1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 18 #include "x86.h" 19 #include "svm.h" 20 21 static int sev_flush_asids(void); 22 static DECLARE_RWSEM(sev_deactivate_lock); 23 static DEFINE_MUTEX(sev_bitmap_lock); 24 unsigned int max_sev_asid; 25 static unsigned int min_sev_asid; 26 static unsigned long *sev_asid_bitmap; 27 static unsigned long *sev_reclaim_asid_bitmap; 28 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT) 29 30 struct enc_region { 31 struct list_head list; 32 unsigned long npages; 33 struct page **pages; 34 unsigned long uaddr; 35 unsigned long size; 36 }; 37 38 static int sev_flush_asids(void) 39 { 40 int ret, error = 0; 41 42 /* 43 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 44 * so it must be guarded. 45 */ 46 down_write(&sev_deactivate_lock); 47 48 wbinvd_on_all_cpus(); 49 ret = sev_guest_df_flush(&error); 50 51 up_write(&sev_deactivate_lock); 52 53 if (ret) 54 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 55 56 return ret; 57 } 58 59 /* Must be called with the sev_bitmap_lock held */ 60 static bool __sev_recycle_asids(void) 61 { 62 int pos; 63 64 /* Check if there are any ASIDs to reclaim before performing a flush */ 65 pos = find_next_bit(sev_reclaim_asid_bitmap, 66 max_sev_asid, min_sev_asid - 1); 67 if (pos >= max_sev_asid) 68 return false; 69 70 if (sev_flush_asids()) 71 return false; 72 73 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 74 max_sev_asid); 75 bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid); 76 77 return true; 78 } 79 80 static int sev_asid_new(void) 81 { 82 bool retry = true; 83 int pos; 84 85 mutex_lock(&sev_bitmap_lock); 86 87 /* 88 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid. 89 */ 90 again: 91 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1); 92 if (pos >= max_sev_asid) { 93 if (retry && __sev_recycle_asids()) { 94 retry = false; 95 goto again; 96 } 97 mutex_unlock(&sev_bitmap_lock); 98 return -EBUSY; 99 } 100 101 __set_bit(pos, sev_asid_bitmap); 102 103 mutex_unlock(&sev_bitmap_lock); 104 105 return pos + 1; 106 } 107 108 static int sev_get_asid(struct kvm *kvm) 109 { 110 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 111 112 return sev->asid; 113 } 114 115 static void sev_asid_free(int asid) 116 { 117 struct svm_cpu_data *sd; 118 int cpu, pos; 119 120 mutex_lock(&sev_bitmap_lock); 121 122 pos = asid - 1; 123 __set_bit(pos, sev_reclaim_asid_bitmap); 124 125 for_each_possible_cpu(cpu) { 126 sd = per_cpu(svm_data, cpu); 127 sd->sev_vmcbs[pos] = NULL; 128 } 129 130 mutex_unlock(&sev_bitmap_lock); 131 } 132 133 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 134 { 135 struct sev_data_decommission *decommission; 136 struct sev_data_deactivate *data; 137 138 if (!handle) 139 return; 140 141 data = kzalloc(sizeof(*data), GFP_KERNEL); 142 if (!data) 143 return; 144 145 /* deactivate handle */ 146 data->handle = handle; 147 148 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 149 down_read(&sev_deactivate_lock); 150 sev_guest_deactivate(data, NULL); 151 up_read(&sev_deactivate_lock); 152 153 kfree(data); 154 155 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL); 156 if (!decommission) 157 return; 158 159 /* decommission handle */ 160 decommission->handle = handle; 161 sev_guest_decommission(decommission, NULL); 162 163 kfree(decommission); 164 } 165 166 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 167 { 168 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 169 int asid, ret; 170 171 ret = -EBUSY; 172 if (unlikely(sev->active)) 173 return ret; 174 175 asid = sev_asid_new(); 176 if (asid < 0) 177 return ret; 178 179 ret = sev_platform_init(&argp->error); 180 if (ret) 181 goto e_free; 182 183 sev->active = true; 184 sev->asid = asid; 185 INIT_LIST_HEAD(&sev->regions_list); 186 187 return 0; 188 189 e_free: 190 sev_asid_free(asid); 191 return ret; 192 } 193 194 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 195 { 196 struct sev_data_activate *data; 197 int asid = sev_get_asid(kvm); 198 int ret; 199 200 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 201 if (!data) 202 return -ENOMEM; 203 204 /* activate ASID on the given handle */ 205 data->handle = handle; 206 data->asid = asid; 207 ret = sev_guest_activate(data, error); 208 kfree(data); 209 210 return ret; 211 } 212 213 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 214 { 215 struct fd f; 216 int ret; 217 218 f = fdget(fd); 219 if (!f.file) 220 return -EBADF; 221 222 ret = sev_issue_cmd_external_user(f.file, id, data, error); 223 224 fdput(f); 225 return ret; 226 } 227 228 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 229 { 230 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 231 232 return __sev_issue_cmd(sev->fd, id, data, error); 233 } 234 235 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 236 { 237 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 238 struct sev_data_launch_start *start; 239 struct kvm_sev_launch_start params; 240 void *dh_blob, *session_blob; 241 int *error = &argp->error; 242 int ret; 243 244 if (!sev_guest(kvm)) 245 return -ENOTTY; 246 247 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 248 return -EFAULT; 249 250 start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT); 251 if (!start) 252 return -ENOMEM; 253 254 dh_blob = NULL; 255 if (params.dh_uaddr) { 256 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 257 if (IS_ERR(dh_blob)) { 258 ret = PTR_ERR(dh_blob); 259 goto e_free; 260 } 261 262 start->dh_cert_address = __sme_set(__pa(dh_blob)); 263 start->dh_cert_len = params.dh_len; 264 } 265 266 session_blob = NULL; 267 if (params.session_uaddr) { 268 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 269 if (IS_ERR(session_blob)) { 270 ret = PTR_ERR(session_blob); 271 goto e_free_dh; 272 } 273 274 start->session_address = __sme_set(__pa(session_blob)); 275 start->session_len = params.session_len; 276 } 277 278 start->handle = params.handle; 279 start->policy = params.policy; 280 281 /* create memory encryption context */ 282 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error); 283 if (ret) 284 goto e_free_session; 285 286 /* Bind ASID to this guest */ 287 ret = sev_bind_asid(kvm, start->handle, error); 288 if (ret) 289 goto e_free_session; 290 291 /* return handle to userspace */ 292 params.handle = start->handle; 293 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 294 sev_unbind_asid(kvm, start->handle); 295 ret = -EFAULT; 296 goto e_free_session; 297 } 298 299 sev->handle = start->handle; 300 sev->fd = argp->sev_fd; 301 302 e_free_session: 303 kfree(session_blob); 304 e_free_dh: 305 kfree(dh_blob); 306 e_free: 307 kfree(start); 308 return ret; 309 } 310 311 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 312 unsigned long ulen, unsigned long *n, 313 int write) 314 { 315 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 316 unsigned long npages, size; 317 int npinned; 318 unsigned long locked, lock_limit; 319 struct page **pages; 320 unsigned long first, last; 321 int ret; 322 323 if (ulen == 0 || uaddr + ulen < uaddr) 324 return ERR_PTR(-EINVAL); 325 326 /* Calculate number of pages. */ 327 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 328 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 329 npages = (last - first + 1); 330 331 locked = sev->pages_locked + npages; 332 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 333 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 334 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 335 return ERR_PTR(-ENOMEM); 336 } 337 338 if (WARN_ON_ONCE(npages > INT_MAX)) 339 return ERR_PTR(-EINVAL); 340 341 /* Avoid using vmalloc for smaller buffers. */ 342 size = npages * sizeof(struct page *); 343 if (size > PAGE_SIZE) 344 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 345 else 346 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 347 348 if (!pages) 349 return ERR_PTR(-ENOMEM); 350 351 /* Pin the user virtual address. */ 352 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 353 if (npinned != npages) { 354 pr_err("SEV: Failure locking %lu pages.\n", npages); 355 ret = -ENOMEM; 356 goto err; 357 } 358 359 *n = npages; 360 sev->pages_locked = locked; 361 362 return pages; 363 364 err: 365 if (npinned > 0) 366 unpin_user_pages(pages, npinned); 367 368 kvfree(pages); 369 return ERR_PTR(ret); 370 } 371 372 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 373 unsigned long npages) 374 { 375 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 376 377 unpin_user_pages(pages, npages); 378 kvfree(pages); 379 sev->pages_locked -= npages; 380 } 381 382 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 383 { 384 uint8_t *page_virtual; 385 unsigned long i; 386 387 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 388 pages == NULL) 389 return; 390 391 for (i = 0; i < npages; i++) { 392 page_virtual = kmap_atomic(pages[i]); 393 clflush_cache_range(page_virtual, PAGE_SIZE); 394 kunmap_atomic(page_virtual); 395 } 396 } 397 398 static unsigned long get_num_contig_pages(unsigned long idx, 399 struct page **inpages, unsigned long npages) 400 { 401 unsigned long paddr, next_paddr; 402 unsigned long i = idx + 1, pages = 1; 403 404 /* find the number of contiguous pages starting from idx */ 405 paddr = __sme_page_pa(inpages[idx]); 406 while (i < npages) { 407 next_paddr = __sme_page_pa(inpages[i++]); 408 if ((paddr + PAGE_SIZE) == next_paddr) { 409 pages++; 410 paddr = next_paddr; 411 continue; 412 } 413 break; 414 } 415 416 return pages; 417 } 418 419 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 420 { 421 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 422 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 423 struct kvm_sev_launch_update_data params; 424 struct sev_data_launch_update_data *data; 425 struct page **inpages; 426 int ret; 427 428 if (!sev_guest(kvm)) 429 return -ENOTTY; 430 431 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 432 return -EFAULT; 433 434 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 435 if (!data) 436 return -ENOMEM; 437 438 vaddr = params.uaddr; 439 size = params.len; 440 vaddr_end = vaddr + size; 441 442 /* Lock the user memory. */ 443 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 444 if (IS_ERR(inpages)) { 445 ret = PTR_ERR(inpages); 446 goto e_free; 447 } 448 449 /* 450 * The LAUNCH_UPDATE command will perform in-place encryption of the 451 * memory content (i.e it will write the same memory region with C=1). 452 * It's possible that the cache may contain the data with C=0, i.e., 453 * unencrypted so invalidate it first. 