1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/misc_cgroup.h> 18 #include <linux/processor.h> 19 #include <linux/trace_events.h> 20 #include <asm/fpu/internal.h> 21 22 #include <asm/trapnr.h> 23 24 #include "x86.h" 25 #include "svm.h" 26 #include "svm_ops.h" 27 #include "cpuid.h" 28 #include "trace.h" 29 30 #define __ex(x) __kvm_handle_fault_on_reboot(x) 31 32 #ifndef CONFIG_KVM_AMD_SEV 33 /* 34 * When this config is not defined, SEV feature is not supported and APIs in 35 * this file are not used but this file still gets compiled into the KVM AMD 36 * module. 37 * 38 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 39 * misc_res_type {} defined in linux/misc_cgroup.h. 40 * 41 * Below macros allow compilation to succeed. 42 */ 43 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 44 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 45 #endif 46 47 #ifdef CONFIG_KVM_AMD_SEV 48 /* enable/disable SEV support */ 49 static bool sev_enabled = true; 50 module_param_named(sev, sev_enabled, bool, 0444); 51 52 /* enable/disable SEV-ES support */ 53 static bool sev_es_enabled = true; 54 module_param_named(sev_es, sev_es_enabled, bool, 0444); 55 #else 56 #define sev_enabled false 57 #define sev_es_enabled false 58 #endif /* CONFIG_KVM_AMD_SEV */ 59 60 static u8 sev_enc_bit; 61 static DECLARE_RWSEM(sev_deactivate_lock); 62 static DEFINE_MUTEX(sev_bitmap_lock); 63 unsigned int max_sev_asid; 64 static unsigned int min_sev_asid; 65 static unsigned long sev_me_mask; 66 static unsigned long *sev_asid_bitmap; 67 static unsigned long *sev_reclaim_asid_bitmap; 68 69 struct enc_region { 70 struct list_head list; 71 unsigned long npages; 72 struct page **pages; 73 unsigned long uaddr; 74 unsigned long size; 75 }; 76 77 /* Called with the sev_bitmap_lock held, or on shutdown */ 78 static int sev_flush_asids(int min_asid, int max_asid) 79 { 80 int ret, pos, error = 0; 81 82 /* Check if there are any ASIDs to reclaim before performing a flush */ 83 pos = find_next_bit(sev_reclaim_asid_bitmap, max_asid, min_asid); 84 if (pos >= max_asid) 85 return -EBUSY; 86 87 /* 88 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 89 * so it must be guarded. 90 */ 91 down_write(&sev_deactivate_lock); 92 93 wbinvd_on_all_cpus(); 94 ret = sev_guest_df_flush(&error); 95 96 up_write(&sev_deactivate_lock); 97 98 if (ret) 99 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 100 101 return ret; 102 } 103 104 static inline bool is_mirroring_enc_context(struct kvm *kvm) 105 { 106 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 107 } 108 109 /* Must be called with the sev_bitmap_lock held */ 110 static bool __sev_recycle_asids(int min_asid, int max_asid) 111 { 112 if (sev_flush_asids(min_asid, max_asid)) 113 return false; 114 115 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 116 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 117 max_sev_asid); 118 bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid); 119 120 return true; 121 } 122 123 static int sev_asid_new(struct kvm_sev_info *sev) 124 { 125 int pos, min_asid, max_asid, ret; 126 bool retry = true; 127 enum misc_res_type type; 128 129 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 130 WARN_ON(sev->misc_cg); 131 sev->misc_cg = get_current_misc_cg(); 132 ret = misc_cg_try_charge(type, sev->misc_cg, 1); 133 if (ret) { 134 put_misc_cg(sev->misc_cg); 135 sev->misc_cg = NULL; 136 return ret; 137 } 138 139 mutex_lock(&sev_bitmap_lock); 140 141 /* 142 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 143 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 144 */ 145 min_asid = sev->es_active ? 0 : min_sev_asid - 1; 146 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 147 again: 148 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid); 149 if (pos >= max_asid) { 150 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 151 retry = false; 152 goto again; 153 } 154 mutex_unlock(&sev_bitmap_lock); 155 ret = -EBUSY; 156 goto e_uncharge; 157 } 158 159 __set_bit(pos, sev_asid_bitmap); 160 161 mutex_unlock(&sev_bitmap_lock); 162 163 return pos + 1; 164 e_uncharge: 165 misc_cg_uncharge(type, sev->misc_cg, 1); 166 put_misc_cg(sev->misc_cg); 167 sev->misc_cg = NULL; 168 return ret; 169 } 170 171 static int sev_get_asid(struct kvm *kvm) 172 { 173 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 174 175 return sev->asid; 176 } 177 178 static void sev_asid_free(struct kvm_sev_info *sev) 179 { 180 struct svm_cpu_data *sd; 181 int cpu, pos; 182 enum misc_res_type type; 183 184 mutex_lock(&sev_bitmap_lock); 185 186 pos = sev->asid - 1; 187 __set_bit(pos, sev_reclaim_asid_bitmap); 188 189 for_each_possible_cpu(cpu) { 190 sd = per_cpu(svm_data, cpu); 191 sd->sev_vmcbs[pos] = NULL; 192 } 193 194 mutex_unlock(&sev_bitmap_lock); 195 196 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 197 misc_cg_uncharge(type, sev->misc_cg, 1); 198 put_misc_cg(sev->misc_cg); 199 sev->misc_cg = NULL; 200 } 201 202 static void sev_decommission(unsigned int handle) 203 { 204 struct sev_data_decommission decommission; 205 206 if (!handle) 207 return; 208 209 decommission.handle = handle; 210 sev_guest_decommission(&decommission, NULL); 211 } 212 213 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 214 { 215 struct sev_data_deactivate deactivate; 216 217 if (!handle) 218 return; 219 220 deactivate.handle = handle; 221 222 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 223 down_read(&sev_deactivate_lock); 224 sev_guest_deactivate(&deactivate, NULL); 225 up_read(&sev_deactivate_lock); 226 227 sev_decommission(handle); 228 } 229 230 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 231 { 232 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 233 bool es_active = argp->id == KVM_SEV_ES_INIT; 234 int asid, ret; 235 236 if (kvm->created_vcpus) 237 return -EINVAL; 238 239 ret = -EBUSY; 240 if (unlikely(sev->active)) 241 return ret; 242 243 sev->es_active = es_active; 244 asid = sev_asid_new(sev); 245 if (asid < 0) 246 goto e_no_asid; 247 sev->asid = asid; 248 249 ret = sev_platform_init(&argp->error); 250 if (ret) 251 goto e_free; 252 253 sev->active = true; 254 sev->asid = asid; 255 INIT_LIST_HEAD(&sev->regions_list); 256 257 return 0; 258 259 e_free: 260 sev_asid_free(sev); 261 sev->asid = 0; 262 e_no_asid: 263 sev->es_active = false; 264 return ret; 265 } 266 267 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 268 { 269 struct sev_data_activate activate; 270 int asid = sev_get_asid(kvm); 271 int ret; 272 273 /* activate ASID on the given handle */ 274 activate.handle = handle; 275 activate.asid = asid; 276 ret = sev_guest_activate(&activate, error); 277 278 return ret; 279 } 280 281 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 282 { 283 struct fd f; 284 int ret; 285 286 f = fdget(fd); 287 if (!f.file) 288 return -EBADF; 289 290 ret = sev_issue_cmd_external_user(f.file, id, data, error); 291 292 fdput(f); 293 return ret; 294 } 295 296 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 297 { 298 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 299 300 return __sev_issue_cmd(sev->fd, id, data, error); 301 } 302 303 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 304 { 305 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 306 struct sev_data_launch_start start; 307 struct kvm_sev_launch_start params; 308 void *dh_blob, *session_blob; 309 int *error = &argp->error; 310 int ret; 311 312 if (!sev_guest(kvm)) 313 return -ENOTTY; 314 315 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 316 return -EFAULT; 317 318 memset(&start, 0, sizeof(start)); 319 320 dh_blob = NULL; 321 if (params.dh_uaddr) { 322 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 323 if (IS_ERR(dh_blob)) 324 return PTR_ERR(dh_blob); 325 326 start.dh_cert_address = __sme_set(__pa(dh_blob)); 327 start.dh_cert_len = params.dh_len; 328 } 329 330 session_blob = NULL; 331 if (params.session_uaddr) { 332 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 333 if (IS_ERR(session_blob)) { 334 ret = PTR_ERR(session_blob); 335 goto e_free_dh; 336 } 337 338 start.session_address = __sme_set(__pa(session_blob)); 339 start.session_len = params.session_len; 340 } 341 342 start.handle = params.handle; 343 start.policy = params.policy; 344 345 /* create memory encryption context */ 346 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 347 if (ret) 348 goto e_free_session; 349 350 /* Bind ASID to this guest */ 351 ret = sev_bind_asid(kvm, start.handle, error); 352 if (ret) { 353 sev_decommission(start.handle); 354 goto e_free_session; 355 } 356 357 /* return handle to userspace */ 358 params.handle = start.handle; 359 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 360 sev_unbind_asid(kvm, start.handle); 361 ret = -EFAULT; 362 goto e_free_session; 363 } 364 365 sev->handle = start.handle; 366 sev->fd = argp->sev_fd; 367 368 e_free_session: 369 kfree(session_blob); 370 e_free_dh: 371 kfree(dh_blob); 372 return ret; 373 } 374 375 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 376 unsigned long ulen, unsigned long *n, 377 int write) 378 { 379 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 380 unsigned long npages, size; 381 int npinned; 382 unsigned long locked, lock_limit; 383 struct page **pages; 384 unsigned long first, last; 385 int ret; 386 387 lockdep_assert_held(&kvm->lock); 388 389 if (ulen == 0 || uaddr + ulen < uaddr) 390 return ERR_PTR(-EINVAL); 391 392 /* Calculate number of pages. */ 393 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 394 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 395 npages = (last - first + 1); 396 397 locked = sev->pages_locked + npages; 398 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 399 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 400 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 401 return ERR_PTR(-ENOMEM); 402 } 403 404 if (WARN_ON_ONCE(npages > INT_MAX)) 405 return ERR_PTR(-EINVAL); 406 407 /* Avoid using vmalloc for smaller buffers. */ 408 size = npages * sizeof(struct page *); 409 if (size > PAGE_SIZE) 410 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 411 else 412 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 413 414 if (!pages) 415 return ERR_PTR(-ENOMEM); 416 417 /* Pin the user virtual address. */ 418 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 419 if (npinned != npages) { 420 pr_err("SEV: Failure locking %lu pages.