(kvm))
319 		return -ENOTTY;
320 
321 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
322 		return -EFAULT;
323 
324 	memset(&start, 0, sizeof(start));
325 
326 	dh_blob = NULL;
327 	if (params.dh_uaddr) {
328 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
329 		if (IS_ERR(dh_blob))
330 			return PTR_ERR(dh_blob);
331 
332 		start.dh_cert_address = __sme_set(__pa(dh_blob));
333 		start.dh_cert_len = params.dh_len;
334 	}
335 
336 	session_blob = NULL;
337 	if (params.session_uaddr) {
338 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
339 		if (IS_ERR(session_blob)) {
340 			ret = PTR_ERR(session_blob);
341 			goto e_free_dh;
342 		}
343 
344 		start.session_address = __sme_set(__pa(session_blob));
345 		start.session_len = params.session_len;
346 	}
347 
348 	start.handle = params.handle;
349 	start.policy = params.policy;
350 
351 	/* create memory encryption context */
352 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
353 	if (ret)
354 		goto e_free_session;
355 
356 	/* Bind ASID to this guest */
357 	ret = sev_bind_asid(kvm, start.handle, error);
358 	if (ret) {
359 		sev_decommission(start.handle);
360 		goto e_free_session;
361 	}
362 
363 	/* return handle to userspace */
364 	params.handle = start.handle;
365 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
366 		sev_unbind_asid(kvm, start.handle);
367 		ret = -EFAULT;
368 		goto e_free_session;
369 	}
370 
371 	sev->handle = start.handle;
372 	sev->fd = argp->sev_fd;
373 
374 e_free_session:
375 	kfree(session_blob);
376 e_free_dh:
377 	kfree(dh_blob);
378 	return ret;
379 }
380 
381 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
382 				    unsigned long ulen, unsigned long *n,
383 				    int write)
384 {
385 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
386 	unsigned long npages, size;
387 	int npinned;
388 	unsigned long locked, lock_limit;
389 	struct page **pages;
390 	unsigned long first, last;
391 	int ret;
392 
393 	lockdep_assert_held(&kvm->lock);
394 
395 	if (ulen == 0 || uaddr + ulen < uaddr)
396 		return ERR_PTR(-EINVAL);
397 
398 	/* Calculate number of pages. */
399 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
400 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
401 	npages = (last - first + 1);
402 
403 	locked = sev->pages_locked + npages;
404 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
405 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
406 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
407 		return ERR_PTR(-ENOMEM);
408 	}
409 
410 	if (WARN_ON_ONCE(npages > INT_MAX))
411 		return ERR_PTR(-EINVAL);
412 
413 	/* Avoid using vmalloc for smaller buffers. */
414 	size = npages * sizeof(struct page *);
415 	if (size > PAGE_SIZE)
416 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
417 	else
418 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
419 
420 	if (!pages)
421 		return ERR_PTR(-ENOMEM);
422 
423 	/* Pin the user virtual address. */
424 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
425 	if (npinned != npages) {
426 		pr_err("SEV: Failure locking %lu pages.\n", npages);
427 		ret = -ENOMEM;
428 		goto err;
429 	}
430 
431 	*n = npages;
432 	sev->pages_locked = locked;
433 
434 	return pages;
435 
436 err:
437 	if (npinned > 0)
438 		unpin_user_pages(pages, npinned);
439 
440 	kvfree(pages);
441 	return ERR_PTR(ret);
442 }
443 
444 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
445 			     unsigned long npages)
446 {
447 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
448 
449 	unpin_user_pages(pages, npages);
450 	kvfree(pages);
451 	sev->pages_locked -= npages;
452 }
453 
454 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
455 {
456 	uint8_t *page_virtual;
457 	unsigned long i;
458 
459 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
460 	    pages == NULL)
461 		return;
462 
463 	for (i = 0; i < npages; i++) {
464 		page_virtual = kmap_atomic(pages[i]);
465 		clflush_cache_range(page_virtual, PAGE_SIZE);
466 		kunmap_atomic(page_virtual);
467 	}
468 }
469 
470 static unsigned long get_num_contig_pages(unsigned long idx,
471 				struct page **inpages, unsigned long npages)
472 {
473 	unsigned long paddr, next_paddr;
474 	unsigned long i = idx + 1, pages = 1;
475 
476 	/* find the number of contiguous pages starting from idx */
477 	paddr = __sme_page_pa(inpages[idx]);
478 	while (i < npages) {
479 		next_paddr = __sme_page_pa(inpages[i++]);
480 		if ((paddr + PAGE_SIZE) == next_paddr) {
481 			pages++;
482 			paddr = next_paddr;
483 			continue;
484 		}
485 		break;
486 	}
487 
488 	return pages;
489 }
490 
491 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
492 {
493 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
494 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
495 	struct kvm_sev_launch_update_data params;
496 	struct sev_data_launch_update_data data;
497 	struct page **inpages;
498 	int ret;
499 
500 	if (!sev_guest(kvm))
501 		return -ENOTTY;
502 
503 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
504 		return -EFAULT;
505 
506 	vaddr = params.uaddr;
507 	size = params.len;
508 	vaddr_end = vaddr + size;
509 
510 	/* Lock the user memory. */
511 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
512 	if (IS_ERR(inpages))
513 		return PTR_ERR(inpages);
514 
515 	/*
516 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
517 	 * place; the cache may contain the data that was written unencrypted.
518 	 */
519 	sev_clflush_pages(inpages, npages);
520 
521 	data.reserved = 0;
522 	data.handle = sev->handle;
523 
524 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
525 		int offset, len;
526 
527 		/*
528 		 * If the user buffer is not page-aligned, calculate the offset
529 		 * within the page.
530 		 */
531 		offset = vaddr & (PAGE_SIZE - 1);
532 
533 		/* Calculate the number of pages that can be encrypted in one go. */
534 		pages = get_num_contig_pages(i, inpages, npages);
535 
536 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
537 
538 		data.len = len;
539 		data.address = __sme_page_pa(inpages[i]) + offset;
540 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
541 		if (ret)
542 			goto e_unpin;
543 
544 		size -= len;
545 		next_vaddr = vaddr + len;
546 	}
547 
548 e_unpin:
549 	/* content of memory is updated, mark pages dirty */
550 	for (i = 0; i < npages; i++) {
551 		set_page_dirty_lock(inpages[i]);
552 		mark_page_accessed(inpages[i]);
553 	}
554 	/* unlock the user pages */
555 	sev_unpin_memory(kvm, inpages, npages);
556 	return ret;
557 }
558 
559 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
560 {
561 	struct vmcb_save_area *save = &svm->vmcb->save;
562 
563 	/* Check some debug related fields before encrypting the VMSA */
564 	if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
565 		return -EINVAL;
566 
567 	/* Sync registgers */
568 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
569 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
570 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
571 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
572 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
573 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
574 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
575 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
576 #ifdef CONFIG_X86_64
577 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
578 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
579 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
580 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
581 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
582 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
583 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
584 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
585 #endif
586 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
587 
588 	/* Sync some non-GPR registers before encrypting */
589 	save->xcr0 = svm->vcpu.arch.xcr0;
590 	save->pkru = svm->vcpu.arch.pkru;
591 	save->xss  = svm->vcpu.arch.ia32_xss;
592 	save->dr6  = svm->vcpu.arch.dr6;
593 
594 	/*
595 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
596 	 * the traditional VMSA that is part of the VMCB. Copy the
597 	 * traditional VMSA as it has been built so far (in prep
598 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
599 	 */
600 	memcpy(svm->sev_es.vmsa, save, sizeof(*save));
601 
602 	return 0;
603 }
604 
605 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
606 				    int *error)
607 {
608 	struct sev_data_launch_update_vmsa vmsa;
609 	struct vcpu_svm *svm = to_svm(vcpu);
610 	int ret;
611 
612 	/* Perform some pre-encryption checks against the VMSA */
613 	ret = sev_es_sync_vmsa(svm);
614 	if (ret)
615 		return ret;
616 
617 	/*
618 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
619 	 * the VMSA memory content (i.e it will write the same memory region
620 	 * with the guest's key), so invalidate it first.
621 	 */
622 	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
623 
624 	vmsa.reserved = 0;
625 	vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
626 	vmsa.address = __sme_pa(svm->sev_es.vmsa);
627 	vmsa.len = PAGE_SIZE;
628 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
629 	if (ret)
630 	  return ret;
631 
632 	vcpu->arch.guest_state_protected = true;
633 	return 0;
634 }
635 
636 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
637 {
638 	struct kvm_vcpu *vcpu;
639 	int i, ret;
640 
641 	if (!sev_es_guest(kvm))
642 		return -ENOTTY;
643 
644 	kvm_for_each_vcpu(i, vcpu, kvm) {
645 		ret = mutex_lock_killable(&vcpu->mutex);
646 		if (ret)
647 			return ret;
648 
649 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
650 
651 		mutex_unlock(&vcpu->mutex);
652 		if (ret)
653 			return ret;
654 	}
655 
656 	return 0;
657 }
658 
659 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
660 {
661 	void __user *measure = (void __user *)(uintptr_t)argp->data;
662 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
663 	struct sev_data_launch_measure data;
664 	struct kvm_sev_launch_measure params;
665 	void __user *p = NULL;
666 	void *blob = NULL;
667 	int ret;
668 
669 	if (!sev_guest(kvm))
670 		return -ENOTTY;
671 
672 	if (copy_from_user(&params, measure, sizeof(params)))
673 		return -EFAULT;
674 
675 	memset(&data, 0, sizeof(data));
676 
677 	/* User wants to query the blob length */
678 	if (!params.len)
679 		goto cmd;
680 
681 	p = (void __user *)(uintptr_t)params.uaddr;
682 	if (p) {
683 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
684 			return -EINVAL;
685 
686 		blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
687 		if (!blob)
688 			return -ENOMEM;
689 
690 		data.address = __psp_pa(blob);
691 		data.len = params.len;
692 	}
693 
694 cmd:
695 	data.handle = sev->handle;
696 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
697 
698 	/*
699 	 * If we query the session length, FW responded with expected data.