454 */ 455 sev_clflush_pages(inpages, npages); 456 457 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 458 int offset, len; 459 460 /* 461 * If the user buffer is not page-aligned, calculate the offset 462 * within the page. 463 */ 464 offset = vaddr & (PAGE_SIZE - 1); 465 466 /* Calculate the number of pages that can be encrypted in one go. */ 467 pages = get_num_contig_pages(i, inpages, npages); 468 469 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 470 471 data->handle = sev->handle; 472 data->len = len; 473 data->address = __sme_page_pa(inpages[i]) + offset; 474 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error); 475 if (ret) 476 goto e_unpin; 477 478 size -= len; 479 next_vaddr = vaddr + len; 480 } 481 482 e_unpin: 483 /* content of memory is updated, mark pages dirty */ 484 for (i = 0; i < npages; i++) { 485 set_page_dirty_lock(inpages[i]); 486 mark_page_accessed(inpages[i]); 487 } 488 /* unlock the user pages */ 489 sev_unpin_memory(kvm, inpages, npages); 490 e_free: 491 kfree(data); 492 return ret; 493 } 494 495 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 496 { 497 void __user *measure = (void __user *)(uintptr_t)argp->data; 498 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 499 struct sev_data_launch_measure *data; 500 struct kvm_sev_launch_measure params; 501 void __user *p = NULL; 502 void *blob = NULL; 503 int ret; 504 505 if (!sev_guest(kvm)) 506 return -ENOTTY; 507 508 if (copy_from_user(¶ms, measure, sizeof(params))) 509 return -EFAULT; 510 511 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 512 if (!data) 513 return -ENOMEM; 514 515 /* User wants to query the blob length */ 516 if (!params.len) 517 goto cmd; 518 519 p = (void __user *)(uintptr_t)params.uaddr; 520 if (p) { 521 if (params.len > SEV_FW_BLOB_MAX_SIZE) { 522 ret = -EINVAL; 523 goto e_free; 524 } 525 526 ret = -ENOMEM; 527 blob = kmalloc(params.len, GFP_KERNEL); 528 if (!blob) 529 goto e_free; 530 531 data->address = __psp_pa(blob); 532 data->len = params.len; 533 } 534 535 cmd: 536 data->handle = sev->handle; 537 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error); 538 539 /* 540 * If we query the session length, FW responded with expected data. 541 */ 542 if (!params.len) 543 goto done; 544 545 if (ret) 546 goto e_free_blob; 547 548 if (blob) { 549 if (copy_to_user(p, blob, params.len)) 550 ret = -EFAULT; 551 } 552 553 done: 554 params.len = data->len; 555 if (copy_to_user(measure, ¶ms, sizeof(params))) 556 ret = -EFAULT; 557 e_free_blob: 558 kfree(blob); 559 e_free: 560 kfree(data); 561 return ret; 562 } 563 564 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 565 { 566 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 567 struct sev_data_launch_finish *data; 568 int ret; 569 570 if (!sev_guest(kvm)) 571 return -ENOTTY; 572 573 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 574 if (!data) 575 return -ENOMEM; 576 577 data->handle = sev->handle; 578 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error); 579 580 kfree(data); 581 return ret; 582 } 583 584 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 585 { 586 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 587 struct kvm_sev_guest_status params; 588 struct sev_data_guest_status *data; 589 int ret; 590 591 if (!sev_guest(kvm)) 592 return -ENOTTY; 593 594 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 595 if (!data) 596 return -ENOMEM; 597 598 data->handle = sev->handle; 599 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error); 600 if (ret) 601 goto e_free; 602 603 params.policy = data->policy; 604 params.state = data->state; 605 params.handle = data->handle; 606 607 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 608 ret = -EFAULT; 609 e_free: 610 kfree(data); 611 return ret; 612 } 613 614 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 615 unsigned long dst, int size, 616 int *error, bool enc) 617 { 618 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 