xref: /openbmc/linux/arch/x86/kvm/svm/sev.c (revision 7af6fbdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 
18 #include "x86.h"
19 #include "svm.h"
20 
21 static int sev_flush_asids(void);
22 static DECLARE_RWSEM(sev_deactivate_lock);
23 static DEFINE_MUTEX(sev_bitmap_lock);
24 unsigned int max_sev_asid;
25 static unsigned int min_sev_asid;
26 static unsigned long *sev_asid_bitmap;
27 static unsigned long *sev_reclaim_asid_bitmap;
28 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
29 
30 struct enc_region {
31 	struct list_head list;
32 	unsigned long npages;
33 	struct page **pages;
34 	unsigned long uaddr;
35 	unsigned long size;
36 };
37 
38 static int sev_flush_asids(void)
39 {
40 	int ret, error = 0;
41 
42 	/*
43 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
44 	 * so it must be guarded.
45 	 */
46 	down_write(&sev_deactivate_lock);
47 
48 	wbinvd_on_all_cpus();
49 	ret = sev_guest_df_flush(&error);
50 
51 	up_write(&sev_deactivate_lock);
52 
53 	if (ret)
54 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
55 
56 	return ret;
57 }
58 
59 /* Must be called with the sev_bitmap_lock held */
60 static bool __sev_recycle_asids(void)
61 {
62 	int pos;
63 
64 	/* Check if there are any ASIDs to reclaim before performing a flush */
65 	pos = find_next_bit(sev_reclaim_asid_bitmap,
66 			    max_sev_asid, min_sev_asid - 1);
67 	if (pos >= max_sev_asid)
68 		return false;
69 
70 	if (sev_flush_asids())
71 		return false;
72 
73 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
74 		   max_sev_asid);
75 	bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
76 
77 	return true;
78 }
79 
80 static int sev_asid_new(void)
81 {
82 	bool retry = true;
83 	int pos;
84 
85 	mutex_lock(&sev_bitmap_lock);
86 
87 	/*
88 	 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
89 	 */
90 again:
91 	pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
92 	if (pos >= max_sev_asid) {
93 		if (retry && __sev_recycle_asids()) {
94 			retry = false;
95 			goto again;
96 		}
97 		mutex_unlock(&sev_bitmap_lock);
98 		return -EBUSY;
99 	}
100 
101 	__set_bit(pos, sev_asid_bitmap);
102 
103 	mutex_unlock(&sev_bitmap_lock);
104 
105 	return pos + 1;
106 }
107 
108 static int sev_get_asid(struct kvm *kvm)
109 {
110 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
111 
112 	return sev->asid;
113 }
114 
115 static void sev_asid_free(int asid)
116 {
117 	struct svm_cpu_data *sd;
118 	int cpu, pos;
119 
120 	mutex_lock(&sev_bitmap_lock);
121 
122 	pos = asid - 1;
123 	__set_bit(pos, sev_reclaim_asid_bitmap);
124 
125 	for_each_possible_cpu(cpu) {
126 		sd = per_cpu(svm_data, cpu);
127 		sd->sev_vmcbs[pos] = NULL;
128 	}
129 
130 	mutex_unlock(&sev_bitmap_lock);
131 }
132 
133 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
134 {
135 	struct sev_data_decommission *decommission;
136 	struct sev_data_deactivate *data;
137 
138 	if (!handle)
139 		return;
140 
141 	data = kzalloc(sizeof(*data), GFP_KERNEL);
142 	if (!data)
143 		return;
144 
145 	/* deactivate handle */
146 	data->handle = handle;
147 
148 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
149 	down_read(&sev_deactivate_lock);
150 	sev_guest_deactivate(data, NULL);
151 	up_read(&sev_deactivate_lock);
152 
153 	kfree(data);
154 
155 	decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
156 	if (!decommission)
157 		return;
158 
159 	/* decommission handle */
160 	decommission->handle = handle;
161 	sev_guest_decommission(decommission, NULL);
162 
163 	kfree(decommission);
164 }
165 
166 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
167 {
168 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
169 	int asid, ret;
170 
171 	ret = -EBUSY;
172 	if (unlikely(sev->active))
173 		return ret;
174 
175 	asid = sev_asid_new();