700 	 */
701 	if (!params.len)
702 		goto done;
703 
704 	if (ret)
705 		goto e_free_blob;
706 
707 	if (blob) {
708 		if (copy_to_user(p, blob, params.len))
709 			ret = -EFAULT;
710 	}
711 
712 done:
713 	params.len = data.len;
714 	if (copy_to_user(measure, &params, sizeof(params)))
715 		ret = -EFAULT;
716 e_free_blob:
717 	kfree(blob);
718 	return ret;
719 }
720 
721 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
722 {
723 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
724 	struct sev_data_launch_finish data;
725 
726 	if (!sev_guest(kvm))
727 		return -ENOTTY;
728 
729 	data.handle = sev->handle;
730 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
731 }
732 
733 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
734 {
735 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
736 	struct kvm_sev_guest_status params;
737 	struct sev_data_guest_status data;
738 	int ret;
739 
740 	if (!sev_guest(kvm))
741 		return -ENOTTY;
742 
743 	memset(&data, 0, sizeof(data));
744 
745 	data.handle = sev->handle;
746 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
747 	if (ret)
748 		return ret;
749 
750 	params.policy = data.policy;
751 	params.state = data.state;
752 	params.handle = data.handle;
753 
754 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
755 		ret = -EFAULT;
756 
757 	return ret;
758 }
759 
760 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
761 			       unsigned long dst, int size,
762 			       int *error, bool enc)
763 {
764 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
765 	struct sev_data_dbg data;
766 
767 	data.reserved = 0;
768 	data.handle = sev->handle;
769 	data.dst_addr = dst;
770 	data.src_addr = src;
771 	data.len = size;
772 
773 	return sev_issue_cmd(kvm,
774 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
775 			     &data, error);
776 }
777 
778 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
779 			     unsigned long dst_paddr, int sz, int *err)
780 {
781 	int offset;
782 
783 	/*
784 	 * Its safe to read more than we are asked, caller should ensure that
785 	 * destination has enough space.
786 	 */
787 	offset = src_paddr & 15;
788 	src_paddr = round_down(src_paddr, 16);
789 	sz = round_up(sz + offset, 16);
790 
791 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
792 }
793 
794 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
795 				  void __user *dst_uaddr,
796 				  unsigned long dst_paddr,
797 				  int size, int *err)
798 {
799 	struct page *tpage = NULL;
800 	int ret, offset;
801 
802 	/* if inputs are not 16-byte then use intermediate buffer */
803 	if (!IS_ALIGNED(dst_paddr, 16) ||
804 	    !IS_ALIGNED(paddr,     16) ||
805 	    !IS_ALIGNED(size,      16)) {
806 		tpage = (void *)alloc_page(GFP_KERNEL);
807 		if (!tpage)
808 			return -ENOMEM;
809 
810 		dst_paddr = __sme_page_pa(tpage);
811 	}
812 
813 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
814 	if (ret)
815 		goto e_free;
816 
817 	if (tpage) {
818 		offset = paddr & 15;
819 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
820 			ret = -EFAULT;
821 	}
822 
823 e_free:
824 	if (tpage)
825 		__free_page(tpage);
826 
827 	return ret;
828 }
829 
830 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
831 				  void __user *vaddr,
832 				  unsigned long dst_paddr,
833 				  void __user *dst_vaddr,
834 				  int size, int *error)
835 {
836 	struct page *src_tpage = NULL;
837 	struct page *dst_tpage = NULL;
838 	int ret, len = size;
839 
840 	/* If source buffer is not aligned then use an intermediate buffer */
841 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
842 		src_tpage = alloc_page(GFP_KERNEL);
843 		if (!src_tpage)
844 			return -ENOMEM;
845 
846 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
847 			__free_page(src_tpage);
848 			return -EFAULT;
849 		}
850 
851 		paddr = __sme_page_pa(src_tpage);
852 	}
853 
854 	/*
855 	 *  If destination buffer or length is not aligned then do read-modify-write:
856 	 *   - decrypt destination in an intermediate buffer
857 	 *   - copy the source buffer in an intermediate buffer
858 	 *   - use the intermediate buffer as source buffer
859 	 */
860 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
861 		int dst_offset;
862 
863 		dst_tpage = alloc_page(GFP_KERNEL);
864 		if (!dst_tpage) {
865 			ret = -ENOMEM;
866 			goto e_free;
867 		}
868 
869 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
870 					__sme_page_pa(dst_tpage), size, error);
871 		if (ret)
872 			goto e_free;
873 
874 		/*
875 		 *  If source is kernel buffer then use memcpy() otherwise
876 		 *  copy_from_user().
877 		 */
878 		dst_offset = dst_paddr & 15;
879 
880 		if (src_tpage)
881 			memcpy(page_address(dst_tpage) + dst_offset,
882 			       page_address(src_tpage), size);
883 		else {
884 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
885 					   vaddr, size)) {
886 				ret = -EFAULT;
887 				goto e_free;
888 			}
889 		}
890 
891 		paddr = __sme_page_pa(dst_tpage);
892 		dst_paddr = round_down(dst_paddr, 16);
893 		len = round_up(size, 16);
894 	}
895 
896 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
897 
898 e_free:
899 	if (src_tpage)
900 		__free_page(src_tpage);
901 	if (dst_tpage)
902 		__free_page(dst_tpage);
903 	return ret;
904 }
905 
906 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
907 {
908 	unsigned long vaddr, vaddr_end, next_vaddr;
909 	unsigned long dst_vaddr;
910 	struct page **src_p, **dst_p;
911 	struct kvm_sev_dbg debug;
912 	unsigned long n;
913 	unsigned int size;
914 	int ret;
915 
916 	if (!sev_guest(kvm))
917 		return -ENOTTY;
918 
919 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
920 		return -EFAULT;
921 
922 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
923 		return -EINVAL;
924 	if (!debug.dst_uaddr)
925 		return -EINVAL;
926 
927 	vaddr = debug.src_uaddr;
928 	size = debug.len;
929 	vaddr_end = vaddr + size;
930 	dst_vaddr = debug.dst_uaddr;
931 
932 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
933 		int len, s_off, d_off;
934 
935 		/* lock userspace source and destination page */
936 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
937 		if (IS_ERR(src_p))
938 			return PTR_ERR(src_p);
939 
940 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
941 		if (IS_ERR(dst_p)) {
942 			sev_unpin_memory(kvm, src_p, n);
943 			return PTR_ERR(dst_p);
944 		}
945 
946 		/*
947 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
948 		 * the pages; flush the destination too so that future accesses do not
949 		 * see stale data.
950 		 */
951 		sev_clflush_pages(src_p, 1);
952 		sev_clflush_pages(dst_p, 1);
953 
954 		/*
955 		 * Since user buffer may not be page aligned, calculate the
956 		 * offset within the page.
957 		 */
958 		s_off = vaddr & ~PAGE_MASK;
959 		d_off = dst_vaddr & ~PAGE_MASK;
960 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
961 
962 		if (dec)
963 			ret = __sev_dbg_decrypt_user(kvm,
964 						     __sme_page_pa(src_p[0]) + s_off,
965 						     (void __user *)dst_vaddr,
966 						     __sme_page_pa(dst_p[0]) + d_off,
967 						     len, &argp->error);
968 		else
969 			ret = __sev_dbg_encrypt_user(kvm,
970 						     __sme_page_pa(src_p[0]) + s_off,
971 						     (void __user *)vaddr,
972 						     __sme_page_pa(dst_p[0]) + d_off,
973 						     (void __user *)dst_vaddr,
974 						     len, &argp->error);
975 
976 		sev_unpin_memory(kvm, src_p, n);
977 		sev_unpin_memory(kvm, dst_p, n);
978 
979 		if (ret)
980 			goto err;
981 
982 		next_vaddr = vaddr + len;
983 		dst_vaddr = dst_vaddr + len;
984 		size -= len;
985 	}
986 err:
987 	return ret;
988 }
989 
990 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
991 {
992 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
993 	struct sev_data_launch_secret data;
994 	struct kvm_sev_launch_secret params;
995 	struct page **pages;
996 	void *blob, *hdr;
997 	unsigned long n, i;
998 	int ret, offset;
999 
1000 	if (!sev_guest(kvm))
1001 		return -ENOTTY;
1002 
1003 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1004 		return -EFAULT;
1005 
1006 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1007 	if (IS_ERR(pages))
1008 		return PTR_ERR(pages);
1009 
1010 	/*
1011 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1012 	 * place; the cache may contain the data that was written unencrypted.
1013 	 */
1014 	sev_clflush_pages(pages, n);
1015 
1016 	/*
1017 	 * The secret must be copied into contiguous memory region, lets verify
1018 	 * that userspace memory pages are contiguous before we issue command.