619 struct sev_data_dbg *data; 620 int ret; 621 622 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 623 if (!data) 624 return -ENOMEM; 625 626 data->handle = sev->handle; 627 data->dst_addr = dst; 628 data->src_addr = src; 629 data->len = size; 630 631 ret = sev_issue_cmd(kvm, 632 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 633 data, error); 634 kfree(data); 635 return ret; 636 } 637 638 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 639 unsigned long dst_paddr, int sz, int *err) 640 { 641 int offset; 642 643 /* 644 * Its safe to read more than we are asked, caller should ensure that 645 * destination has enough space. 646 */ 647 src_paddr = round_down(src_paddr, 16); 648 offset = src_paddr & 15; 649 sz = round_up(sz + offset, 16); 650 651 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 652 } 653 654 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 655 unsigned long __user dst_uaddr, 656 unsigned long dst_paddr, 657 int size, int *err) 658 { 659 struct page *tpage = NULL; 660 int ret, offset; 661 662 /* if inputs are not 16-byte then use intermediate buffer */ 663 if (!IS_ALIGNED(dst_paddr, 16) || 664 !IS_ALIGNED(paddr, 16) || 665 !IS_ALIGNED(size, 16)) { 666 tpage = (void *)alloc_page(GFP_KERNEL); 667 if (!tpage) 668 return -ENOMEM; 669 670 dst_paddr = __sme_page_pa(tpage); 671 } 672 673 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 674 if (ret) 675 goto e_free; 676 677 if (tpage) { 678 offset = paddr & 15; 679 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr, 680 page_address(tpage) + offset, size)) 681 ret = -EFAULT; 682 } 683 684 e_free: 685 if (tpage) 686 __free_page(tpage); 687 688 return ret; 689 } 690 691 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 692 unsigned long __user vaddr, 693 unsigned long dst_paddr, 694 unsigned long __user dst_vaddr, 695 int size, int *error) 696 { 697 struct page *src_tpage = NULL; 698 struct page *dst_tpage = NULL; 699 int ret, len = size; 700 701 /* If source buffer is not aligned then use an intermediate buffer */ 702 if (!IS_ALIGNED(vaddr, 16)) { 703 src_tpage = alloc_page(GFP_KERNEL); 704 if (!src_tpage) 705 return -ENOMEM; 706 707 if (copy_from_user(page_address(src_tpage), 708 (void __user *)(uintptr_t)vaddr, size)) { 709 __free_page(src_tpage); 710 return -EFAULT; 711 } 712 713 paddr = __sme_page_pa(src_tpage); 714 } 715 716 /* 717 * If destination buffer or length is not aligned then do read-modify-write: 718 * - decrypt destination in an intermediate buffer 719 * - copy the source buffer in an intermediate buffer 720 * - use the intermediate buffer as source buffer 721 */ 722 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 723 int dst_offset; 724 725 dst_tpage = alloc_page(GFP_KERNEL); 726 if (!dst_tpage) { 727 ret = -ENOMEM; 728 goto e_free; 729 } 730 731 ret = __sev_dbg_decrypt(kvm, dst_paddr, 732 __sme_page_pa(dst_tpage), size, error); 733 if (ret) 734 goto e_free; 735 736 /* 737 * If source is kernel buffer then use memcpy() otherwise 738 * copy_from_user(). 739 */ 740 dst_offset = dst_paddr & 15; 741 742 if (src_tpage) 743 memcpy(page_address(dst_tpage) + dst_offset, 744 page_address(src_tpage), size); 745 else { 746 if (copy_from_user(page_address(dst_tpage) + dst_offset, 747 (void __user *)(uintptr_t)vaddr, size)) { 748 ret = -EFAULT; 749 goto e_free; 750 } 751 } 752 753 paddr = __sme_page_pa(dst_tpage); 754 dst_paddr = round_down(dst_paddr, 16); 755 len = round_up(size, 16); 756 } 757 758 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 759 760 e_free: 761 if (src_tpage) 762 __free_page(src_tpage); 763 if (dst_tpage) 764 __free_page(dst_tpage); 