176 	if (asid < 0)
177 		return ret;
178 
179 	ret = sev_platform_init(&argp->error);
180 	if (ret)
181 		goto e_free;
182 
183 	sev->active = true;
184 	sev->asid = asid;
185 	INIT_LIST_HEAD(&sev->regions_list);
186 
187 	return 0;
188 
189 e_free:
190 	sev_asid_free(asid);
191 	return ret;
192 }
193 
194 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
195 {
196 	struct sev_data_activate *data;
197 	int asid = sev_get_asid(kvm);
198 	int ret;
199 
200 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
201 	if (!data)
202 		return -ENOMEM;
203 
204 	/* activate ASID on the given handle */
205 	data->handle = handle;
206 	data->asid   = asid;
207 	ret = sev_guest_activate(data, error);
208 	kfree(data);
209 
210 	return ret;
211 }
212 
213 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
214 {
215 	struct fd f;
216 	int ret;
217 
218 	f = fdget(fd);
219 	if (!f.file)
220 		return -EBADF;
221 
222 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
223 
224 	fdput(f);
225 	return ret;
226 }
227 
228 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
229 {
230 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
231 
232 	return __sev_issue_cmd(sev->fd, id, data, error);
233 }
234 
235 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
236 {
237 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238 	struct sev_data_launch_start *start;
239 	struct kvm_sev_launch_start params;
240 	void *dh_blob, *session_blob;
241 	int *error = &argp->error;
242 	int ret;
243 
244 	if (!sev_guest(kvm))
245 		return -ENOTTY;
246 
247 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
248 		return -EFAULT;
249 
250 	start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
251 	if (!start)
252 		return -ENOMEM;
253 
254 	dh_blob = NULL;
255 	if (params.dh_uaddr) {
256 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
257 		if (IS_ERR(dh_blob)) {
258 			ret = PTR_ERR(dh_blob);
259 			goto e_free;
260 		}
261 
262 		start->dh_cert_address = __sme_set(__pa(dh_blob));
263 		start->dh_cert_len = params.dh_len;
264 	}
265 
266 	session_blob = NULL;
267 	if (params.session_uaddr) {
268 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
269 		if (IS_ERR(session_blob)) {
270 			ret = PTR_ERR(session_blob);
271 			goto e_free_dh;
272 		}
273 
274 		start->session_address = __sme_set(__pa(session_blob));
275 		start->session_len = params.session_len;
276 	}
277 
278 	start->handle = params.handle;
279 	start->policy = params.policy;
280 
281 	/* create memory encryption context */
282 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
283 	if (ret)
284 		goto e_free_session;
285 
286 	/* Bind ASID to this guest */
287 	ret = sev_bind_asid(kvm, start->handle, error);
288 	if (ret)
289 		goto e_free_session;
290 
291 	/* return handle to userspace */
292 	params.handle = start->handle;
293 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
294 		sev_unbind_asid(kvm, start->handle);
295 		ret = -EFAULT;
296 		goto e_free_session;
297 	}
298 
299 	sev->handle = start->handle;
300 	sev->fd = argp->sev_fd;
301 
302 e_free_session:
303 	kfree(session_blob);
304 e_free_dh:
305 	kfree(dh_blob);
306 e_free:
307 	kfree(start);
308 	return ret;
309 }
310 
311 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
312 				    unsigned long ulen, unsigned long *n,
313 				    int write)
314 {
315 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
316 	unsigned long npages, size;
317 	int npinned;
318 	unsigned long locked, lock_limit;
319 	struct page **pages;
320 	unsigned long first, last;
321 	int ret;
322 
323 	if (ulen == 0 || uaddr + ulen < uaddr)
324 		return ERR_PTR(-EINVAL);
325 
326 	/* Calculate number of pages. */
327 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