1019 	 */
1020 	if (get_num_contig_pages(0, pages, n) != n) {
1021 		ret = -EINVAL;
1022 		goto e_unpin_memory;
1023 	}
1024 
1025 	memset(&data, 0, sizeof(data));
1026 
1027 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1028 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1029 	data.guest_len = params.guest_len;
1030 
1031 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1032 	if (IS_ERR(blob)) {
1033 		ret = PTR_ERR(blob);
1034 		goto e_unpin_memory;
1035 	}
1036 
1037 	data.trans_address = __psp_pa(blob);
1038 	data.trans_len = params.trans_len;
1039 
1040 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1041 	if (IS_ERR(hdr)) {
1042 		ret = PTR_ERR(hdr);
1043 		goto e_free_blob;
1044 	}
1045 	data.hdr_address = __psp_pa(hdr);
1046 	data.hdr_len = params.hdr_len;
1047 
1048 	data.handle = sev->handle;
1049 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1050 
1051 	kfree(hdr);
1052 
1053 e_free_blob:
1054 	kfree(blob);
1055 e_unpin_memory:
1056 	/* content of memory is updated, mark pages dirty */
1057 	for (i = 0; i < n; i++) {
1058 		set_page_dirty_lock(pages[i]);
1059 		mark_page_accessed(pages[i]);
1060 	}
1061 	sev_unpin_memory(kvm, pages, n);
1062 	return ret;
1063 }
1064 
1065 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1066 {
1067 	void __user *report = (void __user *)(uintptr_t)argp->data;
1068 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1069 	struct sev_data_attestation_report data;
1070 	struct kvm_sev_attestation_report params;
1071 	void __user *p;
1072 	void *blob = NULL;
1073 	int ret;
1074 
1075 	if (!sev_guest(kvm))
1076 		return -ENOTTY;
1077 
1078 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1079 		return -EFAULT;
1080 
1081 	memset(&data, 0, sizeof(data));
1082 
1083 	/* User wants to query the blob length */
1084 	if (!params.len)
1085 		goto cmd;
1086 
1087 	p = (void __user *)(uintptr_t)params.uaddr;
1088 	if (p) {
1089 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1090 			return -EINVAL;
1091 
1092 		blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
1093 		if (!blob)
1094 			return -ENOMEM;
1095 
1096 		data.address = __psp_pa(blob);
1097 		data.len = params.len;
1098 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1099 	}
1100 cmd:
1101 	data.handle = sev->handle;
1102 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1103 	/*
1104 	 * If we query the session length, FW responded with expected data.
1105 	 */
1106 	if (!params.len)
1107 		goto done;
1108 
1109 	if (ret)
1110 		goto e_free_blob;
1111 
1112 	if (blob) {
1113 		if (copy_to_user(p, blob, params.len))
1114 			ret = -EFAULT;
1115 	}
1116 
1117 done:
1118 	params.len = data.len;
1119 	if (copy_to_user(report, &params, sizeof(params)))
1120 		ret = -EFAULT;
1121 e_free_blob:
1122 	kfree(blob);
1123 	return ret;
1124 }
1125 
1126 /* Userspace wants to query session length. */
1127 static int
1128 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1129 				      struct kvm_sev_send_start *params)
1130 {
1131 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1132 	struct sev_data_send_start data;
1133 	int ret;
1134 
1135 	memset(&data, 0, sizeof(data));
1136 	data.handle = sev->handle;
1137 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1138 
1139 	params->session_len = data.session_len;
1140 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1141 				sizeof(struct kvm_sev_send_start)))
1142 		ret = -EFAULT;
1143 
1144 	return ret;
1145 }
1146 
1147 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1148 {
1149 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1150 	struct sev_data_send_start data;
1151 	struct kvm_sev_send_start params;
1152 	void *amd_certs, *session_data;
1153 	void *pdh_cert, *plat_certs;
1154 	int ret;
1155 
1156 	if (!sev_guest(kvm))
1157 		return -ENOTTY;
1158 
1159 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1160 				sizeof(struct kvm_sev_send_start)))
1161 		return -EFAULT;
1162 
1163 	/* if session_len is zero, userspace wants to query the session length */
1164 	if (!params.session_len)
1165 		return __sev_send_start_query_session_length(kvm, argp,
1166 				&params);
1167 
1168 	/* some sanity checks */
1169 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1170 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1171 		return -EINVAL;
1172 
1173 	/* allocate the memory to hold the session data blob */
1174 	session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1175 	if (!session_data)
1176 		return -ENOMEM;
1177 
1178 	/* copy the certificate blobs from userspace */
1179 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1180 				params.pdh_cert_len);
1181 	if (IS_ERR(pdh_cert)) {
1182 		ret = PTR_ERR(pdh_cert);
1183 		goto e_free_session;
1184 	}
1185 
1186 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1187 				params.plat_certs_len);
1188 	if (IS_ERR(plat_certs)) {
1189 		ret = PTR_ERR(plat_certs);
1190 		goto e_free_pdh;
1191 	}
1192 
1193 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1194 				params.amd_certs_len);
1195 	if (IS_ERR(amd_certs)) {
1196 		ret = PTR_ERR(amd_certs);
1197 		goto e_free_plat_cert;
1198 	}
1199 
1200 	/* populate the FW SEND_START field with system physical address */
1201 	memset(&data, 0, sizeof(data));
1202 	data.pdh_cert_address = __psp_pa(pdh_cert);
1203 	data.pdh_cert_len = params.pdh_cert_len;
1204 	data.plat_certs_address = __psp_pa(plat_certs);
1205 	data.plat_certs_len = params.plat_certs_len;
1206 	data.amd_certs_address = __psp_pa(amd_certs);
1207 	data.amd_certs_len = params.amd_certs_len;
1208 	data.session_address = __psp_pa(session_data);
1209 	data.session_len = params.session_len;
1210 	data.handle = sev->handle;
1211 
1212 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1213 
1214 	if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1215 			session_data, params.session_len)) {
1216 		ret = -EFAULT;
1217 		goto e_free_amd_cert;
1218 	}
1219 
1220 	params.policy = data.policy;
1221 	params.session_len = data.session_len;
1222 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1223 				sizeof(struct kvm_sev_send_start)))
1224 		ret = -EFAULT;
1225 
1226 e_free_amd_cert:
1227 	kfree(amd_certs);
1228 e_free_plat_cert:
1229 	kfree(plat_certs);
1230 e_free_pdh:
1231 	kfree(pdh_cert);
1232 e_free_session:
1233 	kfree(session_data);
1234 	return ret;
1235 }
1236 
1237 /* Userspace wants to query either header or trans length. */
1238 static int
1239 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1240 				     struct kvm_sev_send_update_data *params)
1241 {
1242 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1243 	struct sev_data_send_update_data data;
1244 	int ret;
1245 
1246 	memset(&data, 0, sizeof(data));
1247 	data.handle = sev->handle;
1248 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1249 
1250 	params->hdr_len = data.hdr_len;
1251 	params->trans_len = data.trans_len;
1252 
1253 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1254 			 sizeof(struct kvm_sev_send_update_data)))
1255 		ret = -EFAULT;
1256 
1257 	return ret;
1258 }
1259 
1260 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1261 {
1262 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1263 	struct sev_data_send_update_data data;
1264 	struct kvm_sev_send_update_data params;
1265 	void *hdr, *trans_data;
1266 	struct page **guest_page;
1267 	unsigned long n;
1268 	int ret, offset;
1269 
1270 	if (!sev_guest(kvm))
1271 		return -ENOTTY;
1272 
1273 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1274 			sizeof(struct kvm_sev_send_update_data)))
1275 		return -EFAULT;
1276 
1277 	/* userspace wants to query either header or trans length */
1278 	if (!params.trans_len || !params.hdr_len)
1279 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1280 
1281 	if (!params.trans_uaddr || !params.guest_uaddr ||
1282 	    !params.guest_len || !params.hdr_uaddr)
1283 		return -EINVAL;
1284 
1285 	/* Check if we are crossing the page boundary */
1286 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1287 	if ((params.guest_len + offset > PAGE_SIZE))
1288 		return -EINVAL;
1289 
1290 	/* Pin guest memory */
1291 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1292 				    PAGE_SIZE, &n, 0);
1293 	if (IS_ERR(guest_page))
1294 		return PTR_ERR(guest_page);
1295 
1296 	/* allocate memory for header and transport buffer */
1297 	ret = -ENOMEM;
1298 	hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1299 	if (!hdr)
1300 		goto e_unpin;
1301 
1302 	trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1303 	if (!trans_data)
1304 		goto e_free_hdr;
1305 
1306 	memset(&data, 0, sizeof(data));
1307 	data.hdr_address = __psp_pa(hdr);
1308 	data.hdr_len = params.hdr_len;
1309 	data.trans_address = __psp_pa(trans_data);
1310 	data.trans_len = params.trans_len;
1311 
1312 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1313 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1314 	data.guest_address |= sev_me_mask;
1315 	data.guest_len = params.guest_len;
1316 	data.handle = sev->handle;
1317 
1318 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1319 
1320 	if (ret)
1321 		goto e_free_trans_data;
1322 
1323 	/* copy transport buffer to user space */
1324 	if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1325 			 trans_data, params.trans_len)) {
1326 		ret = -EFAULT;
1327 		goto e_free_trans_data;
1328 	}
1329 
1330 	/* Copy packet header to userspace. */
1331 	if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1332 			 params.hdr_len))
1333 		ret = -EFAULT;
1334 
1335 e_free_trans_data:
1336 	kfree(trans_data);
1337 e_free_hdr:
1338 	kfree(hdr);
1339 e_unpin:
1340 	sev_unpin_memory(kvm, guest_page, n);
1341 
1342 	return ret;
1343 }
1344 
1345 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1346 {
1347 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1348 	struct sev_data_send_finish data;
1349 
1350 	if (!sev_guest(kvm))
1351 		return -ENOTTY;
1352 
1353 	data.handle = sev->handle;
1354 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1355 }
1356 
1357 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1358 {
1359 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1360 	struct sev_data_send_cancel data;
1361 
1362 	if (!sev_guest(kvm))
1363 		return -ENOTTY;
1364 