765 return ret; 766 } 767 768 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 769 { 770 unsigned long vaddr, vaddr_end, next_vaddr; 771 unsigned long dst_vaddr; 772 struct page **src_p, **dst_p; 773 struct kvm_sev_dbg debug; 774 unsigned long n; 775 unsigned int size; 776 int ret; 777 778 if (!sev_guest(kvm)) 779 return -ENOTTY; 780 781 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 782 return -EFAULT; 783 784 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 785 return -EINVAL; 786 if (!debug.dst_uaddr) 787 return -EINVAL; 788 789 vaddr = debug.src_uaddr; 790 size = debug.len; 791 vaddr_end = vaddr + size; 792 dst_vaddr = debug.dst_uaddr; 793 794 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 795 int len, s_off, d_off; 796 797 /* lock userspace source and destination page */ 798 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 799 if (IS_ERR(src_p)) 800 return PTR_ERR(src_p); 801 802 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 803 if (IS_ERR(dst_p)) { 804 sev_unpin_memory(kvm, src_p, n); 805 return PTR_ERR(dst_p); 806 } 807 808 /* 809 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the 810 * memory content (i.e it will write the same memory region with C=1). 811 * It's possible that the cache may contain the data with C=0, i.e., 812 * unencrypted so invalidate it first. 813 */ 814 sev_clflush_pages(src_p, 1); 815 sev_clflush_pages(dst_p, 1); 816 817 /* 818 * Since user buffer may not be page aligned, calculate the 819 * offset within the page. 820 */ 821 s_off = vaddr & ~PAGE_MASK; 822 d_off = dst_vaddr & ~PAGE_MASK; 823 len = min_t(size_t, (PAGE_SIZE - s_off), size); 824 825 if (dec) 826 ret = __sev_dbg_decrypt_user(kvm, 827 __sme_page_pa(src_p[0]) + s_off, 828 dst_vaddr, 829 __sme_page_pa(dst_p[0]) + d_off, 830 len, &argp->error); 831 else 832 ret = __sev_dbg_encrypt_user(kvm, 833 __sme_page_pa(src_p[0]) + s_off, 834 vaddr, 835 __sme_page_pa(dst_p[0]) + d_off, 836 dst_vaddr, 837 len, &argp->error); 838 839 sev_unpin_memory(kvm, src_p, n); 840 sev_unpin_memory(kvm, dst_p, n); 841 842 if (ret) 843 goto err; 844 845 next_vaddr = vaddr + len; 846 dst_vaddr = dst_vaddr + len; 847 size -= len; 848 } 849 err: 850 return ret; 851 } 852 853 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 854 { 855 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 856 struct sev_data_launch_secret *data; 857 struct kvm_sev_launch_secret params; 858 struct page **pages; 859 void *blob, *hdr; 860 unsigned long n; 861 int ret, offset; 862 863 if (!sev_guest(kvm)) 864 return -ENOTTY; 865 866 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 867 return -EFAULT; 868 869 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 870 if (IS_ERR(pages)) 871 return PTR_ERR(pages); 872 873 /* 874 * The secret must be copied into contiguous memory region, lets verify 875 * that userspace memory pages are contiguous before we issue command. 876 */ 877 if (get_num_contig_pages(0, pages, n) != n) { 878 ret = -EINVAL; 879 goto e_unpin_memory; 880 } 881 882 ret = -ENOMEM; 883 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 884 if (!data) 885 goto e_unpin_memory; 886 887 offset = params.guest_uaddr & (PAGE_SIZE - 1); 888 data->guest_address = __sme_page_pa(pages[0]) + offset; 889 data->guest_len = params.guest_len; 890 891 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 892 if (IS_ERR(blob)) { 893 ret = PTR_ERR(blob); 894 goto e_free; 895 } 896 897 data->trans_address = __psp_pa(blob); 898 data->trans_len = params.trans_len; 899 900 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 901 if (IS_ERR(hdr)) { 902 ret = PTR_ERR(hdr); 