\n", npages); 421 ret = -ENOMEM; 422 goto err; 423 } 424 425 *n = npages; 426 sev->pages_locked = locked; 427 428 return pages; 429 430 err: 431 if (npinned > 0) 432 unpin_user_pages(pages, npinned); 433 434 kvfree(pages); 435 return ERR_PTR(ret); 436 } 437 438 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 439 unsigned long npages) 440 { 441 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 442 443 unpin_user_pages(pages, npages); 444 kvfree(pages); 445 sev->pages_locked -= npages; 446 } 447 448 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 449 { 450 uint8_t *page_virtual; 451 unsigned long i; 452 453 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 454 pages == NULL) 455 return; 456 457 for (i = 0; i < npages; i++) { 458 page_virtual = kmap_atomic(pages[i]); 459 clflush_cache_range(page_virtual, PAGE_SIZE); 460 kunmap_atomic(page_virtual); 461 } 462 } 463 464 static unsigned long get_num_contig_pages(unsigned long idx, 465 struct page **inpages, unsigned long npages) 466 { 467 unsigned long paddr, next_paddr; 468 unsigned long i = idx + 1, pages = 1; 469 470 /* find the number of contiguous pages starting from idx */ 471 paddr = __sme_page_pa(inpages[idx]); 472 while (i < npages) { 473 next_paddr = __sme_page_pa(inpages[i++]); 474 if ((paddr + PAGE_SIZE) == next_paddr) { 475 pages++; 476 paddr = next_paddr; 477 continue; 478 } 479 break; 480 } 481 482 return pages; 483 } 484 485 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 486 { 487 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 488 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 489 struct kvm_sev_launch_update_data params; 490 struct sev_data_launch_update_data data; 491 struct page **inpages; 492 int ret; 493 494 if (!sev_guest(kvm)) 495 return -ENOTTY; 496 497 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 498 return -EFAULT; 499 500 vaddr = params.uaddr; 501 size = params.len; 502 vaddr_end = vaddr + size; 503 504 /* Lock the user memory. */ 505 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 506 if (IS_ERR(inpages)) 507 return PTR_ERR(inpages); 508 509 /* 510 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 511 * place; the cache may contain the data that was written unencrypted. 512 */ 513 sev_clflush_pages(inpages, npages); 514 515 data.reserved = 0; 516 data.handle = sev->handle; 517 518 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 519 int offset, len; 520 521 /* 522 * If the user buffer is not page-aligned, calculate the offset 523 * within the page. 524 */ 525 offset = vaddr & (PAGE_SIZE - 1); 526 527 /* Calculate the number of pages that can be encrypted in one go. */ 528 pages = get_num_contig_pages(i, inpages, npages); 529 530 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 531 532 data.len = len; 533 data.address = __sme_page_pa(inpages[i]) + offset; 534 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 535 if (ret) 536 goto e_unpin; 537 538 size -= len; 539 next_vaddr = vaddr + len; 540 } 541 542 e_unpin: 543 /* content of memory is updated, mark pages dirty */ 544 for (i = 0; i < npages; i++) { 545 set_page_dirty_lock(inpages[i]); 546 mark_page_accessed(inpages[i]); 547 } 548 /* unlock the user pages */ 549 sev_unpin_memory(kvm, inpages, npages); 550 return ret; 551 } 552 553 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 554 { 555 struct vmcb_save_area *save = &svm->vmcb->save; 556 557 /* Check some debug related fields before encrypting the VMSA */ 558 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) 559 return -EINVAL; 560 561 /* Sync registgers */ 562 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 563 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 564 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 565 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 566 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 567 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 568 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 569 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 570 #ifdef CONFIG_X86_64 571 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 572 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 573 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 574 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 575 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 576 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 577 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 578 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 579 #endif 580 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 581 582 /* Sync some non-GPR registers before encrypting */ 583 save->xcr0 = svm->vcpu.arch.xcr0; 584 save->pkru = svm->vcpu.arch.pkru; 585 save->xss = svm->vcpu.arch.ia32_xss; 586 587 /* 588 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 589 * the traditional VMSA that is part of the VMCB. Copy the 590 * traditional VMSA as it has been built so far (in prep 591 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 592 */ 593 memcpy(svm->vmsa, save, sizeof(*save)); 594 595 return 0; 596 } 597 598 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 599 { 600 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 601 struct sev_data_launch_update_vmsa vmsa; 602 struct kvm_vcpu *vcpu; 603 int i, ret; 604 605 if (!sev_es_guest(kvm)) 606 return -ENOTTY; 607 608 vmsa.reserved = 0; 609 610 kvm_for_each_vcpu(i, vcpu, kvm) { 611 struct vcpu_svm *svm = to_svm(vcpu); 612 613 /* Perform some pre-encryption checks against the VMSA */ 614 ret = sev_es_sync_vmsa(svm); 615 if (ret) 616 return ret; 617 618 /* 619 * The LAUNCH_UPDATE_VMSA command will perform in-place 620 * encryption of the VMSA memory content (i.e it will write 621 * the same memory region with the guest's key), so invalidate 622 * it first. 623 */ 624 clflush_cache_range(svm->vmsa, PAGE_SIZE); 625 626 vmsa.handle = sev->handle; 627 vmsa.address = __sme_pa(svm->vmsa); 628 vmsa.len = PAGE_SIZE; 629 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, 630 &argp->error); 631 if (ret) 632 return ret; 633 634 svm->vcpu.arch.guest_state_protected = true; 635 } 636 637 return 0; 638 } 639 640 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 641 { 642 void __user *measure = (void __user *)(uintptr_t)argp->data; 643 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 644 struct sev_data_launch_measure data; 645 struct kvm_sev_launch_measure params; 646 void __user *p = NULL; 647 void *blob = NULL; 648 int ret; 649 650 if (!sev_guest(kvm)) 651 return -ENOTTY; 652 653 if (copy_from_user(¶ms, measure, sizeof(params))) 654 return -EFAULT; 655 656 memset(&data, 0, sizeof(data)); 657 658 /* User wants to query the blob length */ 659 if (!params.len) 660 goto cmd; 661 662 p = (void __user *)(uintptr_t)params.uaddr; 663 if (p) { 664 if (params.len > SEV_FW_BLOB_MAX_SIZE) 665 return -EINVAL; 666 667 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 668 if (!blob) 669 return -ENOMEM; 670 671 data.address = __psp_pa(blob); 672 data.len = params.len; 673 } 674 675 cmd: 676 data.handle = sev->handle; 677 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 678 679 /* 680 * If we query the session length, FW responded with expected data. 681 */ 682 if (!params.len) 683 goto done; 684 685 if (ret) 686 goto e_free_blob; 687 688 if (blob) { 689 if (copy_to_user(p, blob, params.len)) 690 ret = -EFAULT; 691 } 692 693 done: 694 params.len = data.len; 695 if (copy_to_user(measure, ¶ms, sizeof(params))) 696 ret = -EFAULT; 697 e_free_blob: 698 kfree(blob); 699 return ret; 700 } 701 702 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 703 { 704 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 705 struct sev_data_launch_finish data; 706 707 if (!sev_guest(kvm)) 708 return -ENOTTY; 709 710 data.handle = sev->handle; 711 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 712 } 713 714 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 715 { 716 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 717 struct kvm_sev_guest_status params; 718 struct sev_data_guest_status data; 719 int ret; 720 721 if (!sev_guest(kvm)) 722 return -ENOTTY; 723 724 memset(&data, 0, sizeof(data)); 725 726 data.handle = sev->handle; 727 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 728 if (ret) 729 return ret; 730 731 params.policy = data.policy; 732 params.state = data.state; 733 params.handle = data.handle; 734 735 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 736 ret = -EFAULT; 737 738 return ret; 739 } 740 741 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 742 unsigned long dst, int size, 743 int *error, bool enc) 744 { 745 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 746 struct sev_data_dbg data; 747 748 data.reserved = 0; 749 data.handle = sev->handle; 750 data.dst_addr = dst; 751 data.src_addr = src; 752 data.len = size; 753 754 return sev_issue_cmd(kvm, 755 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 756 &data, error); 757 } 758 759 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 760 unsigned long dst_paddr, int sz, int *err) 761 { 762 int offset; 763 764 /* 765 * Its safe to read more than we are asked, caller should ensure that 766 * destination has enough space. 767 */ 768 offset = src_paddr & 15; 769 src_paddr = round_down(src_paddr, 16); 770 sz = round_up(sz + offset, 16); 771 772 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 773 } 774 775 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 776 void __user *dst_uaddr, 777 unsigned long dst_paddr, 778 int size, int *err) 779 { 780 struct page *tpage = NULL; 781 int ret, offset; 782 783 /* if inputs are not 16-byte then use intermediate buffer */ 784 if (!IS_ALIGNED(dst_paddr, 16) || 785 !IS_ALIGNED(paddr, 16) || 786 !IS_ALIGNED(size, 16)) { 787 tpage = (void *)alloc_page(GFP_KERNEL); 788 if (!tpage) 789 return -ENOMEM; 790 791 dst_paddr = __sme_page_pa(tpage); 792 } 793 794 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 795 if (ret) 796 goto e_free; 797 798 if (tpage) { 799 offset = paddr & 15; 800 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 801 ret = -EFAULT; 802 } 803 804 e_free: 805 if (tpage) 806 __free_page(tpage); 807 808 return ret; 809 } 810 811 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 812 void __user *vaddr, 813 unsigned long dst_paddr, 814 void __user *dst_vaddr, 815 int size, int *error) 816 { 817 struct page *src_tpage = NULL; 818 struct page *dst_tpage = NULL; 819 int ret, len = size; 820 821 /* If source buffer is not aligned then use an intermediate buffer */ 822 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 823 src_tpage = alloc_page(GFP_KERNEL); 824 if (!src_tpage) 825 return -ENOMEM; 826 827 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 828 __free_page(src_tpage); 829 return -EFAULT; 830 } 831 832 paddr = __sme_page_pa(src_tpage); 833 } 834 835 /* 836 * If destination buffer or length is not aligned then do read-modify-write: 837 * - decrypt destination in an intermediate buffer 838 * - copy the source buffer in an intermediate buffer 839 * - use the intermediate buffer as source buffer 840 */ 841 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 842 int dst_offset; 843 844 dst_tpage = alloc_page(GFP_KERNEL); 845 if (!dst_tpage) { 846 ret = -ENOMEM; 847 goto e_free; 848 } 849 850 ret = __sev_dbg_decrypt(kvm, dst_paddr, 851 __sme_page_pa(dst_tpage), size, error); 852 if (ret) 853 goto e_free; 854 855 /* 856 * If source is kernel buffer then use memcpy() otherwise 857 * copy_from_user(). 858 */ 859 dst_offset = dst_paddr & 15; 860 861 if (src_tpage) 862 memcpy(page_address(dst_tpage) + dst_offset, 863 page_address(src_tpage), size); 864 else { 865 if (copy_from_user(page_address(dst_tpage) + dst_offset, 866 vaddr, size)) { 867 ret = -EFAULT; 868 goto e_free; 869 } 870 } 871 872 paddr = __sme_page_pa(dst_tpage); 873 dst_paddr = round_down(dst_paddr, 16); 874 len = round_up(size, 16); 875 } 876 877 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 878 879 e_free: 880 if (src_tpage) 881 __free_page(src_tpage); 882 if (dst_tpage) 883 __free_page(dst_tpage); 884 return ret; 885 } 886 887 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 888 { 889 unsigned long vaddr, vaddr_end, next_vaddr; 890 unsigned long dst_vaddr; 891 struct page **src_p, **dst_p; 892 struct kvm_sev_dbg debug; 893 unsigned long n; 894 unsigned int size; 895 int ret; 896 897 if (!sev_guest(kvm)) 898 return -ENOTTY; 899 900 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 901 return -EFAULT; 902 903 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 904 return -EINVAL; 905 if (!debug.dst_uaddr) 906 return -EINVAL; 907 908 vaddr = debug.src_uaddr; 909 size = debug.len; 910 vaddr_end = vaddr + size; 911 dst_vaddr = debug.dst_uaddr; 912 913 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 914 int len, s_off, d_off; 915 916 /* lock userspace source and destination page */ 917 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 918 if (IS_ERR(src_p)) 919 return PTR_ERR(src_p); 920 921 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 922 if (IS_ERR(dst_p)) { 923 sev_unpin_memory(kvm, src_p, n); 924 return PTR_ERR(dst_p); 925 } 926 927 /* 928 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 929 * the pages; flush the destination too so that future accesses do not 930 * see stale data. 931 */ 932 sev_clflush_pages(src_p, 1); 933 sev_clflush_pages(dst_p, 1); 934 935 /* 936 * Since user buffer may not be page aligned, calculate the 937 * offset within the page. 938 */ 939 s_off = vaddr & ~PAGE_MASK; 940 d_off = dst_vaddr & ~PAGE_MASK; 941 len = min_t(size_t, (PAGE_SIZE - s_off), size); 942 943 if (dec) 944 ret = __sev_dbg_decrypt_user(kvm, 945 __sme_page_pa(src_p[0]) + s_off, 946 (void __user *)dst_vaddr, 947 __sme_page_pa(dst_p[0]) + d_off, 948 len, &argp->error); 949 else 950 ret = __sev_dbg_encrypt_user(kvm, 951 __sme_page_pa(src_p[0]) + s_off, 952 (void __user *)vaddr, 953 __sme_page_pa(dst_p[0]) + d_off, 954 (void __user *)dst_vaddr, 955 len, &argp->error); 956 957 sev_unpin_memory(kvm, src_p, n); 958 sev_unpin_memory(kvm, dst_p, n); 959 960 if (ret) 961 goto err; 962 963 next_vaddr = vaddr + len; 964 dst_vaddr = dst_vaddr + len; 965 size -= len; 966 } 967 err: 968 return ret; 969 } 970 971 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 972 { 973 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 974 struct sev_data_launch_secret data; 975 struct kvm_sev_launch_secret params; 976 struct page **pages; 977 void *blob, *hdr; 978 unsigned long n, i; 979 int ret, offset; 980 981 if (!sev_guest(kvm)) 982 return -ENOTTY; 983 984 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 985 return -EFAULT; 986 987 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 988 if (IS_ERR(pages)) 989 return PTR_ERR(pages); 990 991 /* 992 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 993 * place; the cache may contain the data that was written unencrypted. 994 */ 995 sev_clflush_pages(pages, n); 996 997 /* 998 * The secret must be copied into contiguous memory region, lets verify 999 * that userspace memory pages are contiguous before we issue command. 1000 */ 1001 if (get_num_contig_pages(0, pages, n) != n) { 1002 ret = -EINVAL; 1003 goto e_unpin_memory; 1004 } 1005 1006 memset(&data, 0, sizeof(data)); 1007 1008 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1009 data.guest_address = __sme_page_pa(pages[0]) + offset; 1010 data.guest_len = params.guest_len; 1011 1012 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1013 if (IS_ERR(blob)) { 1014 ret = PTR_ERR(blob); 1015 goto e_unpin_memory; 1016 } 1017 1018 data.trans_address = __psp_pa(blob); 1019 data.trans_len = params.trans_len; 1020 1021 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1022 if (IS_ERR(hdr)) { 1023 ret = PTR_ERR(hdr); 1024 goto e_free_blob; 1025 } 1026 data.hdr_address = __psp_pa(hdr); 1027 data.hdr_len = params.hdr_len; 1028 1029 data.handle = sev->handle; 1030 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1031 1032 kfree(hdr); 1033 1034 e_free_blob: 1035 kfree(blob); 1036 e_unpin_memory: 1037 /* content of memory is updated, mark pages dirty */ 1038 for (i = 0; i < n; i++) { 1039 set_page_dirty_lock(pages[i]); 1040 mark_page_accessed(pages[i]); 1041 } 1042 sev_unpin_memory(kvm, pages, n); 1043 return ret; 1044 } 1045 1046 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1047 { 1048 void __user *report = (void __user *)(uintptr_t)argp->data; 1049 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1050 struct sev_data_attestation_report data; 1051 struct kvm_sev_attestation_report params; 1052 void __user *p; 1053 void *blob = NULL; 1054 int ret; 1055 1056 if (!sev_guest(kvm)) 1057 return -ENOTTY; 1058 1059 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1060 return -EFAULT; 1061 1062 