328 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
329 	npages = (last - first + 1);
330 
331 	locked = sev->pages_locked + npages;
332 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
333 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
334 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
335 		return ERR_PTR(-ENOMEM);
336 	}
337 
338 	if (WARN_ON_ONCE(npages > INT_MAX))
339 		return ERR_PTR(-EINVAL);
340 
341 	/* Avoid using vmalloc for smaller buffers. */
342 	size = npages * sizeof(struct page *);
343 	if (size > PAGE_SIZE)
344 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
345 	else
346 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
347 
348 	if (!pages)
349 		return ERR_PTR(-ENOMEM);
350 
351 	/* Pin the user virtual address. */
352 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
353 	if (npinned != npages) {
354 		pr_err("SEV: Failure locking %lu pages.\n", npages);
355 		ret = -ENOMEM;
356 		goto err;
357 	}
358 
359 	*n = npages;
360 	sev->pages_locked = locked;
361 
362 	return pages;
363 
364 err:
365 	if (npinned > 0)
366 		unpin_user_pages(pages, npinned);
367 
368 	kvfree(pages);
369 	return ERR_PTR(ret);
370 }
371 
372 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
373 			     unsigned long npages)
374 {
375 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
376 
377 	unpin_user_pages(pages, npages);
378 	kvfree(pages);
379 	sev->pages_locked -= npages;
380 }
381 
382 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
383 {
384 	uint8_t *page_virtual;
385 	unsigned long i;
386 
387 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
388 	    pages == NULL)
389 		return;
390 
391 	for (i = 0; i < npages; i++) {
392 		page_virtual = kmap_atomic(pages[i]);
393 		clflush_cache_range(page_virtual, PAGE_SIZE);
394 		kunmap_atomic(page_virtual);
395 	}
396 }
397 
398 static unsigned long get_num_contig_pages(unsigned long idx,
399 				struct page **inpages, unsigned long npages)
400 {
401 	unsigned long paddr, next_paddr;
402 	unsigned long i = idx + 1, pages = 1;
403 
404 	/* find the number of contiguous pages starting from idx */
405 	paddr = __sme_page_pa(inpages[idx]);
406 	while (i < npages) {
407 		next_paddr = __sme_page_pa(inpages[i++]);
408 		if ((paddr + PAGE_SIZE) == next_paddr) {
409 			pages++;
410 			paddr = next_paddr;
411 			continue;
412 		}
413 		break;
414 	}
415 
416 	return pages;
417 }
418 
419 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
420 {
421 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
422 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
423 	struct kvm_sev_launch_update_data params;
424 	struct sev_data_launch_update_data *data;
425 	struct page **inpages;
426 	int ret;
427 
428 	if (!sev_guest(kvm))
429 		return -ENOTTY;
430 
431 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
432 		return -EFAULT;
433 
434 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
435 	if (!data)
436 		return -ENOMEM;
437 
438 	vaddr = params.uaddr;
439 	size = params.len;
440 	vaddr_end = vaddr + size;
441 
442 	/* Lock the user memory. */
443 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
444 	if (IS_ERR(inpages)) {
445 		ret = PTR_ERR(inpages);
446 		goto e_free;
447 	}
448 
449 	/*
450 	 * The LAUNCH_UPDATE command will perform in-place encryption of the
451 	 * memory content (i.e it will write the same memory region with C=1).
452 	 * It's possible that the cache may contain the data with C=0, i.e.,
453 	 * unencrypted so invalidate it first.
454 	 */
455 	sev_clflush_pages(inpages, npages);
456 
457 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
458 		int offset, len;
459 
460 		/*
461 		 * If the user buffer is not page-aligned, calculate the offset
462 		 * within the page.