1365 	data.handle = sev->handle;
1366 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1367 }
1368 
1369 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1370 {
1371 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1372 	struct sev_data_receive_start start;
1373 	struct kvm_sev_receive_start params;
1374 	int *error = &argp->error;
1375 	void *session_data;
1376 	void *pdh_data;
1377 	int ret;
1378 
1379 	if (!sev_guest(kvm))
1380 		return -ENOTTY;
1381 
1382 	/* Get parameter from the userspace */
1383 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1384 			sizeof(struct kvm_sev_receive_start)))
1385 		return -EFAULT;
1386 
1387 	/* some sanity checks */
1388 	if (!params.pdh_uaddr || !params.pdh_len ||
1389 	    !params.session_uaddr || !params.session_len)
1390 		return -EINVAL;
1391 
1392 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1393 	if (IS_ERR(pdh_data))
1394 		return PTR_ERR(pdh_data);
1395 
1396 	session_data = psp_copy_user_blob(params.session_uaddr,
1397 			params.session_len);
1398 	if (IS_ERR(session_data)) {
1399 		ret = PTR_ERR(session_data);
1400 		goto e_free_pdh;
1401 	}
1402 
1403 	memset(&start, 0, sizeof(start));
1404 	start.handle = params.handle;
1405 	start.policy = params.policy;
1406 	start.pdh_cert_address = __psp_pa(pdh_data);
1407 	start.pdh_cert_len = params.pdh_len;
1408 	start.session_address = __psp_pa(session_data);
1409 	start.session_len = params.session_len;
1410 
1411 	/* create memory encryption context */
1412 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1413 				error);
1414 	if (ret)
1415 		goto e_free_session;
1416 
1417 	/* Bind ASID to this guest */
1418 	ret = sev_bind_asid(kvm, start.handle, error);
1419 	if (ret) {
1420 		sev_decommission(start.handle);
1421 		goto e_free_session;
1422 	}
1423 
1424 	params.handle = start.handle;
1425 	if (copy_to_user((void __user *)(uintptr_t)argp->data,
1426 			 &params, sizeof(struct kvm_sev_receive_start))) {
1427 		ret = -EFAULT;
1428 		sev_unbind_asid(kvm, start.handle);
1429 		goto e_free_session;
1430 	}
1431 
1432     	sev->handle = start.handle;
1433 	sev->fd = argp->sev_fd;
1434 
1435 e_free_session:
1436 	kfree(session_data);
1437 e_free_pdh:
1438 	kfree(pdh_data);
1439 
1440 	return ret;
1441 }
1442 
1443 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1444 {
1445 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1446 	struct kvm_sev_receive_update_data params;
1447 	struct sev_data_receive_update_data data;
1448 	void *hdr = NULL, *trans = NULL;
1449 	struct page **guest_page;
1450 	unsigned long n;
1451 	int ret, offset;
1452 
1453 	if (!sev_guest(kvm))
1454 		return -EINVAL;
1455 
1456 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1457 			sizeof(struct kvm_sev_receive_update_data)))
1458 		return -EFAULT;
1459 
1460 	if (!params.hdr_uaddr || !params.hdr_len ||
1461 	    !params.guest_uaddr || !params.guest_len ||
1462 	    !params.trans_uaddr || !params.trans_len)
1463 		return -EINVAL;
1464 
1465 	/* Check if we are crossing the page boundary */
1466 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1467 	if ((params.guest_len + offset > PAGE_SIZE))
1468 		return -EINVAL;
1469 
1470 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1471 	if (IS_ERR(hdr))
1472 		return PTR_ERR(hdr);
1473 
1474 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1475 	if (IS_ERR(trans)) {
1476 		ret = PTR_ERR(trans);
1477 		goto e_free_hdr;
1478 	}
1479 
1480 	memset(&data, 0, sizeof(data));
1481 	data.hdr_address = __psp_pa(hdr);
1482 	data.hdr_len = params.hdr_len;
1483 	data.trans_address = __psp_pa(trans);
1484 	data.trans_len = params.trans_len;
1485 
1486 	/* Pin guest memory */
1487 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1488 				    PAGE_SIZE, &n, 1);
1489 	if (IS_ERR(guest_page)) {
1490 		ret = PTR_ERR(guest_page);
1491 		goto e_free_trans;
1492 	}
1493 
1494 	/*
1495 	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1496 	 * encrypts the written data with the guest's key, and the cache may
1497 	 * contain dirty, unencrypted data.
1498 	 */
1499 	sev_clflush_pages(guest_page, n);
1500 
1501 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1502 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1503 	data.guest_address |= sev_me_mask;
1504 	data.guest_len = params.guest_len;
1505 	data.handle = sev->handle;
1506 
1507 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1508 				&argp->error);
1509 
1510 	sev_unpin_memory(kvm, guest_page, n);
1511 
1512 e_free_trans:
1513 	kfree(trans);
1514 e_free_hdr:
1515 	kfree(hdr);
1516 
1517 	return ret;
1518 }
1519 
1520 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1521 {
1522 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1523 	struct sev_data_receive_finish data;
1524 
1525 	if (!sev_guest(kvm))
1526 		return -ENOTTY;
1527 
1528 	data.handle = sev->handle;
1529 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1530 }
1531 
1532 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1533 {
1534 	/*
1535 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1536 	 * active mirror VMs. Also allow the debugging and status commands.
1537 	 */
1538 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1539 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1540 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1541 		return true;
1542 
1543 	return false;
1544 }
1545 
1546 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1547 {
1548 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1549 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1550 	int r = -EBUSY;
1551 
1552 	if (dst_kvm == src_kvm)
1553 		return -EINVAL;
1554 
1555 	/*
1556 	 * Bail if these VMs are already involved in a migration to avoid
1557 	 * deadlock between two VMs trying to migrate to/from each other.
1558 	 */
1559 	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1560 		return -EBUSY;
1561 
1562 	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1563 		goto release_dst;
1564 
1565 	r = -EINTR;
1566 	if (mutex_lock_killable(&dst_kvm->lock))
1567 		goto release_src;
1568 	if (mutex_lock_killable(&src_kvm->lock))
1569 		goto unlock_dst;
1570 	return 0;
1571 
1572 unlock_dst:
1573 	mutex_unlock(&dst_kvm->lock);
1574 release_src:
1575 	atomic_set_release(&src_sev->migration_in_progress, 0);
1576 release_dst:
1577 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1578 	return r;
1579 }
1580 
1581 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1582 {
1583 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1584 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1585 
1586 	mutex_unlock(&dst_kvm->lock);
1587 	mutex_unlock(&src_kvm->lock);
1588 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1589 	atomic_set_release(&src_sev->migration_in_progress, 0);
1590 }
1591 
1592 
1593 static int sev_lock_vcpus_for_migration(struct kvm *kvm)
1594 {
1595 	struct kvm_vcpu *vcpu;
1596 	int i, j;
1597 
1598 	kvm_for_each_vcpu(i, vcpu, kvm) {
1599 		if (mutex_lock_killable(&vcpu->mutex))
1600 			goto out_unlock;
1601 	}
1602 
1603 	return 0;
1604 
1605 out_unlock:
1606 	kvm_for_each_vcpu(j, vcpu, kvm) {
1607 		if (i == j)
1608 			break;
1609 
1610 		mutex_unlock(&vcpu->mutex);
1611 	}
1612 	return -EINTR;
1613 }
1614 
1615 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1616 {
1617 	struct kvm_vcpu *vcpu;
1618 	int i;
1619 
1620 	kvm_for_each_vcpu(i, vcpu, kvm) {
1621 		mutex_unlock(&vcpu->mutex);
1622 	}
1623 }
1624 
1625 static void sev_migrate_from(struct kvm_sev_info *dst,
1626 			      struct kvm_sev_info *src)
1627 {
1628 	dst->active = true;
1629 	dst->asid = src->asid;
1630 	dst->handle = src->handle;
1631 	dst->pages_locked = src->pages_locked;
1632 	dst->enc_context_owner = src->enc_context_owner;
1633 
1634 	src->asid = 0;
1635 	src->active = false;
1636 	src->handle = 0;
1637 	src->pages_locked = 0;
1638 	src->enc_context_owner = NULL;
1639 
1640 	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1641 }
1642 
1643 static int sev_es_migrate_from(struct kvm *dst, struct kvm *src)
1644 {
1645 	int i;
1646 	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1647 	struct vcpu_svm *dst_svm, *src_svm;
1648 
1649 	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1650 		return -EINVAL;
1651 
1652 	kvm_for_each_vcpu(i, src_vcpu, src) {
1653 		if (!src_vcpu->arch.guest_state_protected)
1654 			return -EINVAL;
1655 	}
1656 
1657 	kvm_for_each_vcpu(i, src_vcpu, src) {
1658 		src_svm = to_svm(src_vcpu);
1659 		dst_vcpu = kvm_get_vcpu(dst, i);
1660 		dst_svm = to_svm(dst_vcpu);
1661 
1662 		/*
1663 		 * Transfer VMSA and GHCB state to the destination.  Nullify and
1664 		 * clear source fields as appropriate, the state now belongs to
1665 		 * the destination.
1666 		 */
1667 		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1668 		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1669 		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1670 		dst_vcpu->arch.guest_state_protected = true;
1671 
1672 		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1673 		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1674 		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1675 		src_vcpu->arch.guest_state_protected = false;
1676 	}
1677 	to_kvm_svm(src)->sev_info.es_active = false;
1678 	to_kvm_svm(dst)->sev_info.es_active = true;
1679 
1680 	return 0;
1681 }
1682 
1683 int svm_vm_migrate_from(struct kvm *kvm, unsigned int source_fd)
1684 {
1685 	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1686 	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1687 	struct file *source_kvm_file;
1688 	struct kvm *source_kvm;
1689 	bool charged = false;
1690 	int ret;
1691 
1692 	source_kvm_file = fget(source_fd);
1693 	if (!file_is_kvm(source_kvm_file)) {
1694 		ret = -EBADF;
1695 		goto out_fput;
1696 	}
1697 
1698 	source_kvm = source_kvm_file->private_data;
1699 	ret = sev_lock_two_vms(kvm, source_kvm);
1700 	if (ret)
1701 		goto out_fput;
1702 
1703 	if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1704 		ret = -EINVAL;
1705 		goto out_unlock;
1706 	}
1707 
1708 	src_sev = &to_kvm_svm(source_kvm)->sev_info;
1709 
1710 	/*
1711 	 * VMs mirroring src's encryption context rely on it to keep the
1712 	 * ASID allocated, but below we are clearing src_sev->asid.