memset(&data, 0, sizeof(data)); 1063 1064 /* User wants to query the blob length */ 1065 if (!params.len) 1066 goto cmd; 1067 1068 p = (void __user *)(uintptr_t)params.uaddr; 1069 if (p) { 1070 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1071 return -EINVAL; 1072 1073 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 1074 if (!blob) 1075 return -ENOMEM; 1076 1077 data.address = __psp_pa(blob); 1078 data.len = params.len; 1079 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1080 } 1081 cmd: 1082 data.handle = sev->handle; 1083 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1084 /* 1085 * If we query the session length, FW responded with expected data. 1086 */ 1087 if (!params.len) 1088 goto done; 1089 1090 if (ret) 1091 goto e_free_blob; 1092 1093 if (blob) { 1094 if (copy_to_user(p, blob, params.len)) 1095 ret = -EFAULT; 1096 } 1097 1098 done: 1099 params.len = data.len; 1100 if (copy_to_user(report, ¶ms, sizeof(params))) 1101 ret = -EFAULT; 1102 e_free_blob: 1103 kfree(blob); 1104 return ret; 1105 } 1106 1107 /* Userspace wants to query session length. */ 1108 static int 1109 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1110 struct kvm_sev_send_start *params) 1111 { 1112 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1113 struct sev_data_send_start data; 1114 int ret; 1115 1116 memset(&data, 0, sizeof(data)); 1117 data.handle = sev->handle; 1118 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1119 1120 params->session_len = data.session_len; 1121 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1122 sizeof(struct kvm_sev_send_start))) 1123 ret = -EFAULT; 1124 1125 return ret; 1126 } 1127 1128 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1129 { 1130 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1131 struct sev_data_send_start data; 1132 struct kvm_sev_send_start params; 1133 void *amd_certs, *session_data; 1134 void *pdh_cert, *plat_certs; 1135 int ret; 1136 1137 if (!sev_guest(kvm)) 1138 return -ENOTTY; 1139 1140 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1141 sizeof(struct kvm_sev_send_start))) 1142 return -EFAULT; 1143 1144 /* if session_len is zero, userspace wants to query the session length */ 1145 if (!params.session_len) 1146 return __sev_send_start_query_session_length(kvm, argp, 1147 ¶ms); 1148 1149 /* some sanity checks */ 1150 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1151 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1152 return -EINVAL; 1153 1154 /* allocate the memory to hold the session data blob */ 1155 session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1156 if (!session_data) 1157 return -ENOMEM; 1158 1159 /* copy the certificate blobs from userspace */ 1160 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1161 params.pdh_cert_len); 1162 if (IS_ERR(pdh_cert)) { 1163 ret = PTR_ERR(pdh_cert); 1164 goto e_free_session; 1165 } 1166 1167 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1168 params.plat_certs_len); 1169 if (IS_ERR(plat_certs)) { 1170 ret = PTR_ERR(plat_certs); 1171 goto e_free_pdh; 1172 } 1173 1174 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1175 params.amd_certs_len); 1176 if (IS_ERR(amd_certs)) { 1177 ret = PTR_ERR(amd_certs); 1178 goto e_free_plat_cert; 1179 } 1180 1181 /* populate the FW SEND_START field with system physical address */ 1182 memset(&data, 0, sizeof(data)); 1183 data.pdh_cert_address = __psp_pa(pdh_cert); 1184 data.pdh_cert_len = params.pdh_cert_len; 1185 data.plat_certs_address = __psp_pa(plat_certs); 1186 data.plat_certs_len = params.plat_certs_len; 1187 data.amd_certs_address = __psp_pa(amd_certs); 1188 data.amd_certs_len = params.amd_certs_len; 1189 data.session_address = __psp_pa(session_data); 1190 data.session_len = params.session_len; 1191 data.handle = sev->handle; 1192 1193 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1194 1195 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1196 session_data, params.session_len)) { 1197 ret = -EFAULT; 1198 goto e_free_amd_cert; 1199 } 1200 1201 params.policy = data.policy; 1202 params.session_len = data.session_len; 1203 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1204 sizeof(struct kvm_sev_send_start))) 1205 ret = -EFAULT; 1206 1207 e_free_amd_cert: 1208 kfree(amd_certs); 1209 e_free_plat_cert: 1210 kfree(plat_certs); 1211 e_free_pdh: 1212 kfree(pdh_cert); 1213 e_free_session: 1214 kfree(session_data); 1215 return ret; 1216 } 1217 1218 /* Userspace wants to query either header or trans length. */ 1219 static int 1220 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1221 struct kvm_sev_send_update_data *params) 1222 { 1223 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1224 struct sev_data_send_update_data data; 1225 int ret; 1226 1227 memset(&data, 0, sizeof(data)); 1228 data.handle = sev->handle; 1229 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1230 1231 params->hdr_len = data.hdr_len; 1232 params->trans_len = data.trans_len; 1233 1234 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1235 sizeof(struct kvm_sev_send_update_data))) 1236 ret = -EFAULT; 1237 1238 return ret; 1239 } 1240 1241 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1242 { 1243 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1244 struct sev_data_send_update_data data; 1245 struct kvm_sev_send_update_data params; 1246 void *hdr, *trans_data; 1247 struct page **guest_page; 1248 unsigned long n; 1249 int ret, offset; 1250 1251 if (!sev_guest(kvm)) 1252 return -ENOTTY; 1253 1254 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1255 sizeof(struct kvm_sev_send_update_data))) 1256 return -EFAULT; 1257 1258 /* userspace wants to query either header or trans length */ 1259 if (!params.trans_len || !params.hdr_len) 1260 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1261 1262 if (!params.trans_uaddr || !params.guest_uaddr || 1263 !params.guest_len || !params.hdr_uaddr) 1264 return -EINVAL; 1265 1266 /* Check if we are crossing the page boundary */ 1267 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1268 if ((params.guest_len + offset > PAGE_SIZE)) 1269 return -EINVAL; 1270 1271 /* Pin guest memory */ 1272 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1273 PAGE_SIZE, &n, 0); 1274 if (!guest_page) 1275 return -EFAULT; 1276 1277 /* allocate memory for header and transport buffer */ 1278 ret = -ENOMEM; 1279 hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1280 if (!hdr) 1281 goto e_unpin; 1282 1283 trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1284 if (!trans_data) 1285 goto e_free_hdr; 1286 1287 memset(&data, 0, sizeof(data)); 1288 data.hdr_address = __psp_pa(hdr); 1289 data.hdr_len = params.hdr_len; 1290 data.trans_address = __psp_pa(trans_data); 1291 data.trans_len = params.trans_len; 1292 1293 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1294 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1295 data.guest_address |= sev_me_mask; 1296 data.guest_len = params.guest_len; 1297 data.handle = sev->handle; 1298 1299 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1300 1301 if (ret) 1302 goto e_free_trans_data; 1303 1304 /* copy transport buffer to user space */ 1305 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1306 trans_data, params.trans_len)) { 1307 ret = -EFAULT; 1308 goto e_free_trans_data; 1309 } 1310 1311 /* Copy packet header to userspace. */ 1312 ret = copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1313 params.hdr_len); 1314 1315 e_free_trans_data: 1316 kfree(trans_data); 1317 e_free_hdr: 1318 kfree(hdr); 1319 e_unpin: 1320 sev_unpin_memory(kvm, guest_page, n); 1321 1322 return ret; 1323 } 1324 1325 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1326 { 1327 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1328 struct sev_data_send_finish data; 1329 1330 if (!sev_guest(kvm)) 1331 return -ENOTTY; 1332 1333 data.handle = sev->handle; 1334 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1335 } 1336 1337 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1338 { 1339 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1340 struct sev_data_send_cancel data; 1341 1342 if (!sev_guest(kvm)) 1343 return -ENOTTY; 1344 1345 data.handle = sev->handle; 1346 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1347 } 1348 1349 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1350 { 1351 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1352 struct sev_data_receive_start start; 1353 struct kvm_sev_receive_start params; 1354 int *error = &argp->error; 1355 void *session_data; 1356 void *pdh_data; 1357 int ret; 1358 1359 if (!sev_guest(kvm)) 1360 return -ENOTTY; 1361 1362 /* Get parameter from the userspace */ 1363 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1364 sizeof(struct kvm_sev_receive_start))) 1365 return -EFAULT; 1366 1367 /* some sanity checks */ 1368 if (!params.pdh_uaddr || !params.pdh_len || 1369 !params.session_uaddr || !params.session_len) 1370 return -EINVAL; 1371 1372 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1373 if (IS_ERR(pdh_data)) 1374 return PTR_ERR(pdh_data); 