903 goto e_free_blob; 904 } 905 data->hdr_address = __psp_pa(hdr); 906 data->hdr_len = params.hdr_len; 907 908 data->handle = sev->handle; 909 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error); 910 911 kfree(hdr); 912 913 e_free_blob: 914 kfree(blob); 915 e_free: 916 kfree(data); 917 e_unpin_memory: 918 sev_unpin_memory(kvm, pages, n); 919 return ret; 920 } 921 922 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 923 { 924 struct kvm_sev_cmd sev_cmd; 925 int r; 926 927 if (!svm_sev_enabled()) 928 return -ENOTTY; 929 930 if (!argp) 931 return 0; 932 933 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 934 return -EFAULT; 935 936 mutex_lock(&kvm->lock); 937 938 switch (sev_cmd.id) { 939 case KVM_SEV_INIT: 940 r = sev_guest_init(kvm, &sev_cmd); 941 break; 942 case KVM_SEV_LAUNCH_START: 943 r = sev_launch_start(kvm, &sev_cmd); 944 break; 945 case KVM_SEV_LAUNCH_UPDATE_DATA: 946 r = sev_launch_update_data(kvm, &sev_cmd); 947 break; 948 case KVM_SEV_LAUNCH_MEASURE: 949 r = sev_launch_measure(kvm, &sev_cmd); 950 break; 951 case KVM_SEV_LAUNCH_FINISH: 952 r = sev_launch_finish(kvm, &sev_cmd); 953 break; 954 case KVM_SEV_GUEST_STATUS: 955 r = sev_guest_status(kvm, &sev_cmd); 956 break; 957 case KVM_SEV_DBG_DECRYPT: 958 r = sev_dbg_crypt(kvm, &sev_cmd, true); 959 break; 960 case KVM_SEV_DBG_ENCRYPT: 961 r = sev_dbg_crypt(kvm, &sev_cmd, false); 962 break; 963 case KVM_SEV_LAUNCH_SECRET: 964 r = sev_launch_secret(kvm, &sev_cmd); 965 break; 966 default: 967 r = -EINVAL; 968 goto out; 969 } 970 971 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 972 r = -EFAULT; 973 974 out: 975 mutex_unlock(&kvm->lock); 976 return r; 977 } 978 979 int svm_register_enc_region(struct kvm *kvm, 980 struct kvm_enc_region *range) 981 { 982 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 983 struct enc_region *region; 984 int ret = 0; 985 986 if (!sev_guest(kvm)) 987 return -ENOTTY; 988 989 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 990 return -EINVAL; 991 992 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 993 if (!region) 994 return -ENOMEM; 995 996 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 997 if (IS_ERR(region->pages)) { 998 ret = PTR_ERR(region->pages); 999 goto e_free; 1000 } 1001 1002 /* 1003 * The guest may change the memory encryption attribute from C=0 -> C=1 1004 * or vice versa for this memory range. Lets make sure caches are 1005 * flushed to ensure that guest data gets written into memory with 1006 * correct C-bit. 1007 */ 1008 sev_clflush_pages(region->pages, region->npages); 1009 1010 region->uaddr = range->addr; 1011 region->size = range->size; 1012 1013 mutex_lock(&kvm->lock); 1014 list_add_tail(®ion->list, &sev->regions_list); 1015 mutex_unlock(&kvm->lock); 1016 1017 return ret; 1018 1019 e_free: 1020 kfree(region); 1021 return ret; 1022 } 1023 1024 static struct enc_region * 1025 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1026 { 1027 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1028 struct list_head *head = &sev->regions_list; 1029 struct enc_region *i; 1030 1031 list_for_each_entry(i, head, list) { 1032 if (i->uaddr == range->addr && 1033 i->size == range->size) 1034 return i; 1035 } 1036 1037 return NULL; 1038 } 1039 1040 static void __unregister_enc_region_locked(struct kvm *kvm, 1041 struct enc_region *region) 1042 { 1043 sev_unpin_memory(kvm, region->pages, region->npages); 1044 list_del(®ion->list); 1045 kfree(region); 1046 } 1047 1048 int svm_unregister_enc_region(struct kvm *kvm, 1049 struct kvm_enc_region *range) 1050 { 1051 struct enc_region *region; 1052 int ret; 1053 1054 mutex_lock(&kvm->lock); 1055 1056 if (!sev_guest(kvm)) { 1057 ret = -ENOTTY; 1058 goto failed; 1059 } 1060 1061 region = find_enc_region(kvm, range); 1062 if (!region) { 1063 ret = -EINVAL; 1064 goto failed; 1065 } 1066 1067 /* 1068 * Ensure that all guest tagged cache entries are flushed before 1069 * releasing the pages back to the system for use. CLFLUSH will 1070 * not do this, so issue a WBINVD. 