1713 	 */
1714 	if (src_sev->num_mirrored_vms) {
1715 		ret = -EBUSY;
1716 		goto out_unlock;
1717 	}
1718 
1719 	dst_sev->misc_cg = get_current_misc_cg();
1720 	cg_cleanup_sev = dst_sev;
1721 	if (dst_sev->misc_cg != src_sev->misc_cg) {
1722 		ret = sev_misc_cg_try_charge(dst_sev);
1723 		if (ret)
1724 			goto out_dst_cgroup;
1725 		charged = true;
1726 	}
1727 
1728 	ret = sev_lock_vcpus_for_migration(kvm);
1729 	if (ret)
1730 		goto out_dst_cgroup;
1731 	ret = sev_lock_vcpus_for_migration(source_kvm);
1732 	if (ret)
1733 		goto out_dst_vcpu;
1734 
1735 	if (sev_es_guest(source_kvm)) {
1736 		ret = sev_es_migrate_from(kvm, source_kvm);
1737 		if (ret)
1738 			goto out_source_vcpu;
1739 	}
1740 	sev_migrate_from(dst_sev, src_sev);
1741 	kvm_vm_dead(source_kvm);
1742 	cg_cleanup_sev = src_sev;
1743 	ret = 0;
1744 
1745 out_source_vcpu:
1746 	sev_unlock_vcpus_for_migration(source_kvm);
1747 out_dst_vcpu:
1748 	sev_unlock_vcpus_for_migration(kvm);
1749 out_dst_cgroup:
1750 	/* Operates on the source on success, on the destination on failure.  */
1751 	if (charged)
1752 		sev_misc_cg_uncharge(cg_cleanup_sev);
1753 	put_misc_cg(cg_cleanup_sev->misc_cg);
1754 	cg_cleanup_sev->misc_cg = NULL;
1755 out_unlock:
1756 	sev_unlock_two_vms(kvm, source_kvm);
1757 out_fput:
1758 	if (source_kvm_file)
1759 		fput(source_kvm_file);
1760 	return ret;
1761 }
1762 
1763 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1764 {
1765 	struct kvm_sev_cmd sev_cmd;
1766 	int r;
1767 
1768 	if (!sev_enabled)
1769 		return -ENOTTY;
1770 
1771 	if (!argp)
1772 		return 0;
1773 
1774 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1775 		return -EFAULT;
1776 
1777 	mutex_lock(&kvm->lock);
1778 
1779 	/* Only the enc_context_owner handles some memory enc operations. */
1780 	if (is_mirroring_enc_context(kvm) &&
1781 	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1782 		r = -EINVAL;
1783 		goto out;
1784 	}
1785 
1786 	switch (sev_cmd.id) {
1787 	case KVM_SEV_ES_INIT:
1788 		if (!sev_es_enabled) {
1789 			r = -ENOTTY;
1790 			goto out;
1791 		}
1792 		fallthrough;
1793 	case KVM_SEV_INIT:
1794 		r = sev_guest_init(kvm, &sev_cmd);
1795 		break;
1796 	case KVM_SEV_LAUNCH_START:
1797 		r = sev_launch_start(kvm, &sev_cmd);
1798 		break;
1799 	case KVM_SEV_LAUNCH_UPDATE_DATA:
1800 		r = sev_launch_update_data(kvm, &sev_cmd);
1801 		break;
1802 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
1803 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
1804 		break;
1805 	case KVM_SEV_LAUNCH_MEASURE:
1806 		r = sev_launch_measure(kvm, &sev_cmd);
1807 		break;
1808 	case KVM_SEV_LAUNCH_FINISH:
1809 		r = sev_launch_finish(kvm, &sev_cmd);
1810 		break;
1811 	case KVM_SEV_GUEST_STATUS:
1812 		r = sev_guest_status(kvm, &sev_cmd);
1813 		break;
1814 	case KVM_SEV_DBG_DECRYPT:
1815 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
1816 		break;
1817 	case KVM_SEV_DBG_ENCRYPT:
1818 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
1819 		break;
1820 	case KVM_SEV_LAUNCH_SECRET:
1821 		r = sev_launch_secret(kvm, &sev_cmd);
1822 		break;
1823 	case KVM_SEV_GET_ATTESTATION_REPORT:
1824 		r = sev_get_attestation_report(kvm, &sev_cmd);
1825 		break;
1826 	case KVM_SEV_SEND_START:
1827 		r = sev_send_start(kvm, &sev_cmd);
1828 		break;
1829 	case KVM_SEV_SEND_UPDATE_DATA:
1830 		r = sev_send_update_data(kvm, &sev_cmd);
1831 		break;
1832 	case KVM_SEV_SEND_FINISH:
1833 		r = sev_send_finish(kvm, &sev_cmd);
1834 		break;
1835 	case KVM_SEV_SEND_CANCEL:
1836 		r = sev_send_cancel(kvm, &sev_cmd);
1837 		break;
1838 	case KVM_SEV_RECEIVE_START:
1839 		r = sev_receive_start(kvm, &sev_cmd);
1840 		break;
1841 	case KVM_SEV_RECEIVE_UPDATE_DATA:
1842 		r = sev_receive_update_data(kvm, &sev_cmd);
1843 		break;
1844 	case KVM_SEV_RECEIVE_FINISH:
1845 		r = sev_receive_finish(kvm, &sev_cmd);
1846 		break;
1847 	default:
1848 		r = -EINVAL;
1849 		goto out;
1850 	}
1851 
1852 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1853 		r = -EFAULT;
1854 
1855 out:
1856 	mutex_unlock(&kvm->lock);
1857 	return r;
1858 }
1859 
1860 int svm_register_enc_region(struct kvm *kvm,
1861 			    struct kvm_enc_region *range)
1862 {
1863 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1864 	struct enc_region *region;
1865 	int ret = 0;
1866 
1867 	if (!sev_guest(kvm))
1868 		return -ENOTTY;
1869 
1870 	/* If kvm is mirroring encryption context it isn't responsible for it */
1871 	if (is_mirroring_enc_context(kvm))
1872 		return -EINVAL;
1873 
1874 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1875 		return -EINVAL;
1876 
1877 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1878 	if (!region)
1879 		return -ENOMEM;
1880 
1881 	mutex_lock(&kvm->lock);
1882 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1883 	if (IS_ERR(region->pages)) {
1884 		ret = PTR_ERR(region->pages);
1885 		mutex_unlock(&kvm->lock);
1886 		goto e_free;
1887 	}
1888 
1889 	region->uaddr = range->addr;
1890 	region->size = range->size;
1891 
1892 	list_add_tail(&region->list, &sev->regions_list);
1893 	mutex_unlock(&kvm->lock);
1894 
1895 	/*
1896 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1897 	 * or vice versa for this memory range. Lets make sure caches are
1898 	 * flushed to ensure that guest data gets written into memory with
1899 	 * correct C-bit.
1900 	 */
1901 	sev_clflush_pages(region->pages, region->npages);
1902 
1903 	return ret;
1904 
1905 e_free:
1906 	kfree(region);
1907 	return ret;
1908 }
1909 
1910 static struct enc_region *
1911 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1912 {
1913 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1914 	struct list_head *head = &sev->regions_list;
1915 	struct enc_region *i;
1916 
1917 	list_for_each_entry(i, head, list) {
1918 		if (i->uaddr == range->addr &&
1919 		    i->size == range->size)
1920 			return i;
1921 	}
1922 
1923 	return NULL;
1924 }
1925 
1926 static void __unregister_enc_region_locked(struct kvm *kvm,
1927 					   struct enc_region *region)
1928 {
1929 	sev_unpin_memory(kvm, region->pages, region->npages);
1930 	list_del(&region->list);
1931 	kfree(region);
1932 }
1933 
1934 int svm_unregister_enc_region(struct kvm *kvm,
1935 			      struct kvm_enc_region *range)
1936 {
1937 	struct enc_region *region;
1938 	int ret;
1939 
1940 	/* If kvm is mirroring encryption context it isn't responsible for it */
1941 	if (is_mirroring_enc_context(kvm))
1942 		return -EINVAL;
1943 
1944 	mutex_lock(&kvm->lock);
1945 
1946 	if (!sev_guest(kvm)) {
1947 		ret = -ENOTTY;
1948 		goto failed;
1949 	}
1950 
1951 	region = find_enc_region(kvm, range);
1952 	if (!region) {
1953 		ret = -EINVAL;
1954 		goto failed;
1955 	}
1956 
1957 	/*
1958 	 * Ensure that all guest tagged cache entries are flushed before
1959 	 * releasing the pages back to the system for use. CLFLUSH will
1960 	 * not do this, so issue a WBINVD.
1961 	 */
1962 	wbinvd_on_all_cpus();
1963 
1964 	__unregister_enc_region_locked(kvm, region);
1965 
1966 	mutex_unlock(&kvm->lock);
1967 	return 0;
1968 
1969 failed:
1970 	mutex_unlock(&kvm->lock);
1971 	return ret;
1972 }
1973 
1974 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd)
1975 {
1976 	struct file *source_kvm_file;
1977 	struct kvm *source_kvm;
1978 	struct kvm_sev_info *source_sev, *mirror_sev;
1979 	int ret;
1980 
1981 	source_kvm_file = fget(source_fd);
1982 	if (!file_is_kvm(source_kvm_file)) {
1983 		ret = -EBADF;
1984 		goto e_source_fput;
1985 	}
1986 
1987 	source_kvm = source_kvm_file->private_data;
1988 	ret = sev_lock_two_vms(kvm, source_kvm);
1989 	if (ret)
1990 		goto e_source_fput;
1991 
1992 	/*
1993 	 * Mirrors of mirrors should work, but let's not get silly.  Also
1994 	 * disallow out-of-band SEV/SEV-ES init if the target is already an
1995 	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
1996 	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
1997 	 */
1998 	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
1999 	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2000 		ret = -EINVAL;
2001 		goto e_unlock;
2002 	}
2003 
2004 	/*
2005 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2006 	 * disappear until we're done with it
2007 	 */
2008 	source_sev = &to_kvm_svm(source_kvm)->sev_info;
2009 	kvm_get_kvm(source_kvm);
2010 	source_sev->num_mirrored_vms++;
2011 
2012 	/* Set enc_context_owner and copy its encryption context over */
2013 	mirror_sev = &to_kvm_svm(kvm)->sev_info;
2014 	mirror_sev->enc_context_owner = source_kvm;
2015 	mirror_sev->active = true;
2016 	mirror_sev->asid = source_sev->asid;
2017 	mirror_sev->fd = source_sev->fd;
2018 	mirror_sev->es_active = source_sev->es_active;
2019 	mirror_sev->handle = source_sev->handle;
2020 	INIT_LIST_HEAD(&mirror_sev->regions_list);
2021 	ret = 0;
2022 
2023 	/*
2024 	 * Do not copy ap_jump_table. Since the mirror does not share the same
2025 	 * KVM contexts as the original, and they may have different
2026 	 * memory-views.