463 		 */
464 		offset = vaddr & (PAGE_SIZE - 1);
465 
466 		/* Calculate the number of pages that can be encrypted in one go. */
467 		pages = get_num_contig_pages(i, inpages, npages);
468 
469 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
470 
471 		data->handle = sev->handle;
472 		data->len = len;
473 		data->address = __sme_page_pa(inpages[i]) + offset;
474 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
475 		if (ret)
476 			goto e_unpin;
477 
478 		size -= len;
479 		next_vaddr = vaddr + len;
480 	}
481 
482 e_unpin:
483 	/* content of memory is updated, mark pages dirty */
484 	for (i = 0; i < npages; i++) {
485 		set_page_dirty_lock(inpages[i]);
486 		mark_page_accessed(inpages[i]);
487 	}
488 	/* unlock the user pages */
489 	sev_unpin_memory(kvm, inpages, npages);
490 e_free:
491 	kfree(data);
492 	return ret;
493 }
494 
495 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
496 {
497 	void __user *measure = (void __user *)(uintptr_t)argp->data;
498 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
499 	struct sev_data_launch_measure *data;
500 	struct kvm_sev_launch_measure params;
501 	void __user *p = NULL;
502 	void *blob = NULL;
503 	int ret;
504 
505 	if (!sev_guest(kvm))
506 		return -ENOTTY;
507 
508 	if (copy_from_user(&params, measure, sizeof(params)))
509 		return -EFAULT;
510 
511 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
512 	if (!data)
513 		return -ENOMEM;
514 
515 	/* User wants to query the blob length */
516 	if (!params.len)
517 		goto cmd;
518 
519 	p = (void __user *)(uintptr_t)params.uaddr;
520 	if (p) {
521 		if (params.len > SEV_FW_BLOB_MAX_SIZE) {
522 			ret = -EINVAL;
523 			goto e_free;
524 		}
525 
526 		ret = -ENOMEM;
527 		blob = kmalloc(params.len, GFP_KERNEL);
528 		if (!blob)
529 			goto e_free;
530 
531 		data->address = __psp_pa(blob);
532 		data->len = params.len;
533 	}
534 
535 cmd:
536 	data->handle = sev->handle;
537 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
538 
539 	/*
540 	 * If we query the session length, FW responded with expected data.
541 	 */
542 	if (!params.len)
543 		goto done;
544 
545 	if (ret)
546 		goto e_free_blob;
547 
548 	if (blob) {
549 		if (copy_to_user(p, blob, params.len))
550 			ret = -EFAULT;
551 	}
552 
553 done:
554 	params.len = data->len;
555 	if (copy_to_user(measure, &params, sizeof(params)))
556 		ret = -EFAULT;
557 e_free_blob:
558 	kfree(blob);
559 e_free:
560 	kfree(data);
561 	return ret;
562 }
563 
564 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
565 {
566 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
567 	struct sev_data_launch_finish *data;
568 	int ret;
569 
570 	if (!sev_guest(kvm))
571 		return -ENOTTY;
572 
573 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
574 	if (!data)
575 		return -ENOMEM;
576 
577 	data->handle = sev->handle;
578 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
579 
580 	kfree(data);
581 	return ret;
582 }
583 
584 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
585 {
586 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
587 	struct kvm_sev_guest_status params;
588 	struct sev_data_guest_status *data;
589 	int ret;
590 
591 	if (!sev_guest(kvm))
592 		return -ENOTTY;
593 
594 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
595 	if (!data)
596 		return -ENOMEM;
597 
598 	data->handle = sev->handle;
599 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
600 	if (ret)
601 		goto e_free;
602 
603 	params.policy = data->policy;
604 	params.state = data->state;
605 	params.handle = data->handle;
606 
607 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
608 		ret = -EFAULT;
609 e_free:
610 	kfree(data);
611 	return ret;
612 }
613 
614 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
615 			       unsigned long dst, int size,
616 			       int *error, bool enc)
617 {
618 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
619 	struct sev_data_dbg *data;
620 	int ret;
621 
622 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
623 	if (!data)
624 		return -ENOMEM;
625 
626 	data->handle = sev->handle;
627 	data->dst_addr = dst;
628 	data->src_addr = src;
629 	data->len = size;
630 
631 	ret = sev_issue_cmd(kvm,
632 			    enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
633 			    data, error);
634 	kfree(data);
635 	return ret;
636 }
637 
638 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
639 			     unsigned long dst_paddr, int sz, int *err)
640 {
641 	int offset;
642 
643 	/*
644 	 * Its safe to read more than we are asked, caller should ensure that
645 	 * destination has enough space.