1375 1376 session_data = psp_copy_user_blob(params.session_uaddr, 1377 params.session_len); 1378 if (IS_ERR(session_data)) { 1379 ret = PTR_ERR(session_data); 1380 goto e_free_pdh; 1381 } 1382 1383 memset(&start, 0, sizeof(start)); 1384 start.handle = params.handle; 1385 start.policy = params.policy; 1386 start.pdh_cert_address = __psp_pa(pdh_data); 1387 start.pdh_cert_len = params.pdh_len; 1388 start.session_address = __psp_pa(session_data); 1389 start.session_len = params.session_len; 1390 1391 /* create memory encryption context */ 1392 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1393 error); 1394 if (ret) 1395 goto e_free_session; 1396 1397 /* Bind ASID to this guest */ 1398 ret = sev_bind_asid(kvm, start.handle, error); 1399 if (ret) 1400 goto e_free_session; 1401 1402 params.handle = start.handle; 1403 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1404 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1405 ret = -EFAULT; 1406 sev_unbind_asid(kvm, start.handle); 1407 goto e_free_session; 1408 } 1409 1410 sev->handle = start.handle; 1411 sev->fd = argp->sev_fd; 1412 1413 e_free_session: 1414 kfree(session_data); 1415 e_free_pdh: 1416 kfree(pdh_data); 1417 1418 return ret; 1419 } 1420 1421 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1422 { 1423 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1424 struct kvm_sev_receive_update_data params; 1425 struct sev_data_receive_update_data data; 1426 void *hdr = NULL, *trans = NULL; 1427 struct page **guest_page; 1428 unsigned long n; 1429 int ret, offset; 1430 1431 if (!sev_guest(kvm)) 1432 return -EINVAL; 1433 1434 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1435 sizeof(struct kvm_sev_receive_update_data))) 1436 return -EFAULT; 1437 1438 if (!params.hdr_uaddr || !params.hdr_len || 1439 !params.guest_uaddr || !params.guest_len || 1440 !params.trans_uaddr || !params.trans_len) 1441 return -EINVAL; 1442 1443 /* Check if we are crossing the page boundary */ 1444 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1445 if ((params.guest_len + offset > PAGE_SIZE)) 1446 return -EINVAL; 1447 1448 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1449 if (IS_ERR(hdr)) 1450 return PTR_ERR(hdr); 1451 1452 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1453 if (IS_ERR(trans)) { 1454 ret = PTR_ERR(trans); 1455 goto e_free_hdr; 1456 } 1457 1458 memset(&data, 0, sizeof(data)); 1459 data.hdr_address = __psp_pa(hdr); 1460 data.hdr_len = params.hdr_len; 1461 data.trans_address = __psp_pa(trans); 1462 data.trans_len = params.trans_len; 1463 1464 /* Pin guest memory */ 1465 ret = -EFAULT; 1466 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1467 PAGE_SIZE, &n, 0); 1468 if (!guest_page) 1469 goto e_free_trans; 1470 1471 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1472 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1473 data.guest_address |= sev_me_mask; 1474 data.guest_len = params.guest_len; 1475 data.handle = sev->handle; 1476 1477 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1478 &argp->error); 1479 1480 sev_unpin_memory(kvm, guest_page, n); 1481 1482 e_free_trans: 1483 kfree(trans); 1484 e_free_hdr: 1485 kfree(hdr); 1486 1487 return ret; 1488 } 1489 1490 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1491 { 1492 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1493 struct sev_data_receive_finish data; 1494 1495 if (!sev_guest(kvm)) 1496 return -ENOTTY; 1497 1498 data.handle = sev->handle; 1499 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1500 } 1501 1502 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 1503 { 1504 struct kvm_sev_cmd sev_cmd; 1505 int r; 1506 1507 if (!sev_enabled) 1508 return -ENOTTY; 1509 1510 if (!argp) 1511 return 0; 1512 1513 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1514 return -EFAULT; 1515 1516 mutex_lock(&kvm->lock); 1517 1518 /* enc_context_owner handles all memory enc operations */ 1519 if (is_mirroring_enc_context(kvm)) { 1520 r = -EINVAL; 1521 goto out; 1522 } 1523 1524 switch (sev_cmd.id) { 1525 case KVM_SEV_ES_INIT: 1526 if (!sev_es_enabled) { 1527 r = -ENOTTY; 1528 goto out; 1529 } 1530 fallthrough; 1531 case KVM_SEV_INIT: 1532 r = sev_guest_init(kvm, &sev_cmd); 1533 break; 1534 case KVM_SEV_LAUNCH_START: 1535 r = sev_launch_start(kvm, &sev_cmd); 1536 break; 1537 case KVM_SEV_LAUNCH_UPDATE_DATA: 1538 r = sev_launch_update_data(kvm, &sev_cmd); 1539 break; 1540 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1541 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1542 break; 1543 case KVM_SEV_LAUNCH_MEASURE: 1544 r = sev_launch_measure(kvm, &sev_cmd); 1545 break; 1546 case KVM_SEV_LAUNCH_FINISH: 1547 r = sev_launch_finish(kvm, &sev_cmd); 1548 break; 1549 case KVM_SEV_GUEST_STATUS: 1550 r = sev_guest_status(kvm, &sev_cmd); 1551 break; 1552 case KVM_SEV_DBG_DECRYPT: 1553 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1554 break; 1555 case KVM_SEV_DBG_ENCRYPT: 1556 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1557 break; 1558 case KVM_SEV_LAUNCH_SECRET: 1559 r = sev_launch_secret(kvm, &sev_cmd); 1560 break; 1561 case KVM_SEV_GET_ATTESTATION_REPORT: 1562 r = sev_get_attestation_report(kvm, &sev_cmd); 1563 break; 1564 case KVM_SEV_SEND_START: 1565 r = sev_send_start(kvm, &sev_cmd); 1566 break; 1567 case KVM_SEV_SEND_UPDATE_DATA: 1568 r = sev_send_update_data(kvm, &sev_cmd); 1569 break; 1570 case KVM_SEV_SEND_FINISH: 1571 r = sev_send_finish(kvm, &sev_cmd); 1572 break; 1573 case KVM_SEV_SEND_CANCEL: 1574 r = sev_send_cancel(kvm, &sev_cmd); 1575 break; 1576 case KVM_SEV_RECEIVE_START: 1577 r = sev_receive_start(kvm, &sev_cmd); 1578 break; 1579 case KVM_SEV_RECEIVE_UPDATE_DATA: 1580 r = sev_receive_update_data(kvm, &sev_cmd); 1581 break; 1582 case KVM_SEV_RECEIVE_FINISH: 1583 r = sev_receive_finish(kvm, &sev_cmd); 1584 break; 1585 default: 1586 r = -EINVAL; 1587 goto out; 1588 } 1589 1590 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1591 r = -EFAULT; 1592 1593 out: 1594 mutex_unlock(&kvm->lock); 1595 return r; 1596 } 1597 1598 int svm_register_enc_region(struct kvm *kvm, 1599 struct kvm_enc_region *range) 1600 { 1601 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1602 struct enc_region *region; 1603 int ret = 0; 1604 1605 if (!sev_guest(kvm)) 1606 return -ENOTTY; 1607 1608 /* If kvm is mirroring encryption context it isn't responsible for it */ 1609 if (is_mirroring_enc_context(kvm)) 1610 return -EINVAL; 1611 1612 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1613 return -EINVAL; 1614 1615 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1616 if (!region) 1617 return -ENOMEM; 1618 1619 mutex_lock(&kvm->lock); 1620 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1621 if (IS_ERR(region->pages)) { 1622 ret = PTR_ERR(region->pages); 1623 mutex_unlock(&kvm->lock); 1624 goto e_free; 1625 } 1626 1627 region->uaddr = range->addr; 1628 region->size = range->size; 1629 1630 list_add_tail(®ion->list, &sev->regions_list); 1631 mutex_unlock(&kvm->lock); 1632 1633 /* 1634 * The guest may change the memory encryption attribute from C=0 -> C=1 1635 * or vice versa for this memory range. Lets make sure caches are 1636 * flushed to ensure that guest data gets written into memory with 1637 * correct C-bit. 1638 */ 1639 sev_clflush_pages(region->pages, region->npages); 1640 1641 return ret; 1642 1643 e_free: 1644 kfree(region); 1645 return ret; 1646 } 1647 1648 static struct enc_region * 1649 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1650 { 1651 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1652 struct list_head *head = &sev->regions_list; 1653 struct enc_region *i; 1654 1655 list_for_each_entry(i, head, list) { 1656 if (i->uaddr == range->addr && 1657 i->size == range->size) 1658 return i; 1659 } 1660 1661 return NULL; 1662 } 1663 1664 static void __unregister_enc_region_locked(struct kvm *kvm, 1665 struct enc_region *region) 1666 { 1667 sev_unpin_memory(kvm, region->pages, region->npages); 1668 list_del(®ion->list); 1669 kfree(region); 1670 } 1671 1672 int svm_unregister_enc_region(struct kvm *kvm, 1673 struct kvm_enc_region *range) 1674 { 1675 struct enc_region *region; 1676 int ret; 1677 1678 /* If kvm is mirroring encryption context it isn't responsible for it */ 1679 if (is_mirroring_enc_context(kvm)) 1680 return -EINVAL; 1681 1682 mutex_lock(&kvm->lock); 1683 1684 if (!sev_guest(kvm)) { 1685 ret = -ENOTTY; 1686 goto failed; 1687 } 1688 1689 region = find_enc_region(kvm, range); 1690 if (!region) { 1691 ret = -EINVAL; 1692 goto failed; 1693 } 1694 1695 /* 1696 * Ensure that all guest tagged cache entries are flushed before 1697 * releasing the pages back to the system for use. CLFLUSH will 1698 * not do this, so issue a WBINVD. 