2027 	 */
2028 
2029 e_unlock:
2030 	sev_unlock_two_vms(kvm, source_kvm);
2031 e_source_fput:
2032 	if (source_kvm_file)
2033 		fput(source_kvm_file);
2034 	return ret;
2035 }
2036 
2037 void sev_vm_destroy(struct kvm *kvm)
2038 {
2039 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2040 	struct list_head *head = &sev->regions_list;
2041 	struct list_head *pos, *q;
2042 
2043 	WARN_ON(sev->num_mirrored_vms);
2044 
2045 	if (!sev_guest(kvm))
2046 		return;
2047 
2048 	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2049 	if (is_mirroring_enc_context(kvm)) {
2050 		struct kvm *owner_kvm = sev->enc_context_owner;
2051 		struct kvm_sev_info *owner_sev = &to_kvm_svm(owner_kvm)->sev_info;
2052 
2053 		mutex_lock(&owner_kvm->lock);
2054 		if (!WARN_ON(!owner_sev->num_mirrored_vms))
2055 			owner_sev->num_mirrored_vms--;
2056 		mutex_unlock(&owner_kvm->lock);
2057 		kvm_put_kvm(owner_kvm);
2058 		return;
2059 	}
2060 
2061 	/*
2062 	 * Ensure that all guest tagged cache entries are flushed before
2063 	 * releasing the pages back to the system for use. CLFLUSH will
2064 	 * not do this, so issue a WBINVD.
2065 	 */
2066 	wbinvd_on_all_cpus();
2067 
2068 	/*
2069 	 * if userspace was terminated before unregistering the memory regions
2070 	 * then lets unpin all the registered memory.
2071 	 */
2072 	if (!list_empty(head)) {
2073 		list_for_each_safe(pos, q, head) {
2074 			__unregister_enc_region_locked(kvm,
2075 				list_entry(pos, struct enc_region, list));
2076 			cond_resched();
2077 		}
2078 	}
2079 
2080 	sev_unbind_asid(kvm, sev->handle);
2081 	sev_asid_free(sev);
2082 }
2083 
2084 void __init sev_set_cpu_caps(void)
2085 {
2086 	if (!sev_enabled)
2087 		kvm_cpu_cap_clear(X86_FEATURE_SEV);
2088 	if (!sev_es_enabled)
2089 		kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2090 }
2091 
2092 void __init sev_hardware_setup(void)
2093 {
2094 #ifdef CONFIG_KVM_AMD_SEV
2095 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2096 	bool sev_es_supported = false;
2097 	bool sev_supported = false;
2098 
2099 	if (!sev_enabled || !npt_enabled)
2100 		goto out;
2101 
2102 	/* Does the CPU support SEV? */
2103 	if (!boot_cpu_has(X86_FEATURE_SEV))
2104 		goto out;
2105 
2106 	/* Retrieve SEV CPUID information */
2107 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2108 
2109 	/* Set encryption bit location for SEV-ES guests */
2110 	sev_enc_bit = ebx & 0x3f;
2111 
2112 	/* Maximum number of encrypted guests supported simultaneously */
2113 	max_sev_asid = ecx;
2114 	if (!max_sev_asid)
2115 		goto out;
2116 
2117 	/* Minimum ASID value that should be used for SEV guest */
2118 	min_sev_asid = edx;
2119 	sev_me_mask = 1UL << (ebx & 0x3f);
2120 
2121 	/*
2122 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2123 	 * even though it's never used, so that the bitmap is indexed by the
2124 	 * actual ASID.
2125 	 */
2126 	nr_asids = max_sev_asid + 1;
2127 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2128 	if (!sev_asid_bitmap)
2129 		goto out;
2130 
2131 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2132 	if (!sev_reclaim_asid_bitmap) {
2133 		bitmap_free(sev_asid_bitmap);
2134 		sev_asid_bitmap = NULL;
2135 		goto out;
2136 	}
2137 
2138 	sev_asid_count = max_sev_asid - min_sev_asid + 1;
2139 	if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
2140 		goto out;
2141 
2142 	pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
2143 	sev_supported = true;
2144 
2145 	/* SEV-ES support requested? */
2146 	if (!sev_es_enabled)
2147 		goto out;
2148 
2149 	/* Does the CPU support SEV-ES? */
2150 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2151 		goto out;
2152 
2153 	/* Has the system been allocated ASIDs for SEV-ES? */
2154 	if (min_sev_asid == 1)
2155 		goto out;
2156 
2157 	sev_es_asid_count = min_sev_asid - 1;
2158 	if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
2159 		goto out;
2160 
2161 	pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
2162 	sev_es_supported = true;
2163 
2164 out:
2165 	sev_enabled = sev_supported;
2166 	sev_es_enabled = sev_es_supported;
2167 #endif
2168 }
2169 
2170 void sev_hardware_teardown(void)
2171 {
2172 	if (!sev_enabled)
2173 		return;
2174 
2175 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2176 	sev_flush_asids(1, max_sev_asid);
2177 
2178 	bitmap_free(sev_asid_bitmap);
2179 	bitmap_free(sev_reclaim_asid_bitmap);
2180 
2181 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2182 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2183 }
2184 
2185 int sev_cpu_init(struct svm_cpu_data *sd)
2186 {
2187 	if (!sev_enabled)
2188 		return 0;
2189 
2190 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2191 	if (!sd->sev_vmcbs)
2192 		return -ENOMEM;
2193 
2194 	return 0;
2195 }
2196 
2197 /*
2198  * Pages used by hardware to hold guest encrypted state must be flushed before
2199  * returning them to the system.
2200  */
2201 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
2202 				   unsigned long len)
2203 {
2204 	/*
2205 	 * If hardware enforced cache coherency for encrypted mappings of the
2206 	 * same physical page is supported, nothing to do.
2207 	 */
2208 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
2209 		return;
2210 
2211 	/*
2212 	 * If the VM Page Flush MSR is supported, use it to flush the page
2213 	 * (using the page virtual address and the guest ASID).
2214 	 */
2215 	if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
2216 		struct kvm_sev_info *sev;
2217 		unsigned long va_start;
2218 		u64 start, stop;
2219 
2220 		/* Align start and stop to page boundaries. */
2221 		va_start = (unsigned long)va;
2222 		start = (u64)va_start & PAGE_MASK;
2223 		stop = PAGE_ALIGN((u64)va_start + len);
2224 
2225 		if (start < stop) {
2226 			sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
2227 
2228 			while (start < stop) {
2229 				wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
2230 				       start | sev->asid);
2231 
2232 				start += PAGE_SIZE;
2233 			}
2234 
2235 			return;
2236 		}
2237 
2238 		WARN(1, "Address overflow, using WBINVD\n");
2239 	}
2240 
2241 	/*
2242 	 * Hardware should always have one of the above features,
2243 	 * but if not, use WBINVD and issue a warning.
2244 	 */
2245 	WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
2246 	wbinvd_on_all_cpus();
2247 }
2248 
2249 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2250 {
2251 	struct vcpu_svm *svm;
2252 
2253 	if (!sev_es_guest(vcpu->kvm))
2254 		return;
2255 
2256 	svm = to_svm(vcpu);
2257 
2258 	if (vcpu->arch.guest_state_protected)
2259 		sev_flush_guest_memory(svm, svm->sev_es.vmsa, PAGE_SIZE);
2260 	__free_page(virt_to_page(svm->sev_es.vmsa));
2261 
2262 	if (svm->sev_es.ghcb_sa_free)
2263 		kvfree(svm->sev_es.ghcb_sa);
2264 }
2265 
2266 static void dump_ghcb(struct vcpu_svm *svm)
2267 {
2268 	struct ghcb *ghcb = svm->sev_es.ghcb;
2269 	unsigned int nbits;
2270 
2271 	/* Re-use the dump_invalid_vmcb module parameter */
2272 	if (!dump_invalid_vmcb) {
2273 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2274 		return;
2275 	}
2276 
2277 	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2278 
2279 	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2280 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2281 	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2282 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2283 	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2284 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2285 	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2286 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2287 	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2288 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2289 }
2290 
2291 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2292 {
2293 	struct kvm_vcpu *vcpu = &svm->vcpu;
2294 	struct ghcb *ghcb = svm->sev_es.ghcb;
2295 
2296 	/*
2297 	 * The GHCB protocol so far allows for the following data
2298 	 * to be returned:
2299 	 *   GPRs RAX, RBX, RCX, RDX
2300 	 *
2301 	 * Copy their values, even if they may not have been written during the
2302 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
2303 	 */
2304 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2305 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2306 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2307 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2308 }
2309 
2310 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2311 {
2312 	struct vmcb_control_area *control = &svm->vmcb->control;
2313 	struct kvm_vcpu *vcpu = &svm->vcpu;
2314 	struct ghcb *ghcb = svm->sev_es.ghcb;
2315 	u64 exit_code;
2316 
2317 	/*
2318 	 * The GHCB protocol so far allows for the following data
2319 	 * to be supplied:
2320 	 *   GPRs RAX, RBX, RCX, RDX
2321 	 *   XCR0
2322 	 *   CPL
2323 	 *
2324 	 * VMMCALL allows the guest to provide extra registers. KVM also
2325 	 * expects RSI for hypercalls, so include that, too.
2326 	 *
2327 	 * Copy their values to the appropriate location if supplied.