646 	 */
647 	src_paddr = round_down(src_paddr, 16);
648 	offset = src_paddr & 15;
649 	sz = round_up(sz + offset, 16);
650 
651 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
652 }
653 
654 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
655 				  unsigned long __user dst_uaddr,
656 				  unsigned long dst_paddr,
657 				  int size, int *err)
658 {
659 	struct page *tpage = NULL;
660 	int ret, offset;
661 
662 	/* if inputs are not 16-byte then use intermediate buffer */
663 	if (!IS_ALIGNED(dst_paddr, 16) ||
664 	    !IS_ALIGNED(paddr,     16) ||
665 	    !IS_ALIGNED(size,      16)) {
666 		tpage = (void *)alloc_page(GFP_KERNEL);
667 		if (!tpage)
668 			return -ENOMEM;
669 
670 		dst_paddr = __sme_page_pa(tpage);
671 	}
672 
673 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
674 	if (ret)
675 		goto e_free;
676 
677 	if (tpage) {
678 		offset = paddr & 15;
679 		if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
680 				 page_address(tpage) + offset, size))
681 			ret = -EFAULT;
682 	}
683 
684 e_free:
685 	if (tpage)
686 		__free_page(tpage);
687 
688 	return ret;
689 }
690 
691 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
692 				  unsigned long __user vaddr,
693 				  unsigned long dst_paddr,
694 				  unsigned long __user dst_vaddr,
695 				  int size, int *error)
696 {
697 	struct page *src_tpage = NULL;
698 	struct page *dst_tpage = NULL;
699 	int ret, len = size;
700 
701 	/* If source buffer is not aligned then use an intermediate buffer */
702 	if (!IS_ALIGNED(vaddr, 16)) {
703 		src_tpage = alloc_page(GFP_KERNEL);
704 		if (!src_tpage)
705 			return -ENOMEM;
706 
707 		if (copy_from_user(page_address(src_tpage),
708 				(void __user *)(uintptr_t)vaddr, size)) {
709 			__free_page(src_tpage);
710 			return -EFAULT;
711 		}
712 
713 		paddr = __sme_page_pa(src_tpage);
714 	}
715 
716 	/*
717 	 *  If destination buffer or length is not aligned then do read-modify-write:
718 	 *   - decrypt destination in an intermediate buffer
719 	 *   - copy the source buffer in an intermediate buffer
720 	 *   - use the intermediate buffer as source buffer
721 	 */
722 	if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
723 		int dst_offset;
724 
725 		dst_tpage = alloc_page(GFP_KERNEL);
726 		if (!dst_tpage) {
727 			ret = -ENOMEM;
728 			goto e_free;
729 		}
730 
731 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
732 					__sme_page_pa(dst_tpage), size, error);
733 		if (ret)
734 			goto e_free;
735 
736 		/*
737 		 *  If source is kernel buffer then use memcpy() otherwise
738 		 *  copy_from_user().
739 		 */
740 		dst_offset = dst_paddr & 15;
741 
742 		if (src_tpage)
743 			memcpy(page_address(dst_tpage) + dst_offset,
744 			       page_address(src_tpage), size);
745 		else {
746 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
747 					   (void __user *)(uintptr_t)vaddr, size)) {
748 				ret = -EFAULT;
749 				goto e_free;
750 			}
751 		}
752 
753 		paddr = __sme_page_pa(dst_tpage);
754 		dst_paddr = round_down(dst_paddr, 16);
755 		len = round_up(size, 16);
756 	}
757 
758 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
759 
760 e_free:
761 	if (src_tpage)
762 		__free_page(src_tpage);
763 	if (dst_tpage)
764 		__free_page(dst_tpage);
765 	return ret;
766 }
767 
768 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
769 {
770 	unsigned long vaddr, vaddr_end, next_vaddr;
771 	unsigned long dst_vaddr;
772 	struct page **src_p, **dst_p;
773 	struct kvm_sev_dbg debug;
774 	unsigned long n;
775 	unsigned int size;
776 	int ret;
777 
778 	if (!sev_guest(kvm))
779 		return -ENOTTY;
780 
781 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
782 		return -EFAULT;
783 
784 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
785 		return -EINVAL;
786 	if (!debug.dst_uaddr)
787 		return -EINVAL;
788 
789 	vaddr = debug.src_uaddr;
790 	size = debug.len;
791 	vaddr_end = vaddr + size;
792 	dst_vaddr = debug.dst_uaddr;
793 
794 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
795 		int len, s_off, d_off;
796 
797 		/* lock userspace source and destination page */
798 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
799 		if (IS_ERR(src_p))
800 			return PTR_ERR(src_p);
801 
802 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
803 		if (IS_ERR(dst_p)) {
804 			sev_unpin_memory(kvm, src_p, n);
805 			return PTR_ERR(dst_p);
806 		}
807 
808 		/*
809 		 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
810 		 * memory content (i.e it will write the same memory region with C=1).