1699 */ 1700 wbinvd_on_all_cpus(); 1701 1702 __unregister_enc_region_locked(kvm, region); 1703 1704 mutex_unlock(&kvm->lock); 1705 return 0; 1706 1707 failed: 1708 mutex_unlock(&kvm->lock); 1709 return ret; 1710 } 1711 1712 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd) 1713 { 1714 struct file *source_kvm_file; 1715 struct kvm *source_kvm; 1716 struct kvm_sev_info *mirror_sev; 1717 unsigned int asid; 1718 int ret; 1719 1720 source_kvm_file = fget(source_fd); 1721 if (!file_is_kvm(source_kvm_file)) { 1722 ret = -EBADF; 1723 goto e_source_put; 1724 } 1725 1726 source_kvm = source_kvm_file->private_data; 1727 mutex_lock(&source_kvm->lock); 1728 1729 if (!sev_guest(source_kvm)) { 1730 ret = -EINVAL; 1731 goto e_source_unlock; 1732 } 1733 1734 /* Mirrors of mirrors should work, but let's not get silly */ 1735 if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) { 1736 ret = -EINVAL; 1737 goto e_source_unlock; 1738 } 1739 1740 asid = to_kvm_svm(source_kvm)->sev_info.asid; 1741 1742 /* 1743 * The mirror kvm holds an enc_context_owner ref so its asid can't 1744 * disappear until we're done with it 1745 */ 1746 kvm_get_kvm(source_kvm); 1747 1748 fput(source_kvm_file); 1749 mutex_unlock(&source_kvm->lock); 1750 mutex_lock(&kvm->lock); 1751 1752 if (sev_guest(kvm)) { 1753 ret = -EINVAL; 1754 goto e_mirror_unlock; 1755 } 1756 1757 /* Set enc_context_owner and copy its encryption context over */ 1758 mirror_sev = &to_kvm_svm(kvm)->sev_info; 1759 mirror_sev->enc_context_owner = source_kvm; 1760 mirror_sev->asid = asid; 1761 mirror_sev->active = true; 1762 1763 mutex_unlock(&kvm->lock); 1764 return 0; 1765 1766 e_mirror_unlock: 1767 mutex_unlock(&kvm->lock); 1768 kvm_put_kvm(source_kvm); 1769 return ret; 1770 e_source_unlock: 1771 mutex_unlock(&source_kvm->lock); 1772 e_source_put: 1773 if (source_kvm_file) 1774 fput(source_kvm_file); 1775 return ret; 1776 } 1777 1778 void sev_vm_destroy(struct kvm *kvm) 1779 { 1780 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1781 struct list_head *head = &sev->regions_list; 1782 struct list_head *pos, *q; 1783 1784 if (!sev_guest(kvm)) 1785 return; 1786 1787 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 1788 if (is_mirroring_enc_context(kvm)) { 1789 kvm_put_kvm(sev->enc_context_owner); 1790 return; 1791 } 1792 1793 mutex_lock(&kvm->lock); 1794 1795 /* 1796 * Ensure that all guest tagged cache entries are flushed before 1797 * releasing the pages back to the system for use. CLFLUSH will 1798 * not do this, so issue a WBINVD. 1799 */ 1800 wbinvd_on_all_cpus(); 1801 1802 /* 1803 * if userspace was terminated before unregistering the memory regions 1804 * then lets unpin all the registered memory. 1805 */ 1806 if (!list_empty(head)) { 1807 list_for_each_safe(pos, q, head) { 1808 __unregister_enc_region_locked(kvm, 1809 list_entry(pos, struct enc_region, list)); 1810 cond_resched(); 1811 } 1812 } 1813 1814 mutex_unlock(&kvm->lock); 1815 1816 sev_unbind_asid(kvm, sev->handle); 1817 sev_asid_free(sev); 1818 } 1819 1820 void __init sev_set_cpu_caps(void) 1821 { 1822 if (!sev_enabled) 1823 kvm_cpu_cap_clear(X86_FEATURE_SEV); 1824 if (!sev_es_enabled) 1825 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 1826 } 1827 1828 void __init sev_hardware_setup(void) 1829 { 1830 #ifdef CONFIG_KVM_AMD_SEV 1831 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 1832 bool sev_es_supported = false; 1833 bool sev_supported = false; 1834 1835 if (!sev_enabled || !npt_enabled) 1836 goto out; 1837 1838 /* Does the CPU support SEV? */ 1839 if (!boot_cpu_has(X86_FEATURE_SEV)) 1840 goto out; 1841 1842 /* Retrieve SEV CPUID information */ 1843 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 1844 1845 /* Set encryption bit location for SEV-ES guests */ 1846 sev_enc_bit = ebx & 0x3f; 1847 1848 /* Maximum number of encrypted guests supported simultaneously */ 1849 max_sev_asid = ecx; 1850 if (!max_sev_asid) 1851 goto out; 1852 1853 /* Minimum ASID value that should be used for SEV guest */ 1854 min_sev_asid = edx; 1855 sev_me_mask = 1UL << (ebx & 0x3f); 1856 1857 /* Initialize SEV ASID bitmaps */ 1858 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1859 if (!sev_asid_bitmap) 1860 goto out; 1861 1862 sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1863 if (!sev_reclaim_asid_bitmap) { 1864 bitmap_free(sev_asid_bitmap); 1865 sev_asid_bitmap = NULL; 1866 goto out; 1867 } 1868 1869 sev_asid_count = max_sev_asid - min_sev_asid + 1; 1870 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) 1871 goto out; 1872 1873 pr_info("SEV supported: %u ASIDs\n", sev_asid_count); 1874 sev_supported = true; 1875 1876 /* SEV-ES support requested? */ 1877 if (!sev_es_enabled) 1878 goto out; 1879 1880 /* Does the CPU support SEV-ES? */ 1881 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 1882 goto out; 1883 1884 /* Has the system been allocated ASIDs for SEV-ES? */ 1885 if (min_sev_asid == 1) 1886 goto out; 1887 1888 sev_es_asid_count = min_sev_asid - 1; 1889 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) 1890 goto out; 1891 1892 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); 1893 sev_es_supported = true; 1894 1895 out: 1896 sev_enabled = sev_supported; 1897 sev_es_enabled = sev_es_supported; 1898 #endif 1899 } 1900 1901 void sev_hardware_teardown(void) 1902 { 1903 if (!sev_enabled) 1904 return; 1905 1906 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 1907 sev_flush_asids(0, max_sev_asid); 1908 1909 bitmap_free(sev_asid_bitmap); 1910 bitmap_free(sev_reclaim_asid_bitmap); 1911 1912 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 1913 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 1914 } 1915 1916 int sev_cpu_init(struct svm_cpu_data *sd) 1917 { 1918 if (!sev_enabled) 1919 return 0; 1920 1921 sd->sev_vmcbs = kcalloc(max_sev_asid + 1, sizeof(void *), GFP_KERNEL); 1922 if (!sd->sev_vmcbs) 1923 return -ENOMEM; 1924 1925 return 0; 1926 } 1927 1928 /* 1929 * Pages used by hardware to hold guest encrypted state must be flushed before 1930 * returning them to the system. 1931 */ 1932 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, 1933 unsigned long len) 1934 { 1935 /* 1936 * If hardware enforced cache coherency for encrypted mappings of the 1937 * same physical page is supported, nothing to do. 1938 */ 1939 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) 1940 return; 1941 1942 /* 1943 * If the VM Page Flush MSR is supported, use it to flush the page 1944 * (using the page virtual address and the guest ASID). 1945 */ 1946 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { 1947 struct kvm_sev_info *sev; 1948 unsigned long va_start; 1949 u64 start, stop; 1950 1951 /* Align start and stop to page boundaries. */ 1952 va_start = (unsigned long)va; 1953 start = (u64)va_start & PAGE_MASK; 1954 stop = PAGE_ALIGN((u64)va_start + len); 1955 1956 if (start < stop) { 1957 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 1958 1959 while (start < stop) { 1960 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, 1961 start | sev->asid); 1962 1963 start += PAGE_SIZE; 1964 } 1965 1966 return; 1967 } 1968 1969 WARN(1, "Address overflow, using WBINVD\n"); 1970 } 1971 1972 /* 1973 * Hardware should always have one of the above features, 1974 * but if not, use WBINVD and issue a warning. 1975 */ 1976 WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); 1977 wbinvd_on_all_cpus(); 1978 } 1979 1980 void sev_free_vcpu(struct kvm_vcpu *vcpu) 1981 { 1982 struct vcpu_svm *svm; 1983 1984 if (!sev_es_guest(vcpu->kvm)) 1985 return; 1986 1987 svm = to_svm(vcpu); 1988 1989 if (vcpu->arch.guest_state_protected) 1990 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE); 1991 __free_page(virt_to_page(svm->vmsa)); 1992 1993 if (svm->ghcb_sa_free) 1994 kfree(svm->ghcb_sa); 1995 } 1996 1997 static void dump_ghcb(struct vcpu_svm *svm) 1998 { 1999 struct ghcb *ghcb = svm->ghcb; 2000 unsigned int nbits; 2001 2002 /* Re-use the dump_invalid_vmcb module parameter */ 2003 if (!dump_invalid_vmcb) { 2004 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2005 return; 2006 } 2007 2008 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2009 2010 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2011 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2012 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2013 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2014 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2015 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2016 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2017 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2018 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2019 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2020 } 2021 2022 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2023 { 2024 struct kvm_vcpu *vcpu = &svm->vcpu; 2025 struct ghcb *ghcb = svm->ghcb; 2026 2027 /* 2028 * The GHCB protocol so far allows for the following data 2029 * to be returned: 2030 * GPRs RAX, RBX, RCX, RDX 2031 * 2032 * Copy their values, even if they may not have been written during the 2033 * VM-Exit. It's the guest's responsibility to not consume random data. 2034 */ 2035 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2036 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2037 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2038 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2039 } 2040 2041 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2042 { 2043 struct vmcb_control_area *control = &svm->vmcb->control; 2044 struct kvm_vcpu *vcpu = &svm->vcpu; 2045 struct ghcb *ghcb = svm->ghcb; 2046 u64 exit_code; 2047 2048 /* 2049 * The GHCB protocol so far allows for the following data 2050 * to be supplied: 2051 * GPRs RAX, RBX, RCX, RDX 2052 * XCR0 2053 * CPL 2054 * 2055 * VMMCALL allows the guest to provide extra registers. KVM also 2056 * expects RSI for hypercalls, so include that, too. 2057 * 2058 * Copy their values to the appropriate location if supplied. 