2328 	 */
2329 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2330 
2331 	vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2332 	vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2333 	vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2334 	vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2335 	vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2336 
2337 	svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2338 
2339 	if (ghcb_xcr0_is_valid(ghcb)) {
2340 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2341 		kvm_update_cpuid_runtime(vcpu);
2342 	}
2343 
2344 	/* Copy the GHCB exit information into the VMCB fields */
2345 	exit_code = ghcb_get_sw_exit_code(ghcb);
2346 	control->exit_code = lower_32_bits(exit_code);
2347 	control->exit_code_hi = upper_32_bits(exit_code);
2348 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2349 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2350 
2351 	/* Clear the valid entries fields */
2352 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2353 }
2354 
2355 static bool sev_es_validate_vmgexit(struct vcpu_svm *svm)
2356 {
2357 	struct kvm_vcpu *vcpu;
2358 	struct ghcb *ghcb;
2359 	u64 exit_code;
2360 	u64 reason;
2361 
2362 	ghcb = svm->sev_es.ghcb;
2363 
2364 	/*
2365 	 * Retrieve the exit code now even though it may not be marked valid
2366 	 * as it could help with debugging.
2367 	 */
2368 	exit_code = ghcb_get_sw_exit_code(ghcb);
2369 
2370 	/* Only GHCB Usage code 0 is supported */
2371 	if (ghcb->ghcb_usage) {
2372 		reason = GHCB_ERR_INVALID_USAGE;
2373 		goto vmgexit_err;
2374 	}
2375 
2376 	reason = GHCB_ERR_MISSING_INPUT;
2377 
2378 	if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2379 	    !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2380 	    !ghcb_sw_exit_info_2_is_valid(ghcb))
2381 		goto vmgexit_err;
2382 
2383 	switch (ghcb_get_sw_exit_code(ghcb)) {
2384 	case SVM_EXIT_READ_DR7:
2385 		break;
2386 	case SVM_EXIT_WRITE_DR7:
2387 		if (!ghcb_rax_is_valid(ghcb))
2388 			goto vmgexit_err;
2389 		break;
2390 	case SVM_EXIT_RDTSC:
2391 		break;
2392 	case SVM_EXIT_RDPMC:
2393 		if (!ghcb_rcx_is_valid(ghcb))
2394 			goto vmgexit_err;
2395 		break;
2396 	case SVM_EXIT_CPUID:
2397 		if (!ghcb_rax_is_valid(ghcb) ||
2398 		    !ghcb_rcx_is_valid(ghcb))
2399 			goto vmgexit_err;
2400 		if (ghcb_get_rax(ghcb) == 0xd)
2401 			if (!ghcb_xcr0_is_valid(ghcb))
2402 				goto vmgexit_err;
2403 		break;
2404 	case SVM_EXIT_INVD:
2405 		break;
2406 	case SVM_EXIT_IOIO:
2407 		if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2408 			if (!ghcb_sw_scratch_is_valid(ghcb))
2409 				goto vmgexit_err;
2410 		} else {
2411 			if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2412 				if (!ghcb_rax_is_valid(ghcb))
2413 					goto vmgexit_err;
2414 		}
2415 		break;
2416 	case SVM_EXIT_MSR:
2417 		if (!ghcb_rcx_is_valid(ghcb))
2418 			goto vmgexit_err;
2419 		if (ghcb_get_sw_exit_info_1(ghcb)) {
2420 			if (!ghcb_rax_is_valid(ghcb) ||
2421 			    !ghcb_rdx_is_valid(ghcb))
2422 				goto vmgexit_err;
2423 		}
2424 		break;
2425 	case SVM_EXIT_VMMCALL:
2426 		if (!ghcb_rax_is_valid(ghcb) ||
2427 		    !ghcb_cpl_is_valid(ghcb))
2428 			goto vmgexit_err;
2429 		break;
2430 	case SVM_EXIT_RDTSCP:
2431 		break;
2432 	case SVM_EXIT_WBINVD:
2433 		break;
2434 	case SVM_EXIT_MONITOR:
2435 		if (!ghcb_rax_is_valid(ghcb) ||
2436 		    !ghcb_rcx_is_valid(ghcb) ||
2437 		    !ghcb_rdx_is_valid(ghcb))
2438 			goto vmgexit_err;
2439 		break;
2440 	case SVM_EXIT_MWAIT:
2441 		if (!ghcb_rax_is_valid(ghcb) ||
2442 		    !ghcb_rcx_is_valid(ghcb))
2443 			goto vmgexit_err;
2444 		break;
2445 	case SVM_VMGEXIT_MMIO_READ:
2446 	case SVM_VMGEXIT_MMIO_WRITE:
2447 		if (!ghcb_sw_scratch_is_valid(ghcb))
2448 			goto vmgexit_err;
2449 		break;
2450 	case SVM_VMGEXIT_NMI_COMPLETE:
2451 	case SVM_VMGEXIT_AP_HLT_LOOP:
2452 	case SVM_VMGEXIT_AP_JUMP_TABLE:
2453 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2454 		break;
2455 	default:
2456 		reason = GHCB_ERR_INVALID_EVENT;
2457 		goto vmgexit_err;
2458 	}
2459 
2460 	return true;
2461 
2462 vmgexit_err:
2463 	vcpu = &svm->vcpu;
2464 
2465 	if (reason == GHCB_ERR_INVALID_USAGE) {
2466 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2467 			    ghcb->ghcb_usage);
2468 	} else if (reason == GHCB_ERR_INVALID_EVENT) {
2469 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2470 			    exit_code);
2471 	} else {
2472 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2473 			    exit_code);
2474 		dump_ghcb(svm);
2475 	}
2476 
2477 	/* Clear the valid entries fields */
2478 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2479 
2480 	ghcb_set_sw_exit_info_1(ghcb, 2);
2481 	ghcb_set_sw_exit_info_2(ghcb, reason);
2482 
2483 	return false;
2484 }
2485 
2486 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2487 {
2488 	if (!svm->sev_es.ghcb)
2489 		return;
2490 
2491 	if (svm->sev_es.ghcb_sa_free) {
2492 		/*
2493 		 * The scratch area lives outside the GHCB, so there is a
2494 		 * buffer that, depending on the operation performed, may
2495 		 * need to be synced, then freed.
2496 		 */
2497 		if (svm->sev_es.ghcb_sa_sync) {
2498 			kvm_write_guest(svm->vcpu.kvm,
2499 					ghcb_get_sw_scratch(svm->sev_es.ghcb),
2500 					svm->sev_es.ghcb_sa,
2501 					svm->sev_es.ghcb_sa_len);
2502 			svm->sev_es.ghcb_sa_sync = false;
2503 		}
2504 
2505 		kvfree(svm->sev_es.ghcb_sa);
2506 		svm->sev_es.ghcb_sa = NULL;
2507 		svm->sev_es.ghcb_sa_free = false;
2508 	}
2509 
2510 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2511 
2512 	sev_es_sync_to_ghcb(svm);
2513 
2514 	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2515 	svm->sev_es.ghcb = NULL;
2516 }
2517 
2518 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2519 {
2520 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2521 	int asid = sev_get_asid(svm->vcpu.kvm);
2522 
2523 	/* Assign the asid allocated with this SEV guest */
2524 	svm->asid = asid;
2525 
2526 	/*
2527 	 * Flush guest TLB:
2528 	 *
2529 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2530 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2531 	 */
2532 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
2533 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
2534 		return;
2535 
2536 	sd->sev_vmcbs[asid] = svm->vmcb;
2537 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2538 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2539 }
2540 
2541 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
2542 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2543 {
2544 	struct vmcb_control_area *control = &svm->vmcb->control;
2545 	struct ghcb *ghcb = svm->sev_es.ghcb;
2546 	u64 ghcb_scratch_beg, ghcb_scratch_end;
2547 	u64 scratch_gpa_beg, scratch_gpa_end;
2548 	void *scratch_va;
2549 
2550 	scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2551 	if (!scratch_gpa_beg) {
2552 		pr_err("vmgexit: scratch gpa not provided\n");
2553 		goto e_scratch;
2554 	}
2555 
2556 	scratch_gpa_end = scratch_gpa_beg + len;
2557 	if (scratch_gpa_end < scratch_gpa_beg) {
2558 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2559 		       len, scratch_gpa_beg);
2560 		goto e_scratch;
2561 	}
2562 
2563 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2564 		/* Scratch area begins within GHCB */
2565 		ghcb_scratch_beg = control->ghcb_gpa +
2566 				   offsetof(struct ghcb, shared_buffer);
2567 		ghcb_scratch_end = control->ghcb_gpa +
2568 				   offsetof(struct ghcb, reserved_1);
2569 
2570 		/*
2571 		 * If the scratch area begins within the GHCB, it must be
2572 		 * completely contained in the GHCB shared buffer area.
2573 		 */
2574 		if (scratch_gpa_beg < ghcb_scratch_beg ||
2575 		    scratch_gpa_end > ghcb_scratch_end) {
2576 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2577 			       scratch_gpa_beg, scratch_gpa_end);
2578 			goto e_scratch;
2579 		}
2580 
2581 		scratch_va = (void *)svm->sev_es.ghcb;
2582 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2583 	} else {
2584 		/*
2585 		 * The guest memory must be read into a kernel buffer, so
2586 		 * limit the size
2587 		 */
2588 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
2589 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2590 			       len, GHCB_SCRATCH_AREA_LIMIT);
2591 			goto e_scratch;
2592 		}
2593 		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2594 		if (!scratch_va)
2595 			goto e_scratch;
2596 
2597 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2598 			/* Unable to copy scratch area from guest */
2599 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2600 
2601 			kvfree(scratch_va);
2602 			goto e_scratch;
2603 		}
2604 
2605 		/*
2606 		 * The scratch area is outside the GHCB. The operation will
2607 		 * dictate whether the buffer needs to be synced before running
2608 		 * the vCPU next time (i.e. a read was requested so the data
2609 		 * must be written back to the guest memory).