811 		 * It's possible that the cache may contain the data with C=0, i.e.,
812 		 * unencrypted so invalidate it first.
813 		 */
814 		sev_clflush_pages(src_p, 1);
815 		sev_clflush_pages(dst_p, 1);
816 
817 		/*
818 		 * Since user buffer may not be page aligned, calculate the
819 		 * offset within the page.
820 		 */
821 		s_off = vaddr & ~PAGE_MASK;
822 		d_off = dst_vaddr & ~PAGE_MASK;
823 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
824 
825 		if (dec)
826 			ret = __sev_dbg_decrypt_user(kvm,
827 						     __sme_page_pa(src_p[0]) + s_off,
828 						     dst_vaddr,
829 						     __sme_page_pa(dst_p[0]) + d_off,
830 						     len, &argp->error);
831 		else
832 			ret = __sev_dbg_encrypt_user(kvm,
833 						     __sme_page_pa(src_p[0]) + s_off,
834 						     vaddr,
835 						     __sme_page_pa(dst_p[0]) + d_off,
836 						     dst_vaddr,
837 						     len, &argp->error);
838 
839 		sev_unpin_memory(kvm, src_p, n);
840 		sev_unpin_memory(kvm, dst_p, n);
841 
842 		if (ret)
843 			goto err;
844 
845 		next_vaddr = vaddr + len;
846 		dst_vaddr = dst_vaddr + len;
847 		size -= len;
848 	}
849 err:
850 	return ret;
851 }
852 
853 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
854 {
855 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
856 	struct sev_data_launch_secret *data;
857 	struct kvm_sev_launch_secret params;
858 	struct page **pages;
859 	void *blob, *hdr;
860 	unsigned long n;
861 	int ret, offset;
862 
863 	if (!sev_guest(kvm))
864 		return -ENOTTY;
865 
866 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
867 		return -EFAULT;
868 
869 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
870 	if (IS_ERR(pages))
871 		return PTR_ERR(pages);
872 
873 	/*
874 	 * The secret must be copied into contiguous memory region, lets verify
875 	 * that userspace memory pages are contiguous before we issue command.
876 	 */
877 	if (get_num_contig_pages(0, pages, n) != n) {
878 		ret = -EINVAL;
879 		goto e_unpin_memory;
880 	}
881 
882 	ret = -ENOMEM;
883 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
884 	if (!data)
885 		goto e_unpin_memory;
886 
887 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
888 	data->guest_address = __sme_page_pa(pages[0]) + offset;
889 	data->guest_len = params.guest_len;
890 
891 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
892 	if (IS_ERR(blob)) {
893 		ret = PTR_ERR(blob);
894 		goto e_free;
895 	}
896 
897 	data->trans_address = __psp_pa(blob);
898 	data->trans_len = params.trans_len;
899 
900 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
901 	if (IS_ERR(hdr)) {
902 		ret = PTR_ERR(hdr);
903 		goto e_free_blob;
904 	}
905 	data->hdr_address = __psp_pa(hdr);
906 	data->hdr_len = params.hdr_len;
907 
908 	data->handle = sev->handle;
909 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
910 
911 	kfree(hdr);
912 
913 e_free_blob:
914 	kfree(blob);
915 e_free:
916 	kfree(data);
917 e_unpin_memory:
918 	sev_unpin_memory(kvm, pages, n);
919 	return ret;
920 }
921 
922 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
923 {
924 	struct kvm_sev_cmd sev_cmd;
925 	int r;
926 
927 	if (!svm_sev_enabled())
928 		return -ENOTTY;
929 
930 	if (!argp)
931 		return 0;
932 
933 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
934 		return -EFAULT;
935 
936 	mutex_lock(&kvm->lock);
937 
938 	switch (sev_cmd.id) {
939 	case KVM_SEV_INIT:
940 		r = sev_guest_init(kvm, &sev_cmd);