1071 */ 1072 wbinvd_on_all_cpus(); 1073 1074 __unregister_enc_region_locked(kvm, region); 1075 1076 mutex_unlock(&kvm->lock); 1077 return 0; 1078 1079 failed: 1080 mutex_unlock(&kvm->lock); 1081 return ret; 1082 } 1083 1084 void sev_vm_destroy(struct kvm *kvm) 1085 { 1086 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1087 struct list_head *head = &sev->regions_list; 1088 struct list_head *pos, *q; 1089 1090 if (!sev_guest(kvm)) 1091 return; 1092 1093 mutex_lock(&kvm->lock); 1094 1095 /* 1096 * Ensure that all guest tagged cache entries are flushed before 1097 * releasing the pages back to the system for use. CLFLUSH will 1098 * not do this, so issue a WBINVD. 1099 */ 1100 wbinvd_on_all_cpus(); 1101 1102 /* 1103 * if userspace was terminated before unregistering the memory regions 1104 * then lets unpin all the registered memory. 1105 */ 1106 if (!list_empty(head)) { 1107 list_for_each_safe(pos, q, head) { 1108 __unregister_enc_region_locked(kvm, 1109 list_entry(pos, struct enc_region, list)); 1110 cond_resched(); 1111 } 1112 } 1113 1114 mutex_unlock(&kvm->lock); 1115 1116 sev_unbind_asid(kvm, sev->handle); 1117 sev_asid_free(sev->asid); 1118 } 1119 1120 int __init sev_hardware_setup(void) 1121 { 1122 struct sev_user_data_status *status; 1123 int rc; 1124 1125 /* Maximum number of encrypted guests supported simultaneously */ 1126 max_sev_asid = cpuid_ecx(0x8000001F); 1127 1128 if (!svm_sev_enabled()) 1129 return 1; 1130 1131 /* Minimum ASID value that should be used for SEV guest */ 1132 min_sev_asid = cpuid_edx(0x8000001F); 1133 1134 /* Initialize SEV ASID bitmaps */ 1135 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1136 if (!sev_asid_bitmap) 1137 return 1; 1138 1139 sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1140 if (!sev_reclaim_asid_bitmap) 1141 return 1; 1142 1143 status = kmalloc(sizeof(*status), GFP_KERNEL); 1144 if (!status) 1145 return 1; 1146 1147 /* 1148 * Check SEV platform status. 1149 * 1150 * PLATFORM_STATUS can be called in any state, if we failed to query 1151 * the PLATFORM status then either PSP firmware does not support SEV 1152 * feature or SEV firmware is dead. 1153 */ 1154 rc = sev_platform_status(status, NULL); 1155 if (rc) 1156 goto err; 1157 1158 pr_info("SEV supported\n"); 1159 1160 err: 1161 kfree(status); 1162 return rc; 1163 } 1164 1165 void sev_hardware_teardown(void) 1166 { 1167 if (!svm_sev_enabled()) 1168 return; 1169 1170 bitmap_free(sev_asid_bitmap); 1171 bitmap_free(sev_reclaim_asid_bitmap); 1172 1173 sev_flush_asids(); 1174 } 1175 1176 void pre_sev_run(struct vcpu_svm *svm, int cpu) 1177 { 1178 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1179 int asid = sev_get_asid(svm->vcpu.kvm); 1180 1181 /* Assign the asid allocated with this SEV guest */ 1182 svm->vmcb->control.asid = asid; 1183 1184 /* 1185 * Flush guest TLB: 1186 * 1187 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 1188 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 1189 */ 1190 if (sd->sev_vmcbs[asid] == svm->vmcb && 1191 svm->vcpu.arch.last_vmentry_cpu == cpu) 1192 return; 1193 1194 sd->sev_vmcbs[asid] = svm->vmcb; 1195 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 1196 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1197 } 1198