2059 */ 2060 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2061 2062 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 2063 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 2064 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 2065 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 2066 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 2067 2068 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 2069 2070 if (ghcb_xcr0_is_valid(ghcb)) { 2071 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2072 kvm_update_cpuid_runtime(vcpu); 2073 } 2074 2075 /* Copy the GHCB exit information into the VMCB fields */ 2076 exit_code = ghcb_get_sw_exit_code(ghcb); 2077 control->exit_code = lower_32_bits(exit_code); 2078 control->exit_code_hi = upper_32_bits(exit_code); 2079 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2080 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2081 2082 /* Clear the valid entries fields */ 2083 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2084 } 2085 2086 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2087 { 2088 struct kvm_vcpu *vcpu; 2089 struct ghcb *ghcb; 2090 u64 exit_code = 0; 2091 2092 ghcb = svm->ghcb; 2093 2094 /* Only GHCB Usage code 0 is supported */ 2095 if (ghcb->ghcb_usage) 2096 goto vmgexit_err; 2097 2098 /* 2099 * Retrieve the exit code now even though is may not be marked valid 2100 * as it could help with debugging. 2101 */ 2102 exit_code = ghcb_get_sw_exit_code(ghcb); 2103 2104 if (!ghcb_sw_exit_code_is_valid(ghcb) || 2105 !ghcb_sw_exit_info_1_is_valid(ghcb) || 2106 !ghcb_sw_exit_info_2_is_valid(ghcb)) 2107 goto vmgexit_err; 2108 2109 switch (ghcb_get_sw_exit_code(ghcb)) { 2110 case SVM_EXIT_READ_DR7: 2111 break; 2112 case SVM_EXIT_WRITE_DR7: 2113 if (!ghcb_rax_is_valid(ghcb)) 2114 goto vmgexit_err; 2115 break; 2116 case SVM_EXIT_RDTSC: 2117 break; 2118 case SVM_EXIT_RDPMC: 2119 if (!ghcb_rcx_is_valid(ghcb)) 2120 goto vmgexit_err; 2121 break; 2122 case SVM_EXIT_CPUID: 2123 if (!ghcb_rax_is_valid(ghcb) || 2124 !ghcb_rcx_is_valid(ghcb)) 2125 goto vmgexit_err; 2126 if (ghcb_get_rax(ghcb) == 0xd) 2127 if (!ghcb_xcr0_is_valid(ghcb)) 2128 goto vmgexit_err; 2129 break; 2130 case SVM_EXIT_INVD: 2131 break; 2132 case SVM_EXIT_IOIO: 2133 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 2134 if (!ghcb_sw_scratch_is_valid(ghcb)) 2135 goto vmgexit_err; 2136 } else { 2137 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 2138 if (!ghcb_rax_is_valid(ghcb)) 2139 goto vmgexit_err; 2140 } 2141 break; 2142 case SVM_EXIT_MSR: 2143 if (!ghcb_rcx_is_valid(ghcb)) 2144 goto vmgexit_err; 2145 if (ghcb_get_sw_exit_info_1(ghcb)) { 2146 if (!ghcb_rax_is_valid(ghcb) || 2147 !ghcb_rdx_is_valid(ghcb)) 2148 goto vmgexit_err; 2149 } 2150 break; 2151 case SVM_EXIT_VMMCALL: 2152 if (!ghcb_rax_is_valid(ghcb) || 2153 !ghcb_cpl_is_valid(ghcb)) 2154 goto vmgexit_err; 2155 break; 2156 case SVM_EXIT_RDTSCP: 2157 break; 2158 case SVM_EXIT_WBINVD: 2159 break; 2160 case SVM_EXIT_MONITOR: 2161 if (!ghcb_rax_is_valid(ghcb) || 2162 !ghcb_rcx_is_valid(ghcb) || 2163 !ghcb_rdx_is_valid(ghcb)) 2164 goto vmgexit_err; 2165 break; 2166 case SVM_EXIT_MWAIT: 2167 if (!ghcb_rax_is_valid(ghcb) || 2168 !ghcb_rcx_is_valid(ghcb)) 2169 goto vmgexit_err; 2170 break; 2171 case SVM_VMGEXIT_MMIO_READ: 2172 case SVM_VMGEXIT_MMIO_WRITE: 2173 if (!ghcb_sw_scratch_is_valid(ghcb)) 2174 goto vmgexit_err; 2175 break; 2176 case SVM_VMGEXIT_NMI_COMPLETE: 2177 case SVM_VMGEXIT_AP_HLT_LOOP: 2178 case SVM_VMGEXIT_AP_JUMP_TABLE: 2179 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2180 break; 2181 default: 2182 goto vmgexit_err; 2183 } 2184 2185 return 0; 2186 2187 vmgexit_err: 2188 vcpu = &svm->vcpu; 2189 2190 if (ghcb->ghcb_usage) { 2191 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2192 ghcb->ghcb_usage); 2193 } else { 2194 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n", 2195 exit_code); 2196 dump_ghcb(svm); 2197 } 2198 2199 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2200 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 2201 vcpu->run->internal.ndata = 2; 2202 vcpu->run->internal.data[0] = exit_code; 2203 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 2204 2205 return -EINVAL; 2206 } 2207 2208 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2209 { 2210 if (!svm->ghcb) 2211 return; 2212 2213 if (svm->ghcb_sa_free) { 2214 /* 2215 * The scratch area lives outside the GHCB, so there is a 2216 * buffer that, depending on the operation performed, may 2217 * need to be synced, then freed. 2218 */ 2219 if (svm->ghcb_sa_sync) { 2220 kvm_write_guest(svm->vcpu.kvm, 2221 ghcb_get_sw_scratch(svm->ghcb), 2222 svm->ghcb_sa, svm->ghcb_sa_len); 2223 svm->ghcb_sa_sync = false; 2224 } 2225 2226 kfree(svm->ghcb_sa); 2227 svm->ghcb_sa = NULL; 2228 svm->ghcb_sa_free = false; 2229 } 2230 2231 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb); 2232 2233 sev_es_sync_to_ghcb(svm); 2234 2235 kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true); 2236 svm->ghcb = NULL; 2237 } 2238 2239 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2240 { 2241 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2242 int asid = sev_get_asid(svm->vcpu.kvm); 2243 2244 /* Assign the asid allocated with this SEV guest */ 2245 svm->asid = asid; 2246 2247 /* 2248 * Flush guest TLB: 2249 * 2250 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2251 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2252 */ 2253 if (sd->sev_vmcbs[asid] == svm->vmcb && 2254 svm->vcpu.arch.last_vmentry_cpu == cpu) 2255 return; 2256 2257 sd->sev_vmcbs[asid] = svm->vmcb; 2258 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2259 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2260 } 2261 2262 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2263 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2264 { 2265 struct vmcb_control_area *control = &svm->vmcb->control; 2266 struct ghcb *ghcb = svm->ghcb; 2267 u64 ghcb_scratch_beg, ghcb_scratch_end; 2268 u64 scratch_gpa_beg, scratch_gpa_end; 2269 void *scratch_va; 2270 2271 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 2272 if (!scratch_gpa_beg) { 2273 pr_err("vmgexit: scratch gpa not provided\n"); 2274 return false; 2275 } 2276 2277 scratch_gpa_end = scratch_gpa_beg + len; 2278 if (scratch_gpa_end < scratch_gpa_beg) { 2279 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2280 len, scratch_gpa_beg); 2281 return false; 2282 } 2283 2284 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2285 /* Scratch area begins within GHCB */ 2286 ghcb_scratch_beg = control->ghcb_gpa + 2287 offsetof(struct ghcb, shared_buffer); 2288 ghcb_scratch_end = control->ghcb_gpa + 2289 offsetof(struct ghcb, reserved_1); 2290 2291 /* 2292 * If the scratch area begins within the GHCB, it must be 2293 * completely contained in the GHCB shared buffer area. 2294 */ 2295 if (scratch_gpa_beg < ghcb_scratch_beg || 2296 scratch_gpa_end > ghcb_scratch_end) { 2297 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2298 scratch_gpa_beg, scratch_gpa_end); 2299 return false; 2300 } 2301 2302 scratch_va = (void *)svm->ghcb; 2303 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2304 } else { 2305 /* 2306 * The guest memory must be read into a kernel buffer, so 2307 * limit the size 2308 */ 2309 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2310 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2311 len, GHCB_SCRATCH_AREA_LIMIT); 2312 return false; 2313 } 2314 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT); 2315 if (!scratch_va) 2316 return false; 2317 2318 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2319 /* Unable to copy scratch area from guest */ 2320 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2321 2322 kfree(scratch_va); 2323 return false; 2324 } 2325 2326 /* 2327 * The scratch area is outside the GHCB. The operation will 2328 * dictate whether the buffer needs to be synced before running 2329 * the vCPU next time (i.e. a read was requested so the data 2330 * must be written back to the guest memory). 