941 		break;
942 	case KVM_SEV_LAUNCH_START:
943 		r = sev_launch_start(kvm, &sev_cmd);
944 		break;
945 	case KVM_SEV_LAUNCH_UPDATE_DATA:
946 		r = sev_launch_update_data(kvm, &sev_cmd);
947 		break;
948 	case KVM_SEV_LAUNCH_MEASURE:
949 		r = sev_launch_measure(kvm, &sev_cmd);
950 		break;
951 	case KVM_SEV_LAUNCH_FINISH:
952 		r = sev_launch_finish(kvm, &sev_cmd);
953 		break;
954 	case KVM_SEV_GUEST_STATUS:
955 		r = sev_guest_status(kvm, &sev_cmd);
956 		break;
957 	case KVM_SEV_DBG_DECRYPT:
958 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
959 		break;
960 	case KVM_SEV_DBG_ENCRYPT:
961 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
962 		break;
963 	case KVM_SEV_LAUNCH_SECRET:
964 		r = sev_launch_secret(kvm, &sev_cmd);
965 		break;
966 	default:
967 		r = -EINVAL;
968 		goto out;
969 	}
970 
971 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
972 		r = -EFAULT;
973 
974 out:
975 	mutex_unlock(&kvm->lock);
976 	return r;
977 }
978 
979 int svm_register_enc_region(struct kvm *kvm,
980 			    struct kvm_enc_region *range)
981 {
982 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
983 	struct enc_region *region;
984 	int ret = 0;
985 
986 	if (!sev_guest(kvm))
987 		return -ENOTTY;
988 
989 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
990 		return -EINVAL;
991 
992 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
993 	if (!region)
994 		return -ENOMEM;
995 
996 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
997 	if (IS_ERR(region->pages)) {
998 		ret = PTR_ERR(region->pages);
999 		goto e_free;
1000 	}
1001 
1002 	/*
1003 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1004 	 * or vice versa for this memory range. Lets make sure caches are
1005 	 * flushed to ensure that guest data gets written into memory with
1006 	 * correct C-bit.
1007 	 */
1008 	sev_clflush_pages(region->pages, region->npages);
1009 
1010 	region->uaddr = range->addr;
1011 	region->size = range->size;
1012 
1013 	mutex_lock(&kvm->lock);
1014 	list_add_tail(&region->list, &sev->regions_list);
1015 	mutex_unlock(&kvm->lock);
1016 
1017 	return ret;
1018 
1019 e_free:
1020 	kfree(region);
1021 	return ret;
1022 }
1023 
1024 static struct enc_region *
1025 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1026 {
1027 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1028 	struct list_head *head = &sev->regions_list;
1029 	struct enc_region *i;
1030 
1031 	list_for_each_entry(i, head, list) {
1032 		if (i->uaddr == range->addr &&
1033 		    i->size == range->size)
1034 			return i;
1035 	}
1036 
1037 	return NULL;
1038 }
1039 
1040 static void __unregister_enc_region_locked(struct kvm *kvm,
1041 					   struct enc_region *region)
1042 {
1043 	sev_unpin_memory(kvm, region->pages, region->npages);
1044 	list_del(&region->list);
1045 	kfree(region);
1046 }
1047 
1048 int svm_unregister_enc_region(struct kvm *kvm,
1049 			      struct kvm_enc_region *range)
1050 {
1051 	struct enc_region *region;
1052 	int ret;
1053 
1054 	mutex_lock(&kvm->lock);
1055 
1056 	if (!sev_guest(kvm)) {
1057 		ret = -ENOTTY;
1058 		goto failed;
1059 	}
1060 
1061 	region = find_enc_region(kvm, range);
1062 	if (!region) {
1063 		ret = -EINVAL;
1064 		goto failed;
1065 	}
1066 
1067 	/*
1068 	 * Ensure that all guest tagged cache entries are flushed before
1069 	 * releasing the pages back to the system for use. CLFLUSH will
1070 	 * not do this, so issue a WBINVD.