2610 		 */
2611 		svm->sev_es.ghcb_sa_sync = sync;
2612 		svm->sev_es.ghcb_sa_free = true;
2613 	}
2614 
2615 	svm->sev_es.ghcb_sa = scratch_va;
2616 	svm->sev_es.ghcb_sa_len = len;
2617 
2618 	return true;
2619 
2620 e_scratch:
2621 	ghcb_set_sw_exit_info_1(ghcb, 2);
2622 	ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2623 
2624 	return false;
2625 }
2626 
2627 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2628 			      unsigned int pos)
2629 {
2630 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2631 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2632 }
2633 
2634 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2635 {
2636 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2637 }
2638 
2639 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2640 {
2641 	svm->vmcb->control.ghcb_gpa = value;
2642 }
2643 
2644 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2645 {
2646 	struct vmcb_control_area *control = &svm->vmcb->control;
2647 	struct kvm_vcpu *vcpu = &svm->vcpu;
2648 	u64 ghcb_info;
2649 	int ret = 1;
2650 
2651 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2652 
2653 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2654 					     control->ghcb_gpa);
2655 
2656 	switch (ghcb_info) {
2657 	case GHCB_MSR_SEV_INFO_REQ:
2658 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2659 						    GHCB_VERSION_MIN,
2660 						    sev_enc_bit));
2661 		break;
2662 	case GHCB_MSR_CPUID_REQ: {
2663 		u64 cpuid_fn, cpuid_reg, cpuid_value;
2664 
2665 		cpuid_fn = get_ghcb_msr_bits(svm,
2666 					     GHCB_MSR_CPUID_FUNC_MASK,
2667 					     GHCB_MSR_CPUID_FUNC_POS);
2668 
2669 		/* Initialize the registers needed by the CPUID intercept */
2670 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2671 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2672 
2673 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2674 		if (!ret) {
2675 			/* Error, keep GHCB MSR value as-is */
2676 			break;
2677 		}
2678 
2679 		cpuid_reg = get_ghcb_msr_bits(svm,
2680 					      GHCB_MSR_CPUID_REG_MASK,
2681 					      GHCB_MSR_CPUID_REG_POS);
2682 		if (cpuid_reg == 0)
2683 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2684 		else if (cpuid_reg == 1)
2685 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2686 		else if (cpuid_reg == 2)
2687 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2688 		else
2689 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2690 
2691 		set_ghcb_msr_bits(svm, cpuid_value,
2692 				  GHCB_MSR_CPUID_VALUE_MASK,
2693 				  GHCB_MSR_CPUID_VALUE_POS);
2694 
2695 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2696 				  GHCB_MSR_INFO_MASK,
2697 				  GHCB_MSR_INFO_POS);
2698 		break;
2699 	}
2700 	case GHCB_MSR_TERM_REQ: {
2701 		u64 reason_set, reason_code;
2702 
2703 		reason_set = get_ghcb_msr_bits(svm,
2704 					       GHCB_MSR_TERM_REASON_SET_MASK,
2705 					       GHCB_MSR_TERM_REASON_SET_POS);
2706 		reason_code = get_ghcb_msr_bits(svm,
2707 						GHCB_MSR_TERM_REASON_MASK,
2708 						GHCB_MSR_TERM_REASON_POS);
2709 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2710 			reason_set, reason_code);
2711 
2712 		ret = -EINVAL;
2713 		break;
2714 	}
2715 	default:
2716 		/* Error, keep GHCB MSR value as-is */
2717 		break;
2718 	}
2719 
2720 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2721 					    control->ghcb_gpa, ret);
2722 
2723 	return ret;
2724 }
2725 
2726 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2727 {
2728 	struct vcpu_svm *svm = to_svm(vcpu);
2729 	struct vmcb_control_area *control = &svm->vmcb->control;
2730 	u64 ghcb_gpa, exit_code;
2731 	struct ghcb *ghcb;
2732 	int ret;
2733 
2734 	/* Validate the GHCB */
2735 	ghcb_gpa = control->ghcb_gpa;
2736 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2737 		return sev_handle_vmgexit_msr_protocol(svm);
2738 
2739 	if (!ghcb_gpa) {
2740 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2741 
2742 		/* Without a GHCB, just return right back to the guest */
2743 		return 1;
2744 	}
2745 
2746 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2747 		/* Unable to map GHCB from guest */
2748 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2749 			    ghcb_gpa);
2750 
2751 		/* Without a GHCB, just return right back to the guest */
2752 		return 1;
2753 	}
2754 
2755 	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2756 	ghcb = svm->sev_es.ghcb_map.hva;
2757 
2758 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2759 
2760 	exit_code = ghcb_get_sw_exit_code(ghcb);
2761 
2762 	if (!sev_es_validate_vmgexit(svm))
2763 		return 1;
2764 
2765 	sev_es_sync_from_ghcb(svm);
2766 	ghcb_set_sw_exit_info_1(ghcb, 0);
2767 	ghcb_set_sw_exit_info_2(ghcb, 0);
2768 
2769 	ret = 1;
2770 	switch (exit_code) {
2771 	case SVM_VMGEXIT_MMIO_READ:
2772 		if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
2773 			break;
2774 
2775 		ret = kvm_sev_es_mmio_read(vcpu,
2776 					   control->exit_info_1,
2777 					   control->exit_info_2,
2778 					   svm->sev_es.ghcb_sa);
2779 		break;
2780 	case SVM_VMGEXIT_MMIO_WRITE:
2781 		if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
2782 			break;
2783 
2784 		ret = kvm_sev_es_mmio_write(vcpu,
2785 					    control->exit_info_1,
2786 					    control->exit_info_2,
2787 					    svm->sev_es.ghcb_sa);
2788 		break;
2789 	case SVM_VMGEXIT_NMI_COMPLETE:
2790 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2791 		break;
2792 	case SVM_VMGEXIT_AP_HLT_LOOP:
2793 		ret = kvm_emulate_ap_reset_hold(vcpu);
2794 		break;
2795 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
2796 		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2797 
2798 		switch (control->exit_info_1) {
2799 		case 0:
2800 			/* Set AP jump table address */
2801 			sev->ap_jump_table = control->exit_info_2;
2802 			break;
2803 		case 1:
2804 			/* Get AP jump table address */
2805 			ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2806 			break;
2807 		default:
2808 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2809 			       control->exit_info_1);
2810 			ghcb_set_sw_exit_info_1(ghcb, 2);
2811 			ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT);
2812 		}
2813 
2814 		break;
2815 	}
2816 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2817 		vcpu_unimpl(vcpu,
2818 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2819 			    control->exit_info_1, control->exit_info_2);
2820 		ret = -EINVAL;
2821 		break;
2822 	default:
2823 		ret = svm_invoke_exit_handler(vcpu, exit_code);
2824 	}
2825 
2826 	return ret;
2827 }
2828 
2829 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2830 {
2831 	int count;
2832 	int bytes;
2833 
2834 	if (svm->vmcb->control.exit_info_2 > INT_MAX)
2835 		return -EINVAL;
2836 
2837 	count = svm->vmcb->control.exit_info_2;
2838 	if (unlikely(check_mul_overflow(count, size, &bytes)))
2839 		return -EINVAL;
2840 
2841 	if (!setup_vmgexit_scratch(svm, in, bytes))
2842 		return 1;
2843 
2844 	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2845 				    count, in);
2846 }
2847 
2848 void sev_es_init_vmcb(struct vcpu_svm *svm)
2849 {
2850 	struct kvm_vcpu *vcpu = &svm->vcpu;
2851 
2852 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2853 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2854 
2855 	/*
2856 	 * An SEV-ES guest requires a VMSA area that is a separate from the
2857 	 * VMCB page. Do not include the encryption mask on the VMSA physical
2858 	 * address since hardware will access it using the guest key.
2859 	 */
2860 	svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
2861 
2862 	/* Can't intercept CR register access, HV can't modify CR registers */
2863 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2864 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2865 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2866 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2867 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2868 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2869 
2870 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2871 
2872 	/* Track EFER/CR register changes */
2873 	svm_set_intercept(svm, TRAP_EFER_WRITE);
2874 	svm_set_intercept(svm, TRAP_CR0_WRITE);
2875 	svm_set_intercept(svm, TRAP_CR4_WRITE);
2876 	svm_set_intercept(svm, TRAP_CR8_WRITE);
2877 
2878 	/* No support for enable_vmware_backdoor */
2879 	clr_exception_intercept(svm, GP_VECTOR);
2880 
2881 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
2882 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
2883 
2884 	/* Clear intercepts on selected MSRs */
2885 	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2886 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2887 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2888 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2889 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2890 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2891 }
2892 
2893 void sev_es_vcpu_reset(struct vcpu_svm *svm)
2894 {
2895 	/*
2896 	 * Set the GHCB MSR value as per the GHCB specification when emulating
2897 	 * vCPU RESET for an SEV-ES guest.
2898 	 */
2899 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2900 					    GHCB_VERSION_MIN,
2901 					    sev_enc_bit));
2902 }
2903 
2904 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
2905 {
2906 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2907 	struct vmcb_save_area *hostsa;
2908 
2909 	/*
2910 	 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2911 	 * of which one step is to perform a VMLOAD. Since hardware does not
2912 	 * perform a VMSAVE on VMRUN, the host savearea must be updated.
2913 	 */
2914 	vmsave(__sme_page_pa(sd->save_area));
2915 
2916 	/* XCR0 is restored on VMEXIT, save the current host value */
2917 	hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2918 	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2919 
2920 	/* PKRU is restored on VMEXIT, save the current host value */
2921 	hostsa->pkru = read_pkru();
2922 
2923 	/* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2924 	hostsa->xss = host_xss;
2925 }
2926 
2927 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2928 {
2929 	struct vcpu_svm *svm = to_svm(vcpu);
2930 
2931 	/* First SIPI: Use the values as initially set by the VMM */
2932 	if (!svm->sev_es.received_first_sipi) {
2933 		svm->sev_es.received_first_sipi = true;
2934 		return;
2935 	}
2936 
2937 	/*
2938 	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2939 	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2940 	 * non-zero value.
2941 	 */
2942 	if (!svm->sev_es.ghcb)
2943 		return;
2944 
2945 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
2946 }
2947