2331 */ 2332 svm->ghcb_sa_sync = sync; 2333 svm->ghcb_sa_free = true; 2334 } 2335 2336 svm->ghcb_sa = scratch_va; 2337 svm->ghcb_sa_len = len; 2338 2339 return true; 2340 } 2341 2342 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2343 unsigned int pos) 2344 { 2345 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2346 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2347 } 2348 2349 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2350 { 2351 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2352 } 2353 2354 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2355 { 2356 svm->vmcb->control.ghcb_gpa = value; 2357 } 2358 2359 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2360 { 2361 struct vmcb_control_area *control = &svm->vmcb->control; 2362 struct kvm_vcpu *vcpu = &svm->vcpu; 2363 u64 ghcb_info; 2364 int ret = 1; 2365 2366 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2367 2368 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2369 control->ghcb_gpa); 2370 2371 switch (ghcb_info) { 2372 case GHCB_MSR_SEV_INFO_REQ: 2373 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2374 GHCB_VERSION_MIN, 2375 sev_enc_bit)); 2376 break; 2377 case GHCB_MSR_CPUID_REQ: { 2378 u64 cpuid_fn, cpuid_reg, cpuid_value; 2379 2380 cpuid_fn = get_ghcb_msr_bits(svm, 2381 GHCB_MSR_CPUID_FUNC_MASK, 2382 GHCB_MSR_CPUID_FUNC_POS); 2383 2384 /* Initialize the registers needed by the CPUID intercept */ 2385 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2386 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2387 2388 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2389 if (!ret) { 2390 ret = -EINVAL; 2391 break; 2392 } 2393 2394 cpuid_reg = get_ghcb_msr_bits(svm, 2395 GHCB_MSR_CPUID_REG_MASK, 2396 GHCB_MSR_CPUID_REG_POS); 2397 if (cpuid_reg == 0) 2398 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2399 else if (cpuid_reg == 1) 2400 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2401 else if (cpuid_reg == 2) 2402 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2403 else 2404 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2405 2406 set_ghcb_msr_bits(svm, cpuid_value, 2407 GHCB_MSR_CPUID_VALUE_MASK, 2408 GHCB_MSR_CPUID_VALUE_POS); 2409 2410 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2411 GHCB_MSR_INFO_MASK, 2412 GHCB_MSR_INFO_POS); 2413 break; 2414 } 2415 case GHCB_MSR_TERM_REQ: { 2416 u64 reason_set, reason_code; 2417 2418 reason_set = get_ghcb_msr_bits(svm, 2419 GHCB_MSR_TERM_REASON_SET_MASK, 2420 GHCB_MSR_TERM_REASON_SET_POS); 2421 reason_code = get_ghcb_msr_bits(svm, 2422 GHCB_MSR_TERM_REASON_MASK, 2423 GHCB_MSR_TERM_REASON_POS); 2424 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2425 reason_set, reason_code); 2426 fallthrough; 2427 } 2428 default: 2429 ret = -EINVAL; 2430 } 2431 2432 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2433 control->ghcb_gpa, ret); 2434 2435 return ret; 2436 } 2437 2438 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2439 { 2440 struct vcpu_svm *svm = to_svm(vcpu); 2441 struct vmcb_control_area *control = &svm->vmcb->control; 2442 u64 ghcb_gpa, exit_code; 2443 struct ghcb *ghcb; 2444 int ret; 2445 2446 /* Validate the GHCB */ 2447 ghcb_gpa = control->ghcb_gpa; 2448 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2449 return sev_handle_vmgexit_msr_protocol(svm); 2450 2451 if (!ghcb_gpa) { 2452 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2453 return -EINVAL; 2454 } 2455 2456 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) { 2457 /* Unable to map GHCB from guest */ 2458 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2459 ghcb_gpa); 2460 return -EINVAL; 2461 } 2462 2463 svm->ghcb = svm->ghcb_map.hva; 2464 ghcb = svm->ghcb_map.hva; 2465 2466 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); 2467 2468 exit_code = ghcb_get_sw_exit_code(ghcb); 2469 2470 ret = sev_es_validate_vmgexit(svm); 2471 if (ret) 2472 return ret; 2473 2474 sev_es_sync_from_ghcb(svm); 2475 ghcb_set_sw_exit_info_1(ghcb, 0); 2476 ghcb_set_sw_exit_info_2(ghcb, 0); 2477 2478 ret = -EINVAL; 2479 switch (exit_code) { 2480 case SVM_VMGEXIT_MMIO_READ: 2481 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) 2482 break; 2483 2484 ret = kvm_sev_es_mmio_read(vcpu, 2485 control->exit_info_1, 2486 control->exit_info_2, 2487 svm->ghcb_sa); 2488 break; 2489 case SVM_VMGEXIT_MMIO_WRITE: 2490 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) 2491 break; 2492 2493 ret = kvm_sev_es_mmio_write(vcpu, 2494 control->exit_info_1, 2495 control->exit_info_2, 2496 svm->ghcb_sa); 2497 break; 2498 case SVM_VMGEXIT_NMI_COMPLETE: 2499 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); 2500 break; 2501 case SVM_VMGEXIT_AP_HLT_LOOP: 2502 ret = kvm_emulate_ap_reset_hold(vcpu); 2503 break; 2504 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2505 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2506 2507 switch (control->exit_info_1) { 2508 case 0: 2509 /* Set AP jump table address */ 2510 sev->ap_jump_table = control->exit_info_2; 2511 break; 2512 case 1: 2513 /* Get AP jump table address */ 2514 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 2515 break; 2516 default: 2517 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2518 control->exit_info_1); 2519 ghcb_set_sw_exit_info_1(ghcb, 1); 2520 ghcb_set_sw_exit_info_2(ghcb, 2521 X86_TRAP_UD | 2522 SVM_EVTINJ_TYPE_EXEPT | 2523 SVM_EVTINJ_VALID); 2524 } 2525 2526 ret = 1; 2527 break; 2528 } 2529 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2530 vcpu_unimpl(vcpu, 2531 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2532 control->exit_info_1, control->exit_info_2); 2533 break; 2534 default: 2535 ret = svm_invoke_exit_handler(vcpu, exit_code); 2536 } 2537 2538 return ret; 2539 } 2540 2541 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2542 { 2543 if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2)) 2544 return -EINVAL; 2545 2546 return kvm_sev_es_string_io(&svm->vcpu, size, port, 2547 svm->ghcb_sa, svm->ghcb_sa_len, in); 2548 } 2549 2550 void sev_es_init_vmcb(struct vcpu_svm *svm) 2551 { 2552 struct kvm_vcpu *vcpu = &svm->vcpu; 2553 2554 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2555 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2556 2557 /* 2558 * An SEV-ES guest requires a VMSA area that is a separate from the 2559 * VMCB page. Do not include the encryption mask on the VMSA physical 2560 * address since hardware will access it using the guest key. 2561 */ 2562 svm->vmcb->control.vmsa_pa = __pa(svm->vmsa); 2563 2564 /* Can't intercept CR register access, HV can't modify CR registers */ 2565 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2566 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2567 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2568 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2569 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2570 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2571 2572 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2573 2574 /* Track EFER/CR register changes */ 2575 svm_set_intercept(svm, TRAP_EFER_WRITE); 2576 svm_set_intercept(svm, TRAP_CR0_WRITE); 2577 svm_set_intercept(svm, TRAP_CR4_WRITE); 2578 svm_set_intercept(svm, TRAP_CR8_WRITE); 2579 2580 /* No support for enable_vmware_backdoor */ 2581 clr_exception_intercept(svm, GP_VECTOR); 2582 2583 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2584 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2585 2586 /* Clear intercepts on selected MSRs */ 2587 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2588 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2589 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2590 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2591 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2592 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2593 } 2594 2595 void sev_es_create_vcpu(struct vcpu_svm *svm) 2596 { 2597 /* 2598 * Set the GHCB MSR value as per the GHCB specification when creating 2599 * a vCPU for an SEV-ES guest. 2600 */ 2601 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2602 GHCB_VERSION_MIN, 2603 sev_enc_bit)); 2604 } 2605 2606 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) 2607 { 2608 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2609 struct vmcb_save_area *hostsa; 2610 2611 /* 2612 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 2613 * of which one step is to perform a VMLOAD. Since hardware does not 2614 * perform a VMSAVE on VMRUN, the host savearea must be updated. 2615 */ 2616 vmsave(__sme_page_pa(sd->save_area)); 2617 2618 /* XCR0 is restored on VMEXIT, save the current host value */ 2619 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); 2620 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 2621 2622 /* PKRU is restored on VMEXIT, save the current host value */ 2623 hostsa->pkru = read_pkru(); 2624 2625 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 2626 hostsa->xss = host_xss; 2627 } 2628 2629 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 2630 { 2631 struct vcpu_svm *svm = to_svm(vcpu); 2632 2633 /* First SIPI: Use the values as initially set by the VMM */ 2634 if (!svm->received_first_sipi) { 2635 svm->received_first_sipi = true; 2636 return; 2637 } 2638 2639 /* 2640 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 2641 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 2642 * non-zero value. 2643 */ 2644 if (!svm->ghcb) 2645 return; 2646 2647 ghcb_set_sw_exit_info_2(svm->ghcb, 1); 2648 } 2649