1071 	 */
1072 	wbinvd_on_all_cpus();
1073 
1074 	__unregister_enc_region_locked(kvm, region);
1075 
1076 	mutex_unlock(&kvm->lock);
1077 	return 0;
1078 
1079 failed:
1080 	mutex_unlock(&kvm->lock);
1081 	return ret;
1082 }
1083 
1084 void sev_vm_destroy(struct kvm *kvm)
1085 {
1086 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1087 	struct list_head *head = &sev->regions_list;
1088 	struct list_head *pos, *q;
1089 
1090 	if (!sev_guest(kvm))
1091 		return;
1092 
1093 	mutex_lock(&kvm->lock);
1094 
1095 	/*
1096 	 * Ensure that all guest tagged cache entries are flushed before
1097 	 * releasing the pages back to the system for use. CLFLUSH will
1098 	 * not do this, so issue a WBINVD.
1099 	 */
1100 	wbinvd_on_all_cpus();
1101 
1102 	/*
1103 	 * if userspace was terminated before unregistering the memory regions
1104 	 * then lets unpin all the registered memory.
1105 	 */
1106 	if (!list_empty(head)) {
1107 		list_for_each_safe(pos, q, head) {
1108 			__unregister_enc_region_locked(kvm,
1109 				list_entry(pos, struct enc_region, list));
1110 			cond_resched();
1111 		}
1112 	}
1113 
1114 	mutex_unlock(&kvm->lock);
1115 
1116 	sev_unbind_asid(kvm, sev->handle);
1117 	sev_asid_free(sev->asid);
1118 }
1119 
1120 int __init sev_hardware_setup(void)
1121 {
1122 	struct sev_user_data_status *status;
1123 	int rc;
1124 
1125 	/* Maximum number of encrypted guests supported simultaneously */
1126 	max_sev_asid = cpuid_ecx(0x8000001F);
1127 
1128 	if (!svm_sev_enabled())
1129 		return 1;
1130 
1131 	/* Minimum ASID value that should be used for SEV guest */
1132 	min_sev_asid = cpuid_edx(0x8000001F);
1133 
1134 	/* Initialize SEV ASID bitmaps */
1135 	sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1136 	if (!sev_asid_bitmap)
1137 		return 1;
1138 
1139 	sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1140 	if (!sev_reclaim_asid_bitmap)
1141 		return 1;
1142 
1143 	status = kmalloc(sizeof(*status), GFP_KERNEL);
1144 	if (!status)
1145 		return 1;
1146 
1147 	/*
1148 	 * Check SEV platform status.
1149 	 *
1150 	 * PLATFORM_STATUS can be called in any state, if we failed to query
1151 	 * the PLATFORM status then either PSP firmware does not support SEV
1152 	 * feature or SEV firmware is dead.
1153 	 */
1154 	rc = sev_platform_status(status, NULL);
1155 	if (rc)
1156 		goto err;
1157 
1158 	pr_info("SEV supported\n");
1159 
1160 err:
1161 	kfree(status);
1162 	return rc;
1163 }
1164 
1165 void sev_hardware_teardown(void)
1166 {
1167 	if (!svm_sev_enabled())
1168 		return;
1169 
1170 	bitmap_free(sev_asid_bitmap);
1171 	bitmap_free(sev_reclaim_asid_bitmap);
1172 
1173 	sev_flush_asids();
1174 }
1175 
1176 void pre_sev_run(struct vcpu_svm *svm, int cpu)
1177 {
1178 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1179 	int asid = sev_get_asid(svm->vcpu.kvm);
1180 
1181 	/* Assign the asid allocated with this SEV guest */
1182 	svm->vmcb->control.asid = asid;
1183 
1184 	/*
1185 	 * Flush guest TLB:
1186 	 *
1187 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
1188 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
1189 	 */
1190 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
1191 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
1192 		return;
1193 
1194 	sd->sev_vmcbs[asid] = svm->vmcb;
1195 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
1196 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1197 }
1198